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1.1 Background 

Over the past 10 years, interest in the applications of Mobile Laser Scanning 
(MLS) point clouds has been increasing continuously. An MLS point cloud can 
provide accurate geometrical information of urban structures at the comfort of 
the office environment. The main advantage of MLS is the collection of accurate 
and dense 3D information in less time compared to terrestrial laser scanning, 
while advancements in the MLS technology have been making data collection 
cost-effective. However, the benefit of the time saving by MLS technique comes 
at the cost of an error-prone data acquisition procedure. As the 3D points are 
measured in bulk by laser scanners mounted on a moving car, the 
measurements are georeferenced by the Global Navigation Satellite System 
(GNSS) in combination with Inertial Navigation System (INS). With this setup, 
the acquired point cloud can achieve sufficient accuracy in areas without GNSS 
signal disturbances. However, blockage and reflection of GNSS signals in urban 
areas lead to poor positioning of the MLS platform (Gu et al. 2016; Hsu 2017). 
Depiction of such interference of GNSS signals by urban structure is illustrated 
in Figure 1.1. Another crucial issue is the elevation angle of satellites in the 
direct line of sight with the GNSS receiver. A constellation of satellites making 
a narrow-angle with a GNSS receiver causes poor Geometric Dilution of 
Precision (GDOP) as depicted in Figure 1.2.  
 

 
Figure 1.1: GNSS signals blockage and reflection in urban canyons. 
 
The poor GDOP can also be the result of masking reflected and unreliable 
satellite signals to avoid the multipath effect. Therefore, even when the 
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reflected satellite signals are eliminated (Hsu 2018; Lesouple et al. 2018),  the 
estimated positioning is still not reliable in urban areas. In an ideal condition 
at the outside of urban canyons, without any GNSS signal outage and multipath 
effect, the state-of-the-art Mobile Mapping (MM) platforms can reach 2-3 cm 
accuracy (Haala et al. 2008; Kaartinen et al. 2012). In a GNSS troubled area, 
the GNSS accuracy could quickly get worse than 50 cm during a complete 
outage of GNSS signals Kukko (2013). Wang et al. (2016) fused GPS, Inertial 
Measurement Unit (IMU) and dead-reckoning data by grid constraints. Mostly 
the accuracy remained above half a meter with RMSE X=0.79 m, Y=0.32 m, 
Z=0.86 m. A localization setup developed to fuse the GNSS/IMU/Distance 
Measurement Instrument (DMI)/lidar sensors information proposed by Meng 
et al. (2017) exhibited the error of 1 meter at some occasions only for a 
mapping distance of 140 meters. 
 

 
Figure 1.2: a) Tall buildings in the urban area promotes poor satellite Geometric Dilution 
of Precision, b) while a road without tall buildings is free from this problem. 
 
The inaccurate positioning of the MLS platforms can be refined by the Kalman 
filtering (Ding et al. 2007; Mohamed et al. 1999; Qi et al. 2002; Zhao 2011). 
However, according to the literature, the Kalman filtering based approaches 
cannot handle the GNSS signal outage longer than 10 seconds and lead to error 
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propagation in positioning (Chiang et al. 2008; Gao et al. 2006; Taylor et al. 
2006). Xiong et al. (2018) proposed a strong tracking filtering approach but 
the achieved accuracy was near or above meters. Regardless of various efforts 
to filter the inaccurate positions, the problem remains unsolved for the urban 
canyons. Therefore, during the mapping, in the presence of no other accurate 
positioning reference, the data is acquired as incorporated with erroneous 
GNSS positions, leaving the liability of point cloud correction on the post-
processing step. Later in the post-processing, the point cloud correction 
software first try to correct the trajectory by automatic registration of 
overlapping areas, consecutive scan lines matching or even matching with a 
prior accurate point cloud of aerial or terrestrial origins (Hsu et al. 2016).  
However, the point cloud self-registration based correction has a similar 
problem as faced by the Simultaneous Localization and Mapping (SLAM) 
approach, the error remains above 2 to 3 meters (Moosmann et al. 2011). The 
main problem still remains the propagation of error, but gets smaller compared 
to when no self-registration is done. These techniques can increase the relative 
accuracy and absolute accuracy to some extent but need data that has multiple 
scans/passes of the same area. However, due to the high cost of mobile laser 
scanning per hour, it is highly desirable to scan an area once and as quickly as 
possible. 
 
Some techniques use an already acquired reference (accurate) point cloud of 
the same area for the correction of the newly acquired point cloud. The 
registration with an accurate reference point cloud is also problematic because 
the reference point cloud was already corrected perhaps using manual 
correction. Moreover, Iterative Closest Point (ICP) and similar registration 
techniques also have a limitation. These techniques consider that a solution is 
achieved when a local optimum is reached. The registration between the MLS 
point cloud and aerial lidar point cloud could be an interesting possibility 
because the aerial point cloud can achieve a desirable accuracy without 
correction. Unfortunately, aerial point clouds have low point density especially 
on the building facades. Unbalanced coverage and unequal spatial distribution 
of points between MLS point cloud and aerial lidar point cloud makes the ICP 
based registration even more unstable. The point cloud generated by aerial 
image dense matching will also have insufficient quality for the registration of 
the MLS point cloud.  
 
With no automatic solution for decimetre level correction (the required 
accuracy level), the correction of the MLS point cloud highly depends on the 
Ground Control Points (GCPs), which are acquired manually in an independent 
survey. This correction procedure hinders the data acquisition of up-to-date 
urban structures. Still, accuracy cannot be improved in areas where GCPs 
themselves are either inaccurate or impossible to measure because of the 
unavailability of any proper landmarks. Moreover, the accuracy of the GCPs 



Chapter 1 

5 

can be similarly unreliable in urban canyons. As a consequence, many users, 
e.g. the city planning institutions, are forced to work with outdated and 
expensive datasets. 
 
In the following sections, we discuss the currently available manual and 
automatic MLS data correction procedures in detail and show that how their 
inability to achieve decimetre accuracy necessitated the development of our 
automatic correction procedure, which is discussed afterwards. 

1.2 Manual correction 
For the manual correction of MLS point clouds, two main further post-
processing steps are needed. To minimize the destined manual effort, the first 
post-processing step tries to correct the MLS point cloud by available but 
inaccurate automatic means, similar to the technique proposed by (Ding et al. 
2007; Levinson et al. 2007; Zhao 2011). This step performs registration 
between overlapping point cloud patches and filters inaccurate position of MLS 
platform in the trajectory. Normally, this step is performed without any 
external reference. Therefore, the inaccurate data can only be corrected if 
there are enough data overlapping or discrepancies are found between IMU 
and GNSS estimations. The sensors discrepancies become apparent because 
IMU estimations are reliable during small intervals, whereas the inaccurate 
GNSS readings may show uncertainty among consecutive measurements. 
However, utilizing these techniques, the final accuracy remains near meter as 
expressed by Chiang et al. (2008), especially during long-term GNSS outages 
in urban canyons. These automatic techniques are further discussed in the next 
section. 
 
Second post-processing step involves manually acquired GCPs for manual data 
correction. Although some latest software provide assistance to help human 
operator in handpicking the exact features by automatic detection of landmarks 
corresponding to GCPs, the manual intervention of a human operator is still 
needed for the final decision. Firstly, the ground control points are collected by 
surveying the target area as shown in Figure 1.3 (left). Secondly, the manual 
selection of the corresponding 3D points in the point cloud is performed 
carefully as shown in Figure 1.3 (right). 
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Figure 1.3: (Left), acquisition of GCPs outside of an urban canyon, (right) manual 
selection of GCPs correspondences in MLS point cloud by a human operator. 
 
Overall, this complete step is very labour intensive and hinders the automatic 
acquisition of high-quality MLS point cloud. Moreover, the GCP measurements 
could still be uncertain and the handpicking of the GCPs in the MLS data sets 
could as well be imprecise. Furthermore, to increase the reliability and validity 
of GCPs’ accuracy, the same GCPs are acquired multiple times, which makes 
the correction procedure even more expensive. If undetected inaccurate GCPs 
get mixed in the final reference set, then there is no third reference to verify 
the inconsistent GCPs. The main issue is that accurate GCPs can only be 
acquired where there are no tall buildings. Nevertheless, after painstaking 
manual efforts and corrections, the second step could improve the MLS point 
cloud accuracy to the desired level while keeping final product costly and error 
prone. The workflow of the manual post-processing for the correction of the 
MLS data is presented in Figure 1.4. 
 

 
Figure 1.4: Workflow for manual correction of MLS point cloud. 
 
Because of all the problems mentioned earlier, it is desirable to have an 
automatic procedure which can perform the correction while improving the 
accuracy at low cost and in less time. In this project, we will use aerial imagery 
as the source for georeferencing MLS point clouds. The exterior orientation of 
aerial images is known accurately from GNSS-supported aerial triangulation.  



Chapter 1 

7 

High resolution aerial imagery can therefore provide precise reference 
information. Therefore, the main goal of our research project is twofold; first 
is to determine the correspondences between well-oriented aerial photographs 
and the MLS point cloud by automatic matching between the point cloud and 
aerial images. The determined correspondences then lead to the computation 
of 3D tie points. The second sub-goal is to correct the MLS dataset better or 
equal to the results achieved by the manual correction. The workflow of such 
type of automatic correction procedure is presented in Figure 1.5.  
 

 
Figure 1.5: Workflow of fully automatic correction of MLS point cloud using automatic 
extraction of tie points and trajectory adjustment. 

1.3 Automatic direct 3D/2D registration 
The registration between the inaccurate dataset (point cloud) and reference 
dataset (aerial images) can determine the correspondences necessary for the 
adjustment and correction of the inaccurate dataset. In this section, we will 
discuss techniques which can register the inaccurate data with reference data 
by directly minimizing the offset error. It is a 3D-to-2D or 2D-to-3D registration 
problem with a lot of available literature. However, we only focus on studies 
which are useful and related to the application at hand. One of the favoured 
approaches for the 2D/3D registration is to focus on the structural information. 
Even with the varying perspectives and dissimilar sensors, the geometry of 
objects is always perceived and preserved in both point cloud and images. For 
texture mapping application, Frueh et al. (2004) preferred to extract structural 
lines from 3D models of the city for the registration with the edges extracted 
from oblique images as shown in Figure 1.6. The GNSS and INS based exterior 
orientation of the oblique image was an initial guess for registration. The lines 
in the point cloud were based on depth map edge points while the oblique 
image edges were detected by canny edge detection, both 2D and 3D line 
segments were estimated by the recursive endpoint subdivision algorithm 
Lowe (1987). The 3D model’s lines were projected to the oblique image plane 
and instead of one line, three connected lines were grouped to rate a particular 



Introduction 

8 

camera pose similar to Lee et al. (2002). Frueh et al. (2004) considered a point 
cloud as the reference dataset. It is the other way around in our project.  
 

 
Figure 1.6: (Left) green 3D line segments extracted and projected onto the aerial image 
plane. (Right) image shows the lines after the pose estimation. Red colour lines are the 
line segments extracted from the aerial image, a figure from Frueh et al. (2004). 
 
Ding et al. (2008) proposed a method to extract 2D orthogonal corners from 
digital surface models (DSM) obtained from an ALS point cloud. The 2D 
orthogonal corners were constructed from the oblique images which in turn 
used for vanishing points detection. Then the corners from the DSM were 
projected using the exterior orientation of the oblique camera as shown in 
Figure 1.7. For the matching, the distance between the corners and the 
similarity of the corner description criteria was used. Wrong matches were 
filtered out using Hough transform with generalized M-estimator sample 
consensus. For the registration, the camera recovery method was used on the 
corresponding corners Lowe (1987). However, the DSM used was already 
constructed by merging the aerial and ground laser scanning point cloud views 
Frueh et al. (2003). That’s why the obtained 3D model was already quite 
accurate on the boundaries of the building. Due to this reason, it was possible 
to extract features confidently to match them directly with the oblique image. 
Ding et al. (2008) assumed that the more reliable corner features were the 
building top edges. Their technique detected too many line segments as 
features in oblique images where most of them had no viable correspondence 
in the point cloud. The line segment detection from noisy and occluded point 
cloud images can also produce many false and unmatchable features. The 
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validation and accuracy of the camera poses were assumed accurate on the 
basis of visual inspection. 
 

 
Figure 1.7: (Top left) 2D orthogonal corners detected in DSM, (top right) 2D orthogonal 
corners detected in an oblique image, (bottom middle) matches after Hough transform, 
green corners are projected from DSM, blue are image’s original corner and red lines are 
correspondences, a figure from Ding et al. (2008). 
 
Fruh et al. (2001) proposed a method for vehicle position estimation by 
registration of a 3D model derived from laser scans with 2D aerial images and 
roadmaps. However, the accuracy of this method was limited to the width of 
the road which was being scanned. The matching between the point cloud and 
aerial images was realized by the maximum cross-correlation, while the 
positioning was maintained by Monte Carlo Localization (MCL). The mounting 
point of the laser scanner was increased in height to avoid the occlusion by 
road traffic. This method was not designed to handle the occlusion caused by 
roadside fixed objects e.g. trees. It was assumed that the features like building 
edges could be extracted clearly from the MLS point cloud. Moreover, the aerial 
images were merged together with roadmaps to assist localization. The 
accuracy determined to be the width of the road also does not meet the 
requirement of our application. Chen et al. (2009) developed a method to 
automatically detect geo-referenced lane markings from MLS point cloud. This 
work exploited the point cloud reflectance information to detect road markings. 
The line segments of the road markings were acquired by the Hough transform. 
However, the geometrical accuracy of the detected line segment was not 
discussed and this technique was tested in the areas without tall buildings. The 
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images were acquired from the same mobile platform and the colour 
information from the images was assigned to the corresponding detected road 
signs based on the well-known relative orientation between camera and laser 
scanner but a fusion of the datasets was not discussed. 
 
A method proposed by Wang et al. (2009) performs registration of aerial lidar 
data to oblique images. Instead of using the camera pose as proposed by Ding 
et al. (2008), the orientation of a laser scanner estimated by GNSS/INS was 
used. A feature constructed from 3-connected line segments was proposed and 
extracted from ALS point cloud and oblique images. The authors claimed that 
the 3-connected line segments increase the number of matches compared to 
using single line segments matching, discussed earlier. For outlier match 
removal, first-level processing of RANSAC removed global outlier matches, 
while the second level of RANSAC removed the local-level outliers.  For edge 
detection in the aerial images, a curve was fitted on the detected edges and 
then a breakpoint algorithm was used to obtain line segments. This type of 
edge detection can introduce small errors in the detection of original edges 
which is not suitable for accuracy requirements we needed for our application. 
 
A possibility for the improvement of MLS platform localization is to perform 
distortion removal in the point cloud, which in turn can also provide the 
correction to the point cloud and position. A point cloud can be distorted if 
there is continuously changing error in the position of moving lidar sensor. 
Harrison et al. (2008) implemented an approach to use an LMS200 laser 
scanner with an odometer. The approach mainly relies on vertical objects in 
the scene. The Bayesian filtering technique was used to estimate an accurate 
position. The point cloud before and after the distortion removal is shown in 
Figure 1.8. However, only the data from a single laser scanner was used, 
whereas, in our research, we will utilize the data from two laser scanners. 
Another disadvantage is that they mainly rely on the fact that the single 
scanner will always scan the same surface more than once, which is not 
necessary for the dataset at hand. Bosse et al. (2009) described a scan-
matching method based on iterative closest points (ICP) to recover an accurate 
trajectory. Like the previous technique, this technique is also based on another 
single laser range sensor SICK LMS291. The ICP algorithm is used without the 
initial guess from IMU or odometer sensors, which can lead to an unreliable 
convergence of the ICP process. Moreover, the data of the INS is not used at 
all, which otherwise could provide an initial guess to the ICP algorithm.  
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Figure 1.8: (a) point cloud before correction, (b) point cloud after correction, notice that 
the point belongs to the same structure are aligned, figure from Harrison et al. (2008). 
 
As mentioned earlier, a shift error can occur between two point clouds acquired 
from two different lidar sensors due to the poor estimation of the relative 
orientation between the two lidar sensors.  Levinson et al. (2007) described a 
simultaneous localization and mapping approach to tackle this problem, the 
point cloud before and after the adjustment is shown in Figure 1.9. Moreover, 
if the consecutive strips in the MLS data are not aligned, then the point cloud 
strip adjustment approaches proposed by Haala et al. (2008) and Bornaz et al. 
(2003) can be used. However, these types of techniques can only be used to 
increase the relative accuracy in the MLS point cloud.  
 

 
Figure 1.9: (Left) 3D point clouds from two sensors before alignment, (Right) 3D point 
clouds after alignment, figure from Levinson et al. (2007). 
 



Introduction 

12 

1.4 Automatic 2D feature matching 
Another well-known strategy to register the point cloud with the aerial images 
is to first generate perspective images of the point cloud and then extract and 
match 2D features. The aerial images with the accurate interior and exterior 
orientation can provide accurate georeferenced locations of corresponding 
features in the point cloud. Then the matched features between the aerial 
images and the MLS point cloud can be used for the orientation update of the 
point cloud as discussed in the next section. 
  
The 2D matching with multiple images has many advantages over the direct 
3D/3D registration approach. One of them is the possibility to detect 
geometrically very accurate features. An accurate 2D feature can represent the 
geometrical property of a landmark up to pixel or subpixel level, depending on 
the keypoint detection technique used. If the subpixel-level accurate features 
are detected and matched correctly, the point cloud improved by subpixel-level 
correspondences can achieve near aerial image accuracy.  
 
Apart from the accuracy-related advantages, the 2D feature-based approach 
also faces difficulties, notably among them are the detection and matching of 
dissimilar features perceived from largely distinct perspectives. Furthermore, 
an image comprises information from white light reflected from the scene by 
cameras, whereas the lidar sensor measures the geometrical information and 
surface reflection of the 3D points in the scene with an active infrared sensor. 
Moreover, an optical image has a regular grid of pixels over the image space, 
whereas the MLS point density depends on the distance from the lidar sensor 
to the object and on the speed of MLS car. Furthermore, the laser reflection 
intensity of each 3D point is not the same as the white light pixel intensity. The 
matching would be easier if at least the data was captured from the same 
platform. Then the individual sensor can perceive the geometrical information 
from the same perspective and the landmarks or features appear similar and 
thus are easier to match. For this reason, most of the work has been done 
towards matching the point cloud and images captured from the same 
platform, e.g. the matching techniques discussed in (Abayowa et al. 2015; 
Parmehr et al. 2014; Yang et al. 2015; Zhang et al. 2015). 
 
For 3D/2D registration, a 2D matching technique needs to first convert a point 
cloud into a perspective raster image and determining the pixel values from 
the reflectivity information of the laser points. The similar 3D/2D registration 
by matching rasterized laser scans and the camera images using the Scale-
invariant feature transform (SIFT) based approach is proposed by Meierhold et 
al. (2010). Both camera image and point cloud were acquired from the ground, 
the point cloud was used as a reference. Therefore, the accuracy of improved 
aerial images was evaluated and instead of measuring the error in feature 
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locations, the error was measured in terms of improved camera exterior 
orientation parameters. In our case, the images are used as a reference 
dataset, while the accuracy of the improved point cloud needs to be evaluated 
in the absolute coordinate system and not in terms of camera orientation. 
Another method utilizing the SIFT-based matching approach on the point cloud 
and aerial imagery both captured from an aerial platform is investigated in 
Abedini et al. (2008). However, in this preliminary study, the registration was 
just estimated approximately without accuracy verification. In another similar 
study, Gao et al. (2015) performed the matching of a rasterized point cloud 
with UAV imagery. They reported RMSE of ∆X=8.6 cm, ∆Y=6.3 cm, and 
∆Z=10.6 cm in the corrected point cloud. However, they evaluated only the 
relative accuracy using control points handpicked from UAV images and 
checkpoints handpicked from the adjusted point cloud. The evaluation 
quantified the error introduced by the adjustment and not absolute accuracy. 
In contrast, our goal is to automatically extract tie points which can be used 
by the trajectory adjustment method and achieve decimetre-level absolute 
accuracy.  
 
Road markings are the prominent features detectable in both aerial images 
and point clouds as shown in Figure 1.10. Because road markings and Zebra-
crossings are printed on the road surface with highly reflective white paint. In 
the point cloud, they are extractable by differentiating the strength of the laser 
beam reflectance. In aerial imagery, road markings are represented by pixels 
with highest intensity. Like many 3D to 2D matching techniques discussed 
earlier, the 3D point cloud points can be projected onto 2D perspective planes 
to generate the 2D views. Then the 2D features can be detected from both 
datasets for 2D matching. Examples of the feasibility of 2D feature detection 
from the road markings from both datasets are shown in Figure 1.11. 
Sometimes, these features are also called low-level features.  
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Figure 1.10: Comparison of two examples of road marking in the point cloud and aerial 
images. 
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a)  
 

b)  
Figure 1.11: The subpixel features detected on the corners of a zebra-crossing. a) A 
perspective projection of a point cloud onto an image plane. b) The corresponding aerial 
image patch. 

1.5 Orientation update or trajectory adjustment 
The automatic 3D/2D registration and 2D matching techniques discussed 
earlier only facilitate the establishment of correspondences between the 
datasets. After the matching, another step is needed to update the orientation 
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of the MM platform. Almost all techniques such as SLAM, (Extended) Kalman 
Filter or Particle Filter (PF) can incorporate the retrieved constraints. For 
example, the SLAM approach can be used to compute the relative orientation, 
where every node of the graph contains the current pose and the observations. 
An edge in the graph represents the relative transformation between two 
connected nodes.   
 
Using a Particle Filter or Monte Carlo Localization technique, (Kümmerle et al. 
2009) estimated the global orientation of laser scanner by considering aerial 
image features as external references to the point cloud features, where point 
cloud features are the local observations. The technique tries to maximize the 
likelihood of all the observations including the prior, which yields the globally 
consistent estimation of the trajectory. In later research work, Kümmerle et 
al. (2011) implemented a SLAM procedure for a mobile laser scanning platform 
while using aerial images as a refined map. The concept of constraint extracted 
from aerial images is shown in Figure 1.12. This procedure achieved an overall 
accuracy of 20 cm. For localization of a laser scanner based vehicle in urban 
areas, Levinson et al. (2010) also used a SLAM approach. They claimed to 
achieve a 9 cm lateral error and 12 cm longitudinal error. However, they had 
to generate a probabilistic-map using an already existed accurate point cloud. 
Choi (2014) proposed a hybrid map-based SLAM using Rao-Blackwellized 
particle filters. They improved the trajectory of laser scanning setup for a 1 km 
long trajectory. Though the approach performs way better than the other 
approaches with residual above many meters, their approach also cannot 
suppress the residual lower than 2 meters near the end of the trajectory. (Im 
et al. 2016) used vertical corners features extracted from the point cloud and 
registered them with prebuild corner map using the ICP algorithm. They 
reported near decimetre accuracy on the horizontal plane, but the vertical 
accuracy was still near half a meter. 
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Figure 1.12: Yellow observations are global constraints extracted from the aerial images, 
where other observations are local constraints acquired with SLAM, figure from 
Kümmerle et al. (2011). 
 
Wolcott et al. (2014) developed image-based navigation for self-driving 
systems. In their method, the mobile mapping camera images were registered 
with a previously obtained 3D point cloud by maximizing the normalized mutual 
information. Their developed approach reported a longitudinal RMS of 
19.1~45.4 cm and a lateral RMS of 14.3~20.5 cm. Recently, Javanmardi et al. 
(2018) proposed a technique for MLS platform localization based on the 
‘abstract maps’. However, this technique utilizes accurate maps already 
generated from an accurate prior point cloud. In our case, we do not consider 
that a (prior) accurate MLS point cloud is already available. Their multilayer 2D 
vector map-based localization achieved a mean 2D error of 20 cm, while the 
planar surface map-based localization achieved about 43 cm of error. 
 
One of the earliest accounts of the B-splines based trajectory design and 
control of wheeled mobile robots was reported in the work of Komoriya et al. 
(1989). Most of the work related to B-spline based trajectory is dedicated 
towards the path planning. For the computation of the B-spline coefficients, 
Jauch et al. (2017) utilized the Kalman filter while in our case we directly 
estimate the coefficients using a system of linearized equations. Many 
researchers used the B-splines based trajectory for path planning. Elbanhawi 
et al. (2016) implemented randomized B-splines for robotic car navigation, 
where B-splines were used for the continuous motion and to accommodate the 
online constraints. Many researchers choose to represent the 6DOF trajectory 
for mobile mapping systems with the B-splines. For a visual odometry 
application, Patron-Perez et al. (2015) combined the discrete camera poses 
with continuous unsynchronized IMU observations, which lead to the 
estimation of a continuous camera trajectory. They reported an RMSE of 1.96 
meters for a trajectory of 792 meters. It is convenient to update the B-spline 
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locally from the improvements in the local control points. For micro aerial 
vehicles, Usenko et al. (2017) modify the local intervals of the B-spline 
trajectory for an unmodelled obstacle in the pre-processed global trajectory. 
The improvement of the mobile mapping platform’s trajectory can lead to the 
correction of MLS data, likewise, Gao et al. (2015) used shape-preserving 
piecewise cubic Hermite interpolating method for the adjustment of trajectory 
parameters. They reported the achieved accuracy of RMS -∆X=8.6 cm -∆Y=6.3 
cm -∆Z=10.6 cm in the improved point cloud. However, the reported accuracy 
was estimated by the checkpoints from the same reference aerial imagery. The 
research work towards trajectory correction has shown that the achievement 
of the near decimetre accuracy in the MLS dataset is still a challenge. 

1.6 Our research aim 
The main aim of our research is to eliminate the dependency on the manual 
intervention otherwise necessary for the correction of the MLS point cloud. As 
discussed earlier, we believe that the utilization of the aerial imagery as a 
reference data set is essential in achieving the reliable and automatic 
registration of the point cloud. 
 
The major steps of the automatic workflow are coarsely divided into the 
following four parts. 
 
1) Feature detection to represent the same corresponding geometrical 

position with pixel-level accuracy in both lidar and image datasets.  
2) Feature matching to find the subpixel-level feature correspondences. 
3) Estimation of the decimetre-level accurate 3D tie points leading to 3D-3D 

correspondence observation.  
4) Adjustment of the 6DOF platform trajectory using mainly the 3D-3D 

correspondence and IMU observations. 
 
The complete workflow of the proposed method is depicted in Figure 1.13. This 
schematic flow visualizes the first part as feature detection from both data sets, 
followed by a feature matching part, the features correspondences lead to 
extraction of 3D tie points. The last part refers to the orientation update that 
mainly utilizes 3D tie points and IMU observations. We aimed to reach an 
improvement in the absolute accuracy of the mobile mapping platform in urban 
canyons from about 50 cm to 10 cm. The improved dataset e.g. can be used 
for large-scale topographic mapping purposes.  
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Figure 1.13: Schematic flow of the developed research method. 
 
The chapters in this thesis associated with research publications are as 
following: 
 
Chapter 2.  
1) Jende, P., Z. Hussnain, M. Peter, S. Oude Elberink, M. Gerke and G. 

Vosselman, 2016. Low-level tie feature extraction of mobile mapping data 
(MLS/images) and aerial imagery. Int. Arch. of Photogramm. and Remote 
Sens. pp. 19-26. 

 
Chapter 3. 
1) Hussnain, Z., S. Oude Elberink and G. Vosselman (2016). Automatic 

feature detection, description and matching from mobile laser scanning 
data and aerial imagery. Int. Arch. Photogramm. Remote Sens. Spatial Inf. 
Sci. XLI-B1: 609-616. 

 
Chapter 4. 
1) Hussnain, Z., Oude Elberink, S., Vosselman, G., 2019. Automatic 

extraction of accurate 3D tie points for trajectory adjustment of mobile 
laser scanners using aerial imagery. ISPRS Journal of Photogrammetry and 
Remote Sensing 154, 41-58. 

 
2) Hussnain, Z., Oude Elberink, S., Vosselman, G., 2018. An Automatic 

Procedure for Mobile Laser Scanning Platform 6DOF Trajectory Adjustment. 
The International Archives of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences XLII-1, 203-209. 
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1.7 Structure of the thesis 
This thesis is structured into seven chapters. The first and last chapters are 
introduction and synthesis respectively, the remaining chapters are 
independent scientific writings holding individual research objectives, 
methodology, results, discussions and conclusions. The broader topics covered 
in each chapter are remarked in Figure 1.13 for convenience. The chapters of 
this thesis are based on the research publications, therefore, the background, 
importance and motivation to develop an automated MLS point cloud 
registration with aerial imagery for correction are shared among most of the 
chapters.  
 
Chapter 1. Introduction: This chapter presents the background and 
importance of our research project, research scope and the contributions and 
briefly describe the place of each chapters’ contribution to the main research.  
 
Chapter 2. Low-level Tie Feature Extraction of Mobile Mapping Data 
(MLS/Images) and Aerial Imagery: The first task towards the automatic 
feature extraction is the identification or development of a suitable 2D feature 
matching technique. We examine out of the box automatic feature matching 
techniques and then determine a feasible technique useful for our dataset. Due 
to the challenging task of matching dissimilar datasets and based on the 
literature review, it is expected that the mainstream feature matching 
techniques are not directly suitable. Most of the techniques or combination of 
feature detector and descriptor that are tailor-made for specific tasks. These 
approaches include e.g. matching of the images from the similar sensors, 
though captured from varying orientation. In this chapter, we aim to enable a 
reliable matching pipeline for MM data obtained in urban areas and verify 
existing data sets according to their localisation accuracy. The experiments 
conducted are based on joint work. The preparation and preprocessing of the 
MLS dataset and corresponding aerial image dataset together with the 
description of associated image matching methods and experiments are 
conducted by Zille Hussnain. The experiments on Mobile Mapping Imaging 
(MMI) dataset and the description of the related methods are conducted by 
Phillipp Fanta-Jende. The common features between the ground data and aerial 
nadir imagery are extracted based on the imprecise but approximate exterior 
orientation of the MM data. The technique yields adequate 2D correspondences 
is further developed in the next chapter. 
 
Chapter 3.  Automatic Feature Detection, Description and Matching 
from Mobile Laser Scanning Data and Aerial Imagery: Many of the 
currently available solutions are either semi-automatic or unable to achieve 
pixel-level accuracy. We aim to further advance the feature matching 
technique determined in chapter 2 to achieve pixel-level accuracy. A normal 
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2D matching technique does not necessarily produce pixel-level accurate result 
unless adopted properly. The technique comprises three steps; image feature 
detection, description, and matching between corresponding patches of a point 
cloud and aerial orthoimages created by the projection of point cloud on the 
virtual ground plane. For the feature detection, we developed an adaptive 
Harris-operator keypoint detection to detect clusters of feature points on the 
vertices of road markings. For the feature description phase, we use the LATCH 
binary descriptor, which is robust to data from dissimilar sensors. For outlier 
correspondences filtering, we developed a technique by exploiting the 
arrangements of relative Euclidean-distances and angles between 
corresponding sets of feature points.  
 
Chapter 4. Automatic Extraction of Accurate 3D Tie Points for 
Trajectory Adjustment of Mobile Laser Scanners using Aerial Imagery: 
The feature matching technique developed in chapter 3 can retrieve the pixel-
level accurate 2D correspondences. One of the main aims in this chapter is to 
achieve the subpixel accurate 2D correspondences. However, only 2D 
correspondences are not enough for the orientation update. Further 
improvements involve the projection of the point cloud into the aerial image 
planes to generate perspective images for each view. This is more reliable than 
projecting on a ground plane. If the image plane is not parallel to the ground 
plane then the ground projection will vary from the information in the aerial 
image. Another main advancement in this chapter is the computation of the 
3D tie points from 2D-2D correspondences, which involves further steps of 
multiview matching and 3D triangulation of multiview matches. The reliability 
of the 3D tie points is also assessed. 
 
Chapter 5. Enhanced Trajectory Estimation of Mobile Laser Scanners 
Using Aerial Images: The automatic 3D tie point extraction method 
described in the previous chapter provides the 3D feature correspondences for 
the orientation update of the 6DOF trajectory, but does not describe the 
adjustment. The method described in this chapter utilizes multiple 
observations to improve the MLS platform trajectory. The observations 
equations are linearized to adjust the B-spline based 6DOF trajectory. The first 
type of observation is derived from the 3D tie points computed automatically 
in the previous chapter. The second set of observation equations is based on 
IMU readings; covering accelerations and angular rotation. As a third type of 
observation soft-constraints on the related pose parameters are formulated. 
These observations provide updates to B-spline coefficients and lead to 
improved sensor orientations. Later in this chapter, we analyse the accuracy 
of the trajectory adjustment procedure. In real-world road scenario road 
marks, tie points and checkpoints are not available everywhere. Therefore, we 
perform detailed analysis of the adjustment procedure to confirm that the same 
level of accuracy has been achieved in the areas where no checkpoints are 
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available. The main objective of the research work is to generate the improved 
point cloud from the adjusted trajectory, which is also realized in this chapter. 
 
Chapter 6. Synthesis: This chapter discusses the research contributions, 
conclusions and recommendations to further extend and improve the methods 
covered in this research project. It compares the achievement of the research 
goal with state-of-the-art methods. Moreover, it provides advice to further 
improve and enhance the accuracy of the mobile laser scanning point cloud by 
an automated procedure. 

1.8 Context and contributions 
This PhD project is a part of the NWO project titled ‘Position Estimation of 
Mobile Mapping Sensors using Airborne Imagery’. Among two parts in total, 
one part of this project is related to the registration of MLS point cloud with 
the airborne images for laser scanner position estimation, which is covered in 
this thesis of Zille Hussnain. The other part of the project covers the 
registration between ground panoramic images and airborne images for 
accurate positioning, which is investigated by PhD candidate Phillipp Fanta-
Jende. The aim of both sub-projects is to estimate the position of a mobile 
mapping sensor for absolute and accurate mapping. A research group in the 
consortium consists of George Vosselman, Sander Oude Elberink, Zille 
Hussnain, Phillipp Fanta-Jende and Francesco Nex of the University of Twente, 
Enschede and Markus Gerke (Instituts für Geodäsie und Photogrammetrie, 
Braunschweig). Moreover, the user group comprises of CycloMedia®, Fugro 
Geospatial®, Slagboom en Peeters®, Topcon Europe Positioning®, 
Kadaster®, Het Waterschapshuis®. The formation of the research interaction 
is illustrated in Figure 1.14. The user group provided the input, test and 
validation data sets for the whole research project and evaluated results. The 
input datasets for this thesis consist of MLS dataset and aerial imagery of 
Rotterdam. The aerial images were provided with the accurate interior and 
exterior orientations. The GNSS receiver mounted at high altitude also cannot 
suffer from poor GDOP. Therefore, the positioning accuracy of the features in 
the input aerial images is high. We assume that features in the aerial image 
can be used as the external reference for the features in the MLS data. 
Therefore, the feature correspondence between MLS data and images can be 
used as constraints in orientation updating techniques. 
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Figure 1.14: All 7 partners involved in this NWO project and their main contributions in 
terms of input datasets; MLS point cloud and aerial imagery. 
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2 –  Low-level Tie Feature Extraction of 
Mobile Mapping Data (MLS/Images) and 
Aerial Imagery1 

  

                                               
1This chapter is based on: 

Jende, P., Z. Hussnain, M. Peter, S. Oude Elberink, M. Gerke and G. Vosselman, 2016. 
Low-level tie feature extraction of mobile mapping data (MLS/images) and aerial 
imagery. Int. Arch. of Photogramm. and Remote Sens. pp. 19-26. 
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Abstract 
Mobile Mapping (MM) is a technique to obtain geo-information using sensors 
mounted on a mobile platform or vehicle. The mobile platform’s position is 
provided by the integration of Global Navigation Satellite Systems (GNSS) and 
Inertial Navigation Systems (INS). However, especially in urban areas, building 
structures can obstruct a direct line-of-sight between the GNSS receiver and 
navigation satellites resulting in an erroneous position estimation. Therefore, 
derived MM data products, such as laser point clouds or images, lack the 
expected positioning reliability and accuracy. This issue has been addressed by 
many researchers, whose aim to mitigate these effects mainly concentrates on 
utilising tertiary reference data. However, current approaches do not consider 
errors in height, cannot achieve sub-decimetre accuracy and are often not 
designed to work in a fully automatic fashion. We propose an automatic 
pipeline to rectify MM data products by employing high resolution aerial nadir 
and oblique imagery as horizontal and vertical reference, respectively. By 
exploiting the MM platform’s defective, and therefore imprecise but 
approximate orientation parameters, accurate feature matching techniques 
can be realised as a pre-processing step to minimise the MM platform’s three-
dimensional positioning error. Subsequently, identified correspondences serve 
as constraints for an orientation update, which is conducted by an estimation 
or adjustment technique. Since not all MM systems employ laser scanners and 
imaging sensors simultaneously, and each system and data demand different 
approaches, two independent workflows are developed in parallel. 
  
Still under development, both workflows will be presented and preliminary 
results will be shown. The workflows comprise of three steps; feature 
extraction, feature matching and the orientation update. In this paper, initial 
results of low-level image and point cloud feature extraction methods will be 
discussed as well as an outline of the project and its framework will be given. 
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2.1 Introduction 
Mobile Mapping is on the verge of becoming a substantial addition to the family 
of geo-data acquisition techniques. Airborne or satellite data cover large areas, 
but have limited capabilities when it comes to the density of data postings and 
high accuracy, whereas classical terrestrial techniques are expensive and often 
impractical. Particularly in urban areas, MM shapes up to be an extraordinarily 
useful technique not just to complement airborne or satellite coverage, but to 
enable a completely new array of possibilities. MM imaging systems and laser 
scanners collect high-resolution data, but have to rely on external 
georeferencing by GNSS. As a system being intermittently available, INS 
provides relative measures between position fixes and compensates for 
measurement noise and errors. Although GNSS carrier-phase measurements 
allow highly accurate positioning, urban areas remain problematic regarding 
the measurement reliability due to multipath effects and occlusions. When 
these phenomena persist over longer periods, accurate positioning cannot be 
maintained, and consequently data accuracy will be diminished (Godha et al. 
2005). This paper presents a method to detect and extract low-level image and 
point cloud features as a prerequisite for the rectification of MM data using 
aerial imagery. First, a brief outline of the project will be given. In section 2.2, 
a literature overview on similar work will be presented, and applied feature 
detection and extraction methods will be shortly introduced, followed by 
section 2.4. addressing low-level feature extraction for point clouds as well as 
for camera images. Section 2.5 discusses initial results of low-level feature 
extraction methods of both aerial and MM images as well as point cloud data. 
Lastly, section 2.6 concludes the work presented in this paper as well as gives 
an outlook on future developments. 

2.2 Project overview 
The aim of our research project is to enable a reliable localisation pipeline for 
MM data obtained in urban areas, and to verify existing data sets according to 
their localisation accuracy in order to economise the acquisition of ground 
control. Due to apparent differences in the sensor setup and data, two 
workflows for Mobile Laser Scanning (MLS) and Mobile Mapping Imaging (MMI) 
are being developed. The common basis is the utilisation of high-resolution 
aerial nadir and oblique imagery as an external reference to compensate for 
vertical as well as for horizontal errors. In a first stage, common features 
between the ground data and aerial nadir imagery are sought. Based on the 
imprecise, but approximate exterior orientation of the MM data, more reliable 
and efficient matching techniques can be employed. For instance, a confined 
search for correspondences and their verification in the other image can be 
inferred even from coarse orientation parameters. The next stage will be the 
integration of oblique images into the pipeline to yield common features on the 
vertical axis in order to better detect errors in height, and will enable to 
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increase the overall number of tie features considerably. Façades and other 
vertical objects, such as streetlights and traffic signs, are potential objects 
which can be used for that purpose in future work. In a last step, this tie 
information allows for either a re-computation of the trajectory or, 
alternatively, an adjustment of the data as such. 

2.3 Related work 

2.3.1 Previous approaches 

Coping with poor localisation of mobile platforms in urban areas has been 
addressed by many authors. Mostly by employing tertiary data as an external 
reference, either the data itself (Tournaire et al. (2006); Jaud et al. (2013); Ji 
et al. (2015)) or the platform’s trajectory (Kümmerle et al. (2011); Levinson 
et al. (2007); Leung et al. (2008)) has been corrected. Depending on the data 
input and type (e.g. aerial imagery, digital maps or ground control points), 
different registration methods were utilised to impose unaffected, reliable and 
precise orientation information from external data on MM data sets. 
Subsequently, yielded correspondences were used as a constraint within a filter 
or adjustment solution. Even though many authors achieved a successful 
localisation based on an external reference, errors in height were not corrected, 
and a consistent sub-decimetre accuracy could not be reached. 

2.3.2 Low-Level Feature Extraction 

Both, low- and high-level feature extraction methods, are relevant for this 
research project. Whereas low-level features allow a great flexibility towards 
the selection of suitable correspondences, the registration of data originating 
from different sensors (i.e. Mobile Laser Scanning and aerial imagery) may 
demand an extension of that concept. Although MLS intensity information 
enables the derivation of corner features, thorough and reliable transformation 
parameters can only be determined on an abstract representation by 
identifying common objects in both data sets. Hence, high-level feature 
extraction methods will be highlighted in the future. In this paper, however, 
emphasis will be placed on low-level feature extraction which is still an active 
field of research as real-time applications have been gaining more attention in 
the last few years. Classic feature detection algorithms, such as the Förstner-
Operator (Förstner et al. 1987) or the Harris Corner Detector (Harris et al. 
1988) are accompanied by state-of-the-art approaches like AKAZE (Alcanterilla 
et al. 2013) or FAST (Rosten et al. 2006). Although many improvements have 
been made in this field, the most important property of a feature detector 
remains to identify the same keypoints over a set of images. 
  
Once features have been detected in the image, they have to be described 
unambiguously to increase their distinctiveness among other features in order 
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to match them correctly. Low-level feature description approaches can be 
divided into two categories – binary and float description. Whereas float 
descriptors, such as SIFT (Lowe 2004), are based on a Histogram of Oriented 
Gradients (HoG), binary descriptors (e.g. BRIEF (Calonder et al. 2010)) are 
analysing the neighbourhood of a feature keypoint with a binary comparison 
of intensities according to a specific sampling pattern. Float descriptors are 
typically more expensive to compute, and need more memory to store their 
output than binary descriptors. However, depending on the application, 
robustness of these two categories varies (Heinly et al. (2012); Miksik et al. 
(2012)). 
 
In this paper, different feature detection as well as float and binary description 
methods will be compared taking the example of aerial nadir, MM panoramic 
imagery and intensity images derived from MLS data. Feature keypoints across 
the data sets will be computed with SIFT (Lowe 2004), KAZE (Alcantarilla et 
al. 2012), AKAZE (Alcanterilla et al. 2013) and the Förstner Operator (Förstner 
et al. 1987).  
 
SIFT detects blobs with a Difference-of-Gaussian method at gradually scaled 
instances of the image. KAZE computes a non-linear scale space using an 
additive operator splitting technique, where keypoints are detected at locations 
with a maximum response of the determinant of the Hessian matrix. Similarly, 
AKAZE also relies on keypoint detection based on the Hessian matrix, but 
computes a non-linear scale space with fast explicit diffusion. Förstner detects 
corners based on the search for local minima of eigenvalues of a covariance 
matrix of image gradients. Except for Förstner, all aforementioned procedures 
allow an additional feature description. SIFT utilises a histogram of oriented 
gradients in a local neighbourhood to describe a keypoint. KAZE’s keypoints 
are described with the SURF descriptor (Bay et al. 2008) modified to be 
compatible with the detector’s non-linear scale space. AKAZE uses a binary 
description based on an adapted version of Local Difference Binary (Yang et al. 
2012) where sample patches around the keypoint are averaged and then 
compared in a binary manner. For Förstner keypoints, LATCH (Levi et al. 2015) 
has been used for a binary feature description. LATCH compares sample-
triplets around a keypoint, where the sampling arrangement is learnt. 
Respective results will be discussed in section 2.5. 

2.4 Low-level feature extraction 
Aerial nadir ortho-images with a ground sampling distance of approximately 
10 centimetres serve as the reference data set in this project. In order to 
successfully use the aerial images’ exterior orientation for the rectification of 
MM data, respective tie information has to be reliable and accurate. Although 
ground and aerial nadir data have a different perspective on the scene, low-
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level feature correspondences can be identified in all data sets. For example, 
corners of road markings, centres of manholes and building corners resemble 
each other across all sensors. 
 
The only overlapping area for feature detection induced by different original 
perspectives between aerial ortho-images and ground views is the road surface 
and its immediate vicinity. Therefore, road markings, such as zebra crossings 
or centre lines are being targeted on for feature detection. In the process of 
projecting the mobile mapping data onto the ground, not just the projection 
but also the approximate scale and rotation of the aerial image have been 
retrieved simultaneously. In particular, this circumstance simplifies the 
matching process considerably, but also renders to be useful for the step of 
feature description as less invariances and therefore fewer ambiguities have to 
be considered by the descriptor; i.e. the descriptor does not have to account 
for scale and rotational invariance since the panoramic image is north oriented 
and has the same resolution. 
 
On the other hand, the aerial images have not been acquired at the same time 
as the mobile mapping dataset. Consequently, this fact is resulting in another 
category of a description problem. For instance, changes in illumination and 
contrast may affect the computation of the descriptor. Moreover, repetitive 
patterns of road markings (e.g. zebra crossings) cannot be ignored as they 
may result in false feature matches. Either this issue has to be tackled on the 
descriptor level or during the matching stage. Introducing rules, such as 
ordering constraints (Egels et al. (2001), p. 198) or perceptual grouping (Lowe 
(1985), p. 4), to describe a chain or group of adjacent features may prevent 
misassignment. Alternatively, the approximate camera parameters can be 
exploited within the matching procedure. By back-projecting identified 
keypoints into the other image, a window can be defined to constrain the 
search for correspondences. These methods are currently under development 
or labelled future work. Aforementioned feature detection and description 
procedures will be applied to our data sets and results will be discussed in 
section 2.5. 

2.4.1 Mobile Laser Scanning Images 

The Mobile Laser Scanning Point Cloud (MLSPC) is acquired from two lidar 
sensors(s) mounted on a car. The car’s trajectory is estimated by GNSS and 
IMU, where a GNSS based position is retrieved after one second interval and 
the IMU observations are used for the interpolation of intermediate positions 
at 100 Hz. The mobile laser scanning data is acquired at the speed of 36km/h, 
approximately covering an area of 10m in 1 second. The IMU provides 
relatively accurate positions during 1 second interval which favour to patch-
wise crop point cloud tiles of each size 10x10 m. State of the art laser scanning 
systems claim to achieve relative accuracy of 10 mm within the distance of 
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100 m at normal speed (Riegl, 2015). So, even if the mobile laser scanning is 
conducted at a slower speed, the 10x10m patch would not be effected by (IMU 
based) distortions to an extent that would hamper the feature extraction. 
 
In order to simplify and optimise feature matching, the mobile laser scanning 
points are projected onto an artificial ground plane to increase the resemblance 
to the aerial images. The ground plane is computed based on the location of 
the mobile laser scanning system. In areas where the actual ground is not 
exactly flat, this approximation can lead to spatial distortion in the projected 
information. In the future, the rather reliable relative orientation between two 
recording locations will be used to compute a more accurate plane. Since this 
paper focuses solely on feature detection and description, and the aerial 
images used are ortho-projected, this fact can be neglected for now. 
Thereafter, from each cropped point cloud tile, an orthoimage patch is 
generated. The image grey values are calculated by the barycentric 
interpolation of laser reflection intensities of neighbouring points. An example 
point cloud tile and the generated point cloud orthoimage patch is shown in 
Figure 2.1.  
 

       
Figure 2.1: Point cloud patch (left) to an orthoimage (right). 

2.4.2 Mobile Mapping Images 

The MM images used in this research project are 360x180 degrees panoramic 
images (Figure 2.2) acquired every 5 metres along the trajectory. For more 
details and specifications, please see (Beers 2011).  
 

 
Figure 2.2: Mobile mapping panoramic image in equirectangular projection 
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MM panoramic images are stored in an equirectangular projection, encoding 
directly spherical coordinates for every image pixel. Therefore, no projection 
matrix or other intrinsic parameters are needed to reproject the panoramic 
image. The quadratic ground plane is centred at the dropped perpendicular 
foot of the respective recording location. Analogue to the aerial imagery’s 
resolution of 10 centimetres, the ground plane is rasterised holding a world 
coordinate for every cell. Subsequently, each raster cell’s coordinate is 
backprojected into the panoramic image in order to extract the respective RGB 
value, and transfer the information back onto the ground plane. An example 
of a panoramic image projection on the ground plane is shown in Figure 2.3. 
 
Since every back-projected ray will pierce the image plane of the panoramic 
image, and thus every raster cell will contain an RGB value, an interpolation of 
the resulting projected image seems dispensable. However, the geometric 
representation of the pixels of both grids varies, leading to multiple 
assignments of the same RGB value especially at the edge of the projected 
image appearing as blur. Hence, a bilinear interpolation of the extracted value 
according to the pixel neighbourhood of the panoramic image is conducted. 
Consequently, every pixel in the projected image is composed of an individual 
set of grey values.  
 
Resulting from atmospheric conditions and motion blur (esp. cameras without 
forward motion compensation), the image quality of the aerial photographs 
can be affected. To compensate for these effects, the projected panoramic 
images need to be blurred. 
 

 
Figure 2.3: Panoramic image projected onto an artificial ground plane. 

2.5 Results 
In this section, feature detection and description methods will be compared 
according to their potential for deriving significant tie features and 
correspondences between aerial nadir and mobile mapping panoramic images 
as well as between aerial nadir and MLS intensity images. First, a comparison 
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between SIFT2, KAZE, AKAZE and Förstner3 on each of the three data sets will 
be conducted. Subsequently, acquired keypoints will be described with their 
corresponding method except for Förstner where a LATCH description will be 
used. Although still under development, feature matching will be utilised to 
compare the quality of each descriptor. To this end, simple descriptor matching 
to yield correspondences and a homography estimation to detect outliers will 
be used. As the focus of this project is on urban areas, four subsets with each 
15 m side length of a typical road scene between two intersections have been 
selected for this experiment (Figure 2.4). 
 

 
Figure 2.4: Four subsets of a typical urban scene (coloured tiles from scene 1 on the left 
to scene 4 on the right) 

2.5.1 Feature detection 

In urban areas, road markings and other prominent objects, such as 
kerbstones or manholes, identifiable among all data sets are favoured for 
feature detection. However, due to noise and different original perspectives, it 
is considered to be a challenging task for the step of feature detection to 
maintain a comparable detection rate over the entire data set.  
 
Depending on the scene, this detection rate varies. The number of road 
markings and the detector itself, highly influence the results. For instance, due 
to its scale invariance, SIFT detects keypoints on different blurred instances of 
the same image, and thus yields a lot more potential features than a corner 
detector, such as Förstner. As it will be shown in section 2.5.2, a potent feature 
detection alone is not sufficient for a successful registration. 

                                               
2 For SIFT, KAZE, AKAZE and LATCH, their respective OpenCV implementation has been 

used 
3 Implementation of the Förstner-Operator by Marc Luxen, University of Bonn 
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2.5.1.1 SIFT 

SIFT yields more keypoints than any other method used in this paper (Table 
2-1). It detects 60% keypoints more than KAZE and even 5 times more 
keypoints than AKAZE or Förstner. Being very sensitive to image noise and 
detecting keypoints on different image scales, the detected features are not 
always useful. In particular, this comes into effect for both types of MM images 
as they have a higher original resolution and therefore a higher entropy (Figure 
2.5).  
 
Table 2-1 Number of combined keypoints over all subsets per detection method 

 Aerial Image Panoramic Image MLS Intensity Total 
SIFT 234 379 810 1423 
KAZE 119 304 458 881 
AKAZE 29 68 175 272 
Förstner 40 75 153 268 

 

 
Figure 2.5: SIFT keypoints detected in aerial image (left), panoramic image (centre) and 
MLS intensity image (right) 

2.5.1.2 KAZE 

KAZE detects fewer keypoints than SIFT, but still considerably more than 
AKAZE or Förstner. However, road markings are very well preserved, and 
especially their corner features, which are the most important image entity in 
our case, were mostly detected (Figure 2.6).  
 

 
Figure 2.6: KAZE keypoints detected in aerial image (left), panoramic image (centre) 
and MLS intensity image (right) 
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2.5.1.3 AKAZE 

Although, AKAZE and KAZE are quite similar in the way how a feature is 
detected (determinant of Hessian), their main difference lies in the 
computation of image pyramids to detect keypoints at different image scales. 
AKAZE detects fewer keypoints than KAZE, but these keypoints are most often 
important corners of road markings (Figure 2.7). Nonetheless, in two of four 
aerial images, AKAZE only detected one single keypoint which turns out to be 
too few for matching purposes.  
 

 
Figure 2.7 AKAZE keypoints detected in aerial image (left), panoramic image (centre) 
and MLS intensity image (right) 

2.5.1.4 Förstner operator 

The Förstner Operator is the only feature detector without the consideration of 
scale. This, and the fact that Förstner detects features solely at corners and 
centres of small image objects, leads to a very deliberate keypoint detection 
(see Figure 2.8). However, almost every detected feature can be regarded as 
significant for the registration process. Due to its capability of sub-pixel 
localisation of keypoints, the same object point can be represented slightly 
shifted among different image sources which shapes up as a challenge for 
feature description. 
 

 
Figure 2.8 Förstner keypoints detected in aerial image (left), panoramic image (centre) 
and MLS intensity image (right) 

2.5.2 Feature descriptor matching 

Identified keypoints need to be described unambiguously to enable feature 
matching between two images. In general, difficulties arise if there is a change 
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in perspective, illumination, coverage, or scale between the images. In order 
to tackle parent difficulties for registering the images, the MM data has been 
projected onto the ground to increase the resemblance to aerial imagery. As a 
consequence, scale and perspective are more similar among the data sets, but 
differences in illumination and coverage cannot be mitigated easily. Thus, 
different description methods are evaluated with regard to their ability to cope 
not just with the aforementioned changes but also to their performance to 
bridge sensor-induced differences.  
 
SIFT, KAZE, AKAZE and LATCH will be used for feature description. As 
mentioned earlier, LATCH will be used for keypoints detected with the Förstner-
Operator. To measure the descriptor quality of each method, the images have 
to be matched. The number of matches, inliers classified by RANSAC as well 
as the actual number of correct correspondences will be compared among 
different descriptors. Two out of four scenes (scene 1 and scene 2) will be 
discussed in detail. Moreover, for every test scene, four different settings have 
been tested. To this end, MM data has been blurred with a Gaussian filter to 
increase the resemblance to the aerial data set. Moreover, a resampling of all 
data sets has been conducted as it has been shown that increasing the 
sampling size can facilitate a feature’s distinctiveness considerably (Köthe 
2003b). 
 
1st run   No modification of source images 
2nd run  Gaussian blurring of source images 
3rd run  Resampling to 150% of original size 
4th run  Blurring and subsequent resampling of source images 

2.5.2.1 Aerial images and MLSPC intensity images 

Scene 1: 
 
The first scene comprises of a zebra crossing and dotted road markings 
aggravating correct matching due to possible descriptor ambiguity. If enough 
correct correspondences are found, RANSAC converges to a correct solution. 
In the 1st run, KAZE yielded the best results with only few mismatches (Table 
2-2), and mismatches occurred due to descriptor ambiguity. AKAZE has a 
competitive result, however obtained fewer matches than KAZE. SIFT and 
LATCH both equally failed to achieve a reliable number of matches. In the 2nd 
run, blurring of the images dramatically improved correct matches from SIFT 
descriptor. Similarly, KAZE also moderately improved the results. While, the 
AKAZE has performed consistently and did not improve the results. The 
blurring did not affect the poor results of LATCH descriptor. In the 3rd run 
(Table 2-3), resizing the image to 150%, the results of SIFT and KAZE 
improved. Interestingly, all calculated matches are correct and there is no 
mismatch. The results from AKAZE are also improved slightly. 
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The 4th run, blurring and resizing the images, slightly improved the number of 
inliers from KAZE, while there is no mismatch as shown in Figure 2.9. The total 
number of matches are even decreased in case of AKAZE. 
 
Table 2-2 Matching results of scene 1 between aerial and MLS orthoimage of the 1st and 
2nd iteration 

 1st run 2nd run 
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SIFT 61 15 1 61 14 12 
KAZE 41 12 8 41 13 12 
AKAZE 14 7 5 14 7 4 
LATCH 9 4 0 9 4 0 

 
Table 2-3 Matching results of scene 1 between aerial and MLS orthoimage of the 3rd and 
4th iteration 

 3rd run 4th run 
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SIFT 59 14 14 59 14 14 
KAZE 78 19 19 78 20 20 
AKAZE 24 9 6 24 8 3 
LATCH 7 4 0 7 0 0 
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Figure 2.9 Comparison of SIFT (top) and KAZE (bottom) in 4th run on the 1st scene. 
 
Scene 2: 
 
In the 1st run (Table 2-4), on this difficult scene, all descriptors totally failed 
except KAZE which also performed poorly due to descriptor ambiguity. SIFT 
also seems to struggle with the descriptor ambiguity and therefore yielded no 
match at all. The 2nd run did not change anything, except that the KAZE result 
improved slightly. The 3rd run (Table 2-5) did not lead to any significant 
improvements. Contrarily to the 1st scene, the total number of matches by 
KAZE even decreased due to the descriptor ambiguity. Although AKAZE is able 
to derive some matches, it cannot be considered as a significant improvement. 
SIFT and LATCH also failed to achieve a single match in 3rd run. In the 4th 
run, the number of matches from KAZE improved significantly, interestingly 
there was not a single mismatch. These results are plotted in Figure 2.10. SIFT 
could not improve here and yielded only a single match. 
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Table 2-4 Matching results of scene 2 between aerial and MLS orthoimage of the 1st and 
2nd iteration. 

 1st run 2nd run 
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SIFT 54 10 0 54 11 0 
KAZE 42 10 4 42 11 7 
AKAZE 1 0 0 1 0 0 
LATCH 1 0 0 1 0 0 

 
Table 2-5 Matching results of scene 2 between aerial and MLS orthoimage of the 3rd and 
4th iteration 

 3rd run 4th run 
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SIFT 51 9 0 51 9 1 
KAZE 79 17 5 79 21 21 
AKAZE 15 6 3 15 8 5 
LATCH 3 0 0 3 0 0 
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Figure 2.10 Matching results of AKAZE (top) and KAZE (bottom) in 4th run on scene 2. 

2.5.2.2 Aerial images and panoramic images 

Scene 1: 
 
In the first run, however, none of the methods was able to achieve a good 
result (see e.g. Figure 2.11). The derived keypoint descriptors were not distinct 
enough to be matched accordingly. By blurring the images with a Gaussian 
low-pass filter in the second iteration, results slightly improved for KAZE (see 
Table 2-6). Yet, by resampling the source images to 150% of their original size, 
results get significantly better especially for KAZE, but also a bit for SIFT and 
AKAZE (see Figure 2.12). In the fourth run, a Gaussian blurring followed by a 
resampling did not have an impact on the matching quality of this scene (see  
Table 2-7). Furthermore, LATCH yielded very poor results regardless of the 
iteration.  
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Figure 2.11: Matched LATCH keypoints in the first scene and first iteration 
 
Table 2-6 Matching results of scene 1 between aerial and panoramic image of the 1st 
and 2nd iteration 

 1st run 2nd run 
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SIFT 61 15 1 61 13 0 
KAZE 41 12 1 41 12 2 
AKAZE 14 6 0 14 6 0 
LATCH 9 4 0 9 0 0 

 
Table 2-7 Matching results of scene 1 between aerial and panoramic image of the 3rd 
and 4th iteration 

 3rd run 4th run 
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SIFT 59 15 2 59 16 0 
KAZE 78 17 10 78 16 10 
AKAZE 24 9 2 24 9 0 
LATCH 7 4 0 7 0 0 
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Figure 2.12 Comparison of matching results of AKAZE (top), KAZE (centre) and SIFT 
(bottom) in 3rd run of the 1st scene  
 
Scene 2: 
 
The second scene shows linear road markings and parts of a zebra crossing. 
Whereas major parts of the zebra crossing and the dotted road markings were 
visible in the first scene, large parts of the road markings are covered by the 
mobile mapping car itself in the second scene which may impede the matching 
process. Similarly to the first scene, unmodified imagery was difficult to match 
and LATCH nor AKAZE found a single correspondence. With SIFT, however, a 
couple of keypoints could be matched, even though just one correct 
correspondence has been identified (see Figure 2.13 and Table 2-8). 
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Figure 2.13 Matched SIFT keypoints in the second scene and first iteration (correct 
correspondence is light purple) 
 
Table 2-8 Matching results of scene 2 between aerial and panoramic image of the 1st 
and 2nd iteration 

 1st run 2nd run 
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SIFT 54 12 1 54 11 2 
KAZE 42 8 1 42 12 0 
AKAZE 1 0 0 1 6 0 
LATCH 1 0 0 1 0 0 

By blurring the images with a Gaussian filter, especially SIFT returns a better 
result. Albeit, only two correct correspondences have been identified, results 
got considerably better (see Figure 2.14). Apparently, RANSAC removed a 
couple of outliers, and was able to stabilise the estimation of the homography. 
Without ground truth, the matched bars of the zebra crossing might appear as 
correct correspondences. These descriptor ambiguities have to be tackled on 
another processing level.  
 

 
Figure 2.14 Matched SIFT keypoints in the second scene and second iteration 
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Now, by resampling the images to 150% of their original size in the 3rd 
iteration, KAZE benefitted the most, although yielding only 4 correct matches 
out of 14 matches classified as inliers (see Figure 2.15).  
 

 
Figure 2.15 Matched KAZE keypoints in the second scene and third iteration  
 
Blurring the images prior to resampling them further improves the results for 
KAZE and AKAZE while decreasing the quality of SIFT’s output (see Figure 2.16 
and Table 2-9). Again, LATCH did not show any improvement.  
 
Table 2-9 Matching results of scene 2 between aerial and panoramic image of the 3rd 
and 4th iteration. 

 3rd run 4th run 
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SIFT 51 12 0 51 11 1 
KAZE 79 14 4 79 20 6 
AKAZE 15 6 0 15 8 2 
LATCH 3 0 0 3 0 0 
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Figure 2.16 Comparison of matching results of AKAZE (top), KAZE (centre) and SIFT 
(bottom) in 4th run of the 2nd scene. 

2.6 Discussion 

2.6.1 Conclusions 

This paper addressed the topic of tie feature extraction within the framework 
of the registration of aerial nadir images, mobile mapping panoramic images 
and MLS data. The aim of the overall project is to develop an automatic pipeline 
to correct the trajectory of mobile mapping platforms, especially in urban areas 
where reliable GNSS localisation is scarce. As a prerequisite for an orientation 
update of the platform’s trajectory, precise tie information is needed. In this 
paper, feature-based extraction techniques have been evaluated. It could be 
shown that the outcome highly depends on the algorithm itself and data pre-
processing. KAZE seems to be the most reliable feature extraction method in 
both cases – mobile laser scanning intensity and panoramic imagery. SIFT and 
AKAZE only yield mediocre results, and do not benefit from resampling and 
blurring the images to the same extent as KAZE. Although the Förstner-
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Operator detects good and significant features, LATCH failed to describe them 
accordingly to allow for a successful matching. In our scenario, binary 
descriptors are not as powerful coping with changes in illumination as float 
descriptors, and cannot manage to handle features originating from different 
sensors that well. However, due to this specific setup, and a very generic 
feature matching, further tests have to be conducted to draw a thorough 
conclusion on binary descriptors’ performance. Interestingly, the discussed 
techniques show a better performance in conjunction with MLS and aerial data 
than with MMI data. 

2.6.2 Outlook 

Evidently, repetitive patterns of road markings are the biggest obstacle for a 
successful registration of the data sets. To efficiently tackle this issue, spatial 
information has to be introduced. Although the positioning accuracy of mobile 
platforms may be diminished in urban areas, their exterior orientation could 
support feature matching. In other words, they can be utilised to introduce 
search constraints as they allow for the localisation of individual keypoints. 
Besides that, using contextual information and shape knowledge can augment 
feature description to prevent mismatches.  
 
As far as MLS data is concerned, utilising high-level feature extraction methods 
could further facilitate the registration process also in areas with a lower point 
density and fewer distinct keypoints. Therefore, entities, such as kerbstones or 
entire zebra crossings, can be used to accomplish this task. 
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3 –  Automatic Feature Detection, Description 
and Matching from Mobile Laser Scanning 
Data and Aerial Imagery4 

 
  

                                               
4 This chapter is based on: 
 
Hussnain, Z., S. Oude Elberink and G. Vosselman (2016). Automatic feature detection, 
description and matching from mobile laser scanning data and aerial imagery. Int. Arch. 
Photogramm. Remote Sens. Spatial Inf. Sci. XLI-B1: 609-616. 
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Abstract 
In mobile laser scanning systems, the platform’s position measured by GNSS 
and IMU is often not reliable in urban areas. Consequently, derived Mobile 
Laser Scanning Point Cloud (MLSPC) lacks expected positioning reliability and 
accuracy. Many of the current solutions are either semi-automatic or unable to 
achieve pixel-level accuracy. We propose an automatic feature extraction 
method which involves utilizing corresponding aerial images as a reference 
dataset. The proposed method comprises three steps; image feature detection, 
description and matching between corresponding patches of nadir aerial and 
MLSPC orthoimages. In the data pre-processing step, the MLSPC is patch-wise 
cropped and converted to orthoimages. Furthermore, each aerial image patch 
covering the area corresponding to MLSPC patch is cropped from the aerial 
image. For feature detection, we implemented an adaptive variant of Harris-
operator to automatically detect corner feature points on the vertices of road 
markings. In feature description phase, we used the LATCH binary descriptor, 
which is robust to data from different sensors. For descriptor matching, we 
developed an outlier filtering technique, which exploits the topological relation; 
relative Euclidean-distances and angles between corresponding sets of feature 
points. We found that the positioning accuracy of the computed 
correspondences have achieved the pixel level accuracy, where the image 
resolution is 10cm. The developed approach is reliable when enough road 
markings are available in the data sets. We conclude that, in urban areas, the 
developed approach can reliably extract features necessary to improve the 
MLSPC accuracy to near pixel-level. 
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3.1 Introduction 
Over the past few years, the use of mobile mapping data products has been 
growing constantly. Data providers want to produce highly accurate data 
products and to generate them more frequently at lower costs. However, it is 
always necessary to utilize manually measured Ground Control Points (GCPs) 
for the data correction and adjustment due to the low positioning accuracy of 
the GNSS in urban areas. Manually measuring the GCPs and handpicking their 
corresponding locations in the point cloud still may not lead to the pixel-level 
accuracy. Moreover, acquiring the ground control point is very labour intensive 
and tedious work and hinders the acquisition of high-quality data in an 
automatic fashion. There are many techniques available, which can try to 
minimize the number of ground control points needed to correct a point cloud 
product. However, even acquisition of fewer ground control points and their 
selection requires manual interventions. This manual post processing step of 
data correction forces surveyors to survey a city site less frequently at the cost 
of more manual effort, while as a consequence, customers use the outdated, 
imprecise and expensive datasets. 
 
Automatic feature extraction between Mobile Laser Scanning Point Cloud 
(MLSPC) and Aerial imagery can be very advantageous for maintaining MLSPC 
product quality. Especially, in the urban canyons, where GNSS based 
positioning inaccuracies are common.  
 
Previous research has shown that the automatic image feature extraction can 
be used for the registration between two datasets from different sensors. The 
obtained transformation can be used to correct a point cloud when the 
reference data already has a reliable accuracy. Jende et al. (2016) have 
presented the preliminary results of registration between aerial and ground 
datasets; i.e. MLSPC orthoimages and terrestrial orthoimages. Similarly, Gao 
et al. (2015) have improved the Mobile Laser Scanning (MLS) data accuracy 
by its automatic registration with high –resolution –accurate UAV’s imagery. 
They performed Harris corner keypoint detection and edge-based template 
matching between UAV imagery and rasterized MLSPC orthoimage patches, 
where registration is achieved using bundle adjustment. This work reported 
the RMS -∆X=0.086m -∆Y=0.063m -∆Z=0.106m in the corrected dataset. A 
preliminary SIFT based feature detection and matching approach for 
registration of aerial lidar to the aerial image was described by Abedini et al. 
(2008), however, the achieved accuracy of feature matching was not 
described. 
 
Frueh et al. (2003) proposed to utilize the aerial imagery as a reference global 
edge map for the lidar observations on the ground and achieved an absolute 
coordinate difference of ±5 meters using Monte-Carlo-Localization (MCL). 
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Kümmerle et al. (2011) developed a simultaneous localization and mapping 
(SLAM) approach that computes its global position for every node, where 
MLSPC points are the observations and the aerial image is the reference. In 
this approach, the accuracy is defined by the distance from the true orientation 
of building edge/wall to the estimated orientation of edge/wall, and it is 0.2m 
for five test data sets. 
 
Due to the difference in sensor characteristics, the automatic feature detection 
and matching of the data from two sensors is a challenging task. The aerial 
image captures the projection of reflected white light, while the MLSPC 
represents the geometrical information of the structures in scene as 3D 
positions and the reflection intensity of each surface point. Moreover, the 
optical images have a regular grid of pixels over the image space, whereas the 
MLSPC’s point density is variable and depends upon the distance of the lidar 
sensor to the object and the speed of MLS car. Furthermore, the laser reflection 
intensity of each point is not same as the white light surface reflection. 
 
In this scenario, designing an automatic feature extraction technique which 
can detect common features is a difficult but crucial task. Once achieved 
automatically, the feature extraction can save lots of extra effort, cost and 
time. It can improve the accuracy of the already refined or raw datasets. 
Moreover, the data can be acquired more frequently because no manual 
adjustment would be needed. Furthermore, the extracted features can be used 
for automatic data evaluation and quality control. 
 
The purpose of our research work is to develop an automatic pipeline, which 
can be used to correct the MLSPC using the aerial images of the corresponding 
area. Our technique is developed to automatically extract the accurate low-
level (2D) features from MLSPC and aerial imagery. 
 
In the given situation and the data sets, it is apparent that the road surface is 
the biggest part common between the aerial images and the MLSPC. Apart 
from the different characteristics of the involved information, the road surface 
area can be used for the 2D features extraction. Mainly, road markings are the 
objects distinguishable based on information in both aerial images and MLSPC. 
In case, the road markings are not present in both datasets at all or completely 
repainted to different positions, then this technique could not yield reliable 
correspondences.  Usually, it is not required to have road marking in each tile 
because state of the art position filtering methods and MLS system need 
accurate correspondences only after every 100 meters. 
 
The organization of sections in this paper is presented according to the 
developed method’s workflow diagram in Figure 3.1. In the end, section 3.5 
describes results followed by an evaluation and conclusions. 
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Figure 3.1: Workflow diagram of the developed method for MLSPC to aerial image 
registration.  

3.2 Feature extraction 
As described earlier that the feature extraction will be performed on the 2D 
images, therefore first the datasets need to be cropped and projected on the 
ground to generate the 2D images. In this section, we will describe the 
selection of the test area and pre-processing technique followed by the feature 
extraction from both datasets. 

3.2.1 Selection of test area 

In this project, we used the datasets from Rotterdam city. The MLSPC is 
acquired by the Topcon® IP-S3 mobile mapping system, it has a built-in 360-
degrees lidar sensor which captures 700,000 pulses per second. For the 
experiment, a consecutive part of MLSPC of size 527 m is selected, which is 
visualized in Figure 3.2. Moreover, the aerial images of the same area are also 
obtained, where each original aerial image has 20010x13080 pixels and the 
resolution of 10 cm. The visualization of aerial imagery mosaic is also shown 
in Figure 3.3. The test area is selected such that the following disturbances are 
included: 
 
i) GNSS error (MLSPC) 
ii) different types of road markings (both) 
iii) occlusions (both) 
iv) traffic (both) 
v) trees (both) 
vi) shadows (aerial) 
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vii) variable positioning error (MLSPC) 

3.2.2 Pre-processing 

Each selected dataset is cropped into 14 tiles, where each tile has a size of 
38x38 meters approximately. The size of a tile is mainly influenced by the 
relative accuracy of the MLSPC and the total computational time required to 
detect and match features. The 14 tiles of MLSPC and aerial images are shown 
in Figure 3.2 and Figure 3.3 respectively. 
 

 
Figure 3.2: Visualization of the MLSPC of the test area and cropped tiles. 
 

 
Figure 3.3: Visualization of the aerial image of the test area and cropped tiles. 

3.2.2.1 MLSPC orthoimage generation 

The MLSPC consist of long consecutive series of points and due to the limitation 
of the computational power, it is useful to crop the point cloud into small pieces. 
Therefore, first the MLSPC is patch-wise cropped into small tiles. The MLSPC is 
automatically cropped based on the coordinate bounds of X, Y and Z-axis. The 
bounds originate from the MLS platform’s 3D position in the trajectory and 
extended outward to crop a tile of size 38x38 meters. Now, each cropped tile 
is still a small point cloud as shown in Figure 3.4 (left). Then, to convert it to 
a 2D image, the obtained point cloud is projected on the ground plane and an 
orthoimage is obtained as shown in Figure 3.4 (right). The laser reflectance 
property of each projected 3D point is used to calculate the grey values of the 
corresponding pixels in raster image. For occlusion of missing data, the 
interpolation of the grey values is estimated by the bilinear interpolation. The 
points above 4 m ground level are also removed before the projection. The 4 
m height can easily remove the unnecessary information like trees, poles, 
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building etc., while at the same time preserves the parts of road which are 
relatively higher. 

 
Figure 3.4: Point cloud patch on the left is converted to an orthoimage on the right. 

3.2.2.2 Aerial orthoimage generation 

As the MLS platform’s 3D position is used to generate the MLSPC orthoimage, 
the same position is also backprojected to the original nadir aerial image and 
a patch of 380x380 pixels is cropped as illustrated in Figure 3.5. At this 
moment, it is assumed that the interior and exterior orientations of the aerial 
images are accurate and it is considered that there is no image distortion.  
  

 
Figure 3.5: Acquisition of the aerial image patch. 
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3.2.3 Feature detection 

The main focus in this step is to automatically detect features in both images, 
where features’ positioning accuracy should be reliable. Corners are the most 
reliable 2D features which could be detected from the intersection of image 
gradients. Therefore, a corner feature detection algorithm by Harris et al. 
(1988) is used. Harris corner detector is further improved to automatically 
adapt according to our feature detection requirements. An automatic 
adaptation of parameters is necessary because, for example, when Harris 
detector is applied with fixed parameters to detect weak gradient changes, 
then it becomes too sensitive to the sensor noise and detects many false 
keypoints. Moreover, it may not detect the same features from the different 
images of even same sensor. To overcome this problem, the threshold 
parameter is estimated dynamically by an iterative approach. So, the 
computation of the threshold is achieved dynamically for every image. This 
type of automatic parameterization is necessary for the automatic feature 
extraction pipeline and because it can compensate for inter and cross sensor 
characteristics and noise. 
 
As shown in Figure 3.6 (top, middle), the gradient values of the same piece of 
road marking in both datasets are quite different, where, the adaptive 
approach detects keypoints reliably as shown in Figure 3.6 (bottom). Usually, 
a corner feature is detected at the intersections of two edges, however, 
sometimes due to the large difference in description of the feature, a single 
corner point failed to match in descriptor space. That’s why instead of relying 
on a single corner, the adaptive approach also detects multiple corners, which 
are more reliable while matching descriptors. Thereby, the corner features are 
detected as clusters of corner keypoints. 
 
The adaptive approach requires a constant input parameter, which in our case 
is the number of required keypoints. If the scene is same, we assume that the 
number of keypoints should also be same in all images. The number of 
keypoints needed is set to 5000 ±100 (100=tolerance), where iterations are 
incremented by the gradient threshold on normalized resultant gradient image. 
The number of required keypoints is calculated from the size of a tile. As, a tile 
covers an area of 38x38m, which means roughly two to three keypoints for 1 
m2. The required number of keypoints is also influenced by the computational 
costs for matching maximum keypoints. The different steps of detection of 
5000 keypoints from an MLSPC orthoimage and from an aerial orthoimage 
patch are shown together in Figure 3.7. An automatic adaptive approach is not 
only useful for the data from different sensors but also for the images captured 
with the same camera, this type of inter sensor keypoint detection and 
differences are shown in Figure 3.8.  
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Figure 3.6: Example of adaptive Harris corner keypoint detection of a road mark, multiple 
keypoints (red dots) are detected over two observable corners. 
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Figure 3.7: Adaptive Harris keypoint detection of a whole tile, with the total number of 
keypoints, threshold and required iterations. 
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Figure 3.8: Adaptive approach for different aerial images of the same scene. Though look 
similar, the underlying image differences can be realized by comparing the threshold, 
iterations and the obtained keypoints. 

3.2.4 Feature description 

For description of the feature points, we use binary descriptor called Learned 
Arrangements of Three Patch Codes (LATCH) proposed by Levi et al. (2015). 
LATCH is robust to noise in both the MLSPC and aerial orthoimages because it 
utilizes patches of pixels instead of a single pixel to establish a binary relation. 
LATCH is useful in our problem for two reasons, firstly, it is a binary descriptor, 
and thereby the descriptor matching is very fast, as the computational time is 
an important issue because we would like to process a lot of keypoints. 
Secondly, the grey values of images from sensors of different characteristics 
cannot be compared directly but patterns of higher/lower grey values are 
comparable. Moreover, patch triplet approach is robust to noise and it is better 
than directly comparing a single pixel value as practised in pixel pairs 
approach. Due to patch triplet based approach, LATCH can ignore small 
occlusions and cluttered locations in the orthoimage of the MLSPC. Also, it can 
compensate for shadows and occlusions in aerial images. The MLSPC laser 
reflection intensity has different behaviour of noise than grey values of white 
light camera images, and LATCH descriptor avoid sensitivity to individual 
sensor noise by not sampling and comparing individual pixels. In our project, 
the arrangement of the all patch triplet is already learned from the data sets 
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provided in Brown et al. (2011). The dataset used for the training is of generic 
type, thereby, it is not required to learn the arrangement from our data.  
Performance results of the LATCH descriptor over benchmark data set and 
comparison with other binary descriptors and with float descriptors are also 
described in Levi et al. (2015). 
 
The LATCH descriptor returns a binary string of 32 bytes or 256-bits for each 
keypoint (Figure 3.9), so, a total of 256 triplets are computed for each 
descriptor. The size of each mini patch is 7x7 pixels. There are total three 
patches in a triplet, one of the middle one is called ‘Anchor’ and the other two 
are ‘companions’ or C1 and C2 Levi et al. (2015). A descriptor’s binary string 
is calculated based on the comparison between SSD1 and SSD2, here, SSD 
stands for the sum-of-squared difference of two (7x7 pixels) patches, where 
SSD1 is computed between the anchor and C1 patches and SSD2 is computed 
between the anchor and C2 patches. If SSD1 is greater than the SSD2 then 
the returned binary value is 0 and otherwise it is 1. The descriptors are 
computed around all keypoints in both images. 
 

 
 

Figure 3.9: The computation of a particular LATCH descriptor used in this project. 
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3.3 Descriptor matching 
Like other binary descriptors, LATCH descriptor matching is also based on the 
similarity of corresponding binary strings. The distance of each descriptor from 
a list of length n to all descriptor in a list of length m is calculated by Hamming 
distance, which is the number of total different bits occurred in two binary 
strings. Moreover, for Lowe’s ratio test, the threshold of 0.99 is used as 
proposed by Levi et al. (2015), which was proposed as 0.66 in the original 
setting by Lowe (2004).  
 
Sometimes, in descriptor matching, the correct corresponding descriptors are 
not near in descriptor space and may even the inaccurate corresponding 
descriptors are near in the descriptor space. For this reason, instead of the one 
closest descriptor, first five nearest descriptors are obtained by k-NN based 
descriptor matching. Therefore, for each query descriptor in the first image, up 
to five nearest neighbours in the descriptor space of the second image are 
retrieved. The query descriptors linked with up to 5 descriptors are illustrated 
in Figure 3.10 and same keypoint correspondences are also shown in Figure 
3.11. In the experiment, the inlier ratio of obtained correspondences is small, 
however, more importantly there are potential correct correspondences. So, 
during inevitable situations, when there are noise and occlusion, the flexibility 
of descriptor matching can reliably include correct matches which otherwise 
could be rejected. Later, a great number of outliers can be removed by our 
developed filtering algorithm. 
 

 
Figure 3.10: Illustration of the matched descriptors of image 1 and image 2. 
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Figure 3.11: Hamming distance based descriptor matching of an example tile with five 
nearest neighbours (k=5). 

3.4 Outliers filtering 
The outliers filtering approach is developed to remove outlier correspondences, 
which are introduced due to relaxed descriptor matching. Most of the outliers 
are included due to the descriptor matching with five nearest neighbours. The 
Homography (computed with RANSAC) based outlier filtering could not be used 
directly because the inliers ratio is very low, therefore, first a large number of 
outliers should be removed. As, the given data sets have a large error in 
translation and small error in scale and rotation, we have developed a 
technique to remove the outliers based on their relative Euclidean distances 
and the angles. The developed technique initiates the correspondence search 
starting from a seed feature point. This is a brute-force technique and iterates 
through each keypoint in any one of the lists (in Figure 3.10). A seed feature 
point 𝑃ଵ in image 1 is illustrated in Figure 3.12, and its corresponding candidate 
points are 𝑃ଶ, 𝑃ଷ and 𝑃ସ. In image 2, the seed point 𝑃ଵ

ᇱ has corresponding 
candidate points 𝑃ଶ

ᇱ,  𝑃ଷ
ᇱ and  𝑃ସ

ᇱ, where 𝑑௡ is a relative distance of nth 
correspondence 𝑃௡ to a seed feature point and 𝜃௡ is a relative angle. Due to the 
distortion in datasets, these parameters are relaxed by a tolerance value, so, 
absሺ 𝑑௡

ᇱ  െ  𝑑௡
  ሻ ൏ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒ௗ and absሺ 𝜃௡

ᇱ  െ  𝜃௡
  ሻ ൏ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒ఏ. The relaxation by 

tolerance can be considered as the maximum accuracy that can be achieved 
by this technique. In other words, a very small value of tolerance could yield 
very accurate matches but if the level of distortion is high then many potential 
correct correspondences will be missed as well. Therefore, it is important to 
not neglect correct matches and increase the tolerance to the maximum and 
optimal value. In the experiment, we set 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒ௗ to 0.9 pixel and 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒ఏ 
to 0.15 degree, these constratints togather maintain the final accuracy to near 
pixel-level.  
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Figure 3.12: In image 1 and Image 2, (𝑃ଶ

 ⇔𝑃ଶ
ᇱ) and (𝑃ସ

 ⇔𝑃ସ
ᇱ) are correct matches with 

respect to the seed point 𝑃ଵ
  and 𝑃ଶ

ᇱ, whereas (𝑃ଷ
 ⇔𝑃ଷ

ᇱ) is an outlier due to the difference 
between  𝜃ଷ

  and  𝜃ଷ
ᇱ  , though 𝑑ଷ

  and  𝑑ଷ
ᇱ  are equal. 

 
However, the computation of both the distances and angles in the brute-force 
technique can be computationally expensive. Moreover, if the error in rotation 
is more than 0.15 degree then we can only use the 𝑑௡ constraint. An example 
result obtained by only applying 𝑑௡ constraint is shown in Figure 3.13. Without 
the  𝜃௡

  constraint, there are a small amount of outliers marked with blue 
arrows.  
 
Once a large number of outliers are removed by 𝑑௡ constraint alone, we can 
then estimate an accurate homography matrix as now the inlier ratio is large. 
Now, with the obtained homography, the remaining outlier correspondences 
can be removed directly after the descriptor matching. The result of same 
example after the outlier removal using Homography is shown in Figure 3.14.  
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Figure 3.13: Correspondences computed without  𝜃௡

ᇱ  constraint. Blue arrows are pointing 
toward some visible outlier correspondences. 
 

 
Figure 3.14: Homography based outliers filtering. 

3.5 Results 
In this section, we will stepwise discuss the results according to the feature 
extraction workflow. 

3.5.1 Feature detection 

In the feature detection, clusters of keypoints are detected at the corners of 
road markings, an example is shown in Figure 3.15. Many keypoints are 
detected at the edges of a traffic light passing over the zebra crossing in the 
aerial image patches, which imitate intersections. The two different zoom levels 
are provided for the visualization of the feature detection, one is a normal view 
(Figure 3.15, top) as well as a zoomed view (Figure 3.15, bottom).  
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Comparatively, more keypoints are detected at the corners of the road 
markings in the aerial images than in the MLSPC orthoimage. It can be noticed 
with a close observation that the correct corresponding keypoints are present 
inside the clusters of keypoints in both images. For detailed inspection, it is 
possible to further zoom-in and analyse and compare the grey values with the 
detected keypoints (in a digital copy of this paper).  
 
For the keypoint detection from all tiles, the threshold and the total iterations 
required to obtain the keypoints are provided in Table 3-1. The extremely 
different requirements of threshold and the number of iterations needed to 
detect features in the tile 2 and tile 6 shows the differences faced by feature 
detection from the images of even the same sensor. 
 

 
Figure 3.15: Adaptive Harris corner feature detection from aerial (left) and MLSPC (right) 
image patch5. 
 
  

                                               
5 This image can be zoomed to 6400% for a very close observation using the digital copy 

of this paper. 
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Table 3-1: Results of the adaptive Harris keypoint detection. 
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1  782/85  7.8/0.83  5098/5091 

2  1151/179  11.50/1.78  5096/5091 

3  1250/346  12.49/3.45  5100/5100 

4  885/147  8.84/1.46  5095/5099 

5  369/25  3.68/0.24  5090/5074 

6  160/24  1.59/0.23  5088/5078 

7  359/62  3.58/0.61  5092/5060 

8  483/121  4.82/1.2  5091/5100 

9  256/167  2.55/1.66  5094/5100 

10  568/13  5.67/0.12  5097/5100 

11  529/7  5.28/0.06  5097/5100 

12  310/35  3.09/0.34  5088/5053 

13  707/88  7.06/0.86  5098/5098 

14  778/273  7.77/2.72  5098/5092 

3.5.2 Feature matching6 

In this section, we will discuss the results of the developed filtering approach. 
In first glance, matched features appear as random clusters of the keypoints 
in the image pair (Figure 3.16, top). A zoomed visualization of the matched 
keypoints with connecting lines is also crowded due to many matches (Figure 
3.16, middle). Therefore, a comprehensible visualization of the results with 
block patterns is produced in (Figure 3.16, bottom). By close observation of 
the block patterns, the background intensity information can be compared 
across images, which shows that the patterns of intensity information are also 
similar in corresponding images. Moreover, the grey values of edges in context 
of the road markings are also similar with respect to each image. This also 
shows that the features are matched to the pixel-level. 
 
For estimation of error found by our matching method in the point cloud 
relative to aerial images, we compute the normal probability function of the 
error in translation. The obtained correspondences, the total matched 
descriptors, together with mean (µ) and sigma (σ) of X and Y axis for all tiles 
are presented in Table 3-2. 
 
 

                                               
6 Visualizations of all matching results are provided at: 

https://www.researchgate.net/profile/Zille_Hussnain 
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Figure 3.16: Different visualizations of the matched features.  
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Table 3-2: Number of Matched keypoints and the normal probability function parameters 
of translation error between the point cloud and aerial images (all units are in meters). 
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1  4393  140  ‐2.16  0.87  0.03  0.08 

2  7016  930  ‐2.07  0.95  0.06  0.06 

3  12961  1703  ‐2.02  0.81  0.07  0.05 

4  8159  702  ‐1.99  0.93  0.08  0.05 

5  3702  275  ‐2.16  1.01  0.07  0.08 

6  5090  316  ‐1.93  1.00  0.05  0.09 

7  5318  456  ‐1.82  0.87  0.09  0.07 

8  9403  495  ‐1.74  0.85  0.04  0.08 

9  6050  438  ‐1.74  0.90  0.06  0.08 

10  4109  65  ‐1.90  0.87  0.07  0.02 

11  6043  748  ‐1.78  1.00  0.05  0.08 

12  4849  185  ‐1.91  0.93  0.08  0.04 

13  6460  561  ‐1.78  1.05  0.06  0.07 

14  8824  750  ‐1.81  1.02  0.07  0.05 

3.5.3 Discussions 

The matching results have shown that the developed method has achieved the 
pixel-level accuracy on the given data sets. The developed filtering approach 
can work only when the error in rotation and scale is small. When the error in 
the rotation is large, then without the rotation check in the outliers filtering 
part, only the distance constraint can be imposed. The resultant 
correspondences together with a small subset of outliers can be used to 
compute the accurate homography matrix and the remaining outliers can be 
removed from the initial correspondence set. 
 
Even though the aerial imagery was captured in winter and the roads were 
comparatively well visible, the occlusion due to the branches of the tree was 
the biggest problem. We have noticed that the low point density and small 
occlusions in the point cloud do not have much effect on the results. So, the 
developed method can give better results when the road surface is clearly 
visible in the aerial imagery. 
 
Overall, distortion in the aerial imagery due to the atmospheric dispersion, 
different level of contrast/illumination and variable exposure could hinder the 
keypoint detection, however, these problems were handled by the adaptive 
Harris keypoint detection. The false keypoint detection caused by shadows, 
trees and poles, and matching was handled by the outlier filtering approach. 
 



Chapter 3 

73 

3.5.4 Evaluation of estimated shift 

The actual error in the inaccurate MLSPC relative to the aerial imagery could 
be measured roughly by handpicked correspondences. It is important to note 
here that this is not the evaluation of accuracy achieved by our matching 
technique, as it is the future work. This evaluation method only considers the 
error in translation and does not consider the error in rotation. Though not very 
accurate, still this method can provide a rough estimation of the error presents 
in the inaccurate MLSPC.  
 
An example of manual selection of corner point is shown in Figure 3.17. In this 
figure, it has been shown that the top left corner point of a road marking 
(bounded by a green window) is selected as the same corresponding point in 
both images. This process was repeated for each tile and few well distributed 
points were obtained. The distribution of the obtained error is shown in Figure 
3.18. As here it is not feasible due to limited space to show the results from all 
tiles, only accurate and least accurate results from two different tiles are shown 
in Figure 3.18, top and bottom respectively.  
 

 
Figure 3.17: Manual selection of a road mark corner point for manual evaluation of 
inaccurate point cloud. 
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Figure 3.18: Overlap of PDFs of translation error in X and Y coordinates, error estimated 
by the Developed Method (DM) and Manually Measured (MM), tile 4 (top) and tile 8 
(bottom). 

3.6 Conclusion 
In this paper, we have implemented an automatic and reliable feature 
extraction procedure for the MLSPC and aerial orthoimages, which can compute 
correspondences with up to pixel-level accuracy. The feature matching results 
have shown that in future the MLSPC can be corrected reliably to the pixel level 
accuracy.  
 
The filtering technique proposed is feasible for the real world problem of MLSPC 
correction. The developed filtering technique cannot compensate for the scale 
variations and large rotations. Moreover, the filtering technique is a brute-force 
method as it is developed for the post processing purpose, it may not be 
feasible for real time applications. The advanced searching algorithms can be 
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introduced to decrease the total time needed for feature matching and to 
compensate rotation and scale variations.  
 
Image filtering methods can be used to minimize the time spent on the 
computation of feature detection parameters, it can avoid the need to adapt 
the parameters to images from same sensor. The evaluation of error present 
the inaccurate point cloud is a rough estimation because manual 
correspondence selection is error prone. A more accurate evaluation method 
will be used in future. 
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4 –  Automatic Extraction of Accurate 3D Tie 
Points for Trajectory Adjustment of Mobile 
Laser Scanners using Aerial Imagery7 

 
 
  

                                               
7 This chapter is based on: 
 
Hussnain, Z., Oude Elberink, S., Vosselman, G., 2019. Automatic extraction of accurate 
3D tie points for trajectory adjustment of mobile laser scanners using aerial imagery. 
ISPRS Journal of Photogrammetry and Remote Sensing 154, 41-58. 
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Abstract 
Poor GNSS measurements in urban areas caused by blocked GNSS signals and 
multi-path is a well-known problem, which leads to an inaccurate trajectory 
estimation of Mobile Laser Scanning (MLS) platforms. Consequently, the MLS 
point cloud contains positioning errors. This paper presents a new method for 
the automatic extraction of accurate 3D tie points for the trajectory adjustment 
of MLS platforms in GNSS denied or troubled areas. The new method relies on 
aerial imagery as a reliable external source of reference provided that accurate 
exterior orientation parameters are available. Accordingly, one of the main 
objectives is to register the mobile laser scanning point cloud with 
corresponding aerial images. The matches between aerial images are used to 
obtain 3D tie points by forward intersection. By also determining the 
corresponding locations in the point cloud we obtain a 3D-3D correspondence 
between the MLS point cloud and the aerial images. In the future, the obtained 
3D-3D correspondences will be used for trajectory adjustment. 
 
Our automatic tie point extraction procedure is tested on two independent MLS 
point clouds. The point clouds were acquired by two different platforms in 
Rotterdam. The aerial imagery of the same area was acquired at a different 
time. We evaluated the matching results for both datasets and concluded that 
the new procedure reliably extracted the 3D tie points for 55% of the tiles of 
the size of 90 metres from the first MLS dataset. In the second dataset, 60% 
of the tiles of size 74 metres yielded reliable 3D tie points. It is not necessary 
to successfully register all tiles because the results of this work will be used for 
the trajectory adjustment and the IMU can reliably support the positioning for 
small intervals. 
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4.1 Introduction 
Accuracy improvement has become one of the priorities in turning a Mobile 
Laser Scanning (MLS) point cloud into a reliable and accurate commercial 
product. In a mobile laser scanning system, it is crucial to have an accurate 
position estimation of the mobile mapping platform, since a small error in the 
estimated sensor position directly affects the positional accuracy of the 
acquired data points. This problem becomes worse in urban canyons, where 
GNSS signals are either obstructed or reflected from multiple surfaces as 
mentioned by Cui et al. (2003), Godha et al. (2005) and Haala et al. (2008). 
In urban canyons, Kukko (2013) demonstrated that the accuracy of the 
estimated trajectory of a mobile mapping platform could be decreased to more 
than 50 cm due to the outage of GNSS signals. However, without any GNSS 
signal outage, the state-of-the-art Mobile mapping (MM) platform can achieve 
2-3cm accuracy Haala et al. (2008) and Kaartinen et al. (2012).  
 
There are two major contributors to the erroneous position estimation; one is 
the long-term GPS signal outage, which causes the continuous accumulation 
of error in trajectory over time because the positioning is estimated by the IMU 
observations prone to drift error. The second factor is the multipath effect, 
which causes trajectory interpolation between accurate and inaccurate 
positions resulting in an inaccurate trajectory. Without other accurate 
positioning reference, corrections for the erroneous GNSS measurements are 
needed. This typically depends upon manually surveyed GCPs and their 
manually selected corresponding locations in the point cloud. 
 
Over the last decade, interest in the application of mobile mapping data 
products has continued to grow. Data providers want to produce highly 
accurate data products and to acquire data frequently at lower costs. However, 
it is necessary to utilize the manually acquired GCPs for the MLS data correction 
and adjustment if high accuracy is requested. In commercial procedures, two 
main post-processing steps are usually involved. The first post-processing step 
is to correct the data only by automatic means, similar to the technique 
reported by Levinson et al. (2007), Ding et al. (2007) and Zhao (2011); this 
procedure performs registration between overlapping point cloud patches and 
adjusts MLS platform positions in the trajectory. This step is accomplished 
without any external reference. The inaccurate data can be corrected if there 
is enough data overlapping. However, even by utilizing these techniques, the 
final achieved accuracy is at the meter level as expressed in Chiang et al. 
(2008), especially during long-term GNSS outages in urban canyons. This 
accuracy is insufficient to customers. 
 
The manual post-processing step involves the collection of the GCPs by 
surveying the target area and then the manual and careful selection of the 
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corresponding points in the MLS dataset. Overall, this complete step is labour 
intensive and mainly hinders the automatic acquisition of high-quality MLS 
point cloud. Since the post-processing step is both expensive and time-
consuming, it forces most customers to use outdated dataset. Moreover, the 
GCPs’ measurements could still be uncertain and the handpicking of the GCPs 
in the MLS datasets could as well be imprecise. Furthermore, to increase the 
reliability and validity of GCPs’ accuracy, the same GCPs are acquired multiple 
times, which makes the correction procedure even more expensive. 
Additionally, if undetected inaccurate GCPs mix in the final reference set, then 
there is no third reference to verify the inconsistent GCPs. Nevertheless, after 
the cumbersome manual efforts and corrections, the second step could 
improve the data accuracy to the desired level, but the final product will still 
be costly. 
 
Therefore, it is desirable to have an automatic procedure that can extract 3D 
tie points automatically while improving the accuracy at low cost and in less 
time. Our workflow replaces the manual effort with an automatic procedure. 
Our work aims to achieve similar or better accuracy than the manual post-
processing method. The main objective of the developed method is twofold; 
first is to register both MLS images and aerial patches automatically; second 
is to compute the subdecimeter-level accurate 3D tie points.  
 
For the registration, the aerial images are considered a reliable and accurate 
reference, which can improve MLS point cloud inconsistencies cost-effectively, 
especially when combined with the automatic procedure. However, the 
automatic matching of images from two different sensors and 3D feature 
extraction is a challenging task. The aerial image presents the white light 
reflection captured from the scene by a camera, whereas the lidar sensor 
measures the geometrical information and laser light reflection of the surface 
of the scene. The laser reflection intensity of each 3D point is not the same as 
the white light pixel intensity. Moreover, an optical image has a regular grid of 
pixels over the image space, whereas the MLS point density strongly depends 
on the distance from the lidar sensor to the objects and the speed of MLS 
platform. Furthermore, all pixels in an image are captured at once, whereas 
each 3D point is measured at a different time. 
 
In this paper, the description of our developed automatic procedure is 
organised as follows: The second chapter investigates the literature related to 
our work. The third chapter starts with the introduction of the developed 
method and explains the concept of the 3D tie points. The remainder of the 
third chapter describes the pre-processing of the datasets following by the 2D-
2D image registration and lastly the calculation of the 3D tie points from image 
correspondence. The fourth chapter provides all results obtained by 2D-2D 
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image registration and presents the quantitative statistics of 2D matches and 
3D tie points. 

4.2 Related Work 
One of the main areas of research work is the registration of 3D data to 2D 
data or vice versa. This is a common topic across many research fields. Much 
of the literature has been published for 3D-2D registration. However, every 
research application has some specific assumptions and difficulties, which are 
not directly applicable to our case. For example, 3D to 2D registration for 
medical images in Markelj et al. (2012) and Tomazevic et al. (2003) or facial 
feature recognition in Zhou et al. (2018) may assume an accurate calibration 
between two sensors and maybe benefit from the stable artificial ambient light 
condition, and the task would be to refine the calibration error with epipolar 
geometry or dense matching. Moreover, the small scale and the different 
demand of accuracy influence the development of those registration 
algorithms. On the other hand, the registration process involves surfaces from 
deformable and texture-less objects.  
 
However, the problem at hand relates to 3D-2D registration problems involving 
at least a 3D point cloud from a lidar sensor and one camera image. Especially, 
it involves a large-scale outdoor environment, where the position of at least 
one sensor is not known reliably. 
 
In this vein, Fruh et al. (2001) proposed a method for position estimation by 
maximizing the cross-correlation and Monte Carlo Localization (MCL) of a 3D 
model (derived from laser scanners) with 2D aerial images and roadmaps. The 
accuracy of this method was limited by the size of the road width. Moreover, 
this technique was implemented in an area without tall buildings. Ding et al. 
(2008) proposed a method to extract 2D orthogonal corners from a 3D lidar 
model obtained from an ALS point cloud and oblique images. The 
correspondence between the 2D orthogonal corners is established using a 
Hough transform and generalized M-estimator sample consensus. The 
correspondence is then used to refine camera pose by the algorithm of Lowe 
(1987). However, the validation and accuracy of the camera pose were 
assumed based on the visually correct mapping of the texture on the buildings, 
and no further accuracy measurement was provided. Another method was 
proposed by Wang et al. (2009) for the registration of aerial lidar data by 
oblique images.  Triples of line segments were defined and matched, and an 
overall correct pose recovery rate of 98.5% was reported. However, the 
accuracy of the pose estimation was not mentioned. A registration between 
range image of a terrestrial laser scanner and ground images by implementing 
the epipolar constraint-assisted robust matching approach was described by 
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González-Aguilera et al. (2009), where the goodness-of-fit in the robust 
camera resection was 0.03 m for the first case and 0.01 m for the second case. 
 
The datasets are matched by applying traditional 2D feature extraction 
techniques. Research efforts have been devoted to the 3D-2D registration 
problem in the context of automatic tie point computation for the correction of 
mobile laser scanning datasets. In a preliminary investigation, Jende et al. 
(2016) described available methods for the multi-sensor data registration and 
provided the results of registration between aerial and ground (MLS point cloud 
and terrestrial orthoimages) datasets. In our earlier work (Hussnain et al. 
(2016)), we developed a method for the registration of point cloud orthoimages 
to aerial images. The experimental results have shown that the image feature 
extraction can be used for the registration between the two datasets 
(originating from various sensors). Moreover, the results demonstrated that 
the pixel-level accurate transformation could be calculated for the correction 
of MLS dataset (when the aerial image already has a reliable accuracy). The 
matching between the rasterized laser scans and the camera images using 
SIFT feature extraction was implemented in the work of Meierhold et al. 
(2010). However, these techniques do not estimate the 3D tie points, which 
are necessary for the adjustment of the MLS point cloud or its trajectory. 
 
Another approach for the 3D-2D registration is to first convert the 2D images 
to a 3D point cloud and then register that with laser scanning point cloud. The 
registration of the terrestrial laser scan by an SFM point cloud generated from 
ground images was demonstrated in the work of Stamos et al. (2008).  
 
For the image-based navigation of self-driving systems, the MM camera images 
are registered using prior 3D lidar by maximizing the normalized mutual 
information described in Wolcott et al. (2014). Sometimes, the new MLS data 
is registered using previously referenced data for corrective purposes. Sheehan 
et al. (2013) showed the correction of the trajectory of newly acquired MLS 
data using the previously surveyed MLS dataset. Similar projects are 
implemented without the use of prior 3D point cloud dataset. For example, 2D 
to 2D registration is developed for a UAV-based navigation system, by the 
registration of UAV-borne images to previously captured satellite images (as 
reference data), this work is reported in Conte et al. (2008). Feature-based 3D 
to 2D registration is also popular, a novel feature-based 2D to 3D registration 
method for the automatic extraction of control points in optical and lidar images 
was proposed by Palenichka et al. (2010). Recently, Javanmardi et al. (2017) 
have performed the correction of the MLS point cloud by using multiple 
reference datasets, including aerial images. However, their approach 
constrained the registration problem to only 2 DOF.   
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Methods have been developed to utilize mutual-information based registration 
for 3D/2D registration. The registration between the camera and laser data 
using mutual information is covered in the method developed by Wang et al. 
(2012). However, that method is developed on a setup where both laser 
scanner and camera sensors were mounted on a common mobile platform. 
Thereby, the accurate calibration was already known with only 2-3 pixel of 
error before registration, which was reduced to one pixel after the registration. 
Another mutual-information based method proposed by Parmehr et al. (2014) 
performs registration between aerial images and aerial lidar using statistical 
dependency between same- and multi-modal datasets; however, it requires a 
prior (similar) training dataset. The accuracy is calculated based on the 
difference with updated exterior orientation parameters. 
 
Line segments are extracted from the 3D data and 2D image datasets for the 
automatic registration purposed by Frueh et al. (2004). The GNSS-based 
exterior orientations of the oblique images are used as the initial guess for 
registration.  Lines of a 3D model were projected to the oblique image plane 
and instead of one line, groups of three lines rated a particular camera pose 
as proposed by Lee et al. (2002). However, this technique was implemented 
for texture mapping, for which high accuracy was not important, in contrast to 
the application at hand. A linear feature-based 2D and 3D registration scheme 
was developed by Liu et al. (2012), in which the goal was to estimate the 
camera orientation by matching 2D ground images and 3D ground range data 
(3D is considered as reference). An average relative error of around 1–2 pixels 
was reported and verified visually.  
 
MLS point cloud/image registration methods have been implemented to 
address the problem of relative accuracy that does not require high absolute 
accuracy. Some of the methods’ evaluations were based on visual verification 
and some methods required previously constructed 3D models, whereas the 
highly accurate 3D models were generated by combining MLS and ALS data as 
well as by combining ground and aerial views. Moreover, the input 3D models 
were created with manual editing. In some cases, feature extraction processes 
were based on the geometrically incorrect edges in the point cloud for texture 
mapping; the edge extraction was highly modified by a multi-layer edge 
detection and line extraction process; thus, the extracted lines could lead to 
geometrically inaccurate correspondences. A great deal of research has been 
focused on the registration of building façades and building boundary mapping. 
This registration is only possible between the MLS point cloud and oblique 
images. This technique does not extract features from roads because, in some 
urban areas, road features are not consistently available in oblique images.  
 
Gao et al. (2015)have performed registration a rasterized point cloud with UAV 
imagery. They reported RMS values of ∆X=8.6 cm,  ∆Y=6.3 cm, and ∆Z=10.6 
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cm in the corrected point cloud. However, they have calculated the relative 
accuracy using control points handpicked from UAV images and checkpoints 
handpicked from the adjusted point cloud. The evaluation quantified the error 
introduced by the adjustment and not absolute accuracy. In contrast, our goal 
in this paper is to extract tie points which can be used by the method developed 
in Hussnain et al. (2018) and achieve decimetre level absolute accuracy. 
Moreover, in this paper we present two further advancements to our previous 
work Hussnain et al. (2016); one is the improvement in the accuracy of the 
2D-2D registration by improving pixel-level correspondences to subpixel-level. 
Second is the development of a reliable method to compute 3D tie points from 
2D-2D correspondences. Moreover, 3D-3D correspondence between tie points 
will be established, such that they can be used for the 6DOF trajectory 
adjustment introduced by Hussnain et al. (2018). 

4.3 Developed method 
To extract the tie points between aerial imagery and MLS point clouds, common 
landmarks or features have to be identified. Therefore, it is necessary to 
choose a common part between both aerial images and the MLS point cloud. 
The most suitable area is the road surface, where road markings are well visible 
in both aerial images and the MLS point cloud. The previous method (Hussnain 
et al. (2016)) projects the point cloud to the horizontal ground plane. However, 
if the road is not parallel to the horizontal plane, the projection introduces error 
in the positioning of the outcome. To avoid this type of inaccuracy, in this 
paper, we project the point cloud onto the aerial image plane.  
 
The idea of common feature identification in the point cloud and the aerial 
imagery is illustrated in Figure 4.1. The common feature identified in the point 
cloud is called A2P tie point and its corresponding feature in aerial images is 
A2A tie point. The A2A tie points are considered accurate because the 
orientation of the aerial images is accurately known, whereas the A2P points 
are known to be inaccurate because the laser scanner positioning is unreliable.   
 
The workflow of our method is presented in Figure 4.2, It starts with the pre-
processing of both point cloud and images. Then a 2D image registration 
technique performs registration between the rasterized point cloud and aerial 
images. The inter-registration of aerial images produces A2A tie points, while 
the cross-registration between aerial images and the rasterized point cloud will 
determine A2P tie points. In the end, 3D-3D correspondences are established 
by searching the correspondences between A2A and A2P tie points sets.  
 
The remainder of this paper uses the following definitions for the tie points. 
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i) A2A tie point: 3D point calculated from aerial images correspondence 
and multiview triangulation.  

ii) A2P tie point: 3D point cloud point determined based on correspondence 
between the rasterized point cloud and an aerial image. 

 
 
  

 
Figure 4.1: The concept of A2A and A2P 3D tie points. 
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Figure 4.2: Workflow automatic 3D tie point extraction. 
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4.3.1 Pre-processing mobile laser scanning point clouds and aerial 
images 

In the pre-processing step, we crop small parts of the datasets for registration. 
There are two main reasons that the data pre-processing is needed: first, the 
positioning error will vary over time. Therefore, the MLS point cloud should not 
be registered with one set of transformation parameters (e.g. affine). 
Secondly, the large MLS datasets cannot be processed in memory at once. The 
pre-processing divides the datasets into subsets, which are compatible and 
practical for fast registration. 

4.3.1.1 Mobile laser scanning point cloud perspective image generation 

The MLS point cloud is a set of 3D points acquired continuously over time. Each 
3D point is observed in a local vehicle-based coordinate system and then 
transformed to the global coordinate system making use of the GNSS- and 
INS-based positioning. The mobile laser scanning operation needs to be 
conducted while mapping car moves in normal traffic. Some areas are scanned 
faster than the others, due to the variable car speed and curvature of the road. 
Moreover, the laser scanner configuration and road traffic play a role in the 
point cloud occlusions and density. To overcome occlusions and data gaps, the 
same area is scanned with two laser scanners mounted on a car with different 
angles w.r.t. the driving direction and aiming at an as complete as possible 
acquisition of the road environment. The two laser scanners may scan the same 
surface, but because of occlusion, many other surfaces will only be captured 
by one of the scanners. In the end, points from all passes and scanners are 
combined to obtain a single point cloud with as few as possible occlusions and 
data gaps. The points related to the same object surface can originate from 
data collection at very different GNSS times in case of multiple passes over the 
same trajectory. Therefore, when the positioning error changes over time, then 
the point cloud points suffer from alternating errors in estimated position. 
Therefore, the 3D points belong to the same world objects get misaligned in 
the merged point cloud. The misaligned point cloud cannot simply be projected 
into an image since 2D features belonging to different GNSS time should not 
be put together in one 2D image. This is essential for the 2D image registration 
and for utilizing the tie points in the later step of trajectory adjustment. Our 
pre-processing procedure starts with ordering the points in a time chronological 
order per laser scanner. Eventually making the road marking features also 
chronologically feasible and spatially consistent for matching.  
 
Next, these point clouds are divided into smaller parts or tiles. One of the issues 
in the tiling process is to maintain the contextual information of the road 
markings. Since our registration method is based on the road markings, it is 
desirable to properly include the complete road marks at the edges and provide 
enough overlap between the point cloud tiles, such that an MLS image has a 
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sufficiently large border around the road marks to calculate the feature 
descriptor. For the context-based tiling, the pre-processing procedure 
generates polygons derived from the shape of the trajectory and includes the 
road marks based on the information retrieved from OpenStreetMap, which is 
easier than detecting road marks directly from the point cloud. This important 
landmark information on the map is freely available for the potential mapping 
areas. The tile length is influenced by the points set that can be handled in 
memory at once and the average length of consecutive positioning that can be 
reliably supported by the IMU alone. 
 
Once the point cloud tiles are created, the next step is to filter 3D points 
representing moving traffic. The side view of this situation is shown in the top 
part of Figure 4.3. The top-down view on the same area with a moving car 
before and after filtering is shown in the left bottom and right bottom of the 
figure respectively. These points on cars need to be removed because 
projection onto the aerial images can mask features on the road surface, which 
is a nuisance for the keypoint detection and matching.  
 

 
Figure 4.3: A moving vehicle in MLS point cloud. 
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Points belonging to moving vehicles can be removed by the segmentation of 
point cloud into smooth surfaces and only keeping points on such surfaces. 
However, this extra effort can be avoided by using the results of the point cloud 
back-projection, which is needed for the point cloud rasterization, regardless 
of the point cloud filtering.  To use back-projection for both purposes, first, the 
point cloud is back-projected onto the relevant aerial image planes. For 
example, the back-projection of an MLS point cloud tile onto three aerial image 
planes is illustrated in Figure 4.4. This process generates multiple 2D point 
clouds as shown at the top of Figure 4.4.  
 

 
Figure 4.4: A 3D point cloud tile and its projection to multiple perspective planes, for the 
generation of point cloud images.  
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Now, to filter the undesired points based on the back-projection results, we 
first determine the distance to the image plane for each 3D MLS point which 
will be projected into the same pixel. This provides the distribution of the points 
along each pixel frustum as depicted in Figure 4.5. Then we only keep the 
points which lie inside the furthest peak of this distribution. Finally, to 
determine the grey value of the image pixel, we calculate the median of the 
laser reflectance intensities of the selected MLS points. We will refer to the 
images created this way as the MLS images. 
 

 
Figure 4.5: Distributions of undesired points and road points along a pixel frustum. 
 



Chapter 4 

91 

4.3.1.2 Aerial Image Patch cropping 

As the projection of the point cloud provides the extent of the MLS image on 
an aerial image plane, the same extent can be used to crop an Aerial Image 
Patch (AIP) from a large aerial image. Sometimes, not all area of an AIP extent 
overlaps with the extent of a large aerial image. In this situation, the AIP can 
differ in size from the corresponding MLS images, which is resolved by image-
padding to the AIP. However, the generated AIP should have enough non-
padded image area for keypoint detection and descriptor computation, 
otherwise, the patch is discarded. We use the matching technique from 
(Hussnain et al. 2016) for descriptor calculation. This technique requires at 
least 48x48 pixels around the keypoint.  

4.3.2 2D-2D registration 

In order to extract A2P or A2A tie points, the preliminary step is the registration 
of the 2D image patches. Accordingly, the registration is needed for two cases; 
first, is the AIP-to-AIP registration and second is the MLS image-to-AIP 
registration. In this paper, we used the 2D-2D image registration technique 
developed in our earlier publication Hussnain et al. (2016). This registration 
technique detects the keypoints using adaptive Harris keypoints on the road 
marking corners. Initially, the non-adaptive version was proposed by Harris et 
al. (1988). Our earlier method adapted the keypoint detection threshold 
iteratively depending on the image contents. However, the iterative process is 
computationally expensive.  In this paper, iterations are reduced by predicting 
the target threshold from a non-linear approximation fit over the outcomes of 
a few initial iterations. Then, the keypoints are matched based on the LATCH 
descriptor as described in Levi et al. (2016) and an outlier filtering technique.  
 
The main improvement compared to Hussnain et al. (2016) is the method to 
obtain subpixel-level correspondence. The registration developed earlier can 
only provide the pixel-level 2D-2D correspondences. In this paper, we first 
detect the Förstner keypoints (Förstner et al. (1987)) in both corresponding 
images. Then, we search the nearest Harris keypoints, which are already 
matched. This search eventually establishes the correspondence between 
Förstner keypoints in both images. The Förstner keypoint detection cannot be 
used instead of the adaptive Harris keypoint detection since it can only provide 
the single keypoint per corner feature.  Multiple keypoints per corner procures 
robustness in matching for data from different sensors. The comparison of pixel 
and subpixel correspondences of the same 2D feature is illustrated in Figure 
4.6. In the figure, the green dots represent new subpixel-level keypoints 
establishing correspondence that is derived from the red dots representing the 
pixel-level keypoints correspondence. A result from the real dataset, for the 
mapping from pixel to subpixel-level correspondence is discussed in section 
4.4.4. 
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We use an outlier filtering technique described in Hussnain et al. (2016) 
because the orientation of the point cloud images is not accurately known. The 
features in point cloud images in relation to aerial images can have meters of 
error, therefore, it is not practical to search the corresponding features e.g. 
along the epipolar lines. Though, we can use the epipolar search constraint for 
only aerial-to-aerial correspondence matching because their orientation is very 
accurate. However, once we choose to use the outlier filtering technique for 
the point cloud image to aerial image feature matching, which can also match 
the aerial-to-aerial images, then the implementation of the epipolar based 
matching technique will be redundant. 
 

 
Figure 4.6: Pixel and subpixel-level correspondence of a same corner feature. 

4.3.3 A2A 3D tie points extraction 

For the A2A tie point calculation, the registration is performed between the 
image pairs of AIPs. Image pairs are formed based on all permutations in the 
set of available AIPs. For example, if 5 AIPs are used for the calculation of A2A 
tie points for an area, then the number of AIP-to-AIP matching pairs will be 
10. The 2D registration method can only perform independent registrations in 
one image pair at a time. However, a feature needs to be visible in at least 
three aerial images and one MLS image to establish a reliable multi-view 
correspondence. An A2A tie point computed from multiple aerial images is 
more reliable, therefore, common correspondences in more than two aerial 
images are desirable. To achieve this, we perform multi-view matching. The 
3D tie points calculated from stereoviews are also retained. Note that the multi-
view matching is used for two purposes in our workflow; the first is to provide 
multi-view correspondences for the computation of the A2A tie points, the 
second is to search for common A2P points to establish 3D-3D 
correspondences. The latter is described in section 4.3.5. Finally, A2A tie points 
are calculated using multi-view triangulation based on the non-linear method 
described by Hartley et al. (2003). The iterative process starts with a linear 
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estimate of 3D point as an initial approximation and then a non-linear solution 
is optimized by the Gauss-Newton algorithm. 

4.3.4 A2P 3D points extraction 

In this step, we extract A2P tie points by matching MLS images and AIPs. The 
same 2D registration method described in section 4.3.2 has been used. 
Similarly, for registration, the first step is to prepare image pairs for matching. 
Contrary to A2A tie point extraction, the total image pairs are equal to the 
number of aerial images involved. The 2D registration just provides the 
correspondences between the MLS images and AIPs but any matched 2D pixel 
of MLS image can be traced back to its predecessor 3D MLS point cloud point. 
While multiple point cloud points contributed to the formation of an MLS image 
pixel, the 3D point whose back-projection is nearest to the centre of an MLS 
image’s pixel is defined as the A2P 3D tie point. So, the A2P tie points are 
basically the point cloud points which have indirect correspondence with aerial 
images through MLS images.  

4.3.5 3D-3D correspondence search 

Not all A2A and A2P tie points can establish a 3D-3D correspondence. The final 
3D-3D relation depends on the A2P tie points themselves since these points 
provide the link between MLS image and AIP features. So, a 3D-3D relation 
can be established if an MLS image point has correspondences to at least two 
AIPs points or if the MLS image has a match to one AIP point, which, in turn, 
has a match to a point of another AIP.  
 
To search the common correspondences, multi-view matching is implemented 
using a robust graph-based search. Then a common correspondence is 
traversed through all nodes of the related registered image pairs. This search 
includes correspondences from both A2A and A2P tie points. An example of 
these search flows is illustrated in Figure 4.7. Unlike 4.3.3, which only deals 
with AIP-to-AIP search flows, for 3D-3D correspondence search, there are two 
types of search flows; one is from AIP-to-AIP and other is from AIP-to-MLS 
image. So, the total possible search pairs are equal to the permutations of all 
involved images. To comprehend the benefit of this technique, suppose that 
there are 4 AIPs and an MLS image, which are related to a test area. Then 
there will be one to one registrations between 4 MLS images and 4 AIPs. 
Moreover, 6 further registrations between 4 AIPs. This leads to a total of 10 
possible correspondences for the same feature across all views. Now, assume 
that among 10 potential correspondences, only registrations between AIP1-
AIP2, A3-A4, AIP2-MLS image and AIP3-MLS image are successful with 
correspondences 𝐶ଵ between 𝑋ଵ and 𝑋ଶ, 𝐶ଶ between 𝑋ଷ and 𝑋ସ, 𝐶ଷ between 𝑋ଶ 
and 𝑋ହ and 𝐶ସ between 𝐶ଷ and 𝑋ହ respectively. With the given information, it is 
not possible to determine a corresponding  A2A tie point to an A2P point with 
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multiviews correspondence. However, with multi-view matching, we can 
establish the unknown links, plotted as blue dotted curves in Figure 4.7. This 
technique also introduces robustness to our method in difficult cases when only 
a few stereo pairs are successfully matched. 
 

 
Figure 4.7: Extracted missing links retrieved using multiview matching. Dotted lines are 
missing links while the solid colour lines are well-established correspondences. 

4.4 Implementation, Experiments and Results 
We perform experiments on two MLS datasets. These point clouds are acquired 
in the urban areas of Rotterdam. The extraction of A2A tie points by 
registration between AIPs and A2P points by registration of AIPs MLS images 
are described respectively. In the end, obtained 3D-3D correspondences 
together with quantitative and qualitative analysis are discussed. 
  
The input datasets are mainly acquired in the GNSS troubled areas and consist 
of roads surrounded by buildings with three or more stories. Moreover, the test 
area is intentionally selected to contain the following properties in MLS point 
cloud and aerial images: 
 
viii) various types of road markings (both) 
ix) occlusions (both) 
x) traffic (both) 
xi) trees (both) 
xii) shadows (aerial images) 
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xiii) GNSS troubled areas (MLS point cloud) 
xiv) atmospheric and image sensor noise (aerial images) 
xv) variable 3D point density and data gaps (MLS point cloud) 
xvi) multiple sensors (MLS point cloud) 
xvii) multiple passes (MLS point cloud) 

4.4.1 Mobile Laser Scanning Point Cloud datasets 

The MLS datasets were acquired using two independent laser-scanning 
systems, where both systems utilized different laser scanners and position 
estimation sensors. The first dataset, MLS_DATA-I, is acquired with a mobile 
mapping system based on a single laser scanner, the Topcon® IP-S3. This 
system has a built-in 360-degree lidar sensor that measures 700,000 ranges 
per second. Its positioning is estimated with an industrial grade IMU (KVH® 
CG-5100). The overall mapped area in this dataset is 13 km and the total 
continuous scanning time is 56 minutes. The MLS_DATA-I dataset consists of 
the single one-go acquisition but has multiple passes of the same roads. Its 
trajectory is plotted and superimposed on the aerial orthoimage and shown on 
the left of Figure 4.8.  
 
The second point cloud is acquired with Topcon® IP-S2 system that is based 
on two 360-degree laser scanners mounted in a cross-configuration. The 
position estimation of this system is based on a built-in MEMS gyroscope. The 
MLS_DATA-II dataset was acquired in 13 minutes of continuous laser scanning 
on a 3.5 km road. It consists of the single one-go acquisition and there are no 
overlapping passes. The trajectory of MLS_DATA-II is plotted on the right side 
of Figure 4.8.  
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a)  
 
 

b)  
 

Figure 4.8: MLS_DATA-I trajectory (a). MLS_DATA-II trajectory (b), both datasets are 
in Amersfoort / RD New coordinate system. 
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4.4.2 Aerial nadir imagery 

Fifteen aerial images are captured with the UltraCam® camera on a manned 
flight, where each aerial image has 20010x13080 pixels with a GSD of 10 cm. 
The aerial image acquisition positions and pseudo flight path are shown in 
Figure 4.9. The aerial image extents (green rectangles) are plotted on the 
orthoimage. These aerial images have 60% forward overlap and 40% across 
track overlap. The exterior orientation parameters of the images are known in 
the Dutch reference system RD-NAP.  
 

 
Figure 4.9: The arrangement of aerial image extents over test area. 

4.4.3 Pre-processing results of datasets 

The MLS_DATA-I is pre-processed and shapes of the resulting tiles are plotted 
in Figure 4.10. The first tile is numbered when the trajectory enters the 
coverage of two or more aerial images. The pre-processing has generated 155 
tiles from the MLS_DATA-I, each tile is approximately 90 metres in length 
towards driving direction and 60 metres in width across the road. Note that 
each point cloud tile causes the generation of multiple MLS images and AIPs.  
 
The pre-processing of the MLS_DATA-II has generated 47 tiles, while each tile 
is approximately 74 metres towards driving direction and 22 meters across the 
road as shown at the right side of Figure 4.10. To study the reliability of our 
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method in producing the tie points regardless of the tile size, different tile size 
parameters are used for both datasets.  
 

a)  
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b)  
Figure 4.10: a) MLS_DATA-I tiles. b) MLS_DATA-II tiles. 

4.4.3.1 Mobile Laser Scanning Images 

The tile number 18 generated from the MLS_DATA-I (as in the previous 
section) produces six MLS images, which are obtained by the projection onto 
aerial image 1, 2, 3, 6, 7, and 8. Note that the number of MLS images in Figure 
4.11 is equivalent to the number of corresponding AIPs in section 4.4.3.2. The 
MLS images shown in Figure 4.11 do not show cars on the road, as they have 
been successfully removed (based on the point cloud filtering method 
described in section 4.3.1.1) unlike the aerial images in Figure 4.12. The image 
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area without any projected point is coloured grey and excluded from the 
matching. Moreover, the arbitrary variation in the pixel information is 
noticeable among three magnified patches at the right side of Figure 4.11, this 
is caused by the projection on different perspective planes. This could lead to 
a disparity in the description of features and it is one of the reasons that the 
robust descriptor matching method has been used. 
 

   
Figure 4.11: Left, six MLS images generated from tile 18 of MLS_DATA-I. Right, 
projections of same point cloud on three different perspective planes.  

4.4.3.2 Aerial Image Patches 

The corresponding AIPs of tile 18 from MLS_DATA-I are shown in Figure 4.12. 
The aerial images 1, 2 and 3 were captured when the airplane approximately 
headed east, whereas the aerial images 6, 7 and 8 were captured while the 
airplane headed approximately west as airplane camera orientation described 
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in section 4.4.2. The arbitrary appearance of the traffic is evident in the AIPs 
in Figure 4.12. This is a problem for matching, and unfortunately, this problem 
cannot be avoided for both AIP-to-AIP and AIP-to-MLPCPI matching cases. The 
techniques similar to Javanmardi et al. (2017) to remove traffic are also not 
useful because artificial image information introduced to mask traffic cannot 
be of help in the matching. 
 

 
Figure 4.12: AIPs for the tile 18 of MLS_DATA-I. 

4.4.4 2D-2D correspondence between image patches 

The registration described in section 4.3.2 produces 2D-2D correspondence. 
This section describes in general, the results of registration, especially the 
update to our previous technique that is a transition from the pixel-level to 
subpixel correspondences. In the next section, the results of registration 
regarding A2P and A2A tie points are discussed separately. For the example of 
registration between MLS image and AIP, a result related to tile 18 is shown in 
Figure 4.13. The left and right side of Figure 4.13 shows pixel-level and 
subpixel correspondences respectively. For visual comparison, matched 
features are gradually zoomed-in. At the top of the figure, corresponding 
regions are marked by blue windows across matched pairs. To recognize the 
road marks by context, marked regions are further magnified in the middle 
level. Positions of the keypoints within the pixel are of the main interest and 
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can be observed at the bottom of the figure. Notice keypoints in the bottom-
left images are always in the centre of the pixel while on right side keypoints 
can have arbitrary locations, reflecting the subpixel accuracy of the Förstner 
keypoints. To validate the procedure for the aerial-to-aerial matching scenario, 
a similar example is replicated for the AIP-to-AIP matching in Figure 4.14. 
Onwards, the number of matched keypoints is only mentioned after the 
mapping to the subpixel. 
 
The initial guess of the positional error of the MLS point cloud is deduced from 
an error distribution obtained in earlier matching experiments. The search 
window size for the MLS_DATA-II is set to ±3 metres. In the earlier 
experiments, the search window size was larger than the actual error. 
 

 
Figure 4.13: For MLS image-to-AIP matching, yellow lines are correspondences, keypoint 
in aerial images are represented by green ‘+’ symbol and keypoints in point cloud images 
are red circles.  Notice that the pixel-level corresponding keypoints are always in the 
middle of the pixel while the subpixel-level keypoints are not necessarily in the middle 
of the pixel. It is evident by comparing the matched keypoints in the bottom row.  
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Figure 4.14: For AIP-to-AIP matching, yellow lines are correspondences, keypoints in 
right patches are represented by green ‘+’ symbol and keypoints in left patches are red 
circles. Notice that the pixel-level corresponding keypoints are always in the middle of 
the pixel while the subpixel-level keypoints are not necessarily in the middle of the pixel. 
It is evident by comparing the matched keypoints in the bottom row. 
 
Sometimes the road marks are removed and repainted on a different location. 
So, if one dataset was acquired before and the other was acquired after the 
repainting then similar road marks appear relocated as an image pair at the 
left side of Figure 4.15. The matching procedure establishes only correct 
correspondences because the outlier filtering technique in (Hussnain et al. 
2018) favours parameters of sets with majority correspondences. These 
parameters are the relative distances and angles between the keypoints of the 
same image. The group of displaced features will not be matched because their 
relative arrangement differs from the other features across the image pair. 
 
Similarly, road traffic can also alter the description of the feature and lead to 
mismatches or no match as shown on the right side of Figure 4.15. Most of the 
road marks are covered by traffic. Only some are completely visible, among 
them only a few have the description still intact. Another problem with similar 
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consequences is the point cloud occlusion caused when the mobile mapping 
vehicle drives on the other side of the road as shown in Figure 4.16. 
Interestingly, the same area was scanned twice from the alternating side of 
the road as plotted in Figure 4.16. Consequently, features are only matched 
according to alternating non-occluded areas as marked in the figure.  
 
Moreover, it is noticeable that 2D features other than road marks can be 
matched. Some road landmarks usually exhibit the same properties that define 
the corner features and fulfil the criteria of detection based on the corner of 
the gradients. One example of such corner feature detection is shown in Figure 
4.17. However, in the case of this specific feature, the feature and its 
description are reasonably similar in both datasets. Unfortunately, this is not 
the case with most of the similar features. Therefore the chance of successfully 
matching similar features is low using our 2D registration technique.  
 
One benefit of the matching technique is the invariance to the differences 
caused by shadows. Even though the intensity differences inside and outside 
shadow areas are quite different, the features keep the same intensity gradient 
patterns and can be matched. In Figure 4.18, the road surface is partially 
covered by the shadows in aerial images, but still able to match for case (b) of 
MLS image. 
 



Chapter 4 

105 

 
 
 

 
Figure 4.15: Top, few matches due to shifted and repainted road marks. Bottom, 
matches missed due to traffic cover. 
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Figure 4.16: No matches due to the alternating areas occluded from the laser scanner. 
 

 
Figure 4.17: Matched feature other than road marks. 
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Figure 4.18: Matched features despite building shadow. 

4.4.5 A2A 3D tie points 

In this section, we discuss the results obtained regarding the A2A tie points 
extraction. The tile 18 of MLS_DATA-I has projections on six aerial image 
planes. Therefore, the number of total permutations for matchable pairs is 15. 
The correspondences of each pair are plotted in Figure 4.19. Each patch 
inherits the original orientation according to the airborne camera as depicted 
in Figure 4.9. Moreover, each image pair is further rotated to 90 degrees, to 
fit all fifteen matching results together in Figure 4.19. Some image pairs show 
fewer matches compare to the other ones. However, all matches contribute to 
the computation of the A2A tie points plotted in Figure 4.20, this means that 
not all tie points are computed with the same group of views. Moreover, it is 
observable that the A2A tie points are confined to the road area. However, 
Figure 4.19 shows matches outside of the road area. Once the A2A tie points 
are computed, these points are filtered by utilizing the trajectory information.  
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Figure 4.19: AIP to AIP matches for tile 18 from MLS_DATA-I. 
 



Chapter 4 

109 

 
Figure 4.20: A2A tie points for tile 18 from MLS_DATA-I, Amersfoort / RD New. 
 
For comparison to pixel-to-subpixel correspondence mapping, Table 4-1 
provides example results from both MLS_DATA-I and -II. Usually, the number 
of subpixel correspondences is reduced enormously because only a single 
keypoint is detectable on a corner feature, whereas multiple pixel-level 
keypoints are detected on a corner to overcome the descriptor-matching 
problem. After this step, the total number of matches is reduced but the 
accuracy of the remaining matches is increased.  
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Table 4-1: AIP-to-AIP matches for MLS_DATA-I tile 18 and MLS_DATA-II tile 2. The 
number of corresponding keypoints before and after the mapping of pixel-level matches 
to Förstner keypoints. 

DATASET AIP-TO-AIP PAIR PIXEL-LEVEL SUBPIXEL PERCENTAGE 

I 

1&2 10100 126 1.50% 
1&3 7328 63 1.70% 
1&6 734 35 1.90% 
1&7 815 29 1.70% 
1&8 754 25 1.60% 
2&3 9169 106 1.80% 
2&6 690 27 1.30% 
2&7 817 24 3.0% 
2&8 843 27 3.30% 
3&6 1072 34 3.20% 
3&7 1165 26 2.20% 
3&8 1132 26 2.30% 
6&7 8583 103 1.20% 
6&8 5344 79 1.50% 
7&8 7248 119 1.70% 

II 

1&2 1494 84 5.70% 
1&7 266 21 7.90% 
1&8 272 25 9.20% 
2&7 240 23 9.60% 
2&8 344 32 9.40% 
7&8 1049 113 10.80% 

4.4.6 A2P 3D tie points 

In this section, we discuss results related to the computation of A2P points. An 
example of matched MLS images of tile 18 with AIPs is shown in Figure 4.21. 
In this example, each pair has a slightly different arrangement of the matched 
correspondences, it is noticeable by comparing correspondences across all 
image pairs. The orientation of every MLS image is always the same as the 
corresponding AIP, this was independent in the case of the AIP-to-AIP 
matching. 
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Figure 4.21: Matches between MLS images and AIPs related to tile 18 of MLS_DATA-I. 
 
Percentages of subpixel keypoints related to the same datasets are comparable 
across Table 4-1 and Table 4-2. Similar to the previous section, the keypoints 
are reduced significantly after mapping to subpixel correspondences. This 
shows that the mapping process delivers similar results for both AIP-to-AIP 
and MLS image-to-AIP matching. The percentage of subpixel correspondences 
after the mapping is higher for MLS_DATA-II, which indicates that there are 
fewer pixel-level keypoints per feature in MLS_DATA-II compares to 
MLS_DATA-I.  
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Table 4-2: MLS image-to-AIP matches of MLS_DATA-I tile 18 and MLS_DATA-II tile 2, 
number and percentage of corresponding keypoints before and after the mapping of 
pixel-level matches to Förstner keypoints. 
DATASET MLS IMAGE-TO-AIP PAIR PIXEL-LEVEL SUBPIXEL PERCENTAGE 

I 

Tile 18 AIP 1 2479 35 1.50% 

Tile 18 AIP 2 2165 36 1.70% 

Tile 18 AIP 3 1944 36 1.90% 

Tile 18 AIP 6 1419 24 1.70% 

Tile 18 AIP 7 2042 31 1.60% 

Tile 18 AIP 8 2086 36 1.80% 

II 

Tile 2 AIP 1 318 32 10.10% 

Tile 2 AIP 2 289 33 11.50% 

Tile 2 AIP 7 265 33 12.50% 

Tile 2 AIP 8 246 35 14.30% 

4.4.7 3D-3D correspondence 

The final 3D-3D correspondences are shown in Figure 4.22 for both datasets. 
Both plots show the start and end of the MLS platform’s trajectory. The areas 
with tie points are recognizable where the trajectory (in green colour) is not 
visible, while the trajectory is only visible in the areas without the tie points. 
The areas without 3D-3D correspondence do not necessarily mean that 
matching in all image pairs failed. It could just imply that there were 
insufficient matches that could be traversed for multiview matching. To 
quantify the availability of 3D-3D correspondences per tile, the number of tie 
points for each tile is plotted in Figure 4.23 and Figure 4.24 for MLS_DATA-I 
and MLS_DATA-II respectively. 
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a)
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b) 

 
Figure 4.22: All obtained 3D-3D correspondences for MLS_DATA-I and MLS_DATA-II, a) 
and b) respectively. A2A tie points are shown as blue dots. The A2P points come 
underneath the A2A tie points due to the level of scale. MLS trajectory is plotted as a 
green curve in Amersfoort / RD New. 
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a)  

b)  

c)  
 

Figure 4.23: The number of 3D-3D correspondences obtained for each point cloud tile of 
MLS_DATA-I, the results are divided into three sub-plots, a), b) and c), showing results 
of 155 tiles in ascending order. 
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a)  
 
 
 

b)  
 

Figure 4.24: The number of 3D-3D correspondences obtained for each point cloud tile of 
MLS_DATA-II, the results are divided into two subplots, a) and b),  showing results of 
44 tiles in ascending order. 
 
To relate the number of 3D-3D correspondences to the A2A and A2P tie points, 
the results of tile 18 and tile 2 are provided in Table 4-3. It confirms that not 
all A2A tie point end up in the 3D-3D relation with A2P points because the 
number of tie points is much larger than the obtained 3D-3D correspondences. 
Moreover, it shows that the bottleneck is the establishment of A2P point 
because the number of 3D-3D correspondences is not more than the A2P 
points. 
 
Table 4-3: Comparison of the number of tie points and obtained 3D-3D correspondences. 

Dataset Tile no. A2P tie point A2A tie point 3D-3D correspondence 
I 18 124 865 120 
II 2 80 298 50 

 
To understand the reliability of the tie point extraction, tiles are grouped based 
on the number of tie points and the number of views. For MLS_DATA-I, and II 
this grouping is given in Table 4-4. There are three groups in this table, the 
first group contains the number of tiles with more than 10 tie points and 2D 
keypoints matched across more than two views. If a tile fits this criterion, the 
tie points produced are considered reliable. The second group contains tiles 
with tie points only generated from a stereo view, these tie points are 
considered less reliable compared to the first group. The last group contains 
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tiles with less than 10 tie points, most of the tiles in this group have no tie 
point at all. 
 
Table 4-4: Differentiation of tiles based on the number of tie points and the number of 
views involved in both the test datasets. 

DATASET TOTAL 
TILES 

>10 TIE POINTS AND 
>2 VIEWS 

>10 TIE POINTS 
AND 2 VIEWS 

<10 A2P TIE 
POINTS 

I 154 
(100%) 84 (55%) 112 (73%) 41 (27%) 

II 47 (100%) 28 (60%) 44 (93%) 9 (20%) 
 
The 3D-3D correspondences of tile 2 of MLS_DATA-II are plotted in Figure 
4.25. In this figure, each tie relation is plotted as a yellow vector from each 
corresponding A2P tie point towards A2A tie point. At the left side of this figure, 
point cloud tile is superimposed on the aerial orthoimage. The road marks of 
red and white colour are from the point cloud and aerial orthoimage 
respectively. A magnified view of a subpart of this result is provided at the 
right side of the figure.  
 
To realize the upper bound of error in MLS_DATA-II, the probability density 
functions of the error distribution based on each 3D-3D correspondence, are 
plotted in Figure 4.26, the parameters of three distributions are; µ∆௫ ൌ െ0.46 m, 
𝜎∆௫ ൌ 0.39 m, µ∆௬ ൌ 0.23 m, 𝜎∆௬ ൌ 0.79 m and µ∆௭ ൌ 0.73 m, 𝜎∆௭ ൌ 0.74 m. 
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a)
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b) 

 
Figure 4.25: 3D-3D correspondences of the tile 2 of MLS_DATA-II. a) The whole aerial 
patch overlaid by the original 3D point cloud points. b) The close up of a subarea, 
Amersfoort / RD New. 
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Figure 4.26: Probability Density Functions (PDF) of the ΔX (m), ΔY (m) and ΔZ (m) of 
3D-3D correspondences of MLS_DATA-II. 

4.4.8 Reasons and implications for areas without 3D-3D 
correspondence 

For the trajectory adjustment, the 3D-3D correspondences are needed 
consistently. During an interval of no 3D-3D correspondences, the trajectory 
adjustment procedure will solely rely on the INS based navigation. This can be 
a problem for reliable position estimation. Therefore, it is important to examine 
consecutive tiles without 3D-3D correspondences. Two such cases are marked 
on the plots in Figure 4.23 and Figure 4.24. In MLS_DATA-I, the longest 
interval without any 3D-3D correspondence is between tile 22 and 27 as related 
patches are shown in Figure 4.27 (a) and (b). This interval lasts for 48 seconds 
and roughly 556 metres in distance on the road surface. This interval is on the 
Erasmusbrug bridge, which is almost featureless in terms of road marks, 
except for tile 22, where the mobile laser-scanning car has travelled on the 
other side of the road without road markings. Normally, this area should not 
have a GNSS signal problem because there are no tall surrounding buildings. 
For MLS_DATA-II, the time interval without any 3D-3D correspondence 
consists of tile 7 and 8. It lasts 13 seconds in which the car drove 140 metres. 
It is noticeable in Figure 4.27 (c) and (d) that both AIPs and MLS images have 
no road marks and no matchable features. 
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a)  
 

b)  
 

c)  
 

d)  
 
Figure 4.27: Longest consecutive areas without 3D-3D correspondence. The AIPs and 
MLS images from the MLS_DATA-I are in (a) and (b) respectively. The AIPs and MLS 
images from the MLS_DATA-II are in (c) and (d) respectively.  
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To analyse the reliability of the developed method, we also examine individual 
problematic tiles from the MLS_DATA-I. This is different from the 2D-2D 
matching problems discussed at the end of section 4.4.4. Instead, here we 
only discuss cases when A2A or A2P tie points may have been extracted but 
together failed to produce 3D-3D correspondences. For this analysis, we only 
discuss tiles having road marks, contrary to the tiles shown in Figure 4.27. 
Thereby, we can comprehend the expectation of our method concerning the 
extraction of 3D-3D correspondence by providing reasons for unsuccessful 
matching scenarios. These cases are shown in Figure 4.28 and discussed in the 
following. 
 
One of the main problems faced by matching are shadows of buildings or other 
objects. Shadows of traffic and building can modify the description of the 
feature to a level that cannot be handled by the descriptor matcher. The 
features effected by shadows are not always matchable, unlike the successful 
case shown earlier in Figure 4.18. The shadows cast by building(s) can darken 
entire road in aerial images as shown by tile 38 (b), but the laser scanning is 
not affected by the shadows. Interestingly, the case tile 38 (a) is able to 
produce matches because, relatively, the feature descriptions are similar. 
However, the case of tile 38 (b) failed, because the laser scanner showed the 
road surface details that are not equally captured in aerial images. If the 
situation is not as extreme as in tile 38, the tiles with shadows can still be 
matched as shown in Figure 4.18. The small shadows can arbitrarily change 
the image information and in some cases make it impossible to match. We 
expected at least some matches on the right side of the patches of tile 75 (b). 
However, the right side of the image patches have shadows of tree branches 
and therefore did not produce any matches. The occlusion by tree branches in 
aerial images is a significant problem for both AIP-to-AIP and MLS image-to-
AIP matching because many roads have trees. The worst-case scenario is when 
road marks are partially occluded by tree branches and there is a shadow of 
building, e.g. in tile 66. In this situation, both (a) and (b) failed, especially (a) 
because tree branches appeared relocated in aerial images. Detection and 
matching of static shadows in aerial images is another problem. If a shadow 
stays at the same place in two consecutive AIPs, then it could be matched, as 
the shadow of a pole intersected middle of the zebra crossing in tile 70 (a). 
However, these types of matches are rejected during the search of 3D-3D 
correspondence because there are no shadow-based features in the MLS 
images. 
 
Another scenario causing problems is when completely new road marks appear 
in the images, e.g. tile 33 and 149. Matches are still established for case (a) in 
both tiles, however, the case (b) was not successful in both tiles because the 
point cloud was acquired after the aerial images were captured. Other physical 
changes in the scene can also affect the matching, as in tile 75 (b). Here, a 
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new construction site was scanned in the point cloud making this area 
unmatchable in MLS images.  
 
Tiles 70 and 55 are two examples where we expected to match successfully. 
However, matching failed in case of tile 70 (b). The variation in the laser 
reflectance intensity is small and features are not clearly distinguishable. In 
the case tile 70 (a), the road marking near a car parking, the intersection of 
the road marking with the pavement, and the edge of pavement are 
successfully matched. However, in the MLS image, the parked cars occluded 
many road markings. Moreover, the pavement edges are not detectable in the 
laser scans and neither the intersection of pavement with the road markings. 
In tile 55, point cloud density is low due to rapid change in the elevation of the 
scanned road, in this and other similar cases sparse points’ projection can 
produce pixelation effect in the MLS images. Moreover, the matching failed 
because the aerial images have shadows of multiple thin poles over the main 
road mark.  
 
Road marks in tiles 66 and 70 are not properly detectable in both MLS image 
and AIP. The road in these images is a brick-road and white bricks are used to 
imitate the painted road markings. Therefore, the size of these road marks is 
smaller and the reflected white colour is dissimilar and rather faded compared 
to painted road marks. 
 
Our research particularly focuses on the crucial step of MLS image-to-AIP 
matching due to the difficulty involved. The AIP-to-AIP matching is indeed 
necessary, but it is not the focus of our research. The importance of the MLS 
image-to-AIP matching is also apparent from the matching results presented 
in Figure 4.28, where the tie points could not be extracted because the MLS 
image-to-AIP matching cases were unsuccessful while most of the AIP-to-AIP 
cases were successful. 
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Figure 4.28: Tiles failed to produce 3D-3D correspondence. (a) AIP-to-AIP matches. (b) 
MLS image-to-AIP matches. 

4.5 Conclusions  
This paper has described a fully automatic method to extract 3D tie points for 
the MLS platform trajectory adjustment in GNSS denied urban areas. The 
developed method is highly reliable in extracting 3D points when there are 
road marks in the datasets. Moreover, no manual intervention is needed, and 
our implementation can be set up to run as a one-click solution. Our procedure 
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process the whole of MLS_DATA-I in roughly a day on a normal personal 
computer. However, further optimization of the procedure is out of the scope 
of the research project for mainly two reasons; first that the developed 
procedure is a post-processing solution only designed as an offline application, 
second that the current performance of the procedure is already acceptable 
compared to the manual correction procedure, which can easily takes up to 
weeks or more. Moreover, the processing time of our procedure can be further 
decreased by running it on the cloud-computing setup, which is a normal 
industrial practice.  
The main contribution in this paper comprises two improvements to our earlier 
developed 2D matching technique Hussnain et al. (2016);  
1) We improved the 2D registration from pixel-level to subpixel-level.  
2) We developed a reliable method to compute subdecimetre-level accurate 

3D tie points from 2D-2D correspondences between the point cloud images 
and aerial images. 

 
As the newly developed 2D registration technique provides subpixel accurate 
correspondences. Considering the aerial image GSD of 10 cm, we expect to 
obtain subdecimetre-level accurate 3D tie points. To our knowledge, we did 
not come across any similar method which can match point cloud with aerial 
imagery and provide subpixel-level 2D correspondences. The accuracy of the 
obtained 3D tie point is not tested in this paper because according to our 
broader project workflow, it is feasible after the adjustment of the trajectory 
from the tie points, this needs more research work and a publication of its own. 
We have already published the results of trajectory evaluation from obtained 
tie points. The 3D tie points extracted from the MLS_DATA-I has already been 
utilized for the trajectory adjustment and evaluated in Hussnain et al. (2018). 
It is important to note that the verification of the adjusted point cloud is difficult 
in the areas without any road marks since the checkpoint based evaluation also 
requires road markings. However, verification is still possible by intentionally 
removing tie points in areas well registered and verified. However, that is 
future work related to Hussnain et al. (2018).  
 
The reliability of the developed method is assessed by analysing the robustness 
of the matching on highly dissimilar datasets. The method was tested with two 
datasets MLS_DATA-I and –II, and various experiments are performed. The 
reliability of the tie points is defined by the number of views involved. For 
MLS_DATA-I, our method produced reliable 3D tie points for 55% of the tiles. 
In the case of MLS_DATA-II, 60% of the tiles yielded reliable 3D tie points. In 
MLS_DATA-I, 27% of the tiles provide less reliable or no tie points, whereas in 
MLS_DATA-II these tiles account for 20%. Comparatively, the MLS_DATA-II 
has more road markings. This shows that datasets with consistently available 
road markings can lead to an improvement in the number of tiles successfully 
matched. Interestingly, the overlapping area where both datasets produced 
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plentiful tie points is near the same landmarks, which proves the consistency 
of the developed method in obtaining the tie points. Similarly, successful 
registration of tiles in overlapping areas also confirms that the different tile 
size does not affect the tie point extraction. Effectively, the small tiles can avoid 
processing unnecessary point cloud points.  
 
The experiments for the trajectory adjustment in Hussnain et al. (2018) have 
shown that the distribution of the tie points within a tile is not important, also 
it is not essential to have many tie points per tile. The more important factor 
for the trajectory adjustment is to have consistent availability of the tie points 
within a given time interval. The time interval of no tie point is important to 
consider because in this interval trajectory is based on the IMU only, so we can 
expect the positioning quality to deteriorate. The earlier experiments on 
trajectory adjustment have shown that the time interval of 9 seconds 
consisting of 100 metres of trajectory can be constructed without losing the 
desired positioning accuracy. It confirms that successful matching is not 
necessary for every consecutive tile and certainly not for every tile.  
 
Problematic scenarios in urban areas are places without any road marks. 
Fortunately, most of these areas have plentiful building-façades information in 
the MLS point cloud. Moreover, oblique images can also increase the accuracy 
and reliability of the positioning due to the better image intersection geometry. 
Similar to the road mark feature matching, building-façade features in MLS 
point cloud can be matched with aerial images. However, due to the minimum 
visibility of façade in nadir aerial imagery, we believe that the oblique imagery 
can cover the façade detail necessary for the registration. The main workflow 
for the tie point extraction remains the same, only the feature detection should 
be adopted for the point cloud to oblique image matching.   
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Abstract 
Multipath effects and signal obstruction by buildings in the urban canyon can 
lead to inaccurate GNSS measurements and therefore errors in the estimated 
trajectory of Mobile Laser Scanning (MLS) systems. Consequently, the point 
cloud gets distorted and loses spatial consistency, making it unusable for 
numerous applications. We aim to enhance the trajectory accuracy from meter 
level to decimetre-level. 
 
We propose a method for the enhancement of the mobile laser scanning 
platform trajectory in areas with inaccurate GNSS measurement, by matching 
the MLS data with aerial images with well-known exterior orientations. The 
registration between the point cloud and aerial images determine the 
corresponding locations of features in the point cloud. The trajectory is first 
represented by B-spline functions and enhanced by updating the spline 
coefficients using three types of observations. The main observations of our 
trajectory enhancement method are the correspondences between MLS point 
cloud and aerial images: it contains high local and global consistency. The 
second type of observation is based on IMU data, this type provides local 
consistency. The third type of observation is based on constraints applied to 
the pitch and yaw rotations of the vehicle. This reduces the degrees of freedom.  
In this paper, we analyse the quality of the trajectory enhancement under 
several conditions. Experiments are designed to test the influence of the 
number and quality of corresponding points and to test different settings for 
the B-spline representation. 
 
We tested our method on two independently acquired MLS datasets at a test 
area in Rotterdam. We enhanced the trajectory with all observations and 
evaluated the enhanced trajectory using checkpoints. Moreover, we performed 
experiments to find the minimum quantity and quality of the observations 
needed to achieve the decimetre-level accurate trajectory. The best results are 
achieved when only the high-quality correspondences are used, which 
constituted 55% and 60% of all correspondences. The RMSE values of the 
original Kalman filter results at the checkpoints were 0.26 m, 0.30 m and 0.47 
m for the X-, Y-, and Z-coordinates in the first dataset and 1.10 m, 1.51 m, 
and 1.81 m in the second dataset. After the trajectory adjustment these RMSE 
values were reduced to 0.09 m, 0.11 m, and 0.16 m for the first dataset and 
0.12 m, 0.14 m and 0.18 m for the second dataset. The results confirmed that 
if there are consistent road marks available in the MLS dataset and the IMU 
measurements are sufficiently accurate, our method can successfully achieve 
the near decimetre-level accuracy in the MLS dataset. 
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5.1 Introduction 
Multipath effects and signal obstruction by buildings in the urban canyon can 
lead to inaccurate GNSS measurements and therefore errors in the estimated 
trajectory of Mobile Laser Scanning (MLS) systems. Kukko (2013) 
demonstrated that the GNSS measurement accuracy can worsen to more than 
50 cm during an outage of GNSS signals. In this case, the acquired point cloud 
quality suffers from an inaccurate trajectory and the 3D data becomes less 
useful for mapping applications. Under ideal circumstances, without any GNSS 
signal outage and multipath effect, the state-of-the-art Mobile Mapping (MM) 
platforms can achieve 2-3 cm accuracy, estimated by Haala et al. (2008); 
Kaartinen et al. (2012). However, this is not possible in urban canyons. 
Accordingly, the task of trajectory correction is very crucial to ensure the 
quality of the mobile laser scanning point clouds. Commercial software first 
tries to correct the trajectory by automatic registration of multiple passes, 
similar to the techniques reported by Levinson et al. (2007), Ding et al. (2007); 
Zhao (2011). In this vein, Hunter et al. (2006) and Bornaz et al. (2003) 
proposed a consecutive strip adjustment to improve the misalignments in the 
MLS data sets. Similarly, Bosse et al. (2009) described a scan-matching 
method based on iterative closest points (ICP) to recover an accurate 
trajectory. However, during long-term GNSS signal outages, the final achieved 
accuracy still remains in metres, as expressed by Chiang et al. (2008).  
Furthermore, all of these techniques can only be used to increase the relative 
accuracy and requires data that has multiple scans/passes of the same scene. 
Due to the high cost of mobile laser scanning per hour, it is, however, highly 
desirable to scan an area once and as quickly as possible.   
 
The second step in practice is to measure GCPs in the target area and then 
carefully handpick their correspondences in the MLS point cloud. Although 
some latest software provide assistant to automatically detect such landmarks, 
the final decision and effort remain with a human operator. The last step 
adjusts and improves the erroneous trajectory based on the established 
correspondences and subsequently regenerates the MLS point cloud. However, 
manual acquisition and handpicking of the GCPs is very labour intensive, costly 
and error-prone. Therefore, an automatic method is desirable to replace the 
manual correction, especially to improve the MLS platform’s trajectory. 
 
This paper describes an automatic 6 degree of freedom (DOF) trajectory 
adjustment technique. We make use of well-oriented aerial imagery as the 
source for georeferencing the MLS data. The workflow comprises two major 
steps. The first step is the registration of the MLS point cloud with aerial images 
to determine correspondences. In the second step, we utilize three types of 
observation equations for the trajectory enhancement: (1) those resulting from 
the established correspondences, (2) IMU observations, and (3) soft 
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constraints to the pitch and yaw rotations of the vehicle. We design various 
experiments to analyse the accuracy of the trajectory in the GNSS denied 
areas.  Specifically, we analyse how many observations are needed to reach a 
minimum level of accuracy, and what should be the maximum time of 
maintaining positioning accuracy on the basis of IMU data only. We model the 
six pose parameters of the trajectory with B-spline functions. For modelling 
with sufficient accuracy, the optimal values of the curve order and knot interval 
are determined. 
 
In the remainder of this paper, Section 5.2 first describes the literature, which 
aims at MLS point correction, then discusses the literature, which is related to 
the trajectory estimation for the MM applications. Section 5.3 describes our 
method of the trajectory adjustment by introducing the various observation 
equations. Section 5.4 prepares the design of the experiments and section 5.5 
provides results of the experiments over the datasets acquired from two 
different sources. 

5.2 Related work  
It is convenient to update the local interval of the B-spline based on the 
changes in the local control points since each B-spline is nonzero only over a 
certain interval and the updated control points only change coefficients of 
related B-splines. In this vein, for micro aerial vehicles, Usenko et al. (2017) 
updated the local part of the B-spline trajectory, when an unmodelled obstacle 
arrived in the pre-processed global trajectory. However, the main purpose of 
this study was to show that the developed system could accommodate the 
real-world dynamics into the trajectory and not the assessment of the achieved 
accuracy of the positioning. 
 
The improvement of the mobile mapping platform localisation can lead to the 
correction of MLS data. Gao et al. (2015)  have reported RMS values of ∆X=8.6 
cm, ∆Y=6.3 cm, and ∆Z=10.6 cm in the corrected point cloud. However, they 
evaluated the accuracy of point cloud before and after the correction using 
checkpoint from the aerial imagery.  Moreover, the adjustment of the point 
cloud was limited to 3DOF.   
 
The B-spline representation of 6DOF trajectory for mobile mapping systems is 
a common tool for trajectory correction procedures. For example, for a visual 
odometry application, Patron-Perez et al. (2015) unified the discrete camera 
poses with continuous unsynchronized  IMU observations to estimate the 
continuous camera trajectory. They used a rolling shutter camera model, which 
introduced individual time stamp for each pixel in continuous pose over time 
trajectory. However, they only presented results for simulated datasets and 
the accuracy and reliability of the developed system was not discussed. 
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Wolcott et al. (2014) developed image-based navigation for self-driving 
systems. The mobile mapping camera images are registered with previously 
acquired 3D lidar data by maximizing the normalized mutual information 
method. Their developed approach achieved an RMS error, longitudinal 
19.1~45.4 cm, and lateral 14.3~20.5 cm. Kümmerle et al. (2011) developed 
a SLAM procedure for mobile laser scanning point cloud while using aerial 
images as refine map, they have an overall accuracy of 20 cm. 
 
Recently, Karam et al. (2018) proposed an evaluation method for indoor laser 
scanning points clouds. They developed an indoor mapping system that 
generates a 3D point cloud based on a feature-based 6DOF SLAM method. The 
evaluation method proposed is influenced by the configuration of the laser 
scanner and rely on the indoor building structural constraints. To utilize these 
constraints the same and preferably flat surfaces needs to be scan multiple 
times which is not the case with our application. 
 
Vosselman (2014) designed an indoor laser scanner system to estimate the 
6DOF B-spline based trajectory using SLAM. The developed technique showed 
that the constraint derived from the indoor wall structures (or planes) of 
simulated indoor environment can be used to estimate the 6DOF B-spline 
based trajectory. Likewise, in our case, the constraints come from the 3D A2P 
tie points, which are forward intersected from aerial image correspondences. 
 
In our previous publication (Hussnain et al. (2018), we showed preliminary 
results of the trajectory adjustment method, however, the accuracy of the 
obtained trajectory was not assessed in areas without 3D-3D correspondences. 
In this paper, we analyse the accuracy of the trajectory in the areas where our 
earlier developed method Hussnain et al. (2019) did not extract 3D tie points. 
 
Recently, Javanmardi et al. (2018) proposed a technique for MLS platform 
localization based on the ‘abstract maps’. However, this technique utilizes 
accurate maps generated from an accurate prior point cloud. Moreover, the 
abstract maps are an estimation of the structures in the prior point cloud, which 
can introduce errors. Furthermore, the localization accuracy will be always 
lower than the prior point cloud accuracy. In our case, we do not consider that 
a (prior) accurate MLSPC is already available. In a previous publication, 
Javanmardi et al. (2017) have shown the correction of the MLSPC by using 
multiple reference data sets, including aerial images. However, their approach 
constrained the registration problem to the only 2DOF, which only works in an 
ideal scenario when the error does not occur in remaining coordinates.  
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5.3 B-spline based 6dof trajectory adjustment 
In this paper, we further develop and analyse the trajectory adjustment 
procedure initially formulated in Hussnain et al. (2018). Here, we provide the 
observation equations leading to the system of matrix equations. This 
representation helps to elaborate on the core working of B-spline adjustment 
from the computational point of view.  
 
The workflow of the adjustment procedure is presented in Figure 5.1. The 
developed workflow employs correspondences between the point cloud and 
aerial images, IMU measurements, and soft constraints on the trajectory. The 
initial approximate estimate of the trajectory is obtained from the standard 
Kalman filtering solution which comprises the errors due to signal multi-path 
and signal occlusion. The workflow incrementally improves the trajectory 
estimates until it converges. 
 

 
Figure 5.1: Workflow of trajectory adjustment procedure. 
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In the remainder of this section, we first start with the estimation of optimal 
parameters for the representation of trajectory with B-splines. Then we 
describe the observation equations obtained from 3D-3D correspondences 
derived from Hussnain et al. (2019), IMU measurements of angular velocities 
and accelerations, and soft constraints.  

5.3.1 B-spline order and knot interval optimization 

To model the MLS trajectory with B-splines of sufficient accuracy, we need to 
estimate the optimal values of the knot interval and the curve order. The B-
spline with optimal parameters only needs a minimum number of coefficients. 
Otherwise, for every additional knot interval, an extra spline coefficient needs 
to be estimated for each of the six pose parameters. Because we want to 
achieve the decimetre-level accuracy in the improved MLS point cloud we 
should ensure that the errors introduced by modelling the trajectory with 
splines are significantly smaller. We set the maximum position error introduced 
by the spline modelling to 4 cm.  
 
For the rotational error, the criterion is also based on the maximum positional 
error allowed. Suppose a mobile mapping car observes a 3D point 20 m away 
(based on an average road width in the datasets), then the maximum error 
allowed in any angle is θε ൌ 0.12° if the effect of the error on the coordinate 
calculation should remain within 4 cm, this situation is shown in Figure 5.2. 
 

 
Figure 5.2: Maximum rotational error allowed. 
 
Once the trajectory is modelled with sufficient accuracy, the step is to define 
the observation equations for the B-splines adjustment. In section 5.5.2 we 
analyse different combinations of spline order and knot intervals to find the 
splines with the minimum number of parameters which still fulfil the accuracy 
requirement. 

5.3.2 3D-3D correspondence observation 

The correspondence between aerial images and the MLS point cloud is the most 
important input to our adjustment procedure because the aerial images provide 
the georeferenced capability. The correspondences can be derived 
automatically. This observation is obtained from the result of automatic 
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matching between the rasterized point cloud and aerial images and was 
described in Hussnain et al. (2016) and Hussnain et al. (2019). The 
correspondences determined by the matching technique lead to the 
computation of 3D tie points. Points in common between multiple aerial images 
are used to estimate 3D points with a multiview triangulation. These 3D points 
will be referred to as A2A tie points. The corresponding locations of these points 
in the MLS point cloud are determined by matching rasterized point clouds and 
aerial images and will be referred to as A2P tie points. The 3D-3D 
correspondences are then established by searching association between A2A 
and A2P tie point sets.  
 
In order to linearize the 3D-3D correspondences observation for B-spline based 
adjustment, we start with the point cloud point observation. A laser scanner 
observes a 3D point 𝑋௉஼

஼  in the car coordinate system, which can be rotated to 
the world coordinate system with a rotation matrix 𝑅஼

ௐ representing the 
attitude of the car in the world coordinate system. The point 𝑋௉஼

஼  can then be 
translated to the world coordinate system by adding the location of the car 𝑇஼

ௐ 
in the world coordinate system. This relation is represented in Eq. 1. The upper 
indices 𝐶 and 𝑊 indicate the coordinate system of the car and world 
respectively. The lower indexing specifies the source of the coordinate vector, 
e.g. 𝐴𝐼 for aerial image and 𝑃𝐶 for the point cloud. 
 

𝑋௉஼
ௐ ൌ 𝑅஼

ௐሺ𝑡ሻ 𝑋௉஼
஼ ൅ 𝑇஼

ௐሺ𝑡ሻ ሺ1ሻ 
 
Here 𝑋௉஼

ௐ  is the point cloud point as observed in the world coordinate system. 
The time dependency of 𝑅஼

ௐሺ𝑡ሻ and 𝑇஼
ௐሺ𝑡ሻ represents rotation and translation 

that change over time t.  
 
Because the GNSS data was unreliable, we want to re-estimate the rotation 
𝑅஼

ௐሺ𝑡ሻ and translation 𝑇஼
ௐሺ𝑡ሻ based on the A2A 3D tie point 𝑋஺ூ

ௐ, this relation is 
represented in Eq. 2.  
 

𝑋஺ூ
ௐ ൌ 𝑅஼

ௐሺ𝑡ሻ 𝑋௉஼
஼ ൅ 𝑇஼

ௐሺ𝑡ሻ ሺ2ሻ 
 
The right-hand side of the Eq. 2 represents the A2P tie point corresponding to 
A2A tie point. Figure 5.3 depicts that the correct location of the A2P (point 
cloud) point w.r.t the aerial imagery is, in fact, the location of the A2A point. 
Therefore, when the trajectory is accurate then the difference between A2A 
and A2P tie points diminishes. 
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Figure 5.3: 3D-3D correspondence observation based on A2A and A2P 3D tie points. 
 
The original GNSS and IMU data have been processed by a Kalman filter to 
estimate the rotation 𝑅஼,௄௔௟௠௔௡

ௐ ሺ𝑡ሻ  and translation 𝑇஼,௄௔௟௠௔௡
ௐ ሺ𝑡ሻ between the car 

and the world coordinate system. The Kalman filter results have been used to 
reconstruct the original point cloud points 𝑋௉஼

஼  in the car coordinate system as 
in Eq. 3.  
 

𝑋௉஼
஼ ൌ 𝑅஼,௄௔௟௠௔௡

ௐ೅
ሺ𝑡ሻ ൣ𝑋௉஼

ௐ െ 𝑇஼,௄௔௟௠௔௡
ௐ ሺ𝑡ሻ൧ ሺ3ሻ 

 
The result of the Kalman filtering is used to obtain the approximate spline 
coefficients of the six pose parameters over time. The six pose parameters 
comprise three angles 𝜔ሺ𝑡ሻ, 𝜑ሺ𝑡ሻ, 𝜅ሺ𝑡ሻ and a translation vector described by 
translations along the three axes, 𝑇௑ሺ𝑡ሻ, 𝑇௒ሺ𝑡ሻ,  𝑇௓ሺ𝑡ሻ. The modelling of e.g. 𝜔ሺ𝑡ሻ 
by a B-spline function is given in Eq. 4. 
 

𝜔ሺ𝑡ሻ ൌ ෍ 𝛼ఠ,௜ 𝐵௜ሺ𝑡ሻ
௜

ሺ4ሻ 

 
Where 𝐵௜ is i’th B-spline function and  𝛼ఠ,௜ its coefficient to be estimated. Eq. 2 
is linearized with the upper index 0 denoting the approximate value. In the first 
iteration, the output of the Kalman filter is used to obtain the spline coefficients 
for the approximate rotation and translation. The time dependency ሺ𝑡ሻ is 
omitted below to shorten the expression. 
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𝑋஺ூ
ௐ െ 𝑅஼

ௐబ
 𝑋௉஼

஼ െ 𝑇஼
ௐబ

ൌ

⎝

⎜
⎜
⎜
⎛

෍ Δ𝛼
೉்,௜ 𝐵௜

௜

෍ Δ𝛼
ೊ்,௜ 𝐵௜

௜

෍ Δ𝛼
ೋ்,௜ 𝐵௜

௜ ⎠

⎟
⎟
⎟
⎞

൅ 
𝜕𝑅஼

ௐ

𝜕𝜔
𝑋௉஼

஼ ෍ Δ𝛼ఠ,௜ 𝐵௜

௜

൅   
𝜕𝑅஼

ௐ

𝜕𝜑
𝑋௉஼

஼ ෍ Δ𝛼ఝ,௜ 𝐵௜

௜

 

൅
𝜕𝑅஼

ௐ

𝜕𝜅
𝑋௉஼

஼ ෍ Δ𝛼఑,௜ 𝐵௜

௜

ሺ5ሻ 

 
At the left-hand side is the observed misclosure between the 3D tie point 
obtained from the aerial images and the 3D point obtained in the point cloud 
expressed in the world coordinate system. On the right-hand side are the 
increments to the spline coefficients multiplied with the elements of the 
Jacobian. 
 
The 3D-3D correspondences are not available consistently over the whole 
trajectory. Instead, their availability is dependent on the presence of the road 
markings. Moreover, even if available, tie points are sparse and cannot cover 
every spline interval. Therefore, the positioning has to be supported by inertial 
navigation. 

5.3.3 Acceleration observation 

The IMU observes accelerations for the car’s position in the sensor coordinate 
system S. These are denoted 𝑋ሷூெ௎

ௌ . After rotation to the car coordinate system 
by the rotation matrix 𝑅ௌ

஼ and then to the world coordinate system by 𝑅஼
ௐ, these 

accelerations should correspond to the second derivatives of the car’s location 
in the world coordinate system, i.e. 𝑇ሷ

஼
ௐ. Hence, 

 
𝑇ሷ

஼
ௐ ൌ 𝑅஼

ௐ𝑅ௌ
஼ 𝑋ሷூெ௎

ௌ ሺ6ሻ 
 
The angles of the rotation matrix  𝑅ௌ

஼  are calibrated and remain constant during 
the laser scanning operation. 
 
To model the second derivative of the car location 𝑇஼

ௐ, it is straightforward to 
take the second derivative of spline as it is a polynomial function, like for 𝑇௑ሺ𝑡ሻ: 
 

𝑇ሷ௑ሺ𝑡ሻ ൌ ෍ 𝛼
೉்,௜ 𝐵ሷ ௜ሺ𝑡ሻ

௜

ሺ7ሻ 

 
The B-spline coefficients 𝛼

೉்,௜ to be estimated remain exactly the same. It’s 
only the B-splines functions themselves that need to be differentiated twice. 
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Also, note that the differentiation only applies to the B-splines of the translation 
and not to those of the rotation angles in 𝑅஼

ௐ.  
 
With this the linearized equation becomes: 
 

𝑇ሷ
஼
ௐబ

െ 𝑅஼
ௐ𝑅ௌ

஼ 𝑋ሷூெ௎
ௌ ൌ

⎝

⎜
⎜
⎜
⎛

෍ Δ𝛼
೉்,௜ 𝐵ሷ ௜

௜

෍ Δ𝛼
ೊ்,௜ 𝐵ሷ ௜

௜

෍ Δ𝛼
ೋ்,௜ 𝐵ሷ ௜

௜ ⎠

⎟
⎟
⎟
⎞

െ 
𝜕𝑅஼

ௐ

𝜕𝜔
𝑅ௌ

஼𝑋ሷூெ௎
ௌ ෍ Δ𝛼ఠ,௜ 𝐵௜

௜

െ  
𝜕𝑅஼

ௐ

𝜕𝜑
𝑅ௌ

஼𝑋ሷூெ௎
ௌ ෍ Δ𝛼ఝ,௜ 𝐵௜

௜

െ
𝜕𝑅஼

ௐ

𝜕𝜅
𝑅ௌ

஼𝑋ሷூெ௎
ௌ ෍ Δ𝛼఑,௜ 𝐵௜

௜

ሺ8ሻ

 

 
For the first iteration, approximate values of acceleration  𝑇ሷ

஼
ௐబ

 are obtained 
from the Kalman filter solution. 

5.3.4 Angular velocity observation 

The IMU also observe angular velocities in the sensor coordinate system 
denoted ωሶ ூெ௎

ௌ ൌ ሾ𝜔ሶ ூெ௎
஼ 𝜑ሶ ூெ௎

஼ 𝜅ሶூெ௎
஼ ሿ். The first derivatives of the angles 

describing the rotation from the car to world coordinate systems are denoted 
ωሶ ஼

ௐ ൌ ሾ𝜔ሶ ஼
ௐ 𝜑ሶ ஼

ௐ 𝜅ሶ஼
ௐሿ். To determine the relationship between the observed 

angular velocities, we first need to define the order and direction of 
rotation 𝑅஼

ௐfrom the car coordinate system to the world coordinate system,  
 

𝑅஼
ௐ ൌ 𝑅ଷሺ𝜅஼

ௐሻ𝑅ଶሺ𝜑஼
ௐሻ𝑅ଵሺ𝜔஼

ௐሻ 
 
where components of the rotation matrix 𝑅஼

ௐ are defined as; 
 

𝑅ଷሺ𝜅ሻ ൌ ቌ
cos 𝜅஼

ௐ െ sin 𝜅஼
ௐ 0

sin 𝜅஼
ௐ cos 𝜅஼

ௐ 0
0 0 1

ቍ ; 𝑅ଶሺ𝜑ሻ ൌ ቌ
cos 𝜑஼

ௐ 0 sin 𝜑஼
ௐ

0 1 0
െsin 𝜑஼

ௐ 0 cos 𝜑஼
ௐ

ቍ ; 𝑅ଵሺ𝜔ሻ

ൌ ቌ
1 0 0
0 cos 𝜔஼

ௐ െ sin 𝜔஼
ௐ

0 sin 𝜔஼
ௐ cos 𝜔஼

ௐ
ቍ 

 
The rotation from the world coordinate system to the car coordinate system is 
therefore defined by: 
 

𝑅ௐ
஼ ൌ 𝑅ଵሺെ𝜔஼

ௐሻ𝑅ଶሺെ𝜑஼
ௐሻ𝑅ଷሺെ𝜅஼

ௐሻ 
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The 𝜔஼
ௐ is the first rotation applied when rotating from the car to the world 

coordinate system, therefore the angular velocity 𝜔ሶ ஼
ௐ of the car in the world 

coordinate system is only observed around the X-axis of the IMU. The first 
derivative of car’s rotation around the Y-axis in the world coordinate system 
does not directly correspond to the rotational velocity around Y-axis in car 
coordinate system because Y-axis of the car has been rotated by െ𝜔஼

ௐ around 
the X-axis. Therefore, the derivative of 𝜑஼

ௐ should be rotated to the car 
coordinate system by the rotation matrix 𝑅ଵሺെ𝜔஼

ௐሻ. Similarly, the derivative of 
𝜅஼

ௐneeds to be rotated around the Y-axis by  𝑅ଶሺെ𝜑஼
ௐሻ and then X-axis by 

𝑅ଵሺെ𝜔஼
ௐሻ before it corresponds to the angular velocity vector in the car 

coordinate system. Hence, 
 

ቌ
𝜔ሶ ூெ௎

ௌ

𝜑ሶ ூெ௎
ௌ

𝜅ሶூெ௎
ௌ

ቍ ൌ 𝑅஼
ௌ ൭

𝜔ሶ ஼
ௐ

0
0

൱ ൅ 𝑅஼
ௌ𝑅ଵሺെ𝜔஼

ௐሻ ൭
0

𝜑ሶ ஼
ௐ

0
൱ ൅ 𝑅஼

ௌ𝑅ଵሺെ𝜔஼
ௐሻ𝑅ଶሺെ𝜑஼

ௐሻ ൭
0
0

𝜅ሶ஼
ௐ

൱ 

or 

ቌ
𝜔ሶ ூெ௎

ௌ

𝜑ሶ ூெ௎
ௌ

𝜅ሶூெ௎
ௌ

ቍ ൌ 𝑅஼
ௌ ቌ

1 0 െsin 𝜑஼
ௐ

0 cos 𝜔஼
ௐ sin 𝜔஼

ௐ cos 𝜑஼
ௐ

0 െ sin 𝜔஼
ௐ cos 𝜔஼

ௐ cos 𝜑஼
ௐ

ቍ ቌ
𝜔ሶ ஼

ௐ

𝜑ሶ ஼
ௐ

𝜅ሶ஼
ௐ

ቍ 

 
which can be written to define the angular velocity observation equation, 
 

ቌ
𝜔ሶ ூெ௎

ௌ

𝜑ሶ ூெ௎
ௌ

𝜅ሶூெ௎
ௌ

ቍ ൌ 𝑅஼
ௌ𝑆ௐ

஼ ቌ
𝜔ሶ ஼

ௐ

𝜑ሶ ஼
ௐ

𝜅ሶ஼
ௐ

ቍ,       𝑆ௐ
஼ ൌ ቌ

1 0 െsin 𝜑஼
ௐ

0 cos 𝜔஼
ௐ sin 𝜔஼

ௐ cos 𝜑஼
ௐ

0 െ sin 𝜔஼
ௐ cos 𝜔஼

ௐ cos 𝜑஼
ௐ

ቍ 

 
or 

ωሶ ூெ௎
ௌ ሺ𝑡ሻ ൌ   𝑅஼

ௌ  𝑆ௐ
஼   ωሶ ஼

ௐሺ𝑡ሻ ሺ9ሻ 
 
where ωሶ  is a vector of angular velocities around X-, Y- and Z- coordinates. 
 
In order to model the angular velocities, we use the first derivatives of the B-
splines function, e.g. for 𝜔ሶ ሺ𝑡ሻ 
 

𝜔ሶ ሺ𝑡ሻ ൌ ෍ 𝛼ఠ,௜ 𝐵ሶ ௜ሺ𝑡ሻ
௜

ሺ10ሻ 

 
Linearization of Eq. 9 leads to  
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ωሶ ூெ௎
ௌ െ 𝑅஼

ௌ  𝑆ௐ
஼బ

  ωሶ ஼
ௐబ

ൌ 𝑅஼
ௌ𝑆ௐ

஼బ

⎝

⎜
⎜
⎜
⎛

෍ Δ𝛼ఠ,௜ 𝐵ሶ ௜ሺ𝑡ሻ
௜

෍ Δ𝛼ఝ,௜ 𝐵ሶ ௜ሺ𝑡ሻ
௜

෍ Δ𝛼఑,௜ 𝐵ሶ ௜ሺ𝑡ሻ
௜ ⎠

⎟
⎟
⎟
⎞

െ 𝑅஼
ௌ 𝜕𝑆ௐ

஼బ

𝜕𝜔
ωሶ ஼

ௐబ
෍ Δ𝛼ఠ,௜ 𝐵௜ െ

௜

 𝑅஼
ௌ 𝜕𝑆ௐ

஼బ

𝜕𝜑
ωሶ ஼

ௐబ
෍ Δ𝛼ఝ,௜ 𝐵௜

௜

ሺ11ሻ

 

 
where the partial derivate of 𝑆ௐ

஼  w.r.t. 𝜔 and 𝜑 are 
 

𝜕𝑆ௐ
஼బ

𝜕𝜔
ൌ ቌ

0 0 0
0 െsin 𝜔஼

ௐ cos 𝜔஼
ௐ cos 𝜑஼

ௐ

0 െ cos 𝜔஼
ௐ െsin 𝜔஼

ௐ cos 𝜑஼
ௐ

ቍ,        
𝜕𝑆ௐ

஼బ

𝜕𝜑
ൌ ቌ

0 0 െcos 𝜑஼
ௐ

0 0 െsin 𝜔஼
ௐ sin 𝜑஼

ௐ

0 0 െcos 𝜔஼
ௐ sin 𝜑஼

ௐ
ቍ      

5.3.5 Soft constraint observation 

The direction of the car is described by the heading 𝜅஼
ௐ and pitch 𝜑஼

ௐ, but these 
two rotations can also be inferred from the first derivatives of the car’s 
positions 𝑇஼

ௐ as shown in Figure 5.4. We can therefore add two constraints to 
ensure that the rotations are consistent with the trajectory, effectively reducing 
the degrees of freedom in the transformation from the car to the world 
coordinate system from six to four. 
 

 
Figure 5.4: The relationship between positions and direction of the car. 
 
The heading can be inferred from the first derivatives of the X- and Y- 
coordinates of the car trajectory. As, the first rotation from the world 
coordinate system to the car coordinate system was defined –κ. Hence, the 
soft constraint observation related to the heading of car is,  
 

െ𝜅஼
ௐ ൌ tanିଵ ቆ

𝑇ሶ
஼,௑
ௐ

𝑇ሶ
஼,௒
ௐ ቇ ሺ12ሻ 
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To shorten the notation below, first derivatives are denoted 𝑇ሶ
஼,௑
ௐ ൌ 𝑇ሶ௑ , 𝑇ሶ

஼,௒
ௐ ൌ 𝑇ሶ௒ 

and 𝑇ሶ
஼,௓
ௐ ൌ 𝑇ሶ௓. 

 
The soft constraint observation related to car heading is linearized to  
 

െ𝜅஼
ௐ଴

െ tanିଵ ቆ
𝑇ሶ௑

଴
 

𝑇ሶ
௒
଴

 

ቇ ൌ ෍ Δ𝛼఑,௜ 𝐵௜

௜

൅
𝑇ሶ௒

଴

𝑇ሶ
௑
଴ଶ

൅ 𝑇ሶ
௒
଴ଶ ෍ Δ𝛼

೉்,௜ 𝐵ሶ ௜
௜

൅
𝑇ሶ௑

଴

𝑇ሶ
௑
଴ଶ

൅ 𝑇ሶ
௒
଴ଶ ෍ Δ𝛼

ೊ்,௜ 𝐵ሶ ௜
௜

ሺ13ሻ

 

 
where 𝑇ሶ௑

଴and 𝑇ሶ௒
଴are the first derivatives of the X- and Y- coordinates derived 

from the Kalman filtered trajectory for the first iteration of the adjustment 
process. 
 
Similarly, the pitch angle of the car in the world coordinate system can be 
inferred from 
 

െ𝜑஼
ௐ ൌ tanିଵ

⎝

⎜
⎛ 𝑇ሶ௓ 

ට𝑇ሶ
௑
ଶ ൅ 𝑇ሶ

௒
ଶ

 ⎠

⎟
⎞

ሺ14ሻ 

 
which linearized to 
 

െ𝜑஼
ௐబ

െ tanିଵ

⎝

⎜
⎛ 𝑇ሶ௓ 

ට𝑇ሶ
௑
ଶ ൅ 𝑇ሶ

௒
ଶ
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⎟
⎞

ൌ ෍ Δ𝛼ఝ,௜ 𝐵௜

௜

൅
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ೊ்,௜ 𝐵ሶ ௜௜ ൅ ቀ𝑇ሶ௑

଴ଶ
൅ 𝑇ሶ௒

଴ଶ
ቁ ∑ Δ𝛼

ೋ்,௜ 𝐵ሶ ௜௜

ቀ𝑇ሶ
௑
଴ଶ

൅ 𝑇ሶ
௒
଴ଶ

൅ 𝑇ሶ
௓
଴ଶ

ቁ ට𝑇ሶ
௑
଴ଶ

൅ 𝑇ሶ
௒
଴ଶ

ሺ15ሻ

 

5.3.6 Fixed pose observation 

In a normal situation, the mobile mapping car starts from a location with 
reliable GNSS signals reception. Similarly, we also assume that a reliable start 
and end poses are known. We fix the starting and end pose of the trajectory 
by adding two more observation equations; Eq. 17 and Eq. 19. So, when the 
GNSS signal reception is reliable, we can use the reliable poses from the 
Kalman filtering. Thus, both the position being estimated and position from the 
Kalman filtering are equal only at the start and end of the trajectory. 
 
If the reliable start and end poses of the car are unknown, we can rely on the 
observations of A2P points that are also globally consistent. However, if no 
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road marks exist at the exact start or end of the trajectory as well, then the 
small parts of the trajectory at the start and end can have residuals. 

𝑇஼,௄௔௟௠௔௡
ௐ ൌ 𝑇஼

ௐ ሺ16ሻ 
 
This linearizes to, 
 

𝑇஼,௄௔௟௠௔௡
ௐ െ 𝑇஼

ௐ ൌ

⎝

⎜
⎜
⎜
⎛

෍ Δ𝛼
೉்,௜ 𝐵௜

௜

෍ Δ𝛼
ೊ்,௜ 𝐵௜

௜

෍ Δ𝛼
ೋ்,௜ 𝐵௜

௜ ⎠

⎟
⎟
⎟
⎞

ሺ17ሻ 

 
Similarly, we can consider that the pose angles are also equivalent. 
 

൦

𝜔஼,௄௔௟௠௔௡
ௐ

𝜑஼,௄௔௟௠௔௡
ௐ

𝜅஼,௄௔௟௠௔௡
ௐ

൪ ൌ ቎
𝜔஼

ௐ

𝜑஼
ௐ

𝜅஼
ௐ

቏ ሺ18ሻ 

 
Which linearizes to, 
 

൦

𝜔஼,௄௔௟௠௔௡
ௐ

𝜑஼,௄௔௟௠௔௡
ௐ

𝜅஼,௄௔௟௠௔௡
ௐ

൪ െ ቎
𝜔஼

ௐ

𝜑஼
ௐ

𝜅஼
ௐ

቏ ൌ

⎝

⎜
⎜
⎜
⎛

෍ Δ𝛼ఠ,௜ 𝐵௜ሺ𝑡ሻ
௜

෍ Δ𝛼ఝ,௜ 𝐵௜ሺ𝑡ሻ
௜

෍ Δ𝛼఑,௜ 𝐵௜ሺ𝑡ሻ
௜ ⎠

⎟
⎟
⎟
⎞

ሺ19ሻ 

5.3.7 Trajectory update 

We represent pose parameters with 6 individual B-spline functions over time. 
As B-splines are polynomial functions and are based on coefficients, updating 
the B-splines involves estimating the changes to the coefficients, e.g. example, 
estimating Δ𝛼ఠ,௜ for the roll angle. The linearized observations equations 
represent these changes to the coefficients. For numerical computation of delta 
coefficients, we add each observation to a normal matrix and solve the system 
to obtain these increments to coefficients. The adjustments to the coefficients 
are performed in an iterative process, to update the trajectory, computed 
increments are then added to the B-spline coefficients after each iteration. The 
iterative process converges when new observations yield residuals very close 
to the previous observations, which means that the trajectory cannot be 
improved further. It requires 10-20 iterations to converge to the final solution 
in the experiments. 
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5.4 Design of the experiments 
In this section, we lay out the design of experiments aiming to assess the 
trajectory after the adjustment. As multiple inputs take part in the adjustment 
process, various experiments are needed to analyse the effect of individual 
input on the accuracy. This section proposes several experiments to determine 
the minimum amount and quality of the tie points and the maximum time 
without tie points which still allows an accurate estimation of the trajectory. 
The proposed set of experiments are summarised in Table 5-1. The description 
of these experiments is provided in the next sections. Note that the experiment 
0 is the original trajectory as it resulted from the Kalman filtering. This is used 
as baseline for the adjusted trajectories making use of the different types of 
observation equations. 
 
Table 5-1: Categorization of experiments and their related observations. 

Experiment 
type 

Experiment 
No. 

Observations for adjustment of car 
poses Trajectory 

Tie points IMU Soft 
constraints 

Result of 
Kalman filter 0 No No No All 

Tie point 
quantitative 

analysis 

1 All Yes Yes All 

2 

Combination of 
trajectory parts 
with and without 

tie points 

Yes Yes All 

3 
Reduced but well 
distributed in all 

parts 
Yes Yes All 

Tie point 
qualitative 
analysis 

4a 
Low quality 
standard 

deviation >8 cm 
Yes Yes All 

4b 

Medium quality 
standard 

deviation >5 cm 
and ≤8 cm 

Yes Yes All 

4c 
High quality 

standard 
deviation ≤5 cm 

Yes Yes All 

IMU and soft 
constraints-

based 
trajectory 

5a No Yes Yes Time-
based 

5b No Yes Yes Time-
based 

5c No Yes Yes Time-
based 

Implication 
without Soft 
constraints 

6 All Yes No All 

 
For the experiments, we use two independently acquired trajectory datasets; 
Trajectory-I and Trajectory-II as plotted in Figure 5.5 and Figure 5.6 
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respectively. Both systems are based on different laser scanning and position 
estimation systems. The Trajectory-I dataset is acquired by Topcon® IP-S3 
mobile mapping system, which is a single 360-degree lidar sensor. The poses 
are estimated by an industrial grade IMU (KVH® CG-5100). The length of 
Trajectory-I on the road surface is 13 km with the total scanning time of 56 
minutes. Only considering the points from the single pass, the mean density 
of points on the road surface is 320 pts/dm2. 
  

 
Figure 5.5: Trajectory-I dataset. 
 
Trajectory-II is acquired by Topcon® IP-S2 system that is based on two 360-
degree laser scanners mounted in a cross-configuration. The inertial navigation 
is based on a built-in MEMS gyroscope. The length of the trajectory on the road 
surface is 10 km with the scanning operation lasting 45 minutes. Only 
considering the points from the single pass and single scanner, the mean 
density of points on the road surface is 74 pts/dm2. 
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Figure 5.6: Trajectory-II dataset. 
 
Fifteen aerial images of 20010x13080 pixels were captured with the 
UltraCam® camera on a manned flight at the approx. height of 4500 m. The 
quality of the orientation of the aerial images has been assessed by the 
Pix4Dmapper software using checkpoints, which is accurate to the level of 10 
cm GSD. The aerial images have 60% forward overlap and 40% across track 
overlap. The orientation parameters of both aerial images and MLS datasets 
are known in the Dutch reference system RD-NAP.  

5.4.1 Quantitative analysis for the tie point observation 

Experiments 1, 2, and 3 are used to determine the minimum number of tie 
points needed to accurately correct the trajectory. This is achieved by 
performing the adjustment with gradually decreasing quantities of the tie 
points and then evaluating the accuracy of each adjustment with checkpoints, 
which have been surveyed in the terrain by GNSS and corresponding locations 
are hand-picked in the MLS point cloud. 
 
The 2nd experiment reduces the tie points by completely removing them from 
arbitrary locations. The arbitrary reduction can therefore also eliminate the tie 
points in areas where they are already scarce. Thereby, this experiment 
analyses the situation when some segments provide plentiful tie points while 
the others provide none. This leads to a situation where some locations in the 
trajectory may not be improved as the trajectory reconstruction in these parts 
will completely depend on the IMU. 
 
In the 3rd experiment, we remove the tie points such that the remaining points 
are equally distributed as much as possible along the trajectory. To fulfil these 
criteria, we first calculate the distribution of the tie points along the trajectory 
over time. Then the tie points are numbered in bins w.r.t. the interval size that 
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is optimized in section 5.5.2, and then the bins containing more tie points are 
reduced first to get a more even distribution. This strategy ensures that the 
reduced tie points remain well distributed along the trajectory because 
otherwise emptying bins with few or single tie point can create a scarcity of tie 
points at arbitrary locations. 

5.4.2 Qualitative analysis for the tie point observation  

Experiments 4a, 4b, and 4c are conducted to analyse the relationship between 
the quality of the tie points and that of the reconstructed trajectory. The quality 
of the tie point is defined by the standard deviation of the error in the multiview 
triangulation. By only using the tie points with a certain range of standard 
deviations, we can analyse the relationship between the quality of the tie points 
and the accuracy achieved in the trajectory after the enhancement. 
 
The experiments 4a, 4b and 4c require a trajectory containing tie point sets of 
varying standard deviations. Based on the standard deviation, we can divide 
tie point sets into low, medium and high quality. Normally, the high-quality tie 
points are computed from more than two aerial images and entail small 
backprojection error. Moreover, the high-quality tie points are the result of 
triangulation of subpixel accurate 2D keypoints which are the best estimation 
of 2D corner features in the aerial image, whereas the low-quality tie points 
have the opposite characteristics. As indicated in Table 5-1, we separately 
enhance the trajectory from the tie points of high-quality (4c) with standard 
deviation ≤5 cm, medium-quality (4b) with standard deviation >5 cm and ≤8 
cm and low-quality (4a) with standard deviation >8 cm, and then compare the 
results to establish the minimum level of quality needed. 

5.4.3 Assessment of trajectory constructed only by IMU and soft 
constraints observations 

The IMU observations provide inertial navigation, where the 3D-3D 
correspondence observation provides a certain correction. However, in 
locations where 3D-3D correspondences are not available, the IMU-based 
positioning suffers from the accumulation of noise over time and drift errors in 
the inertial measurements. Even when 3D-3D correspondences are available, 
in the construction of the entire trajectory, there are small segments of various 
lengths that are reconstructed based on IMU observations only. In the 5th 
experiment, we prepare segments of stepwise increasing lengths from the 
same trajectory. Moreover, we fix the start and end pose of the trajectory 
segments because not fixing the start end pose results in a singular equation 
system. The fixed pose observation is explained in Hussnain et al. (2018). An 
illustration of the start and end poses of three trajectory segments and their 
unified formation is shown in Figure 5.7. Between each start and end pose, 
continuously, the trajectory is constructed only based on the IMU and soft 



Enhanced Trajectory Estimation of Mobile Laser Scanners Using Aerial Images 

150 

constraint observations. Fixing the pose at both ends is important because it 
forces the trajectory to pass through the start and end poses, this situation is 
compatible with the real world scenario where an interval of no tie points is 
always adjoined at both ends with the segments containing tie points. 
Otherwise, if we only fix pose at the start, it can increase the drift error near 
the end pose. In the experiments 5a, 5b, and 5c, we use both the IMU and soft 
constraint observations. 
 

 
Figure 5.7: Illustration of trajectory segments used to assess the reliability of the IMU 
observations. 
 

5.4.4 Impact of soft constraints 

Experiment 6 has been used to distinguish the improvement ascribed to the 
soft constraints by not applying these constraints and then comparing the 
result with the same trajectory which has been already improved by the soft-
constraints as in experiment 1. All of the above defined experiments employ 
the soft constraints because it is not necessary to remove them while analysing 
the influence of the other observations on the adjustment. Therefore, we also 
use soft constraints for the IMU based trajectory in section 5.4.3 because it 
focuses on exploiting other available observations except for 3D-3D 
correspondence.  

5.5 Results 
In this section, we present the results of the experiments described in the 
previous section starting from the criteria of the trajectory segment selection, 
followed by the optimization of the B-spline knot interval and order. Then an 
important procedure to evaluate an updated trajectory using checkpoints is 
described. In the end, the main evaluations of the experiments are presented, 
where each experiment is associated with the analysis of individual 
observations. 
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5.5.1 Trajectory selection criteria 

To conduct the experiments, we need to select a part of a trajectory where 
most subparts are supplied with the road marks and thereby the checkpoints 
are attainable. The trajectory can be considered as a collection of subparts or 
segments, where each segment is related to a point cloud tile and its associated 
tie points. The extraction of tie points related to a point cloud tile and its 
registration to aerial images is described in Hussnain et al. (2019). When all 
consecutive segments of a trajectory contain tie points, it is feasible to evaluate 
and ensure that a certain accuracy persists in the whole trajectory. Moreover, 
it provides a reliable and accurate start and end poses, which are also needed 
for the IMU-based observation. For the experiments in this section, we select 
parts of the trajectories, which fulfil these criteria. 

5.5.2 Optimal knot interval and B-spline order 

We need to understand how well a trajectory can be modelled by B-splines. 
Therefore, we take a trajectory as processed by the Kalman filter, sample it 
densely by extracting points at every 10 ms and use those points to reconstruct 
the trajectory with B-splines. These reconstructed trajectories are then 
compared against the original trajectory to analyse the errors introduced by 
the approximation of the trajectory by B-splines. For the optimization, various 
combinations of knot interval and curve order parameters have been used. 
Based on preliminary experiments on the spline fitting, we selected testable 
ranges of knot interval and curve order. As a result, three curve orders 2, 3 
and 4 in combination with the five knot intervals 0.1, 0.2, 0.5, 1.0 and 2.0 
have been prepared. Each combination of parameters sets is used separately 
to fit B-splines over the six parameters X, Y, Z, ω, φ and �. We calculate the 
RMSE and the minimum and maximum errors. 
 
The result of optimization on the Trajectory-I dataset is given in Table 5-2. For 
the selection of the optimal parameters, it is important to consider that we are 
not seeking the best results, the main rule is to choose the combination of 
largest knot interval with a small curve order, which narrowly satisfies accuracy 
criteria. The largest errors are caused by the large knot intervals in 
combination with all curve orders, in any case, we are not interested in the 
small knot intervals either. The knot interval of 2.0 second is too large to model 
the trajectory retaining enough accuracy. Comparing with  the accuracy criteria 
of 4 cm for position and 0.12° for rotation as mentioned in section 5.3.1, the 
knot interval of 1 second and curve orders 3 has achieved RMSE X=0.60 cm, 
Y=0.30 cm, Z=0.61 cm, ω=0.08, φ=0.12 cm and �=0.05 cm, this is 
comparable with the knot interval of 1 second and curve order 4 with RMSE 
X=0.53 cm, Y=0.31 cm, Z=0.58 cm, ω=0.07 cm, φ=0.12 cm and �=0.04 cm. 
Both combinations can be determined as the optimal values. The RMSE in 
position and rotation for both combinations [3,1.0] and [4, 1.0] is within the 
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allowed error of 4 cm. However, comparatively the knot interval of 1 second 
and curve of order 3 produced large errors, so we prefer the curve of order 4. 
 
We also perform the same parameter optimization procedure on the second 
dataset and record the results that are shown in Table 5-3. For the Trajectory-
II in Table 5-3, knot interval of 1.0 second and curve of order 4 are clearly 
optimal with RMSE X=0.52 cm, Y=0.53 cm, Z=0.46 cm, ω=0.16 cm, φ=0.12 
and �=0.03 when compared with (second to best) knot interval of 1.0 second 
and curve of order 3 with RMSE X=0.62 cm, Y=0.53 cm, Z=0.53 cm, ω=0.20 
cm, φ=0.15 cm and �=0.03 cm. Moreover, the minimum and maximum errors 
of rotation for the curve of order 3 exceeded little above the threshold of θக ൌ
0.12° in comparison with the curve of order 4. The results show that the 
increase in the knot interval time also reciprocates the error because fewer 
coefficients cannot accurately represent the rapid variation in the poses. 
 
Table 5-2: Results for B-spline fitting to Trajectory-I dataset using combinations of knot 
interval and curve order. 

B
‐sp

lin
e
 o
rd
e
r 

K
n
o
t in

te
rval (se

c) 

X B‐spline (cm)  Y B‐spline (cm)  Z B‐spline (cm)  ω B‐spline (deg)  ϕ B‐spline (deg)  κ B‐spline (deg) 

RMSE  Min  Max  RMSE  Min  Max  RMSE  Min  Max  RMSE  Min  Max  RMSE  Min  Max  RMSE  Min  Max 

2  0.1 
0.04  ‐0.16  0.16  0.03  ‐0.12  0.13  0.03  ‐0.18  0.16  0.02  ‐0.14  0.14  0.02  ‐0.12  0.10  0.00  ‐0.03  0.03 

2  0.2 
0.08  ‐0.36  0.32  0.06  ‐0.22  0.26  0.12  ‐0.55  0.64  0.03  ‐0.15  0.13  0.03  ‐0.12  0.16  0.01  ‐0.03  0.03 

2  0.5 
0.45  ‐1.86  1.74  0.22  ‐0.93  1.19  0.49  ‐1.80  1.55  0.07  ‐0.21  0.19  0.08  ‐0.39  0.26  0.02  ‐0.08  0.10 

2  1.0 
1.49  ‐7.83  5.96  0.73  ‐2.13  3.76  0.64  ‐2.31  1.88  0.09  ‐0.25  0.26  0.12  ‐0.50  0.35  0.07  ‐0.33  0.27 

2  2.0  6.21  ‐22.68  20.27  3.24  ‐12.11  11.77  0.96  ‐3.55  3.23  0.13  ‐0.38  0.49  0.16  ‐0.55  0.59  0.21  ‐0.73  0.74 

3  0.1  0.03  ‐0.14  0.15  0.02  ‐0.12  0.12  0.02  ‐0.12  0.12  0.02  ‐0.13  0.14  0.02  ‐0.11  0.12  0.00  ‐0.03  0.03 

3  0.2  0.05  ‐0.20  0.17  0.05  ‐0.25  0.22  0.10  ‐0.38  0.43  0.03  ‐0.16  0.13  0.03  ‐0.13  0.16  0.01  ‐0.03  0.03 

3  0.5 
0.14  ‐0.45  0.54  0.17  ‐0.55  0.49  0.34  ‐0.97  1.16  0.06  ‐0.21  0.19  0.08  ‐0.27  0.26  0.01  ‐0.04  0.05 

3  1.0 
0.60  ‐2.41  2.52  0.30  ‐0.90  1.24  0.61  ‐2.31  1.62  0.08  ‐0.21  0.26  0.12  ‐0.46  0.38  0.05  ‐0.17  0.14 

3  2.0 
1.97  ‐5.17  6.15  0.88  ‐2.03  2.01  0.90  ‐2.84  3.25  0.14  ‐0.45  0.39  0.16  ‐0.49  0.56  0.17  ‐0.40  0.45 

4  0.1  0.03  ‐0.14  0.17  0.02  ‐0.12  0.14  0.02  ‐0.08  0.09  0.02  ‐0.14  0.15  0.02  ‐0.12  0.11  0.00  ‐0.03  0.03 
4  0.2  0.05  ‐0.21  0.16  0.05  ‐0.20  0.17  0.10  ‐0.42  0.48  0.03  ‐0.16  0.14  0.03  ‐0.12  0.12  0.01  ‐0.03  0.03 
4  0.5  0.27  ‐0.92  0.99  0.16  ‐0.51  0.64  0.43  ‐1.44  1.40  0.06  ‐0.21  0.18  0.08  ‐0.32  0.26  0.01  ‐0.05  0.04 
4  1.0  0.53  ‐1.77  1.84  0.31  ‐0.87  0.82  0.58  ‐2.18  1.82  0.07  ‐0.21  0.26  0.12  ‐0.41  0.35  0.04  ‐0.12  0.12 
4  2.0  2.07  ‐5.59  5.07  1.37  ‐3.69  3.40  0.76  ‐3.12  1.95  0.11  ‐0.34  0.38  0.14  ‐0.48  0.55  0.11  ‐0.39  0.27 
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Table 5-3: Results for B-spline fitting to Trajectory-II dataset using combinations of knot 
interval and curve order. 

B
‐sp

lin
e
 o
rd
e
r 

K
n
o
t in

te
rval (se

c) 

X B‐spline (cm)  Y B‐spline (cm)  Z B‐spline (cm)  ω B‐spline (deg)  φ B‐spline (deg)  κ B‐spline (deg) 

RMSE  Min  Max  RMSE  Min  Max  RMSE  Min  Max  RMSE  Min  Max  RMSE  Min  Max  RMSE  Min  Max 

2  0.1 
0.05  ‐0.22  0.22  0.04  ‐0.20  0.23  0.07  ‐0.28  0.28  0.14  ‐0.61  0.46  0.09  ‐0.70  0.34  0.00  ‐0.02  0.02 

2  0.2  0.12  ‐0.58  0.64  0.10  ‐0.44  0.78  0.17  ‐0.64  1.03  0.16  ‐0.66  0.56  0.11  ‐0.63  0.58  0.01  ‐0.03  0.03 

2  0.5  0.44  ‐2.24  2.53  0.32  ‐1.28  2.13  0.42  ‐1.18  1.69  0.20  ‐0.79  0.81  0.15  ‐0.85  0.93  0.02  ‐0.10  0.09 

2  1.0 
1.18  ‐4.49  6.45  1.11  ‐4.28  6.34  0.61  ‐2.17  3.67  0.21  ‐0.77  0.81  0.16  ‐0.88  0.94  0.04  ‐0.17  0.18 

2  2.0  4.62  ‐15.62  23.48  4.29  ‐16.60  24.27  1.27  ‐5.04  5.41  0.22  ‐0.79  0.82  0.20  ‐1.14  1.13  0.15  ‐0.61  0.70 

3  0.1  0.05  ‐0.24  0.18  0.04  ‐0.18  0.29  0.06  ‐0.26  0.31  0.14  ‐0.53  0.45  0.10  ‐0.62  0.41  0.00  ‐0.03  0.03 

3  0.2  0.10  ‐0.39  0.30  0.07  ‐0.22  0.39  0.15  ‐0.46  0.48  0.15  ‐0.66  0.55  0.11  ‐0.75  0.44  0.01  ‐0.02  0.02 

3  0.5  0.25  ‐0.79  1.03  0.20  ‐0.59  0.65  0.33  ‐1.02  1.08  0.19  ‐0.71  0.78  0.13  ‐0.49  0.63  0.01  ‐0.06  0.05 

3  1.0  0.62  ‐2.53  1.82  0.53  ‐1.64  2.04  0.53  ‐1.47  2.22  0.20  ‐1.07  0.80  0.15  ‐1.04  0.68  0.03  ‐0.11  0.11 

3  2.0 
2.81  ‐7.90  6.38  1.90  ‐6.48  5.25  0.92  ‐3.47  4.86  0.22  ‐1.20  0.87  0.16  ‐1.33  0.83  0.08  ‐0.25  0.21 

4  0.1  0.05  ‐0.21  0.17  0.04  ‐0.19  0.28  0.06  ‐0.22  0.27  0.14  ‐0.30  0.26  0.10  ‐0.68  0.41  0.00  ‐0.03  0.02 
4  0.2  0.09  ‐0.33  0.31  0.07  ‐0.30  0.28  0.14  ‐0.45  0.49  0.14  ‐0.34  0.29  0.11  ‐0.81  0.43  0.01  ‐0.02  0.03 
4  0.5  0.25  ‐1.10  0.97  0.20  ‐0.62  0.69  0.39  ‐1.18  1.50  0.15  ‐0.43  0.35  0.11  ‐0.52  0.51  0.01  ‐0.06  0.06 
4  1.0  0.52  ‐2.34  1.50  0.53  ‐1.47  1.57  0.46  ‐1.27  1.80  0.16  ‐0.46  0.38  0.12  ‐0.87  0.60  0.03  ‐0.11  0.08 
4  2.0  2.11  ‐7.42  6.23  1.46  ‐3.85  3.99  0.75  ‐2.64  2.65  0.20  ‐0.57  0.44  0.15  ‐0.84  0.59  0.05  ‐0.18  0.15 

5.5.3 Regeneration of point cloud and A2P points 

The main motivation for the trajectory adjustment is to reconstruct an accurate 
MLS point cloud. The point cloud in which the A2P tie points have been 
measured has originally been computed with the trajectory resulting from the 
Kalman filtering. Hence, a point in the world coordinate system 𝑋௉஼

ௐ  was 
computed based on the observed point 𝑋௉஼

஼  by the laser scanner in the car 
coordinate system with Eq. 16. 
 

𝑋௉஼
ௐ ൌ 𝑅஼,௄௔௟௠௔௡

ௐ೅
ሺ𝑡ሻ 𝑋௉஼

஼  ൅ 𝑇஼,௄௔௟௠௔௡
ௐ ሺ𝑡ሻ ሺ16ሻ 

 
where the rotation matrix 𝑅஼,௄௔௟௠௔௡

ௐ೅  and translation vector 𝑇஼,௄௔௟௠௔௡
ௐ  are the 

inaccurate pose parameters from the Kalman filter solution. So, the computed 
point  𝑋௉஼

ௐ  is the inaccurate point cloud point, which needs to be recalculated 
based on the updated pose parameters after the trajectory enhancement. 
 
Assuming that the trajectory pose after the adjustment corresponds to 
ሾ𝑅஼

ௐᇲ
, 𝑇஼

ௐᇲ
ሿ, then the new position of the point cloud point in world coordinate 

systems can be computed by Eq. 17; 
 

𝑋௉஼
ௐᇲ

ൌ 𝑅஼
ௐᇲ

ሺ𝑡ሻ 𝑋௉஼
஼ ൅ 𝑇஼

ௐᇲ
ሺ𝑡ሻ ሺ17ሻ 

 
where 𝑋௉஼

ௐᇲ is a 3D point of the improved point cloud in the world coordinate 
system. It is also how the improved position of the A2P tie points will be 
computed because 𝑋௉஼

ௐᇲ
ൌ 𝐴2𝑃ᇱ. Notice the local laser scanner observation 𝑋௉஼

஼  



Enhanced Trajectory Estimation of Mobile Laser Scanners Using Aerial Images 

154 

remains the same comparing Eq. 16 with Eq. 17. It is only the pose parameters 
𝑅஼

ௐᇲ
ሺ𝑡ሻand 𝑇஼

ௐᇲ
ሺ𝑡ሻ that are updated. For every experiment, we first select a 

trajectory and then adjust it using the combination of observations stated in 
section 5.3.  
 
An example of the corresponding A2A and A2P points obtained for Trajectory-
I dataset as well as the trajectory before and after the adjustment is plotted in 
Figure.5.8. In this figure, the red dots represent the A2P points and blue dots 
are their corresponding A2A points. Similarly, the red curve in same figure is 
trajectory before the adjustment while the blue curve represents the trajectory 
after the adjustment.  

 
Figure.5.8: Example of 3D A2A tie points (blue dots) and A2P tie points (red dots) along 
with the Kalman filtering result (red curve) and the trajectory after the adjustment with 
our method (blue curve), Amersfoort / RD New coordinate system. 
 
We verify the accuracy, by regenerating the A2P points from the adjusted 
trajectory and measuring the improvement compared to the checkpoints for 
which two sets of corresponding checkpoints are acquired and labelled in Table 
5-4. Set A contains 38 checkpoints and set B contains 12 checkpoints. As an 
evaluation example, the adjustment of Trajectory-I using all observation is 
conducted and the residuals between the regenerated A2P points and 
checkpoint A47 and checkpoint A50 are provided in Table 5-5. Plots showing 
the checkpoints before and after the adjustment are presented in Figure 5.9 
and Figure 5.10, for the checkpoint A47 and A50 respectively. The residual of 
A47 is comparatively larger than A50 on XY plane, however, considering the Z 
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coordinate, there is more error in A50 than in A47. Moreover, calculating the 
norm, e.g. ‖𝐴47 െ 𝐴2𝑃‖ ൌ 23 𝑐𝑚 and ‖𝐴50 െ 𝐴2𝑃‖ ൌ 0.18 𝑐𝑚 shows that the 
trajectory has been adjusted comparatively better for A50 than for the A47.  
 
Table 5-4: Two sets of checkpoints used for evaluation. 
Checkpoint 

set 
Label 

A 
A23,A24,A25,A26,A27,A37,A38,A39,A42,A43,A44,A45,A46,A47,A50,A62,A63,A71,A72,A73, 
A74,A77,A78,A79,A80,A81,A92,A93,A94,A95,A96,A97,A104,A105,A106,A107,A108,A109 

 

B  B39,B40,B41,B42,B44,B43,B45,B46,B47,B48,B49,B50 

 
Table 5-5: The example of residuals measured using checkpoints on the point cloud 
regenerated from the trajectory enhanced using all observations, these checkpoints can 
also be located in Figure 5.12 of Trajectory-IB. 

Obs.  Dataset 
Check 
point 

A2P  point  (XYZ)  after 
adjustment,  Amersfoort  /  RD 
new (m) 

∆𝑋𝒄𝒉𝒆𝒄𝒌𝒑𝒐𝒊𝒏𝒕, 
∆𝑌𝒄𝒉𝒆𝒄𝒌𝒑𝒐𝒊𝒏𝒕, 

∆𝑍௖௛௘௖௞௣௢௜௡௧ ሺ𝑚ሻ 

Image  of  point  cloud 
after adjustment 

All  Traj.‐I 

A47 
93448.54 
437020.68 
4.880 

0.13 
0.14 
‐0.13 

Figure 5.9 

A50 
92871.03 
436411.46 
5.31 

0.09 
‐0.04 
‐0.16 

Figure 5.10 

 
 

 
Figure 5.9: The evaluation of regenerated A2P points using checkpoint A47. 
 

Checkpoint 
A47

Previous location of 
A2P  

A2P after the 
adjustment 
of trajectory 

Kalman 
trajectory 

Trajectory after 
adjustment 
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Figure 5.10: The evaluation of regenerated point cloud using checkpoint A50. 

5.5.4 Experiments and evaluation 

We perform the experiments according to the guidelines prepared in Table 5-1. 
We conducted the experiment on Trajectory-I and Trajectory-II datasets.  
 
We selected two subparts Trajectory-IA and Trajectory-IB from the Trajectory-
I, which are plotted in Figure 5.11 and Figure 5.12 respectively. These subparts 
fulfil the criteria for the experiments as mention in section 5.5.1. The first 
subpart is used for experiments 1, 2, 3 and 4 because these experiments can 
be conducted with infrequent checkpoints. As these experiments are based on 
the tie points, we need to select the trajectory part which has road marks at 
some places. For experiment 5 we need to select a trajectory with abundant 
and consistent availability of checkpoints, regardless of the road marks. For 
this purpose, the second subpart is feasible because it has more checkpoints 
to test the IMU-based trajectory over small intervals without the involvement 
of the tie points.  
 

Checkpoint 
A50 

Previous location of 
A2P A2P after the 

adjustment of 
trajectory 



Chapter 5 

157 

 
Figure 5.11: Plot of the Trajectory-IA used for experiments 1, 2 and 3. Here red ‘*’ are 
the locations of the checkpoints, Amersfoort / RD New coordinate system. 
 

 
Figure 5.12: Plot of the Trajectory-IB used for experiments 4. Here red ‘*’ are the 
locations of the checkpoints, Amersfoort / RD New coordinate system. 
 
To conduct an experiment, first, we perform the adjustment of a particular 
trajectory using the observations mentioned in Table 5-1. Then the evaluation 
is performed using the regenerated A2P points and corresponding checkpoints. 
The combination of checkpoints alongside the trajectory dataset used for each 
experiment is indicated in Table 5-6. This table also presents the RMSEs of six 
pose parameters, including the minimum and maximum error. 
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Table 5-6: Results of the experiments categorised in Table 1 and conducted on 
Trajectory-I. 
Type Data Checkpoints No. Criteria 

X (m) Y (m) Z (m) 
RMSE Min Max RMSE Min Max RMSE Min Max 

K
alm

an 

I All 0 No tie points 0.26 -1.28 0.96 0.30 -0.94 1.13 0.47 -0.58 0.59 

Tie point quantitative analysis 

I All 1 100% 0.09 -0.20 0.14 0.14 -0.17 0.22 0.17 -0.33 0.35 

IA 

A23 
A24 
A25 
A26 
A27 
A37 
A38 
A39 
A42 
A43 
A44 
A45 
A62 
A63 

2 

90% 0.11 -0.24 0.23 0.16 -0.25 0.27 0.28 -0.36 0.39 

80% 0.12 -0.30 0.28 0.19 -0.43 0.30 0.30 -0.42 0.50 

50% 0.16 -0.81 0.35 0.22 -0.60 0.31 0.40 -0.49 0.55 

30% 0.16 -0.85 0.62 0.28 -0.69 1.12 0.40 -0.60 0.58 

3 

90% 0.10 -0.20 0.15 0.14 -0.19 0.25 0.17 -0.33 0.35 

80% 0.10 -0.22 0.15 0.17 -0.26 0.30 0.17 -0.36 0.38 

50% 0.10 -0.35 0.25 0.18 -0.30 0.64 0.19 -0.38 0.40 

30% 0.19 -0.54 0.30 0.21 -0.32 0.69 0.26 -0.40 0.42 

Tie point 
qualitative 

l
i

4a Low quality, 
20% 0.24 -0.94 0.50 0.20 -0.87 0.97 0.34 -0.53 0.57 

4b Medium quality, 
25% 0.17 -0.53 0.36 0.17 -0.42 0.55 0.21 -0.50 0.44 

4c High quality, 
55% 0.09 -0.15 0.12 0.11 -0.14 0.16 0.16 -0.30 0.32 

IM
U

 and soft constraints based trajectory 

IB 

A46 
A47 
B39 
B40 

5a 30 secs 
396 m 0.06 -0.15 0.10 0.07 -0.15 0.16 0.11 -0.13 0.19 

A46 
A47 
A50 
B39 
B40 
B41 
B42 
B44 
B43 
B45 
B46 
B47 
B48 

5b 60 secs 
792 m 0.10 -0.20 0.17 0.12 -0.20 0.18 0.18 -0.21 0.27 

A46 
A47 
A50 
B39 
B40 
B41 
B42 
B44 
B43 
B45 
B46 
B47 
B48 
B49 
B50 

5c 90 secs 
1101 m 0.21 -0.42 0.38 0.27 -0.33 0.39 0.23 -0.34 0.45 

N
o soft 

constraint

I All 6 No soft 
constraints, 100% 0.11 -0.20 0.16 0.15 -0.18 0.26 0.22 -0.33 0.37 
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The experiment 0 in  
Table 5-5 is conducted to analyse the accuracy of the Kalman trajectory before 
using any observation for the adjustment. This experiment provides an 
assessment of the current state of the Trajectory-I dataset. Before analysing 
the relation between the quantity of the tie points and the accuracy of the 
trajectory, experiment 1 apply all tie points and other observation to provide 
the reference for further analysis. It results in the accuracy of the trajectory 
without reducing the number tie points. 
 
Staring from experiment 2 and 3 in Table 5-6, we decrease the total number 
of tie points to test the effect of their unavailability. In experiment 2, we 
remove the tie points situated in consecutive order. This operation lengthens 
the trajectory intervals without tie points, where tie points are scarce. 
Dissimilarly in experiment 3, the total number of tie points are reduced from 
where they are already in majority. This removal technique circumvents the 
wide gaps of no tie points, therefore, we expect to obtain better results than 
for experiment 2. For evaluation of the trajectory produced by experiments 2 
and 3, we use 14 checkpoints. By comparing the results of experiments 2 and 
3, we notice that while reducing the tie points, the accuracy considerably 
suffers in experiment 2. As with the wide gaps of no tie points, the IMU is the 
only source to construct the trajectory. However, it is not directly comparable 
to experiment 5 where we only use IMU observation without any tie points to 
test the reliability of IMU for small intervals. 
 
In experiment 3, the accuracy does not deteriorate when applying the 80% tie 
points because the remaining tie points nonetheless will provide observation 
for approximately all locations. However, when we use only 50% tie points in 
experiment 3, the accuracy approaches an undesirable level.  
 
In the 4th experiment, it is clearly noticeable that only high-quality tie points 
alone can achieve decimetre-level accuracy. Conversely, only using the low-
quality tie point leads to large errors in the trajectory. Yet, the utilization of 
medium or even low-quality tie points is better than using no tie points at all. 
It is apparent when comparing the results of experiment 4 with experiment 5. 
Even for a small interval of the 120 seconds, the accuracy is poorer than using 
the low-quality tie points alone. Note that the low-quality tie points are used 
for the whole trajectory sustaining 45 minutes but still, the accuracy is 
comparatively not as poor as the IMU-based trajectory exhibit for the small 
intervals. The high-quality tie points are only 55% of the total set, yet they are 
alone enough to correct the trajectory to the maximum accuracy. The result of 
experiment 3 with 80% tie points and high-quality tie points are comparable 
but the accuracy is little decreased because 20% removed tie points set 
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comprise some high-quality tie points. Moreover, the remaining 80% tie points 
can comprise low-quality tie points, therefore, the accuracy achieved in 
experiment 3 with 80% tie points is still less than the experiment 4c. 
Furthermore, a comparison of the result of experiment 4c with experiment 1 
confirms that the use of low-quality tie points introduces error in the trajectory. 
It is therefore advisable to only perform the trajectory adjustment with high-
quality tie points. 
 
In experiment 5, the trajectory has been constructed for the interval of 30, 60 
and 90 seconds, which is scanning distance of 396, 792 and 1101 meters 
respectively. We only check the trajectory for the interval of up to 90 seconds 
because the resulted accuracy is already degraded more than the desired level. 
The main reason to conduct experiment 5 is to determine the maximum 
tolerable time of having no tie points. The largest interval of no tie points in 
the Trajectory-I lasts for 48 seconds, which is roughly 556 metres of distance 
on the road. This interval arrives between the range of 30 and 60 seconds so, 
we expect the accuracy to be better than indicated in 60 seconds interval, while 
the accuracy of 60 seconds interval is a little above the decimetre level. 
Therefore, we expect the accuracy to be below or near the decimetre level 
during the 48 seconds interval of no tie points. 
 
In experiment 6, we evaluate the improvement in the trajectory without using 
the soft constraint observation. Comparing this result with experiment 1 
confirms that the soft constraint observation has improved the accuracy RMSE 
X = 2 cm, RMSE Y = 1 cm and RMSE Z = 5 cm. 
 
The Trajectory-II is in the areas with the tallest buildings in Rotterdam. The 
Trajectory-II alongside the checkpoints is plotted in Figure 5.13. For the 
experiments, we do not divide Trajectory-II such as the Trajectory-I because 
there is an abundance of checkpoints available within short intervals. There is 
a total of 21 checkpoints available for this trajectory. We repeat the five 
experiments for this trajectory as well as the results are provided in Table 5-
7.  
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Figure 5.13: Plot of the Trajectory-II, red ‘*’ are the locations of the checkpoints, 
Amersfoort / RD New coordinate system. 
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Table 5-7: Results of the experiments conducted on Trajectory-II. 
Type Data checkpoints No. Criteria X (m) Y (m) Z (m) 

RMSE Min Max RMSE Min Max RMSE Min Max 

K
alm

an 

II 

All 0 No tie points 1.10 -4.02 2.96 1.51 -1.10 4.05 1.81 -3.23 4.79 

Tie point quantitative analysis 

A71 
A72 
A73 
A74 
A77 
A78 
A79 
A80 
A81 
A92 
A93 
A94 
A95 
A96 
A97 
A104 
A105 
A106 
A107 
A108 
A109 

1 100% 0.12 -0.25 0.20 0.15 -0.16 0.27 0.20 -0.41 0.37 

2 

90% 0.15 -0.60 0.38 0.21 -0.40 0.54 0.40 -0.50 0.63 

80% 0.33 -1.01 0.95 0.62 -0.98 1.21 0.83 -1.55 1.64 

50% 0.54 -1.25 1.62 1.10 -0.98 1.62 1.30 -2.55 3.57 

30% 0.83 -2.02 0.92 1.41 -1.15 1.84 1.81 -2.23 2.79 

3 

90% 0.12 -0.37 0.21 0.14 -0.18 0.25 0.20 -0.41 0.38 

80% 0.16 -0.75 0.28 0.30 -0.21 0.42 0.25 -0.61 0.83 

50% 0.26 -0.83 0.31 0.30 -0.53 0.62 0.55 -1.08 1.49 

30% 0.56 -1.75 0.60 0.34 -0.85 1.41 0.84 -1.35 2.28 

Tie 
point 

qualitative 
analysis 

4a Low quality, 
20% 0.64 -1.81 0.65 0.40 -0.78 1.63 0.73 -1.92 2.74 

4b Medium quality, 
20% 0.27 -0.70 0.34 0.23 -0.45 0.94 0.27 -1.63 1.42 

4c High quality, 
60% 0.12 -0.21 0.16 0.14 -0.12 0.23 0.18 -0.36 0.34 

IM
U

 
and 

soft 
constraints-based 

trajectory 

A92 
A93 
A95 

5a 30 secs, 
219 m 0.16 -0.26 0.18 0.12 -0.16 0.23 0.14 -0.16 0.21 

A92 
A93 
A95 
A94 

5b 60 secs, 
555 m 0.34 -0.57 0.43 0.19 -0.34 0.67 0.25 -0.52 0.61 

A92 
A93 
A95 
A94 
A77 
A78 
A79 
A80 
A81 

5c 90 secs, 
839 m 0.48 -0.81 0.52 0.30 -0.49 0.74 0.43 -0.67 0.90 

N
o 

soft 
constrain
ts 

All 6 
No soft 
constraints, 
100% 

0.17 -0.31 0.24 0.15 -0.16 0.28 0.25 -0.42 0.40 

 
Overall the Kalman filter estimate of Trajectory-II is less accurate than that of 
Trajectory-I (cf. Table 5-6 and Table 5-7). Trajectory-II can only support the 
accurate positioning for up to 30 seconds while Trajectory-I positioning is 
accurate for up to 60 seconds. The IMU integrated with IPS-3 system utilizes 
fibre optic based inertial measurement, which is very accurate whereas the 
IPS-2 system is an older version and utilizes a MEMS gyroscope. However, the 
quality of the Trajectory-II after the tie point-based adjustment is similar to 
Trajectory-I. Obviously, the error still increases in the areas where there are 
no tie points. This is in particularly noticeable by comparing the results of low-
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quality tie points in experiment 4a in both trajectories. This is true for both 
low-quality tie points and a small percentage of tie points. 
 
In experiment 5, it is noticeable that the car speed of Trajectory-II is lower 
than Trajectory-I. Ignoring the distance travel by the laser scanning car and 
only considering the scanning time confirms that the IMU system used for 
Trajectory-II is comparatively less accurate than the IMU used for Trajectory-
I. Therefore, the RMSE values increased by X=21 cm, Y=7 cm and Z=16 cm 
in the trajectory reconstructed by IMU observations alone for only 90 seconds 
in experiment 5c compared to the whole trajectory of 45 minutes reconstructed 
using only 20% tie points of medium-quality in experiment 4b. The trajectory 
in experiment 5c is also inaccurate by RMSE X=33 cm, Y=9 cm and Z=3 cm 
and RMSE X=36 cm, Y=16 cm and Z=23 cm even when 10% tie points are 
reduced in experiment 2 and 3 respectively.  
 
In experiments 2 and 3, as expected, the accuracy of the trajectory-II 
decreases by reducing the percentage of tie points. Similar to our previous 
experience, the results obtained by the 2nd experiments are comparatively 
worse. Moreover, due to the comparatively low quality of the IMU observations, 
the results when using 80% of the tie points are not equivalent between the 
Trajectory-I and II. As the accuracy already became worse using the 80% tie 
points, to make the results from both datasets comparable, we started from 
the set of 90% tie points for Trajectory-II. 
 
For trajectory-II, we can utilize 90% of the tie points by the removal method 
proposed in the third experiment. Removing 10% tie points and removing 
randomly cannot produce the near decimetre accurate results. The maximum 
time of having no tie points should not exceed the 30 seconds interval, while 
the maximum time without a tie point in Trajectory-II is 34 seconds. So, the 
trajectory may have an error of a few centimetres above the expected 
accuracy.  
 
Similar to our experience with Trajectory-I, when comparing the result of 
experiment 6 conducted without soft constraints with experiment 1, it is also 
clear that soft constraints further improved 5 cm in the RMSE in both X and Z 
coordinates. 

5.6 Conclusions  
We developed and described an automatic method for the enhancement of 
6DOF MLS platform trajectories. For this purpose, we described multiple 
observations related to automatically acquired 3D tie points matched to 
corresponding points extracted from aerial photographs, IMU measurements, 
and soft constraints, which were used collectively for the trajectory 
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adjustment. We proposed to model the trajectory parameters with B-Splines 
and also estimated the optimal values of the B-spline knot interval and curve 
order. To evaluate the developed method, we designed several experiments. 
Each experiment was focused on a specific aspect of the correction. 
 
To evaluate the accuracy of the enhanced trajectory, the developed method is 
tested on two independent datasets. The adjustment with all observations 
brings a large improvement when results are compared with the original 
Kalman filter solution. The Kalman filter solution of Trajectory-I had RMSE 
values of 26 cm, 36 cm and 47 cm for the X-, Y- and Z-coordinates 
respectively. With the adjustment using all introduced observations these 
RMSE values were reduced to 9 cm, 14 cm. and 17 cm.  When only high-quality 
tie points (55% with standard deviation ≤5 cm) were used, RMSE values were 
further reduced to 9 cm, 11 cm, and 16 cm.  
 
For Trajectory-II, the residuals in the Kalman filter trajectory are 1.10 m, 1.51 
m, 1.81 m for the X-, Y- and Z-coordinates respectively. After the 
enhancement of the Trajectory-II using all observations, the remaining errors 
in the trajectory amount to 12 cm, 15 cm, and 20 cm. After the adjustment 
with all observations Trajectory-II shows a larger improvement than 
Trajectory-I because Trajectory-II was more erroneous due to the lower quality 
IMU. Similar to the first dataset, the use of only high-quality tie points (60%) 
leads to a further improvement in trajectory with RMSE values at 12 cm, 14 
cm, and 18 cm.  The evaluation of the developed method on both data sets 
confirms that our method can significantly improve the trajectory for 
applications demanding high accuracy in the urban canyons. It also shows that 
the significantly lower quality of the IMU in the second dataset has little to no 
effect on the quality of the reconstructed trajectory if sufficient tie points to 
aerial photographs are available. 
 
It is preferred to only use high-quality tie points for Trajectory-I, and -II 
respectively, rather than using all tie points. Moreover, the results obtained by 
80% or 90% inconsistently located tie points lead to RMSE values of 12 cm, 
19 cm, and 30 cm for Trajectory-I and 15 cm, 21 cm, and 40 cm for Trajectory–
II. However, the same amount of tie points when removed consistently can 
achieve RMSE values of 10 cm, 14 cm, and 17 for Trajectory-I and of 12 cm, 
14 cm, and 20 cm for Trajectory-II dataset. Therefore, we conclude that the 
consistent availability of the tie point is crucial for the developed method. The 
consistent availability of the tie points is dependent on the existence of the 
road-marks in the dataset. The earlier developed image matching procedure 
(Hussnain et al. (2019)) is already designed to be robust enough to handle the 
difficult matching situations, since, we cannot afford long stretches of 
trajectory without tie points. 
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The quality of the tie points depends on the accuracy of the exterior and interior 
orientation parameters of the aerial images as well as the accuracy of the 
matching in the aerial images. The tie point quality is assessed by the standard 
deviation of the multiview triangulation. Moreover, the high aerial image 
resolution provides precise information needed to reliably detect and estimate 
the subpixel-level features, which can improve the estimation of high-quality 
tie points. In this way the use of aerial images can strongly improve the MLS 
trajectory estimation and thereby reduce the need for surveys on the ground.   
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In this research project, we have developed an automatic method for the 
enhancement of MLS datasets acquired in the urban canyons where trouble 
with GNSS signals is inevitable. Our developed method approached the solution 
with the utilization of highly-accurate aerial imagery. Most of the MLS data 
correction techniques can be categorised into two major groups; the ones using 
a reference dataset for the correction and the others that are not. Our method 
involving aerial imagery fits into the group needing a reference dataset. The 
second category of methods remains focused on the improvement of 
algorithms to efficiently employ the local observations of positioning devices 
and sensors while avoiding the use of any external reference datasets. These 
techniques are based on the idea that necessary information to estimate the 
correct positioning is known but the observations are not applied efficiently 
enough. We believe that there is a limit in improving the accuracy by the only 
deployment of efficient algorithms and these techniques cannot surpass the 
improvements that can be achieved by involving the reference datasets. 
Compared to many of these techniques, our goal was not to avoid the need for 
the reference dataset. Our research work was concentrated on the 
minimization of total effort to correct the MLS dataset by automatic means. 
Most of the recent comparable studies also preferred the use of the reference 
datasets. This approach promises reaching the accuracy of reference dataset 
in the input dataset if not more than that. 
 
An emerging and well-known approach in the category as ours is to involve the 
same dataset acquired earlier as a reference instead of using another type of 
dataset. The main consideration is that a future MLS dataset correction pipeline 
can benefit from the point cloud already acquired and corrected for the same 
area. This is feasible for areas where a new point cloud is only needed to 
accommodate the latest changes in the road markings and buildings. However, 
if a point cloud of the same area is not already available or it is not accurate 
enough then this technique will not work. Moreover, if the area is altered at 
many locations in the new dataset then the registration would also not bring 
accurate results. In comparison, achieving e.g. 10 cm accuracy in reference 
aerial imagery is still a lot easier than achieving the same accuracy in the 
reference MLS point cloud even if the GCPs have been utilized. Due to the 
spatial consistency of information, aerial images as reference dataset provide 
the same accuracy of the features across the image. However, spatial 
consistency cannot be guaranteed in the manually corrected point cloud 
intended to use as a reference, especially in the areas where no GCPs have not 
been utilized. 
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6.1 Conclusions per objective 
1) Feature detection to represent the same corresponding 

geometrical position with pixel-level accuracy in both lidar and 
image datasets.  
A lot of recent literature preferred strategies other than 2D feature 
detection and matching. Instead of 2D features matching, most of the 
localization applications matched MLS dataset with a reference map 
generated from a reference point cloud (Wan et al. 2018; Wolcott et al. 
2017). At a broader level, many of the reference utilization techniques 
come under the umbrella of map matching. Still there are enormous 
differences in the way maps were generated and utilized. Recently, quite 
a lot of research is invested in to reference maps. Nagy et al. (2018) used 
a high definition point cloud as a reference map for the localization of the 
self-driving car. Moreover, instead of 2D keypoints, 3D keypoints were 
detected in the objects extracted from the point cloud, and objects 
semantic information was derived for alignment. Similarly, Kim et al. 
(2019) generated binary maps of road markings from the input point cloud 
and a reference point cloud. Some studies, like Wang et al. (2017) detected 
curbs as feature together from the reference point cloud and reference 
digital map, while the method developed by Meng et al. (2017) was 
dependent upon only an offline digital map of the curbs. Many preferred 
features other than 2D and 3D. Hsu et al. (2019) extracted features as 
combined distances-angles measurements observed by a virtual 360-
degree laser scanner from each possible grid-location on the map. To 
match, these features were extracted from both the map and the live laser 
scans. This approach can be considered similar to Particle Filter, which also 
directly correlate the sensor observations with an environment map for 
localization. Most of the map-based techniques require maps very large in 
size and often matching them with online laser scan is computationally 
expensive. In order to overcome this problem, some techniques suggested 
to first downsize the information needed to carry by the mobile mapping 
platform for the online MLS operation. For example, some techniques 
derived vectors from the reference point cloud to represent the map, which 
is advantageous because it can only be the fraction of total size of whole 
reference point cloud. In this vein, Javanmardi et al. (2018) estimated few 
vectors representing the whole boundary of a building. They also estimated 
surface planes representing whole walls from the reference point cloud as 
features to be matched. This technique is interesting in areas where there 
are no road marks and areas which remain the same in an epoch of two 
acquisitions. Instead of representing planes with surface normal vectors, 
Im et al. (2018) directly extracted Hough line features, which is in line with 
many techniques discussed in chapter 1 focused on the extraction of linear 
features representing the geometry of the urban structures. The detection 
of the linear features from the aerial images can only work with the 
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prominent edges of the buildings. As the lidar scans buildings from the 
road level, either reliable building edges are missing in the points cloud or 
if available the point density is very low at that distance. The other 
methods like ICP can only achieve high accuracy when an accurate 
reference point cloud with few or no updates and similar density is 
available. Even though the accuracy of 3D point cloud generated from the 
aerial imagery at hand can be the same as 3D tie points, the density of the 
point cloud reconstructed from images is not enough on the roadside 
structures and buildings surfaces for ICP based matching. By comparing 
our research work with other related studies, we found that not many of 
the studies involved 2D feature matching of the point cloud with aerial 
images for lidar sensor localization. The whole focus in the development of 
2D feature detection and matching was to achieve decimetre-level accurate 
matches. The main advantage of our technique is that the positions of 
matched keypoints inherit accuracy of the features in aerial images. This 
type of correctness is hard to guarantee using methods other than 2D 
feature matching. 

 
The methods described in chapter 2 and 3 were mainly focused on the 
detection of intensity-based 2D features from point cloud images and aerial 
images. Based on the feasibility, our feature detection technique 
concentrated on the road markings, which was easily available in the urban 
areas. Relying on the disparity of high-intensity information of the road 
marks with low intensity of the road was essential because this 
interrelationship persisted across observations from unalike sensors. Our 
feature extraction technique extracted geometrically accurate features 
because it relied on the estimation of the intersection of linear edges, while 
blob-based features e.g. SIFT may not be geometrically accurate, though 
they seem contextually correct. This type of feature rather gets displaced 
in images of the same object from dissimilar perspectives, while the 
corner-based features are immune from perspective distortion. Apart from 
the benefit of accuracy, the intersection of gradient edges can only provide 
a single keypoint per corner feature, which was not sufficient for the robust 
matching of feature descriptor due to large and varying noise in the image 
information. The developed method tackled this problem by detecting 
keypoints in a cluster for a single corner feature as described in Chapter 3. 
The feature-based techniques e.g. SIFT by Lowe (2004), AKAZE 
Alcantarilla et al. (2011) and KAZE by Alcantarilla et al. (2012) had not 
been robust enough in matching point cloud images with aerial images. 
Therefore, the Harris Corner Detector by Harris et al. (1988) was adapted 
by relaxing the keypoint detection threshold to detect multiple features 
surrounding the single corner keypoint. This feature-detection strategy 
increased the possibility and robustness of matching feature descriptor. 
However, the new feature detection technique alone was not enough for 
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the accuracy of features. To maintain the geometric consistency, it was 
necessary to generate the point cloud images from the chronologically 
ordered point clouds (as mentioned in Chapter 1, 2 and 3). Otherwise, the 
point cloud ghosting effect can lead to either the detection of multiple 
inaccurate features or misplaced features. 
 
In chapter 2 and 3, the point cloud was projected on the ground to 
generate images of the point cloud, which introduced errors when Z 
coordinates of the road points were not homogenous. To overcome this 
problem and represent the point cloud information from perspective same 
as of aerial imagery, in later research work, the point cloud was projected 
onto the aerial image perspective planes as discussed in chapter 4. This 
was advantageous because the 2D perspective images of the point cloud 
were able to maintain the same perspective as well as the same sampling 
distance, which was essential for very accurate matching to aerial images. 
The other difference among the approach developed in chapter 2 and 3 
from chapter 4 was the removal of the road traffic and other roadside 
objects e.g. road signs, trees. In some studies like Javanmardi et al. 
(2018), vehicles were removed as well from the aerial imagery, however, 
we did not remove the vehicles or elevated objects from the aerial images 
as it cannot improve the matching of descriptors.   

 
2) Feature matching to find the subpixel-level feature 

correspondences. 
The combinations of feature detection and the feature descriptor matching 
were experimented and developed concurrently in chapter 2 and 3 because 
without a suitable feature descriptor matching, a feature detection would 
fail and vice versa. Our descriptor matching technique tackled two 
problems: the detection of compliant features was solved by detecting 
multiple keypoints which provided diverse information around single 
feature as discussed earlier in this section and chapter 3 and 4. The second 
problem, the handling of the diverse information around features was 
resolved by using the LATCH feature descriptor, which can compensate 
variation in information by learning the optimal configuration of 
corresponding pixel-triplets. The LATCH feature descriptor was 
advantageous because it does not seek the exact information but only 
compares patterns of similarities. For the other descriptors, a technique to 
relax the descriptor matcher tolerance also failed and instead raised the 
number of outliers. The major difference between our technique and the 
other techniques is that when the descriptor matcher tolerance was 
relaxed, our approach promised to include correct matches as well as the 
outliers, while the other just introduce more outliers.  
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The initial experiments in chapter 2 showed that the LATCH descriptor 
performed poorly because in contrast to SIFT, AKAZE, and KAZE which 
have their own feature detection, LATCH is just a feature descriptor. 
Therefore, we have used the Förstner operator Förstner et al. (1987) in 
the initial experiments to detect the subpixel accurate keypoints. However, 
this strategy failed to provide satisfactory results because it provided only 
a single keypoint for a single corner, which we have already discussed is 
unsuitable for our purpose. The other techniques showed better result in 
chapter 2 for the specific dataset, however, they were also not very robust 
in difficult situations experimented later. Therefore, instead of subpixel 
keypoint, we have combined a pixel-level keypoint detection with LATCH 
descriptor in chapter 3. Later experiments in chapter 3 and 4 have shown 
that this combination of feature detector descriptor outperformed the 
previous results of SIFT, AKAZE, KAZE. Though this technique successfully 
introduced correct matches, it included lots of outliers as well. The outliers 
exceeding the inliers were very difficult to remove with the conventional 
outlier removal techniques e.g. estimation of homography. Therefore, we 
tailor-made an outlier filtering approach in chapter 3 by exploiting the 
relative topology of features in the corresponding images. The developed 
outlier filtering approach was beneficial in promising the correct solution 
by brute force algorithm. This was time-consuming but due to the 
automatic nature of correction pipeline, it was more important to know 
whether the achieved solution was correct or not, and brute the force 
approach guaranteed that by searching for every possible solution. 
Oppositely, e.g. homography estimated by RANSAC can converge to a 
solution still containing outliers. Moreover, when there were e.g. 80% or 
more outliers (which was true in our case) then the conventional technique 
would have failed to obtain the correct solution in specified iterations. 
Outlier filtering approach was also useful in assuring that the corresponding 
2D-2D inliers were pixel-level accurate. The clusters of keypoints were 
helpful to avoid the problem of repeated patterns by providing 
asymmetrical configuration of feature clusters across an image, which is 
not the case when single features were detected on the corners of e.g. a 
zebra crossing.  
 
The subpixel keypoints matching was unreliable as discussed in chapter 2. 
Therefore, afterwards in this research work, we have developed a pixel-
level feature matching in chapter 3. However, our aim still was to achieve 
the subpixel-level correspondences to estimate the near decimetre 
accurate 3D tie points because pixel-level correspondences were not 
sufficiently accurate. Therefore, we developed a mapping technique to 
determine the subpixel-level correspondences from pixel-level 
correspondences. In the process of mapping, the number of matches 
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reduced dramatically because it was not possible to estimate subpixel-level 
correspondence for each pixel-level correspondence.  
 
While our technique was concentrated on descriptor matching, other 
studies adapted diverse matching approaches depending on their feature 
detection. It is important to note here that methods of direct adjustment 
do not require matching step. For direct determination of the similar shapes 
of road markings, Suhr et al. (2016) extracted road markings from the 
scanned point cloud and directly transformed them to the reference digital 
map obtained from a 3rd party. Similarly, Nagy et al. (2018) directly aligned 
objects between input MLS dataset and reference point cloud, where the 
semantic information about the objects was helpful. Many image matching 
methods preferred correlation-based matching, which involved including 
all image information to compute the correlation. However, Im et al. 
(2018) only performed correlation of the detected lines because lines were 
the most interesting matchable features between point cloud and images. 
Instead of features and objects, Kim et al. (2019) performed direct ICP 
based alignment of binary maps obtained from both input and reference 
point clouds. Javanmardi et al. (2018) also directly aligned the point cloud 
with the vectors representing reference maps, while Wang et al. (2017) 
used the ICP algorithm the curb registration of input point cloud with the 
accurate reference digital map. Hsu et al. (2019) extracted special features 
from both input and reference point clouds and matching of features was 
based on the similarity of contiguous distance-angle observations. Most of 
the methods developed in recent studies are similar to direct registration 
or alignment of dataset based on distance minimization, these methods 
are feasible in areas without intensity based features but cannot provide 
superior accuracy compared to our feature based techniques when 
intensity based features are available.  

 
3) Estimation of the decimetre-level accurate 3D tie points leading to 

3D-3D correspondence observation.  
In chapter 4, subpixel-level correspondences were used for the 
computation of aerial 3D tie points. The developed 2D feature matching 
was well robust between individual pair of two images. However, a feature 
can only be matched in more than two images if it has exactly the same 
correspondence shared across more than two aerial images. To determine 
the multiview matches, the enhancement of the pairwise 2D 
correspondences with a graph-based search was a beneficial strategy. 
Considering the point cloud images as the aerial perspective views of the 
point clouds in the multiview matching was also helpful in processing all 
correspondences together. To our knowledge, there is no other automatic 
method which can utilize the aerial imagery and provide subpixel-level 
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correspondences between images and point cloud that in turn lead to 
decimetre accurate 3D tie points. 
 
The decimetre-level accurate 3D-3D observations obtained in chapter 4 
were applied in chapter 5 and 6 and allowed the adjustment to achieve a 
near decimetre-level accurate trajectory. For the estimation of the 
trajectory with B-splines, we found that splines of order 4 and interval 1 
second can reconstruct the trajectory with a sufficient accuracy. For the 
enhancement of the trajectory, a B-spline based adjustment was helpful 
as it only updates intervals in the trajectory relevant to specific 
observations. Due to this property, B-spline based trajectory enhancement 
was preferred in many similar studies like Patron-Perez et al. (2015), Páleš 
et al. (2016) and Usenko et al. (2017). The same benefit can also save the 
computational time of an update e.g. when compared with Hermit spline 
or Catmull–Rom spline (Li et al. 2016). 
 
A lot of effort was dedicated towards the robustness of matching technique, 
which ensured the extraction of 3D tie points wherever road markings 
existed. Yet, extracted 3D tie points were not equally distributed across 
the trajectory. Also, at some places road marks were nonexistent, which 
created complete gaps of no tie points as discussed at the end of chapter 
4. In this scenario, to estimate the positions within these gaps, IMU 
observations were essential. We also introduced constraints on heading 
and pitch angles of the car coordinate system, which helped to reduce the 
degree of freedom and thereby improved the estimability of the trajectory. 

 
4) Adjustment of the 6DOF platform trajectory using mainly the 3D-

3D correspondence and IMU observations. 
Unlike our method, many recent autonomous vehicle localization methods 
were focused on 2DOF problem and just improved lateral and longitudinal 
accuracy needed for the navigation like Wolcott et al. (2017). In contrast, 
the main purpose of our research was to enhance the positional accuracy 
of the MLS point cloud which cannot be achieved unless all six pose 
parameters of the trajectory are accurate as well. Some techniques were 
only focused on the fusion of the observations from multiple sensors 
including lidar to support the positioning of the car in an urban 
environment. In a similar application, the final solution of Wan et al. (2018) 
accomplished 5-10 cm positioning accuracy by using an already existed 
accurate map as input. Meng et al. (2017) also fused the GNSS/IMU/DMI 
sensors observations and smooth the trajectory to compensate the GNSS 
jumps or discrepancies. However, they mainly perform correction of lateral 
error as it was needed for autonomous vehicles. Their results showed a lot 
of improvement from the initial error but still, the error remained was in 
the meter range at some places. For the localization using low-cost IMU, 
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Suhr et al. (2016) showed that it was possible to improve the positioning 
of the vehicle in the urban canyons from many meters to meter-level. We 
already defined the minimum accuracy requirements of the IMU sensors 
needed to achieve the near decimetre level accuracy in chapter 6. The 
filtration of the sensors signals and other algorithmic improvements can as 
well enhance the trajectory of even low-quality sensors, however, this topic 
was out of the scope of our research. In recent studies, Im et al. (2018) 
reported lateral and longitudinal RMS of 0.14 m and 0.23 m respectively in 
the improved point cloud, while Kim et al. (2019) only performed an 
adjustment to X, Y and heading angle, and reported positional error of less 
than 50 cm in both lateral and longitudinal direction. The evaluation of 
Nagy et al. (2018) was based on 25 locations in MLS dataset, which showed 
average errors from 0.15 to 0.5 m. However, the maximum error rose up 
to 1 to 2 meters at some places. The multilayer 2D vector map-based 
localization developed by Javanmardi et al. (2018) has achieved accuracy 
with a mean 2D error of 0.20 m. Their planar surface map-based 
localization achieved accuracy with about 0.43 m of error. For the outdoor 
environment, a method developed by Hsu et al. (2019) has achieved lateral 
accuracy with RMSE 2.16 m and longitudinal accuracy with RMSE 1.25 m. 
These best results were achieved with window-based localization, but the 
trajectory estimated from localization results showed an increase in errors.  
Most of the studies dealt with the problem similar to ours but aiming 
different applications. Also, it is important to note that techniques 
developed by Wan et al. (2018), Im et al. (2018), and Javanmardi et al. 
(2018) show comparable accuracy because all made use of a Velodyne 
multi-channel scanner. The multi-channel scanner provides a higher rate 
of point acquisition, Kukko (2013) concluded that it improves the data 
usability and result by providing more even and complete point distribution 
on the object surfaces. Including the problem of low point density, the 
configuration of standard MLS systems is also more prone to the 
consequences of positioning accuracy. Decimetre-level accuracy was not 
the focus of many studies, though it was achieved in some studies. Often, 
the adjustment of only two degrees of freedom was sufficient for navigation 
as the car always moves on the road surface. In other research projects, 
use of already acquired point clouds or maps generated from point clouds 
were permitted because the companies investing in autonomous cars will 
be able to afford expensive datasets or maps.  However, our target market 
is the companies who are producing accurate MLS datasets or maps in the 
first hand.  
 
All phases of our methods were developed by keeping the focus on running 
the whole workflow without any manual intervention. The evaluation has 
shown that our method has achieved better accuracy than most of the 
map-based techniques. Our achievements in this project have verified that 
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the initial assumption to use the aerial imagery as reference dataset was 
advantageous in urban canyons. We have tested our method on two 
datasets. The improved first point cloud exhibited RMSE of X=0.09 m, 
Y=0.11 m, and Z=0.16 m, while the second point cloud has achieved 
accuracy with RMSE X=0.12 m, Y=0.14 m and Z=0.18 m. Results from 
both datasets have confirmed that the developed system was consistent in 
the enhancement of the MLS point clouds. 

6.2 Reflections and outlook 
The aerial images used in our project were captured by a commercial camera 
with highly accurate intrinsic parameters and needed no camera calibration 
within our pipeline. The high-resolution aerial images provided sufficient 
detailed of the ground features which was essential in matching feature and 
establishing the correspondences to subpixel-level. Normally, road markings 
are abundant in urban areas. However, road marks matching entails some 
problems, one of them is the occlusion of roads in aerial images. More tall 
buildings in the dataset mean occlusions in more aerial views, reducing the 
number of multiviews per surface patch. Due to the low number of aerial 
images in our dataset, only around half of the generated tie points were 
considered reliable. To increase the quantity of highly accurate tie points, the 
total number of aerial images and the overlap between the images should be 
increased.  
 
The key to obtaining sufficient features is the quality of intensity information 
in the aerial images. Usually, the aerial imagery is captured at the high 
elevation because every country and city have their own regulations depending 
on the locations of nearby airports, hospitals etc. So, it is not allowed to fly 
aeroplanes under a certain height. The aerial imagery captured at high 
elevation resulted in narrow intersection angle of multiview features which lead 
to low accuracy in the Z coordinate of tie points. To increase the accuracy in 
the Z coordinate of tie points, the aerial images should be captured by drones 
or airplanes flying at low heights. Even though the aerial imagery in our project 
was acquired with high-quality image sensors and optics, the noise in image 
intensities caused difficulties for feature detection. Though it was tackled by 
the automatic adaptation of the feature detection threshold, we expect to face 
more difficulties in the detection of features from the images of off-the-shelf 
cameras. For non-commercial cameras, the atmospheric diffraction of white 
light due to high elevation together with the low quality of the image sensors 
lead to poor quality of the pixel intensities in the aerial image, let alone the 
poor accuracy of features due to lens distortion.  
 
We have noticed that the dataset from the Rotterdam was one of the extreme 
examples because nearly every road in the dataset has roadside trees blocking 
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the view of surface from aerial cameras. Luckily, many wider roads in the 
dataset offered sufficient road marking information in aerial images which 
otherwise would have posed an extreme problem. Therefore, the road marks 
matching is not expected to perform equally well in all areas when a dataset 
consists of narrow roads with a lot of trees. In our datasets, occlusion due to 
trees was minimized by the acquisition of datasets in winter but it was still a 
problem wherever narrow roads exist. Similarly, narrow roads with lots of tall 
buildings can also block direct line of sight from road surface to aerial views. 
Road markings are very important for feature-based matching and missing 
them in one of the datasets will clearly lead to unreliable tie points or a lack of 
tie points. Normally, the mobile mapping datasets are acquired in winter to 
minimize the occlusion by trees. However, in winter, elevated objects cast 
elongated shadows on the road surface regardless of time of the day. We 
noticed that it was problematic for aerial-to-aerial image matching due to 
matched shadow edges. 
 
The MLS dataset utilized in our project was collected during daytime because 
the car was also mounted with the white light panoramic camera which is 
normally the case with such a mobile mapping system. At daytime, due to long 
stopovers and slow movement in urban areas, the total time needed for mobile 
mapping gets prolonged which increases the number of total points for a 
particular area and needs more memory in the computer to handle extra 
points. More traffic at daytime leads to more occlusion as well. Therefore, when 
only point cloud registration is intended, it is better to scan the area at night-
time because limited traffic will reduce the total time for mapping the area due 
to short or no stop on the crossroads. This will decrease the total size of point 
cloud which in turn will reduce the MLS dataset processing time and acquisition 
cost. The MLS dataset used in this project was acquired at daytime, we had to 
remove the points observed on the road traffic. With limited traffic at night-
time, all those points would have been observed on the road surface. The 
disadvantage, however, will be to conduct two separate acquisitions, one for 
the MLS dataset and other for white light images.  
 
In the agreement between the users’ group (as mentioned in chapter 1), one 
of the requirements was the transfer of knowledge. Therefore, the proof of 
concept software implementation of the whole MLS dataset correction pipeline 
was implemented and delivered to the user group at the end of the research 
project. The software modules implemented in this research project are 
depicted in chapter 1. The companies involved were also responsible for 
conducting the evaluation of our results, therefore, the results of our method 
were evaluated and verified by the MLS dataset providers. Their independent 
verification also confirmed our findings.  
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Summary 

Mobile Laser scanning is a technique to obtain geo-information for large areas 
using Laser scanners mounted on a car or another vehicle. The obtained 
product is called a mobile laser scanning point cloud. Under normal conditions, 
accurate positioning is provided by the integration of Global Navigation 
Satellite Systems (GNSS) and Inertial Navigation Systems (INS). However, 
especially in urban areas building structures impede a direct line-of-sight to 
navigation satellites and lead to multipath effects. In this situation the mobile 
mapping derived products, such as mobile laser scanning point clouds, lack the 
expected reliability and inherit an unknown positioning error. 
 
This issue has been addressed by many researchers, whose aim to mitigate 
these effects mainly concentrates on utilizing datasets, such as digital maps, 
orthoimages or airborne lidar. These datasets serve as a reliable source of 
orientation and are being used subsidiarily or as the basis for adjustment. 
 
This research aims to improve the position estimation of mobile laser scanning 
platforms by employing high-resolution multiview nadir aerial imagery as a 
reference dataset. The aerial images have highly accurate exterior orientations 
as their positioning is not suffering from the GNSS signal occlusion and 
estimated by aerial triangulation as well. The highly accurate positioned images 
can therefore provide precise locations of features. These features can be 
measured in the mobile laser scanning data as well. 
  
The first task in the automatic correction pipeline is the matching of the point 
cloud images with aerial images, after a preprocessing step generates images 
from the point clouds. The conventional image matching techniques are tailor-
made for specific applications, perform poorly and are unable to obtain 
substantial matches for our dataset, let alone the fulfilment of the near 
decimetre-level accuracy. Due to the unavailability of a suitable 2D matching 
technique which can also detect geometrically same feature across both 
datasets, we invest our efforts in the development of a new feature matching 
technique. The realization of feature matching technique starts from defining 
geometrically consistent features viable for matching. 
 
Therefore, for feature detection, we have developed a variant of the Harris 
corner detector which adopts a threshold regardless of diverse image 
information. The developed technique detects clusters of keypoints on the 
vertices of road markings with pixel-level accuracy. For the feature descriptor, 
we use the LATCH binary descriptor, which is robust while matching the 
datasets from dissimilar sensors. Due to a large number of outliers, we also 
developed an outlier filtering technique which exploits the relative Euclidean-
distances and relative angles between the corresponding topologies of feature 
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sets. In its entirety, the developed feature matching extracts the 2D 
correspondences with pixel-level accuracy. However, the pixel-level 
correspondences are not sufficient to improve the MLS dataset to a near 
decimetre accuracy level. Therefore, we map pixel-level correspondences to 
subpixel based on features detected from the Förstner-operator in the last 
phase of the feature matching. 
 
Once the subpixel-level stereo correspondences are known, the remaining 
tasks are the multiview matching and the computation of the 3D tie points by 
3D triangulation of the multiview matches. The 3D tie points determine the 
3D-3D correspondences between the point cloud and aerial images, and are 
normally sufficient for the adjustment and the correction of the MLS dataset. 
For the evaluation of 3D tie point accuracy, it is necessary to develop a method 
which first performs an adjustment of the six degrees of freedom trajectory 
using 3D-3D correspondences and then evaluate the enhanced trajectory. 
 
For the enhancement of the trajectory, changes of the six pose parameters 
over time are represented by B-spline functions and enhanced by updating the 
spline coefficients using three types of observations. The main observation for 
the trajectory enhancement is the 3D-3D correspondences between MLS point 
cloud and aerial images: it contains high local and global consistency. The high 
global consistency is necessary to achieve accuracy in the absolute coordinate 
system, while the local consistency is important to achieve the relative 
accuracy in the dataset. The second type of observation is based on data from 
the Inertial Measurement Unit (IMU). It provides only local consistency, but at 
a high frequency. The third type of observation is based on constraints applied 
to the pitch and yaw rotations of the vehicle, which reduces the degrees of 
freedom. To enhance the trajectory, these observations are added to a normal 
matrix and solved for the unknown changes to the coefficients. The computed 
changes to the coefficients are then added back to the coefficients of trajectory 
in an iterative process. The iterative process stops when the square sum of the 
residuals no longer improves. The procedure to select a trajectory segment for 
the experiments is based on several checks. First, we verify the high 
positioning accuracy of the start and end positions of the trajectory segment 
using checkpoints. Alternatively, if checkpoints are not available exactly at the 
start and end locations, we make sure that a sufficient amount of 3D tie points 
exist at those locations. The latter check also means that the trajectory’s start 
and end positions are always located within the areas covered by more than 
one aerial image. Second, we verify that all other parts of the trajectory 
segment are as well covered by the aerial imagery. Third, depending on the 
evaluation criteria, we select the trajectory segment which has the availability 
of checkpoints after short intervals. The interval of the checkpoints availability 
should be shorter for the evaluation of the trajectory constructed only with the 
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IMU observations, while this interval can be larger for the evaluation of the 
trajectory enhanced by all observations. 
 
When comparing with other available methods, the developed method is fully 
automatic while successful in obtaining a near decimetre-level accuracy. The 
quality of the trajectory enhancement is analysed under several conditions. 
Experiments are designed to test the influence of the number and quality of 
3D-3D correspondences and try to determine the accuracy in the areas where 
checkpoints are not available. The experiment conducted on two datasets 
demonstrated that the enhanced trajectory achieved near decimetre-level 
accuracy. The RMSE values of the original Kalman filter results at the 
checkpoints were 0.26 m, 0.30 m and 0.47 m for the X-, Y-, and Z-coordinates 
in one of the two datasets and 1.10 m, 1.51 m, and 1.81 m in another dataset. 
After the trajectory adjustment these RMSE values were reduced to 0.09 m, 
0.11 m, and 0.16 m for the first dataset and 0.12 m, 0.14 m and 0.18 m for 
the second dataset.  In this project, the complete pipeline of the MLS dataset 
correction is implemented and as well delivered to the stakeholders. 
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Samenvatting 
Mobiele laserscanning is een techniek om geo-informatie in te winnen voor 
grote gebieden met laserscanners die op een auto of een ander voertuig zijn 
gemonteerd. Het ingewonnen data wordt een mobiele laser scanning 
puntenwolk genoemd. Onder normale omstandigheden wordt een nauwkeurige 
positie bepaald door de integratie van Global Navigation Satellite Systems 
(GNSS) en Inertial Navigation Systems (INS). Vooral in stedelijke gebieden 
belemmeren hoge gebouwen echter een directe zichtlijn naar 
navigatiesatellieten en leiden ze tot multipath-effecten. In deze situatie missen 
de afgeleide producten van mobiele laserscanpunt wolken de verwachte 
nauwkeurigheid en nemen ze een onbekende positioneringsfout over. 
 
Dit probleem is onderzocht door veel onderzoekers, met als doel het verkleinen 
van de positiefouten met gebruik van externe datasets, zoals digitale kaarten, 
ortho-afbeeldingen of laser scangegevens vanuit de lucht. Deze datasets 
dienen als een betrouwbare bron voor de positionering en worden zodanig als 
referentiedatasets gebruikt.  
 
Dit onderzoek heeft tot doel de positiebepaling van mobiele laserscanplatforms 
te verbeteren door multiview nadir luchtfoto's met hoge resolutie als 
referentiedataset te gebruiken. De luchtfoto’s hebben zeer nauwkeurige 
positie, en objecten die in de foto’s zichtbaar zijn, kunnen nauwkeurig worden 
ingemeten. Het idee is dat diezelfde objecten ook in de mobiele laserscandata 
gemeten kunnen worden en dat ze als het ware aan elkaar gematched kunnen 
worden.  
 
De eerste taak in de automatische verbeterstap is het matchen van de 
puntenwolk met luchtfoto's. De standaard matchingstechnieken zijn vooral 
voor het matchen van luchtfoto’s gemaakt en presenteren minder goed voor 
het matchen van luchtfoto’s met mobiele laserscan data. Daarom hebben we 
een nieuwe “feature based” matchingtechniek ontwikkeld. De ontwikkeling van 
onze feature matching-techniek begint met het definiëren van geometrisch 
consistente features die geschikt zijn voor matching. 
 
Daarom hebben we voor de featuredetectie een variant van de Harris-
hoekdetector ontwikkeld. De ontwikkelde techniek herkent clusters van punten 
op de hoeken van wegmarkeringen, zoals zebra’s, met pixel-nauwkeurigheid. 
Om de eigenschappen voor die punten vast te leggen gebruiken we de LATCH 
binaire descriptor, die robuust voor zowel de mobiele laser scandata als de 
luchtfoto’s. Vanwege een groot aantal data uitschieters hebben we ook een 
filtertechniek ontwikkeld die de relatieve Euclidische afstanden en relatieve 
hoeken tussen de overeenkomstige punten bekijkt. De matching krijgt op deze 
manier een nauwkeurigheid op pixelniveau, dat echter niet genoeg is om de 
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MLS-data te verbeteren tot een nauwkeurigheid van bijna een decimeter. 
Daarom verbeteren we deze stap nog op basis van functies die zijn 
gedetecteerd door de Förstner-operator. 
 
Zodra de matching op subpixelniveau bekend is, zijn de resterende taken de 
multiview-matching en de berekening van de 3D verbindingspunten door 3D-
triangulatie van de multiview-matches. De 3D-verbindingspunten bepalen de 
3D-3D-overeenkomsten tussen de puntenwolk en luchtfoto's en zijn normaal 
gesproken voldoende voor de aanpassing en de correctie van de MLS-data. 
Voor de evaluatie van de 3D-verbindingspunten is een methode ontwikkeld die 
eerst een aanpassing van het traject uitvoert met behulp van de 3D-3D-
correspondenties en vervolgens het verbeterde traject evalueert. 
 
Voor de verbetering van het traject worden veranderingen van de zes 
trajectparameters in de loop van de tijd weergegeven door B-spline-functies 
en verbeterd door het bijwerken van de spline-coëfficiënten met behulp van 
drie soorten waarnemingen. De belangrijkste waarneming voor de 
trajectverbetering zijn de 3D-3D-overeenkomsten tussen MLS-puntenwolk en 
luchtfoto's: het bevat een hoge lokale en globale consistentie. De hoge globale 
consistentie is noodzakelijk om nauwkeurigheid in het absolute 
coördinatensysteem te bereiken, terwijl de lokale consistentie belangrijk is om 
de relatieve nauwkeurigheid in de data te bereiken. Het tweede type 
waarneming is gebaseerd op gegevens van de Inertial Measurement Unit 
(IMU). Het biedt alleen lokale consistentie, maar met een hoge frequentie. Het 
derde type waarneming is gebaseerd op voorwaardes aan de orientering van 
de auto, waardoor het aantal vrijheidsgraden worden verminderd. Om het 
traject te verbeteren, worden deze waarnemingen toegevoegd aan een 
normaal-matrix en opgelost voor de onbekende –te schatten- veranderingen 
in de coëfficiënten. De berekende veranderingen in de coëfficiënten worden 
vervolgens toegepast op de spline-coëfficiënten een iteratief proces.  
 
De procedure om een trajectsegment voor de experimenten te selecteren, is 
gebaseerd op verschillende controles. Eerst verifiëren we de hoge 
positioneringsnauwkeurigheid van de begin- en eindposities van het 
trajectsegment met behulp van controlepunten. Indien controlepunten niet 
exact beschikbaar zijn op de start- en eindlocaties, zorgen we ervoor dat er 
voldoende 3D-verbindingspunten bestaan op die locaties. De laatste controle 
betekent ook dat de begin- en eindposities van het traject zich altijd binnen de 
gebieden bevinden die door meer dan één luchtfoto worden bedekt. Ten 
tweede controleren we of alle andere delen van het trajectsegment ook worden 
bedekt door de luchtfoto's. Ten derde selecteren we, afhankelijk van de 
evaluatiecriteria, het trajectsegment dat over controlepunten beschikt.  
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In vergelijking met andere beschikbare methoden, is de ontwikkelde methode 
volledig automatisch en slaagt erin een nauwkeurigheid van bijna een 
decimeter te verkrijgen. De kwaliteit van de trajectverbetering wordt onder 
verschillende omstandigheden geanalyseerd. Experimenten zijn ontworpen om 
de invloed van het aantal en de kwaliteit van 3D-3D-verbindingspunten te 
testen en proberen de nauwkeurigheid te bepalen in de gebieden waar 
controlepunten niet beschikbaar zijn. Het experiment is uitgevoerd op twee 
datasets en toonde aan dat het verbeterde traject een nauwkeurigheid van 
bijna een decimeter bereikte. De RMSE-waarden van de oorspronkelijke 
Kalman-filterresultaten op de controlepunten waren 0,26 m, 0,30 m en 0,47 
m voor de X-, Y- en Z-coördinaten in een van de twee datasets en 1,10 m, 
1,51 m en 1,81 m in een andere dataset. Na de trajectaanpassing werden deze 
RMSE-waarden verlaagd tot 0,09 m, 0,11 m en 0,16 m voor de eerste dataset 
en 0,12 m, 0,14 m en 0,18 m voor de tweede dataset. In dit project is de 
volledige workflow van de MLS-data en traject verbetering geïmplementeerd 
en eveneens aan de gebruikerscommissie geleverd. 


