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1.1 The need for monitoring surface water 

Terrestrial surface water comprises rivers, streams, lakes, ponds, reservoirs and other 

inland water bodies, which together cover approximately 3% of the global land mass 

(Pekel et al. 2016). Despite their limited global extent, wetlands are essential for both 

humans and ecosystem health. They provide water resources for various human uses, 

support high levels of biodiversity, and provide important and diverse habitat and 

ecosystem services (Dudgeon et al. 2006; Zedler and Kercher 2005). They also play a 

crucial role in the global hydrological cycle and climate system (Chahine 1992; Tranvik 

et al. 2009). Terrestrial surface water affects the climate system via land-atmosphere 

interaction processes such as methane (CH4) and carbon dioxide (CO2) exchange 

(Holgerson and Raymond 2016; Raymond et al. 2013; Tranvik et al. 2009), as well as 

other biogeochemical processes.   

In spite of their fundamental importance, water related ecosystems are fragile and 

vulnerable to climate change and anthropogenic disturbance (Nath and K Deb 2010; 

Vörösmarty et al. 2000). Especially with the increasing human population and accelerated 

economic development, the exerted pressure on water resources will continue to increase 

in the coming years (Prigent et al. 2012; Vörösmarty et al. 2000). Natural factors affecting 

water bodies include anomalous high-rainfall-driven flood events (Cian et al. 2018), 

drought events due to rainfall deficits (van Dijk et al. 2013), seasonal thawing 

and snowmelt in spring (Watts et al. 2012), and longer-term environmental changes (Lutz 

et al. 2014; Street and Grove 1976). Many human activities directly affect the availability 

of water resources. Examples are groundwater pumping, drainage of wetlands, irrigation 

schemes, and construction of new dams. Anthropogenic changes in land surfaces such as 

urbanization, agriculture and deforestation also lead to changes in surface water. 

These changes strongly affect ecosystem functioning, which further results in shifting 

species distributions and composition (Koning 2005; Robledano et al. 2010), especially 

for species that are sensitive to hydroperiod variability (Baldwin et al. 2006; Roshier et 

al. 2002). It may also affect other ecosystem functions including ground water recharge 

and nutrient cycling (Leibowitz 2003). Globally, the biodiversity of water-related 

ecosystems continues to decline at an alarming rate (Collen et al. 2014). In addition to 

these direct threats, the changes of surface water further influence climate change (Degu 

et al. 2011; Ekhtiari et al. 2017; Foley et al. 2003; Hossain et al. 2009; Kabat et al. 2004).  

A range of global initiatives and policy frameworks, including the Sustainable 

Development Goals (SDGs) and the Aichi Biodiversity Targets under the Convention on 
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Biological Diversity (CBD), have aimed to ensure sustainable development of water 

resources, to reduce its changes, and to prevent the loss of biodiversity (CBD 2010; 

Griggs et al. 2013). Specifically, the SDG Target 6.6 highlights the need to measure 

‘Change in the extent of water-related ecosystems over time’ (Dickens et al. 2017). 

Globally-consistent maps of surface water extent at high spatial and temporal resolution 

are much needed for assessing progress towards the Aichi targets for 2020 (Turak et al. 

2017). The Global Climate Observing System (GCOS) includes the area of water bodies 

and water level as Essential Climate Variables (ECV), in support of climate change 

assessment and policy development (GCOS 2011).  

Recognizing the importance of surface water, and to assist in monitoring whether targets 

are attained, it is crucial and urgent to accurately and efficiently monitor the location and 

temporal dynamics of surface water. 

1.2 Remote sensing for surface water monitoring 

Traditionally, in situ gauge measurements are the main data source for the understanding 

of hydrological dynamics. Gauge stations collect a variety of hydrological data, including 

water stage, discharge and streamflow, but provide little information about the spatial 

dynamics of surface water extent (Alsdorf et al. 2007). Gauge stations are typically 

located on large rivers, lakes and canals, and their distribution is non-uniform throughout 

the world. For more than two decades, gauge stations have declined dramatically in both 

developed and developing countries (Shiklomanov et al. 2002). However, even in places 

where gauges exist, legal and institutional restrictions often make the data unavailable for 

scientific purposes. Therefore, assessing changes in water resources at global scale is 

exceedingly difficult using in situ observations alone, owing to the restricted spatial 

coverage and limited availability.   

Satellite remote sensing provides unique capabilities for mapping the location, extent, and 

changes of surface water bodies across a wide range of spatial and temporal scales. 

Compared to traditional in situ measurements, remote sensing is more efficient because 

of its geospatial consistency, accessibility, repeatability, and global coverage.  

Two types of remote sensing instruments are suitable for monitoring earth surface water 

at multiple spatial scales, i.e., microwave and optical sensors. Microwave sensors are able 

to function day and night under any weather condition and have the ability to penetrate 

clouds and partially also vegetation. Schumann and Moller (2015) conducted a detailed 

review of microwave remote sensing for flood inundation and found synthetic aperture 
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radar (SAR) to be the most suitable microwave sensor type for monitoring flood 

inundation. However, the high costs associated with obtaining SAR datasets for large 

areas and in a timely fashion has until recently limited their usefulness in monitoring the 

global surface water dynamics.  

Optical satellite data have commonly been employed and are the preferred source due to 

their straightforward interpretability of water features (Bioresita et al., 2018), high 

availability of data, records of multiple decades, as well as suitable spatial and temporal 

resolutions (Huang et al. 2018a). Table 1.1 shows an overview of the most commonly 

used satellite systems for surface water detection as well as their features. Spatial 

resolution and temporal resolution are important characteristics of optical remote sensors, 

and relevant when deciding what sensor to use for detecting and monitoring surface water. 

Spatial resolution determines the level of spatial detail that is captured by the sensor. The 

temporal resolution describes the time it takes for a satellite sensor to revisit a specific 

area. Thus, fine spatial resolution sensors can accurately estimate the location and extent 

of surface water while fine temporal resolution imagery is effective for intensive 

monitoring and analysis of the dynamics of surface water. Generally, there is trade-off 

between spatial and temporal resolution, even though recent satellite systems like 

Sentinel-2 achieve since 2017 a combination of fine spatial (10 m) and temporal (5-day 

revisit) resolution. 
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Table 1.1. An overview of optical satellite sensors frequently used to map and monitor 

surface water. 

Category Satellite Sensor(s) Revisit 

time 

(day) 

Spatial 

resolution 

(m) 

Number 

Of 

bands 

Operation 

period 

Coarse spatial 

resolution 

(≥ 250 m) 

NOAA/TIROS AVHRR 0.5 1,100 5 1978– 

SPOT Vegetation 1 1,150 4 1998–2014 

Aqua/Terra MODIS 0.5 250–1,000 36 1999– 

PROBA-V Vegetation 1 333–1,000  2013– 

Suomi NPP VIIRS 0.5 375–750 22 2011– 

ENVISAT MERIS 3 300 15 2002–2012 

Sentinel‐3 OLCI 2 300 21 2016– 

Medium spatial 

resolution 

(10–250 m) 

Landsat MSS/TM/ 

ETM+/OLI 

16 15–80 4–9 1972– 

Terra ASTER 16 15–90 14 1999– 

Fine spatial 

resolution 

(≤ 10 m) 

 

SPOT HRV/HRVIR 26 2.2–20 4–5 1986– 

Sentinel‐2 MSI 5 10–60 13 2015– 

IKONOS Panchromatic 

Multispectral 

1.5-3 1–4 5 1999– 

QuickBird Panchromatic 

Multispectral 

2.7 0.61–2.24 5 2001– 

WorldView Panchromatic 1-4 0.31–2.40 4–17 2007– 

RapidEye  1-5.5 5 5 2008– 

ZY-3  5 2.1–5.8 4 2012– 

GF-1/GF-2  4-5 4-5 5 2013– 

Coarse spatial resolution sensors 

Coarse spatial resolution remote sensors (≥ 250 m) offer multispectral measurements 

using a wide swath and consequently a high temporal resolution. A typical example is the 

Advanced Very High Resolution Radiometer (AVHRR) on board the National Oceanic 

and Atmospheric Administration (NOAA) satellites. This sensor was originally designed 

to monitor the ocean and atmosphere but was later found to be effective in detecting large-

scale flood events (Wiesnet et al. 1974). Since then, many studies have examined the 

ability of NOAA/AVHRR to monitor flood inundation at regional to global scale, taking 
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advantage of its high frequency of global coverage, wide swath and low cost (e.g., Barton 

and Bathols 1989; Dietz et al. 2017; Klein et al. 2014; Sheng et al. 2001).  

The Moderate-Resolution Imaging Spectroradiometer (MODIS), flown on two NASA 

satellites: Terra and Aqua, has been extensively used in many land surface applications 

including surface water due to its global coverage, short repeat time, broad coverage and 

free availability. Since 2000, MODIS has accumulated an almost two-decade-long data, 

which makes it perfect for tracking changes in the surface water over long time. A number 

of studies have used MODIS for monitoring surface water at large scales (e.g., Kaptue et 

al. 2013; Khandelwal et al. ; Ovakoglou et al. 2016; Pekel et al. 2014; Sharma et al. 

2015). The utility of MODIS for monitoring flood has been repeatedly demonstrated by 

maps disseminated by the Dartmouth Flood Observatory 

(http://floodobservatory.colorado.edu). 

The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor aboard the Suomi 

National Polar-orbiting Partnership (Suomi-NPP) satellite, launched in 2011, is a new 

generation of operational coarse-resolution (375–750 m) sensor. It is considered to be the 

upgrade and replacement of AVHRR and MODIS. Several studies have shown the 

potential of VIIRS in detecting and monitoring surface water (Huang et al. 2015; Huang 

et al. 2017), and flood (Lacava et al. 2019; Li et al. 2018b) at local scales. 

Another coarse-resolution sensor is the newly launched Ocean and Land Color Instrument 

(OLCI) onboard Sentinel-3 (Sentinel-3A launched in 2016 and Sentinel-3B launched in 

2018). It provides 21 visible and infrared bands at 300 m resolution allowing global 

coverage in every two days. Only few studies have explored the potential of Sentinel-3 

OLCI image for water body mapping (e.g., Wang et al. 2019), and more are expected in 

the near future. 

Medium spatial resolution sensors 

Landsat imagery is the most popular data source for surface water mapping because of its 

suitable spectral bands, medium spatial resolution (30 m), as well as long term continuous 

record. The sensors on the early Landsat missions are the Multispectral Scanner (MSS), 

which was later upgraded to Thematic Mapper (TM) on Landsat-4 and Landsat-5, the 

Enhanced Thematic Mapper Plus (ETM+) on Landsat-7, and the Operational Land 

Imager (OLI) on Landsat-8. The opening of access to the Landsat mission data by NASA 

in 2008 greatly expanded its applications for long-term mapping of surface water (Díaz-

Delgado et al. 2016; Dong et al. 2015; Feyisa et al. 2014; Jin et al. 2017; Schaffer-Smith 
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et al. 2017). Launched in 2013, Landsat-8 is the most recent Landsat satellite, but its OLI 

data have already been widely used in detecting surface water (Wang et al. 2018a; Xia et 

al. 2017; Yang et al. 2015). Recently the open access in combination with cloud 

computing have boosted planetary-scale monitoring of land surfaces such as tree cover 

(Hansen et al. 2013) and surface water (Donchyts et al. 2016; Pekel et al. 2016). 

Fine spatial resolution sensors 

Fine spatial resolution imagery (≤ 10 m) provided among others by SPOT, IKONOS, 

QuickBird, RapidEye, Worldview, and ZY-3 have also been proved effective in mapping 

surface water bodies or flood inundation (Davranche et al. 2010; Fisher and Danaher 

2013; Xu et al. 2004). The fine spatial resolution allows small water bodies being 

accurately detected. However, due to the limited extent and availability of fine resolution 

imagery, the studies were usually focused on rather small, image-footprint limited 

regions.  

The Sentinel-2 MultiSpectral Instrument (MSI), with Sentinel-2A launched in 2015 and 

Sentinel-2B launched in 2017, offers an unprecedented combination of fine spatial 

resolution (10–60 m), frequent revisit (5-day repeat), systematic global coverage, and a 

wide field of view (295 km) (Drusch et al. 2012; Gascon et al. 2017). It provides new 

opportunities for surface water monitoring at both fine spatial and fine temporal 

resolution (Du et al. 2016; Kaplan and Avdan 2017b; Ogilvie et al. 2018a; Yang et al. 

2018b).  

1.3 An overview of optical remote sensing methods for 

surface water detection and existing datasets 

1.3.1 Methods for surface water detection 

The main principle of surface water detection from multispectral satellite images is the 

significantly lower reflectance of water in infrared channels, compared to that of other 

land cover types (Figure 1.1). Based on this, various methods have been developed for 

detecting surface water from optical remote sensing imagery.  
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Figure 1.1. Reflectance of several typical land cover objects 

(https://speclab.cr.usgs.gov/spectral-lib.html). 

 

Hard binary classification approaches, which map pixels as either water or non-water, are 

widely used. The commonly used binary classification method applies thresholding to a 

single band (e.g., Frazier and Page 2000; Jain et al. 2005; Klein et al. 2014; Ryu et al. 

2002), or to spectral indices (e.g., Gao 1996; McFeeters 1996; Wang et al. 2015b; Wang 

et al. 2018a; Wang et al. 2018b; Xiao et al. 2002a; Xu 2006). A number of water indices 

have been developed, and their performances for water detection were also examined and 

compared (e.g., Boschetti et al. 2014; Fisher et al. 2016; Li et al. 2015; Rokni et al. 2014; 

Zhou et al. 2017). Pixel-based classification techniques, either supervised or 

unsupervised (Manavalan et al., 1993; Ozesmi & Bauer, 2002), can be used to generate 

land cover maps from which water maps could be extracted. Decision trees were also 

built using multispectral bands to separate water coverage from other land cover classes 

(Acharya et al., 2016; Olthof, 2017; Sun et al., 2011).  

Soft classification methods do not assign a pixel to one class, but instead estimate 

fractions of different covers within the pixel. As such, these methods can compensate for 

the limitations of coarse resolution images for mapping water bodies that have a similar 

size or a smaller than a pixel. Sub-pixel fraction maps may be obtained through the use 

of regression modelling. For example, Guerschmann et al. (2011) developed a logistic 

regression model using spectral information and a DEM to predict water fraction on the 

Australian continent. Weiss and Crabtree (2011) developed multi-linear 
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regression models to estimate surface water fraction from MODIS based on spectral 

indices. Muster et al. (2013) used simple linear regression model to estimate surface water 

fraction in three Arctic tundra wetlands. Other studies built linear multivariate regression 

model to predict sub-pixel surface water (Frohn et al. 2012; Gómez-Rodríguez et al. 

2010; Huang et al. 2014b; Reschke and Huttich 2014; Rover et al. 2010). These efforts 

were empirical and were developed for specific study regions, thus limiting their 

applicability to other regions. 

Spectral unmixing is a widely used soft classification method, which is based on the 

premise that a pixel’s observed reflectance can be modelled as a linear combination of all 

end-member spectra of the features within the pixel, weighted by their respective 

fractional abundance (Adams et al. 1995). It has been used to increase mapping precision 

by estimating sub-pixel water fractions from coarse resolution data such as AVHRR 

(Hope et al. 1999) and MODIS (Li et al. 2013b; Schroeder et al. 2015), and Landsat (Li 

et al. 2013b; Olthof et al. 2015). A substantial challenge in spectral unmixing is to 

determine the spectra and number of endmembers. Most studies that used spectral 

unmixing used between two and four endmembers. Nonetheless, this number may be 

inadequate to spectrally characterize a complex and heterogeneous landscape. Moreover, 

endmembers are considered pure surface components, but they often show important 

spectral diversity themselves. For example in the case of water, the spectral signature 

varies according to water composition (e.g., algae, sediment and dissolved organic 

matter), submerged aquatic vegetation and bottom reflection, which also depends on 

water depth (Hommersom et al. 2011; Jensen 2009).  

An alternative approach for surface water fraction estimation is the use of machine 

learning techniques such as support vector regression, multivariate adaptive regression 

splines, artificial neural networks and regression-tree algorithms (e.g., Drzewiecki 2016; 

Rover et al. 2010; Xia et al. 2017). These methods can achieve higher perdition accuracy, 

but they require a large amount of training data from field data or higher resolution 

imagery from the same time period.  

1.3.2 Existing water-related datasets 

Many satellite-derived surface water-related datasets have been developed during the last 

decade. These datasets vary in geographic scope, temporal extent of the record, spatial 

resolution an in frequency of surface water estimates. 
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At the global scale, a number of static water body maps exist, with a spatial resolution 

ranging from 14.25 m to 1 km (see Table 1.2). Coarse resolution (≥ 250 m) maps include 

the 30 arc-second (~1 km) Global Lakes and Wetlands Dataset (GLWD: Lehner and Doll 

2004), the 1 km land-water mask (Salomon et al. 2004), the global inundation extent from 

Multi-Satellite at 15 arc-second (~500 m) (GIEMS-D15: Fluet-Chouinard et al. 2015), 

the 300 m ESA Climate Change Initiative Water Bodies Product (ESA CCI-WB: Santoro 

et al. 2013), and the MODIS 250 m land/water mask (MOD44W: Carroll et al. 2009). 

Finer spatial resolution maps include the 1 arc-second (~30 m) Shuttle Radar Topography 

Mission (SRTM) Water Body Dataset (SWBD 2005), which covers the globe between 

60°N and 56°S, and the 30 m Global Inland Water (GIW) dataset (Feng et al. 2015). The 

finest-resolution global water bodies map currently available is the GLObal WAter 

BOdies database (GLOWABO) with 14.25 m resolution (Verpoorter et al. 2014). It is 

derived from observations of the Enhanced Thematic Mapper Plus (ETM+) sensor 

onboard the Landsat 7 satellite collected in year 2000 ± 3 years.  

Besides these dedicated water products, global land-cover maps also contain a water 

class. They have been developed at five spatial resolutions including 1 km (Bartholomé 

and Belward 2005; Hansen et al. 2000; Loveland et al. 2000), 500 m (Friedl et al. 2002; 

Friedl et al. 2010), 300 m (Arino et al. 2008; Arino et al. 2007), 250 m (Wang et al. 

2015a), and 30 m (Chen et al. 2015; Gong et al. 2013; Yu et al. 2013).  

An overview of global water-related datasets can be found in Hu et al. (2017). Several 

studies (e.g., Nakaegawa 2012; Pham-Duc et al. 2017) performed a comparison of these 

global water maps. These static maps represent a snapshot of water extent for a particular 

time but do not seek to provide an understanding of the variability in water body extent 

over time. 

In recent years, needs for dynamic and long-term mapping of surface water are growing. 

Especially with the increasing availability of freely available satellite time series data, 

improved computational capacities and the development of novel water detection 

techniques, dynamic mapping and monitoring of surface water over multi-decadal time 

periods and at different spatial scales has become feasible.   

At local to regional scales, numerous applications have performed long-term surface 

water analysis for representative large lakes, floodplains, deltas, large wetland complexes, 

or large river basins. This has been achieved with for example Landsat (Jin et al. 2017; 

Schaffer-Smith et al. 2017), but also with coarser-resolution satellite data and shorter time 
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intervals including 16-day (Ordoyne and Friedl 2008; Weiss and Crabtree 2011), 10-day 

(McCarthy et al. 2003), 8-day (Yang et al. 2011) and daily (Chen et al. 2013) time steps. 

At continental scale, a few datasets have been developed. For example, a Small Water 

Bodies (SWB) product for the African continent was developed from 10-day composites 

of 1 km SPOT VEGETATION (SPOT-VGT) data from 1999 to 2014 (Bartholomé 2007). 

It is based on a contextual algorithm exploiting the local contrast of the water surface with 

respect to the surrounding region (Gond et al. 2004). After the termination of the SPOT-

VGT mission in May 2014, the algorithm was extended to the PROBA-V 1 km datasets 

to ensure the continuity of the service (Bertels et al. 2016). The SWB is available from 

the Copernicus GIO Global land portal (http://land.copernicus.eu/global/products/wb). In 

addition, a near real-time water surface dataset providing dynamic information about the 

water surfaces at 8-day temporal resolution and 250 m spatial resolution for the African 

continent over a 7-year period (2004 to 2010) was developed by Pekel et al. (2014). For 

the North American continent, the U.S. Geological Survey (USGS) has developed a 

Dynamic Surface Water Extent product (DSWE) (Jones 2015), which provides surface 

water inundation per-pixel derived from Landsat 4-8 data. This product is available from 

EarthExplorer. For the Australian continent, Guerschman et al. (2011) generated of a time 

series of fractional cover of standing water at 500 m and 8-day time step for the period 

1999 to 2010, using a empirical statistical approach with the MODIS bands and derived 

indices. Its strengths and limitations were disscussed by Ticehurst et al. (2014). Recently, 

Mueller et al. (2016) presented a 25-year surface water product, called Water 

Observations from Space (WOfS), from analyzing the entire Landsat archive across 

Australia using a regression tree algrithom. WOfS is publicly accessible through 

www.ga.gov.au/wofs.  

Global efforts to monitoring surface water dynamics have typically focused on either 

relatively coarse spatial resolution or long-time intervals (Table 1.3). For example, higher 

spatial resolution dynamic maps have been produced using Landsat satellite imagery at 

long time intervals (5-year) by Yamazaki et al. (2015). Coarse spatial resolution data has 

been used to produce time series of global water maps at relatively short intervals. For 

example, the MODIS 250 m land/water mask (MOD44W: Carroll et al. 2009) was 

produced annually for 2000–2015 using a decision tree classification method 

(MOD44W_Version 6: Carroll et al. 2017). A global inundation fraction map was 

produced at a monthly interval but at a coarse spatial resolution of 25 km, using multiple 

satellites including Advanced Very High Resolution Radiometer (AVHRR), passive 

microwave Special Sensor Microwave/Imager (SSM/I), and active microwave 
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scatterometer on board the European Remote Sensing (ERS) satellite (GIEMS: Papa et 

al. 2010; Prigent et al. 2007). This product was later downscaled to a 90 m spatial 

resolution using topographic and hydrologic information (GIEMS-D3: Aires et al. 2017). 

Recently, much progress has been made with global Landsat-based surface water 

assessment. The global surface water (GSW) datasets (Pekel et al. 2016) quantified 

changes in global surface water over the past 32 years with a monthly time interval. With 

the growing need for global near-real time monitoring, a few studies and datasets have 

advanced to daily time resolution by using MODIS data. Examples include the global 

near-real-time flood detection maps (https://floodmap.modaps.eosdis.nasa.gov/) 

produced by the Dartmouth Flood Observatory, 500-m resolution daily global surface 

water change database (2001–2016) developed by Ji et al. (2018), and the Global 

WaterPack which maps daily global inland water bodies at 250 m resolution for the years 

2013–2015 (Klein et al. 2017).  
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1.4 Research challenges  

1.4.1 Characteristics of surface water bodies 

Small in size: Small water bodies are abundant globally. Literature suggests that small to 

intermediate-size surface water bodies (e.g., 0.01–10 km2) together account for a large 

fraction of the total global surface water area (Downing et al. 2006; Verpoorter et al. 

2014). A high resolution (14.25 m) global water map (GLOWABO: Verpoorter et al. 

2014) derived from circa 2000 Landsat scenes shows that there are ~27 million water 

bodies larger than 0.01 km2 globally, with a total surface area of 4.76 × 106 km2 excluding 

the Caspian Sea. Analysis of the distribution of water size and number (Figure 1.2) shows 

that the largest total water area corresponds to water bodies in the 0.1–1 km2 size-range, 

followed by 1–10 km2 and 0.01–0.1 km2. These three categories (0.01–10 km2) together 

make up about 52% of the global inland water by total area, and 99.9% by total amount 

(Verpoorter et al. 2014).  

Recent evidence points to the significant role of small water bodies in many natural 

processes. For example, small ponds tend to have higher concentrations of CO2 and CH4 

than large lakes and thus are important for global carbon cycle (Holgerson and Raymond 

2016). Small water bodies are also ecologically important as they provide habitats for a 

wide range of species including rare and declining species (Biggs et al. 2017; Bolpagni 

et al. 2019; Downing 2008). In spite of their importance, small water bodies are typically 

missed from present assessments of global surface water area (Downing et al. 2006; 

Ogilvie et al. 2018a).  
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Figure 1.2. The distribution of number (N) and area of global water bodies (excluding 

the Caspian Sea) detected by Downing et al. 2006 and GLOWABO: Verpoorter et al. 

(2014). Numbers on y-axis are the lower/upper boundary of decadal size classes (Figure 

source: Verpoorter et al. 2014). 

 

Highly dynamic: Surface water demonstrates large variability. Water bodies fluctuate in 

size and location due to natural and anthropogenic processes. A wide range of dynamic 

patterns can be observed according to the frequency of inundation and duration of 

standing water (Cowardin et al. 1979). The 8-day repeat coverage is considered to be a 

minimum for effectively capturing water bodies with short hydroperiods while 

simultaneously accounting for frequent cloud cover (Guerschmann et al. 2011; Wulder et 

al. 2016). However, in extreme cases such as flooding, water is only present for a few 

days. Statistical estimates (Najibi and Devineni 2018) from the global flood database of 

the Dartmouth Flood Observatory (DFO) suggest that, during last three decades, 59 % of 

the global total flood events have short duration floods (1–7 days), while 27 % have 

moderate duration floods (8–20 days). The recent Global Climate Observing System 

(GCOS) report states that Essential Climate Variables (ECV) need to be established for 

water extent and lake ice cover products ideally with daily temporal resolution (Belward 

2016). 
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1.4.2 Large variability of water spectral signatures 

The spectral signature of water bodies varies greatly over time and space. This is caused 

by variations in water depth, bottom material, sediment load, chlorophyll concentration, 

dissolved organic matter, aquatic vegetation, algae, turbidity and any combination of 

these variables (Hommersom et al. 2011; Jensen 2009; Klein et al. 2017). Furthermore, 

the spectral response is affected by changing atmospheric conditions, sun angle, and 

sensor view angle, which further complicates surface water mapping (Liu 2012; Ticehurst 

et al. 2014). This makes the reliable detection of water difficult particularly at large spatial 

scales (e.g., national, continental and global) where a large range of water conditions may 

be expected. 

1.4.3 Presence of noise 

Optical remote sensing imagery are often plagued with noise and outliers, due to cloud 

and aerosol contaminations. These can significantly decrease the relevant information of 

images and affect the performance of a classifier (Karpatne et al. 2016). Shadows induced 

by e.g., clouds, mountains and buildings show similar spectral characteristics as water 

bodies, making it difficult to distinguish them from the water class (He et al. 2016; Li et 

al. 2013a; Lin et al. 2019).  

1.4.4 Lack of high-quality training data 

Supervised learning algorithms generally achieve higher mapping accuracy as compared 

to unsupervised approaches, which is largely due to the use of discriminative information 

contained in the labelled training datasets. Training data can be gathered on the basis of 

ground measurements, visual interpretation (e.g., Jin et al. 2017; Pekel et al. 2016; Pekel 

et al. 2014; Tulbure et al. 2016), or classification of fine resolution satellite imagery 

and/or aerial photography from Google Earth (http://earth.google.com). Applying 

supervised learning algorithms at large-scale (e.g., national to global) and for long periods 

of time is challenging, because this requires training data be collected across various 

geographic regions and various points in time due to the great variability of spectral 

signature of water bodies over time and space as described above. This usually requires 

considerable time and effort. Moreover, the training data contains certain errors, which 

will affect the accuracy of classifier. Therefore, it is important that the training data have 

high accuracy. 
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1.4.5 Spatial and temporal resolution  

One of the challenges for long-term monitoring surface water using remote sensing data 

is the existing trade-off between spatial and temporal resolution of satellite imagery. In 

recent years, satellite constellations have been launched that combine fine spatial (3–10 

m) with fine temporal (daily to 5-day revisit) resolution. Examples of this include 

Sentinel-2 and PlanetScope. Nevertheless, these systems are recent and consequently 

cover only a few years of data until present. The combination of fine spatial and fine 

temporal resolutions is important for accurate monitoring of surface water, especially in 

arid, semi-arid and Mediterranean regions, where small-sized water bodies are abundant 

and they exhibit large variability in response to variability in precipitation and 

evapotranspiration (Ruiz 2008).   

Recently, much progress has been made towards long-term global Landsat-based 

assessment of surface water (e.g., Pekel et al. 2016). However, such assessments can have 

large temporal gaps due to both the limited number of acquisitions during specific time 

intervals, and location- and time-dependent persistency of cloud cover. They may not 

always be effective in capturing the dynamics of seasonally inundated water, not to 

mention rapid changes and short-duration surface water. Coarser-resolution data such as 

MODIS can generate denser and long time series data, thus can fill the spatial and 

temporal gaps of Landsat-based dataset. Sub-pixel mapping from coarse resolution 

imagery is one way to deal with the trade-off between the spatial resolution and temporal 

resolution of remotely sensed data, and can ensure both small-sized and highly dynamic 

water bodies being capture. 

1.5 Research Objectives 

The main objective of this research is to develop improved capabilities for long-term 

mapping and monitoring surface water dynamics over a large geographical area at fine 

temporal resolution inclusive of small (<1 km2) water bodies, using freely available 

optical remote sensing data. To achieve this, four specific objectives are formulated as 

follows:  

 To explore the potential of various spectral indices for monitoring the temporal 

variability in the hydrology of a small wetland. 

 To evaluate machine learning algorithms that incorporate MODIS spectral 

information and a topographic metric for accurate estimation of surface water 
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fraction, and to test the transferability of the algorithms to different geographic and 

climatic zones. 

 To develop a global rule-based regression-tree model for the estimation of surface 

water fraction for the whole Mediterranean region from MODIS data, and to develop 

a new long-term surface water fraction dataset at 500 m resolution and at 8-day 

interval for the Mediterranean region. 

 To assess if our new MODIS water fraction dataset can effectively capture the 

temporal changes in surface water extent for a wide range of water bodies with 

different sizes (i.e., 0.01–3100 km2). 

1.6 Thesis structure  

This thesis comprises six chapters, a general introduction, four core chapters and a 

synthesis. Each core chapter has been prepared as a stand-alone research paper that has 

been published in or submitted to a peer-reviewed ISI journal. The six chapters are 

organized as follows: 

Chapter 1 presents the research background, reviews the relevant literature on existing 

water-related datasets and methods used to map and monitor surface water from various 

satellite sensors, presents research challenges and gaps, research objectives, and the 

structure of the thesis. 

Chapter 2 assesses and compares the applicability of several indices for characterizing 

the temporal variability in the hydrology of a shallow seasonally flooded wetland in 

southern Spain.  

Chapter 3 develops an approach for the estimation of surface water fraction from MODIS 

data. This is done by exploring the use of MODIS spectral information and a topographic 

metric as input to machine learning algorithms (e.g., random forest, rule-based regression 

model) and testing the transferability of the models to different geographic and climatic 

zones in Spain.  

Chapter 4 transfers the approach used to derive surface water fraction developed in 

Chapter 3 to larger spatial scales (i.e., the Mediterranean region), with considerable 

improvements regarding input data, training data and commission error processing. The 

algorithm was applied to 18 years of MODIS data (2000–2017) to generate a time series 

of surface water fraction maps at 8-day interval for the Mediterranean region. 

Chapter 5 provides an in-depth evaluation of the dense 18-year surface water fraction 

(SWF) dataset developed in Chapter 4. It demonstrates the ability of the developed 
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MODIS dataset for constructing detailed surface water dynamics for hundreds of 

Mediterranean wetlands, especially for those with abnormal changes and short-duration 

water inundation. In addition, it shows how the MODIS dataset can accurately capture 

the dynamics of very small water bodies (0.01–1 km2). The results are compared and 

validated with a Landsat-based dataset and water level data. 

Chapter 6 summarizes the main findings and conclusions, and trends related to the use 

of Earth Observation (EO) in surface water mapping and monitoring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 2  

 

Evaluation of MODIS Spectral Indices for 

Monitoring Hydrological Dynamics of a Small, 

Seasonally-Flooded Wetland in Southern Spain* 

  

                                          
* This chapter is based on: Li, L., Vrieling, A., Skidmore, A., Wang, T., Muñoz, A.R., & Turak, E. 
(2015). Evaluation of MODIS spectral indices for monitoring hydrological dynamics of a small, 
seasonally-flooded wetland in southern Spain. Wetlands, 35, 851–864. 
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Abstract 

Monitoring spatio-temporal dynamics of hydrology in seasonally-flooded wetlands is 

important for water management and biodiversity conservation. Spectral data and derived 

indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) have been 

used for hydrological monitoring of large wetlands. However, comparable studies for 

small wetlands (< 25 km2) are lacking. Our aims are to examine whether MODIS-derived 

indices at 500 m spatial resolution can perform this task for small wetlands, and to 

compare the performance of various indices. First we evaluated if water levels are a good 

indicator for wetland inundation extent. A high correlation between water level and 

Landsat-derived inundation extent was found (R2 = 0.957). Secondly, we compared 10 

years of water level fluctuations with seven spectral indices at a 16-day interval. The 

Tasseled Cap brightness index (TCBI) had the highest correlation with water level for the 

complete time series including dry and wet years. Thirdly, we analyzed how these indices 

behave for areas with different inundation characteristics. Again TCBI showed a 

consistently accurate performance, which was independent of inundation frequency. We 

therefore conclude that TCBI is the best-suited index for monitoring of hydrological 

variability in small seasonally-flooded wetlands such as the Fuente de Piedra lake in 

southern Spain. We recommend testing this index further for other seasonally-flooded 

wetlands in semi-arid areas. 
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2.1 Introduction 

Seasonally or intermittently flooded wetlands are ecologically important ecosystems in 

arid, semi-arid, and Mediterranean-type regions (Haas et al. 2009; Roshier et al. 2001; 

Waterkeyn et al. 2008). Forty-five percent of the Ramsar-listed seasonally-flooded inland 

wetlands are found in these climate zones. They undergo periodic cycles of inundation 

and drought, primarily in response to variability in precipitation and evapotranspiration 

(Ruiz 2008). In arid, semi-arid and Mediterranean environments, about 30 percent of 

Ramsar-listed seasonal wetlands are small-sized, measuring between 10 and 2,500 

hectares. Despite their small size, they often act as critical refuge and breeding areas, offer 

food sources for wildlife, and harbor many plant and animal species that would otherwise 

not survive in the surrounding landscape (Gibbs 1993; Roshier et al. 2002; Semlitsch and 

Bodie 1998; Sim et al. 2013; Zacharias et al. 2007). There is concern that seasonal 

wetlands are often neglected due to their ephemeral character and small size. The 

abundance and quality of seasonal wetlands around the world is declining rapidly due to 

global climate change, expansion of agricultural land and irrigation schemes (Castañeda 

and Herrero 2008; Roshier et al. 2001; Zacharias and Zamparas 2010). Although the 

European Union (European Communities 1992) and the Ramsar Convention (Ramsar 

Convention on Wetlands 2002) include seasonal wetlands in their conservation plans, 

only a subset of them are considered. The lack of knowledge about the changes in wetland 

extent of these aquatic systems makes conservation a difficult task for resource managers. 

Hence, an urgent need exists at national and international levels to report and monitor 

changes in wetland extent and conditions for large areas, using cost-effective tools, and 

including the important small-sized wetlands. 

Hydrological dynamic processes, mainly expressed by spatial and temporal variation in 

inundation status, are important determinants of the formation and maintenance of a 

seasonally flooded wetland. Hydrological modifications may strongly affect ecosystem 

functioning and normally result in shifting species distributions and composition (Koning 

2005; Robledano et al. 2010), especially for species that are sensitive to hydroperiod 

variability (Baldwin et al. 2006; Roshier et al. 2002). It may also affect other ecosystem 

functions including ground water recharge and nutrient cycling (Leibowitz 2003). 

Therefore, it is important to monitor the wetland inundation dynamics for water 

management, ecosystem assessment and biodiversity conservation. 

In situ water level gauges are a main data source for understanding hydrological dynamics 

and essential for quantifying temporal patterns of water fluctuation with good temporal 
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resolution (Alsdorf et al. 2007). Gauge stations are typically located on large rivers, lakes 

and canals, but less frequently in seasonally flooded areas. Due to the inaccessibility of 

certain regions or financial and operational constraints, globally many wetlands lack 

gauge stations resulting in a limited knowledge and understanding of their hydrological 

conditions (Alsdorf et al. 2003). While gauge measurements provide key data on the 

wetland hydrology, they may offer little information about spatial patterns of 

hydrologically-relevant variables like inundation status (Alsdorf et al. 2007; Huang et al. 

2014a).  

Remote sensing provides temporally and spatially continuous synoptic observation of 

ecosystem processes, and these observations may allow for monitoring of spatio-temporal 

hydrological variability for large areas in a repeatable and cost effective manner (Smith 

1997). Two types of remote sensing instruments are suitable for monitoring wetland 

hydrology at local and regional scales, i.e., microwave and optical sensors. The 

microwave technique of synthetic aperture radar (SAR) can provide imagery under all 

weather conditions and thus has been used for monitoring spatial and temporal patterns 

of flood inundation (e.g., Bourgeau-Chavez et al. 2005; Kim et al. 2014; Marti-Cardona 

et al. 2010; Richards et al. 1987; Townsend 2001; Wdowinski et al. 2008). A main 

disadvantage of SAR is that the resulting backscattered signal is a complex combination 

of effects that depend on incidence angle, vegetation density and orientation, relative 

water height and wind effects. This could cause opposite backscatter responses for similar 

conditions, and the effective disentangling of such effects requires additional information 

(O'Grady and Leblanc 2014; Smith 1997). Radar (or laser) altimeters can monitor water 

heights in reservoirs and lakes with a higher temporal resolution, but may miss many 

water bodies due to the spacing between the satellite orbits (Alsdorf et al. 2007). Optical 

remote sensors, such as those onboard Landsat and SPOT, have been used frequently for 

small wetlands monitoring. For example, Herrero and Castaneda (2009) used a series of 

52 Landsat images to monitor the flooding surface of small saline wetlands in northeast 

Spain over the past 20 years. While providing accurate spatial information about flood 

extent, these sensors do not yet allow frequent and continuous monitoring over large 

regions that suffer from persistent cloud cover. In comparison, the relatively coarse spatial 

resolution (>100 m) imagery derived from satellite sensors such as AVHRR (Advanced 

Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging 

Spectroradiometer) provides more consistent and frequent observations over long time-

spans, making such imagery potentially well-suited for spatio-temporal analysis of 

wetland hydrology.  
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An often-used approach to study temporal changes from coarse-resolution optical sensors 

is to summarize their spectral information in multispectral indices and consequently study 

the spatio-temporal variation of these indices. The best-known multi-spectral index is the 

Normalized Difference Vegetation Index (NDVI) (Tucker 1979) that combines spectral 

reflectance measurements from red and near-infrared (NIR) bands. The NDVI provides a 

measure of the photosynthetic activity of the green vegetation and NDVI time series have 

been used extensively for monitoring vegetation dynamics (Beck et al. 2006; Pettorelli et 

al. 2005; Petus et al. 2013; Vrieling et al. 2011; Vrieling et al. 2013). It has also been 

used for water/land delineation (Borro et al. 2014; Chipman and Lillesand 2007) as water 

strongly absorbs light in the NIR spectral region (causing low reflectance) while much 

less absorption occurs over land surfaces. Other indices have been specifically developed 

for detecting and monitoring surface wetness (e.g., Gao 1996; McFeeters 1996; Xiao et 

al. 2002a; Xu 2006). These mostly combine shortwave infrared (SWIR) or near infrared 

(NIR) bands, i.e., the spectral domain containing specific physical water absorption 

features, and visible (VIS) spectral regions. In general, NIR-SWIR indices are mainly 

proposed for vegetation water content detection while VIS-NIR (SWIR) combinations 

are almost all proposed for the detection of open water.  

Several studies have explored coarse spatial resolution data for monitoring flood duration, 

timing and frequency of ephemeral wetlands (Chen et al. 2013; Feng et al. 2012; 

Guerschman et al. 2011; Huang et al. 2014a; Tornos et al. 2015; Xiao et al. 2005). Most 

of these studies used MODIS data to monitor flood extent by differentiating 

inundated/non-inundated or mixed pixels. Until present, there have been few attempts to 

link water level changes to temporal patterns of spectral indices. One exception is 

Ordoyne and Friedl (2008) who demonstrated the utility of multi-temporal MODIS data 

for characterizing the hydrologic regime of the Everglades in South Florida, USA. 

However, all MODIS studies focused on relative large wetlands covering at least 50 km2. 

Whether MODIS and its derived spectral indices are suitable to describe and monitor 

variations in water level for small (< 25 km2) seasonal wetlands has not yet been tested.  

This paper aims to explore the potential of MODIS-derived spectral indices for 

characterizing the temporal variability in the hydrology of small shallow wetlands. 

Specifically, the objectives are: 

(1) to investigate if water level is a good proxy of wetland hydrological variability by 

establishing a relationship between water level variation and inundated area for a 

small (~14 km2) wetland in southern Spain;  
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(2) to evaluate if time series of MODIS-derived spectral indices can effectively capture 

the hydrological variability of this wetland in relation to the water-level data; and  

(3) to explain how varying inundation characteristics within the wetland affect the 

temporal behavior of these indices. 

2.2 Study area 

The study was carried out in Fuente de Piedra lake (36º06’ N, 4º45’ W), a shallow and 

saline (athalassohaline) lake and associated marshland with an area of 1,364 hectares. It 

occupies the center of a topographically endorheic basin with a catchment area of about 

150 km2 in southern Spain, situated between the Guadalquivir watershed and the 

Guadalhorce watershed (Heredia et al. 2010) (see Figure 2.1). The study site is one of the 

most important breeding sites for the Greater Flamingo (Phoenicopterus roseus) in the 

Mediterranean region, second only to the Camargue, France (Geraci et al. 2012). Its 

natural values were recognized and listed as a Wetland of International Importance 

(Ramsar) and Special Protection Area for Birds (SPA). It is designated by the 

environmental council of the Andalusian regional government as a Nature Reserve, and 

therefore it is a protected site. 

The wetland is fed by five small rivers, rainfall, and highly mineralized ground water 

(Kohfahl et al. 2008). Evaporation from the lake surface constitutes the main water 

output. It has a maximum depth of approximately 70 cm during the 10-year study period 

and experiences both seasonal and interannual variations of water level and inundation 

extent that are predominantly linked to variability in precipitation and evaporation. The 

mean annual rainfall is 460 mm and mean annual evaporation is approximately 1600 mm. 

Usually the lake is flooded in autumn (September–October), has its highest water levels 

during spring (February–March), and dries up partially or completely around June and 

July (García and Niell 1993; Kohfahl et al. 2008). During these summer months the 

excess evaporation causes salt to deposit on the soil (see Figure 2.1c). 

Different vegetation communities are found within and outside the wetland system. Dense 

vegetation containing reeds, saltmarshes and tamarisks (see Figure 2.1e) are present in 

channels feeding into the lake, and form a natural purification buffer of runoff water 

entering the lake. On small elevated dikes and islets inside the lake, drought- and saline-

tolerant vegetation (e.g., Sarcocornia, Suaeda and Arthrocnemun) is present (Ministry of 

Agriculture Fisheries and Environment 2013) (see Figure 2.1d). In drier years with low 

water levels, surface water does not reach this vegetation, but during wet years it may be 
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partially inundated (Wang 2008). Planktonic and submerged macrophytes are generally 

negligible except for extremely wet years such as 1990 and 1998 (Conde-Álvarez et al. 

2012; García et al. 1997). During the period considered in this study (2000–2009) when 

annual precipitation levels were low, no significant development of aquatic vegetation 

was observed, which can partly be attributed to the efforts to purify the wastewater from 

nearby towns (Ministry of Agriculture Fisheries and Environment 2013). Surrounding the 

wetland area, olive trees and wheat are cultivated. While this is predominantly rainfed 

agriculture, groundwater extraction from wells is sometimes used as supplementary 

irrigation. 

 

 

Figure 2.1. Location of the study area. (a) Color composite image displaying bands 7, 4, 2 as 

RGB (Landsat 7 ETM+ on May 2, 2000); (b) map of Spain showing the location of Fuente de Piedra; 

(c), (d) and (e) photos (June 2014) showing exposed soil, salt-resistant vegetation and marshland 

surrounding the lake. The approximate location of the photos is shown in (a). 
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2.3 Data 

2.3.1 Water level data 

The Fuente de Piedra lake water level data have been collected since 1983 using a 

limnograph. This mechanical recorder draws the curve of water level fluctuations on a 

paper by registering the movements of a flute floating in a well which connects with the 

lakebed. The daily mean values of the water level are subsequently calculated and stored 

in a database. The instrument measures the water surface height from the bottom of the 

lake (i.e., the 0-cm water level indicates that the lake is dry, even though values below 0 

representing groundwater levels are recorded as the well is deeper than the lake). In this 

study, a 10-year daily mean water level dataset between 2000 and 2009 was obtained 

from Consejería de Medio Ambiente, Natural Reserve of Fuente de Piedra (Junta de 

Andalucía).  

2.3.2 Remote sensing imagery and pre-processing 

We used 78 Landsat TM/ETM+ images of Path/Row 201/34, acquired through the Global 

Visualization Viewer (GLOVIS; http://glovis.usgs.gov/) of the United States Geological 

Survey. The TM sensor has a spatial resolution of 30 m for the six reflective bands and 

120 m for the thermal band. Landsat ETM+ images consist of eight spectral bands with a 

spatial resolution of 30 meters for bands 1 to 5 and band 7. Resolution for band 6 (thermal 

infrared) is 60 meters and resolution for band 8 (panchromatic) is 15 meters. In our study, 

we used the 30 m visible and near-infrared bands of TM and ETM+. All images are 

radiometrically- and terrain-corrected products (L1T) and have a scene quality score of 

9, which means perfect scenes with no errors detected. Table 2.1 summarizes all the 

Landsat TM/ETM+ dataset used in this study and corresponds to all cloud free images 

available for the study area from 2000 to 2009 (10 years). In the case of Landsat 7 ETM +, 

images acquired after May 2003 have wedge-shaped gaps of missing data on both sides 

of each scene as Scan Line Corrector (SLC) was damaged. However, as our study area is 

in the scene center, no gaps occurred over the area. We transformed the raw digital 

numbers (DN) contained in the images to top of atmosphere (TOA) reflectance according 

to the Landsat 7 Science Data Users Handbook (Irish 2000).  
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Table 2.1. Number of Landsat images available per year (2000–2009) and month that 

are cloud-free over the study area, and consequently used in this study. 

 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

January  1 1  1 1 1    

February 1  1        

March   1     1 1 1 

April   1 1 1 1   1 1 

May 2  1 1 1   1  1 

June 1 1 2  1 1 2 2 1 1 

July 1  1 2  1   1 2 

August 1 1  2    1 1 2 

September  1 1  1 1  1  1 

October    1 1    1 1 

November  1  1  2 2 1 1 1 

December 1    2 1 1 1 1  

Total 7 5 9 8 8 8 6 8 8 11 

 

The MODIS sensor has 36 spectral bands of which seven are specifically designed for 

studying the land surface, i.e., blue (459–479 nm), green (545–565 nm), red (620–670 

nm), near infrared (841–876 nm), and shortwave infrared (SWIR1: 1230–1250 nm, 

SWIR2: 1628–1652 nm, SWIR3: 2105–2155 nm). The MODIS Land Science Team 

provides a suite of standard MODIS data products to the users, including the Nadir 

BRDF-Adjusted Reflectance (NBAR) 16-day composite product (MCD43A4). This 

product provides 500-meter resolution reflectance data for each of the MODIS bands (1–

7) adjusted using a bidirectional reflectance distribution function (BRDF) to model the 

values as if they were taken from nadir view (Schaaf et al. 2002). The product thus 

removes view angle effects, and in addition masks cloud cover and reduces atmospheric 

contamination. For this study MCD43A4 composites were used to evaluate if coarse-

resolution index time series can capture the hydrological variability of the Fuente de 

Piedra lake. We used all 16-day composites between 2000 and 2009, resulting in 227 

images.  
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2.4 Methods 

2.4.1 Evaluating water level as a proxy for inundated area 

To evaluate if water level gauge measurements provide a good proxy for inundated area 

and thus allow to effectively describe the wetland’s hydrological conditions, we used the 

Landsat scenes to set a high-resolution baseline. To discriminate water from non-water 

we used the Normalized Difference Water Index (NDWI) developed by McFeeters 

(1996). It has been widely used as an index for surface water detection (Bai et al. 2011; 

Rokni et al. 2014). We acknowledge that NDWI may not be the most effective for 

inundation detection in case of dominant floating vegetation or submerged vegetation 

(Rodriguez et al. 2014), but this was not the case for the wetland considered here (section 

2.2). The NDWI ranges from -1 to 1, with values above 0 generally representing water 

bodies. However the threshold values applied to separate water from land may vary 

significantly from one scene to the next due to aerosol interference and variable 

solar/viewing geometry (Feng et al. 2012; Ji et al. 2009). Therefore we established 

threshold values for each individual NDWI image using the Otsu thresholding algorithm. 

The algorithm assumes that the image contains two classes of pixels following a bi-modal 

histogram (foreground pixels and background pixels). It then calculates the optimum 

threshold separating the two classes that minimizes the weighted within-class variance 

(Otsu 1979).  

The inundated area derived from each of the 78 Landsat scenes was linked to the 

corresponding water levels. We fitted a second-order polynomial regression through the 

data to describe the inundation status in relation to water level variation. When the 

recorded water level is 0 cm, the lake is dry, i.e., the inundated area is 0 km2. Therefore, 

the regression analysis is only performed for those dates when the recorded water level 

was above 0 cm.  

In addition, we calculated the per-pixel water occurrence frequency (WOF) by evaluating 

for each pixel the ratio between the number of images for which the pixel was inundated 

and the total number of images (i.e., 78). Based on this, we classified the wetland areas 

into five classes: never inundated (WOF = 0), seldom inundated (0 < WOF ≤ 0.15), 

occasionally inundated (0.15 < WOF ≤ 0.3), sometimes inundated (0.3 < WOF ≤ 0.45) 

and often inundated (0.45 < WOF ≤ 0.6).  
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2.4.2 MODIS-derived spectral indices 

A range of spectral indices have been proposed to perform surface wetness detection from 

multi-spectral imagery in different contexts. These all follow the same logic as the NDVI 

(Tucker 1979), i.e., a difference between two spectral bands divided by the sum of the 

two. McFeeters (1996) introduced the Normalized Difference Water Index (NDWI) to 

delineate open water features using the green and near-infrared (NIR) band. Xu (2006) 

found that NDWI often does not distinguish between water areas and built-up land, and 

proposed the Modified Normalized Difference Water Index (MNDWI) by substituting 

the SWIR band for the NIR band. Several spectral indices combining the NIR and SWIR 

bands have been proposed using different portions of the SWIR region (Ji et al. 2011). 

These include the Normalized Difference Water Index (NDWI, Gao 1996) (referred as 

LSWIB5 in this paper) and the Land Surface Water Index (LSWI, Xiao et al. 2002b) 

(referred as LSWIB6 in this paper) which use the SWIR-band centered at 1.24 and 1.64 

µm, respectively. The combined NIR/SWIR indices are sensitive to leaf water and soil 

moisture and for this reason widely adopted for studying vegetation phenology, 

vegetation change and seasonal inundation (Campos et al. 2012; Davranche et al. 2013; 

Ordoyne and Friedl 2008; Xiao et al. 2006; Xiao et al. 2005; Yan et al. 2010). Table 2.2 

summarizes the five most common band-ratio indices adopted for water detection 

(including open water, vegetation water content, and soil moisture).  
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Table 2.3. Tasseled Cap coefficients for MODIS NBAR (source: Zhang et al. 2002).  

Index Band 1  Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Tasseled Cap 

Brightness 

Index (TCBI) 

 

0.3956  

 

0.4718 

 

0.3354 

 

0.3834 

 

0.3946 

 

0.3434 

 

0.2964 

Tasseled Cap 

Wetness 

Index (TCWI) 

 

0.10839  

 

0.0912 

 

0.5065 

 

0.4040 

 

-0.2410 

 

-0.4658 

 

-0.5306 

 

Except for spectral band-ratio indices using two multispectral bands, there are also 

approaches synthesizing information contained in multiple bands. The tasseled cap 

transformation, first suggested by Kauth and Thomas (1976) for Landsat MSS, is a useful 

tool for compressing spectral data into a few bands that can be directly associated with 

the physical parameters of the land surface (Crist 1985; Crist and Cicone 1984). The first 

three components of the Tasseled Cap transformation are brightness, greenness and 

wetness. Brightness, hereinafter referred to as “Tasseled Cap Brightness Index (TCBI)”, 

is a weighted sum of all six bands and correlated to texture and moisture content of soils 

(Crist et al. 1986). Greenness is a contrast between near-infrared and visible reflectance, 

and is thus a measure of the presence and density of green vegetation. Wetness, 

hereinafter referred to as “Tasseled Cap Wetness Index (TCWI)”, contrasts the sum of 

the visible/ near infrared with the shortwave infrared bands, providing a measure of soil 

moisture tension (Crist et al. 1986; Jian et al. 2012) and plant moisture (Cohen 1991; Jin 

and Sader 2005; Toomey and Vierling 2005). The coefficients of TCBI and TCWI 

proposed by Zhang et al. (2002) were used for MODIS data (Table 2.3). 

For each 16-day MCD43A4 composite, we calculated all the spectral indices that are 

designed to be correlated to surface wetness. Because the resulting MODIS-derived time-

series of LSWIB5 and LSWIB6 showed a strong similarity, we only present LSWIB6 results 

in this paper. 

2.4.3 Evaluation of MODIS-derived spectral indices for monitoring 
hydrological variability 

For each 16-day time step and spectral index we calculated the mean value of the MODIS 

pixels contained within the lake. Only pixels whose centers were inside the lake boundary 

were included. The temporal patterns of average MODIS indices for the entire lake were 



MODIS Spectral Indices for Monitoring Hydrological Dynamics 

34 

then analyzed. This resulted in a single average 10-year time series from 2000 to 2009 

for the lake for each spectral index with a 16-day temporal resolution. 

To analyze which index most accurately describes the temporal hydrological variability, 

we averaged the water level data to 16-day periods corresponding to the MODIS 

composite period. Pearson’s correlation coefficients were calculated between each water 

index series and the corresponding water level data.  

Besides the lake-average indices, we also performed correlation analysis between water 

level and index time series for single MODIS pixels. For this analysis we included pixels 

within 1 km outside the lake as the surrounding vegetation may also reflect the hydrology 

condition in the lake. In an attempt to group areas of similar behavior, we converted the 

Landsat-derived inundation frequency map to vector layers. From these layers we 

calculated the spatial mean index values of the MODIS pixels contained within each 

inundation occurrence zone and within the 1km buffer area, and then related these to 

water level data. In addition, we calculated the dynamic range for each index time series 

(defined here as the absolute difference between the 5th to 95th percentile of all index 

values) to examine which spectral index responds most strongly to the hydrological 

fluctuations. To better understand how the behavior of each spectral index within an 

inundation zone relates to the spectral properties, we also calculated the spatial mean 

reflectance for each MODIS band and each inundation class for several different water 

levels ranging from -30 to 62 cm. 

2.5 Results and discussion 

2.5.1 Relationship between water level and inundated area 

Figure 2.2 and Figure 2.3 illustrate the changes in inundated area as a function of water 

level. The data are most accurately fitted with a second order polynomial that indicates a 

strong positive relationship (R2 = 0.957) between water level and inundated area. Similar 

high correlations using a second order polynomial were also achieved by Sippel et al. 

(1998) and Jung et al. (2011), but other mathematical relationships are also found between 

the two parameters, including a linear function (Liu et al. 1983), a power function 

(Hayashi and van der Kamp 2000), and an exponential function (Mahe et al. 2013; Mahe 

et al. 2011). The type of relationship is largely dependent on the lake bathymetry (Alsdorf 

et al. 2007; Medina et al. 2010) or river morphology (Smith 1997). Other effects also play 

a role. For example wind effects (Wang 2008) may explain the range of inundated area 
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between 4.0 and 6.5 km2 around the water level of 22 cm (Figure 2.3). Despite the 

underestimation of inundation area at low water levels (< 5cm) and the scattering around 

the regression line, Figure 2.3 shows a strong relationship between water level and 

inundation area. Consequently water level data can be used in this study as a proxy for 

the important hydrological fluctuations occurring in the wetland. 

 

 

Figure 2.2. Inundation maps derived from multi-temporal Landsat imagery corresponding to 

different water levels and corresponding date. 

 

 
Figure 2.3. Relationship between measured water level and Landsat-derived inundation areas. A 

second order polynomial was fitted to the data. 

 

Figure 2.4 presents the inundation frequency map obtained from the number of times each 

pixel was inundated in the 78 Landsat images. Central regions (shown in blue) experience 

variable water depths during the wet season. Never inundated regions (shown in white) 

occur in the southwest and north. The southwest areas are known as “Canchones del 

Suroeste”, which are unique natural islets in the lake providing good nesting areas for 

flamingos only in years with very high water levels when foxes and other predators cannot 

reach these islets (Rendón-Martos 1996). These areas are mudflats and partly covered by 
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drought- and salt-resistant vegetation (e.g., Sarcocornia, Suaeda and Arthrocnemun) 

(Figure 2.1d). The northern fringe of the lake is covered by dense vegetation which is a 

combination of marsh vegetation mixed with reeds, rushes and tamarisks (Figure 2.1e). 

 

Figure 2.4. Inundation frequency classes map obtained from the number of Landsat images 

between 2000 and 2009 that showed inundation. WOF stands for water occurrence frequency. 

2.5.2 MODIS-derived indices vs. water level 

Figure 2.5 presents a visual comparison of the multi-temporal profiles of six spectral 

indices throughout a 10 year period (2000–2009) in conjunction with water level. During 

the 10 years of study, the water level of the lake has varied substantially, both within and 

between years. All hydrological cycles have a filling phase of strong water level increase 

during September to November. Water levels remain relatively high until spring 

(February–March). This is followed by a drying period with dropping water levels, 

resulting in a complete dry up of the lake around June–July. Based on the inter-annual 

variations in lake water levels, two categories of hydrological years can be identified: 

relatively wet years (2000 to 2004 and 2009) and relatively dry years (2005 to 2008). 

During wet years, the lake water levels start rising from late September to mid-October. 

Throughout the wet years, water depths are higher than the multi-annual average and 

water persists on the surface for longer periods (Mid-October to late June). Dry years are 

characterized by longer dry seasons which can start as early as May and end in October.  
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Figure 2.5. Comparison between spectral index time series from MODIS and water level 

data. The solid red line represents in-situ water level measurements; the blue points 

represent spatial mean MODIS index values of the Fuente de Piedra lake for each MODIS 

composite; the purple dashed line represents the multi-annual average water level 

fluctuation; the black dashed line indicates the 0 cm water depth (no open water in the 

lake). 
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Table 2.4. Pearson’s correlation coefficients between in-situ water level data and 

MODIS-derived indices for the whole time series (2000–2009), for the wet years only 

(2000–2004 and 2009), and for the dry years only (2005–2008). 
 

2000–2009 2005–2008 2000–2004 and 2009 

NDWI 0.58 0.29 0.66 

MNDWI 0.52 0.74 0.39 

LSWIB6 0.28 0.75 0.22 

NDVI 0.12 0.35 0.15 

TCBI -0.87 -0.92 -0.88 

TCWI  0.67 0.92 0.53 

 

Visual inspection of the temporal graph (Figure 2.5) indicates a relatively stronger 

correspondence between water level and MNDWI, TCBI and TCWI. All the indices 

except TCBI were positively related to the water level data. The TCBI values exhibited a 

smooth, regular seasonal annual pattern with a higher variability in index values. The 

TCWI and MNDWI curves also showed clear seasonal patterns but with more noise. 

During the 10-year study period, the TCWI and MNDWI values were mostly below 0, 

with a smaller dynamic range of TCWI than that of MNDWI. The other indices showed 

a more random pattern. One exception is that LSWIB6 closely follows the water level 

fluctuation during dry years (2005–2008). 

 

Table 2.4 shows the Pearson’s correlation coefficients between each water index and the 

corresponding water level data. There was a strong negative correlation between TCBI 

and water level time series, which is consistent with the findings by Ordoyne and Friedl 

(2008) for the Florida Everglades. TCBI is a linear combination of all spectral bands with 

positive coefficients (Table 2.3); the higher the overall reflection of the ground surface 

across the spectrum, the higher the TCBI. Because water is a strong absorber of radiation 

across the visible and infrared portion of the spectrum, a decrease of water in the system 

(including open water and soil moisture), will cause an increase in TCBI. When water 

retreats completely from the ground surface (i.e., no open water), measured water level 

variation is associated with the relative water content in the soil. A high water content 

makes soils darker (hence low TCBI) than if these were dry, particularly for soils with 

low organic matter content (Jensen 2009). Strong correlations were consistent between 

TCBI and water level for both dry and wet years, suggesting that TCBI is a reliable index 

for hydrological monitoring in the Fuente de Piedra lake under a wide range of conditions. 
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In contrast to TCBI, TCWI had the highest positive correlation coefficient with water 

level (r = 0.67) for the 10-year period, with a much higher correlation coefficient (r = 

0.92) for the dry years (2005–2008). This result confirms findings by other studies 

(Ordoyne and Friedl 2008; Van Trung et al. 2013) and can be explained by the fact that 

water strongly absorbs radiation in the SWIR part of the electro-magnetic spectrum 

(Campbell 2002). The correlation coefficient for wet years (2000–2004 and 2009) was 

much lower (r = 0.53) and can be attributed to higher TCWI values in the dry season 

(May–July) of these wet years as compared to dry years, even if the water level is the 

same. These high values may be explained by salt deposition on the soil surface during 

the dry season, which occurs particularly in wet years when more water evaporates. The 

presence of salt causes the TCWI to increase considerably due to the high spectral 

reflectance of crusted saline soil surfaces in the visible and near-infrared regions of the 

spectrum (Howari et al. 2002; Koshal 2012). The different findings for the dry and wet 

years suggest that TCWI can be a proper index for monitoring wetland hydrological 

variability in non-saline wetlands, but not for saline wetlands with seasonal salt deposits. 

While TCBI and TCWI clearly exhibited the highest correlation with water level 

fluctuations, we found that band-ratio indices also gave reasonable correlation 

coefficients, but this was largely season-dependent. For dry years, LSWIB6 and MNDWI 

had a stronger relation with water level than NDVI and NDWI. This could be partly 

attributed to the smaller sensitivity of NIR reflection to variations in soil moisture, 

vegetation water content (Eitel et al. 2006; Olsen et al. 2013) and open water (Campbell 

2002; Li et al. 2003) as compared to SWIR reflection. Low correlation between 

LSWIB6/MNDWI and water level for wet years may again be explained by the 

accumulation of salt at the soil surface (as for TCWI). NDWI showed a higher correlation 

coefficient with water level for wet years, which is likely to due to the higher variation in 

open water extent for which NDWI is designed. For all years, the NDVI-water level 

correlation coefficients were very low (r < 0.4). 

2.5.3 Temporal behaviour of MODIS-derived indices in response to 
inundation characteristics 

Figure 2.6 shows the correlation coefficient between MODIS-derived indices and water 

level for individual MODIS pixels. Important spatial variations can be observed. 

Generally, for NDWI, LSWIB6 and NDVI the sign of the correlation coefficient was 

opposite when comparing areas inside and outside the lake, while for TCBI, TCWI and 

MNDWI, the sign was the same.  
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Comparison of Pearson’s correlation coefficients for different inundation frequency 

zones indicated that the sign and strength of correlations between water level and the 

MODIS-derived indices were highly dependent on inundation frequency (Table 2.5). 

TCBI was an exception as it showed high correlations with water level in all six 

inundation frequency classes. This result demonstrated that TCBI was sensitive to 

hydrological variability as expressed by fluctuations in both open water extent and soil 

moisture. Because the TCBI is a linear combination of all MODIS bands with positive 

coefficients (Table 2.3), TCBI’s sensitivity to hydrological variability across classes 

should be explained by an overall increase of reflectance with decreasing water levels. In 

fact, Figure 2.7 shows that this is the case for all inundation classes. This suggests that 

TCBI is well suited for monitoring relative wetness under a wide range of hydrological 

conditions. 

Table 2.5. Pearson’s correlation coefficients between spectral indices derived from 

MODIS for different inundation frequency zones and in-situ water level data over 2000–

2009. 

 NDWI MNDWI LSWIB6 NDVI TCBI TCWI 

Upland -0.69 0.40 0.81 0.79 -0.73 0.80 

Never inundated -0.11 0.85 0.86 0.61 -0.86 0.94 

Seldom inundated 0.21 0.47 0.46 0.42 -0.89 0.75 

Occasionally inundated 0.50 0.48 0.26 0.14 -0.88 0.72 

Sometimes inundated 0.70 0.51 0.09 -0.26 -0.86 0.53 

Often inundated 0.84 0.57 -0.08 -0.45 -0.84 0.33 
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Figure 2.6. Pearson’s correlation coefficient between spectral indices derived from 

MODIS and measured water level for the 2000–2009 period for each MODIS pixel. 

 

 

Figure 2.7. Average MODIS spectral signatures for the different inundation classes. The 

X-axis represents the central wavelength of each of the seven MODIS bands. Each line 

provides a spatial mean for an inundation class for a single image that corresponds to 

the water levels shown in the legend. 
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TCWI was positively related to water level in all inundation classes. The highest 

correlation (r = 0.94) existed in never inundated areas followed by upland (r = 0.80). This 

finding can be explained by the fact that TCWI is closely associated with both soil 

moisture (Crist and Cicone 1984; Crist et al. 1986; Jian et al. 2012) and plant water 

content (Cohen 1991; Jin and Sader 2005; Toomey and Vierling 2005). TCWI takes the 

difference between a weighted sum of the visible/NIR reflectance and the SWIR 

reflectance (Table 2.3). TCWI would be most sensitive if the reflectance of both 

wavelength domains would change in the opposite direction. Figure 2.7 shows that this is 

not the case for any inundation class, but for the never inundated areas, the visible/NIR 

domain (469 nm–858 nm) changes least while SWIR (1240 nm–2130 nm) shows strong 

increases with decreasing water levels, resulting in a high sensitivity for TCWI. The likely 

explanation for this behavior in the never inundated class, is that TCWI responds here 

predominantly to changes in water content of soil and vegetation. These results are 

supported by the study of Ordoyne and Friedl (2008) who concluded that TCWI can 

quantify hydrological variation when the water table is below the soil surface. With an 

increase in the frequency of inundation, the TCWI–water level correlation decreased, 

indicating that TCWI might not appropriate for detecting variability in the presence of 

open water. It is rather an indicator of the water content of soil and vegetation. LSWIB6 

exhibited a similar behavior to TCWI. The high LSWIB6-water level correlations for never 

inundated and upland areas confirm that LSWIB6 is also a good indicator of vegetation 

and soil water content (Chen et al. 2005; Wang et al. 2008; Xiao et al. 2006; Xiao et al. 

2005; Zhang et al. 2011).  

NDWI had the highest correlation coefficient (r = 0.84) with water level for often 

inundated areas where the fluctuation in open-water presence is larger but low correlation 

coefficients in occasionally, seldom, and never inundated areas. This confirms that the 

index is able to monitor open water fluctuations, but not changes in soil water content. 

The upland class showed a high negative NDWI-water level correlation coefficient (r = -

0.69), which can be explained by Figure 2.7 that shows a decrease in green reflectance 

(555 nm) and a simultaneous increase in NIR reflectance (858 nm) for upland as water 

level increases above 0 cm. This likely relates to reduced presence of green vegetation 

and/or the drying of vegetation around the lake at moments when the lake water level is 

low. Dry vegetation reflects less NIR radiation than green plants resulting in a higher 

NDWI.  
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NDVI showed high and positive correlations with water level for upland and never 

inundated areas but low and negative correlations inside the lake. For a wetland in 

Australia, Petus et al. (2013) also found differential NDVI temporal behavior inside the 

wetland as compared to the surrounding regions. This can be attributed to the fact that 

different wetland plant species have different phenological responses in relation to water 

availability (Baird and Wilby 1999; Van Trung et al. 2013). In large areas inside the lake, 

plants that are able to stand extreme drought and salinity may appear at low densities 

when water retreats. Instead, in the upland and never inundated areas of the lake, the 

vegetation is relatively dense and dominated by crops, marsh and scrub that strongly 

depend on water availability, which is higher with higher water tables. These opposite 

correlation signs for NDVI may also partially explain the low correction coefficient for 

NDVI and water level for the whole lake (Table 2.4). While a good index for monitoring 

green vegetation abundance in response to water level in vegetated wetlands such as 

marshes (Jiang et al. 2015), NDVI proved not be appropriate for monitoring wetland 

hydrology in this saline lake with sparse vegetation.  

 
The dynamic range of TCBI, expressed by the 5th to 95th percentile range, varied greatly 

in relation to different inundation characteristics with a higher value of 0.72 for usually 

inundated areas and a low value of 0.38 for upland areas (Table 2.6). This difference in 

dynamic range suggests that the TCBI variability could be used to spatially separate 

seasonally-flooded wetlands from other areas, even if the temporal behavior is similar. 

Also MNDWI and NDWI showed higher variability for inundated areas as compared to 

uplands suggesting MNDWI and NDWI would also allow to separate wetlands clearly 

from its surroundings. An additional factor for NDWI to achieve this separation is the 

opposite temporal behavior (Table 2.5 and Figure 2.6). This implies that MODIS-derived 

indicates can, besides monitoring wetland hydrology, also play a role in identification and 

mapping of small wetlands, and monitoring of their extent. 
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Table 2.6. The 5th to 95th percentile variability as derived from the area-average time 

series of each spectral index per inundation class. 

 NDWI MNDWI LSWIB6 NDVI TCBI TCWI 

Upland 0.14 0.07 0.20 0.24 0.38 0.17 

Never inundated 0.14 0.24 0.30 0.22 0.48 0.21 

Seldom inundated 0.18 0.30 0.26 0.21 0.59 0.20 

Occasionally inundated 0.18 0.36 0.25 0.15 0.64 0.20 

Sometimes inundated 0.28 0.50 0.31 0.15 0.71 0.21 

Often inundated 0.36 0.54 0.39 0.16 0.72 0.21 

2.5.4 Future outlook for wetland monitoring with coarse spatial 
resolution multi-spectral data 

Although our study was conducted for a single small wetland, it clearly showed the good 

potential of particularly the TCBI for wetland hydrological monitoring. We expect that 

this potential can be used for monitoring the hydrology of other wetlands with sparse 

vegetation cover in arid and semi-arid environments. The soils in and around the Fuente 

de Piedra lake are mostly mineral, which could have affected the results, because dry soils 

are bright (high TCBI) and wetter soils and inundated areas are dark (low TCBI) across 

the part of the electro-magnetic spectrum considered here. Mineral soils, low in organic 

matter content, are the dominant soils in arid and semi-arid environments. Soils with a 

higher organic matter content will also experience a decline in reflection when wetted or 

inundated, but given that such soils are already dark when in dry conditions, TCBI may 

possibly be less sensitive to this decline. Further studies in other wetlands should confirm 

the applicability and limitations of TCBI for monitoring wetland hydrology. Besides 

examining indices for wetlands with different soil types, we also recommend further 

testing for seasonally-flooded wetlands with other diverging characteristics, e.g., marshes 

with dense emergent vegetation, and for even smaller wetlands that comprise only a few 

MODIS pixels.  

 

Closely monitoring hydrological variability is important for understanding how climate 

change and human actions affect the dynamics of seasonally-flooded wetlands, or may 
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affect these in the future. Given that seasonally-flooded wetlands host a high diversity of 

fauna and flora that depend on these dynamics, we need tools to study them. This study 

demonstrated a promising option to monitor wetlands remotely using freely-available 

coarse spatial resolution but high temporal resolution data, which could benefit the 

hydrological monitoring of many seasonally-flooded wetlands globally. This in turn has 

potential to greatly contribute to the management and conservation of these habitats and 

species living in them. 

Taking into account the importance of the Fuente de Piedra lake for conservation (e.g., 

for waterbirds), the results of this study may be directly applied for explaining animal 

species abundance by hydrological variability. Given that many of the waterbird species 

(e.g., the Greater Flamingo), are not confined to only this wetland, but make breeding and 

feeding decisions based on wetland conditions in a wider area, the MODIS indices may 

also be applied for assessing spatio-temporal variation of wetlands across Spain and the 

Mediterranean Basin (Amat et al. 2007). For example, the colony size of greater 

flamingos at Fuente de Piedra is also affected by water levels in the Guadalquivir marshes, 

which are located 140 km away. The Fuente de Piedra lake usually dries up during the 

late breeding season, and flamingos breeding in this locality must move to Guadalquivir 

marshes to obtain their food during the chick-rearing period (Rendón-Martos 1996). 

Hence, simultaneous monitoring hydrological dynamics of various wetlands with 

MODIS may prove an important tool to better explain and predict animal populations. 

2.6 Conclusions 

Seasonally-flooded wetlands are among the world's most unique and valuable 

ecosystems, but are under threat worldwide. Methods that allow monitoring these small 

wetlands from remote sensing are urgently needed by resource managers and ecologists, 

especially in areas where conflicts arise between the water demand for agriculture and 

conservation of wetlands in semi-arid environments. Results from this work suggest that 

the MODIS-derived spectral indices have good potential for characterizing and 

monitoring temporal variability in the hydrology of small seasonally-flooded wetlands. 

Particularly TCBI proved useful and gave consistent good results for wet and dry years, 

and for areas characterized by different inundation frequencies. This is relevant as it could 

provide opportunity to improve hydrological monitoring particularly for data-poor and 

ungauged wetlands. We recommend further testing of MODIS indices for hydrological 

monitoring of seasonally-flooded wetlands with different soil and vegetation 

characteristics. Besides wetland hydrological monitoring, the differential temporal 
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behavior of MODIS indices within and outside the lake make these indices a promising 

tool for mapping and monitoring wetland extent over large areas. 

 



 

 

Chapter 3  

 

Monitoring the Dynamics of Surface Water 

Fraction from MODIS Time Series in a 

Mediterranean Environment* 

  

                                          
* This chapter is based on: Li, L., Vrieling, A., Skidmore, A., Wang, T., & Turak, E. (2018). 
Monitoring the dynamics of surface water fraction from MODIS time series in a Mediterranean 
environment. International Journal of Applied Earth Observation and Geoinformation, 66, 135–
145. 
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Abstract 

Detailed spatial information of changes in surface water extent is needed for water 

management and biodiversity conservation, particularly in drier parts of the globe where 

small, temporally-variant wetlands prevail. Although global surface water histories are 

now generated from 30 m Landsat data, for many locations they contain large temporal 

gaps particularly for longer periods (>10 years) due to revisit intervals and cloud cover. 

Daily Moderate Resolution Imaging Spectrometer (MODIS) imagery has potential to fill 

such gaps, but its relatively coarse spatial resolution may not detect small water bodies, 

which can be of great ecological importance. To address this problem, we propose and 

test options for estimating the surface water fraction from MODIS 16-day 500 m 

Bidirectional Reflectance Distribution Function (BRDF) corrected surface reflectance 

image composites. The spatial extent of two Landsat tiles over Spain were selected as test 

areas. We obtained a 500 m reference dataset on surface water fraction by spatially 

aggregating 30 m binary water masks obtained from the Landsat-derived C-version of 

Function of Mask (CFmask), which themselves were evaluated against high-resolution 

Google Earth imagery. Twelve regression tree models were developed with two 

approaches, Random Forest and Cubist, using spectral metrics derived from MODIS data 

and topographic parameters generated from a 30 m spatial resolution digital elevation 

model. Results showed that accuracies were higher when we included annual summary 

statistics of the spectral metrics as predictor variables. Models trained on a single Landsat 

tile were ineffective in mapping surface water in the other tile, but global models trained 

with environmental conditions from both tiles can provide accurate results for both study 

areas. We achieved the highest accuracy with Cubist global model (R2 = 0.91, RMSE = 

11.05%, MAE = 7.67%). Our method was not only effective for mapping permanent 

water fraction, but also in accurately capturing temporal fluctuations of surface water. 

Based on this good performance, we produced surface water fraction maps at 16-day 

interval for the 2000–2015 MODIS archive. Our approach is promising for monitoring 

surface water fraction at high frequency time intervals over much larger regions provided 

that training data are collected across the spatial domain for which the model will be 

applied.  
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3.1 Introduction 

Terrestrial surface water bodies play an important role in the global carbon cycle and 

climatic processes (Chahine 1992; Tranvik et al. 2009). They support a high level of 

biodiversity and provide a range of ecosystem services (Dudgeon et al. 2006; Zedler and 

Kercher 2005). Globally-consistent maps of surface water extent at high spatial and 

temporal resolution are a major information need for assessing progress towards the Aichi 

targets for 2020 of the Convention of Biological Diversity (Turak et al. 2017). One of the 

challenges for producing these maps is that surface water can exhibit a strong seasonal 

and inter-annual variability. For example, in arid and semi-arid regions, surface water 

bodies are often small and their size varies in time in response to changes in precipitation 

and evapotranspiration (Ruiz 2008). Hydrological changes may strongly affect ecosystem 

functioning and result in shifting species distributions and composition (Koning 2005; 

Robledano et al. 2010). Therefore, monitoring the dynamics of surface water is of critical 

importance for understanding the health and functioning of wetlands, and the ecosystem 

services they provide.  

One option for monitoring dynamic surface water is using multi-temporal optical imagery 

of 10–30 m spatial resolution (e.g., the Landsat-series and Sentinel-2). A suite of recent 

studies have exploited the Landsat archive to assess long-term variability of surface water 

and flooding extent at the regional (Halabisky et al. 2016; Heimhuber et al. 2016; Tulbure 

et al. 2016), continental (Mueller et al. 2016) and global scale (Donchyts et al. 2016; 

Pekel et al. 2016). Although Landsat sensors can provide accurate spatial information on 

surface water extent and those with small sizes, until recently their revisit interval was 

too long (16 days and more) to capture rapid changes in water extent due to seasonal 

hydrological fluctuations or extreme weather events. Furthermore, Landsat archive 

features some temporal gaps depending on geographical location (Pekel et al. 2016). For 

areas that suffer from persistent cloud cover, there might be large temporal gaps between 

two clear observations. In a Landsat-based study of surface water monitoring, Halabisky 

et al. (2016) could effectively reconstruct surface-water hydrographs (i.e., temporal 

details on seasonal, intra-annual and long-term changes in surface water extent) for 750 

wetlands in Douglas County, Washington, USA from 28 years of Landsat data, they 

indicated that their approach would not give meaningful results for wetlands with frequent 

cloud cover or with short hydroperiods. While revisit times are reducing for high 

resolution sensors (e.g., Sentinel-2 offers a 5-day repeat since March 2017: Feng et al. 
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2016), it will be some years before it becomes possible to construct long-term (>10 years) 

and dense time series of surface water over large regions.  

Moderate resolution imagery derived from satellite sensors such as the Moderate 

Resolution Imaging Spectroradiometer (MODIS) provides observations at a much higher 

frequency over long time-spans, with obvious advantages for monitoring surface water 

dynamics. A number of studies have used MODIS for surface water mapping (e.g., 

Kaptue et al. 2013; Khandelwal et al. 2017; Ovakoglou et al. 2016; Pekel et al. 2014; 

Sharma et al. 2015). These studies have in common that they provide a binary 

classification for each grid cell and time period, i.e., water or no water. However, binary 

classifications cannot represent water-bodies that are smaller than the grid cell itself. For 

example, Khandelwal et al. (2017) successfully analyzed temporal variations in surface 

extent of global reservoirs using  MODIS time series, but their method was only 

applicable for large water bodies comprising more than ten MODIS pixels. In areas with 

many (temporal) small water bodies that are equal or less the size of a grid cell, binary 

classification could result in large omission errors. Such omission errors may be trivial 

when tracking global changes in surface area, but can be essential for assessing 

biodiversity, which is greatly influenced by the density of small wetlands (Deane et al. 

2017; Semlitsch and Bodie 1998). 

To overcome the problem outlined above, it is possible to estimate surface water fraction; 

i.e., the percentage of surface water within a single grid cell. Existing studies on surface 

water fraction mapping have used techniques like linear spectral mixture modeling 

(LSMM) and machine learning. For instance, Weiss and Crabtree (2011) developed a 

multi-linear regression model to estimate surface water fraction from MODIS using 

spectral indices, i.e., normalized difference vegetation index (NDVI), normalized 

difference water index (NDWI), and tasseled cap indices for the Yukon Flats National 

Wildlife Refuge (Alaska, USA), but achieved a moderate model accuracy (R2 ≈ 0.625) 

between reference and modeled surface water fraction. LSMM has been widely used for 

the estimation of fractional cover of land surface components such as vegetation (Gan et 

al. 2014; Guerschman et al. 2015; Lu et al. 2003; Song 2005; Xiao and Moody 2005), 

snow cover (Painter et al. 2009; Vikhamar and Solberg 2003), urban area (Yang et al. 

2014), and water (Hope et al. 1999; Li et al. 2013b; Olthof et al. 2015; Schroeder et al. 

2015; Sheng et al. 2001; Sun et al. 2011). This approach is based on the premise that a 

pixel’s observed reflectance can be modelled as a linear combination of all end-member 

spectra of the features within the pixel, weighted by their respective fractional abundance 

(Adams et al. 1995). A substantial challenge in linear unmixing is to determine the spectra 



Chapter  3 

51 

and number of endmembers, which can be at a maximum of one endmember less than the 

number of spectral bands. For example, studies that used LSMM to estimate surface water 

fraction used between two and four endmembers. Nonetheless, this number may be 

inadequate to spectrally characterize a complex and heterogeneous landscape. Moreover, 

endmembers in LSMM are considered pure surface components, but they often show 

important spectral diversity themselves. For example in the case of water, the spectral 

signature varies according to water composition (e.g., algae, sediment and dissolved 

organic matter), submerged aquatic vegetation and bottom reflection, which also depends 

on water depth (Hommersom et al. 2011; Jensen 2009). 

An alternative approach for surface water fraction estimation is the use of machine 

learning techniques such as support vector regression, multivariate adaptive regression 

splines, artificial neural networks and regression-tree (RT) algorithms. Research 

comparing algorithms have shown that RT algorithms are often among the top performers 

across a range of applications on fractional surface cover mapping (e.g., Drzewiecki 2016; 

Xia et al. 2017). Unlike LSMM that needs to consider and estimate fractional cover for 

all endmembers within each pixel, RT is a nonlinear algorithm that can be used to derive 

fractional cover for a single specific land surface component. RT has been used 

extensively in remote sensing, for example to derive the percentage of tree cover (Hansen 

et al. 2002; Kobayashi et al. 2014), and to estimate fractional impervious surface area in 

the National Land Cover Data (NLCD) product by USGS (Xian et al. 2011). To our 

knowledge, only few researchers have attempted to estimate surface water fraction 

through time using RT algorithms. Rover et al. (2010) compared various methods to map 

surface water fraction in the Yukon Flats and showed that the RT method produced the 

highest accuracy (R2 = 0.93, RMSE = 11%), outperforming the LSMM. In a case study 

of the 2005 Louisiana floods, Sun et al. (2012) applied a RT algorithm to derive water 

fraction from MODIS using as predictors MODIS band reflectance and spectral water 

indices and achieved high accuracy. Hence, RT algorithms seem to be promising for 

accurate mapping of surface water fraction over large regions. However, several 

important issues regarding the application of the RT algorithm have not yet been 

addressed in current literature. First, existing studies merely incorporated reflectance or 

reflectance-derived predictor variables, whereas the inclusion of ancillary environmental 

variables (e.g., digital elevation model) may potentially improve the accuracy of the 

regression tree models. Second, the transferability of trained regression tree models to 

larger areas is unknown, as existing studies focused on small areas with homogeneous 

climate characteristics. Third, no studies have examined how different surface water 
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fraction and water-permanence types may affect model performance. In this study we aim 

to:  

(1) evaluate two rule-based regression-tree methods that incorporate MODIS spectral 

information and a topographic metric derived from digital elevation model (DEM) for 

accurately mapping and monitoring surface water fraction; 

(2) assess the transferability of the resulting models to different geographic and climatic 

zones;  

(3) assess the accuracy of the method outcomes as a function of surface water fraction 

and of the variability in surface water presence.  

3.2 Study area 

We selected two study areas in Spain for building and training the models (see Figure 

3.1a). The two areas have different characteristics in terms of climate, and each is defined 

by the spatial extent of a Landsat tile (i.e., P199R031 and P202R034, hereinafter referred 

to as T1 and T2).  

The first area is located in the middle and lower Ebro river basin, north-eastern Spain. 

The area has a wide variety of climatic environments due to the complex topography 

(Figure 3.1b), with annual precipitation ranging from 348mm to 1020mm, based on the 

WorldClim database (Hijmans et al. 2005). The Ebro is the largest river on the Iberian 

Peninsula and one of the largest in the Mediterranean region. Multiple dams are built 

along the Ebro river and its major tributaries, mainly for water storage in reservoirs, 

hydropower production and for agricultural irrigation (Batalla et al. 2004). The northern 

part of the area belongs to the Pyrenees mountains and contains several small lakes. 

Multiple endorheic lakes are also scattered across the Oceanic and semi-arid regions such 

as Sarinena and the brackish lakes of Chiprana. The semi-arid region of Los Monegros 

(south-central part of study area) contains a dozen small, shallow saline lakes which are 

regulated by high evapotranspiration, low rainfall, and ground water flow (Lecina et al. 

2010).  
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Figure 3.1. (a) The map of Spain showing the two Landsat tiles selected as study areas. 

They cover different climate zones as mapped by Peel et al. (2007). Detailed view of the 

Landsat tile and sample locations for P199R031 (b) and P202R034 (c). 

 

The second area is located in Andalusia, southern Spain. This area has a Mediterranean 

climate (Figure 3.1c), which is characterized by dry, hot summers and mild, moist winters 

with irregular precipitation, most of it occurring from October to February.  The mean 

annual temperature and precipitation are approximately 17 °C and 600 mm, respectively, 

based on the WorldClim database. The main river of this region is the Guadalquivir. This 

area comprises extensive estuaries and wetlands, such as the marshes of  Doñana in the 

floodplain of the lower Guadalquivir River and the Odiel marshes, both areas were 

declared as Ramsar sites (Matthews 1993) and they are important for the conservation of 

migrant water birds (Rendón et al. 2008).  

3.3 Data 

3.3.1 Landsat data 

To generate training and validation data on the response variable as input for modeling 

surface water fraction, we used a binary water mask derived from the C-version of 

Function of Mask (CFmask) band contained in the Surface Reflectance (SR) higher-level 

data products that are generated by the United States Geological Survey (USGS). We note 

that in the recently-released version of the SR product (i.e., June 2017), the CFmask 

results are integrated into “Level-2 Pixel Quality Assurance band”, but we used the 

CFmask band available prior to that release. The CFmask algorithm assesses for each 

pixel if clouds, cloud shadows, snow, or surface water are present based on 

atmospherically corrected Landsat 4–7 and Landsat 8 images. Water was identified by 
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applying fixed threshold values to NIR reflectance and NDVI values (Zhu et al. 2015; 

Zhu and Woodcock 2012). We downloaded all available CFmask bands for the period 

2000 to 2015 from the USGS EarthExplorer (https://earthexplorer.usgs.gov/), and 

retained those scenes for which the cloud cover was less than 10 percent. This resulted in 

50 scenes for T1 and 64 scenes for T2 (Figure 3.2).  

3.3.2 MODIS data 

The MODIS Nadir BRDF-Adjusted Reflectance (NBAR) 16-day composite product 

(MCD43A4, Collection 5) was used to generate the main predictor variables for the 

estimation of the surface water fraction. This product provides 500 m resolution surface 

reflectance data for each of the MODIS bands (1–7) corrected to nadir-view geometry at 

a constant solar angle using a bi-directional reflectance distribution function (BRDF) 

model (Schaaf et al. 2002). We downloaded all MCD43A4 data for the 2000–2015 time 

period for three MODIS tiles (i.e., H17V04, H17V05 and H18V04) that together cover 

our study areas from the Land Processing Distributed Active Archive Center (LP DAAC).  

 

 

Figure 3.2. Number of Landsat images per tile and month between 2000 and 2015. 

3.3.3 Google Earth imagery 

We visually interpreted very high resolution imagery freely available in Google Earth for 

validation of the water presence detected by the CFmask algorithm. Specifically, we used 

multi-date historical imagery from acquisition dates near in time (< 1 month) from the 

Landsat imagery described in Section 3.3.1. Most of the high resolution imagery in our 

study area is from DigitalGlobe’s QuickBird (61 cm spatial resolution) and WorldView 
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satellites (31–46 cm spatial resolution) (www.digitalglobe.com). The availability of 

historical imagery varies from place to place. On average, two images per sample location 

for T1 and five images per sample location for T2 were available from 2000 to 2015.  

3.3.4 Reference data 

We applied the global 30 m resolution inland water body dataset (GIW) as a reference for 

selecting sample locations. This binary surface-water dataset was derived from large 

collections of 30 m cloud-free Landsat data acquired during or near 2000, with 

commission errors less than 4% and omission errors less than 14% (Feng et al. 2015). We 

downloaded the GIW dataset for two Landsat tiles (i.e., T1 and T2) from the GLCF website 

(http://www.landcover.org), which corresponded to 8 August 2000 for T1 and 10 April 

2001 for T2. 

3.3.5 Terrain data 

We used the Shuttle Radar Topography Mission (SRTM) elevation data acquired from 

the Global Land Cover Facility (http://www.landcover.org/data/srtm/). This dataset was 

acquired by the Space Shuttle Endeavour on mission STS-99 during February 2000 and 

provides near global coverage at 30 m resolution.  

3.4 Methods 

Our method for deriving surface water fraction consisted of five steps as described in the 

workflow diagram below (Figure 3.3).  

  



Monitoring the Dynamics of Surface Water Fraction from MODIS Time Series 

56 

 

 

F
ig

u
re

 3
.3

. W
or

kf
lo

w
 o

f t
he

 m
et

ho
d 

us
ed

 in
 th

is
 p

ap
er

. 

  



Chapter  3 

57 

3.4.1 Selection of sample locations 

Binary surface-water maps from the GIW dataset were used for selecting sample 

locations. The binary maps were aggregated to the 500 m MODIS resolution. The 

aggregated value per cell is its surface water fraction, which was calculated by dividing 

the 30 m water pixels by the total number of Landsat-scale pixels that fall inside each 

MODIS grid cell. This resulted in an initial map of surface water fraction indicating the 

percentage of surface water within each MODIS grid cell. Rather than directly using this 

fraction map for training and validation, we used this map as a basis to select sample 

locations as this dataset is based on one single date rather than a dynamic dataset with 

multi-temporal layers. To achieve this, we divided the map into seven strata (0%, 0%–

20%, 20%–40%, 40%–60%, 60%–80%, 80%–100% and 100%), and randomly selected 

20 grid cells from each of the seven strata. This resulted in a set of 140 MODIS-scale 

reference grid cells per Landsat image tile (see Figure 3.1), which were further split into 

70 training and 70 validation locations using random sampling from each strata.  

3.4.2 Training and validation dataset 

We used the time series of the CFmask bands for generating training and validation data 

as input to Step 2. As a first step, we assessed if the water mask of the CFmask bands are 

of good quality by comparing them with very-high resolution imagery. Specifically, we 

randomly selected five Landsat pixels falling within the selected 140 (per tile) MODIS 

reference cells. The selected Landsat pixels were overlaid on Google Earth and were 

visually classified into water and non-water. This was repeated for all very-high 

resolution images available in Google Earth that were acquired within one month of an 

existing Landsat image. A small number of pixels (31) from T1 and T2 were excluded in 

the accuracy assessment because we had recorded a lower confidence in our interpretation 

due to complex site conditions or cloudy/hazy conditions of the available imagery in 

Google Earth. The assessment results (Table 3.1) indicated that the Landsat CFmask 

resulted in an accurate identification of water presence and could thus serve as an accurate 

source of reference data. 
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Table 3.1. Accuracy assessment of the Landsat water/non-water classification data used 

for model training and validation. 

Landsat tiles Correct number Omission Commission 

T1 1314 (97.2%) 31 (2.3%) 7 (0.5%) 

T2 2904 (92.9%) 183 (5.9%) 37 (1.2%) 

 

The CFmask bands were transferred to land/water binary images and were further 

aggregated to the scale of the MODIS grid cells (using the same method described in 

Section 3.4.1). This resulted in layers of per-cell surface water fraction estimates. Per-cell 

500 m surface water fraction estimates derived from all Landsat acquisitions (2000–2015) 

for training locations were used as the training dataset, and the entire set of Landsat-

derived estimates for validation locations were used as the validation dataset. 

Furthermore, poor quality observations containing clouds or cloud shadows as detected 

by CFmask were removed. This resulted in 3463 samples for training and 3245 samples 

for validation for study area T1, and 4352 samples for training and 4165 samples for 

validation for T2. 

3.4.3 Predictor variables 

Besides the individual MODIS bands, we used various band combinations and also an 

ancillary non MODIS-based topographic index as predictor variables to be evaluated 

(Table 3.2). For each Landsat training sample/date, the MODIS temporal composite was 

selected that contained the date of Landsat acquisition. The surface reflectance for 

individual MODIS bands, as well as seven MODIS-derived spectral indices have been 

widely used to characterize surface water and wetlands (Li et al. 2015; Reschke and 

Huttich 2014). Pekel et al. (2014) found that water and other land-cover types can be 

better discriminated using the Hue-Saturation-Value (HSV) color space applied on 

SWIR, NIR, and Red reflectance, notwithstanding the great variability in water spectral 

signatures. We thus included the HSV transformation results as potential predictors here 

as well. In addition, a single ancillary variable was considered, i.e., the Topographic 

Wetness index (TWI). The TWI has higher values for sites lower in the catchment and 

thus has been used to predict likely locations for water bodies and wetlands (e.g., Drake 

et al. 2015; Grabs et al. 2009). We calculated TWI from 30 m elevation data derived from 

the SRTM using the formula in Table 3.2; flow accumulation serves as an input to that 

formula and was calculated as the number of cells that flow into the downslope cell 

according to Jenson and Domingue (1988), and slope is derived from the maximum 
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elevation change between each cell and its eight direct neighbours. We subsequently 

aggregated the result to the 500 m resolution MODIS cells by calculating the mean value 

within each cell. 

Temporal metrics summarize spectral band or index temporal characteristics over a 

defined period. Their usefulness for fractional cover mapping has been demonstrated in 

several studies (Reschke and Huttich 2014; Weiss and Crabtree 2011). From the time 

series of each MODIS-derived predictor variable, we calculated the annual mean, 

minimum, maximum, standard deviation, and coefficient of variation (CV) per calendar 

year. We subsequently used that as input in our models when assessing surface water 

fraction for any 16-day composite of that same year. 
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3.4.4 Rule-based regression tree models 

The regression-tree (RT) algorithm produces a rule-based model for predicting a single 

continuous response variable from one or more explanatory variables. A regression tree 

is built through a process known as recursive partitioning, which is an iterative process 

of splitting the data into homogeneous subsets. At each split or node, a splitting criterion 

is used to determine which explanatory variable is most suited to divide the training data. 

In this study, we applied two popular machine learning approaches, i.e., Random Forest 

(RF) and Cubist, to examine the relationship between surface water fraction and predictor 

variables, and to identify the relative importance of the variables to predict the surface 

water fraction. Previous studies have demonstrated that these two approaches can obtain 

a high accuracy for deriving fractional cover of a single specific land surface component 

(e.g., Huang et al. 2016b; Walton 2008; Xia et al. 2017). 

RF is a classification and regression technique introduced by Breiman (2001). It is based 

on the Classification and Regression Trees (CART; Breiman et al. 1984), which are a 

series of binary rule-based decisions that dictate how an input is related to its predictor 

variables. In contrast to CART many independent regression trees are generated in RF 

instead of one. Each tree is grown with a random subset of predictor variables at each 

node and with a random selection of a bootstrapped sample from the original training 

dataset with the aim of avoiding overfitting (Breiman 2001). About one-third of the 

observations in the training dataset are not used to grow the tree. These observations are 

considered the out-of-bag (OOB) observations and can be used to estimate variable 

importance. The final prediction for a single estimate is the average of the predictions of 

all trees, which generally produce more accurate results for the RT implementation when 

compared to the CART approach (Breiman 2001). 

Cubist is a tool for generating rule-based regression trees developed by Quinlan (1993). 

A rule-based model developed by Cubist contains a set of conditional rules that partition 

the data space into smaller regions, each of which is linked to a multivariate linear 

regression model predicting the dependent from the predictor variables. This differs from 

RF, which contains only a single value at each terminal node. To optimize accuracy and 

reduce instability of the model prediction, the Cubist model uses a boosting-like 

procedure called “committees” where a series of model trees are developed in sequence. 

Each member of the committee predicts the target value for a case and the members' 

predictions are averaged to give a final prediction (Quinlan 1993). Another innovation in 

Cubist is the use of nearest-neighbors to adjust the predictions from the rule-based model.  
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Table 3.3. Descriptions of models, including the training dataset and temporal variables 

used to build each model type. 

Model Training 

data 

Number of 

samples 

Inclusion of 

temporal variables 

 

 

 

Local 

models 

RF_localT1_single T1 3463 No 

Cubist_localT1_single T1 3463 No 

RF_localT1_temporal T1 3463 Yes 

Cubist_localT1_temporal T1 3463 Yes 

RF_localT2_single T2 4352 No 

Cubist_localT2_single T2 4352 No 

RF_localT2_temporal T2 4352 Yes 

Cubist_localT2_temporal T2 4352 Yes 

 

Global 

models 

RF_global_single T1 and T2 7815 No 

Cubist_global_single T1 and T2 7815 No 

RF_global_temporal T1 and T2 7815 Yes 

Cubist_global_temporal  T1 and T2 7815 Yes 

 

After an initial model tree is created and a sample is predicted by this model tree, Cubist 

can find its nearest neighbors, i.e., the most similar samples in terms of predictor variable 

values, and determine the average of these training set points (Kuhn et al. 2016; Quinlan 

1993). We tuned the models over different values of “committees” and “neighbors” 

(“committees” was set to be 0, 10 , 20, 50, 100, and “neighbors” was set to be 0, 1, 5, 9) 

through a 10-fold cross-validation on our training data and selected the optimal values 

which produced the best performance in terms of RMSE. 

Twelve models were built and tested to assess how accurate the RF and Cubist regression 

tree algorithms could estimate surface water fraction (see Table 3.3). All models were 

built using the randomForest (Liaw and Wiener 2002) and Cubist (Kuhn et al. 2016) 

packages that are implemented in the R software (R Core Team 2013). The twelve models 

tested the effects of two factors, including: 

(1) the need for fine-tuning the model to local conditions: global models are based on the 

combined training dataset from both Landsat tiles whereas local models are based on 

training data from a single Landsat tile; 
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(2) the inclusion of annual variables as predictors that summarize temporal characteristics 

of the single-date predictors within the year: single date models only use variables 

obtained from the MODIS composite corresponding to the same acquisition date as 

the Landsat image, whereas temporal models incorporate annual summaries of the 

temporal characteristics of the predictor variables. 

3.4.5 Model accuracy assessment, sensitivity analysis, and model 
prediction 

The twelve models were evaluated on both the training data that were used to generate 

the models, and the validation data from each Landsat tile. Three statistical measures were 

used to assess model performance: the coefficient of determination (R2), mean absolute 

error (MAE) and root mean square error (RMSE). The robustness and transferability of 

the local models were explored by applying the model developed for T1 to T2 and vice 

versa, and evaluating the results against the same validation dataset.   

To assess the relative importance of the input variables in the two best-performing 

models, a different approach was followed for RF and Cubist models. RF calculates the 

variable importance as increased percentage of mean squared error (%IncMSE) that arises 

from randomly permuting the values of a single variable in the OOB data. For each tree, 

the prediction error (i.e., MSE) on the OOB portion of the data is recorded. Then the same 

is done after permuting the specific predictor variable. The differences between the two 

are subsequently averaged for all trees and normalized by the standard deviation of the 

differences (Liaw and Wiener 2002). Cubist summarizes the individual variable 

contribution to the model by assessing: (1) the percentage of rule conditions for which 

the variable is used as input, and (2) the percentage of times for which the variable is used 

in the multivariate linear model related to the conditional rule (Kuhn et al. 2016).  

To understand if particular surface water fractions were modelled more accurately than 

others, we assessed model accuracy according to different water fraction categories in 

20% increments by calculating the distribution of signed deviation (SD) for the two best-

performing models. Furthermore, we tested how the variability in surface water presence 

impacted the model’s prediction performance. For this, we stratified the validation 

samples into two classes (i.e., permanent and fluctuating water surfaces). Based on time 

series of Landsat CFmask, we selected the five largest and the five smallest values of 

surface water fraction for each sample location. A measure of relative variability (RV) in 

surface water fraction was calculated for each location as: 
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 𝑅𝑉 ൌ ሺ5 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 െ 5 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒𝑠ሻ 5 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒𝑠ൗ   (3.1) 

Samples for which RV values were less than 0.2 were considered to be permanent water, 

RV values larger than 0.5 were regarded as fluctuating water. Samples with intermediate 

values (0.2–0.5) were not considered. Subsequently we extracted the R2, RMSE and MAE 

(considering only these 10 most extreme values per sample location) to assess if the 

extreme water fractions for each location are accurately represented by the models.  

The two best-performing models were selected to produce time series surface water 

fraction maps for the study areas. 

3.5 Results 

Each of our RF models was constructed using 500 trees, and for each tree, one third of all 

input variables were selected randomly at each split during the model construction 

process. For Cubist models, we used a 20-member committee and 9-neighbor as these 

values produced the best performance following an iterative testing of different settings 

during which we found that adding more committees or neighbours had little effect on 

the accuracy. The performance of the twelve models is summarized in Table 3.4 and 

Figure 3.4. The local models show a close match with the training data (R2 above 0.95 

for all local models). When testing using the validation data from the same Landsat tile 

where models were trained, the results were comparable (R2 above 0.81 for all local 

models). However, when applying the local temporal models developed for T1 to T2 and 

vice versa, the R2 was greatly reduced (e.g., the R2 for the Cubist local temporal models 

were less than 0.37), likely because the spectral characteristics of the surface water and 

the background were very different between the two areas with contrasting environments. 

In other words, our results indicated that a model developed for one region cannot easily 

be transferred for accurate mapping of surface water elsewhere.   
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Figure 3.4. Density scatterplots of actual versus (a) RF_global_temporal model and (b) 

Cubist_global_temporal model predicted surface water fraction for the training (left) and 

validation datasets (right) from both Landsat tiles. The plots show the local density 

around each sample point. High density is shown in red and low density is shown in blue. 

 

Interestingly, when combining training data for the two regions in a single global model, 

the accuracies were comparable to the local models (Table 3.4). For example, the 

Cubist_global_single model had an R2 of 0.90 between T1 reference and model-estimated 

surface water, with an RMSE of 11.59% and MAE of 8.18% (Cubist local model resulted 

in R2 = 0.90, RMSE = 11.96%, MAE = 8.60%). For the T2 reference data the accuracies 

were similar though more accurate than any of the single-date local models. This finding 

is positive in the sense that it suggests that accurate global models can be constructed as 

long as the training data are collected that properly represent the various environmental 

conditions found in the application area. 

By incorporating temporal variables, both RF and Cubist global temporal models showed 

improvements in the accuracy measures as compared to the single date models (Table 

3.4). The R2 values for the RF and Cubist global temporal models were consistently larger 

than 0.90 for both T1 and T2. This suggests that temporal variables provide important 

information for predicting water fraction (as also shown later in Figure 3.6).  
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Figure 3.5. Distribution of signed deviation (SD) of predicted surface water fraction 

using RF (a) and Cubist (b) global temporal model by surface water categories for 

validation data. Positive SD values indicate model overestimations and negative values 

indicate model underestimations. 

 

Figure 3.5 provides the distribution of signed deviation (SD) per surface water fraction 

category. Both the RF and Cubist global temporal models obtained the highest accuracy 

for the 0% water fraction, followed by 0%–20% water fraction, and the lowest accuracy 

for the 60–80% water fraction. For example, for the Cubist global temporal model (Figure 

3.5b), 63% of the validation data fall within +–0.05 deviation and 86% fall within +–0.10 

deviation for 0%–20% water fraction, while 52% of the predictions had an absolute 

difference larger than 0.10 for the 60%–80% water fraction. For the RF global temporal 

model the deviation distributions were similar; 65% fall within +–0.05 deviation and 84% 

fall within +–0.10 deviation for the 0%–20% water fraction. Figure 3.5 reveals a general 

tendency of the models to underestimate the larger values (i.e., 60%–80% to 100%). This 

implies that large surface water fractions are often not accurately captured.    

The relative importance of the predictor variables for estimating surface water fraction is 

summarized in Figure 3.6. The plots listed the 20 most important variables according to 

RF and Cubist global temporal models. TWI and the NIR band are the predictors of 

greatest importance for both models. This corroborates reports from previous studies that 
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have identified topographic indices as important variables for mapping surface water 

(Drake et al. 2015; Guerschmann et al. 2011; Margono et al. 2014). This is as expected 

because surface water is usually found at depressions in the landscape. The importance 

of NIR for mapping surface water fraction in flood applications was also highlighted by 

Sun et al. (2012). Surprisingly, NIR is the single non-static variable of considerable 

importance for mapping and monitoring surface water fraction in RF global temporal 

model (Figure 3.6a), which makes it the only variable for explaining the fluctuating 

variation of surface water fraction (i.e., seasonal and intra-annual fluctuation). In the 

Cubist global temporal model, NIR is the single non-static variable that is important when 

splitting the data (Figure 3.6b), but dynamic variables are the most important in the linear 

models (Figure 3.6c).  

 

 

Figure 3.6. Twenty predictor variables with the highest relative importance for 

estimation of surface water fraction. Importance is measured as (%IncMSE) with the 

RF_global_temporal model (a), variable usage (%) in the rule conditions (b) and in the 

models (c) with the Cubist_global_temporal model.  

  



Monitoring the Dynamics of Surface Water Fraction from MODIS Time Series 

70 

Table 3.5. Coefficient of determination (R2), root mean square error (RMSE) and mean 

absolute error (MAE) between predicted surface water fraction and actual data using 

RF and Cubist temporal model for different types of water permanence. 

Model Permanent water  Fluctuating water 

 
R2 RMSE 

(%) 

MAE 

(%) 

 R2 RMSE 

(%) 

MAE 

(%) 

RF_ global_temporal 0.67 13.35 10.07 0.75 16.00 10.87 

Cubist_ global_temporal 0.70 12.75 9.50 0.80 14.66 9.98 

 

Table 3.5 shows the model accuracies for permanent and fluctuating water. Because we 

included only a subset of the validation data (as explained in Section 3.4.5), the accuracies 

were lower compared to the overall accuracies. The results show that both models had 

slightly lower RMSEs and MAEs for permanent water as compared to fluctuating water. 

This indicates that the models developed are not only accurate for the static mapping of 

surface water fraction, but can instead be applied effectively for monitoring the dynamics 

of surface water fraction. This is illustrated in Figure 3.7 where we show the surface water 

dynamics resulting from RF and Cubist global temporal model for two small lake systems 

with a known strong fluctuating variability in water surface, i.e., Laguna Salada de 

Chiprana (7a) in Ebro basin, northern Spain and Reserva Natural Complejo Endorreico 

Lebrija-Las Cabezas (7b) in Andalusia, southern Spain. The size of the first lake system 

is approximately one MODIS pixel and the second about 0.8 MODIS pixel. These two 

lakes are identified as Ramsar wetland sites (http://www.ramsar.org/wetland/spain). 

Laguna Salada de Chiprana is a permanent and deep saline lake with a maximum extent 

in May and minimum extent in September (De Wit et al. 2013). For Lebrija-Las Cabezas 

we assessed the total extent of four comprised small and shallow water bodies (i.e., 

Lagunas del Pilón, Cigarrera, Galiana, and Peña) that are usually flooded during 

December-May, but after dry out due to lack of rainfall and high evaporation rates. The 

surface water extent estimated from Cubist_global_temporal model corresponds well 

with the Landsat reference data from CFmask bands and from Global Surface Water data 

which was produced by the Joint Research Centre of the European Commission (JRC: 

Pekel et al. 2016) for these two lake systems. Although the seasonal pattern was 

appropriately represented also by the RF model, it resulted in large overestimations of 

very small surface water extent, as shown in Figure 3.7b and a consequently poor 

correspondence with surface water extent estimates from Landsat. Even if a more detailed 
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validation of these results with in situ data would be desirable (Li et al. 2015), Figure 3.7 

illustrates that the detailed information on seasonal, inter-annual and long-term changes 

in surface water extent of these small lakes are not fully captured by Landsat due to 

significant temporal data gaps. This detail was captured with our approach using 500 m 

resolution MODIS imagery, with a better performance when using the Cubist method. 

 

 
Figure 3.7. Time series of surface water extent for two Ramsar sites used as examples of 

the results from the Cubist (blue dots) and RF (red dots) global temporal model for the 

period from 2000 to 2015. (a) Laguna Salada de Chiprana (b) Reserva Natural Complejo 

Endorreico Lebrija-Las Cabezas. The size of the first site is approximately one MODIS 

pixel and the second about 0.8 MODIS pixel. Yellow and green asterisks represent 

Landsat reference data from CFmask bands and from the JRC Global Surface Water 

product, respectively. 

3.6 Discussion 

The rule-based regression tree models using RF and Cubist provided accurate estimation 

of the surface water fraction (R2 > 0.9, RMSE < 11.5%). This can be attributed to the 

effective partitioning of the data into homogeneous subsets, which is a principal 

characteristic of the applied models  (Huang and Townshend 2003). Our reported 

accuracies compare favorably to previous studies that aimed at estimating surface water 

fraction from medium-resolution imagery (MODIS or similar). For instance, in a study 
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of Yukon Flats National Wildlife Refuge, Weiss and Crabtree (2011) reported an R2 of 

0.625 between reference and modeled surface water fraction using simple linear 

regression model. Guerschmann et al. (2011) developed a logistic regression model for 

water fraction mapping on the Australian continent. An R2 of 0.90 was reported for the 

training data but a lower R2 of 0.70 was reported for other test regions. Similar to our 

findings, other studies also found that RF and Cubist often overestimate small values and 

underestimate large values when estimating fractional cover of land surface components 

such as surface water fraction (Huang et al. 2014b) and in other applications (Wang et al. 

2017). One explanation for this behavior could be that RF averages the target values with 

each terminal nodes to give a final prediction, and the averaging reduces the range of 

surface water fraction in the final outcome. As a consequence, RF cannot predict beyond 

the range of response values in the training data, nor predict the entire range of response 

values. Cubist has a better performance as it predicts the terminal nodes using a linear 

model as opposed to the simple average in RF. Prediction biases commonly result from 

statistical methods including RF (Huang et al. 2014b), due to highly unbalanced 

distributions of the percentage cover of those land cover components in real world like 

impervious surfaces and water bodies, which typically account for small portions of the 

total area. Further improvement in Cubist model could be achieved by setting a 

“extrapolation” parameter which controls to what extent predictions are adjusted to be 

consistent with the range observed in the training set (Kuhn et al. 2016).  

Training data collection is crucial for effective application of machine learning algorithms 

like RF and Cubist. The applicability of empirical approaches remains often confined to 

relatively small study areas, while our study shows that RF and Cubist approaches 

developed for one site could not be accurately transferred to the other site. Instead, by 

collating more training data from the two sites we were able to construct comparable 

models to local models. This is probably because machine learning approaches like 

Cubist can effectively take care of tuning a global model locally, as long as it is fed with 

sufficient good-quality training data that comprise the various environmental conditions 

encountered across the larger area. In this sense, we are confident that our approach for 

constructing global models can be expanded effectively to wider areas, potentially 

resulting in an accurate method for global monitoring of water fraction from MODIS or 

similar imagery.  

For this to happen, training data are required across the globe. In this study we achieved 

this with CFmask, which is globally available for all collected Landsat images from the 

USGS. For this study we found a high accuracy (>92%) when comparing against very 
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high resolution imagery from Google Earth. In addition, an alternative global temporal 

dataset at 30 m resolution on water presence is now available that also uses the entire 

Landsat archive (Pekel et al. 2016). The authors reported a high accuracy (commission 

accuracy of 99.45% and omission accuracy of 97.01%) when a validation was performed 

by using high-resolution satellite imagery and aerial photography spanning across 

geographic regions (global) and across different time periods. This dataset could provide 

an improvement possibly resulting in a better training of the regression tree models. While 

it may be a large step to move from a two Landsat-tile model to a truly global model, 

intermediate upscaling test could be performed to large eco-regions, such as the 

Mediterranean.  

Other adaptations that may further improve the accuracy of surface water fraction 

monitoring include the selection of imagery, and the further exploration of alternative 

machine learning approaches. In this study we used MODIS Collection 5 data. This was 

the latest version of the MCD43A4 when starting the study, but now Collection 6 is 

available with quality improvements (Schaaf and Wang. 2015). In addition, our approach 

may also work well with non-MODIS datasets like Proba-V and Sentinel-3, even if their 

archive starts later. Research comparing algorithms have shown that regression trees are 

often among the top performers across a range of applications on fractional surface cover 

mapping (Drzewiecki 2016; Xia et al. 2017), whereas alternative machine learning 

algorithms such as multivariate adaptive regression splines and artificial neural networks 

may hold great potential and would require further testing (Weng 2012).   

This paper provides an important step towards large-scale mapping of surface 

water/wetland extent at high temporal resolution and at a relatively high spatial resolution 

by depicting each pixel as a percent coverage of surface water. Given the good accuracies 

obtained here when incorporating dissimilar study sites in a single model, our approach 

has potential for application at global scale. Apart from successfully mapping the 

locations and extents of permanent water, the proposed methodology allows for 

monitoring the temporal changes of fluctuating water surfaces. This is meaningful for a 

variety of potential applications of the proposed method, such as mapping temporary and 

ephemeral surface water bodies, monitoring extreme events such as floods and drought , 

and estimating global loss of wetland extent by including the loss of small-size and 

temporary wetlands, which are likely to contribute much more to the decline of wetland 

biodiversity than the loss of an equivalent area in larger wetlands (Deane et al. 2017; 

Semlitsch and Bodie 1998). We note that the application in wetlands with inundated 

vegetation or with floating vegetation may remain challenging, particularly because these 
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(parts of) wetlands will likely be omitted in Landsat-derived training datasets. Further 

research is needed into how such conditions may affect model accuracy or require model 

adaptations, even though we expect that the moisture presence will effectively be 

captured in MODIS-derived indices. Relevant spatial information that could be extracted 

from temporal surface water estimates include 1) dates of water appearance and 

disappearance within a given year, 2) the period during which water is detected, 3) 

seasonal and inter-annual variability of surface water extent for ephemeral wetlands, and 

4) the timing, frequency, and extent of events such as floods and drought, lake expansion 

and retreat or river-channel migration. Such information can provide insights for 

understanding how climate change and human actions affect the dynamics of surface 

water, and has potential to greatly contribute to the management and conservation of 

biodiversity and other ecosystem services associated with terrestrial surface water and 

wetlands. 

3.7 Conclusions 

In this study, we evaluated two ruled-based regression tree methods, RF and Cubist, for 

assessing surface water fraction from MODIS imagery and a DEM for two contrasting 

environments in Spain. Both models achieved high accuracies (R2 > 0.91, RMSE < 

11.47%) when a single model was trained using data from both study areas. A prerequisite 

for the method to be effective is to build a reliable training dataset, which is usually the 

most time consuming element for applying machine learning approaches. The time series 

of Landsat-derived CFMask water fraction used in this paper proved to be an efficient 

basis for building such a training set, and showed a high accuracy versus high-resolution 

imagery from Google Earth. We also showed that tuning model parameters for each study 

area is not required, but that a single global model can provide accurate results, as long 

as the training data comprise the different environmental conditions across the spatial 

domain for which the model will be applied.  

Our study complements existing studies on large-scale and global surface water 

monitoring from MODIS data that focused on binary land/water classifications. Contrary 

to most of those studies, we incorporate small water bodies (i.e., less than one MODIS 

pixel size) in the analysis by estimating surface water fraction. In this way, we could 

derive 16-day interval surface water fraction maps for 16 years of MODIS data at 500 m 

pixel resolution. This long-term mapping with a high temporal density also complements 

existing high-resolution Landsat-based studies especially for areas that suffer from longer 

data gaps and thus cannot provide detailed information on seasonal, inter-annual and 
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long-term changes. We expect that our approach and resulting maps could serve as a tool 

for (a) operational surface water monitoring especially in arid and semi-arid areas; (b) 

updating and refining of existing wetland and habitat databases; and (c) evaluating 

ecosystem services and biodiversity assessments.  
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Chapter 4  

 

A New Dense 18-Year Time Series of Surface 

Water Fraction Estimates from MODIS for the 

Mediterranean Region* 

                                          
* This chapter is based on: Li, L., Skidmore, A., Vrieling, A., & Wang, T. (2019). A new dense 18-
year time series of surface water fraction estimates from MODIS for the Mediterranean region. 
Hydrology and Earth System Sciences, 23, 3037–3056. 
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Abstract 

Detailed knowledge on surface water distribution and its changes is of high importance 

for water management and biodiversity conservation. Landsat-based assessments of 

surface water, such as the Global Surface Water (GSW) dataset developed by the 

European Commission Joint Research Centre (JRC), may not capture important changes 

in surface water during months with considerable cloud cover. This results in large 

temporal gaps in the Landsat record that prevent the accurate assessment of surface water 

dynamics. Here we show that the frequent global acquisitions by the Moderate Resolution 

Imaging Spectrometer (MODIS) sensors can compensate for this shortcoming, and in 

addition allow for the examination of surface water changes at fine temporal resolution. 

To account for water bodies smaller than a MODIS cell, we developed a global rule-based 

regression model for estimating the surface water fraction from a 500 m nadir reflectance 

product from MODIS (MCD43A4). The model was trained and evaluated with the GSW 

monthly water history dataset. A high estimation accuracy (R2 = 0.91, RMSE = 11.41 %, 

and MAE = 6.39 %) was achieved. We then applied the algorithm to 18 years of MODIS 

data (2000–2017) to generate a time series of surface water fraction maps at an 8 d interval 

for the Mediterranean. From these maps we derived metrics including the mean annual 

maximum, the standard deviation, and the seasonality of surface water. The dynamic 

surface water extent estimates from MODIS were compared with the results from GSW 

and water level data measured in situ or by satellite altimetry, yielding similar temporal 

patterns. Our dataset complements surface water products at a fine spatial resolution by 

adding more temporal detail, which permits the effective monitoring and assessment of 

the seasonal, inter-annual, and long-term variability of water resources, inclusive of small 

water bodies.   
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4.1 Introduction 

Terrestrial surface water bodies such as lakes, reservoirs, and rivers cover approximately 

3 % of the global land mass. They play a crucial role in the global hydrological cycle, 

biodiversity conservation, and climate process (Chahine 1992; Tranvik et al. 2009). 

Detailed knowledge on surface water distribution, and its seasonal, inter-annual, and 

long-term variability can serve as an important source for water management (Cole et al. 

2007), ecosystem assessment, and biodiversity conservation (Turak et al. 2017). Remote-

sensing data have increasingly been used to monitor surface water changes, and powerful 

methods and tools have been developed for analyzing Earth observation data. However, 

existing approaches for monitoring the surface water extent are limited either in 

geographic scope, temporal extent of the record, or with respect to the temporal frequency 

of observations. 

At the global scale, several static datasets exist that provide information on the spatial 

extent of water bodies and wetlands. For example, the Global Lakes and Wetlands 

Database (GLWD: Lehner and Doll 2004) was based on historical maps and has a spatial 

resolution of 30 arcsec (approx. 1 km). Carroll et al. (2009) combined the Shuttle Radar 

Topography Missions (SRTM) Water Body Data (SWBD) with 250 m Moderate 

Resolution Imaging Spectrometer (MODIS) reflectance data to produce a global static 

map of surface water for circa 2000–2002. Global Landsat-based static surface water 

datasets include the 3 arcsec (∼ 90 m) Water Body Map (G3WBM: Yamazaki et al. 2015) 

and the Global Land Cover Facility (GLCF) inland surface water dataset at a 30 m 

resolution for 2000 (Feng et al. 2015). 

Even though static water maps are adequate for some applications there is an increasing 

demand for information on the spatiotemporal variability of inland water bodies and their 

long-term evolution (Belward 2016). Dynamic mapping and monitoring of the surface 

water extent have been explored using optical sensors featuring fine (10–30 m) to medium 

(250–500 m) spatial resolutions. At fine spatial resolution, several studies have recently 

presented interesting results on long-term variability of surface water with the entire 

Landsat archive at regional (Halabisky et al. 2016; Heimhuber et al. 2016), continental 

(Mueller et al. 2016), and global scales (Donchyts et al. 2016; Pekel et al. 2016). The 

European Commission Joint Research Centre's (JRC) Global Surface Water (GSW) 

dataset (Pekel et al. 2016) quantifies changes in global surface water over the past 32 

years with a monthly time interval. This product allows for the analysis of surface water 

dynamics over long time periods at fine spatial resolution, but only provides information 
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on monthly changes in surface water. Moreover, the Landsat archive also contains data 

gaps and temporal discontinuities depending on the geographical location (Pekel et al. 

2016). This is due to both the limited number of acquisitions during specific time 

intervals, and the location- and time-dependent persistency of cloud cover. These data 

gaps affect the accuracy of the seasonality information (Yamazaki and Trigg 2016). To 

better represent water bodies with short hydroperiods and short-duration flooding, it is 

critical to account for such gaps when monitoring surface water. In recent years, the 

revisit time of fine-resolution sensors has increased (e.g., Sentinel-2 has offered a 5 d 

repeat since March 2017: Du et al. 2016). However, these data cannot yet be used to 

create long-term (> 10 year) consistent time series at short time intervals. 

Moderate resolution imagery derived from satellite sensors such as MODIS provides 

daily observations over long time-spans and as such has the potential to construct long-

term and dense time series of surface water over large regions. Many studies have 

explored the use of MODIS in mapping water body dynamics at regional to continental 

scales (Kaptue et al. 2013; Pekel et al. 2014; Sharma et al. 2015) using binary 

classification methods. At the global scale, Khandelwal et al. (2017) used MODIS 

multispectral data to map the global extent and temporal variations of 94 large reservoirs 

at a 500 m resolution and at an 8 d interval from 2000 to 2015. The recent Global Climate 

Observing System (GCOS) report states that essential climate variables (ECVs) need to 

be established for water extent and lake ice cover products, ideally with daily temporal 

resolution (Belward 2016). To address this requirement, the first daily global dataset of 

inland water bodies at a 250 m spatial resolution from 2013 to 2015 was developed by 

(Klein et al. 2017). This work advanced surface water mapping using remote sensing, due 

to its dense temporal resolution, and enhanced our understanding of rapid water changes 

caused by extreme climate change and human activities. However, like other surface 

water mapping efforts based on binary classification methods (e.g., Khandelwal et al. 

2017; Mohammadi et al. 2017), this product omits lakes and narrow rivers that only cover 

a portion of a MODIS resolution cell. 

To overcome this limitation and incorporate small water bodies, several researchers have 

attempted to predict sub-pixel surface water estimates of MODIS by providing the water 

fraction in each pixel using techniques such as linear spectral mixture modeling (e.g., 

Hope et al. 1999; Li et al. 2013b; Olthof et al. 2015) and machine learning (e.g., Li et al. 

2018a; Rover et al. 2010; Sun et al. 2012) for small areas. However, the utility and 

efficiency of these methods have rarely been explored for the estimation of the surface 

water fraction for larger areas. In our previous work (Li et al. 2018a), we explored the 
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use of rule-based regression models over two small areas on the Iberian Peninsula and 

concluded that a single global regression model can provide accurate surface water 

estimates across areas with different environmental conditions as long as it is fed with 

training data that comprise these various conditions. Consequently, we concluded that 

this approach has the potential to be applied over much larger areas. Therefore, the aim 

of this paper is to explore the utility and efficiency of a rule-based regression model for 

the estimation of the surface water fraction for the Mediterranean region, and to develop 

a new surface water fraction dataset for the Mediterranean region using fine temporal 

resolution MODIS data as input for the effective assessment of seasonal, intra-annual, 

and long-term surface water dynamics inclusive of small water bodies. Our specific 

objectives are as follows:  

(1) to develop an approach for the estimation of the surface water fraction for the 

Mediterranean region at a fine temporal resolution from MODIS data; 

(2) to generate an 8 d interval time series of surface water fraction maps for the 

Mediterranean from 2000 to 2017, and to use that to derive a series of ecologically 

relevant metrics; 

(3) to compare our dataset with an existing dataset (i.e., JRC's GSW) and water level data 

to assess how they compare in space and time. 

4.2 Study area 

We loosely defined the Mediterranean in this study as the region that is contained within 

10 MODIS grid tiles, which together cover all coastal areas of the Mediterranean and the 

Black Sea, including a significant portion of their inland areas (Figure 4.1). This boundary 

is defined based on the combination of (1) the definition of the Mediterranean region by 

the Mediterranean Wetland Observatory (MWO) project, i.e., 27 Mediterranean countries 

are included by MWO; (2) the inclusion of areas with a large amount of Ramsar wetlands; 

and (3) the exclusion of southern parts of north African countries (i.e., Morocco, Algeria, 

Libya, and Egypt) that comprise few water bodies according to the maximum water extent 

over 32 years from JRC's GSW product. 
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Figure 4.1. Study area and sample locations. 

 
The study region covers 13 climate zones as defined by Peel et al. (2007) (Figure 4.1). 

Numerous water bodies of different types are found in this region, including large coastal 

lagoons, fresh, brackish or salt marshes, riverine forests and reed beds, flood plains and 

wet meadows, mountainous lakes and surrounding wetlands, salted lakes, temporary 

marshes, and streams (Costa et al. 1996). Our study area accounts for 25 % of the world's 

Ramsar sites that contain a great ecological, social, and economic value, especially as 

they provide habitat, reproduction, and migration stopover sites for numerous bird species 

(Galewski 2012). A good number of the water bodies and wetlands in the region are small, 

shallow, and highly variable between seasons and years due to weather effects and human 

activities (Costa et al. 1996). 

Many Mediterranean water resources are degraded mainly due to urbanization, 

agricultural reclamation, increasing water use for irrigation, and hydraulic works such as 

dams, dikes, river channeling, and drainage and irrigation networks (Batalla et al. 2004). 

A number of projects and programs have performed monitoring of surface water and 

wetlands in the Mediterranean region, such as MWO (http://medwet.org/, last access: 10 

July 2019) and the GlobWetland initiative (http://webgis.jena-optronik.de/, last access: 

10 July 2019), which highlighted the importance of protecting Mediterranean water 

resources. However, these projects either performed wetland mapping for a few moments 

in time (e.g., GlobWetland only covered 1975, 1990, and 2005), or were limited to 

specific water bodies and wetlands instead of the whole landscape. Although surface 
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water dynamics in the Mediterranean can be analyzed at fine spatial resolution with JRC's 

GSW, it has large spatial and temporal gaps. Figure 4.2 shows the percentage of pixels 

with valid observations in JRC's GSW monthly water history dataset for each month 

between January 2000 and October 2015 calculated over the entire Mediterranean area. 

The figure illustrates that no valid observation exists for December in the years 2000–

2015 in Mediterranean areas according to the GSW monthly water history map. In 

addition, less than 10 % of the Mediterranean area has observations for January. 

 

 
Figure 4.2. Percentage of pixels with valid observations in JRC's Global Surface Water 

(GSW) monthly water history dataset for each month between January 2000 and October 

2015, taken as a spatial average for the entire Mediterranean region as displayed in 

Figure 4.1. 

4.3 Data 

Table 4.1 summarizes all datasets used in this study. They include a number of sources 

used to derive model input variables, training data for building the model, validation data 

for model accuracy assessment, and other existing surface water products against which 

we compared our products. Details are provided in the following sections. 
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4.3.1 MODIS data 

The main input dataset in this study is the MODIS Terra and Aqua nadir BRDF-adjusted 

reflectance (NBAR) product (MCD43A4, V006). This product provides 500 m resolution 

surface reflectance data for each of the MODIS bands (1–7) corrected to a common nadir 

view geometry at the local solar noon zenith angle using a bidirectional reflectance 

distribution function (BRDF) model (Schaaf and Wang. 2015). Compared with the 

previous collection (V005) that had an 8 d frequency, the V006 collection was retrieved 

on a daily basis. Each daily value is a result of compositing information obtained during 

16 d of observations, which are weighted as a function of the quality, the observation 

coverage, and the temporal distance from the day of interest. Each daily V006 retrieval is 

the center (i.e., the ninth day) of the moving 16 d input window (Schaaf and Wang. 2015). 

We also used the MCD43A2 (V006) Bidirectional Reflectance Distribution Function and 

Albedo (BRDF/Albedo) Quality dataset to filter out pixels with snow and ice in the 

MCD43A4 product. This dataset has the same temporal and spatial resolution as 

MCD43A4 (i.e., daily 500 m resolution), and contains quality information for the 

corresponding MCD43A4 NBAR product including snow and ice presence (Schaaf and 

Wang 2015). 
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Table 4.1. Input and reference datasets used in the study. 

Data/product name Temporal 

resolution 

Spatial  

resolution 

Purpose in the study 

MCD43A4, V006 

(MODIS/Terra and Aqua 

Nadir BRDF-Adjusted 

Reflectance) 

daily  500 m Generation of predictor variables and 

production of time series of water 

fraction maps 

MCD43A2, V006 

(MODIS/Terra and Aqua 

BRDF/Albedo Quality) 

daily  500 m Snow and ice mask  

GSW monthly water 

history dataset 

monthly 30 m Generation of training and validation 

datasets, and thematic products  

GSW maximum water 

extent map 

static 30 m Define sampling strata; Exclusion of 

non-water samples from training 

locations 

GSW water transitions 

map 

static 30 m Define sampling strata 

Digital elevation model 

from Shuttle Radar 

Topography Mission 

(SRTM) 3 v4.1 

static 90 m Generation of predictor variables; 

Identification of sloping terrain and 

terrain shadows 

USGS Landsat archive  16-day 30 m Link the GSW monthly history datasets 

to a single date of cloud-free Landsat 

acquisition because the exact date of 

observation is not included in the GSW 

dataset 

MCD12Q1 (MODIS Land 

Cover Type product) 

static 500 m Identification of building shadows 

Land Water Mask derived 

from MODIS and SRTM 

(MOD44W) 

static 250 m  Comparison of products 

Water level from satellite 

altimetry 

10-day - Validation of results 

Water level from in situ daily - Validation of results 
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For this study, we downloaded the daily files of MCD43A4 and MCD43A2 for 2000, 

2003, 2006, 2009, 2012, and 2015. As explained in Section 4.4.1, all the available dates 

(or months) of the GSW monthly water history dataset in these 6 years over the sample 

locations were used for building training and validation data. Instead, when producing the 

surface water fraction time series, we collected the MCD43A4 and MCD43A2 files using 

an 8 d time step from February 2000 to December 2017, as processing daily files for the 

large study area and the 18-year time period would become too time- and memory-

consuming. The 8 d repeat coverage is considered to be a minimum for effectively 

capturing water bodies with short hydroperiods while simultaneously accounting for 

frequent cloud cover (Guerschmann et al. 2011; Wulder et al. 2016). All images were 

downloaded from the NASA Earthdata Search website 

(https://search.earthdata.nasa.gov/search, last access: 10 July 2019). 

4.3.2 Global Surface Water (GSW) dataset 

To generate training and validation data for modeling the surface water fraction, we used 

the GSW dataset (Pekel et al. 2016). This dataset provides the global distribution of the 

surface water extent at a monthly time interval from March 1984 to October 2015 (380 

months) at a 30 m spatial resolution, and also includes a series of thematic maps 

summarizing different facets of the spatial and temporal dynamics of surface water over 

32 years. This dataset is derived from the entire archive of Landsat 5 Thematic Mapper 

(TM), the Landsat 7 Enhanced Thematic Mapper-plus (ETM+), and the Landsat 8 

Operational Land Imager (OLI). Water detection was performed using a dedicated expert 

system, which was a procedural sequential decision tree that used both the multispectral 

and multitemporal attributes of the Landsat archive as well as ancillary data layers (Pekel 

et al. 2016). Based on a validation with very high resolution satellite and aerial imagery, 

the authors reported a high mapping accuracy with a commission accuracy of 99.45 % 

and an omission accuracy of 97.01 % (Pekel et al. 2016). 

The GSW monthly water history dataset is available in Google Earth Engine (Gorelick et 

al. 2017) as an image collection containing 380 images, one for each month between 

March 1984 and October 2015. Each image provides a binary classification of water 

presence, or indicates if no valid (cloud-free) Landsat observations were available for a 

specific pixel and month. For comparison with MODIS data, we used the monthly water 

history datasets between February 2000 and October 2015, which resulted in 189 images. 

Several GSW thematic maps were derived from the GSW monthly water history dataset 

(Pekel et al. 2016). In this study, we used two thematic maps, the maximum water extent 
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map and the water transitions map, for the Mediterranean region from the data access 

website (https://global-surface-water.appspot.com/download, last access: 10 July 2019). 

The maximum water extent map indicates whether each 30 m grid cell was ever detected 

as water over the 32-year period. The transition map contains 10 water classes: 

permanent, new permanent, lost permanent, seasonal, new seasonal, lost seasonal, 

seasonal to permanent, permanent to seasonal, ephemeral permanent, and ephemeral 

seasonal. It provides information on both intra- and inter-annual variability of surface 

water (Pekel et al. 2016). 

4.3.3 Terrain data 

Terrain data are useful for predicting the locations for water bodies (Drake et al. 2015; 

Grabs et al. 2009). In this study, we used the near-global Shuttle Radar Topography 

Mission (SRTM) digital elevation model (DEM) distributed by the Consortium for 

Spatial Information of the Consultative Group of International Agricultural Research 

(CGIAR-CSI). This product has a ∼ 90 m resolution and is a post-processed derivative to 

address areas of missing data in the original SRTM DEM made by the National 

Aeronautics and Space Administration (Jarvis et al. 2008). The most recent version of 

this product is SRTM3 v4.1 and is freely available from http://srtm.csi.cgiar.org/ (last 

access: 10 July 2019). 

4.3.4 Satellite altimetry and in situ water level 

We obtained water levels from the U.S. Department of Agriculture Global Reservoir and 

Lake Monitoring (GRLM) website 

(http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir, last access: 10 July 

2019). This site provides time series of water level variations for some of the world's 

largest lakes and reservoirs, mainly greater than 100 km2. The GRLM utilizes near-real 

time data from the Jason-3 mission, and archive data from the Jason-2/OSTM, Jason-1, 

Topex/Poseidon, and ENVISAT satellites. We also obtained daily in situ gauge 

observations for Fuente de Piedra Natural Reserve in southern Spain, which were also 

used in Li et al. (2015). 

4.3.5 Additional data 

We utilized the MODIS land cover type product (i.e., MCD12Q1: Friedl et al. 2010) to 

identify and mask areas that potentially have commission errors related to building 

shadows. To assess the spatial accuracy of MODIS derived maps, we also used the land 
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water mask derived from MODIS 250 m and SRTM data (MOD44W: Salomon et al. 

2004) for comparison. 

4.4 Methods 

4.4.1 Approach for deriving the surface water fraction 

The approach used to derived the surface water fraction builds on our previous work (Li 

et al. 2018a) with considerable improvements regarding input data, training data, and 

commission error processing. We explored the use of MODIS spectral information and a 

topographic metric for estimating the surface water fraction over two study areas in Spain 

via the use of rule-based regression models and concluded that a single global regression 

model can be effectively tuned locally as long as it is fed with training data that comprise 

the various environmental conditions encountered across the larger area (Li et al. 2018a). 

In this sense, the approach for constructing a global model can be expanded effectively 

to wider areas such as the Mediterranean region. The following subsections and Figure 

4.3 describe the individual steps of the approach in detail. 

4.4.1.1 Selection of sample locations for training and validation 

Sample locations were selected using a two-stage stratified random sampling method. 

First, a total of 13 strata were defined based on climate zones (see Figure 4.1). We created 

sampling blocks by partitioning the study area into ∼ 5 km × 5 km grids (i.e., 10×10 

MODIS pixels as one block) and assigned each block to the climate zone within its spatial 

footprint. Blocks that covered more than one climate zone and those that contained no 

surface water based on the JRC maximum water extent product were excluded from our 

sample. We then selected 1400 blocks (∼ 2 % of all resulting blocks) using stratified 

random sampling. 
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Figure 4.3. Diagram of our approach for deriving the surface water fraction. 

 

Second, we created 500 m ×500 m grids corresponding to the MODIS geometry in each 

of the 1400 blocks. A total of 14 strata were defined based on the combination of water 

fraction categories and water permanence types. Specifically, we first divided all grid 

cells into seven water fraction categories (0 %, 0 %–20 %, 20 %–40 %, 40 %–60 %, 

60 %–80 %, 80 %–100 %, and 100 %) according to the aggregated GSW maximum water 

extent. Then for each category, we further classified water permanence types based on 

the aggregated GSW water transitions map. For the 20 %–40 %, 40 %–60 %, 60 %–80 %, 

80 %–100 %, or 100 % categories, grid cells were further classified as fluctuating water 

if they contained more than 20 % fluctuation water otherwise they were assigned as 

permanent water. For the 0 %–20 % category, grids with 0 % permanent water were 

classified as fluctuating water, whereas grids with 0 % fluctuation water were classified 

as permanent water. The rest of the grids in the 0 %–20 % category were not assigned due 
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to a very low water fraction. In the end, the 14 strata were as follows: 100 % permanent, 

100 % fluctuating, 80 %–100 % permanent, 80 %–100 % fluctuating, 60 %–80 % 

permanent, 60 %–80 % fluctuating, 40 %–60 % permanent, 40 %–60 % fluctuating, 

20 %–40 % permanent, 20 %–40 % fluctuating, 0 %–20 % permanent, 0 %–20 % 

fluctuating, 0 %–20 % no water class, and 0 % no water class. From each of the 14 strata, 

we randomly selected 500 grid cells. This resulted in a set of 7000 MODIS-scale reference 

grid cells (shown in Figure 4.1), which were further split into 3500 training and 3500 

validation locations using random sampling from each strata. 

Sampling times were selected at a constant interval of 3 years (i.e., 2000, 2003, 2006, 

2009, 2012, and 2015). All available dates/months in the GSW monthly history datasets 

from those selected years were used. 

4.4.1.2 Building training and validation datasets 

The GSW monthly water history maps were used for generating training and validation 

data. Specifically, the 30 m monthly water history maps from all sampling years/months 

were aggregated to the 500 m resolution for all sample locations in GEE by dividing the 

30 m water pixels by the total number of 30 m pixels within each 500 m resolution cell, 

resulting in a surface water fraction that we used as a reference. Given that the exact dates 

of these monthly water history maps are not provided with the GSW product, we linked 

these reference estimates to the USGS Landsat archive that GSW used as its input. For 

each combination of location/month, we retained only those reference estimates for which 

the location was covered by a single Landsat tile acquired during that month. If multiple 

Landsat tiles existed in that month for that location, we only retained the reference 

estimates if all but one Landsat tile had 100 % cloud cover. In this way, we could 

accurately assign a precise date to the retained reference estimates. 

Surface water fraction estimates derived from all months of the sample years for training 

locations were used as the training dataset, and the estimates from all sample months for 

validation locations were used as the validation dataset. 

4.4.1.3 Modeling surface water fraction and accuracy assessment 

The surface water fraction was estimated using MODIS spectral information and derived 

water indices, and a topographic metric via a rule-based regression model. All predictor 

variables (Table 4.2) evaluated by Li et al. (2018a) were used as input for the estimation 

of surface water fraction. In addition, the annual mean, minimum, maximum, standard 
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deviation, and the coefficient of variation (CV) of each MODIS-derived predictor 

variable were also included as input in the model. These temporal summaries were 

demonstrated to be an important input for predicting surface water fraction in our previous 

study Li et al. (2018a). 

Cubist regression models (Quinlan 1993) contain a set of conditional rules that partition 

the data space into smaller regions, each of which is linked to a multivariate linear 

regression model that can predict the explanatory variable (here surface water fraction). 

Following the findings of our earlier work (Li et al. 2018a), we used a single global Cubist 

regression model, but trained it with data collected from across the study area to tune the 

model to local conditions. In the global Cubist regression model, two parameters can be 

defined to optimize accuracy and reduce instability of the model prediction. The first is 

called “committees” indicating that multiple model trees are developed in sequence. Each 

member of the committee predicts the target value and the members' predictions are 

averaged to give a final prediction (Quinlan 1993). The second parameter is “neighbors” 

and allows the Cubist model to group similar samples in terms of predictor variable 

values, and determine the average prediction of these training samples (Kuhn et al. 2012; 

Quinlan 1993). We tuned the models in the R software (R Core Team 2013) over different 

values of “committees” and “neighbors” (“committees” was set to be 0, 10 , 20, 50, 100, 

and “neighbors” was set to be 0, 1, 5, 9) through a 10-fold cross-validation on our training 

data and selected the values that produced the smallest root mean square error (RMSE).  

The resulting model was evaluated on both the training data that were used to generate 

the model and the independent validation data (Section 4.4.1.2). Three statistical 

measures were used to assess model performance: the coefficient of determination (R2), 

mean absolute error (MAE) and the RMSE.  
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4.4.1.4 Mapping and post processing 

We applied the resulting model to the MCD43A4 V006 data from February 2000 to 

December 2017 to produce gridded time series of surface water fraction for the 

Mediterranean region with an 8 d time step resulting in 46 maps per year (except for 2000, 

which only contained 39 images). 

Recent studies on surface water detection using optical sensors showed that multiple 

sources of commission errors exist, such as terrain and building shadows (Klein et al. 

2017; Pekel et al. 2016). These errors can be corrected using masks derived from auxiliary 

data (Klein et al. 2017; Pekel et al. 2016). In this study we addressed two sources of 

commission errors: shadows from buildings and identified surface water presence that is 

unlikely on sloping terrain. Specifically, a slope map was derived from the SRTM DEM 

by calculating the maximum rate of change in elevation from each raster cell to their eight 

neighbors. We then used a threshold of 5∘ to identify steep locations where it is unlikely 

to find surface water but could have been detected as water by our model, for example, 

due to spectral confusion between water and terrain shadows (Yamazaki et al. 2015). In 

the case of building shadows, we used the urban class of the MODIS classification 

product MCD12Q1 (Friedl et al. 2010) to assign areas potentially affected by building-

induced shadows. Pixels were reassigned to the 0 % water fraction for slopes steeper than 

5∘ and for areas classified as urban in MCD12Q1, except for places where water was 

present according to the GSW maximum water extent.   

4.4.2 Generation of the surface water fraction metrics and 
comparison of products 

Based on gridded time series of surface water fraction, we derived a series of ecologically 

relevant metrics that capture both the intra- and inter-annual variability and changes, and 

further compared these metrics with GSW-derived thematic products. The readily 

available GSW thematic products were derived from 32 years of data (between March 

1984 and October 2015); thus, they cannot be directly compared against our MODIS-

based results for 2000–2017. Therefore, we reproduced the GSW thematic maps using 

the GSW monthly water history dataset from the overlapping period of these two datasets 

(i.e., February 2000–October 2015). We then also computed the MODIS-derived 

temporal metrics for this period. In total, 189 GSW water history images and 720 surface 

water fraction maps were incorporated for the generation of these thematic maps. The 

following metrics were generated: 
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(1) The annual maximum and mean annual maximum surface water fraction between 

2000 and 2015: the GSW monthly water history maps were summarized for each year 

in GEE to calculate the annual maximum surface water extent. We then aggregated 

the results of each year to the MODIS resolution and averaged all years to derive the 

mean annual maximum surface water fraction. To assess the spatial agreement of the 

mean annual maximum surface water fraction derived from MODIS and GSW, we 

calculated the surface water area (in km2) from the mean annual maximum surface 

water fraction using a threshold continuum. Specifically, the surface water fraction 

was partitioned using nine threshold values set in 10 % increments from 0 % to 100 %. 

All pixels with a surface water fraction greater than or equal to the threshold were 

summed and then multiplied by the MODIS pixel size. We then compared the water 

area (in km2) derived from the mean annual maximum surface water fraction based 

on GSW and MODIS across a different continuum of threshold values. We also 

compared the water area with the 250 m static water mask from MOD44W. 

(2) The standard deviation of the annual maximum: a measure of the inter-annual 

variability of water presence. 

(3) The seasonality: a measure for the seasonal and intra-annual variability of water 

presence. We calculated the number of times (i.e., the water occurrence) a given pixel 

displayed standing water above a certain water fractional threshold for a single 

hydrological year (October 2014 to September 2015), as GSW has a relatively large 

number of valid observations for this year (Figure 4.2), and then classified different 

types of water permanence. The water occurrence was calculated for each grid cell as 

a fraction of the number of times water was present relative to the total valid 

observations (i.e., not affected by clouds). We adopted the classification criteria of 

Guerschmann et al. (2011) and further modified it to be applicable to the 

Mediterranean region (Table 4.3). As the classes are not mutually exclusive, they are 

prioritized in the order shown in Table 4.3.  
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Table 4.3. Seasonality classification criteria based on surface water fraction and 

occurrence. The occurrence indicates how often the specified surface water fraction is 

reached for a single hydrological year (October 2014–September 2015). 

Class name Surface water fraction Water occurrence 

Permanent water   ≥ 70% ≥ 90% 

Semipermanent water  ≥ 70% 70%–90% 

Intermittent water ≥ 70% 20%–70% 

Infrequent inundation ≥ 70% 1%–20% 

Mixed permanent and semipermanent water  30%–70% ≥ 70% 

Mixed intermittent water 30%–70% 20%–70% 

Mixed infrequent inundation 30%–70% 1%–20% 

Never inundated < 30% ≥ 0% 

4.4.3 Demonstrating the representation of surface water dynamics 
by the new MODIS dataset 

To assess the performance of our MODIS-derived product for monitoring temporal 

variations in the surface water extent, we selected three lakes with fluctuating water 

presence. These three sites have varying sizes, and different geographic locations and 

temporal dynamics, and have also been listed in the International Conventions on 

Wetlands (known as Ramsar) given their importance for staging and wintering waterfowl. 

The three sites are as follows:  

(1) The Fuente de Piedra lake, Spain, which is a shallow and saline lake, has a maximum 

area of 13.6 km2. It experiences strong seasonal, inter-annual, and intra-annual 

variations of water level and inundation extent (Li et al. 2015);  

(2) Lake Sabkhat al-Jabbul, Syria, which is a large, permanent saline lake that is 

surrounded by semiarid steppe. At high water levels, it contains two islands; it 

traditionally floods in the spring and shrinks back during the summer and autumn but 

seldom dries out completely (JAES-CC 2010); 

(3) The coastal marshland complex of Doñana, Spain, which is separated from the ocean 

by an extensive dune system and is subject to seasonal and inter-annual variations in 

water level (De Castro and Reinoso 1997); 

For the first two lakes, we compared the time series of the MODIS-derived surface water 

area with that from GSW, and further compared these against water level data from 
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satellite altimetry or in situ measurements. We calculated the Spearman rank correlation 

(ρ) between water level and water area derived from MODIS SWF and JRC's GSW data 

to assess the correspondence between these datasets. For Doñana, we compared the 

monthly spatial distribution of the surface water extent derived from MODIS and JRC's 

GSW. To ensure the accuracy of the area calculations, we only calculated an area for 

times when it contained at least 95 % of valid data from MODIS SWF and JRC's GSW 

data. 

4.5 Results 

4.5.1 Model performance 

Following the model tuning of the Cubist regression model (see Section 4.4.1.3), we 

found that a 20-member committee and 9-neighbor model resulted in the smallest RMSE 

between the actual (GSW-derived) water fraction and our MODIS-based water fraction 

estimates. The addition of more committees or neighbors had little effect on the accuracy. 

 

Table 4.4. Statistical measures between the predicted surface water fraction and the 

actual data for training and validation data, and for different types of water permanence 

using validation data. 

 R2 RMSE (%) MAE (%) 

Training data 0.93 9.79 5.61 

Validation data 0.91 11.41 6.39 

Permanent water 0.90 12.07 6.38 

Fluctuating water 0.85 12.60 8.11 

 

Table 4.4 shows the statistical measures between the predicted and actual surface water 

fraction. The model predicted surface water fraction shows good agreement with the 

actual value with an R2 of 0.93 for the training data. When testing using the independent 

validation dataset, the R2 value is only slightly smaller, and the RMSE and MAE are 

slightly larger, suggesting that the Cubist regression model does not suffer from 

overfitting. The RMSE and MAE for fluctuating water were slightly larger than for 

permanent water (Table 4.4). This suggests that the developed model not only provides 

accurate results for the static mapping of the surface water fraction, but it can also be 

applied effectively for monitoring the dynamics of fluctuating surface water. 
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4.5.2 Surface water fraction metrics and comparison of products 

The mean annual maximum surface water fraction values generated from GSW and the 

MODIS-derived product over the 2000–2015 period are displayed in Figure 4.4. Overall, 

the two maps are in good agreement. Visual comparison indicates that our MODIS-

derived product is able to detect narrow rivers with widths covering a couple of MODIS 

pixels, such as the Danube, Euphrates, Po, Rhine, and Tagus rivers. Large differences are 

evident for some low surface water fraction regions such as parts of Hungary and the 

Ukraine (Figure 4.4). These differences likely correspond to the presence of wet 

meadows, salt marshes, and floodplains along large rivers, which are usually saturated 

and inundated with water during most of the vegetative season (Šefferová Stanová et al. 

2008; Stefan et al. 2016). Around the Po River in Italy, where rice paddies are seasonally 

present, our MODIS product also shows larger surface water fractions (Figure 4.4c). This 

result suggests that the MODIS-derived surface water fraction has enhanced sensitivity 

to surface water in wetland areas with emerged vegetation, and this could be attributed to 

the fact that several predictor variables such as LSWI (Xiao et al. 2002a) are also sensitive 

to vegetation water content (Li et al. 2015). Table 4.5 confirms that the total surface water 

areas for the Mediterranean calculated from MODIS are more comparable to the GSW 

results when only considering areas with a higher surface water fraction. For example, 

when only accounting for pixels with surface water fractions equal to or greater than 

50 %, the total surface water areas for the Mediterranean based on both datasets are 

similar (75 107 km2 for GSW versus 73 444 km2 for MODIS). In comparison, only 

70 543 km2 of water was detected in this region based on the 250 m static water mask 

from MOD44W. This implies that our MODIS product detects more surface water than 

other coarse-resolution binary maps. Nonetheless, our MODIS product detects less 

surface water than GSW for larger thresholds (≥ 50 %), whereas it detects much more 

surface water than GSW for small thresholds (≤ 20 %). This confirms an earlier finding 

that machine learning approaches such as Cubist and random forest often underestimate 

large values and overestimate small values when estimating the fractional cover of land 

surface (e.g., Huang et al. 2014b; Li et al. 2018a; Wang et al. 2017). In addition to the 

effects of mixed pixels (Klein et al. 2017), the most obvious reason for this is because 

regression techniques used in such approaches fit linear equations to relationships that 

may not be linear over the entire range of values. 
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Table 4.5. Comparison of total surface water area (in km2) as determined from JRC’s 

GSW and MODIS mean annual maximum surface water fraction maps for different 

thresholds. 

Threshold for surface 

water fraction 

Total surface water areas 

(km2) based on GSW 

Total surface water areas (km2) based 

on MODIS surface water fraction 

90% 48 718 47 145 

80% 55 887 51 778 

70% 62 371 58 996 

60% 68 855 65 993 

50% 75 107 73 444 

40% 81 220 82 417 

30% 87 217 96 239 

20% 93 207 142 531 

10% 99 260 284 916 
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Figure 4.4. Mean annual maximum surface water fraction maps as obtained from (a) 

JRC's GSW and (b) MODIS time series surface water fraction for the period from 2000 

to 2015, and (c) the difference between the two maps. Positive difference values indicate 

that our MODIS dataset detected a larger water fraction than JRC's GSW. 
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Figure 4.5. Standard deviation of the surface water fraction as calculated from (a) JRC's 

GSW and (b) MODIS annual maximum surface water fraction maps for the period from 

2000 to 2015. 

 

Figure 4.5 shows the standard deviation of the annual maximum surface water fraction. 

It indicates that areas of large inter-annual variability agree between MODIS-based and 

GSW-based results. Both indicate a larger variability in the surface water fraction in 

semiarid and desert climate zones, particularly in the north of Algeria, for the Volga Delta 

in the Caspian depression, and along the Tigris and Euphrates rivers of Iraq.  
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Figure 4.6. Seasonality information derived from time series of the (a) JRC's GSW and 

(b) MODIS surface water fraction for a single year (October 2014 to September 2015). 

 
Figure 4.6 displays the seasonality metric for the entire study area, with details for two 

selected sites shown in panels (a) and (b) of Figures 4.7 and 4.8. Fuente de Piedra is a 

seasonally flooded lake which usually dries out completely in summer (May–September) 

(Batanero et al. 2017; Li et al. 2015) with the exception of extremely wet years (e.g., 

2010, 2011, 2013: Rodriguez-Rodriguez et al. 2016) when water was present throughout 

the whole year. The differences in water seasonality for Fuente de Piedra between the two 

products (Figure 4.7a, b) can be attributed to the fact that GSW lacks observations in wet 

seasons, resulting in a reduced water occurrence compared with our MODIS product. The 

discontinuities in the Landsat record between seasons can affect the accuracy of 

seasonality information, which has also been demonstrated by Klein et al. (2017) and 

Pekel et al. (2016). Permanent water is present in parts of Lake Sabkhat al-Jabbul, but the 
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larger central portion of the lake has highly dynamic intermittent water (Figure 4.8). 

Mixed permanent and semipermanent waters are mostly found on the edge of permanent 

water and in narrow rivers. 

4.5.3 MODIS-derived surface water dynamics for selected lakes 

Panels (d) of Figures 4.7–4.8 show the time series of the surface water extent detected by 

MODIS and GSW for two selected lakes. Fuente de Piedra (Figure 4.7d) experiences 

large temporal variability in the surface water extent throughout the year, which is well 

represented by our MODIS product with 461 time steps (Table 4.6). This variability 

corresponds closely to the in situ water level data (ρ = 0.95). Note that in extreme wet 

years (i.e., 2010, 2011, and 2013), the lake remained flooded throughout the year without 

increasing in size with regard to water level changes (Rodriguez-Rodriguez et al. 2016). 

The water extent derived from MODIS SWF also matched closely to that from GSW 

(Figure 4.7c, d; r = 0.95). GSW only had 73 valid time steps with most observations in 

dry seasons (i.e., June to October); thus, it did not allow for the appropriate capture of the 

seasonal dynamics, particularly for the November–March period when the lake usually 

reaches its full surface water extent. Time series of the water extent of Lake Sabkhat al-

Jabbul as determined by our MODIS product showed a relative high correlation with 

water level data (ρ = 0.69). It also showed good agreement with the water extent derived 

from GSW, including the seasonal peak extent and the minimum surface water extent 

during the dry season (Figure 4.8c, d; r = 0.88). This implies that the coarse 500 m 

MODIS data not only provide more detailed temporal information (563 MODIS surface 

water fraction time steps versus 69 GSW time steps) (Table 4.6), but they also give 

accurate estimations of the surface water area compared with the results from Landsat 

30 m resolution data. 

 

Table 4.6. Number of valid temporal observations for the three lakes based on the MODIS 

surface water fraction and JRC's GSW between February 2000 and October 2015. 

Lakes MODIS surface water fraction JRC’s GSW 

Fuente de Piedra 461 73 

Lake Sabkhat al-Jabbul 563 69 

Doñana 714 70 
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Figure 4.7. Seasonality information derived from (a) JRC's GSW and (b) the MODIS 

surface water fraction from a single year (October 2014 to September 2015). The colors 

in (a) and (b) are the same as in Figure 4.6. (c) A scatterplot of the water area obtained 

from JRC's GSW versus that from MODIS SWF. r represents the Pearson correlation 

between two datasets. (d) A comparison of time series of the surface water area (in km2) 

derived from JRC's GSW (shown using green asterisks) with MODIS surface water 

fraction (shown using blue dots) from 2000 to 2015, along with in situ water level data 

(shown using orange dots) for Fuente de Piedra, Spain. ρ represents the Spearman rank 

correlation between the water level and water area. 
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Figure 4.8. As in Figure 4.7, but for Lake Sabkhat al-Jabbul, Syria. The water level for 

this lake is computed from Jason-2/OSTM altimetry and repeats every 10 d. 

 

Figure 4.9 compares the MODIS monthly surface water fraction with the GSW monthly 

water history for Doñana, Spain. The visual comparison shows that the distribution of the 

MODIS surface water fraction agrees well with the GSW monthly water maps. The 500 m 

MODIS surface water fraction is able to capture the spatial patterns as detected from the 

high-resolution Landsat-based GSW dataset. Seasonal drying out and flooding of the 

wetland is well detected with the MODIS-derived surface water fraction, whereas GSW 

lacks temporal details, for example, during large water extents in November and 

December. MODIS also captures the timing of the maximum water extent (i.e., in 

January) and water retreat (i.e., in July). This example highlights that the information 

provided by our MODIS product can contribute to a better understanding of surface water 

dynamics. 
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Figure 4.9. Comparison of monthly water distribution based on (a) the Landsat-based 

GSW dataset and (b) the MODIS surface water fraction for Doñana, Spain, for 2011. 

4.6 Discussion 

We estimated the surface water fraction for the Mediterranean region from MODIS data, 

and improved on previous efforts to estimate surface water fraction from medium-

resolution imagery (MODIS or similar). The prediction accuracy of our model (R2 = 0.91, 

RMSE = 11.41 %, and MAE = 6.39 %) is higher than the R2 of 0.625 reported by Weiss 

and Crabtree (2011), who used a linear regression model, and the R2 of 0.7 reported by 

Guerschmann et al. (2011), using a logistic regression model. This research successfully 

expanded our previous work (Li et al. 2018a) by upscaling it from a relatively small 

region to the whole Mediterranean while retaining a similar high accuracy (both achieved 

an R2 of 0.91). This attributes to the feasibility and robustness of Cubist regression 

modeling with respect to dealing with different environmental conditions when training 

data are collected across a wide geography resulting in varying spectral characteristics. 

Secondly, we generated surface water fraction maps at high temporal frequency, which 

is an advantage over existing fine-resolution datasets. Our MODIS-derived surface water 
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fraction product accurately displays the spatiotemporal variability of surface water. The 

comparison with the GSW 30 m product and water level data (Figures 4.7–4.9) reveal 

that our product can efficiently monitor the seasonal, intra-annual, and long-term surface 

water dynamics with good spatial and temporal accuracy. For example, it complements 

the GSW by allowing for the detection of inundation and recession processes over short 

time periods and for the better representation of seasonality changes and temporal trends 

over longer periods. The MODIS surface water fraction can also accurately detect the 

spatial distribution of surface water inclusive of small water bodies (less than one MODIS 

pixel) and narrow rivers, which are missing in other coarse-resolution products using 

binary classification method such as MOD44W (Salomon et al. 2004). Metrics derived 

from the MODIS surface water fraction and GSW time series can reflect different facets 

of surface water dynamics. The accuracy of some metrics, such as seasonality, relies on 

the number of valid observations and the temporal interval. Landsat-derived metrics 

might be problematic in areas with large temporal gaps caused by persistent cloud cover, 

as shown in this study (Figure 4.8) and previously by Pekel et al. (2016) and Klein et al. 

(2017). Although cloud coverage also limits MODIS observations, the probability of 

obtaining cloud-free observations is higher (Table 4.6) due to the daily acquisitions and 

consequent temporal compositing possibilities. With these advantages, we expect that our 

MODIS surface water fraction product could fill in important information on surface 

water for areas and time periods for which cloud-free Landsat acquisitions are few or non-

existent. 

Our MODIS-derived surface water fraction product also has limitations. Firstly, it is 

designed to detect only open surface water; therefore, it may not effectively capture water 

bodies covered by dense vegetation, such as swamps, lakes with considerable coverage 

of aquatic vegetation, and inundated dense forests. Secondly, the MODIS surface water 

fraction product overestimates small surface water fractions of less than 20 % (Table 4.5), 

which has also been found in previous studies on surface water fraction mapping (Li et 

al. 2018a; Parrens et al. 2017). This overestimation might be attributed to the mixed 

spectral response of pixels with different land cover types, as already demonstrated by 

many studies (e.g., Guerschmann et al. 2011; Klein et al. 2017). Further work could 

consider reassigning pixels with less than 20 % surface water to 0 % water fraction for 

locations where water is never present according to the GSW maximum water extent. 

Thirdly, the auxiliary layers utilized for the identification of potential areas of 

commission errors also appear to have some limitations. For example, some urban areas 

might be not mapped in MCD12Q1, and areas of cloud cover and cloud shadow might 
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not be completely removed from the MCD43A4 product. The importance of these 

limitations may diminish as the quality of these auxiliary layers improves or dynamic 

datasets rather than static layers are incorporated (e.g., Global Human Settlement Layer: 

Pesaresi et al. 2016). Fourthly, the MCD43A4 product also suffers from many missing 

values, especially in regions with large amounts of precipitation, aerosol concentrations, 

or snow and ice coverage (Klein et al. 2017). Future research should focus on combining 

other moderate-resolution data (e.g., MOD09) for areas with missing data to ensure a gap-

free reconstruction of inland water development for the past and future. 

This work can be further scaled up over much larger regions and for shorter (e.g., daily) 

time intervals. A high-quality training dataset is crucial for the effective application of 

the rule-base regression model and the collection of such training data is time consuming 

(Sun et al. 2012). In this paper, time series of the GSW monthly water history dataset 

proved to be an efficient basis for building a reliable training dataset. Considering that 

GSW is globally available, we are confident that our approach can be scaled to monitor 

the surface water fraction globally with MODIS data. Although the surface water fraction 

maps were produced with an 8 d time step, the model developed in this paper was actually 

trained using daily MODIS data and could be directly applied to that temporal resolution. 

The resulting daily surface water fraction maps could be of high interest for ecological 

and hydrological research. The recent GCOS report requires water extent and lake ice 

cover with a daily temporal resolution and a 20 m and 300 m spatial resolution, 

respectively (Belward 2016). Our approach makes this requirement for the coarser of the 

two resolutions within reach. 

Our MODIS surface water fraction dataset may benefit a large number of applications. 

For example, it could be used as a monitoring tool for analyzing hydrologic extremes 

such as floods and droughts, detecting abnormal changes of wetland hydrology, capturing 

short-duration events, identifying newly formed and disappearing water bodies, and 

estimating global water loss. The MODIS surface water fraction dataset may help to 

improve the calibration and validation of hydrological models. For example, the water 

area can help to estimate a series of hydrological parameters such as water discharge 

(Huang et al. 2018b) and water volume (Busker et al. 2019; Cael et al. 2017; Duan and 

Bastiaanssen 2013; Tong et al. 2016). This would be particularly useful for areas where 

in situ measurements are sparse or inaccessible. Closely monitoring hydrological 

variability is important for understanding how climate change, meteorological variability, 

and human activities affect the dynamics of surface water and human livelihoods (Tulbure 

and Broich 2019; Zhang et al. 2019). It may also provide new insights for understanding 
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how surface water dynamics further influence climate. For example, lake expansion and 

the creation of new dams can alter local and regional precipitation patterns (Degu et al. 

2011; Ekhtiari et al. 2017; Hossain et al. 2009). Similarly, our long-term records and 

derived metrics have the potential to contribute to the management and conservation of 

biodiversity and other ecosystem services associated with terrestrial surface water and 

wetlands. 

4.7 Conclusions 

We derived an 8 d, 500 m resolution surface water fraction product over the 

Mediterranean for the period from 2000 to 2017 by applying a global Cubist regression 

tree model to MODIS and SRTM data. We validated the results with JRC's Landsat-

derived GSW dataset, which resulted in a high overall accuracy (R2 = 0.91, RMSE = 

11.41 %, and MAE = 6.39 %). The MODIS-derived surface water fraction showed a good 

spatial and temporal correspondence with JRC's GSW. Comparison with satellite 

altimetry and in situ water level data for selected lakes demonstrated the ability of MODIS 

surface water fraction to effectively monitor seasonal and inter-annual changes in surface 

water extent. Our dataset provides a consistent, long-term record (18 years) of 8 d water 

fraction dynamics for the Mediterranean region, and complements fine spatial resolution 

surface water products, especially in regions where such products have long temporal and 

spatial data gaps due to both the limited number of acquisitions and persistent cloud cover. 

Our approach is also promising for monitoring surface water fraction at the global scale 

and at a daily interval. 
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Evaluation of a New 18-year MODIS-Derived 

Surface Water Fraction Dataset for Constructing 

Mediterranean Wetland Surface Water Dynamics* 

  

                                          
* This chapter is based on: Li, L., Vrieling, A., Skidmore, A., & Wang, T. (Submitted). Evaluation 
of a new 18-year MODIS-derived surface water fraction dataset for constructing Mediterranean 
wetland surface water dynamics. Journal of Hydrology. 
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Abstract 

Wetlands are among the most biodiverse ecosystems in the world, due largely to their 

dynamic hydrology. Frequent observations by satellite sensors such as the Moderate 

Resolution Imaging Spectrometer (MODIS) allow for monitoring the seasonal, inter-

annual and long-term dynamics of surface water extent. However, existing MODIS-based 

studies have only demonstrated this for large water bodies (>100 km2) despite the 

ecological importance of smaller-sized wetland systems. In this paper, we assessed if the 

temporal dynamics of surface water extent can be effectively captured with MODIS for 

a wide range of water body sizes, specifically 0.01 km2 and larger. We constructed the 

temporal dynamics of surface water extent for 340 individual water bodies in the 

Mediterranean region between 2000 and 2017, using a previously developed 8-day 500 

m MODIS surface water fraction (SWF) dataset. We then evaluated how MODIS SWF 

time series corresponded to water extent derived from a Landsat-based dataset and to 

satellite-altimetry derived water level data. Results showed that although correlations 

between MODIS- and Landsat-derived SWF were poor for relative static water bodies (r 

= 0.17), they increased for more dynamic water bodies (r = 0.81). For dynamic water 

bodies larger than 100 km2, time series of water extent derived from MODIS SWF 

showed good correlation with both Landsat (r ≥ 0.76) and water level data (ρ ≥ 0.63). Our 

MODIS SWF dataset can also effectively monitor the variability of very small water 

bodies (< 1 km2) when comparing with Landsat data as long as variability in their area 

was high. We conclude that MODIS SWF is a useful product to help understand 

hydrological dynamics for both small and larger-sized water bodies, and to monitor their 

seasonal, intermittent, inter-annual and long-term changes.  
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5.1 Introduction 

Wetlands are among the most biodiverse ecosystems in the world, due largely to their 

dynamic hydrology (Hils 1997). The hydrological cycle of flooding and drying within a 

wetland is important for the formation and maintenance of specific wetland habitat types 

and the species that they support (Hails 1997). The hydrological dynamics also reflect 

spatial and temporal changes in a number of environmental factors including anomalous 

rainfall-driven flood events (Cian et al. 2018), seasonal thawing and snowmelt in spring 

(Watts et al. 2012) and longer-term environmental changes (Street and Grove 

1976). Characterizing hydrological variations is a prerequisite for understanding 

hydrological and ecological processes across different wetland types, and to identify 

abnormal changes in wetland hydrology in relationship to normal variability of wetland 

hydrology general patterns. However, accurate information on wetland dynamics is 

scarce, particularly for small-sized wetlands (Ogilvie et al. 2018a). Despite their size, 

small wetlands in arid, semi-arid and Mediterranean regions often act as critical refuge 

and breeding areas, offer food sources for wildlife, and harbor many plant and animal 

species that would otherwise not survive in the surrounding landscape (Calhoun et al. 

2017; McCulloch et al. 2003). Efficient, accurate and robust tools for monitoring the 

hydrology of wetlands over large areas are urgently needed for management and 

conservation strategies (Finlayson et al. 1999; Turak et al. 2017). 

Remote sensing has been used as a cost effective tool to monitor the changes of surface 

water in space and time (Alsdorf et al. 2007; Ozesmi and Bauer 2002). The challenge is 

the trade-off between temporal and spatial resolution of remotely sensed imagery. High 

spatial resolution has proved to provide accurate estimation of the location and extent of 

surface water while high temporal resolution imagery is effective in monitoring and 

analyzing the dynamics of surface water.  

Many attempts to monitor surface water changes with 10-30 m resolution optical data 

have been reported including spectral data from Landsat (Borro et al. 2014; Doña et al. 

2016; Jin et al. 2017; Tan et al. 2019) and Sentinel-2 (Kaplan and Avdan 2017a; Yang et 

al. 2018b) for specific locations. For larger spatial and longer time scales, several efforts 

exist to map and monitor surface water changes with Landsat data at regional (Halabisky 

et al. 2016; Heimhuber et al. 2016), continental (Mueller et al. 2016), and global scale 

(Donchyts et al. 2016; Pekel et al. 2016). These datasets allow for analyzing surface water 

dynamics at fine spatial resolution and over a long time frame. However, the combination 

of clouds and revisit time of the used satellites results in data gaps and temporal 
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discontinuities in the data (Pekel et al. 2016). The limited number of observations does 

not provide enough detail for understanding seasonal patterns and dynamics of inter-

annual and long-trend response, much less to determine if measured changes in the 

surface water extent represent natural seasonal variability, or abnormal changes in 

wetland hydrology.  

Moderate to coarse resolution imagery are acquired with shorter revisit times and provide 

long-term and dense time series data. Therefore, they have been widely used for 

monitoring changes in surface water. For example, Chen et al. (2014) investigated the 

spatial-temporal patterns of abrupt changes of Poyang Lake using time-series of the 

Moderate Resolution Imaging Spectroradiometer (MODIS) 16-day Normalized 

Difference Vegetation Index (NDVI) product. Using the same product and unsupervised 

classification, Gao et al. (2012) estimated historical area changes in 34 large reservoirs 

around the globe. Khandelwal et al. (2017) applied supervised classification on 16-day 

500 m MODIS surface reflectance time series data to monitor changes in surface water 

extent for a global set of 94 large reservoirs. All of these studies are based on binary 

classification methods and are confined to large water bodies with an area greater than 

100 km2. To overcome the limitation of coarse spatial resolution and incorporate small 

water bodies, we have developed a dense 18-year time series dataset of surface water for 

the Mediterranean region in a previous paper (Li et al. 2019). This dataset estimated the 

surface water fraction (SWF) for each 500 m MODIS pixel (using nadir reflectances from 

the MCD43A4 product) with a rule-based regression model. By assessing water fractions, 

the dataset allows for mapping and monitoring surface water smaller than a MODIS pixel. 

Although in that paper we briefly illustrated the dataset’s options for monitoring temporal 

changes, a formal assessment of the ability to monitor surface water dynamics taking into 

account water body size has not been performed. Therefore, the aim of this paper is to 

assess if our MODIS SWF product can effectively capture the temporal changes in surface 

water extent for a wide range of water body sizes (i.e., 0.01–3100 km2). Our specific 

objectives are: 

(1) to derive temporal dynamics of surface water extent between 2000 and 2017 for 

individual water bodies using the previously developed 8-day 500 m resolution 

MODIS SWF dataset; 

(2) to assess how closely those temporal dynamics match the variability of surface water 

extent obtained from a Landsat-based dataset and water level data; 

(3) to characterize the water extent time series and to identify different dynamic patterns 

(e.g., intermittent, seasonal, inter-annual or long-trend dynamics). 
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5.2 Data 

5.2.1 Landsat-based global surface water dataset 

The Joint Research Centre’s Global Surface Water (JRC-GSW) dataset (Pekel et al. 2016) 

maps the temporal and spatial dynamics of surface water over a 32-year period (from 

March 1984 to October 2015) at monthly time interval and at 30 m spatial resolution 

globally. This dataset was produced by analyzing the entire archive of Landsat 5, 7 and 8 

using an expert system. The expert system is a sequential decision tree that used both the 

multi-spectral and multi-temporal attributes of the Landsat archive as well as ancillary 

data layers. The dataset was validated using more than 40,000 reference points from very 

high resolution satellite and aerial imagery, which revealed a high accuracy with a 

commission error less than 1% and omission error less than 5% (Pekel et al. 2016). The 

JRC-GSW dataset includes the monthly water history dataset, which is a set of 380 global 

maps documenting the water presence for each month from March 1984 to October 2015, 

and eight additional information layers, documenting different facets of the surface water 

dynamics. The complete dataset with the described layers is available in Google Earth 

Engine.  

Although JRC-GSW has a high spatial accuracy, it only provides information on changes 

in surface water at a monthly interval. Furthermore, it contains long temporal gaps due to 

both the limited number of acquisitions during specific time intervals, and due to region- 

and month-dependent persistency of cloud cover. These temporal gaps can affect the 

accuracy of the trend and seasonality information (Li et al. 2019; Yamazaki and Trigg 

2016) 

5.2.2 MODIS-derived surface water fraction dataset 

The MODIS-based surface water fraction (SWF) dataset (Li 2019) provides 18 years 

(2000–2017) of water fraction maps at 500 m spatial resolution and 8-day temporal 

resolution for the Mediterranean region. We derived this dataset from the MODIS Terra 

and Aqua Nadir BRDF-Adjusted Reflectance (NBAR) product (MCD43A4, V006) 

through a global rule-based regression model, which used MODIS-derived spectral 

information, its temporal characteristics, and topographic information as predictor 

variables. Reference data were generated from the JRC-GSW monthly water history maps 

for 7,000 MODIS-scale cells (500x500 m), divided into 3500 training and 3500 validation 

locations. These reference data areas are sampled across the entire Mediterranean area, 



Evaluation  of  a  New  18‐year  MODIS‐Derived  Surface  Water  Fraction  Dataset 

116 

different water permanence types (seasonal and permanent), and different water fraction 

categories (0%–100%). The correspondence between MODIS SWF and surface water 

fraction derived from the JRC-GSW product is strong (R2 = 0.91). An advantage of 

MODIS SWF over JRC-GSW is that it can provide surface water information for the long 

temporal and spatial data gaps of JRC-GSW. Moreover, the high temporal resolution 

allows better capturing of rapid changes in surface water extent that cannot be detected 

by the monthly JRC-GSW product (Li et al. 2019).  

5.2.3 Water level data  

We obtained water level time series measured with spaceborne radar altimetry for 14 

large water bodies (>100 km2) (Figure 5.1 and Table 5.3) from three websites: (1) the 

U.S. Department of Agriculture’s Global Reservoir and Lake Monitoring (GRLM) 

(http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir); (2) the Laboratoire 

d'Etudes en Géophysique et Océanographies Spatiales (LEGOS: http://hydroweb.theia-

land.fr/) in France (Crétaux et al. 2011), and (3) the Database for Hydrological Time 

Series of Inland Waters (DAHITI: http://dahiti.dgfi.tum.de/en/) (Schwatke et al. 2015). 

The GRLM combines water levels obtained from radar altimeters onboard 

Topex/Poseidon (T/P), Jason-1, Jason-2 and ENVISAT satellites. GRLM merges T/P, 

Jason-1 and Jason-2 time series of relative water level variation with respect to the nine-

year mean T/P level at 10-day intervals (hereafter referred to as GRLM10). An ENVISAT 

Radar Altimeter 2 derived time series of relative water level variation with respect to the 

mean level of a given ENVISAT reference cycle at 35-day intervals is also provided. The 

GRLM offers both the raw and smoothed time series of water level, which is performed 

with a median-type filter to eliminate outliers and reduce high-frequency noise. We used 

the smoothed data in this study. LEGOS and DAHITI use additional altimeter missions 

besides those used by GRLM, including Jason-3, Cryosat-2, and SARAL/AltiKa. 

5.3 Methods 

5.3.1 Selection of individual water bodies 

To compare water extent dynamics from MODIS SWF and JRC-GSW for individual 

water bodies, we selected and analyzed 340 water bodies. These were all situated in the 

Mediterranean region as defined by Li et al. (2019). These water bodies vary from 0.01 

km2 to 3100 km2 in size (i.e., mean water area according to JRC-GSW time series). Table 
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5.1 lists the number of water bodies within five size categories, i.e., 0–1 km2, 1–5 km2, 

5–20 km2, 20–100 km2, and > 100 km2, and Figure 5.1 shows their spatial distribution.  

To obtain our selection of 340 water bodies, we first selected all Ramsar wetlands of the 

Mediterranean region excluding the wetlands types that are not characterized by the 

presence of surface water, such as wet meadows, marshes, and peatlands. This resulted 

in 279 water bodies. We added 14 large lakes and reservoirs (>100 km2) to our selection 

(see Figure 5.1 and the list in Table 5.3). These 14 lakes are not Ramsar sites but were 

included by Khandelwal et al. (2017) in their study on MODIS-based surface water extent 

mapping, and coincided with the lakes for which altimetry water level data were available 

(Section 5.2.3). We thus included these lakes for comparison. In addition, we included 47 

non-Ramsar water bodies that showed large inter-annual variability in surface water 

extent according to Li et al. (2019).  

 

Table 5.1. Number of selected water bodies in different water size categories (total = 340) 

Size (km2) Number of water bodies 

0–1 95 

1–5 88 

5–20 62 

20–100 56 

>100 39 
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Figure 5.1. Spatial distribution of all analyzed water bodies. Different colours represent 

different water size categories. Stars show the lakes for which water level data are 

available, and have an overlap with the research of Khandelwal et al. (2017). 

5.3.2 Calculation of water extent time series 

To identify surface water dynamics per water body, we first identified the spatial extent 

within which we summarized the surface water presence. For this purpose, we used the 

JRC-GSW maximum water extent as the initial region of interest (ROI). Around this ROI, 

we created a buffer of one 500 m resolution MODIS pixel to include nearby locations, 

because there is a chance that surface water extends beyond what could be identified by 

JRC-GSW.  

We then derived time series of water extent for each buffered ROI from the MODIS SWF 

dataset, by summing the water fraction of all pixels inside the ROI and multiplying this 

by the MODIS pixel size (i.e., 250,000 m2).  We also derived time series of water extent 

from the JRC-GSW monthly history dataset by multiplying the number of water pixels 

inside the ROI with the Landsat pixel size (i.e., 900 m2). Missing data in a ROI can affect 

the accuracy when calculating the water area. To deal with this problem and ensure the 

accuracy of the area calculations, we calculated for each ROI and each moment the valid 

cloud-free data fraction by dividing the valid pixels by all pixels within the ROI. We then 

only retained an area if for that moment it contained at least 95% of valid data from 

MODIS SWF and JRC-GSW derived water extent time series.  
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5.3.3 Comparison of water extent time series 

We compared time series of surface water extent derived from MODIS SWF with those 

from JRC-GSW to see if the temporal dynamics of surface water extent obtained from 

the two datasets match with each other. Specifically, we calculated the monthly mean 

water extent from MODIS SWF for the period from February 2000 to October 2015, and 

compared it with JRC-GSW monthly water history. Two statistical measures were 

calculated: the Pearson’s correlation coefficient (r) and the normalized mean signed 

deviation (NMSD): 

𝑁𝑀𝑆𝐷 ൌ  
ெௌ

ೌ
                     (5.1) 

where Area୫ୣୟ୬ is the mean water area according to the JRC-GSW time series. 

To assess if the agreement between JRC-GSW and MODIS-derived surface water results 

is related to the dynamics of the water body, a measure of relative variability (RV) in 

surface water extent was calculated for each water body as: 

  𝑅𝑉 ൌ
ೌೣି

ೌ
                      (5.2) 

where Area୫ୟ୶  , Area୫୧୬ and Area୫ୣୟ୬  are the maximum, minimum and mean 

water area according to JRC-GSW time series. We then plotted the distribution of r as a 

function of RV for different water size categories. We also combined the effect of both 

water size categories and RV on r in a single analysis. For this, we further divided all 

water bodies into six RV levels, i.e., 0 < RV < 0.15, 0.15 ≤ RV < 0.3, 0.3 ≤ RV < 1.0, 1 

≤ RV < 2, 2 ≤ RV < 5 and RV ≥ 5.  

5.3.4 Comparison with water level data  

To evaluate the performance of MODIS SWF for monitoring the dynamics of surface 

water, we also compared the water extent time series with water level for 14 large lakes 

(>100 km2) for which satellite altimetry data was available (see Section 5.2.3). 

Specifically, we calculated the Spearman rank correlation (ρ) between monthly mean 

water level and monthly water extent obtained from JRC-GSW and MODIS SWF, 

respectively. A rank correlation was used because relationships between water level and 

extent are non-linear and depend on bathymetry (Hayashi and van der Kamp 2000).   

To obtain a temporal match between our MODIS SWF 8-day product and water level, in 

addition to the monthly comparison we also resampled the water level data (available 
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every 10 or ~35 days) to 8-day estimates using linear interpolation. There could be long 

time gaps between two water level observations due to missing data (Ricko et al. 2012). 

We thus further removed those interpolated data if the time gap is longer than three 

months. The same 14 lakes were included by Khandelwal et al. (2017) who mapped 

surface water area dynamics between 2000 and 2015 based on binary classification of 

MODIS 8-day 500 m resolution data. To assess if our product offers an improvement with 

respect to the one of Khandelwal et al. (2017) we calculated ρ also between water level 

and their 8-day time series, available at http://z.umn.edu/monitoringwaterRSE. To make 

a fair comparison, for both products ρ was calculated for the 2000-2015 time frame, 

matching the study by Khandelwal et al. (2017). 

5.3.5 Characterization of the temporal variability of water extent  

To characterize the temporal dynamics within the 18-year water extent time series derived 

from MODIS SWF, we created a subset that only included the dynamic water bodies, 

which were defined by applying a threshold to RV for each water size category. We then 

extracted three features including the strength of seasonality, strength of trend, and 

stationarity. These features were used in previous studies to characterize hydrological 

time series (Buma et al. 2016; Lafare et al. 2016). To extract the features, we first 

decomposed the water extent time series using the seasonal trend decomposition 

algorithm (STL: Cleveland et al. 1990), which is capable of accommodating missing 

values and is robust to noise. The STL decomposes a time series Yt into seasonal (St), 

trend (Tt), and remainder (Rt) components, as: 

                         𝑌௧ ൌ 𝑆௧  𝑇௧  𝑅௧                                           (5.3) 

After we obtained the seasonal (St) and trend (Tt) series, we normalized them to [0, 1] to 

indicate the strength of seasonality and trend using the following equations:   

FS = max (0, 1 െ
୴ୟ୰ሺோሻ

୴ୟ୰ሺௌାோሻ
)                      (5.4) 

FT = max (0, 1 െ
୴ୟ୰ሺோሻ

୴ୟ୰ሺ ்ାோሻ
)                      (5.5) 

where var stands for variance. A series with seasonal strength (FS) close to 0 exhibits 

almost no seasonality, while a series with strong seasonality will have FS close to 1 (Wang 

et al. 2006). This is similar for the strength of the trend component (FT). We calculated 

the strength of seasonality and trend by using the “stl_features” package, which 

implements STL algorithm in R statistical software (R Core Team 2013), and used the 

suggestions of Cleveland et al. (1990) to set the parameter values. To calculate 
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stationarity, the water extent time series were first linearly rescaled to [0, 1]. Then we 

calculated the annual mean from the rescaled water extent time series. The stationarity is 

calculated as the variance of annual mean (Wang et al. 2006).  

Finally, based on these three characteristics (i.e., strength of seasonality, strength of trend 

and stationarity) extracted from water extent time series derived from MODIS SWF, we 

organized the water bodies into groups with similar dynamic patterns using the K-means 

clustering algorithm (Aghabozorgi et al. 2015).  

5.4 Results 

5.4.1 Comparison of water extent time series 

Based on MODIS SWF, we constructed temporal dynamics of surface water extent at 8-

day time interval for 340 water bodies spanning a time period from 2000 to 2017. For 

comparison with JRC-GSW, three water bodies (i.e., Lake Urmia in Iran, Sebkhet Sidi 

Elhani in Tunisia and Sultan Marshes in Turkey) were removed from further analysis 

because for less than 10 individual months both datasets had overlap in terms of valid 

water extent retrievals, which was considered too few for a proper statistical basis. 

 

 

Figure 5.2. Pearson’s correlation (r) between monthly water extent derived from MODIS 

SWF dataset and from JRC-GSW as a function of water relative variability (RV) for 

different water size categories. Possible reasons for the low correlation for the points 

marked with a red number (1–5) are explored in the Discussion section of this paper. 
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Figure 5.2 plots the distribution of r between monthly water extent derived from MODIS 

SWF and those from JRC-GSW as a function of RV for different water size categories. 

There is a general increase in r when the water relative variability increases for all water 

size categories. This indicates that small variations in water extent are not similarly 

described by the two products, suggesting a lower accuracy in monitoring fluctuations of 

more stable water bodies. For water bodies with a larger RV, the temporal variability in 

monthly water extent obtained from both datasets had a good agreement with r generally 

above or near 0.8; this includes very small water bodies (< 1 km2). Examples of four very 

small water bodies (i.e., Laguna Dulce in Spain, Laguna de la Nava de Fuentes in Spain, 

Complexe du bas Tahaddart in Morocco, and Livanjsko Polje in Bosnia and Herzegovina) 

are shown in Figure 5.3. These four water bodies are all Ramsar sites with an area less 

than 1 km2 (i.e., mean water area according to JRC-GSW time series). Comparison of 

monthly water extent derived from both datasets shows a good agreement (r ≥ 0.79) for 

these small water bodies. Note that several cases with small value of r are identified in 

Figure 5.2, each marked with a red number. These cases are caused by a number of factors 

which are discussed in the Discussion section. 
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Figure 5.3. Monthly water extent time series derived from MODIS SWF dataset showing 

a good agreement (r above or near 0.8) with those from JRC-GSW for four very small 

water bodies (< 1 km2 mean JRC-GSW water extent): (a) Laguna Dulce, Spain; (b) 

Laguna de la Nava de Fuentes, Spain; (c) Complexe du bas Tahaddart, Morocco; (d) 

Livanjsko Polje, Bosnia and Herzegovina. The black polygon is the buffered region of 

interest (ROI) used for calculating the surface water area. 

 

Table 5.2 shows that the average correlation increases when water variability increases, 

with the smallest r of 0.17 for static water bodies (RV < 0.15) and the largest r of 0.81 

for highly dynamic water bodies (RV ≥ 5). In addition, Table 5.2 shows that the effect of 

RV on r depends on the water size categories considered. This may be expected as small 

relative changes for larger water bodies (as expressed by RV) still correspond to 

substantial absolute changes, which can be captured by MODIS. Table 5.2 signals how 

much variability can be captured by our MODIS SWF product. For example, the 

reasonable correlation (r ≥ 0.5) found for water bodies smaller than 1 km2 when RV ≥ 1 

implies that MODIS SWF resembles JRC-GSW for representing absolute variability of 

less than 1 km2. 
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Table 5.2. Effects of size categories and water relative variability (RV) on the correlation 

(r) between monthly water extent obtained from MODIS SWF dataset and JRC-GSW. 

Correlation (r) is colour-coded with orange indicating values less than 0.5 and blue 

greater than or equal to 0.5. The number of water bodies is given in brackets. 

Water relative 

variability (RV) 

Size categories (km2) Total 

0–1 1–5 5–20 20–100 >100 

RV<0.15  0.17 (8) 0.14 (8) 0.16 (12) 0.22 (11) 0.17 (39) 

0.15≤RV<0.3 0.38 (7) 0.17 (8) 0.52 (6) 0.66 (6) 0.63 (14) 0.49 (41) 

0.3≤RV<1 0.30 (18) 0.50 (26) 0.60 (26) 0.79 (14) 0.85 (6) 0.55 (90) 

1≤RV<2 0.53 (26) 0.71 (20) 0.90 (7) 0.89 (7) 0.98 (5) 0.70 (65) 

2≤RV<5 0.71 (25) 0.82 (16) 0.84 (7) 0.88 (9) 0.95 (2) 0.79 (59) 

RV≥5 0.74 (19) 0.88 (10) 0.88 (7) 0.85 (7)  0.81 (43) 

Total 0.56 (95) 0.59 (88) 0.62 (61) 0.67 (55) 0.62 (38)  

 

Examination of the NMSD compared to different water size categories shows that 

MODIS SWF and JRC-GSW have the largest difference for the estimation of very small 

water bodies (< 1 km2) (Figure 5.4). MODIS SWF tends to smaller values of water extent 

compared to JRC-GSW in most cases. This can be partly attributed to the underestimation 

of larger water fractions by MODIS SWF (Li et al. 2018a). Figure 5.4 also reveals that 

NMSD decreases when RV incre ases for water bodies larger than 100 km2. However, 

the NMSD was surprisingly large for highly dynamic water bodies (RV ≥ 1) for those in 

the 0–100 km2 size categories, such as those cases marked with red numbers in Figure 

5.4. These large NMSD can be caused by a number of factors which are discussed in the 

Discussion section. 
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Figure 5.4. Boxplot comparing the normalized mean signed deviation (NMSD) as a 

function of water relative variability (RV) for different water size categories. Possible 

reasons for the large NMSD for the points marked with a red number (3, 5–10) are 

explored in the Discussion section of this paper. 

5.4.2 Comparison with water level data 

Monthly water extent obtained from MODIS SWF shows moderately high correlation 

with both monthly water area derived from JRC-GSW (r ≥ 0.76) and with monthly water 

level data (ρ ≥ 0.63) for 10 dynamic large lakes (RV > 0.15 and size > 100 km2) (Table 

5.3). Correlations were low for the four lakes with a small variation (RV ≤ 0.15) in surface 

water (both r and ρ are less than 0.4: see Table 5.3). MODIS SWF 8-day water extent 

shows moderate to high correlation (ρ ≥ 0.60) with water level for these 10 dynamic lakes, 

suggesting that the MODIS SWF can accurately monitor the seasonal, intra-annual and 

long-term variability in surface water extent of those dynamic lakes. Table 5.3 also 

indicates that our MODIS SWF outperformed the Khandelwal et al. (2017) results in 

monitoring the dynamics of water body with larger correlations for the 10 dynamic lakes. 
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Figure 5.5. (a) Google Earth imagery for Karakaya Baraji Reservoir, Turkey. (b) 

Comparison of monthly water area obtained from JRC-GSW and MODIS SWF with 

relative water level. (c) Time series of monthly water extent and monthly water level. (d) 

Comparison of 8-day water extent obtained from MODIS SWF with relative water level. 

(e) Comparison of 8-day water extent as detected by Khandelwal et al. (2017) with 

relative water level. (f) Time series of 8-day water extent and water level. 
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Figure 5.6. Same graphs as provided in Figure 5.5, but here showing the results for 

Tshchikskoye Lake, Russia. 

 

Figure 5.5 and Figure 5.6 show two examples of the water extent and level variability 

based on the different data sources. The Karakaya Baraji Reservoir in Turkey has a 

compact shape. Figure 5.5c and Figure 5.5f show that the reservoir has large temporal 

variations, despite its RV of 0.30. High correlations were achieved for both the MODIS 

SWF monthly (ρ = 0.88) and 8-day water extent (ρ = 0.86), suggesting that the temporal 

variations of this lake were well captured by MODIS SWF, and better than by the 

Khandelwal et al. (2017) study (ρ = 0.66). The Tshchikskoye Lake in Russia has strong 

seasonal variations (Figure 5.6c and f) with a RV of 0.50. The JRC-GSW monthly water 

extent has a high correlation (ρ = 0.80) with water level data, but with many missing data 

in the time series (Figure 5.6c). The MODIS SWF monthly water extent also achieved a 

high correlation (ρ = 0.80) (Figure 5.6b), with the seasonal variations accurately captured 

(Figure 5.6c). The MODIS SWF 8-day water extent also greatly improved with respect 

to the Khandelwal et al. (2017) study (ρ = 0.48). 
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5.4.3 Characterization of water bodies by their temporal variability 
of water extent 

We created a subset of 265 water extent time series by only selecting the dynamic water 

bodies (i.e., RV ≥ 1 for water bodies smaller than 1 km2, RV ≥ 0.3 for water bodies 

between 1 and 5 km2, and RV ≥ 0.15 for water bodies larger than 5 km2). Following the 

feature-based clustering, these 265 water bodies were separated into four different groups 

with different seasonal, inter-annual, and long-term dynamic patterns:  

(1) Seasonal dynamic pattern (45 water bodies): this group had a clear seasonal dry-wet 

cycle in the water extent time series, but there was no obvious long-term trend (Figure 

5.7a). This type of water bodies is generally located in temperate climate regions 

where temperature and precipitation vary markedly across the year (Figure 5.7e). The 

water level in wet- and dry-season can rise and fall in concert with the water extent.  

(2) Seasonal and inter-annual dynamic pattern (105 water bodies): the second group also 

showed a strong seasonal pattern, but different from the first group it also showed a 

clear inter-annual variability (Figure 5.7b). This type of water bodies is common in 

temperate climates and in humid continental areas, typified by large seasonal and 

inter-annual temperature differences, but sometimes can occur in arid and semi-arid 

areas that experience regular drought periods. 

(3) Intermittent dynamic pattern (42 water bodies): the third group was intermittently 

flooded with rapid inundation and drought. Surface water is present for variable 

periods without detectable seasonal periodicity. Weeks, months, or even years may be 

between short periods of inundation. There was also no detectable long-term trend 

(Figure 5.7c). This type of water bodies typically occurs in arid areas (Figure 5.7e), 

where the periodic cycles of inundation and drought are primarily in response to 

extreme and irregular rainfall events. This pattern is also found in floodplains, such 

as those on the bank of the River Tisza in Hungary. They may be mostly dry outside 

seasonal high-water periods, during which swollen rivers overspill their banks. 

(4) Inter-annual and long-term dynamic pattern (73 water bodies): the fourth group 

showed an obvious inter-annual and long-trend (either increase or decrease) in surface 

water extent over long time without seasonal periodicity. Figure 5.7d shows the 

creation of a new dam in Italy (i.e., the Alaco dam) and has been expanding over time. 

This type of water bodies is mainly distributed in dry summer temperate climate 

zones, but can also be found in arid areas. The long-term changes are likely influenced 

by climate change and human activities.  
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Figure 5.7. Example of four different dynamic patterns: (a) Seasonally dynamic pattern; 

(b) Seasonal and inter-annual dynamic pattern; (c) Intermittent dynamic pattern; (d) 

Inter-annual and long-term dynamic pattern. (e) Spatial distribution of water bodies with 

different dynamic patterns across different climate zones as mapped by Peel et al. (2007). 

5.5 Discussion 

This paper demonstrates that the MODIS SWF dataset can provide rich hydrological data 

for a large number of water bodies across a large spatial scale. The constructed time series 

provide detailed temporal information on intermittent, seasonal, inter-annual, and long-



Chapter  5 

131 

term changes in surface water extent. To our knowledge, this is the first such construction 

of wetland temporal dynamics for water bodies with varying sizes (0.01–3100 km2) across 

a large region and at fine temporal resolution. Our work improves on previous efforts on 

surface water monitoring from coarse spatial resolution imagery (MODIS or similar) in 

regard to detect and monitor small water bodies. This is because MODIS SWF estimates 

surface water fraction instead of binary water presence/absence (Kaptue et al. 2013; 

Khandelwal et al. 2017; Sharma et al. 2015). Our surface extent time series match well 

with the relative water level variations and improve the correlation between MODIS-

derived water area and relative water level when compared with previous MODIS-based 

water mapping by Khandelwal et al. (2017). The comparison with high spatial resolution 

data (i.e., JRC-GSW) showed that the MODIS SWF dataset can accurately construct 

surface water dynamics for many water bodies including very small ones (< 1 km2), as 

long as they show sufficient area variations (see Figure 5.2, Figure 5.3 and Table 5.2). 

MODIS SWF was found to be less effective for more stable water bodies that have limited 

temporal variation, likely due to the effect of mixed pixels that may be insufficiently 

captured by MODIS (Klein et al, 2017; Busker et al, 2018). More importantly, our work 

complements the high spatial resolution data (i.e., JRC-GSW) by allowing for the 

detection of abrupt changes, inundation and recession processes over short time periods 

(Figure A5.1–A5.3), and for the better representation of seasonal cycle and long-term 

variability (Figure 5.8 and Figure 5.9) 

The fact that we compared datasets (i.e., MODIS SWF versus Landsat-derived JRC-

GSW) implies that errors and uncertainties may occur in either of the two datasets. Table 

5.4 gives a summary of all illustrative examples in this paper (including Appendix) 

together with their likely error sources and uncertainties. These examples represent the 

water bodies highlighted with red numbers in Figure 5.2 and Figure 5.4.  

. 
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One source of uncertainty is that the JRC-GSW monthly water dataset does not include 

exact dates of the Landsat observations used in that month, and may not be best 

represented by the monthly mean value that we calculated from MODIS SWF. 

Particularly for lakes with strong dynamics within a month, this uncertainty increases. 

Figure 5.8 shows an illustrative example of Albufera de Valencia, a Ramsar wetland 

located in eastern Spain. It is composed of the Albufera Lake and surrounding rice fields 

with an average water area of 34 km2 according to the JRC-GSW time series. The Landsat 

imagery (Figure 5.8a) revealed that this rice fields flooded twice in 2014; once around 

mid-May to June during rice sowing and start of growth, then following harvesting in 

September–October a second flooding took place in November–December for nutrient 

mineralization of the harvested rice fields (Campos-Taberner et al. 2018; Doña et al. 

2015). Comparison of monthly surface area time series derived from JRC-GSW and 

MODIS SWF showed a moderate level of agreement (r = 0.55) for this wetland. MODIS 

SWF had a larger water extent than JRC-GSW, as shown as the red boxes in Figure 5.8b 

and 8c, corresponding to May and June when water area experienced rapid changes. 

These changes may not well captured by JRC-GSW due to the coarse temporal resolution 

and limited valid Landsat observations. However, both the monthly (Figure 5.8c) and 8-

day (Figure 5.8d) time series from the MODIS SWF clearly captured the two flooding 

times for each year. Similarly in Figure 5.S1, Figure 5.S2 and Figure 5.S3 for Sebkhet El 

Hamiet in Algeria, Azraq Oasis in Jordan and Lake Chott El Jerid in Tunisian, 

respectively, strong differences between two datasets correspond to months with rapid 

water changes in response to erratic rainfall events (Ben Abdallah et al. 2018; Bryant 

1999). These examples demonstrate that a low to moderate correlation between both 

datasets does not necessarily imply a poor accuracy of MODIS SWF, but rather that 

MODIS allows to capture rapid temporal changes.  
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Figure 5.8. (a) One year Landsat imagery (January 2014 to December 2014) for Albufera 

de Valencia, Spain. (b) Comparison of monthly water extent (km2) derived from JRC-

GSW and MODIS SWF. (c) Monthly water extent (km2) time series from 2000 to 2015. (d) 

8-day water extent (km2) time series derived from MODIS SWF. 
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Figure 5.9. Illustration of dynamics of a small water body (i.e., Meke Maar wetland, a 

Ramsar site in Turkey). (a) Comparison of monthly water extent (km2) time series 

obtained from MODIS SWF and JRC-GSW from 2000 to 2015. (b) Landsat imagery 

acquired on April 20, 2001. (c) GSW water maps for April 2001. (d) MODIS SWF maps 

for April 23, 2001. 

 

There are several sources of commission errors that may not be completely solved by 

MODIS SWF, predominantly due to salt presence (Figure 5.9) and emergent vegetation 

(Figure A5.4–A5.5). Such commission errors lead to an overestimation of water extent 

by MODIS SWF. Figure 5.9 provides an illustrative example of a small water body in 

Turkey (Kurt et al. 2013) where salt crystallization occurred during the dry season. The 

SWF misclassified salt as water due to spectral confusion (Li et al. 2015), resulting in 

overestimation of the water area by MODIS SWF. For example, The JRC-GSW estimated 

the surface water extent for this water body (derived from Landsat images in April 2001) 

to be 0.6 km2 against 1.6 km2 for MODIS SWF (Figure 5.9c and d). Despite this large 

bias (NMSD =1.49), MODIS SWF clearly captured the water body’s seasonal variations 

and its reduction in size between 2008 and 2014 (Figure 5.9a).   
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Figure 5.10. Examples showing JRC-GSW water maps have omission errors over time 

for Szeged-Fehértó artificial fishponds, Hungary. The top row shows the original Landsat 

imagery and the bottom row the corresponding JRC-GSW water maps. 

 
Moreover, we found that JRC-GSW also has considerable omission errors for some 

locations. Figure 5.10 shows an example where omission errors occur for multiple dates 

(for which we only show four). Moreover, the heavily sediment-laden seasonally 

occurring waters in Africa were also poorly represented as already indicated by Pekel et 

al. (2016) (see Figure A5.8). These errors result in a large underestimation of water area 

for these dates by JRC-GSW. The temporal dynamics were thus not accurately captured 

by JRC-GSW, hence further illustrating that low correlations between both products do 

not necessarily imply a poor accuracy of MODIS SWF. In this situation, linking the 

estimates with temporal in situ observations would be desirable.  

Both JRC-GSW and MODIS SWF contain missing values due to the presence of clouds, 

cloud shadows, snow, aerosol and sensor-related issues (Klein et al. 2017). If the missing 

data are inside the water-covered area of the ROI, JRC-GSW and MODIS SWF are likely 

to underestimate the actual water extent. In this study, we thus applied a 5% missing data 

threshold for the calculation of water area (see Section 5.3.2). Locations with poor quality 

MODIS pixels (e.g., due to cloud or aerosol effect) will often return no data when 

exceeding the 5% threshold, resulting in a sparse time series of MODIS SWF. Examples 

are Sebkhet Sidi Elhani in Tunisia, Lake Urmia in Iran, and the Sultan Marshes in Turkey. 

Future efforts may consider incorporating temporal interpolation techniques (Klein et al. 

2017), or combining radar remote sensing which has the advantage of collecting data 

under poor weather or atmospheric conditions (Brisco 2015; Montgomery et al. 2018; 

O'Grady et al. 2014), for areas with missing data to ensure a gap-free reconstruction of 

inland water variability.  

The constructed time series of surface water extent have potential to benefit a large 

number of applications. For example, the water extent can help to estimate a series of 
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hydrological and climatological parameters. It can be used to estimate river width 

(Yamazaki et al. 2014), river discharge (Bjerklie et al. 2018; Pan et al. 2016), and water 

volume (Ogilvie et al. 2018b). This would be particularly useful for data-poor and 

ungauged wetlands and catchments. Several studies have estimated lake surface 

temperatures (Kettle et al. 2004) and evaporation using water area (Zhan et al. 2019; 

Zhang et al. 2017). The time series of water extent may be used as a monitoring tool for 

analyzing hydrologic extremes such as floods and droughts, detecting abnormal changes 

of wetland hydrology, capturing short-duration events, and identifying newly-formed and 

disappearing water bodies. These dynamics may be driven by a wide range of natural 

(e.g., climate, topography, geology, geomorphology and pedology), and human factors 

(maintenance, irrigation, wetland conversion). Because the role of a specific factor may 

differ substantially per location and wetland type, further studies may use our dataset to 

investigate possible drivers of wetland degradation and other changes. Most of the water 

bodies analyzed in this study are wetlands of international importance (Ramsar sites). 

They provide a critical habitat for many sensitive species in Mediterranean environments. 

The long monitoring information reported here may also help to improve species 

distribution modeling (Bradley and Fleishman 2008) as well as understanding changes in 

species numbers and distribution, and thus lead to improved management and 

conservation of biodiversity.  

5.6 Conclusion 

This paper highlights that our MODIS-derived surface water dataset is valuable for 

monitoring the dynamics of Mediterranean water bodies. Based on this dataset, we 

constructed detailed temporal dynamics of surface water extent for 340 water bodies with 

varying size (0.01–3100 km2). For large water bodies (>100 km2) for which altimetry 

water level data was available, time series of water extent derived from MODIS SWF 

dataset showed good correlation with water levels. Our work also showed that the 

correlation between MODIS-derived water area and relative water level improved when 

compared with previous MODIS-based water mapping by Khandelwal et al (2017).  For 

water bodies smaller than 100 km2, SWF proved to be able to effectively monitor their 

dynamics as long as their area variability was sufficient. Our work and dataset can 

therefore be applied to better understand the pattern of hydrological dynamics and as a 

monitoring tool to identify abnormal changes to seasonal dry-wet cycles, capturing short-

duration events and identifying newly formed water bodies.  As such it may prove a 

useful tool for improved water management and biodiversity conservation. The 8-day 
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time series of water extent for the 340 water bodies, as derived from MODIS SWF, can 

be access through https://surfdrive.surf.nl/files/index.php/s/jlVJcDNLFFhIdKU  

(password: waterextent_ts), and will be open available publicly through 

https://easy.dans.knaw.nl/ui/home at the time of publication. 
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Appendix 

This Appendix contains additional illustrative examples demonstrating the error sources 

and uncertainties in the comparison of MODIS SWF and JRC-GSW.  

Figure A5.1 shows the water extent time series for Sebkhet El Hamiet, a Ramsar site in 

Algeria. The water area in Sebkhet El Hamiet is highly dynamic (relative variability of 

12.85). Comparison of monthly surface extent time series derived from JRC-GSW and 

MODIS SWF showed a poor correlation (r = 0.41), which is due to large differences 

between the two datasets for months with rapid changes in water extent. The red boxes in 

Figure A5.1a, b correspond to September 2007 and August 2015. No surface water was 

detected by JRC-GSW for September 2007 because it corresponded to Landsat imagery 

from 18 September 2007 when the area had not yet flooded. The corresponding MODIS 

SWF maps for September 2007 clearly show the rapid increase in water area at the end 

of that month (Figure A5.1c). For August 2015 instead, JRC-GSW had larger water extent 

values than MODIS SWF. The reason is that JRC-GSW presents the monthly maximum 

when multiple images are available for a month, while for MODIS SWF we calculated 

the monthly average.  

 

Figure A5.1. (a) Comparison of monthly water extent (km2) derived from JRC-GSW and 

MODIS SWF for Sebkhet El Hamiet, Algeria. (b) Monthly water extent (km2) time series 

from 2000 to 2015. Comparison of Landsat results (Original Landsat imagery and JRC-

GSW water maps) and MODIS SWF maps for September 2007 (c) and for August 2015 

(d). 
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Figure A5.2. (a) Comparison of monthly water extent (km2) derived from JRC-GSW and 

MODIS SWF for the Azraq Oasis, Jordan. (b) Monthly water extent (km2) time series 

from 2000 to 2015. Comparison of Landsat results (Original Landsat imagery and JRC-

GSW water maps) and MODIS SWF maps for April 2005 (c) and for April 2006 (d). 

 

Figure A5.2 gives an example for the Azraq Oasis, a Ramsar site in Jordan. The water 

area in the Azraq Oasis is highly dynamic (relative variability of 23.4). Comparison of 

monthly surface extent time series derived from JRC-GSW and MODIS SWF showed a 

relatively poor correlation (r = 0.53). Also in this case, the large differences between the 

two datasets corresponded to months with rapid water changes (e.g., April 2005 and April 

2006: highlighted with red boxes in Figure A5.2a, b).  

 



Chapter  5 

141 

 
Figure A5.3. (a) Comparison of monthly water area (km2) derived from JRC-GSW and 

MODIS SWF for Chott El Jerid, Tunisia. (b) Monthly water area (km2) time series from 

2000 to 2015. (c) MODIS SWF maps for May 2007, white color represents missing data. 

(d) Landsat imagery and JRC-GSW water maps (bottom right). 

 

Figure A5.3 shows the same comparison for Chott El Jerid, a Ramsar site in south-central 

Tunisia, located in the Sahara desert. It is an ephemeral salt lake that floods in response 

to occasional rainfall (Ben Abdallah et al. 2018; Bryant 1999). The water area in Chott 

El Jerid is highly dynamic (relative variability of 11.7). For this site, JRC-GSW and 

MODIS SWF showed a moderate level of agreement (r = 0.61). This can be attributed 

largely to one outlier (highlighted in red in Figure A5.3a), which corresponds to May 

2007 (Figure A5.3b). For May 2007, MODIS SWF has four valid maps showing the 

decrease in water area of Chott El Jerid (Figure A5.3c), while JRC-GSW relies on a single 

Landsat image from 31 May 2007 when water almost retreated (Figure A5.3d). This 

resulted in a much larger water extent for MODIS SWF as compared to JRC-GSW 

(NMSD = 0.31).  
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Figure A5.4. (a) Monthly water area (km2) derived from JRC-GSW and MODIS SWF 

from 2000 to 2015 for Réserve Intégrale du Lac Tonga, Algeria. (b) Landsat imagery 

acquired on August 11, 2010. (c) JRC-GSW water maps for August 2010. (d) MODIS 

SWF maps for August 13, 2010. 

 

 

Figure A5.5. (a) Monthly water extent (km2) time series obtained from MODIS SWF and 

JRC-GSW from 2000 to 2015 for Csongrád-Bokrosi Sóstó sodic-alkaline pans, Hungary. 

(b) Landsat imagery acquired on October 11, 2010. (b) JRC-GSW water maps for August 

2010. (c) MODIS SWF maps for August 13, 2010. 
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Figure A5.6. (a) Monthly water extent (km2) time series obtained from MODIS SWF and 

JRC-GSW from 2000 to 2015 for La Réserve Naturelle du Lac des Oiseaux, Algeria. (b) 

Landsat imagery acquired on May 10, 2011. (c) JRC-GSW water maps for May 2011. (d) 

MODIS SWF maps for May 9, 2011.  

 

It can be challenging to map surface water extent when a water body is covered by 

emergent vegetation or in floodplains where the soil is saturated. Figure A5.4 shows an 

illustrative example for Réserve Intégrale du Lac Tonga, a Ramsar site in Algeria. This 

wetland is under anthropogenic threat, resulting in great reductions of surface water area. 

MODIS SWF tends to give larger values in summer (May to September) when vegetation 

is emerged (Figure A5.4), which further results in a large NMSD of 1.31. Similarly, 

MODIS SWF gave larger values for Csongrád-Bokrosi Sóstó sodic-alkaline pans, 

Hungary (Figure A5.5), and for La Réserve Naturelle du Lac des Oiseaux, Algeria (Figure 

A5.6) in summer months. Despite the large deviation, MODIS SWF clearly captured the 

seasonal variations for these water bodies (Figure A5.4a, Figure A5.5a and Figure A5.6a).   
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Figure A5.7. (a) Monthly water extent (km2) time series obtained from MODIS SWF and 

JRC-GSW from 2000 to 2015 for Chott de Zehrez Gharbi, Algeria. (b) Landsat imagery 

acquired on September 22, 2015. (c) JRC-GSW water maps for September 2015. (d) 

MODIS SWF maps for September 22, 2015.  

 

MODIS SWF might result in smaller water area values due to the underestimation of 

larger water fractions by MODIS SWF (Li et al. 2018a). Figure A5.7 shows an example 

for Chott de Zehrez Gharbi, a Ramsar wetland in Algeria. This lake was complete covered 

with surface water in September (Figure A5.7b, c) while MODIS SWF gave an estimation 

near 80% for most pixels (Figure A5.7d). Further work could consider re-assigning pixels 

with more than 80% surface water to 100% water. 
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Figure A5.8. (a) (b) Comparison of monthly surface extent time series derived from JRC-

GSW and MODIS SWF for Chott Oum EI Raneb, Algeria. (c) Omission errors at multi-

dates in JRC-GSW. (d) Commission errors in JRC-GSW. (e) Omission errors in MODIS 

SWF. 

 

Figure A5.8 shows the comparison results for Chott Oum EI Raneb, a Ramsar site in 

Algeria. The correlation coefficient between monthly surface extent time series derived 

from JRC-GSW and MODIS SWF is 0.48. The errors and uncertainties are propagated 

from both datasets. For example, JRC-GSW had omission errors at multi-dates (Figure 

A5.8c) and commission errors from wet saline soil at some time point (Figure A5.8d). 

This might due to the lack of training data as already indicated by Pekel et al. (2016). 

MODIS SWF also tends to underestimate the water area (Figure A5.8e), which might due 

to the fact that the surface water is shallow. 

  



Evaluation  of  a  New  18‐year  MODIS‐Derived  Surface  Water  Fraction  Dataset 

146 

 

  



 

147 

Chapter 6  

 

Synthesis 
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6.1 Introduction 

Terrestrial surface water plays a significant role in biogeochemical cycles, provides 

valuable freshwater resources, and supports biodiversity (Chahine 1992; Tranvik et al. 

2009). Changes in surface water strongly affect the delivery of important ecosystem 

services such as water supply, carbon storage, biodiversity, and climate regulation. Water 

extent has been identified as one of the Terrestrial Essential Climate Variables to support 

climate change assessment and policy development (GCOS 2011), and its changes are 

also an indicator to assess sustainable development of water resources and biodiversity 

loss (CBD 2010; Griggs et al. 2013). Remote sensing provides unique opportunities to 

detect and monitor surface water bodies at different spatial and temporal scales. While 

much progress has been made recently with global Landsat-based surface water 

assessment (e.g., Donchyts et al. 2016; Pekel et al. 2016), such assessments can have 

large spatial and temporal gaps due to both the limited number of acquisitions and 

persistent cloud cover, preventing accurate assessments of water extent variability. 

Therefore, the aim of this thesis was to improve long-term mapping and monitoring 

dynamics of surface water at fine temporal resolution using high-frequency optical 

remote sensing data provided by the Moderate Resolution Imaging Spectroradiometer 

(MODIS), while accounting for small (<1 km2) and dynamic water bodies. 

In this dissertation, the applicability of high-frequency MODIS was explored for 

monitoring surface water dynamics at a range of spatial scales, including the local scale 

(i.e., a single water body in a local region in Chapter 2), the regional scale (i.e., two 

regions in Spain in Chapter 3), and for the whole Mediterranean region in Chapters 4 and 

5. The main contribution of this work relates to four aspects: (1) it showed the potential 

and limitations of spectral information for monitoring hydrological dynamics; (2) it 

demonstrated advantages of sub-pixel surface water fraction mapping for quantifying 

water extent variability in small water bodies; (3) it analysed the robustness of a machine 

learning approach to application at larger spatial scale; and (4) application of the approach 

resulted in a new long and dense time series of water extent for the whole Mediterranean 

area, which can be used for analysing and monitoring surface water dynamics. 

The following sections discuss these four aspects in detail. Subsequently, Section 6.6 

explores potential applications of the approach and the surface water dataset developed 

in this thesis, and Section 6.7 provides a future outlook on monitoring surface water 

dynamics. 
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6.2 The potential and limitations of spectral information 

for monitoring hydrological dynamics 

Existing methods to extract surface water from optical imagery are mostly based on the 

fact that water has strong absorption in near infrared (NIR) and shortwave infrared (SWIR) 

spectral regions. Individual NIR and SWIR bands have consequently been used for water 

delineation (e.g., Mondejar and Tongco 2019; Wolski et al. 2017). Spectral indices, 

combining two (e.g., Gao 1996; McFeeters 1996; Xiao et al. 2002a; Xu 2006) or more 

multispectral bands (e.g., Crist 1985; Feyisa et al. 2014; Fisher et al. 2016; Wang et al. 

2018a) from NIR/SWIR and visible spectral regions can enhance the information on 

surface water presence. These spectral indices provide a simple and effective way for 

detecting, mapping and monitoring surface water (Borro et al. 2014; Chipman and 

Lillesand 2007; Huang et al. 2018a; Zhou et al. 2017). In addition, Pekel et al. (2014) 

introduced a Hue-Saturation-Value (HSV) colour space transformation applied on SWIR, 

NIR, and Red reflectance to enhance the contrast between water bodies and other land 

cover types. However, a robust detection of water surface is challenging due to the great 

spatial and temporal variability in the water spectral signatures caused by variations in 

vegetation cover, material of the bathymetric surface, dissolved organic matter and 

suspended sediment (Pekel et al. 2014).   

In Chapter 2, several indices for characterizing the temporal variability in the hydrology 

of a shallow seasonally flooded wetland in Spain were compared. The tested indices 

included the Normalized Difference Wetness Index (NDWI: McFeeters 1996), the 

Modified Normalized Difference Wetness Index (MNDWI: Xu 2006), the Normalized 

Difference Wetness Index (LSWIB5: Gao 1996), the Land Surface Water Index (LSWIB6: 

Xiao et al. 2002a), the Normalized difference vegetation index (NDVI: Tucker 1979), the 

Tasseled Cap Wetness Index (TCWI), and the Tasseled Cap Brightness Index (TCBI). 

Results showed that the hydrological variability (expressed by variations in water level) 

is strongly negatively correlated to TCBI (r = -0.87) for the 10-year analysis period. It 

also gave consistently good results for wet and dry years, and for areas characterized by 

different inundation characteristics (Table 2.4–2.5, Figure 2.5–2.6). This is because water 

strongly absorbs radiation across the visible and infrared portion of the spectrum, and 

consequently water presence will cause TCBI to decrease as it is a linear combination of 

spectral bands with positive coefficients. Therefore, TCBI is sensitive to all types of 

wetness changes including open water, soil moisture and water content in the vegetation. 

TCWI’s correlation with water level data was much poorer for the wet years (r = 0.53) 



Synthesis   

150 

than for the dry years (r = 0.92), likely due to larger TCWI values caused by salt 

deposition on the soil surface in wet years when more water evaporates. The two-band 

index NDWI, a combination of green and NIR spectral bands, gave a strong correlation 

(r = 0.84) with water level only for areas that are frequently covered with water, but not 

for surrounding areas. The two-band indices that use longer wavelengths located in the 

SWIR (i.e., MNDWI, LSWIB5 and LSWIB6) showed stronger water level-water index 

correlations for areas never covered by surface water (e.g., r = 0.85 for MNDWI, and r = 

0.86 for LSWIB6), suggesting these indices are sensitive to water content in soil and 

vegetation.  

In Chapter 3 and 4, the utility of spectral information, including MODIS bands, spectral 

indices, colour space transformation, and temporal characteristics of spectral indices (i.e., 

the annual mean, minimum, maximum, standard deviation, and coefficient of variation 

per year), for estimating and monitoring water area was demonstrated. The spectral 

information was used as predictor variables within machine learning algorithms in order 

to estimate surface water area at sub-pixel level. Analysis of the relative importance of 

these variables showed that the NIR band is the most important predictor for estimating 

and monitoring sub-pixel surface water fraction, which is consistent with Sun et al. 

(2012). The fact that NIR gave a higher importance than SWIR may be explained because 

SWIR relates to many types of wetness including open water, and water content in soil 

and vegetation (findings from Chapter 2), which could result in misclassification while 

detecting surface water.  

Results also showed that the temporal characteristics of water indices are important 

variables for creating rule conditions that split up the data into various sub-groups when 

predicting sub-pixel water fraction (Figure 3.6), hence help improve model prediction 

accuracy (Table 3.4). This can be because temporal characteristics are effective in 

partitioning the samples into subsets with homogeneous environmental and temporal 

characteristics, whereby consequently a more effective relationship can be built for each 

subset. 

One limitation of only using spectral information for detecting and monitoring water is 

that other land surfaces such as volcanic materials, and shadows induced by clouds and 

terrain and buildings, have a similar spectral signature to water, which can lead to falsely 

claiming that water is detected (Pekel et al. 2016). These errors can be accounted for by 

using masks derived from auxiliary data (Klein et al. 2017; Pekel et al. 2016). For 
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example, in Chapter 4, the Digital elevation model (DEM) data were used to eliminate 

the confusion caused by terrain shadows, and land use map to eliminate building shadows.  

6.3 Advantages of sub-pixel surface water fraction 

mapping techniques for the quantification of small 

water bodies 

Detection of objects with remote sensing imagery is usually confined to objects with at 

least the size of the sensor’s spatial resolution. Previous studies on surface water mapping 

with MODIS generally applied a binary land/water classification method, which did not 

allow for detection of smaller-sized water bodies. For example, Khandelwal et al. (2017) 

used MODIS 500 m time series data to map and monitor surface water extent of lakes 

across the globe, but restricted their application to water bodies larger than ten MODIS 

pixels (i.e., > 2.5 km2). However, globally a large fraction of the surface water bodies are 

of small size (i.e., 0.1–1 km2) (Downing et al. 2006; Verpoorter et al. 2014). 

Consequently, binary classification using MODIS may underestimate the global surface 

water extent due to large omission errors.  

To overcome the shortcoming of coarse spatial resolution and incorporate small water 

bodies, either finer spatial resolution data are needed, or alternatively an effective method 

is required to effectively estimate sub-pixel water fraction (i.e., the percentage of surface 

water within a single grid cell). The latter approach was explored in Chapters 3 and 4. 

This was achieved by the use of machine learning approaches that incorporated MODIS 

spectral information, its temporal characteristics, and topographic information. Results 

showed that the sub-pixel water fractions could be accurately derived with a high 

estimation accuracy (R2 >0.90) when compared to previous studies on MODIS-derived 

water fraction estimates, such as by Weiss and Crabtree (2011) (R2 = 0.63), and 

Guerschmann et al. (2011) (R2 = 0.70).  

Accurate assessment of sub-pixel surface water fraction further allows to accurately 

estimate the area and dynamics of small water bodies (Chapter 5). Selected examples 

(e.g., Figure 3.7 and Figure 5.3) for small water bodies (< 1 km2) show that the temporal 

variability in water extent derived from MODIS has a good agreement (r above or near 

0.8) with temporal variability obtained from Landsat reference data. 
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6.4 Robustness of the machine learning approach for 

application to large regions 

Because the spectral characteristics of surface water vary in space and time, machine 

learning approaches need to learn these spatially and temporally varying relationships 

between remote sensing derived information and surface water presence for different 

regions and at different moments in time (Muster et al. 2013). For example, Weiss and 

Crabtree (2011) derived separate region- and time-specific equations to estimate the 

percent surface water from MODIS; Guerschmann et al. (2011) developed a logistic 

regression model for water fraction mapping on the Australian continent; and Muster et 

al. (2013) used a simple linear regression model to estimate surface water fraction in three 

Arctic tundra wetlands. Each of those models was different because they were empirically 

derived for specific study regions. With the growing need for global and real-time 

monitoring, there is a high demand for efficient, flexible and scalable algorithms that can 

deal with the spatial and temporal heterogeneity in surface water characteristics, while 

maintaining the local representativeness and accuracy. Machine learning algorithms such 

as regression tree models can predict a single continuous response variable from one or 

more explanatory variables by recursively partitioning a data set into more homogeneous 

subsets, thus can deal with strong nonlinear situations.  

Chapter 3 evaluated the robustness and transferability of machine learning approaches 

(e.g., random forest and cubist rule-based regression model) to different geographic and 

climatic zones. This was tested for two regions in Spain with contrasting environments 

and climatic characteristics. Two types of models were created: (1) unique local models 

for each region; (2) a global model for both regions. The local models were built using 

training data collected from a single region while the global model was based on the 

combined training dataset from both regions. Results showed that the performance of 

local models was good when applied to the regions for which models were trained (R2 

above 0.81 for all local models). However, when applying the local models developed for 

one region to the other region and vice versa, the accuracy was greatly reduced (Table 

3.4). When combining training data collected from the two regions in a single global 

model, the accuracies were comparable to the local models (Table 3.4). These findings 

indicate that a model developed for mapping surface water fraction in one region cannot 

easily be transferred to other regions. Instead of building a specific model per region, it 

was shown in this thesis that a single global model can provide accurate results as long 

as the training data comprise the various environmental conditions encountered across 
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the whole spatial domain. In this sense, the approach for constructing a global model can 

be expanded effectively to larger spatial scales. 

Chapter 4 successfully scaled the machine learning approach developed in Chapter 3 to a 

large region (i.e., Mediterranean region) while retaining a similar high accuracy. As 

shown in Figure 3.4 and Table 4.4, the mapping accuracies for the Mediterranean region 

are similar to the accuracies obtained in Chapter 3 for the two regions in Spain (R2 = 0.91, 

RMSE = 11.05%, MAE = 7.67% for the Spanish regions vs. R2 = 0.91, RMSE = 11.41%, 

MAE = 6.39% for the Mediterranean). This indicates that machine learning algorithms 

are robust tools for mapping water fraction at large spatial scales within heterogeneous 

environments. A prerequisite for successfully upscaling machine learning approaches to 

large spatial scales is a high-quality training dataset. Collection of training data is a 

labour-intensive and time-consuming process, especially when developing a global 

training dataset. In Chapter 4, the historical monthly global surface water dataset 

developed by the European Commission Joint Research Centre (Pekel et al. 2016) proved 

to be an efficient basis for building a reliable training dataset. Considering that GSW is 

globally available, we are confident that our approach can be scaled globally. 

6.5 A new long and dense time series of water extent for 

monitoring surface water dynamics  

Surface water extent can exhibit large variability due to natural processes and human 

interventions (Pekel et al. 2016). The changes can affect ecosystem functioning, species 

distributions and composition (Koning 2005; Robledano et al. 2010), and influence 

climate change (Degu et al. 2011; Ekhtiari et al. 2017). Waterbodies show a wide range 

of dynamic patterns in relation to the frequency of inundation and duration of standing 

water, such as intermittently and temporary dynamic water, seasonal water, semi-

permanent and permanent water, and artificially flooded water (Cowardin et al. 1979). 

The 8-day repeat coverage is considered to be a minimum for effectively capturing water 

bodies with short hydroperiods (Guerschmann et al. 2011; Wulder et al. 2016). Existing 

fine spatial resolution datasets, such as developed by Pekel et al. (2016), cannot 

accurately assess seasonal and long-term changes especially in regions with persistent 

cloud cover. Therefore, frequent and long-term monitoring of surface water is required to 

fully understand the seasonal and long-term dynamic patterns of the water cycle. 

In Chapter 4, a new dense 18-year time series water fraction dataset (SWF) was developed 

for the whole Mediterranean at 500 m resolution and 8-day interval, which can be 
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expanded to daily frequency using the model developed in this chapter. Based on MODIS 

SWF, we constructed a time series of surface water extent with an eight-day time step for 

hundreds of Mediterranean wetlands in Chapter 5. The derived temporal patterns of 

surface extent correspond strongly with in situ or radar altimetry-derived water level 

variations and with the temporal dynamics derived from high spatial resolution data. 

Importantly, these dense time series allow for the detection of abrupt changes and 

inundation and recession processes over short time periods (e.g., rapid flooding due to 

precipitation), as well as for an improved representation of seasonal (e.g., cycle rice field 

flooding and drying), and long-term variability (See Figure 5.7–5.9, Figure A5.1–5.8) as 

compared to the Landsat-derived GSW dataset. In this sense, the MODIS-based surface 

water monitoring approach developed in this thesis allows to fill the long temporal gaps 

caused by persistent cloud cover and limited number of acquisitions of fine spatial 

resolution water datasets, and can improve our understanding of surface water dynamics.  

6.6 Potential applications of the new surface water dataset 

This thesis demonstrated an approach for estimating sub-pixel surface water fraction from 

coarse resolution MODIS data. The robustness and transferability of the regression tree 

models suggest that the approaches can be applied globally. The approach takes use of 

spectral information from visible to shortwave infrared spectral regions, which can 

potentially transferred to other optical remote sensing data with similar spectral resolution 

such as from NOAA/AVHRR, Suomi-NPP/VIIRS, Landsat/MSS, Landsat/TM, 

Landsat/ETM+, Landsat/OLI, Sentinel-2/MSI, and Sentinel-3/OLCI etc. 

In this thesis, a dense 18-year time series of surface water fraction (SWF) for the 

Mediterranean region has been developed, with the ability to monitor many small-sized 

(e.g., smaller than a 500x500 m MODIS cell) and highly dynamic water bodies. This new 

dataset has potential to benefit a large number of hydrological and ecological 

applications. 

MODIS SWF can be used as a monitoring tool for analyzing hydrologic extremes such 

as floods and droughts, detecting abnormal changes of wetland hydrology, capturing 

short-duration events, identifying newly-formed and disappearing water bodies, and 

estimating global water loss. Assessing the variability in water extent can help to estimate 

a series of hydrological, climatological and biogeochemical parameters. For example, 

water extent can be used to estimate river width (Yamazaki et al. 2014), river discharge 

(Bjerklie et al. 2018; Pan et al. 2016), and water volume (Busker et al. 2019; Cael et al. 
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2017; Duan and Bastiaanssen 2013; Tong et al. 2016). This is particularly useful for data-

poor and ungauged wetlands and catchments. Lake surface temperature and evaporation 

are key climatological parameters which are closely related to local and regional air 

temperatures (Livingstone 1999; Straile et al. 2003). Several studies have used water 

extent to estimate lake surface temperatures (Becker and Daw 2005; Kettle et al. 2004) 

and evaporation (Zhan et al. 2019). Lakes and reservoirs play an important role in the 

biogeochemical cycles of carbon as their sediments sequester organic carbon, and as such 

reduce greenhouse gas emissions (Tranvik et al. 2009). Therefore the size and distribution 

of global lakes and ponds, including very small ponds, is a critical input for developing 

global estimates of carbon burial in and efflux from aquatic ecosystems (Bastviken et al. 

2004; Holgerson and Raymond 2016; Tranvik et al. 2009; Wik et al. 2016).  

Such new long-term information on surface water as developed in this thesis can be used 

for biodiversity and conservation applications. For example, it can be used to improve 

species distribution modeling (Bradley and Fleishman 2008; Redfern et al. 2005; 

Shannon et al. 2009), as well as for mapping and monitoring species population (Mathieu 

et al. 2006). It can also help for understanding changes in water-dependent species 

distribution, abundance and richness in relation to the spatial and temporal variability of 

surface water, the inundation frequency, duration and intensity. For example, many 

migratory species rely on the timing and quantity of available water during their migration 

and breeding period (Cezilly et al. 1995; Hamasaki et al. 2013). With this new high 

frequency time series dataset, the distribution, quantity, timing, and duration of water 

resources can be accurately estimated, which may further provide an important tool to 

better explain and predict timing, abundance and patterns of animal migrations. 

Closely monitoring hydrological variability is important for understanding how climate 

change and human actions affect the dynamics of surface water, or may affect these in 

the future (e.g., Tulbure and Broich 2019; Zhang et al. 2019). For example, a tendency 

towards shorter annual hydroperiods has been observed for seasonal water at local scale 

due to aquifer exploitation (Diaz-Paniagua and Aragones 2015; Gómez-Rodríguez et al. 

2010). Climate change (e.g., enhanced evapotranspiration and reduced precipitation) will 

lead to a reduction of river flow and a decline of water level in lakes and reservoirs in the 

Mediterranean region (Cramer et al. 2018). The long-term recording of the temporal 

changes in the number and distribution of surface water bodies, as well as the extent and 

duration of surface water presence may provide new insights for understanding their 

effect on climate. For instance, newly built large artificial reservoirs and dams can 

significantly alter local and regional natural precipitation (Degu et al. 2011; Ekhtiari et 
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al. 2017; Hossain et al. 2009). The lake area together with other lake physical properties 

can be utilised in general circulation models for climate simulation (Subin et al. 2012).  
Therefore, the importance of surface water dynamics for various processes makes the new 

dense dataset an important input for a wide variety of applications. For this reason, the18-

year time series of surface water dataset developed in this thesis was made publicly 

available in an online depository, and can be accessed through 

https://doi.org/10.17026/dans-xrz-y92s.  

6.7 Outlook  

Big data and cloud computing 

Earth Observation data is now accumulated to the petabyte-scale (Gorelick et al. 2017) 

and will increase exponentially with time. Large-scale, frequent, and long-term 

monitoring of the land surface requires processing and management of large amounts of 

geospatial data, which is hard to be handled by desktop computing resources alone. As a 

consequence, new scientific challenges arise related to data storage, processing capacity, 

as well as development of more efficient, robust and automatic methods to extract 

information from these datasets.  

Cloud-based platforms have opened a new era of Earth Observation data processing. 

Examples include Google Earth Engine (GEE: https://earthengine.google.com), Amazon 

Web Services (AWS: https://aws.amazon.com/earth), the Austrian Geoscience data cube 

(https://www.opendatacube.org), the European Copernicus Data and Information Access 

Services (DIAS: https://www.copernicus.eu/en/access-data/dias), and the Austrian Earth 

Observation Data Centre for Water Resources Management (EODC: 

https://www.eodc.eu). These emerging platforms can provide the required flexibility to 

manage, for both storage and computation, huge amounts of geospatial data and to 

efficiently process them (Bucur et al. 2018; Gorelick et al. 2017). This offers new 

opportunities in the geospatial sciences for applications at larger spatial and finer 

temporal scales, such as planetary-scale monitoring of land surface components 

(Donchyts et al. 2016; Hansen et al. 2013; Liu et al. 2018; Pekel et al. 2016; Poortinga et 

al. 2018).  

Recently, various studies have explored the utility of GEE for hydrological applications. 

This includes paddy rice mapping (Dong et al. 2016), near real-time monitoring of ice 

breakup (Beaton et al. 2019), wetland classification and inventory (Hird et al. 2017; 
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Mahdianpari et al. 2018), water level monitoring (Nguy-Robertson et al. 2018), and 

planetary-scale surface water monitoring (Donchyts et al. 2016; Ji et al. 2018; Pekel et 

al. 2016). Pekel et al. (2016) exploited 1.8 petabytes of Landsat archive imagery to map 

global surface water dynamics in 30 m pixels over 1984–2015, taking advantage of the 

high-performance computing power of GEE. These studies will significantly improve our 

knowledge and understanding of water resources availability and various dynamic 

processes associated with water-related ecosystems. GEE allows researchers to 

disseminate and share their results and datasets, which creates opportunities and a 

convenient environment for validation, comparison, integration, and fusion. For example, 

this thesis successfully leveraged the Global Surface Water dataset (GSW) developed by 

Pekel et al. (2016), freely available in GEE, to train and validate the regression models 

for deriving surface water fraction. Potentially, the regression models developed in this 

thesis could be implemented in GEE at the global scale and to daily MODIS data. In this 

way, fast and timely information on surface water extent and its changes can be delivered. 

Moreover, GEE also houses many meteorological data and environmental variables (e.g., 

temperature, precipitation, winds, humidity, moisture content), and socio-economic 

datasets, many of which are updated on a daily basis (Gorelick et al. 2017). This allows 

end users to link hydrological dynamics to the climatological or anthropological drivers, 

and to address major causes of water resource loss, wetland degradation and other 

changes for different regions. 

Opportunities with new and future satellite missions 

Following the launch of the Terra satellite in 1999 and the Aqua satellite in 2002, MODIS 

instruments have successfully operated beyond their 6-year design lifetime. However, 

with the evident degradation especially of the Terra MODIS sensor (Sayer et al. 2015; 

Wang et al. 2012), MODIS is expected to cease operation in the coming years. To 

guarantee seamless time series of surface water information, it is critical to establish 

which satellite systems can take over MODIS’s role effectively.  

The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor aboard the Suomi 

National Polar-orbiting Partnership (Suomi-NPP) satellite and the newly launched Ocean 

and Land Color Instrument (OLCI) onboard Sentinel-3, both satellite sensors with a 

coarse spatial resolution but with a short repeat cycle. These sensors can provide 

continuity of MODIS for global land science applications including surface water, and 

will add to the coarse-resolution, high-frequency time series record. Future research 

should evaluate if the approach for large-scale and sub-pixel surface water monitoring 



Synthesis   

158 

developed in this thesis could be extended to VIIRS and Sentinel-3 data, and can yield 

comparable results in order to construct a seamless time series. This can ensure 

continuous monitoring of global surface water at similar spatial resolution and in near 

real-time. 

The capabilities of new and future optical satellite remote-sensing missions are increasing 

and these missions are expected to provide better spatial, temporal, spectral, and 

radiometric resolutions. The USGS/NASA Landsat Science Team recently prioritized the 

requirements for Landsat-10 and beyond, and assigned the highest priority to increasing 

the temporal revisit frequency (Wulder et al. 2016). Already, the recent Sentinel-2 

MultiSpectral Instrument (MSI) contributes to the continuity and improvement of the 

Landsat series of multispectral observations, offering new opportunities to monitor 

surface water at both fine spatial and fine temporal resolution. Several studies have 

verified its ability to map surface water (Du et al. 2016; Kaplan and Avdan 2017b; Ogilvie 

et al. 2018a; Yang et al. 2018b). As time goes by and its time series grows, more 

applications will emerge exploring the full potential of Sentinel-2 for surface water 

monitoring including its ability for identification of small ponds, lakes and narrow rivers, 

and capturing temporary water bodies.   

This thesis focussed on optical multispectral remote sensing data sources, which may 

have limited discrimination capabilities when other land surface components have similar 

spectral information with water due to their broad spectral bands. Due to the fine and 

large number of spectral bands, hyperspectral imaging may offer improved discrimination 

capabilities (Goetz 2009). For example, hyperspectral imagers have been used for 

accurate surface water detection in urban areas where building shadows can easily be 

mistaken as water (Xie et al. 2014; Yang et al. 2018a), and for classifying aquatic 

vegetation characteristics to delineate wetland areas (Schmidt and Skidmore 2003) at 

small spatial scales. Newly launched hyperspectral spaceborne missions, such as the 

PRecursore IperSpettrale della Missione Applicativa with 30 m spatial resolution and 29 

days revisit time (Pignatti et al. 2013), and the upcoming missions with a combination of 

fine spatial and temporal resolution, such as the Environmental Mapping and Analysis 

Program (30 m, 4-day revisit) (Guanter et al. 2015), the Spaceborne Hyperspectral 

Applicative Land and Ocean Mission (10 m, 4-day revisit) (Feingersh and Dor 2015) and 

the Hyperspectral X Imagery (8 m, 3-day revisit), could therefore prove beneficial in more 

accurate classification and monitoring of hydrological dynamics.  
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Optical data is subject to cloud coverage reducing the effective observations of land 

cover, and has limitations in detecting water bodies beneath vegetation. Although gap-

filling techniques such as data fusion (Chen et al. 2018; Ghamisi et al. 2019; Heimhuber 

et al. 2018; Huang et al. 2016a; Zhu et al. 2018) and data interpolation (Chen et al. 2011; 

Yan and Roy 2018) can partially address the issue of spatial and temporal gaps, Synthetic 

Aperture Radar (SAR) also has potential to overcome these issues due to its ability to 

penetrate clouds and vegetation. While SAR data analysis has been difficult in the past 

due to image costs and inconsistent observation characteristics, the Sentinel-1 satellites, 

launched in 2014 and 2016, provide for the first time free, consistent, global observations 

every 6 days at 5×20 m ground resolution, offering a range of benefits for water body 

detection including those under vegetation (Amitrano et al. 2014; Bioresita et al. 2018; 

Clement et al. 2017; Hardy et al. 2019; Xing et al. 2018). The NASA/CNES Surface 

Water and Ocean Topography (SWOT) mission, to be launched in 2021, is specifically 

designed to provide fine spatial resolution (≃10 m) and good temporal sampling (22 days 

repeat) of the extent and water level of continental surface water bodies (Biancamaria et 

al. 2016; Prigent et al. 2016). Microwave data from the Sentinel-1 and SWOT missions 

would be a good supplement to the surface water monitoring with optical satellites, as 

performed in this thesis, because of their fine spatial resolution and their insensitivity to 

cloud cover. In addition, integrating satellite imagery from multiple passive optical, active 

radar, and LiDAR sensors shows great potential for surface water monitoring, as it can 

increase observations during cloudy conditions to obtain dense time series data. This will 

help to improve the accuracy of surface water dynamics especially at critical stages such 

as flood peaks. Example applications include fast flood water detection and mapping 

(Donchyts et al. 2017; Irwin et al. 2017), frequent surface water monitoring for cloud 

prone regions (Markert et al. 2018), and wetland monitoring (Bourgeau-Chavez et al. 

2009; Hird et al. 2017; Mahdianpari et al. 2018; Montgomery et al. 2019).  

While many opportunities exists for the future research on Earth hydrology with the 

emergent technologies and missions, this thesis has demonstrated the possibility to 

accurately and efficiently map the location and extent of surface water, and monitor its 

temporal changes over time using freely-available remote sensing data. The developed 

dataset containing two decades of surface water information for the Mediterranean is 

therefore considered to be a relevant contribution towards an effective analysis of 

dynamic water resources. 
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Summary 
Terrestrial surface water plays an important role in the global hydrological cycle, 

biodiversity conservation, and climate processes. Changes in surface water, caused by 

both natural and human-induced factors, strongly affect socioeconomic development, 

ecosystem functioning, species distributions and composition, and further influence 

climate change. Recently, water extent has been identified as an Essential Climate 

Variable (ECV) for assessing progress towards the Aichi targets for 2020 of the 

Convention of Biological Diversity. The changes in the extent of water-related 

ecosystems over time is also an indicator of the Sustainable Development Goals (SDGs). 

Therefore, knowledge about the spatial and temporal distribution of surface water is 

needed to support sustainable development and climate change assessment. 

Remote sensing provides an effective way to monitor surface water in space and time. 

Many approaches and datasets have been developed for this purpose. However, 

measuring long-term changes at fine spatial and temporal resolution remains a challenge 

due to the trade-off between spatial and temporal resolution of remotely sensed imagery. 

The main objective of this thesis is to improve long-term mapping and monitoring of 

surface water extent at fine temporal resolution using high-frequency optical remote 

sensing data provided by the Moderate Resolution Imaging Spectroradiometer (MODIS), 

in a way that effectively accounts for small-sized (e.g., smaller than a 500x500 m MODIS 

cell) and dynamic water bodies. To achieve this goal, this thesis evaluates options to 

estimate sub-pixel surface water fraction, i.e., the percentage of surface water within a 

single grid cell. Several machine learning approaches that incorporate MODIS spectral 

information, temporal characteristics of spectral information, and topographic 

information were evaluated for accurately mapping and monitoring sub-pixel surface 

water fraction. This was explored at spatial scales ranging from a small individual wetland 

to the entire Mediterranean region. 

In this thesis, the robustness of machine learning algorithms for mapping and monitoring 

sub-pixel surface water fraction at large spatial scales was demonstrated. It revealed that 

a single model could accurately assess water body extent and dynamics in different 

environmental and climatic conditions, as long as good-quality training data were 

collected that represent the various environmental conditions. Therefore, there is potential 

to scale the water fraction mapping approach to larger spatial regions, such as for the 

globe.   
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The need for high-frequency monitoring of surface water is highlighted in the thesis. 

While much progress has been made recently with global Landsat-based surface water 

products, these can have large spatial and temporal gaps due to both the limited number 

of acquisitions and persistent cloud cover, preventing an accurate assessment of water 

resources variability. Here, using the high-frequency MODIS data and the approach 

developed in the thesis, a new dense 18-year surface water fraction (SWF) dataset was 

produced for the Mediterranean region at 500 m resolution and 8-day interval. This 

MODIS SWF dataset documents the long-term (2000–2017) status of surface water 

bodies, their location, extent, and change. MODIS SWF complements existing fine spatial 

resolution water datasets, especially by offering better temporal information for areas 

suffering from persistent cloud cover during part of the year. Moreover, it allows accurate 

assessment of surface water seasonality, capturing water extent fluctuations in temporary 

and ephemeral water bodies, including short-duration surface water that could not be 

captured by existing datasets of lower temporal resolution. The dataset also accurately 

detects small water bodies (less than one MODIS pixel) and narrow rivers.  
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Samenvatting 
Oppervlaktewater speelt een belangrijke rol in de globale hydrologische cyclus, het 

behoud van biodiversiteit en klimaatprocessen. Veranderingen in oppervlaktewater, 

veroorzaakt door zowel natuurlijke als door de mens veroorzaakte factoren, hebben een 

sterke invloed op sociaaleconomische ontwikkelingen, het functioneren van ecosystemen, 

soortverdelingen en -samenstelling en op klimaatverandering. Onlangs is de waterstand 

geduid als een essentiële klimaatvariabele (ECV) voor het beoordelen van de voortgang 

op weg naar de Aichi-doelstellingen voor 2020 van het Verdrag inzake biologische 

diversiteit. De temporele veranderingen in de omvang van watergerelateerde ecosystemen 

is ook een indicator van de Duurzame Ontwikkelingsdoelstellingen (SDGs). Een betere 

kennis van de ruimtelijke en temporele verdeling van oppervlaktewater is daarom nodig 

om duurzame ontwikkeling en klimaatveranderingsanalyses te ondersteunen. 

Remote sensing biedt effectieve manieren om de veranderingen in oppervlaktewater in 

ruimte en tijd te volgen. Hiervoor zijn verschillende datasets en benaderingen ontwikkeld. 

Het meten van langetermijnveranderingen met fijne ruimtelijke en temporele resolutie 

blijft echter een uitdaging. Deze dissertatie heeft tot doel de langetermijnkartering en 

monitoring van het areaal aan oppervlaktewater met fijne temporele resolutie te 

verbeteren met behulp van hoogfrequente optische satellietbeelden van de Moderate 

Resolution Imaging Spectroradiometer (MODIS), op een manier die effectief rekening 

houdt met kleine  (bijv. kleiner dan een MODIS-cel) en dynamische wateroppervlaktes. 

Om dit doel te bereiken, evalueert dit proefschrift opties om de fractie oppervlaktewater 

te schatten, d.w.z. het percentage oppervlaktewater binnen een enkele rastercel. 

Verschillende benaderingen van machinaal leren die gebruik maken van MODIS 

spectrale informatie, temporele kenmerken van spectrale informatie en topografische 

informatie, werden geëvalueerd voor het nauwkeurig in kaart brengen en volgen van de 

oppervlaktewaterfractie. Dit werd onderzocht op ruimtelijke schaal, variërend van een 

klein individueel drasland tot het hele Middellandse-Zeegebied. 

Dit proefschrift demonstreert de robuustheid van algoritmen voor het machinaal leren 

voor het in kaart brengen en monitoren van oppervlaktewater op grote ruimtelijke 

schaalniveaus. Er werd aangetoond dat een enkel model een nauwkeurige schatting kon 

maken van de grootte en dynamiek van waterlichamen in verschillende omgevings- en 

klimatologische omstandigheden, op voorwaarde dat er trainingsgegevens werden 

verzameld die de verschillende omstandigheden goed vertegenwoordigen. Daarom is er 
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potentie om deze benadering op te schalen naar grotere ruimtelijke regio's, zoals voor de 

hele wereld. 

Dit proefschrift benadrukt de noodzaak van hoogfrequente monitoring van 

oppervlaktewater. Hoewel er onlangs veel vooruitgang is geboekt met de wereldwijde op 

Landsat-satellieten gebaseerde gegevens over het oppervlaktewater, kunnen deze 

gegevens soms grote ruimtelijke en temporele hiaten bevatten vanwege zowel het 

beperkte aantal beeldopnames alsook de aanhoudende bewolking in de lucht, waardoor 

nauwkeurige schattingen van veranderingen in oppervlaktewater niet mogelijk zijn. Met 

behulp van de hoogfrequente MODIS-gegevens en de ontwikkelde benadering van 

machinaal leren, is in deze dissertatie een nieuwe 18-jarige oppervlaktewaterfractie (SWF) 

dataset voor het Middellandse-Zeegebied geproduceerd met een ruimtelijke resolutie van 

500m en 8-daags interval. Deze MODIS SWF-dataset documenteert de lange termijn 

(2000–2017) status van oppervlaktewaterlichamen, hun locatie, omvang en 

veranderingen. MODIS SWF is een aanvulling op bestaande fijne ruimtelijke resolutie-

water datasets, met name door het aanbieden van betere temporele informatie voor 

gebieden waar het gedurende een deel van het jaar vaak bewolkt is. Bovendien maakt het 

een nauwkeurige beoordeling van de seizoensinvloeden van het oppervlaktewater 

mogelijk, door een betere representatie van snelle en kortstondige veranderingen in 

grootte van waterlichamen, zoals voor gebieden die slechts voor korte duur met 

oppervlaktewater bedekt zijn en daardoor niet voorkomen in bestaande datasets met 

lagere temporele resolutie. De dataset detecteert ook nauwkeurig de kleinere 

waterlichamen (minder dan één MODIS pixel) en smalle rivieren. 
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