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1.1 The importance of tree species 
Understanding and quantifying the nature of tree species is important from both 
ecological and economic perspectives. Information on composition, distribution, 
and diversity of tree species is of primary significance in the planning and 
implementation of biodiversity conservation efforts (Suratman 2012). The 
accurate mapping of individual trees at species level can provide a fundamental 
basis for sustainable forest management, ecosystem services assessment, as well 
as biodiversity monitoring (Dalponte et al. 2012; Shang and Chazette 2014). 

Numerous studies in recent years highlighted the importance of tree species maps 
either as a standalone product for forest management (e.g. Dalponte et al. 2012; 
Heinzel and Koch 2012; Richter et al. 2016) or as an essential input for species-
specific growth and yield models (e.g. Ghosh et al. 2014; Vauhkonen et al. 2014) 
or invasive tree species monitoring (e.g. Piiroinen et al. 2018; Somers and Asner 
2013b). Due to the importance of tree species information, it is crucial to build a 
reliable tree species mapping system for those applications, such as resource 
management, biodiversity assessment, ecosystem services assessment and nature 
conservation (Wagner et al. 2018).  

1.2 From field-based to remote sensing-based tree species 
mapping 

Conventionally, identification and mapping of tree species are carried out by field 
inventory. However, inventories conducted in the field by trained professionals 
are expensive, time-consuming and not applicable to large or isolated areas (Kim 
2007). During the last decades, both field-based inventories and remote sensing 
approaches have been used for tree species mapping (Ghosh et al. 2014). While 
field-based measurements have been criticized for requiring more time, 
manpower and economic resources (Mairs 1976), information derived from 
remotely sensed data has been promoted as providing an alternative (Holmgren 
and Thuresson 1998). Remote sensing approaches allow not only lower 
measurement costs, but also access to spatially-continuous data collection over 
large portions of the Earth's surface (Asner and Martin 2009; Palmer et al. 2002), 
including remote forests or areas where conditions are dangerous. As one of the 
most popular forms of remote sensing of forests in the early 90s, the ability of 
aerial photographs to provide tree species information is well valued and has been 
used for decades in forest inventory (Loetsch and Haller 1964). However, 
manually interpretation of aerial photographs by human operators remains time-
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consuming and subjective. In addition, visual interpretation may not always fully 
reveal information about the characteristics of individual trees, while the 
variability among same tree species and the similarity between different tree 
species could significantly increase the challenges.  

More recently emerged remote sensing sensors (e.g. multispectral, hyperspectral 
and Light Detection and Ranging (LiDAR) systems) represent an efficient and 
potentially economical way of depicting the characteristics of tree species by 
capturing the spectral and structural signatures, providing valuable information 
for forest inventory and tree species mapping on larger geographic scales (Sothe 
et al. 2019). While field-based measurements provide accurate information at 
local scales allowing validation of remotely sensed data, it remains insufficient 
to regularly sample large or poorly-accessible areas, approaches combining field 
and remotely sensed data could potentially provide cost-effective means to map 
tree species at different scales (Ganivet and Bloomberg 2019). 

1.3 The species of individual trees mapped by remote 
sensing sensors 

In order to capture the complex inter-species and intra-species spectral variability 
and structural variations of individual trees resulting from genetic patrimony and 
difference in environmental and physical factors (e.g. geology and edaphic 
conditions and natural phenological changes), passive remote sensing sensors (i.e. 
airborne multispectral or hyperspectral sensor) need to equip with numerous, 
contiguous spectral bands along with a high spatial resolution in relation to the 
scale of tree crowns, while active remote sensing sensors (i.e. airborne LiDAR) 
should be able to capture the detailed geometric characteristics of the individual 
tree that different from other species (Naidoo et al. 2012).  

1.3.1 Passive remote sensing – multispectral and hyperspectral 
systems 

Passive optical sensors can be divided into multispectral and hyperspectral (also 
called imaging spectroscopy) systems. Whereas most of the multispectral sensor 
systems typically have 4–8 bands, hyperspectral imagery is acquired in narrow, 
contiguous bands that can cover the visible (VIS), near-infrared (NIR) and 
shortwave-infrared (SWIR) portions of the electromagnetic spectrum (400–2500 
nm). Both multispectral and hyperspectral systems provide useful information to 
separate tree species by measuring the spectral response of directional 
electromagnetic radiation emitted by the sun and reflected by the canopy (and 
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other surfaces) in sensor-specific wavelengths regions (Fassnacht et al. 2016). At 
canopy level, the amount of radiation that is reflected in the different wavelengths 
regions is related to (1) plant chemical properties of the tissue which include 
water, photosynthetic pigments and structural carbohydrates (Ali et al. 2017; 
Asner 1998), (2) leaf morphology (thickness of cell-walls, air spaces and cuticle 
wax) (Clark et al. 2005), as well as (3) canopy structure (leaf and branch density, 
angular distribution, clumping) and tree size compared to neighboring trees 
(Leckie et al. 2005) which also depend on view-illumination geometry (Korpela 
et al. 2011). These properties vary not only with species but also with vertical 
leaf area density, leaf age and health status (Fassnacht et al. 2016). 

Another useful source of information that may be captured from passive optical 
remote sensing for tree species discrimination is plant phenology. Plant 
phenology embraces very obvious processes such as the coloring of leaves in 
deciduous temperate forests in autumn due to leaf senescence, and the intense 
green colors of fresh leaves and needles in spring time as well as flowering events 
(Fassnacht et al. 2016). Since plant phenology varies with species, species-
specific knowledge of phenology is preferable over broad knowledge of forest 
phenology (Chuine and Beaubien 2001). It is therefore desirable to align the time 
of image acquisition with the phenological cycle of the species under 
investigation (Gärtner et al. 2016). Multi-temporal optical data acquisitions 
provide a way to incorporate the spectral variation of species phenology for tree 
species classification.  

1.3.2 Active remote sensing – LiDAR system 

Recent developments in active remote sensing, particularly the light detection and 
ranging (LiDAR) technique, has shown great potential for individual tree species 
mapping due to its capability of capturing three-dimensional (3D) information of 
objects of interest. Airborne LiDAR is a favored data source for individual tree 
delineation, while also providing valuable geometric and radiometric information 
for tree species discrimination. While the geometric metrics describe the 
geometric structure of trees (e.g. crown shape, tree height and crown volume), 
the radiometric metrics refer to specific echo parameters that are extracted from 
the received waveform (e.g. the backscatter cross-section, the energy of laser 
points, and the distance between two waveform echoes) (Koenig and Höfle 2016; 
Wagner 2010). These properties can all vary within and between tree species and 
are at least partly complementary to the data gathered by passive optical remote 
sensing sensors (Alonzo et al. 2014).  
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Particularly, intensity of the backscattered laser signal is additionally related to 
foliage type, leaf size, leaf orientation, leaf clumping and foliage density (Kim et 
al. 2009; Korpela et al. 2010; Suratno et al. 2009). LiDAR intensity-related 
features were found to be amongst the most relevant predictors in numerous 
studies (e.g. Hovi et al. 2016; Korpela et al. 2010; Ørka et al. 2009; Vauhkonen 
et al. 2010a). Furthermore, multi-temporal LiDAR acquisitions (leaf-on and leaf-
off) have also been used for improving tree species discrimination since they may 
capture the foliage change between leaf-on and leaf-off conditions, such as the 
missing foliage and a thereby notably higher number of LiDAR returns on the 
ground and the stems which decreases the average height of the canopy surface 
model (Kim et al. 2009; Wasser et al. 2013). 

1.3.3 Thermal and Synthetic Aperture Radar (SAR) systems 

Compared to the abovementioned sensor types (i.e. multispectral, hyperspectral 
and LiDAR systems), there are fewer studies focused on thermal and Synthetic 
Aperture Radar (SAR) systems for tree species mapping. In the mid-infrared and 
thermal infrared part of the spectrum contrasting observations have been made. 
Salisbury (1986) presented leaf level thermal infrared spectra of beech (Fagus 
grandifolia), red oak (Quercus rubra) and two cherry species (Prunus sp.) and 
identified well-defined spectral features that differed notably across the four 
species. Ribeiro da Luz and Crowley (2007) found that the thermal infrared signal 
associates with several plant chemical and structural compounds such as cellulose, 
silica, and oleanolic acid, and they also pointed out that the signal in the thermal 
infrared domain is much more species-specific than the reflectance signal 
observed in the VIS-SWIR region (Fassnacht et al. 2016). Meanwhile, most SAR 
studies focused on the discrimination of broad forest types in the framework of 
land-cover classification omitting the species level. Forest information by SAR 
relates mainly to canopy structure and water content (Fassnacht et al. 2016). The 
application of advanced polarimetric measures to separate tree species has been 
investigated in a number of studies (e.g. Knowlton and Hoffer 1981; Maghsoudi 
et al. 2012; Wollersheim et al. 2011). However, environmental variables such as 
terrain condition has an influence on the Radar information, and scattering 
behaviour also varies with incident angle and wavelength which makes the whole 
system even more complex. 

1.3.4 Integration of various data sources for tree species mapping 

Combining complementary remote sensing data sources for tree species 
classification has been widely performed to improve mapping accuracy, 
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especially with the synergistic use of airborne LiDAR and optical imageries 
(aerial photographs, multispectral and hyperspectral imageries) at the pixel or 
object level (Dechesne et al. 2017).  Increasingly, LiDAR and either multispectral 
(e.g. Holmgren et al. 2008; Ørka et al. 2012) or hyperspectral (e.g. Alonzo et al. 
2014; Dalponte et al. 2008; Liu et al. 2017) data are integrated at the pixel or 
object level for tree species classification and quantification of forest inventory 
parameters (e.g. Latifi et al. 2012; Sarrazin et al. 2012; Smits et al. 2012; 
Swatantran et al. 2011). Particularly, combining airborne LiDAR and 
hyperspectral datasets, as a state-of-the-art remote sensing technology, provides 
both horizontal and vertical information about tree species and has shown great 
potential in improving tree species discrimination (Zhang et al. 2016). For 
instance, at the pixel level, the integration of hyperspectral and LiDAR data 
increased both producer's (5.1-11.6%) and user's (8.4-18.8%) accuracies than 
using either dataset alone, as found by Jones et al. (2010). Dalponte et al. (2012) 
compared various combinations of LiDAR data (high and low density) with 
hyperspectral as well as multispectral data for tree species classification in a 
temperate forest. They found that the best classification accuracy was obtained 
when combining the LiDAR and hyperspectral datasets.  

1.4 Challenges in individual tree species mapping 
(1) From ecological and biological perspectives, tree species differ in their 
biochemical, biophysical and structural traits under different canopy conditions, 
resulting in diverge reflectance and architectures which can be captured by 
multispectral, hyperspectral and LiDAR data. However, high spectral and 
structural intra-species variability and inter-species similarity in natural mixed 
forests, due to phenological effects, differences in tree age and openness of 
canopies, shadowing effects, and environment variability, restrict tree species 
separability. 

(2) From data collection and processing point of view, the “big data problem” 
followed by the emerging of new sensors became an acknowledged topic for 
researchers working on remote sensing. Data redundancy and high correlation 
between numerous features hamper the efficiency and accuracy of tree species 
classification. Valuable features that contribute to the discrimination of tree 
species need to be accurately identified. 

(3) Many previous studies have focused on data-driven or algorithm-driven 
approaches and pursued an optimization of classification accuracy in specific 
study sites. Whether collected training samples are sufficient to adequately 
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characterize investigated tree species may limit the understanding of the linkage 
between tree species and remote sensing signatures. An in-depth ecological and 
biological understanding of the relationship between species-specific traits and 
remote sensing observations for tree species classification has not been performed.  

1.5 Objectives and research questions 
The overall objective of this study is to accurately map individual tree species 
from remote sensing. The specific research questions are as follows: 

(1) What kind of LiDAR metrics are important for mapping tree species? Do they 
perform differently under leaf-on and leaf-off conditions? 

(2) How can multi-temporal digital aerial colour-infrared photographs further 
improve our understanding of tree species mapping? 

(3) Can plant functional traits retrieved from hyperspectral data further improve 
the classification accuracy when used in conjunction with hyperspectral (spectral) 
features and LiDAR metrics? 

(4) How to link species-specific traits with spectral and structural signatures 
derived from remotely sensed data to identify a focal tree species? 

1.6 Thesis structure 
This thesis comprises six chapters, including a general introduction, four core 
chapters, and a synthesis. Each core chapter has been provided as a standalone 
research article that has been published or submitted to peer-reviewed ISI 
journals.  

The structure of the chapters is as follows: Chapter 1 presents the research 
background, identifies the existing challenges and proposes specific research 
questions in this thesis. Chapter 2 evaluates the important LiDAR metrics for 
discriminating tree species. Chapter 3 demonstrates how multi-temporal digital 
aerial colour-infrared photographs improve LiDAR-based tree species mapping. 
Chaper 4 performs tree species classification using plant functional traits retrived 
from LiDAR and hyperspectral data. Chapter 5 shows how species-specific traits 
linked with spectral and structral signatures derived from LiDAR and 
hyperspectral data for silver fir mapping. Chapter 6 concludes the thesis with a 
summary of significant findings in the thesis. The broader applications of this 
thesis in forest ecology research is outlined. 
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Chapter 2  

Important LiDAR metrics for discriminating 
tree species * 
  

                                                      
* This chapter is based on: Shi, Y., Wang, T., Skidmore, A.K., & Heurich, M. (2018). 
Important LiDAR metrics for discriminating forest tree species in Central Europe. ISPRS 
Journal of Photogrammetry and Remote Sensing, 137, 163-174 
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Abstract 
Numerous airborne LiDAR-derived metrics have been proposed for classifying 
tree species. Yet an in-depth ecological and biological understanding of the 
significance of these metrics for tree species mapping remains largely unexplored. 
In this chapter, we evaluated the performance of 37 frequently used LiDAR 
metrics derived under leaf-on and leaf-off conditions, respectively, for 
discriminating six different tree species in a natural forest in Germany. We firstly 
assessed the correlation between these metrics. Then we applied a Random Forest 
algorithm to classify the tree species and evaluated the importance of the LiDAR 
metrics. Finally, we identified the most important LiDAR metrics and tested their 
robustness and transferability. Our results indicated that about 60% of LiDAR 
metrics were highly correlated to each other (|r| > 0.7). There was no statistically 
significant difference in tree species mapping accuracy between the use of leaf-
on and leaf-off LiDAR metrics. However, combining leaf-on and leaf-off LiDAR 
metrics significantly increased the overall accuracy from 58.2% (leaf-on) and 
62.0% (leaf-off) to 66.5% as well as the kappa coefficient from 0.47 (leaf-on) and 
0.51 (leaf-off) to 0.58. Radiometric features, especially intensity related metrics, 
provided more consistent and significant contributions than geometric features 
for tree species discrimination. Specifically, the mean intensity of first-or-single 
returns as well as the mean value of echo width were identified as the most robust 
LiDAR metrics for tree species discrimination. These results indicate that metrics 
derived from airborne LiDAR data, especially radiometric metrics, can aid in 
discriminating tree species in a mixed temperate forest, and represent candidate 
metrics for tree species classification and monitoring in Central Europe.      
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2.1 Introduction 
Discrimination of tree species is a major task undertaken in a wide range of 
environmental applications, such as biodiversity monitoring (Shang and Chazette 
2014; Suratman 2012), ecosystem services assessment (Jones et al. 2010; 
Skidmore et al. 2015), invasive species detection and control (Boschetti et al. 
2007), as well as sustainable forest management (Pcorona et al. 2006). Remote 
sensing can provide a valuable information source towards our understanding of 
ecosystem structure and function over large spatial scales (Baldeck et al. 2015). 
The identification and mapping of tree species is usually conducted through 
visual interpretation of aerial photographs by human experts coupled with forest 
inventory (in situ) plots, which is labour-intensive, time consuming and costly. 
More importantly, this method is not practical or applicable to large forested areas 
(Kim et al. 2009). Optical remote sensing such as airborne or spaceborne 
multispectral and hyperspectral images have been used to map tree species over 
the last few decades (e.g. Aspinall 2002; Boschetti et al. 2007; Feret and Asner 
2013; Immitzer et al. 2012; Jones et al. 2010; Leckie et al. 2003; Leckie et al. 
2005; Somers and Asner 2014). However, during the process of developing these 
remote sensing solutions, it has also been realized that multi- and hyper-spectral 
images have their own limitations (Heinzel and Koch 2012). For instance, the 
same tree species can have different spectral signatures in different parts of forest 
(Immitzer et al. 2012). Also, different tree species may possess similar spectra as 
well, particularly in a mixed pixel (Ghiyamat and Shafri 2010). Furthermore, 
multi- and hyper-spectral images are generally restricted to the horizontal plane, 
providing limited insight pertaining to the vertical profile of tree structure (Jones 
et al. 2010). 

Recent developments in active remote sensing, particularly the light detection and 
ranging (LiDAR) technique, have shown great potential for tree species mapping 
due to its capability of capturing three-dimensional (3D) information of objects 
of interest (Brandtberg 2007; Clark et al. 2004; Coops et al. 2007; Holmgren and 
Persson 2004; Hyyppä et al. 2001; Lindberg et al. 2014; Næsset 2002). Unlike 
multi- and hyper-spectral images, it is possible to retrieve structural properties of 
trees from LiDAR, based on the discrete points or full-waveform data (Alonzo et 
al. 2014; Asner et al. 2008; Coops et al. 2007; Dalponte et al. 2014; Onojeghuo 
and Blackburn 2011; Shang and Chazette 2014). From a morphological point of 
view, tree species differ in their foliage distributions and branching patterns under 
different canopy conditions, resulting in diverge architectures which can be 
captured by LiDAR. For instance, the foliage of Norway spruce (Picea abies) 
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(Fig. 2.1a) is clustered near the stem with pyramidal crown shape, while the 
foliage of European beech (Fagus sylvatica) (Fig. 2.1b) is more evenly 
distributed along the stem and has an oval crown shape. Histograms of laser pulse 
return frequency within varying height bins illustrate reflection allocation 
throughout the canopy (Fig. 2.1). A larger number of returns are reflected within 
the upper layer of spruce compared to beech. Under leaf-off condition, more 
returns were allocated towards the bottom of the canopy yet the top of the canopy 
was still well-represented by the LiDAR point cloud distribution (Fig. 2.1b). Thus, 
tree morphology characterized by LiDAR metrics may increase the ability to 
accurately discriminate tree species.  

 

Fig. 2.1 Example of distributions of canopy laser pulse returns within (a) Norway spruce, 
and (b) European beech under leaf-on and leaf-off conditions using airborne LiDAR data.  
 

Over the past decade, a large number of airborne LiDAR-derived metrics have 
been proposed for tree species classification (Brandtberg 2007; Brandtberg et al. 
2003; Cao et al. 2016; Holmgren and Persson 2004; Hovi et al. 2016; Kim et al. 
2011; Kim et al. 2009; Li et al. 2013; Lin and Herold 2016; Moffiet et al. 2005; 
Ørka et al. 2009; Reitberger et al. 2008). Generally, these LiDAR metrics can be 
categorized into two groups, namely geometric and radiometric metrics. The 
geometric metrics describe the geometric structure of trees (e.g. crown shape, tree 
height and crown volume) while the radiometric metrics refer to specific echo 
parameters that are extracted from the received waveform (e.g. the backscatter 
cross-section, the energy of laser points, and the distance between two waveform 
echoes) (Koenig and Höfle 2016; Wagner 2010). In particular, the intensity of the 
backscattered signal is related to foliage type, leaf size, leaf orientation, leaf 
clumping and foliage density (Kim et al. 2009; Korpela et al. 2010; Suratno et al. 
2009). The echo width is dependent on the amount, distribution and orientation 
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of scattering elements along the laser beam direction. These properties can all 
vary within and between tree species and thus may be useful for differentiating 
materials and ultimately tree species. Previous studies have demonstrated that 
LiDAR metrics can be used to improve the mapping accuracy of tree species. 
However, most of these studies focused on data-driven or algorithm-driven 
approaches and pursued an optimization of classification accuracy (Fassnacht et 
al. 2016). Consequently, an in-depth ecological and biological understanding of 
the linkage between tree species morphology and LiDAR derived metrics has not 
been performed. Identifying essential LiDAR metrics for tree species 
classification can not only reduce the redundant or overfitting caused by highly 
correlated metrics, but also help us build links between the inherent architectural 
differences of tree species and how they manifest in LiDAR metrics. 

The phenological development of tree species is characterized by distinct 
seasonal phases of bud burst, leaf flushing, flowering, senescence and dormancy 
(Calle et al. 2010). The physical changes in canopy structure are particularly 
prominent for deciduous tree species. The integration of LiDAR data acquired 
under leaf-on and leaf-off conditions has been proven useful for tree species 
classification in previous studies (Kim et al. 2009; Ørka et al. 2010; Reitberger 
et al. 2008; Yao et al. 2012). Although some of these studies suggested several 
important LiDAR metrics for tree species classification, the majority of them 
focused on the effects of different canopy conditions on tree properties or only 
considered a few LiDAR metrics. The role of LiDAR metrics derived from both 
discrete point and full-waveform data under leaf-on and leaf-off conditions for 
individual tree species classification has not been explored. Moreover, Sumnall 
et al. (2016) concluded that the greatest complimentary information about a forest 
canopy profile can be derived from both leaf-on and leaf-off data rather than 
discrete return or full-waveform LiDAR data. Nonetheless, due to the 
incompatibility of LiDAR collections, data availability as well as the high costs 
associated with LiDAR acquisitions and data processing efforts, the full potential 
of multi-temporal LiDAR datasets for tree species classification has yet to be 
realized.  

This study aims to evaluate the performance of 37 frequently used metrics derived 
from both discrete return and full-waveform airborne LiDAR data under leaf-on 
and leaf-off conditions, respectively, for discriminating six different tree species 
in a mixed temperate forest in Germany. Specifically, we set out to: (1) evaluate 
the correlation among those commonly used LiDAR metrics, (2) assess the 
performance of LiDAR metrics for tree species classification under leaf-on and 
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leaf-off conditions and select important input metrics, and (3) identify the most 
important LiDAR metrics for discriminating tree species and understand how 
they are linked with tree species morphology. 

2.2 Materials and Methods 

2.2.1 Study area and tree species 

The study area is located in the Bavarian Forest National Park (49°3′19″ N, 
13°12′9″ E), a mixed temperate forest situated in the south-eastern part of 
Germany (Fig. 2.2). The park covers a total area of 24218 hectares with an 
elevation ranging from approximately 600 m to 1452 m. The forest is dominated 
by Norway spruce (Picea abies), which co-habits with European beech (Fagus 
sylvatica) on the slopes, and silver fir (Abies alba) at low and intermediate 
elevations. Pioneer deciduous species are also present such as white birch (Betula 
pendula), sycamore maple (Acer pseudoplatanus), common rowan (Sorbus 
aucuparia), European ash (Fraxinus excelsior), European aspen (Populus 
tremula) and Field elm (Ulmus minor). However, they only represent 3.3% of the 
total basal area of the park (Cailleret et al. 2014). 

We identified two species-rich sites within the park (Fig. 2.2) and used them as 
pilot study areas of interests. Each pilot site is approximately 25 hectares (500 m

×500 m). Detailed information about the two study sites, including topographic 

condition, soil type, tree density, tree height, forest types and stand age classes 
are provided in Table 2.1. The spatial location of individual tree species was 
collected with a Leica Viva GS10 Plus differential GPS (Leica Geosystems AG, 
Heerbrugg, Switzerland) in July 2016 and July 2017, respectively. The GPS data 
were post-processed to obtain differentially corrected coordinates with an 
accuracy less than 0.25 m. In total, we have collected 256 locations of trees at site 
A and 193 locations of trees at site B.  
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Fig. 2.2 The study area in Germany and the location of the two pilot study sites in the 
Bavarian Forest National Park  
 
Table 2.1 Characteristics of the two pilot study sites 
 Site A Site B 
Size (ha) 25 25 
Elevation (m) 675 – 732 845 – 906 
Slope (degree) 9.12 ± 5 8.76 ± 3 
Soil type Brown forest soils 

and peat soils 
Loose brown soils 
and gley soils 

Forest type and stand age 
classes 

Mature coniferous 
and mixed stands 

Mature deciduous 
and mixed stands 

Tree density (per ha) 445 458 
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2.2.2 Airborne LiDAR data collection and processing 

The airborne LiDAR data were acquired on 11 April and 18 August 2016 under 
leaf-off and leaf-on canopy conditions respectively, using a Riegl LMS-Q680i 
scanner (wavelength 1550 nm) integrated in a full-waveform laser scanning 
system. The two datasets were collected with the same sensor and same settings. 
The mean flight speed was 50 ms-1 and the flying altitude was approximately 300 
m above ground. The pulse repetition frequency was 400 kHz with a scan angle 
around ±15°. The point density was around 70 pts/m2. A total of 21 flight lines 
were recorded with 50% strip overlap.  

Both point cloud data from Gaussian decomposition (Wagner et al. 2006) and 
raw full-waveform data were delivered by the Milan Flug GmbH Company. The 
point cloud information contains 3D coordinates (x, y and z), intensity, return 
number, number of returns, echo width and the GPS timestamp of the return. The 
extracted point clouds and associated waveforms were stored in the LAS 1.2 
format. We used the LAStools software package (LAStools, version 160921, 
rapidlasso GmbH, http://lastools.org) to create the 0.5 m resolution digital terrain 
models (DTM) from the LiDAR data. We normalized the height of each LiDAR 
return to height above ground by subtracting the elevation of the DTM below 
each point. It should be noted that we have used the same sensor and same settings, 
calibrating the intensity data of the two LiDAR datasets is not required in this 
study as suggested by Korpela et al. (2010). In addition, since the altitude of the 
two LiDAR flights were the same, and our two pilot study sites were 
topographically similar (having a gentle slope), the intensity normalization for 
the range between the sensor and object as well as for the incidence angle were 
therefore ignored (Vain and Kaasalainen 2011).  

2.2.3 Individual tree segmentation 

An adapted 3D segmentation algorithm proposed by Yao et al. (2013) was used 
to automatically extract individual trees in this study. It is an object-based point 
cloud analysis approach for tree detection and uses normalized cut segmentation 
as the core part of the method. The 3D segmentation algorithm is a two-tiered 
procedure. The steps of the entire procedure are as follows: (i) decomposition of 
full-waveform data; (ii) local tree maxima filtering; (iii) mean shift clustering; (iv) 
feature derivation for mean shift clusters; (v) normalized cut segmentation; and 
(vi) height filtering of the segmentation results.  
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We chose the sample trees and linked them to the correct LiDAR segmentation 
results for analysis by conducting the following procedures: (1) we first overlaid 
the location of sample trees with the 3D segmentation results and the aerial 
photograph (spatial resolution 0.25 m); (2) we then visually verified each sample 
tree based on the additional information we have recorded in the field (e.g. photos 
of the sample trees and the species of surrounding trees) as well as the crown 
shape interpreted from the very high resolution aerial photograph, and tried to 
connect it with the 3D LiDAR segments; (3) if a sample tree was not detected by 
the segmentation algorithm, it was removed from further analysis; (4) if a sample 
tree was assigned to more than one tree position, it was also removed from further 
analysis. The LiDAR points of each tree segment were extracted and assigned to 
the corresponding sample trees for both sites A and B. As a result, only 205 
sample trees from site A and 158 sample trees from site B were selected and used 
for the current study. The details of the number and the mean height of each tree 
species are shown in Table 2.2. 

Table 2.2 The sample size, mean height and standard deviation (SD) of each tree species 
in site A and site B  
 Site A Site B 
Tree 
species 

Sample 
size   

Mean height and 
SD (m) 

Sample 
size   

Mean height and 
SD (m) 

Beech 39 25.9 ± 7.2  29 26.4 ± 5.0  
Birch 36 18.2 ± 7.5 29 18.6 ± 4.8  
Fir 31 35.7 ± 6.7 21 27.9 ± 7.7  
Maple 40 20.7 ± 6.1  37 22.3 ± 7.0  
Rowan 21 17.5 ± 6.3 18 16.7 ± 7.2 
Spruce 38 28.3 ± 8.0 24 30.7 ± 6.7 

2.2.4 Derivation of LiDAR metrics under leaf-on and leaf-off 
conditions 

The most commonly used LiDAR metrics describing tree height is the percentile 
of the height distribution of laser pulses (Koenig and Höfle 2016; Li et al. 2013; 
Lin and Hyyppä 2016; Ørka et al. 2009; Sumnall et al. 2016; Vauhkonen et al. 
2010b). The lower limit of the canopy was defined by a threshold value of 2 m. 
Separate distributions were created for the first and last returns recorded as the 
percentage of first return to all returns and the percentage of last returns to all 
returns. From the echo height distribution we computed the maximum, mean, 
standard deviation, coefficient of variation, kurtosis, skewness, and height 
percentiles at 5% intervals (Hp5, Hp10, …, Hp90, Hp95) of tree height within a 
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tree segment (Andersen et al. 2005; Hopkinson et al. 2006; Lin and Hyyppä 2016; 
Muss et al. 2011; Næsset 2002; Naidoo et al. 2012; Vauhkonen et al. 2010a). 
Due to a strong correlation among the height percentile metrics between every 5% 
intervals, we selected the Hp25 and Hp90 percentiles for further analysis. The 
commonly used tree crown related LiDAR metrics include crown base height, 
crown volume and crown area which were extracted based on the methods 
proposed by Yao et al. (2012). The ratio of crown base height to tree height and 
the ratio of crown volume to crown area were added to reduce the impacts of 
different tree ages on tree species classification. Moreover, the mean height of 
first-or-single returns and the mean height of single returns were generated as 
descriptions to understand how crown shape reflected the different return types 
of laser pulses. As species identification using 3D features should be based on the 
architecture of the tree, not on its size, height related LiDAR metrics (i.e. the 
mean value of height, the standard deviation of height, the height percentiles, the 
mean height of first-or-single returns and the mean height of single returns) were 
generated based on normalized heights to eliminate scale dependency. The 
normalized height is the height of each return above ground divided by the height 
of the tree it belongs to. In total, 16 geometric metrics were generated as listed in 
Table 2.3.  

The radiometric metrics used in the tree species classification were derived from 
the intensity and echo width distributions. In addition to the 25% and 90% 
percentiles of the intensity, the maximum, mean, standard deviation, coefficient 
of variation, skewness and kurtosis of intensity within a tree segment were also 
computed (Dalponte et al. 2008; Heinzel and Koch 2011; Hovi et al. 2016; 
Korpela et al. 2010; Lin and Hyyppä 2016; Ørka et al. 2009; Yao et al. 2012). 
Similarly, the 25% and 90% percentiles of the echo width, the maximum, mean, 
standard deviation, coefficient of variation, skewness, and kurtosis of echo width 
within a tree segment were derived from full-waveform data as the radiometric 
parameters (Heinzel and Koch 2011; Höfle et al. 2012; Hovi et al. 2016; Lin 2015; 
Yao et al. 2012). Additionally, intensity and echo width with respect to two 
different echo categories: “first-or-single returns” and “single returns” (i.e. 
Imean_first and Imean_single for intensity, EWmean_first and EWmean_single 
for echo width) were also generated from each segment (Hovi et al. 2016; Ørka 
et al. 2010). In total, 21 radiometric metrics have been generated as listed in Table 
2.3. All metrics were generated under both leaf-on and leaf-off conditions with 
the R statistical language version 3.3.3 (http://www.r-project.org/). 
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Table 2.3 Description of the 37 generated LiDAR metrics  

2.2.5 Correlation analysis of LiDAR metrics 

LiDAR metrics can be useful in species classification if they differ significantly 
between species (Brandtberg et al. 2003; Holmgren and Persson 2004). From a 
statistical point of view, metric selection can reduce the number of input variables 
which is important for building efficient, stable and transferable classification 
models. In this study, 37 geometric and radiometric metrics (under both leaf-on 
and leaf-off conditions) were analysed to reduce the collinearity and avoid 
overfitting during the tree species classification process (Table 2.3). The 
Pearson’s Correlation Coefficient was used to examine the correlations between 
LiDAR metrics for both the leaf-on and leaf-off datasets. Here, we used the 
threshold of correlation coefficients between LiDAR metrics of |r| < 0.70, as such 
a threshold has been proved an appropriate indicator for when collinearity begins 
to severely distort model estimation and subsequent prediction (Dormann et al. 
2013). 

Metrics Definition   Metrics Definition 

Geometrics   Radiometrics  

Hmax Maximum height  Imax Maximum intensity 

Hmean Mean height  Imean Mean intensity 

Hsd Standard deviation of height  Isd Standard deviation of intensity 

Hcv Coefficient variation of height   Icv Coefficient variation of intensity  

Hkurt Kurtosis of height  Ikurt Kurtosis of intensity 

Hskew Skewness of height  Iskew Skewness of intensity 

Hp25 25th percentile of heights  Ip25 25th percentile of intensity 

Hp90 90th percentile of heights  Ip90 90th percentile of intensity 

Hmean_first Mean height of first-or-single 
returns 

 Imean_first Mean intensity of first-or-single 
returns 

Hmean_single Mean height of single returns  Imean_single Mean intensity of single returns 

First:total_returnsPercentage of first returns above 2m  Ewmin Minimum echo width 

Last:total_returns Percentage of last returns above 2m  Ewmax Maximum echo width 

All_returns All returns above 2m  Ewmean Mean echo width 

CBH:H Ratio of crown base height to height  Ewsd Standard deviation of echo width 

C_volume:area Ratio of crown volume to crown 
area 

 Ewcv Coefficient variation of echo width  

CNR Canopy relief ratio  Ewkurt Kurtosis of echo width 

   Ewskew Skewness of echo width 

   Ewp25 25th percentile of echo width 

   Ewp90 90th percentile of echo width 

   Ewmean_first Mean echo width of first-or-single 
returns 

  Ewmean_single Mean echo width of single returns 
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2.2.6 Random Forest algorithm   

Random Forest is a popular and powerful machine learning algorithm (Belgiu 
and Drăguţ 2016; Fassnacht et al. 2016; Ørka et al. 2010; Vauhkonen et al. 
2010a). We used the Random Forest algorithm, with internal cross-validation, to 
assess the performance of “selected metrics” for tree species discrimination for 
leaf-on, leaf-off and combined datasets. During Random Forest classification, 
approximately one-third of the samples were left out of the input training dataset 
as “out-of-bag” (OOB) samples to estimate the classification error and derive 
variable importance. The Mean Decrease Accuracy (MDA) index, which 
quantifies the degree to which inclusion of a variable in the model decreases the 
mean squared error, was used to assess the variable importance for classification 
(Breiman 2001; Liaw and Wiener 2002). The mean decrease in accuracy of a 
variable is determined during the out of bag error calculation phase. The more the 
accuracy of the random forest decreases due to the exclusion (or permutation) of 
a single variable, the more important that variable is deemed, and therefore 
variables with a large mean decrease in accuracy are more important for 
classification (Breiman 2001; Teicher et al. 2012).  

The Random Forest algorithm has several advantages with respect to the current 
assessment of LiDAR metrics derived from different acquisitions in tree species 
classification, e.g. (1) it can handle a large number of input variables without 
variable deletion; (2) it computes an error matrix based on an internal validation 
process; (3) it estimates which variables are important in the classification, 
measured as the mean decrease accuracy; (4) the generated forests can be saved 
for future use on other data; and last but not least (5) it reduces overfitting and is 
therefore more accurate than equivalent discriminative, or boosted regression 
based methods trained on the same data (Cootes et al. 2012). However, similar to 
most classifiers, Random Forest algorithm can also suffer from the curse of 
learning from an extremely imbalanced training dataset (Chen et al. 2004). Hence, 
we used the Random Forest algorithm to derive both classification accuracy as 
well as the variable importance in this study. The classification was carried out 
with the R package “randomForest” (Liaw and Wiener 2002). We tested different 
values for the Random Forest parameter “Ntree” (i.e. number of trees grown) and 
parameter “Mtry” (i.e. number of predictors sampled for splitting at each node), 
varying in each test from 1 to 500 and from 1 to 30, respectively, and we set up a 
loop to run the Random Forest algorithm for each combination of parameters and 
chose the model with the best classification performance. Then we applied this 
model in study site B for classification, accuracy assessment and metrics 
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evaluation using samples independent of the samples used to develop the model 
in study site A, and assessed the robustness and transferability of “selected 
metrics” by comparing the importance of selected metrics. 

2.2.7 Classification accuracy assessment 

We used producer’s accuracy, user’s accuracy, overall accuracy and kappa 
coefficient to assess the classification results (Cohen 1960). We also used the 
McNemar’s test to determine whether statistically significant differences exist 
between classifications (de Leeuw et al. 2006; McNemar 1947). 

Using Random Forest we iterated with the 12 metrics generated during the first 
step of metrics selection under leaf-on and leaf-off conditions using 205 sample 
trees in study site A. The performance of the LiDAR metrics was further verified 
by 158 independent sample trees collected in study site B by using the Random 
Forest model established in study site A. The classification results and metrics 
importance derived from site B were compared to the results of site A under all 
leaf-on, leaf-off and integration conditions.  

2.2.8 Determining the importance of the LiDAR metrics 

We calculated classification accuracy and evaluated metrics importance under 
leaf-on and leaf-off conditions. For each condition, we chose the 7 top-ranked 
metrics (14 metrics in total) as the input of final classification. We selected 14 
metrics because inclusion of more features did not increase the classification 
accuracy significantly, which was also demonstrated by Li et al. (2013). After 
selection of important LiDAR metrics under leaf-on and leaf-off conditions, we 
input the 14 top-ranking metrics as the integration metrics of leaf-on and leaf-off 
conditions for the tree species classification. We applied the classification model 
with the same parameter settings to study site B, and recorded the performance 
of classification and the importance of input metrics. Then we identified the most 
consistently significant metrics and evaluated the contribution of each metric 
based on the classification results.  

2.3 Results 

2.3.1 Correlation of LiDAR metrics 

High correlation (|r| > 0.7) was observed among many of the geometric and 
radiometric metrics derived from both leaf-on and leaf-off conditions (Fig. 2.3). 
For the geometric metrics, high correlation was found between the height related 
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metrics such as Hmax, Hmean, Hsd, Hcv, Hskew, Hp25, Hp90, Hmean_first, 
Hmean_single and CNR. For radiometric metrics, the echo width related metrics 
presented stronger correlations between the metrics in comparison to intensity 
related metrics. Specifically, three echo width related metrics, i.e. Ewmean, Ewsd 
and Ewcv were highly correlated to each other under both leaf-on and leaf-off 
conditions. As a result, only 30 out of 74 LiDAR metrics (combining both leaf-
on and leaf-off conditions) were found with an absolute correlation coefficients 
less than 0.70.   

 
Fig. 2.3 Cross-correlation matrix of the 37 LiDAR metrics derived under leaf-off (lower) 
and leaf-on (upper) conditions. Blue colours indicate positive correlations and red colours 
indicate negative correlations. See Table 2.3 for definitions of the metrics. 

2.3.2 LiDAR metrics selection 

Firstly, we evaluated 37 LiDAR metrics (under both leaf-on and leaf-off 
condition) based on correlation coefficients as well as the ranking of their 
importance using the Mean Decrease Accuracy index (MDA). We retained the 
metrics with a correlation coefficient |r| < 0.70 and the higher ranked metric when 
two compared metrics had |r| > 0.70. Then, we used 12 top-ranked significant 
metrics as the input for further classification (Table 2.4). Finally, we selected the 
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top 7 metrics from each condition (i.e. leaf-on and leaf-off) as the final input 
metrics for classification based on MDA (Table 2.4). 

Table 2.4 Selected LiDAR metrics derived under leaf-on and leaf-off conditions and their 
Mean Decrease Accuracy (MDA). The top 7 metrics indicated by the asterisk (*) from 
each condition (i.e. leaf-on and leaf-off) were used as final input metrics for tree species 
classification. 

Leaf-on MDA Leaf-off MDA Leaf-on and leaf-off MDA 

*Imean_first 14.221 *Imean_first 13.185 Imean_first_off 13.01 

*Ewmean 12.185 *Hmean_single 11.796 Hmean_single_off 12.64 

*Hmax 11.530 *Ewmean 10.471 Imean_first_on 11.15 

*Imean_single 9.117 *Icv 10.313 Icv_off 10.64 

*Imean 8.551 *Ewmean_first 10.024 Ewmean_on 10.11 

*Hmean_single 8.386 *Hmean_first 9.256 Hmax_on 10.09 

*Ewmean_first 8.071 *Hmean 9.021 Ewmean_off 9.83 

 Ewmean_single 7.623  Hcv 8.309 Ewmean_first_on 9.15 

 Hmean_first 7.220  Ewp90 8.249 Ewmean_first_off 9.13 

 Ip90 6.844  Hp25 7.881 Hmean_single_on 8.95 

 Hp90 3.698  Ewmean_single 6.822 Imean_on 8.92 

 C_volume:area 1.172  Hkurt 5.587 Hmean_first_off 8.13 

    Imean_single_on 7.11 

    Hmean_off 5.88 

2.3.3 Comparison of classification accuracies 

The classification results produced by the Random Forest algorithm are presented 
in Table 2.5. It is shown that there was no statistically significant difference in 
tree species mapping accuracy between the use of leaf-on and leaf-off LiDAR 
metrics (McNemar’s test, p > 0.05) (Table 2.6). However, combining leaf-on and 
leaf-off LiDAR metrics significantly increased the overall accuracy from 58.2% 
(leaf-on) and 62.0% (leaf-off) to 66.5% as well as the kappa coefficient from 0.47 
(leaf-on) and 0.51 (leaf-off) to 0.58 (McNemar’s test, p < 0.05) (Table 2.6).  

We executed the selected LiDAR metrics in study site B in order to assess the 
robustness and transferability of the selected metrics. The difference in the 
classification performance was minor between leaf-on and leaf-off conditions, 
while combining LiDAR metrics derived under leaf-on and leaf-off conditions 
significantly improved the accuracy (Table 2.6). Both the classification in site A 
and site B generated modest and comparable classification accuracy. For 
individual tree species, beech, birch and spruce were classified with higher user’s 
and producer’s accuracy under leaf-off rather than leaf-on condition (Table 2.5). 
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Rowan was misclassified under leaf-on and leaf-off conditions using selected 
metrics, and only a slight improvement occurred using the combined leaf-on and 
leaf-off datasets.  

Table 2.5 Comparison of overall accuracy and kappa coefficient for tree species 
classification using leaf-on, leaf-off and combination of leaf-on and leaf-off LiDAR 
metrics. 
 Site A Site B 

Tree species 
Leaf-on Leaf-off Integration Leaf-on Leaf-off   Integration 

UA(%) PA(%) UA(%) PA(%) UA(%) PA(%) UA(%) PA(%) UA(%) PA(%) UA(%) PA(%) 

Beech 54.1 57.1 67.6 67.6 64.9 64.9 48.3 50.0 58.6 28.6 55.2 55.2 

Birch 54.5 50.0 57.6 57.6 63.6 58.3 75.9 73.3 79.3 76.7 82.8 82.8 

Maple 68.9 60.8 66.7 63.3 64.4 65.9 67.6 61.0 70.3 61.9 78.4 65.9 

Rowan 26.3 38.5 21.5 40.0 36.8 63.6 31.3 16.7 27.8 50.0 33.3 46.2 

Fir 66.7 57.1 66.7 60.6 73.3 68.8 52.4 61.1 61.9 56.5 57.1 70.6 

Spruce 56.1 65.7 61.0 56.8 65.9 60.0 58.3 58.3 70.8 68.0 75.0 69.2 

OA 57.1% 60.0% 62.4% 58.2% 62.0% 66.5% 

Kappa  0.46 0.49 0.54 0.47 0.51 0.58 

OA: overall accuracy; UA: user’s accuracy; PA: producer’s accuracy 
 
Table 2.6 McNemar’s test for pairwise comparison between classification results derived 
from the three datasets (leaf-on, leaf-off, and integration). The number in the table is p 
value. The number with an asterisk (*) indicates that the difference between 
classifications is significant at a 5% significant level. 

 Site A Site B 

 Leaf-off Integration Leaf-off Integration 

Leaf-on 0.16 < 0.01* 0.11 < 0.01* 

Leaf-off  0.09  0.02* 

2.3.4 Performance of LiDAR metrics in tree species classification 

Fig. 2.4 presents the relative importance and ranking of the selected LiDAR 
metrics for tree species classification for the two pilot study sites based on leaf-
on, leaf-off and their combination. It indicates that the significant metrics and 
their ranks vary under different conditions. However, Imean_first appeared as the 
first-ranked metrics under every condition in both sites A and B. When metrics 
selected from leaf-on and leaf-off datasets were combined, 4 out of 5 top ranked 
metrics were the same as those derived in site A (Fig. 2.4c, 2.4f), which were all 
radiometric metrics. Hmean_single had a performance comparable to the 
Imean_first under leaf-off and combination conditions in site A, however, it did 
not show superior performance in the classification of site B. Comparing 
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important metrics under each condition, Imean_first and EWmean consistently 
appeared as top 5 metrics through different canopy conditions.  

We also tested the accumulated contribution rate increased through increasing the 
number of selected metrics for classification. Adding LiDAR metrics produced 
the largest increase in the classification contribution rate, from 65% to 100%, 
reached the first peak (96.2%) using the top 5 metrics, and stabilizing around 93% 
at 10 metrics, which supporting the choice of 10 features as a reasonable limit for 
species classification. The first 5 metrics were selected as the best performed for 
the separation of the tree species of interest according to the MDA in Random 
Forest that globally maximize the fitness function through iterations.  

2.3.5 The capability of metrics for tree species discrimination 

The differences between the six tree species for the top 4 ranked metrics are 
plotted in Fig. 2.5. It can be observed that the ability of the 4 most important 
metrics for tree species discrimination varies for each species under different 
conditions. It is evident that coniferous trees have a higher value of mean intensity 
of first returns compared to deciduous trees under leaf-off condition, while the 
difference of this metric between coniferous trees and deciduous trees becomes 
smaller under leaf-on condition (Fig. 2.5a). A similar pattern can be observed in 
Fig. 2.5d about the normalized mean height of single returns. Fig. 2.5c shows a 
distinct difference of coefficient variation of intensity between leaf-on and leaf-
off conditions among 6 species, which differentiates coniferous trees from 
deciduous trees under leaf-off condition. Similarly, the mean value of echo width 
shows a superior ability to separate birch from other 5 tree species, especially 
under leaf-on condition (Fig. 2.5b).  
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Fig. 2.4 The relative importance and ranking of the selected LiDAR metrics for tree 
species classification under different conditions derived from the pilot study site A and 
site B. The Mean Decreasing Accuracy indicates importance by how much the 
permutation (effective elimination) of a given variable decreases the accuracy of the 
overall fit. Metrics that are associated with the greatest decrease in accuracy coefficient 
following permutation are the most important. 
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Fig. 2.5 Box plots of mean intensity of first-or-single returns (a), mean value of echo 
width (b), coefficient variation of intensity (c), and normalized mean height of single 
returns (d) among six tree species under leaf-on and leaf-off conditions. The value of each 
metrics is based on the sample trees from both site A and site B. 

2.4 Discussion  
In this study, we generated a set of geometric and radiometric metrics from 
airborne LiDAR data under leaf-on and leaf-off conditions and evaluated their 
performance for individual tree species discrimination in a mixed temperate 
forest in Germany. Our results demonstrated that radiometric features 
consistently contributed a higher accuracy compared to geometric features for 
classifying tree species under both leaf-on and leaf-off conditions. Specifically, 
the mean intensity of first-or-single returns as well as the mean value of echo 
width were identified as the most robust LiDAR metrics for discriminating six 
typical tree species in Central Europe. The importance of features derived from 
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the first and the last returns for tree species classification was reported by Ørka 
et al. (2010) and the current study specified and verified this result. We found 
that the mean intensity of first-or-single returns was least sensitive to the canopy 
condition and well represented the structural and morphological characteristics 
of trees, which contributed most to the accuracy of tree species classification. 
Both the mean intensity of first-or-single returns and echo width are metrics 
which contain radiometric and geometric (3D) information. The mean intensity 
of first-or-single returns is derived from the outer “crown shell”, which means 
narrow and peaked branch tips result in an increased proportion of partial hits by 
footprint (Korpela et al. 2013). It also implies that the difference in the spatial 
distribution of branches between different tree species is most prominent at the 
top of canopy. The major structural differences among tree species that are 
reflected in LiDAR metrics generally occur at the top crown layers rather than 
middle and low stem layers, which explained why radiometric metrics played an 
important role in species discrimination in comparison geometric metrics. 
However, the value of the mean intensity of first-or-single returns of deciduous 
trees in our study did not show a significant difference between leaf-off and leaf-
on conditions (Fig. 2.5a) – this may be due to an earlier spring leaf unfolding 
phenology that occurred in 2016 in our study area. Contradictory to the study 
conducted by Sumnall et al. (2016), where echo width metrics were considered 
relatively unimportant for forest inventory purposes, we found that the mean echo 
width within a tree segment led to more stable performance than geometric 
features, with an important contribution from the intensity metrics (Fig. 2.4). It 
should be noted that echo width metrics did not show considerable superiorities 
compared to height related metrics under leaf-off condition. The most plausible 
explanation for this is that the difference of echo width metrics between 
coniferous species and deciduous species becomes narrower due to leaf loss of 
deciduous trees and the exposure of their branches, which, at the same time, can 
be well represented by geometric features. Those results indicated radiometric 
features have greater potential for representing species-specific characteristic, 
which is supported by previous studies (Heinzel and Koch 2011; Hovi et al. 2016; 
Kim et al. 2009; Ørka et al. 2009; Ørka et al. 2010; Sumnall et al. 2016). By 
contrast, many geometric features are affected by tree height, which may be also 
related to other properties, such as crown volume, crown shape and the interior 
structure of the tree crown. Misclassifications may be due to the similarities of 
the morphology among different tree species and also the architectural variations 
within the same tree species. The cause of structural deviations including tree 
competition as well as differences in environmental niche (such as temperature 
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or soil condition) may also alter the shapes of tree crowns, which introduces 
further uncertainties in the classification. Therefore, discriminating tree species 
based on LiDAR derived geometric features may be challenging in complex 
natural forests, while using radiometric metrics provides better classification 
performance by their species-specific characters.  

Several studies have discussed the influence of canopy conditions on tree 
properties from airborne LiDAR data (Kim 2007; Kim et al. 2009; Naesset 2005; 
Ørka et al. 2010). Our results showed that there was a slight improvement of 
classification accuracy when using leaf-off acquisition compared to leaf-on 
acquisition, which also has been supported by Reitberger et al. (2008) and 
Heurich (2006) in the same study area. However, there was no statistically 
significant difference in tree species mapping accuracy between the use of leaf-
on and leaf-off LiDAR metrics (Table 2.6). We also found that a large proportion 
of important metrics were generated under leaf-off condition. It may be because 
the metrics derived under leaf-off condition offer a higher potential for 
representing the inner architecture of crowns, which give radiometric features a 
better chance to describe the interior structure of trees. Combining leaf-on and 
leaf-off datasets resulted in higher separability between tree species than using 
LiDAR data from one season. Notably, there was always a significant 
improvement in classification performance when combining leaf-on and leaf-off 
datasets compared to leaf-on dataset (Table 2.6). This result indicated that 
individual tree species discrimination could benefit more from the leaf-off 
acquisitions by obtaining more accurate species-specific LiDAR metrics. We 
gained an overall accuracy (OA) (66.5%) and kappa value (0.58) for all six 
species when combining leaf-on and leaf-off datasets in site B, which is slightly 
lower than many previous studies. However, we found a reasonable degree of 
accuracy by using solely airborne LiDAR data for individual tree species 
mapping in a natural mixed forest.  

Ørka et al. (2010) indicated that there may be a set of features that can be 
applicable in tree species classification across different acquisitions. In this study, 
we tested and verified the robustness and transferability of important LiDAR 
metrics, which serve as the substantial markers of tree species that can be used 
for further study. It should be noted that our analysis was based on two study sites 
with relatively low variability regarding forest type and topography. Therefore, 
the applicability of the important metrics needs to be further tested in other study 
sites. Moreover, the point density of LiDAR data in this study is higher than in 
many other studies and the effect of point density on feature derivation and the 
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classification still needs to be evaluated. Previous studies also indicated that high 
point density (i.e. > 40 pts/m2) airborne LiDAR data can be used to extract more 
detailed structural features such as internal foliage and branch patterns of an 
individual tree, which may further the distinction between different tree species 
(Li et al. 2013; Vauhkonen et al. 2014). Obtaining larger sample trees and 
improving individual tree segmentation accuracy may also lead to higher 
classification accuracy and better understanding of LiDAR metrics performance 
during classification.  

2.5 Conclusions  
This study has evaluated the performance of commonly used LiDAR metrics for 
discriminating tree species under leaf-on and leaf-off conditions. The results 
showed the radiometric metrics constantly contribute a higher accuracy compared 
to geometric features for tree species classification in a natural forest. The mean 
intensity of first-or-single returns was identified as the most robust LiDAR 
metrics which implied the major structural differences among tree species occur 
at the top crown layers and can be reflected in LiDAR metrics. Building links 
between the inherent architectural differences of tree species and how they 
manifest in LiDAR metrics remains a critical endeavour for remote sensing 
researchers. As a result, gathering field measurements and discovering 
relationships between crown structural characteristics and waveform metrics 
remains important to improve the physical interpretability of the airborne LiDAR 
metrics, with some of the relationships found here, serving as a ground for 
potential further investigations. 

The accuracy of tree species classification using solely airborne LiDAR data is 
merely moderate. In the next chapter, we explore additional useful features 
derived from complementary remotely sensed data which further improve 
LiDAR-based tree species mapping. 
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Chapter 3  

Improving LiDAR-based tree species 
mapping using multi-temporal CIR 
orthophotos *  

                                                      
* This chapter is based on: Shi, Y., Wang, T., Skidmore, A.K., & Heurich, M. (2020). 
Improving LiDAR-based tree species mapping in Central European mixed forests using 
multi-temporal digital aerial colour-infrared photographs. International Journal of 
Applied Earth Observation and Geoinformation, 84, 101970 
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Abstract 
Digital colour-infrared (CIR) aerial photographs, which have been collected 
routinely in many parts of the world over many decades, are an invaluable data 
archive for the monitoring and assessment of forest resources. Yet, the potential 
of these data for automated individual tree species mapping remains largely 
unexplored. One way to maximize the usefulness of digital CIR aerial 
photographs for individual tree species mapping is to integrate them with 
complementary remote sensing technologies such as the light detection and 
ranging (LiDAR) system and 3D segmentation algorithms. In this study, we 
examined whether multi-temporal digital CIR orthophotos could be used to 
further increase the accuracy of airborne LiDAR-based individual tree species 
mapping for a temperate mixed forest in eastern Germany. Our results showed 
that the texture features captured by multi-temporal digital CIR orthophotos 
under different view-illumination conditions were species-specific. As a 
consequence, combining these texture features with LiDAR metrics significantly 
improved tree species mapping accuracy (overall accuracy: 77.4%, kappa: 0.68) 
when compared to using LiDAR data alone (overall accuracy: 69.3%, kappa: 
0.58). Among various texture features, the average gray-level in the near-infrared 
band was found to contribute most to the classification. Our results suggest that 
the synergic use of multi-temporal digital aerial photographs and airborne LiDAR 
data has the potential to accurately classify individual tree species in Central 
European mixed forests.  
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3.1 Introduction 
Information about tree species are important inputs for biodiversity modelling 
and biomass estimation, and are indispensable for environmental, monitoring and 
protection activities (Waser et al. 2011). Remote sensing-assisted classification 
of individual tree species can aid forest management and ecosystem modelling 
and lead to more comprehensive and accurate forest inventories (Yin and Wang 
2016). Over the last four decades, advances in remote sensing have enabled the 
classification of tree species using various sensor types (e.g. LiDAR, very high 
resolution digital aerial photographs, multispectral and hyperspectral sensors) 
(Fassnacht et al. 2016).     

Aerial photographs have been acquired ever since the means have existed to lift 
cameras above the Earth’s surface, beginning in the mid-19th century (Aber et al. 
2010; Loetsch and Haller 1964). Historically, visual interpretation of aerial 
photographs was the most popular form of remote sensing for mapping trees in 
forests (Barrett et al. 2016; Spurr 1960). Captured at various spatial scales, aerial 
photographs are used for a wide range of purposes in resource management, from 
detailed surveys of individual trees to general land cover mapping over broad 
extents (Morgan et al. 2017). Traditional film-based aerial photographs are 
referred to as analogue images which have been routinely scanned and converted 
into digital images after the first decade of the 21st century (Aber et al. 2010). 
With the technical advances in electronic devices and desktop computing, film-
based aerial photographs are rapidly becoming obsolete, due to the use of digital 
aerial photographs with increasingly sophisticated analysis methods. Specifically, 
small-format digital aerial photographs (equivalent to 35- and 70-mm film 
cameras) have established a niche that bridges the gap in scale and resolution 
between ground observations and imagery acquired from airborne and satellite 
sensors (Aber et al. 2010).  

In recent decades, very high resolution digital colour-infrared (CIR) aerial 
photographs have been used to obtain information on individual tree species 
(Deng et al. 2016; Singh et al. 2015; Zhang and Hu 2012). Colour-infrared (CIR) 
aerial photography has long been recognized for its capabilities in land use, land 
cover and vegetation studies, including large-area and regional analysis, species 
differentiation and stress detection (Colwell 1960). Furthermore, digital CIR 
orthophotos obtained by georeferencing digital CIR aerial photographs using 
ground control points as well as GPS/INS system provide the true orthographic 
positions, which can be used for making direct measurements of distances, angles, 
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directions, positions and areas without corrections for distortions. Manual (visual) 
interpretation of aerial photography has long been a standard procedure in 
developing forest inventories; however, human interpretations can be subjective, 
inconsistent, and labour-intensive (Koch et al. 2002). Although very high 
resolution digital CIR orthophotos allow specialists to recognize patterns of 
species, visual interpretation may not always fully reveal the spectral and texture 
information of individual trees. The variability among the same tree species and 
the similarity between different tree species present additional challenges 
(Dechesne et al. 2017).  

Previous research has shown that there are species-specific differences in how 
the observed brightness changes when the viewing direction in digital aerial 
photography is altered (Korpela et al. 2014). Studies also pointed out that the 
spectral separability of tree species is partly dependent on the view-illumination 
geometry and the reflectance anisotropy, and the high within-species reflectance 
variation in digital aerial photographs may affect the spectral signatures of trees 
(Dechesne et al. 2017; Korpela et al. 2011; Leckie et al. 2005). The collection of 
very high resolution digital aerial photographs has become a routine forest 
inventory procedure in many countries. This provides an opportunity to capture 
brightness variation patterns within tree crown by using multi-temporal 
information. Korpela et al. (2011) concluded that “the brightness variation inside 
crowns showed band- and species- specific differences” and “the reflectance 
differences observed in the various bands and geometries could potentially be 
taken into account for the improvement of species classification”. However, for 
individual tree species classification, the capability of texture information derived 
from multi-temporal digital aerial photographs under different illumination 
conditions remains largely unexplored.  

Recent advances in remote sensing technology and machine learning methods 
provide avenues to further explore the potential of digital CIR orthophotos for 
individual tree species mapping. Processing capabilities allow us to efficiently 
generate spectral and texture features from digital CIR orthophotos, while 
machine learning algorithms offer a means to combine these features with 
complementary data sources. For instance, LiDAR data provide a range of 
metrics related to both the geometric and radiometric characteristics of trees. 
While geometric features describe the architecture of tree crowns and branching 
patterns, radiometric features are more related to foliage material, leaf orientation 
and density (Kim et al. 2009). In addition, directional reflectance signatures and 
crown texture information derived from digital aerial photographs can be used 
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for forest monitoring and species classification (Korpela et al. 2014; Kuzmin et 
al. 2016; Singh et al. 2015; Tian et al. 2017). Crown texture often reflects the 
spatial variation of crown-internal shadows, foliage properties (size, density, 
reflectivity) and branching patterns (Sayn-Wittgenstein 1978). On small format 
CIR orthophotos, leaves, branches and inner tree crown shadows all contribute to 
the texture information (Haara and Haarala 2002). New perspectives for regional 
and national mapping approaches are emerging through digital aerial photographs, 
which are likely – in contrast to airborne LiDAR data – to be updated more 
regularly by regional or national mapping agencies (Waser et al. 2017). Although 
the combination of airborne LiDAR data and texture features derived from 
individual digital aerial photographs has been successfully employed for tree 
species monitoring (Kulikova et al. 2007) and land cover mapping (Silveyra 
Gonzalez et al. 2018), the utility of texture information derived from multi-
temporal digital CIR orthophotos in aiding LiDAR-based tree species mapping 
has not been tested. 

The current study aims to evaluate the role of multi-temporal digital CIR 
orthophotos in improving LiDAR-based individual tree species classification in 
Central European mixed forests. Specifically, we set out to (1) examine the 
correlation of texture features derived from multi-temporal digital CIR 
orthophotos; (2) integrate texture information derived from multi-temporal 
digital CIR orthophotos with airborne LiDAR derived metrics for tree species 
classification; and (3) assess the utility of combining multi-temporal digital CIR 
orthophotos and LiDAR data for tree species discrimination and identify the most 
valuable features from both datasets.  

3.2 Materials and Methods 

3.2.1 Study sites and field data 

The Bavarian Forest National Park (BFNP) was the first National Park 
established in Germany, in 1970, and is situated in south-eastern Germany along 
the border with the Czech Republic. As a mixed temperate forest reserve in 
Central Europe, it covers 24,218 hectares with elevations between 600 and 1453 
m above sea level (Cailleret et al. 2014). Within the park, three major forest types 
exist: above 1100 m there are sub-alpine spruce forests of Norway spruce (Picea 
abies) and some Mountain ash (Sorbus aucuparia) (high altitude); on the slopes, 
between 600 and 1100 m, are mountains of mixed forests of Norway spruce, 
Silver fir (Abies alba), European beech (Fagus sylvatica), and sycamore maple 
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(Acer pseudoplatanus); in wet depressions that often experience cold air pockets 
in the valley bottoms, spruce forests of Norway spruce, Mountain ash, and white 
birches (Betula pendula) occur (valley bottoms) (Heurich 2008). 

Two study sites (approximately 25 hectares for each site) were selected based on 
the species richness in the BFNP (Fig. 3.1). The field data was collected in July 
2016 and July 2017, including 256 locations of individual tree species at site A 
and 193 locations of individual tree species at site B. A Leica Viva GS10 Plus 
differential GPS (Leica Geosystems AG, Heerbrugg, Switzerland) was used to 
record the spatial location of trees in the field. After post-processing, the absolute 
error of the differentially corrected coordinates was within 0.25 m (see Chapter 
2).  

 
Fig. 3.1  Location of the two study sites in Bavaria Forest National Park, Germany  
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3.2.2 Multi-temporal digital CIR orthophotos 

Three digital CIR orthophotos were utilised in this study, from 6 June 2015, 23 
June 2016 and 11 June 2017, covering the whole BFNP. All three digital CIR 
images were recorded using Intergraph’s Digital Mapping Cameras (DMC) from 
an altitude of approximately 2900 m. Four parallel multispectral colour DMCs 
were utilised to form composite images, and each of them had a resolution of 

3456×1920 pixels with a virtual pixel size of 12 m. The nominal focal length of 
the cameras was 12 mm. The digital CIR images consist of three bands: NIR 
(near-infrared) (675-850 nm), Red (590-675 nm) and Green (500-650 nm). 
Finally, all three digital CIR images were radiometrically corrected and 
orthorectified by using optimal camera calibration observations, transformation 
parameters and ground control points. The procedures were conducted in the 
program system OrthoBox (Orthovista, Orthomaster) from the Trimble/INPHO. 
The detailed information about spatial resolution, average flying altitude, flight 
time and sun position of three digital CIR orthophotos are shown in Table 3.1.  

Table 3.1 Detailed information of multi-temporal digital CIR orthophotos used in this 
study. 

Digital CIR 
orthophotos 

6 June 2015 23 June 2016 11 June 2017 

Spatial resolution 20 cm 20 cm 10 cm 

Average altitude 2909 m 2918 m 2879 m 

Flight time 09:50 – 12:05 09:50 – 12:15 10:30 – 13:25 

Sun position 44°– 57° 43°– 62° – 53° 49°– 64°– 35° 

3.2.3 Airborne LiDAR data 

An airborne LiDAR flight campaign was conducted out on 18 August 2016, using 
a Riegl LMS-Q680i scanner integrated in a full-waveform laser scanning system. 
The system operated at a wavelength of 1550 nm and was flown at approximately 
300 m above terrain elevation. The pulse repetition frequency was 400 kHz with 
a maximum scanning angle of ±15°. The average point density was about 70 
pts/m2. Four transects in the park were covered by 21 flight lines with 30% - 50% 
strip overlaps. The preparation of the LiDAR data was described in Chapter 2, 
section 2.2.2. 
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3.2.4 Individual tree delineation  

The automatic delineation of individual tree crowns was performed using an 
enhanced approach, which detects individual trees in multi-layered forests with 
an integrated 3D segmentation proposed by Yao et al. (2013). This method is 
based on 3D segmentation combining mean shifts with normalized cuts, which 
can exploit the advantages of full waveform data and detect supressed trees in the 
both middle and lower layers. Yao et al. (2013) achieved a detection rate of up to 
70% for trees in the upper layer and found that tree detection rates using this 
method improved by 10% to 25% for all three forest layers compared to that 
obtained by the method presented in Reitberger et al. (2009) and Yao et al. (2012).  

Field measured trees that were discernible both in the LiDAR segments and in 
the multi-temporal digital CIR orthophotos formed the potential reference trees 
for this study (Fig. 3.2). To link the field measured trees to both LiDAR and 
digital CIR orthophotos, we firstly overlaid the post-processed DGPS tree 
locations with tree crown segments and georeferenced digital CIR orthophotos; 
and secondly we identified the field measured trees which located within the 
crown segments and visible in digital CIR orthophotos. Finally, a visual 
verification was carried out with the assistance of the photos of the measured 
trees and the species of neighbouring trees recorded during the fieldwork. To 
reduce linking errors, trees undetected by the segmentation or assigned to more 
than one segment were removed from further analysis. In the end, 58 beech trees, 
40 birch trees, 60 fir trees, 55 maple trees and 57 spruce trees (270 sample trees 
in total) from two study sites were selected for further analysis.  
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Fig. 3.2 The digital CIR orthophotos of a sample area from 2015 (a), 2016 (b) and 2017 
(c). The 3D segmentation of tree crown is displayed with the background of the LiDAR-
derived canopy height model (d). 

3.2.5 Feature derivation  

3.2.5.1 Geometric and radiometric features from LiDAR data  

Once the sample trees were correctly linked to the 3D segments, the normalized 
point clouds within the segments were extracted to derive LiDAR metrics for 
each sample tree. The derived LiDAR metrics can be grouped into four categories: 
(1) height distribution (including maximum, mean, standard deviation, 
coefficient of variation, skewness, kurtosis, variance, 25th percentile and 95th 
percentile of the normalized height); (2) crown shape (including the ratio of 
crown base height to tree height, the ratio of crown volume to crown area, and 
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canopy relief ratio); (3) point distribution (including the percentage of first 
returns to all returns, the percentage of last returns to all returns, first returns 
above mean height, and all returns above 2m); and (4) intensity and echo width 
metrics (including the abovementioned statistical variables applied for height 
distribution, the mean value of the first-or-single returns, and the mean value of 
single returns). As a result, 40 LiDAR metrics were assigned to each sample tree. 
A detailed description of the generated LiDAR metrics can be found in Table 2.3.  

3.2.5.2 Texture features from multi-temporal digital CIR orthophotos 

The Grey Level Co-Occurrence Matrix (GLCM) is one of the best known texture 
analysis methods (Haralick et al. 1973). The texture features obtained by the 
GLCM method have been widely employed  in the remote sensing community 
for forest modelling (Kayitakire et al. 2006; Ozdemir et al. 2008; Pasher and King 
2010) and tree species classification (Kuzmin et al. 2016; Singh et al. 2015). 
Based on the crown polygons delineated by 3D segmentation, we used the GLCM 
to derive texture features of each sample tree. Texture features were calculated 
for each pixel within a tree crown,  based on a window size of 3 by 3 pixels (i.e. 
each pixel and its 8 neighbours). We used the following eight texture parameters: 
mean, homogeneity, contrast, dissimilarity, entropy, variance, angular second 
moment and correlation. After calculating the parameters for all the pixels within 
an individual tree crown, we used the mean value of each parameter to represent 
the texture features of each sample tree. All texture features were normalized for 
clarity. In total, 72 texture features, generated from the NIR, red and green bands 
from three years of digital CIR orthophotos, were assigned to each sample tree. 
The description of the texture features is shown in Table 3.2. The derivation of 
texture features was performed in the R language environment (http://www.r-
project.org/). 
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Table 3.2 Description of generated texture features. In formulas, 𝑖  and 𝑗 are row and 
column numbers, respectively. 𝑁 is the total number of pixels. 𝑢, 𝑢, 𝜎

ଶ, and 𝜎
ଶ are the 

means and standard deviations of 𝑃  and 𝑃 . 𝑃 ሺ𝑖, 𝑗ሻ  is the normalized co-occurrence 
matrix.  

GLCM texture features Formula Description 

MEAN  𝑖𝑃,

ேିଵ

,ୀ
 

The average gray level in the 
local window 

Homogeneity (HOM)   𝑖
𝑃

1  ሺ𝑖 െ 𝑗ሻଶ

ேିଵ

,ୀ
 

A measure of lack of variability 
or the amount of local of 
similarity in an image 

Contrast (CON)  𝑖𝑃ሺ𝑖 െ 𝑗ሻଶ
ேିଵ

,ୀ
 

A measure of the amount of local 
variation in pixels values among 
neighbouring pixels 

Dissimilarity (DIS)  𝑖𝑃,|𝑖 െ 𝑗|
ேିଵ

,ୀ
 

A measure of lack of similarity 
in an image 

Entropy (ENT)  𝑖𝑃,ሺെ ln 𝑃,ሻ
ேିଵ

,ୀ
 

A measure of the degree of 
disorder in an image 

Variance (VAR)  𝑃ሺ𝑖 െ 𝑢ሻଶ
ேିଵ

,ୀ
 

A measure of the degree of 
variation in an image 

Angular second 
moment (ASM) 

 𝑖𝑃,
ଶ

ேିଵ

,ୀ
 

A measure of textural uniformity 
or pixel pair repetitions 

Correlation (COR)  𝑃,ሺ
ሺ𝑖 െ 𝑢ሻሺ𝑗 െ 𝑢ሻ

𝜎𝜎
ሻ

ேିଵ

,ୀ
 

A measure of gray level linear 
dependencies in an image 

3.2.6 Feature selection and tree species classification 

Many of the second-order texture measures proposed by Haralick et al. (1973) 
have been found to be highly correlated (Clausi 2002). The selection of the most 
relevant texture features should be therefore implemented before classification 
(Rodriguez-Galiano et al. 2012). As such, we examined the correlation 
coefficient, and its significance, between each pair of  texture features. The test 
of the significance of the correlation coefficient was performed to assess whether 
the linear relationship between the input features was strong enough to consider 
elimination. We ranked the texture features by the frequency of low correlation 
(|r| < 0.70) and high insignificance (p > 0.05) with other features, and the top 10 
texture features of each year were used for further analysis, along with selected 
LiDAR metrics. The selection of LiDAR metrics was based on Chapter 2.  

The Random Forest algorithm was used for feature selection and classification 
(see chapter 2, section 2.2.6 for a detailed description). In total, 22 variables were 
selected for tree species classification, including 12 LiDAR metrics and 10 
texture features derived from the multi-temporal digital CIR orthophotos. Two 
tuning parameters are required in the Random Forest classifier: the number of 
trees “Ntree” and the number of predictors sampled for splitting at each node 
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“Mtry”. To obtain the optimal combination of the parameters for best 
classification performance, we tested Random Forest models by varying “Ntree” 
from 1 to 500 and “Mtry” from 1 to 30. The resulting models were evaluated 
using the kappa index (Cohen 1960). The model with the highest kappa 
coefficient was chosen as the best model.  

Accuracy of the models were assessed using overall accuracy, producer’s and 
user’s accuracy, and the kappa coefficient. We also employed McNemar’s test 
(McNemar 1947) to determine if statistical significant differences occur among 
classifications using different datasets. The feature selection and classification 
procedures were carried out using the R package “randomForest” (Liaw and 
Wiener 2002). 

3.3 Results 

3.3.1 Correlation and feature selection 

High correlations (|r| > 0.7) were observed between the texture features of the 
NIR, red and green bands generated from the digital CIR orthophotos of the same 
year (Fig. 3.3a). The average gray level (MEAN) showed the lowest correlations 
with other texture features between the three years. When comparing the texture 
features between different years, the angular second moment (ASM), 
homogeneity (HOM) and entropy (ENT) features all showed high correlations 
with each other. When comparing the texture features from the same year, high 
correlation occurred between the angular second moment (ASM), homogeneity 
(HOM), contrast (CON) and variance (VAR) features.  

Fig. 3.3b shows the correlation and significance between texture features from 
2015. The features were ranked by the frequency of low correlation (|r| < 0.70) 
and high insignificance (p > 0.05) with other features. As a result, the top 10 
features were selected from 2015: DIS_NIR, VAR_NIR, VAR_G, CON_NIR, 
ASM_NIR, ASM_R, ASM_G, MEAN_NIR, MEAN_R, and MEAN_G (See 
Table 3.2 for the definitions of the texture features. R, G, and NIR represent the 
texture features that were derived from the red, green and near-infrared bands, 
respectively). Similarly, the 10 top-ranked texture features were selected from the 
years 2016 and 2017. 

Table 3.3 lists the selected variables derived from airborne LiDAR and multi-
temporal digital CIR orthophotos for the classification. 9 out of 12 selected 
LiDAR metrics were radiometric metrics (intensity and echo width related 
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metrics). Among 10 selected texture features, 7 were generated from NIR bands. 
The average gray level (MEAN) and the dissimilarity (DIS) were the most 
frequently selected texture features.  

 
                            (a) 

                    
                         (b) 

Fig. 3.3 The cross-correlation matrix of the texture features derived from multi-temporal 
digital CIR orthophotos (a) and the combined correlogram with the significance test of 
2015 (b). Blue colours indicate positive correlations and red colours indicate negative 
correlations. The insignificant values (p > 0.05) were marked with black crosses. The 
features were sorted by hierarchical clustering order (black rectangles). 



Improving LiDAR-based tree species mapping using multi-temporal CIR orthophotos 

44 

Table 3.3 Selected variables derived from LiDAR and digital CIR orthophotos for 
classification 

Input variables Index or description 

LiDAR metrics (12) 

Imean_first The mean intensity of first-or-only returns 

Ip75 The 75th percentile of intensity 

Height  The height of tree 

Ewmean_first The mean echo width of first-or-single returns 

EWmean The mean value of echo width 

Icv The coefficient variation of intensity 

Ewmean_single The mean echo width of single returns 

Imean_single The mean intensity of single returns 

Imean The mean intensity 

Ivar The variation of intensity 

Hvar The variation of height 

Hsd The standard deviation of height 

Texture features (10) 

2015_MEAN_NIR The average gray level of NIR band from 2015 

2016_MEAN_NIR The average gray level of NIR band from 2016 

2017_DIS_NIR The dissimilarity of NIR band from 2017 

2015_MEAN_G The average gray level of green band from 2015 

2015_DIS_NIR The dissimilarity of NIR band from 2015 

2017_MEAN_NIR The average gray level of NIR band from 2017 

2016_DIS_R The dissimilarity of red band from 2016 

2015_ASM_NIR The angular second moment of NIR band from 2015 

2016_DIS_G The dissimilarity of green band from 2016 

2017_VAR_NIR The variance of NIR band from 2017 

3.3.2 Classification performance from different combinations of 
datasets 

Table 3.4 shows the confusion matrices and corresponding producer's and user's 
accuracies, the overall accuracy and kappa coefficient for classification results 
using different feature combinations. The best classification accuracy was 
achieved with a model containing both LiDAR metrics and texture variables from 
three years of digital CIR orthophotos: overall accuracy of 77.4% with a 0.68 
kappa coefficient. The classifications using only LiDAR and only CIR texture 
features yielded similar results, with overall accuracies of 69.3% and 66.7%, 
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respectively. Birch trees had the highest user’s accuracy in each of the models. 
The lowest user’s and producer’s accuracies occurred for the fir and maple trees 
using only multi-temporal texture features. The highest misclassifications were 
found between the pairs of beech and maple, and fir and spruce. 

Table 3.5 shows the significance levels between classification results generated 
from different combinations, based on p values in the McNemar’s test. 
Combining LiDAR and texture features from three years of digital CIR 
orthophotos significantly improved the accuracy compared to using LiDAR and 
digital CIR orthophotos alone. However, the combination of one or two years of 
digital CIR orthophotos with LiDAR data did not yield statistically significant 
improvements compared to using LiDAR data alone. Moreover, there was no 
statistically significant difference between the classification performance of 
using only LiDAR or digital CIR orthophotos.  
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Table 3.5 McNemar’s test for pairwise comparison between classification results using 
different combinations. CIR (3) means all three years of digital CIR orthophotos; CIR 
(2) means any two years of digital CIR orthophotos;  CIR (1) means any one year of 
digital CIR orthophoto. ***: p < 0.001; **: p < 0.01; *: p < 0.05 ; NS: p > 0.05. 

  
LiDAR+  
CIR (3) 

LiDAR+  
CIR (2) 

LiDAR+  
CIR (1) 

LiDAR  CIR 
(3) 

LiDAR+ 
CIR (3) 

- ** *** *** *** 

LiDAR+ 
CIR (2) 

 - NS NS * 

LiDAR+ 
CIR (1) 

  - NS NS 

LiDAR     - NS 

CIR (3)  - 

3.3.3 The contribution of selected features for tree species 
discrimination 

Fig. 3.4 shows the relative importance of the selected variables for the 
classification based on the MDA index. In the combined model (LiDAR metrics 
and texture features), the three most important variables were LiDAR metrics 
(Imean_first, Ip75 and Height), followed by the average gray level of the NIR 
bands from 2015 and 2016. Specifically, the top-ranked LiDAR metric was the 
mean intensity of first-or-single returns (Imean_first) and the top-ranked texture 
feature was the average gray level of the NIR band from 2015 
(2015_MEAN_NIR). The average gray level and the dissimilarity of NIR bands 
were found to be more important than other texture features (e.g. contract, 
variance and the angular second moment).  

Table 3.6 shows five top-ranked features which contributed most to the 
discrimination of one tree species from the others in the classification. The texture 
features derived from the NIR bands of the multi-temporal digital CIR 
orthophotos contributed most to the discrimination of beech and spruce from the 
other species. On the contrary, birch and maple were most distinguishable by 
using LiDAR metrics – echo width and height related metrics contributed most 
for the classification of birch, while intensity related metrics were more important 
for the identification of maple. 
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Fig. 3.5 shows the inter-species comparison of different variables derived from 
multi-temporal digital CIR orthophotos and LiDAR data. The average gray level 
and the dissimilarity of NIR bands (MEAN_NIR and DIS_NIR) from different 
years have similar patterns, however, the differences between species vary 
between years. For example, the difference of the average gray level of the NIR 
band (MEAN_NIR) between beech and birch was more pronounced in 2015 (first 
row in Fig. 3.5), while the difference in the dissimilarity of the NIR band 
(DIS_NIR) became more distinguishable between maple and spruce in 2016 
(second row in Fig. 3.5). Out of the most important LiDAR metrics (e.g. 
Imean_first, Ewmean and Height), the mean intensity of first-or-single returns 
(Imean_first) distinguished beech and maple from other species. In contrast, the 
mean value of echo width (Ewmean) was the most important feature for the 
discrimination of birch (Table 3.6). 

 
Fig. 3.4 The relative importance of the selected variables for tree species classification.  
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Table 3.6 Top five most important variables for discriminating each tree species in the 
classification. See Table 3.3 for the definitions of the metrics. 
 Beech Birch Fir Maple Spruce 

1 2015_MEAN_NIR Ewmean Imean_first Ip75 2016_MEAN_NIR 

2 2016_MEAN_NIR Ewmean_first Ip75 Imean_first 2015_DIS_NIR 

3 2015_MEAN_G Height Imean_single Icv 2017_DIS_NIR 

4 2017_DIS_NIR Hvar Height Imean Ewmean_single 

5 Imean_first Hsd 2015_MEAN_NIR Ivar Height 

 

 

 

 
Fig. 3.5 Interspecies comparison of different variables derived from multi-temporal 
digital CIR orthophotos and LiDAR data. The first row is the average gray level of the 
NIR band (MEAN_NIR) from 2015, 2016 and 2017 digital CIR orthophotos; the second 
row is the dissimilarity of the NIR band (DIS_NIR) from 2015, 2016 and 2017 digital 
CIR orthophotos; and the last row is the mean intensity of first-or-only returns 
(Imean_first), the mean value of echo width (Ewmean), and the tree height (Height) 
derived from airborne LiDAR data. 
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3.4 Discussion  
In this study, we explored the potential of using texture features derived from 
multi-temporal digital CIR orthophotos to improve LiDAR-based individual tree 
species classification in a temperate mixed forest in Germany. Our study found 
that adding texture features from multi-temporal digital CIR orthophotos to 
LiDAR-based tree species classification significantly increased classification 
accuracy. In particular, the average gray level and the dissimilarity of the NIR 
band within a tree crown, derived from multi-temporal digital CIR orthophotos, 
were found to provide valuable information for discriminating tree species. 
However, we did not find significant improvements between the results of using 
only one or two years of digital CIR orthophotos with LiDAR data and that of 
using LiDAR data alone. This finding aligns with Korpela et al (2014), who used 
a single year of aerial photography and concluded that interspecies differences in 
directional reflectance anisotropy do not constitute a significant improvement to 
tree species classification. However, our results showed that the texture features 
derived over three years from digital CIR orthophotos resulted in a significant 
improvement to the classification performance compared with only using LiDAR 
data. The texture features derived from the same year are more likely to be highly 
correlated than those from different years, which may partly explain why adding 
one year or two years of digital CIR orthophotos did not yield significant 
improvements. The spectral variance within species hampered the ability of using 
only digital CIR orthophotos for species identification, which highlights the 
benefits of fusing multiple sources of data.  

While digital aerial photographs have been used as complementary data sources 
for LiDAR-based individual tree species mapping, they have been mainly used 
to visually identify tree tops, tree crowns and tree types (conifers or deciduous 
trees) (e.g. Korpela 2006; Koukoulas and Blackburn 2005; Persson et al. 2004). 
In our study, the tree crowns were delineated from high density airborne LiDAR 
data using a 3D segmentation algorithm. In comparison to manual delineation of 
tree crown from digital aerial photographs, which usually eliminates the shaded 
parts (e.g. Heinzel et al. 2008; Persson et al. 2004), LiDAR-based tree crown 
delineation provides an opportunity to automatically generate more complete tree 
crowns, without the influence of shadow effects. This allows species-specific 
information to be captured by the texture patterns within a tree crown, especially 
the texture features derived from multi-temporal digital aerial photographs with 
different illumination geometry. Although multi-temporal digital aerial 
photographs are not always able to capture seasonal changes, the variation of 
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brightness patterns under different view-illumination conditions still provides 
valuable information for individual tree species classification. Our study 
demonstrates the potential of improving tree species mapping with the assistance 
of archived digital aerial photographs, which are widely available in many 
countries. It should be noted that our study was conducted in a temperate mixed 
forest in Central Europe with relatively low variability regarding forest type and 
tree species. Therefore, the potential capability of multi-temporal digital aerial 
photographs for LiDAR-based individual tree species classification in other 
forest ecosystems or species-rich habitats requires further investigation. 

Our results highlighted the importance of texture features derived from the NIR 
band of digital aerial photographs in discriminating between tree species. The 
average gray level of the NIR band was found to be less correlated with other 
texture features and contributed more to the classification. This is most likely due 
to its sensitivity to illumination variation and foliage. Similar results were 
reported by Coops et al (2004), who found a greater discrimination between 
canopy and understory vegetation in the NIR band than the green band. In our 
study, beech and spruce showed distinct differences in the NIR band, and in fact 
the texture features of the NIR band contributed more than LiDAR metrics to the 
discrimination of beech and spruce from other species (Table 3.6). The 
dissimilarity of the NIR band was another texture feature that was identified as 
relatively important in tree species classification. In agreement with our previous 
study (Shi et al. 2018a), radiometric LiDAR metrics (intensity and echo width 

related metrics) played an important role in the tree species classification  by 
well representing the structural and morphological characteristics of the tree 
crown. Our results demonstrated that LiDAR metrics were more capable than 
texture features in distinguishing tree species. For example, using the mean value 
of echo width (Ewmean), we were able to distinguish birch from other four 
species.  

Digital aerial photographs have several advantages over hyperspectral and 
LiDAR data, including lower deployment and data collection costs, easier access 
to a variety of platforms, and the opportunity for forest managers to capture and 
process data over a long time span. As reported by Key et al. (2001), phenological 
information such as spring leaf-out, leaf maturity, and autumn senescence 
captured by multi-temporal digital aerial photographs are important indicators in 
the spectral separation of individual tree species. Digital aerial photographs taken 
in the spring, shortly after the flushing of leaves, or in autumn, after the trees have 
senesced (Holmgren et al. 2008), would be able to provide more species-specific 
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information for species identification. We note that system differences and 
misregistration between images may hamper the utility of multi-temporal datasets, 
especially those from different platforms and sensors. Furthermore, the spectral 
bands available in most commercial sensors are located in the blue, green, red 
and near-infrared parts of the spectrum, which only describe the differences 
between the tree species across limited wavelengths. As discussed by Heikkinen 
et al. (2010), tree species classification based on multispectral images could be 
improved by including the red edge region of the spectrum, which is more unique 
to tree species, age and health (Cho and Skidmore 2006). Future decisions 
regarding the use of multispectral sensors for mapping tree species at the 
individual tree level should be made with consideration of the trade-offs between 
spatial resolution, spectral resolution, flight season and revisit cycle.  

3.5 Conclusions 
To our knowledge, this is the first study that investigates how archived multi-
temporal digital aerial colour-infrared photographs can be used to improve 
LiDAR-based individual tree species mapping. Our results show that the texture 
features generated from multi-temporal digital CIR orthophotos under different 
view-illumination conditions are species-specific. Combining these texture 
features with LiDAR metrics was shown to significantly improve the individual 
tree species mapping accuracy in a temperate mixed forest in eastern Germany. 
Specifically, the average gray-level and the dissimilarity of the NIR band 
contributed most (among texture features) to the classification. Our results 
demonstrate that the fusion of multi-temporal digital aerial photographs with 
airborne LiDAR data can accurately classify individual tree species in Central 
European mixed forests. 

The main restriction of digital aerial photographs for discriminating individual 
tree species is the imagery can only portray the differences between tree species 
across limited wavelengths. Hyperspectral imagery, on the contrary, provides 
hundreds of available wavebands for reflecting the species-specific traits. The 
next chapter combines hyperspectral and LiDAR data for species-specific traits 
retrieving and tree species classification. 
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Chapter 4  

Tree species classification using remotely 
sensed plant functional traits *  

                                                      
* This chapter is based on: Shi, Y., Skidmore, A.K., Wang, T., Holzwarth, S., Heiden, U., 
Pinnel, N., Zhu, X., & Heurich, M. (2018). Tree species classification using plant 
functional traits from LiDAR and hyperspectral data. International Journal of Applied 
Earth Observation and Geoinformation, 73, 207-219 
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Abstract 
Plant functional traits have been extensively used to describe, rank and 
discriminate species according to their variability between species in classical 
plant taxonomy. However, the utility of plant functional traits for tree species 
classification from remote sensing data in natural forests has not been clearly 
established. In this study, we integrated three selected plant functional traits (i.e. 
equivalent water thickness (Cw), leaf mass per area (Cm) and leaf chlorophyll 
(Cab)) retrieved from hyperspectral data with hyperspectral derived spectral 
features and airborne LiDAR derived metrics for mapping five tree species in a 
natural forest in Germany. Our results showed that when plant functional traits 
were combined with spectral features and LiDAR metrics, an overall accuracy of 
83.7% was obtained, which was statistically significantly higher than using 
LiDAR (65.1%) or hyperspectral (69.3%) data alone. The results of our study 
demonstrate that plant functional traits retrieved from hyperspectral data using 
radiative transfer models can be used in conjunction with hyperspectral features 
and LiDAR metrics to further improve individual tree species classification in a 
mixed temperate forest.  
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4.1 Introduction 
Tree species information serves as fundamental data for sustainable forest 
management (Dalponte et al. 2012; Heinzel and Koch 2012; Kirby and Potvin 
2007), ecosystem services assessment (Jones et al. 2010), as well as biodiversity 
monitoring (Shang and Chazette 2014; Skidmore et al. 2015). Accurately 
identifying individual tree species is of significance for scientific research and 
management purposes. Thus, effective and efficient techniques for characterizing 
and classifying tree species are widely demanded (Lin and Hyyppä 2016).  

Compared with conventional field tree species investigation approaches, remote 
sensing offers a practical and economical means for mapping tree species, 
especially for large scales (Heinzel and Koch 2012). Multiple types of remotely 
sensed data, including very high resolution aerial photography (spatial resolution 
< 50 cm), airborne multispectral, hyperspectral and Light Detection and Ranging 
(LiDAR) data, have been widely used for tree species classifications at the 
individual tree level (reviewed by Fassnacht et al. (2016)). Combining airborne 
LiDAR and hyperspectral datasets, as a state-of-the-art remote sensing 
technology, provides both horizontal and vertical information about tree species 
and has shown great potential in improving tree species discrimination (Zhang et 
al. 2016).  

The spectral bands reflectance of hyperspectral data, selected using feature 
reduction methods, have been commonly used in tree species classification 
(Richter et al. 2016). Spectral vegetation indices, similarly, based on information 
from a few significant spectral wavelengths, have been employed to measure a 
range of plant attributes (Liu et al. 2017), such as pigment content in the visible 
400-700 nm range (Fassnacht et al. 2015), and  water content in near infrared 
700-1100 nm range (Liu et al. 2017; Zhang et al. 2015). However, high spectral 
intraspecies variability, that can exceed the interspecies variability (Debba et al. 
2009) due to phenological effects and differences in tree age and health, openness 
of canopies, shadowing effects, and environment variability (Clark et al. 2005; 
Waser et al. 2010), restricts tree species separability (Richter et al. 2016).  

Airborne LiDAR data represent one of the most accurate methods for measuring 
structural attributes of trees. LiDAR is a favoured data source for individual tree 
delineation (Heinzel and Koch 2012; Heurich 2008; Jakubowski et al. 2013; Kim 
2007; Vauhkonen et al. 2014), while also providing valuable geometric and 
radiometric information for tree species discrimination. While the geometric 
information from LiDAR represents the architecture of crowns, branching, and 
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foliage (Coops et al. 2007; Riaño et al. 2004), the radiometric information from 
the backscattered signal is additionally connected to foliage type (Suratno et al. 
2009), leaf size, orientation, and foliage density (Korpela et al. 2010). Suites of 
those properties extracted from LiDAR point cloud at the individual tree level 
offer complementary information to the spectral features garnered from 
hyperspectral data (Alonzo et al. 2014). Increasingly, airborne LiDAR and 
hyperspectral data have been combined at the pixel or feature level for tree 
species classification and higher mapping accuracies (compared to using either 
dataset alone) were reported (e.g. Asner et al. 2008; Dalponte et al. 2008, 2012; 
Ghosh et al. 2014; Liu et al. 2017; Sommer et al. 2016). However, most of these 
studies focused on data-driven or algorithm-driven approaches and pursued an 
optimization of classification accuracy (Fassnacht et al. 2016; Shi et al. 2018b). 
An in-depth bioecological understanding of the relationship between plant traits 
and remote sensing observations for tree species classification has not been 
performed. 

From an ecological or biological perspective, classification of individual tree 
species requires species-specific features, which can be morphological (e.g. tree 
height, tree branching pattern), physiological (e.g. photosynthesis rate), 
biochemical (e.g. leaf chlorophyll, leaf water content) or phenological (e.g. leaf 
phenology, flowering time) features. Tree species mapping with remote sensing 
should be linked to an understanding that tree species have unique structural 
profiles and spectral signatures as well as genetic characteristic properties (Asner 
et al. 2009; Cho et al. 2010; Clark et al. 2005). One way to reconcile the 
dissimilarity between tree species is by collecting information on their functional 
traits (Lefcheck et al. 2015). For instance, effective water thickness represents 
approximately 66% of leaf fresh mass averaged over a large number of leaf types 
(Jacquemoud et al. 1996). Leaf mass per area is mainly composed of cellulose, 
lignin, protein, starch and minerals which related to strategies for assimilation, 
respiration and evapotranspiration, hence relevant for modelling carbon cycle, 
identification of functional types, seasonality or leaf turnover rate (Kokaly et al. 
2009). 

During the past few decades, the capabilities of remote sensing to determine plant 
functional traits have been established, primarily due to improvements in 400-
2500 nm imaging spectrometers (Asner and Martin 2009; Martin et al. 2018; 
Milton et al. 2009; Townsend et al. 2003). The spectral separability of species 
depends, in large part, on the chemical attributes of the leaves, which have already 
proven to be taxonomically organized (Asner and Martin 2011; Féret and Asner 
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2011). Previous studies have indicated that tree species vary markedly in leaf 
water content (Huber et al. 2008), leaf mass per area (Casas et al. 2014), nitrogen 
and carbon concentration (Huber et al. 2008; Wang et al. 2016). Based on the 
data collected in a highly diverse tropical forest, Asner and Martin (2009) found 
that spectral signatures linked to seven leaf functional traits (chlorophyll a, 
chlorophyll b, carotenoids, nitrogen, phosphorus, water content, and specific leaf 
area) are unique for 41 species. Afterwards, Asner and Martin (2011) well 
discriminated more than 300 Amazon rainforest canopy species by using 11 plant 
functional traits derived from leaf spectra. These findings showed that there might 
be potential to develop a phylogeny to estimate plant functional traits, thereby 
allowing for the improved discrimination of tree species. However, most studies 
focus on effectively quantifying plant functional traits composition (Clevers et al. 
2010; Huber et al. 2008; Kokaly et al. 2009), evaluating approaches for 
estimating plant functional traits (Ali et al. 2016b; Sehgal et al. 2016; Zhao et al. 
2013), or linking related spectra bands and indices to specific plant functional 
traits (Carter and Knapp 2001; Feilhauer et al. 2015). Very few studies used 
retrieved plant functional traits in the context of individual tree species 
classification (Féret and Asner 2011). Although some studies have successfully 
retrieved plant functional traits in natural forests using physical or empirical 
approaches (e.g. Ali et al. 2016a; Ali et al. 2016b; Essery et al. 2008; Kötz et al. 
2004; Wang et al. 2015), the role of plant functional traits retrieved from 
hyperspectral data for tree species classification still remains underexplored. 

Here, the main objective is to evaluate the capacity of combining plant functional 
traits retrieved from radiative transfer models (RTMs) with airborne LiDAR-
derived metrics and spectral features generated from hyperspectral data for 
mapping five tree species in a natural forest in Germany. Specifically, we aim to: 
(1) generate geometric and radiometric metrics from airborne LiDAR data as well 
as spectral features from hyperspectral data, (2) retrieve three plant functional 
traits from airborne hyperspectral data using the INFORM model, (3) combine 
plant functional traits, spectral features and LiDAR metrics for tree species 
classification, and (4) evaluate the capability of plant functional traits for 
discriminating individual tree species. 
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4.2 Materials and Methods 

4.2.1 Study area 

The study area is located in the Bavarian Forest National Park (49°3′19″ N, 
13°12′9″ E), a mixed temperate forest situated in the south-eastern part of 
Germany (Fig. 4.1) (Shi et al. 2018b). The park covers a total area of 24218 
hectares with an elevation varying from 600 m to 1452 m. The climate of the 
region is temperate, with a total annual precipitation between 1200 mm and 1800 
mm and an average annual temperature between 3°C and 6°C. The dominant tree 
species include Norway spruce (Picea abies), European beech (Fagus sylvatica), 
and silver fir (Abies alba). Rare species such as sycamore maple (Acer 
pseudoplatanus), white birch (Betula pendula), common rowan (Sorbus 
aucuparia), European aspen (Populus tremula), and European ash (Fraxinus 
excelsior) are also found in the mixed forests (Heurich and Neufanger 2005).  

Two species-rich sites (approximately 25 hectares for each site) were identified 
as study areas of interests in this study (Fig. 4.1). The elevation of two study sites 
is 675 – 732 m and 845 – 906 m with a slope of 9.12 ± 5° and 8.76 ± 3°, for site 
A and site B, respectively. According to the land cover and land use data provided 
by Department of Conservation and Research, Bavarian Forest National Park, 
Site A is dominated by mature coniferous and mixed stands with partly mature 
and medium deciduous stands. Site B mainly consists of mature deciduous and 
mixed stands. 
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Fig. 4.1 Airborne LiDAR and HySpex data collections and the location of the two study 
sites in the Bavarian Forest National Park.  

4.2.2 Data acquisition and pre-processing 

4.2.2.1 LiDAR data  

The airborne LiDAR data were acquired on 18 August 2016 using the Riegl LMS-
Q680i scanner operating at a wavelength of 1550 nm. The mean flight speed was 
50 ms-1  with a pulse repetition frequency of 400 kHz. The flying altitude was 
approximately 300 m above ground with a scan angle around ±15° (see Chapter 
3, section 3.2.3 for a detailed description).  
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4.2.2.2 Hyperspectral data 

The hyperspectral data were obtained with the HySpex sensor developed by the 
Norwegian Norsk Elektro Optikk (NEO) company. The HySpex sensor consists 
of two imaging spectrometers covering spectral ranges of 400-992 nm (VNIR) 
and 968-2498 nm (SWIR). The HySpex sensor comprises 160 and 256 spectral 
channels with spectral resolution of 3.6 nm and 6 nm, and spatial resolution of 
1m and 2 m, for VNIR and SWIR, respectively. 

The HySpex instrument was flown over four transects in the park (Fig. 4.1) on 
25 August 2016 on board the Cessna 208B Grand Caravan at an average altitude 
of 3010 m above sea level (Köhler 2016). The HySpex data were supplied by the 
DLR (German Aerospace Centre) team after atmospheric correction performed 
with the ATCOR4 model, orthorectified and georeferenced using standard 
aircraft in-flight information such as attitude and flight path data in combination 
with a digital terrain model (Müller et al. 2005; Richter and Schläpfer 2002; 
Schwind et al. 2014). Savitzky-Golay filter was applied (5 by 5 window size) to 
correct for random and systematic noise (Schläpfer and Richter 2011). The 
number of bands was reduced to 290, as bands affected by strong noise or 
atmospheric effects (water vapour absorption) were eliminated. In detail, the 
following bands were removed: 887-1000 nm, 1093-1189 nm, 1303-1489 nm and 
1777-2022 nm. Finally, the hyperspectral data were registered to LiDAR data 
based on about 40 ground control points for each study site using polynomial 
warp method (2 degree) and nearest neighbour resampling method in the ENVI 
software (version 5.2). The overall accuracy of geometric correction was higher 
than 0.25 m. 

4.2.2.3 Tree species and plant functional traits measurement 

Fieldwork was carried out in July 2017, including (1) the measurement of the 
spatial location of individual trees and species identification, (2) the collection of 
leaf samples from recorded trees, and (3) the measurement of leaf parameters in 
a local laboratory. We collected the spatial location of individual trees using a 
Leica Viva GS10 Plus differential GPS (Leica Geosystems AG, Switzerland). 
After post-processing the raw GPS data, differentially corrected coordinates were 
obtained with an accuracy higher than 0.50 m. In total, 115 locations of trees at 
site A and 107 locations of trees at site B were collected, including 57 beech trees, 
38 birch trees, 41 fir trees, 40 maple trees and 46 spruce trees. Once the location 
of a tree recorded, mature top-of-canopy leaf samples were collected from at least 
two sunlit branches within each tree crown, using a crossbow or an extended pole 
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pruner when necessary to ensure proper collection. Once acquired, each sample 
was immediately placed in a zip-locked plastic bag together with wet pulp paper 
and stored in a portable cooler with frozen icepacks until being transported to the 
local laboratory for processing within 4-6 h of the initial collection.  

We followed the protocol for standardized measurement of plant functional traits 
by Cornelissen et al. (2003). The fresh weight of each sample was determined by 
using a digital scale of high precision. Leaf area of the samples was measured 
using AM350 Portable Leaf Area Meter. Specifically, Norway spruce needles are 
cylindrical and therefore their total surface was first computed as a projected area 
multiplied by a universal conversion factor of 2.57 derived experimentally 
(Waring 1983). Then, the total needle surface area was divided by two to acquire 
the hemispherical-surface projection of sampled spruce needles (Ali et al. 2017). 
Leaf chlorophyll (Cab) was measured by CCM-300 Chlorophyll Content Meter. 
Finally, scanned leaves were oven dried at 65°C for 72 h and then equivalent 
water thickness (Cw) and leaf mass per area (Cm) were computed based on fresh 
and oven-dried leaf mass and leaf areas. The summary statistics of three plant 
functional traits measured in the laboratory are presented in Table 4.1. 

Table 4.1 Summary of the sample trees and three plant functional traits measured in site 
A and site B: equivalent water thickness (Cw), leaf mass per area (Cm), leaf chlorophyll 
(Cab). 

Tree 
species 

Sample 
size 

Cw (cm) Cm (g cm-²) Cab (μg cm-²) 
Mean 
(sd) 

Min Max Mean  
(sd) 

Min Max Mean 
(sd) 

Min Max 

Beech 57 0.0067 
(0.0013) 

0.0044 0.0107 0.0059 
(0.0017) 

0.0027 0.0112 41.4 
(4.2) 

31.5 49.8 

Birch 38 0.0098 
(0.0010) 

0.0081 0.0133 0.0061 
(0.0013) 

0.0041 0.0097 38.6 
(4.5) 

30.0 50.4 

Fir 41 0.0166 
(0.0012) 

0.0139 0.0209 0.0141 
(0.0018) 

0.0115 0.0177 56.3 
(11.0) 

38.1 74.5 

Maple 40 0.0095 
(0.0012) 

0.0071 0.0120 0.0060 
(0.0013) 

0.0033 0.0086 43.3 
(5.3) 

25.7 51.6 

Spruce 46 0.0140 
(0.0024) 

0.0106 0.0206 0.0103 
(0.0017) 

0.0074 0.0157 34.0 
(6.4) 

22.2 46.4 

4.2.2.4 Individual tree segmentation 

We used an adapted 3D segmentation algorithm proposed by Yao et al. (2013) to 
automatically extract individual trees from airborne LiDAR data (see chapter 2, 
section 2.2.3 for a detailed description). We linked the sample trees to the correct 
LiDAR segmentation results with the assistance of a very high resolution aerial 
photograph (0.25 m spatial resolution) using the procedures we proposed in 
Chapter 2. As a result, 215 sample trees (including 55 beech trees, 37 birch trees, 
40 fir trees, 38 maple trees and 45 spruce trees) from site A and site B were 
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selected for further analysis. The cloud points within each correct segments were 
extracted and assigned to the corresponding sample trees for the derivation of 
LiDAR metrics.  

4.2.3 Feature derivation 

4.2.3.1 LiDAR metrics derivation 

Based on the LiDAR metrics derivation from Chapter 2, forty commonly used 
LiDAR metrics were extracted from each tree segment and classified into two 
categories: geometric metrics (e.g. tree height, crown shape and crown volume) 
and radiometric metrics (e.g. intensity and echo width). Statistical parameters (i.e. 
maximum, mean, standard deviation, coefficient variation, skewness, kurtosis, 
variance, 25th percentile and 90th percentile) of the height, intensity and echo 
width values of the laser points within a tree crown were calculated respectively. 
Point distribution metrics (i.e. the percentage of first return to all returns, the 
percentage of last returns to all returns, first returns above mean height, and all 
returns above 2m) and crown shape metrics (i.e. the ratio of crown base height to 
tree height, the ratio of crown volume to crown area, and canopy relief ratio) were 
employed. Additionally, the value of height, intensity and echo width with respect 
to two different echo categories: “first-or-single returns” and “single returns” 
were also generated from each segment (Hovi et al. 2016; Ørka et al. 2010; Shi 
et al. 2018b). Height related LiDAR metrics were normalized by tree height to 
eliminate scale dependency. The derivation of LiDAR metrics was conducted in 
R language environment (http://www.r-project.org/). 

4.2.3.2 Spectral features derivation 

Due to issues such as shadowing as well as errors in individual tree crown 
delineation, it has often been advantageous to use only sunlit pixels for plant 
functional traits retrieval (Ali et al. 2017; Martin et al. 2018) as well as for tree 
species classification (Clark et al. 2005; Dalponte et al. 2013; Ghosh et al. 2014; 
Immitzer et al. 2012; Richter et al. 2016). For hyperspectral data, we therefore 
manually selected the sunlit pixels within each tree crown and only the spectral 
information of selected pixels was considered for further analysis. For each tree 
crown, we first overlaid the tree top derived from LiDAR data with the 
hyperspectral image, then based on the size of the tree crown we chose 1-4 sunlit 
pixels centred by the tree top to represent the tree (Fig. 4.2). The selected pixels 
within each crown were assigned to the sample tree and were further used for 
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extracting spectral features as well as for retrieving plant functional traits (Asner 
2007).  

The mean value of spectral reflectance of each waveband (B1, B2, …, B290) and 
the first derivation of each waveband (D1, D2, …, D290) were calculated from 
selected pixels within each crown. We computed 27 vegetation indices from the 
VNIR and SWIR regions of the spectrum based on previous research (Table 4.2). 

 
Fig. 4.2 3D individual tree segmentation using the approach of Yao et al. (2013) on (a) 
CHM with tree crown and tree top derived from LiDAR data, and (b) HySpex data with 
tree top derived from LiDAR data. 
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Table 4.2 Description of generated hyperspectral features 
Variables Index or description Formula Reference 
Band reflectance 

 

B1-B290 Band reflectance from 415.7-2496.5 
nm 

First derivation    
D1-D290 First derivation of band reflectance    
Vegetation indices 

 

ACI2 Anthocyanin Content Index  ACI2=ρ650/ρ550 (Gamon and Surfus 1999) 
Carter5 Ratio vegetation stress index Carter5=ρ695/ρ670 (Carter 1994) 
CI Chlorophyll Index  CI=ρ675*ρ690/ρ683ଶ (Zarco-Tejada et al. 

2000) 
CI2 Chlorophyll Index CI2=ρ760/ρ700-1 (Gitelson et al. 2003a) 
CRI2 Chlorophyll Reciprocal Index CRI2=1/ρ515-1/ρ770 (Gitelson et al. 2003a) 
Datt Chlorophyll content index Datt=(ρ850−ρ710)/(ρ850-ρ680) (Datt 1999) 
DWSI1 Disease-Water Stress Index DWSI1=ρ800/ρ1660 (Apan et al. 2004) 
DWSI2 Disease-Water Stress Index DWSI2=ρ1660/ρ550 (Apan et al. 2004) 
DWSI5 Disease-Water Stress Index DWSI5=(ρ800+ρ550)/(ρ1660+ρ680) (Apan et al. 2004) 
Green_NDVI NDVI in the green and red edge 

regions 
Green_NDVI=(ρ800-
ρ550)/(ρ800+ρ550) 

(Gitelson et al. 2003b) 

LWVI-1 Leaf Water Vegetation Index LWVI-1=(ρ1094-ρ983)/(ρ1094+ρ983) (Galvão et al. 2005) 
Mean_B690_B740 The average reflectance between 690 

nm to 740 nm 
(Merton 1999) 

MNDVI Modified Normalized Difference 
Vegetation Index 

MNDVI=(ρ800-ρ680)/(ρ800+ρ680-
2*ρ445) 

(Sims and Gamon 2002) 

MPRI Modified Photochemical Reflectance 
Index 

MPRI=(ρ515−ρ530)/(ρ515+ρ530) (Hernández-Clemente et 
al. 2011) 

NDVI Normalized Difference Vegetation 
Index 

NDVI=(ρ800−ρ670)/(ρ800+ρ670) (Rouse Jr et al. 1974) 

PRI Photochemical reflectance index PRI=(ρ531−ρ570)/(ρ531+ρ570) (Gamon et al. 1995) 
PSI Plant Stress Index  PSI=ρ695/ρ760 (Carter and Miller 1994) 
PSSR1 Pigment Specific Simple Ratio PSSR1= ρ800/ρ680 (Blackburn 1998) 
PSSR2 Pigment Specific Simple Ratio PSSR2= ρ800/ρ635 (Blackburn 1998) 
R1 Ratio vegetation stress index R1= ρ694/ρ760 (Carter and Miller 1994) 
R2 Ratio vegetation stress index R2= ρ600/ρ760 (Carter and Miller 1994) 
R3 Ratio vegetation stress index R3= ρ710/ρ760 (Carter and Miller 1994) 
RVSI Red-edge Vegetation Stress Index RVSI= (ρ714+ρ752)/2−ρ733 (Merton 1998) 
SL Slope of red-edge SL=(ρ740−ρ690)/N740−690 (Merton 1998) 
SWIR_VI Shortwave-Infrared Vegetation Index SWIR_VI=37.72*(ρ2210-

ρ2090)+26.27*(ρ2280-ρ2090)+0.57 
(Lobell et al. 2001) 

TVI Triangular Vegetation Index TVI=0.5*(120*(ρ2210-ρ2090)-
200*(ρ670-ρ550) 

(Broge and Leblanc 2001) 

Vogelmann2 Ratio vegetation index in red edge 
regions 

Vogelmann2=(ρ734−ρ747)/(ρ715+ρ726)(Vogelmann et al. 1993) 

4.2.3.3 Retrieval of plant functional traits from hyperspectral imagery 
using INFORM model 

Two approaches have been developed to estimate plant functional traits from 
remote sensing data: (i) empirical approach (such as spectral indices and multiple 
regressions), and (ii) radiative transfer models (RTMs) inversion (Ali et al. 2017). 
The most commonly used method in the empirical approach is the vegetation 
index (VI). Vegetation indices (VIs) constitute simple and convenient algebraic 
combinations of spectral reflectance to extract information from remotely sensed 
data, which facilitate the processing and analysis of large amounts of remotely 
sensed data, but they have the limitation of often being site-specific based on a 
limited number of species, contributing to the diverging forms of indices 
available in the literature even for the same plant functional traits (Ali et al. 2017; 
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Schlerf et al. 2010). RTMs allow the creation of simulated training databases 
covering a wide range of spectral data to which inversion algorithms such as 
Look-Up Tables (LUT) inversion and Artificial Neural Network (ANN) can be 
applied to retrieve parameters from remote sensing data (Ali et al. 2017). 
Nevertheless, RTMs still require local information, such as cover type, in order 
to be accurately upscaled (Si et al. 2012).  

The invertible forest reflectance model (INFORM) (Atzberger 2000) was chosen 
for canopy reflectance modeling and inversion. INFORM is a hybrid model with 
geometrical-optical (crown shadowing) and turbid-medium (multiple scattering) 
representations (Schlerf and Atzberger 2006). The choice of INFORM was a 
trade-off between suitability for forest structure characterization and simplicity 
in generating scenes and inversion (Schlerf and Atzberger 2012). The ranges of 
Cw, Cm and Cab were set based on the field data, while the solar zenith angle, 
observation angle and azimuth angle were determined based on the HySpex 
acquisition metadata. The ranges of stem density (SD, n/ha), stand height (SH, 
m), crown diameter (CD, m) and average leaf angle (ALA, degree) were decided 
based on the field measurement (Ali et al. 2016b; Wang et al. 2018). The 
measured background reflectance was introduced as ρsoil (Atzberger 2000). 
Other leaf, canopy, and external input parameters were selected similarly in 
agreement with the existing literature (e.g. Ali et al. 2016b; Casas et al. 2014; 
Clevers et al. 2010; Schlerf and Atzberger 2006; Verhoef and Bach 2007). Input 
parameters and ranges are shown in Table 4.3.  

A Look-Up Table (LUT), containing 100,000 randomly generated (uniform 
distributions) parameter combinations, was generated from the forward 
calculation of the INFORM model. To find the solution to the inversion for a 
given canopy spectrum for each estimated reflectance spectrum of the LUT, the 
RMSE between measured and estimated spectra was calculated according to: 

𝑅𝑀𝑆𝐸 ൌ  ඨ∑ ൫𝑅௦௨ௗഊ
െ  𝑅்ഊ

൯
ଶ

ୀଵ

𝑛
 

where 𝑅௦௨ௗഊ
 is a measured reflectance at wavelength λ and 𝑅்ഊ

 is an 

estimated reflectance at wavelength λ in the LUT, and n is the number of 
wavelengths (Darvishzadeh et al. 2008). To enhance the consistency of the 
estimated variables, we used the mean value of the best 100 simulations as the 
final parameter combination (Sehgal et al. 2016).  
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Table 4.3 Input parameters and ranges used for generating the LUT from the INFORM 
model 
 Parameters Unit Range 
N Structure parameter - 1.5-2.5 

Cab  Leaf chlorophyll μg cm-2 20-80 

Cm Leaf mass per area g cm-2 0.003-0.030 

Cw Equivalent water thickness cm 0.005-0.035 

LAIs Single tree LAI - 2-8 

LAIu Understory LAI - 0-1 

SD Stand density ha-1 400-1800 

SH Stand height m 5-45 

CD Crown diameter m 3-11 

ALA Average leaf angle degree 20-70 

θs Sun zenith angle degree 45-49 

θo Observation zenith angle degree 20-50 

ᴪ Azimuth angle degree 120-150 

Skyl Fraction of diffused radiation - 0.1 

4.2.4 Feature selection and classification algorithm 

Prior knowledge regarding important LiDAR metrics and the useful spectral 
features for species discrimination was considered during feature selection. 
Chapter 2 evaluated the performance of 37 commonly used LiDAR metrics for 
tree species discrimination in the same study area, which provided a solid 
foundation for the selection of LiDAR metrics in the current study. We also 
referred previous studies on tree species classification using hyperspectral data 
for the selection of species-related spectral bands and derivations as well as 
commonly used vegetation indices (e.g. Ali et al. 2017; Dalponte et al. 2012; Liu 
et al. 2017; Sommer et al. 2016; Wang et al. 2016), among which Ali et al. (2017), 
Wang et al. (2016) and Sommer et al. (2016) also conducted their experiments in 
Bavarian Forest National Park on the similar tree species. 

The Random Forest algorithm (Breiman 2001) was used to assess the 
performance of input variables and classify tree species. It utilizes a composite 
set of decision trees  and can be used to select and rank the predictor variables 
according to their ability to discriminate between the target classes (Liu et al. 
2017). The ability of handling a large number of input variables and reducing 
overfitting makes the Random Forest algorithm preferable to other classifiers 
when mixed sets of input variables (e.g. spectral, texture, geometric, indices) are 
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integrated into classification (Fassnacht et al. 2016). The Mean Decrease 
Accuracy (MDA) index of each variable is determined during the out-of-bag error 
calculation. The greater the decrease in accuracy of the classification due to the 
exclusion of a single variable, the more important that variable is to the model, 
therefore a higher MDA value indicates a variable is more important than others 
(Immitzer et al. 2012; Liu et al. 2017). The procedure of feature selection was 
conducted by the following steps: firstly, we classified tree species using LiDAR 
metrics and hyperspectral features alone, and ranked the input variables by their 
importance indicated by MDA index, respectively; secondly, we calculated the 
accumulated contribution rate which varied by increasing the number of input 
variables for classification and we then retained the variables which reached the 
highest accuracy during classification; finally, 12 LiDAR derived metrics and 15 
hyperspectral derived spectral features were chosen for the final classification 
combined with three retrieved plant functional traits.  

4.2.5 Assessing the performance of classification and input 
variables 

To assess the classification performance with different variable combinations, we 
used producer’s accuracy, user’s accuracy, overall accuracy and kappa 
coefficient (Cohen 1960). We also employed the McNemar’s test to determine 
the significance level between classification results using different variable 
combinations (de Leeuw et al. 2006; McNemar 1947). The importance of input 
variables for species classification was assessed using MDA index (Breiman 
2001). 

4.3 Results 

4.3.1 Retrievals of plant functional traits using INFORM 

Fig. 4.3 shows the relation between estimated plant functional traits against the 
lab measured plant functional traits. The prediction is more accurate for Cm (R2 
= 0.7781) and Cab (R2 = 0.7624) than for Cw (R2 = 0.6784). Cw is slightly under-
estimated compared to Cm and Cab. 
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Fig. 4.3 Scatter plots of measured and estimated Cw (a), Cm (b) and Cab (c) using the 
INFORM model. Data points are derived from the measured (validation) dataset collected 
from the study site, and each point represents a sample tree (215 sample trees in total). 
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4.3.2 Feature selection 

Fig. 4.4 shows the average reflectance of the five tree species at 400-2498 nm 
wavelengths. The coniferous and deciduous trees had different spectral ranges, 
while the reflectance variation between deciduous trees was more distinguishable 
than coniferous trees, especially in the NIR wavelengths and the first peak of 
SWIR wavelengths. Beech and maple as well as fir and spruce have been 
identified as two pairs of species with similar spectral signatures, while maple 
had the highest reflectance variation within the NIR wavelengths compared to 
other four species. Among the five species analysed, differences in spectral 
reflectance were most evident in the range of 730-1300 nm as well as 1550-1900 
nm. Eventually, 30 variables were selected for tree species classification, 
including 12 LiDAR derived metrics (LiDAR) and 15 spectral features derived 
from hyperspectral data (HSI) as well as three retrieved plant functional traits 
(PFTs) (Table 4.4).   

 

 

      

Fig. 4.4 The mean reflectance 
value (×1000, ± 1 standard 
deviation) of five tree species at 
400-2498 nm wavelengths. 
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Table 4.4 Selected variables derived from LiDAR and hyperspectral data for 
classification 
Input variables Index or description 
LiDAR metrics (12) 
Imean_first Mean intensity of first-or-only returns 
Height  Tree height 
Ewmean_first Mean echo width of first-or-single returns 
Imean_single Mean intensity of single returns 
Ewmean_single Mean echo width of single returns 
Ip90 90th percentile of intensity 
EWmean Mean echo width 
Imean Mean intensity 
Ivar Variation of intensity 
Isd Standard deviation of intensity 
EWcv Coefficient variation of echo width 
Hmean_single Mean height of single returns 
Spectral features (HSI) (15)  
First derivation of spectral band 
reflectance 

D1531.3, D1561.3, D1657.2, D1663.2, D1693.2, 
D1771.1, D2034.9, D2082.9 

Band reflectance (nm) B1561.3, B1717.2, B1771.1 

Vegetation Indices  

ACI2 Anthocyanin content index (ACI2) 
DWSI2 DWSI2=ρ1660/ρ550 

SWIR_VI 
SWIR_VI=37.72*(ρ2210-ρ2090)+26.27*(ρ2280-
ρ2090)+0.57 

RVSI RVSI= (ρ714+ρ752)/2−ρ733 
Plant functional traits (PFTs) (3)
Cw (cm) Equivalent water thickness 

Cm (g cm-2) Leaf mass per area 
Cab (μg cm-2) Leaf chlorophyll  

4.3.3 Comparison of classification accuracies 

Table 4.5 summarizes confusion matrices and producer's and user's classification 
accuracies for each species using all selected variables. The classification of birch 
trees obtained both the highest user’s and producer’s accuracy (86.8% and 89.2%, 
respectively). The lowest user’s and producer’s accuracies were obtained in the 
classification of beech and maple, which also had unequal samples (55 beech 
trees and 38 maple trees). 

Table 4.6 compares the classification results of different variable combinations. 
When combined  LiDAR, HSI and PFTs variables, the best overall classification 
accuracy of 83.7% with 0.74 kappa coefficient was obtained. The classification 
using LiDAR + HSI and LiDAR + PFTs yielded similar results, with an overall 
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accuracy improvement of 11.6% and 12.6% from using LiDAR alone, 
respectively. Moreover, the classification using HSI alone provided a better result 
than using LiDAR dataset. 

Table 4.7 displays the significant levels between classification results generated 
from different combinations based on p values in McNemar’s test. Combining 
LiDAR, HSI and PFTs variables significantly improved the accuracy from using 
LiDAR + HSI and LiDAR + PFTs. However, there was no statistically significant 
difference between the classification performance of using LiDAR + HSI and 
LiDAR + PFTs, and the same result was found between the use of LiDAR and 
HSI variables (McNemar’s test, p > 0.05).  

Table 4.5 Confusion matrix of classification performance 

UA: user’s accuracy; PA: producer’s accuracy 
 
Table 4.6 The classification results using different sets of variables (LiDAR: LiDAR 
derived metrics, HSI: spectral features, PFTs: retrieved plant functional traits) 

Dataset Number of variables Overall accuracy  Kappa 
LiDAR+ HSI+ PFTs 30 84.2% 0.74 
LiDAR+ PFTs 15 77.7% 0.70 
LiDAR+ HSI 27 76.7% 0.69 
HSI 15 69.3% 0.59 
LiDAR  12 65.1% 0.57 

 

Table 4.7 McNemar’s test for pairwise comparison between classification results 
generated from different combinations. ***: p < 0.001; **: p < 0.01; *: p < 0.05 ; NS: p > 
0.05. 
  LiDAR + PFTs LiDAR + HSI LiDAR HSI 
LiDAR + HSI + PFTs * ** *** *** 
LiDAR + PFTs  NS *** *** 
LiDAR + HSI  *** *** 
LiDAR  NS 

 Beech Birch Fir Maple Spruce PA(%) 

Beech 46 3 0 4 2 83.6 

Birch 2 33 1 1 0 89.2 

Fir 2 1 33 0 4 82.5 

Maple 6 1 0 30 1 78.9 

Spruce 2 0 4 0 39 86.7 

UA(%) 79.3 86.8 86.8 85.7 84.8 
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4.3.4 Performance of selected features in tree species classification 

Fig. 4.5 presents the relative importance and ranking of the selected variables for 
the classification using MDA. When combined LiDAR metrics and retrieved 
plant functional traits, Cw and Cm showed greater importance than most LiDAR 
metrics. Specifically, the top-ranking LiDAR metric is the mean intensity of first-
or-single returns (Imean_first) (Fig. 4.5c). When combined LiDAR metrics and 
spectral features, 7 out of the 10 top-ranked variables were first derivations and 
vegetation indices, though the best-performing metric was still LiDAR derived 
(i.e. Imean_first) (Fig. 4.5b).  

When combined LiDAR metrics and spectral features with retrieved plant 
functional traits, the mean intensity of first-or-single returns was the most 
important variable for species classification, followed by retrieved equivalent 
water thickness (Cw) and first derivation of band 1771.1 nm. Among the 30 
selected variables used for classification, top 10 variables were consisted of 4 
LiDAR derived radiometric metrics (i.e. Imean_first, Imean_single, Ip90 and 
Ewmean), 4 spectral features (3 first derivations and 1 vegetation index) and 2 
retrieved plant functional traits (i.e. Cw and Cm). 

4.3.5 The capability of metrics for tree species discrimination 

Fig. 4.6 shows differences between the 5 tree species for 6 important variables 
derived from LiDAR and hyperspectral data. Fig. 4.6a and b show a distinct 
difference of equivalent water thickness (Cw) and leaf mass per area (Cm) among 
5 tree species, which differentiates coniferous trees from deciduous trees. 
Similarly, the first derivation of band 1771.1 nm (Fig. 4.6e) and SWIR_VI (Fig. 
4.6f)  separate coniferous trees from deciduous trees. It is evident that beech and 
maple have a higher value of the mean intensity of first-or-single returns 
compared to other species (Fig. 4.6c), which aid discrimination of fir and spruce 
from beech and maple, as well as birch from other deciduous trees. Furthermore, 
the mean value of echo width gives a great chance to separate birch from other 
four species (Fig. 4.6d). 
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                               (a) LiDAR+ HSI+ PFTs                           (b) LiDAR+ HIS 

                
                              (c) LiDAR+ PFTs          

Fig. 4.5 The relative importance and ranking of the selected variables for tree species 
classification under different combinations (a) LiDAR+ HSI+ PFTs, (b) LiDAR+ HSI 
and (c) LiDAR+ PFTs. 
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Fig. 4.6 Box plots of equivalent water thickness (a), dry matter content (b), mean intensity 
of first-or-single returns (c), mean value of echo width (d), first derivation of band 1771.1 
nm (e), SWIR_VI (f) among five tree species.  
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Fig. 4.7 Map of individual tree species classification for an example area (located in site 
A) in Bavarian Forest National Park. 

4.4 Discussion  
In this study, we integrated three plant functional traits (i.e. Cw, Cm and Cab) 
with hyperspectral derived spectral features and airborne LiDAR derived metrics 
for mapping five tree species in a natural forest. Our results demonstrate that 
combining retrieved plant functional traits with spectral features and LiDAR 
metrics yielded the highest classification results, with an overall accuracy of    
84.2% compared to LiDAR (65.1%) and hyperspectral (69.3%) variables alone. 
It is noteworthy that using the retrieved plant functional traits significantly 
increased tree species classification accuracy – especially when combined with 
LiDAR metrics. This result validated the assumption that adding characteristic 
plant functional traits into classification with unique structural profiles aids the 
discrimination of tree species, which, has a profound meaning for ecology and 
remote sensing research. The analysis also revealed that using combined datasets 
(i.e. LiDAR + PFTs, LiDAR + HSI and LiDAR + HSI + PFTs) significantly 
improved the discrimination of the five tree species compared to using LiDAR or 
hyperspectral variables alone. Contradictory to the study conducted by Liu et al. 
(2017), where LiDAR metrics provided greater accuracy than hyperspectral 
variables, we found that using spectral features from hyperspectral data generated 
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higher classification accuracy than using LiDAR metrics. Besides the differences 
in aimed tree species and employed datasets between these two studies, one 
reason might be the selection of pixels used for extracting spectral features. In 
our study, we used only sunlit pixels for spectral information extraction while Liu 
et al. (2017) used all pixels within a crown. Although there was no significant 
difference between the classification results using the combination of LiDAR + 
PFTs and LiDAR + HSI, it should be noted that the slight higher accuracy was 
obtained using the combination of LiDAR + PFTs with only 15 variables, while 
LiDAR + HSI involved 27 variables. It implies that combining retrieved plant 
functional traits with LiDAR metrics for tree species classification can reach a 
moderate degree of accuracy while avoiding the high data dimensionality which 
is an inherent characteristic of hyperspectral data.  

According to the Random Forest variable importance analysis, equivalent water 
thickness (Cw) and leaf mass per area (Cm) showed greater importance than most 
other variables when combined with LiDAR metrics (Fig. 4.5c). When 
combining retrieved plant functional traits with hyperspectral features and 
LiDAR metrics, only equivalent water thickness (Cw) consistently performed 
well among other variables, while leaf mass per area (Cm) and leaf chlorophyll 
(Cab) achieved similar performances as selected vegetation indices (Fig. 4.5a). 
Similar performance of selected plant functional traits was observed in previous 
studies (e.g. Casas et al. 2014; Darvishzadeh et al. 2008; Sehgal et al. 2016). 
Regardless of the simplification of parameters in RTMs representation and the 
effect of the forest heterogeneity, it is also argued that there is always poor signal 
propagation from leaf to canopy level resulting in poor estimation of leaf 
parameters by canopy reflectance (Asner 1998). The complexity of canopy 
radiation interaction processes and background effect may also result in 
misestimating of plant functional traits during the retrievals. While the inversion 
of RTMs is generally ill-posed because of measurement and model uncertainties, 
mixed spectra at the level of HySpex pixels also bring additional uncertainties to 
the retrievals. A promising way to improve the situation of underestimation is 
taking into account canopy heterogeneity by using 3D RTMs, which could 
provide an additional advantage in understanding the structural influence upon 
functional traits retrievals.  

LiDAR derived intensity metrics calculated from first-or-single returns played an 
important role in classifying tree species in this study, which confirmed results 
found in previous studies (Hovi et al. 2016; Korpela et al. 2010; Shi et al. 2018b). 
Identified as the most important variables, the mean intensity of first-or-single 
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returns not only well represented the structural and morphological characteristics 
of the outside of the crown, but also reduced multiple scattering effects in discrete 
return systems. Moreover, the most important spectral features were the first 
derivation and band reflectance located in 1771.1 nm, 1693.2 nm and 2034.9 nm, 
related to water content, lignin and cellulose respectively. The important 
contribution of spectral derivations indicated their potential to enhance pigment 
absorption features (Blackburn 2007) and to reduce influences of the soil 
background and other noise (Kokaly and Clark 1999). We also found the 
anthocyanin content index (ACI2) and shortwave-infrared vegetation index 
(SWIR_VI) were the two most useful vegetation indices for species 
discrimination, which also have been supported by Liu et al. (2017), Große-
Stoltenberg et al. (2016) and Liu (2016). These vegetation indices were 
calculated using wavebands located in the green (near 550 nm), red (near 650 nm) 
and shortwave infrared (near 2100 nm and 2210 nm). However, spectral variation 
among species is generated from phenotypic variation and does not directly 
measure the underlying genetic or phylogenetic relationships among species 
(Cavender-Bares et al. 2016). Although VIs represent an aggregated measure of 
significant phenotypic components that influence leaf spectral profiles, plant 
functional traits retrieved from full spectra allow for a deeper understanding of 
how tree species differ functionally and may inform our capacity to detect 
changes in biodiversity. 

Our results showed that deciduous trees and coniferous trees were well 
differentiated by the variables used in this study, however, beech and maple as 
well as fir and spruce were identified as two pairs of species with similar 
characteristics and majority misclassifications (Table 4.5 and Fig. 4.7). Given the 
complexity of natural mixed forests under leaf-on condition, the morphological 
and spectral similarities among different tree species as well as the architectural 
variations within the same species might contribute to the misclassification (Shi 
et al. 2018b). From a morphological perspective, more detailed LiDAR derived 
structural features, such as branch patterns, may further the distinction between 
tree species. Meanwhile, from a biological point of view, more precise species-
related plant functional traits are valuable to explore for species discrimination. 
Here, we tested the importance of three plant functional traits retrieved from 
radiative transfer models, which serves as the substantial markers of tree species 
that can be used for further study. Although the validation of retrieved plant 
functional traits in this study was based on the field data with one year difference 
from the hyperspectral data, Rautiainen et al. (2018) showed that the variation of 
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these leaf plant functional traits was minor within species when compared 
between species during peak season. Still, we suggest the concomitant collection 
of field data and hyperspectral data collections to minimize uncertainty and 
potential errors during plant functional traits retrieval. It should be noted that our 
analysis was based on two study sites with relatively low variability regarding 
forest type and topography. Therefore, the applicability of the important features 
needs to be further tested among other tree species in different types of forest.   

4.5 Conclusions 
This study has demonstrated the application of plant functional traits retrieved 
from RTM in conjunction with airborne LiDAR derived metrics and 
hyperspectral derived spectral features for individual tree species mapping. 
Adding plant functional traits to the classification significantly improved the 
accuracy than using LiDAR or hyperspectral data alone. Equivalent water 
thickness (Cw) was the most robust plant functional trait for the classification of 
five tree species in our study, following the mean intensity of first-or-single 
returns derived from LiDAR data. 

Individual tree species classification in temperate forests remains a challenging 
task. Compared to plantation and urban trees, forest stands are generally denser, 
deciduous tree crowns are often interlocked, and species mixture is greater and 
more irregular (Heinzel and Koch 2012). Improving individual tree delineation 
accuracy from airborne LiDAR data and optimizing feature selection may lead to 
a higher classification accuracy at individual tree level. Discovering and 
employing species-specific biophysical and biochemical plant traits remain 
important to improve the interpretability of both LiDAR and hyperspectral data, 
with some of the performances revealed here, raising themes for potential further 
investigations. 

Multi-class tree species classification provides an overview of the distribution of 
tree species while requiring sufficient training data for each class. However, 
innovative image processing methods for the efficient classification of a focal 
class, or species, is required. In the next chapter, we successfully map an 
ecologically important species in the Bavarian Forest National Park using one-
class classification techniques. 
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Chapter 5  

Mapping individual silver fir trees in a 
Norway spruce dominated forest §  

                                                      
§ This chapter is based on: Shi, Y., Wang, T., Skidmore, A.K., Holzwarth, S., Heiden, U., 
& Heurich, M.. Individual silver fir (Abies alba) trees accurately mapped using 
hyperspectral and LiDAR data in a Central European mixed forest. Agricultural and 
Forest Meteorology. (under review) 
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Abstract 
Silver fir (Abies alba) is considered an important ecological and functional tree 
species in European forests. However, in recent centuries, it has experienced a 
widespread decline across Europe. This study aimed to accurately map individual 
silver fir trees in a mixed temperate forest in Germany using integrated airborne 
hyperspectral and LiDAR data. Remote sensing and coincident field data were 
collected in the study area between 2015 and 2017. A set of spectral and structural 
features from the hyperspectral and LiDAR data were extracted and used to 
construct models for testing using different machine learning classification 
approaches. Specifically, we compared the performance of three one-class 
classifiers (i.e. one-class support vector machine, biased support vector machine, 
and maximum entropy) for mapping individual silver fir trees. Our results 
demonstrated that the biased support vector machine classifier yielded the highest 
mapping accuracy, with the area under the curve for positive and unlabeled 
samples (puAUC) achieving 0.95 (kappa 0.90). The intensity value of 95th 
percentile of normalized tree height and the percentage of first returns were found 
to be the most influential structural features, capturing the main morphological 
difference between silver fir and Norway spruce at the top tree crown. The 
wavebands at 700.1 nm, 714.5 nm, and 1201.6 nm were the most important 
spectral bands, which are strongly affected by chlorophyll and foliar water 
content. Our study suggests that discovering links between spectral and structural 
features captured by different remotely sensed data and species-specific traits can 
improve the accuracy of individual tree species mapping. 
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5.1 Introduction 
Accurate tree species mapping is essential for a wide variety of applications, 
including  mapping of species composition (Cho et al. 2012; Ørka et al. 2013), 
invasive species detection (Piiroinen et al. 2018; Somers and Asner 2013a), forest 
inventories (Bouvier et al. 2015; Yin and Wang 2016), and biodiversity 
assessment and monitoring (Baldeck et al. 2015; Vaglio Laurin et al. 2014). 
Large area species distribution maps are also valuable for an improved 
understanding of the ecology of tree species and the contribution of different 
species to ecosystem functions and services (Fassnacht et al. 2016; Homolová et 
al. 2013; Sánchez-Azofeifa et al. 2009). 

Silver fir (Abies alba), native to the mountainous regions of Europe, is considered 
an important ecological and functional balancer of European forests (Tinner et al. 
2013). Known as one of the most shade-tolerant European tree species, silver fir 
has a deep root system, which stabilizes soils and retains water (Lebourgeois et 
al. 2013), and it is less susceptible to windthrow and snow and ice breakage than 
Norway spruce (Senn and Suter 2003). Silver fir is a fundamental species for 
maintaining high biodiversity in forested ecosystems because of its shade 
tolerance, adaptability to environmental conditions and ability to coexist with 
many other tree species (Dobrowolska et al. 2017). Silver fir is also an important 
species in the context of climate change, due to its resistance towards natural 
disturbances (Desplanque et al. 1999), and it has been shown to respond 
favourably to climate warming in Central Europe and adjacent areas (Büntgen et 
al. 2014).  

In the second half of the twentieth century, a widespread decline of silver fir has 
been reported in many mountain regions across Europe (e.g. Elling et al. 2009; 
Ficko et al. 2011; Vrška et al. 2009). Silver fir is susceptible to a number of 
abiotic and biotic disturbances, such as late frost, strong winter frost, and 
browsing by deer (Heuze et al. 2005). It is particularly sensitive to SO2 pollution 
(Elling et al. 2009), which is one of the reasons for its decline in some regions 
(Dobrowolska et al. 2017). This decline has been reported to be as high as 80% 
in the Carpathians (Vrška et al. 2009) and around 20% in the Dinaric Mountains 
(Ficko et al. 2011) in recent decades. Based on the archived inventory documents 
in the Bavarian Forest National Park (BFNP), the proportion of silver fir in the 
BFNP was about 60% in 1856, while Norway spruce and  European beech were 
only 10% and 30%, respectively. At the time of the establishment of the BFNP 
in 1970, the proportion of fir had decreased to only 3.2%, spruce had increased 
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to 72%, while  beech remained stable at around 25% (Heurich and Englmaier 
2010). While silver fir had been able to survive the type of forest use practiced 
by the glassworks, the period of shelter wood and expanding gap management 
systems led to a near elimination of the species. Both results of pollen analyses 
and historical descriptions indicate a dramatic decline of fir by at least 90% in the 
BFNP over the last two centuries. The increased domination of spruce continued 
until the late 1990s, when an infestation of bark beetle saw the proportion of fir 
to spruce increase, along with  an increased abundance of other tree species. See 
Heurich and Englmaier (2010) for a detailed description. 

This situation was not unique to the BFNP; similar declines were widespread 
across Central Europe (Heurich and Englmaier 2010). However, at this point in 
time, comprehensive maps of silver fir distribution, or indeed methods to 
accurately and regularly map this important species, are lacking. Silver fir tends 
to grow as individuals interspersed among other tree species, which makes 
mapping a particularly challenging task. Traditional plot-level classification 
methods may not suitable for accurately mapping of silver fir. Furthermore, in 
Central European mixed forests, silver fir and Norway spruce have been 
identified as a pair of species with similar spectral and structural characteristics, 
making it difficult to distinguish between them (Klopčič et al. 2017; Shi et al. 
2018a; Vallet and Pérot 2011).  

Traditionally, the occurrence of tree species was measured by field sampling, 
which is accurate but time-consuming and not feasible across large areas. Over 
the last four decades, advances in remote sensing technologies and machine 
learning methods have enabled the mapping of tree species from various sensor 
types (Marrs and Ni-Meister 2019). Hyperspectral sensors and Light Detection 
and Ranging (LiDAR) system are the most common sources of remotely sensed 
data used for the classification of tree species (Fassnacht et al. 2016). 
Hyperspectral sensors measure reflected radiation in hundreds of narrow bands 
and can detect subtle variations in the biochemical and biophysical properties of 
the forest canopy (Ferreira et al. 2016; Huber et al. 2008; Somers and Asner 
2013b). LiDAR is an active remote sensing technique that uses lasers to capture 
the three-dimensional structure of forests. Therefore, it is well-suited for 
individual tree delineation, while also providing valuable geometric and 
radiometric information for tree species discrimination (Heinzel and Koch 2012; 
Muss et al. 2011; Vauhkonen et al. 2010a). To capitalize on the datasets from 
various airborne sensors and their advantages for individual tree species 
classification, it is necessary to establish connections between spectral and 
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structural features derived from remote sensing datasets and the species-specific 
traits of trees. However, an in-depth understanding of how remotely sensed 
information depicts the species of trees, in other words, how trees display 
differently in remote sensing data, is still poorly developed. 

A framework for multi-class tree species classification requires that 
representative training data must be collected for every class, regardless of 
whether a particular class is of interest to the researcher. In the case of remote 
tree species mapping, collecting adequate amounts of costly field-based training 
data for all species in an ecosystem is likely to be intractable (Baldeck and Asner 
2015). Consequently, when collected training datasets are not sufficient to 
adequately characterize every species, understanding of the connection between 
tree species and remotely senses signatures is limited and the performance of 
classification is difficult to evaluate. Meanwhile, there is an increasing demand 
for efficient classification techniques that identify a focal class or species. In this 
scenario, one-class classification approaches, where labeled data are needed only 
for the positive class (that is, a single tree species) might be an efficient alternative 
(Muñoz-Marí et al. 2010). In remote sensing studies, one-class classification 
approaches have been used to detect focal tree species in tropical rainforests 
(Baldeck et al. 2015; Somers and Asner 2013b), invasive species detection 
(Piiroinen et al. 2018; Skowronek et al. 2017), and high nature value grassland 
habitats (Stenzel et al. 2017). However, the performance of one-class classifiers 
is highly dependent on the selection of parameters and thresholds (Waske 2017). 
Further comparison of the discriminative potential of different one-class 
classifiers – that is, the best achievable performance over all models and 
thresholds – is still needed for accurate tree species mapping.  

The overall objective of this study was to accurately identify and map individual 
silver fir trees in a spruce-dominated natural forest using airborne LiDAR and 
hyperspectral data. Specifically, we set out to: (1) generate spectral and structural 
features for silver fir identification, (2) assess the performance of three one-class 
classifiers for silver fir mapping, and (3) identify the key spectral and structural 
features that contributed most to the identification of individual silver fir and 
understand how they link to species-specific traits.     
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5.2 Materials and Methods 

5.2.1 Study area and tree species 

Our experiment was carried out in the Bavarian Forest National Park (49°3′19″ 
N, 13°12′9″ E), a mixed temperate forest situated in south-eastern Germany (Fig. 
5.1). The park covers an area of 24,218 ha with elevations ranging from 
approximately 600 m to 1452 m (Heurich et al. 2010). The mean annual 
temperature is between 6.5 °C in the valleys and 2 °C at higher elevations, and 
the climate is continental with an annual precipitation varying from 830 to 2230 
mm (Cailleret et al. 2014). The dominant tree species in the national park are 
Norway spruce (Picea abies) (67%) and European beech (Fagus sylvatica) 
(24.5%), with sliver fir (Abies abies) (2.6%), sycamore maple (Acer 
psudoplatanus) (1.2%), and mountain ash (Sorbus aucuparia) (3.1%) 
contributing to the remainder (Heurich and Neufanger 2005).  

Within the park, two study sites were selected, each approximately 25 ha (500 m 
× 500 m) (Fig. 5.1). Detailed information about the two study sites, including 
elevation, tree density, soil type and forest type is provided in Table 5.1. The field 
work was conducted in July 2016 and July 2017, respectively. A Leica Viva GS14 
Plus differential GPS (Leica Geosystems AG, Heerbrugg, Switzerland) was used 
to record the exact location of trees. As a result, 205 locations of trees at site one 
(T1) and 198 locations of trees at site two (T2) were collected, resulting in 78 
beech trees, 58 birch trees, 108 fir trees, 70 maple trees and 89 spruce trees. The 
collected GPS data was post-processed to obtain differentially corrected 
coordinates with an accuracy less than 0.25 m. 
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Fig. 5.1 Airborne LiDAR and HySpex flight area and the location of two study sites in 
the Bavarian Forest National Park, Germany.  
 

Table 5.1 Characteristics of the two study sites 
Study 
sites 

Size 
(ha) 

Elevation 
(m) 

Tree 
density 
(per ha) 

Soil type Forest type 

T1 25 675-732 445 
Brown forest 
soils and peat 
soils 

Mature 
coniferous and 
mixed stands 

T2 25 845-906 458 
Loose brown 
soils and gley 
soils 

Mature 
deciduous and 
mixed stands 
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5.2.2 Data acquisition and pre-processing 

5.2.2.1 Airborne LiDAR data 

The airborne LiDAR data was collected by Milan Flug GmbH on 18 August 2016, 
covering four transects in the Bavarian Forest National Park (Fig. 5.1). LiDAR 
data processing and preparation was described in Chapter 2, section 2.2.4. 

5.2.2.2 Multi-temporal hyperspectral data 

Two hyperspectral flight campaigns were carried out by DLR (German 
Aerospace Centre) with the same HySpex sensor system, developed by Norsk 
Elektro Optikk (NEO), on 26 August 2015 and 25 August 2016, respectively. The 
HySpex sensor consists of two imaging spectrometers covering spectral ranges 
of 400–992 nm (VNIR) and 968–2498 nm (SWIR), with spectral resolutions of 
3.6 nm and 6 nm, respectively. The acquisition time, flight altitude, spectral and 
spatial resolution for each dataset are displayed in Table 5.2. The HySpex datasets 
were supplied by DLR after the unified pre-processing procedures. The pre-
processing procedures included the following steps: radiance conversion and 
system correction using laboratory radiometric calibration information (Gege et 
al. 2009); atmospheric correction performed with the ATCOR4 model (Richter 
and Schläpfer 2002); ortho-rectification of the radiance data based on the 
parametric model and flight path data in combination with a digital terrain model 
(DEM) (Müller et al. 2005) and co-registration of VNIR and SWIR data cubes 
using brisk and sensor-model-based RANSAC (Schwind et al. 2014). A 
Savitzky-Golay filter was applied to correct for random and systematic noise 
(Schläpfer and Richter 2011). After eliminating the bands affected by strong 
noise or atmospheric effects (water vapour absorption), 290 bands for each 
dataset remained. Approximately 40 ground control points of each study site were 
chosen for the co-registration of hyperspectral and LiDAR data using a 
polynomial warp method (2 degree) and nearest neighbour resampling method in 
the ENVI software (version 5.2). The resulting geometric accuracy was higher 
than 0.20 m. 
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Table 5.2 The parameters of HySpex datasets 

Acquisition date 26 August 2015 25 August 2016 

Acquisition time (UTC) 10:24 08:51 

Flight altitude (m. asl) 3544 2331 

Spectral resolution VINR (nm) 3.6 3.6 

Spectral resolution SWIR (nm) 6 6 

Spatial resolution VNIR (m) 2 1 

Spatial resolution SWIR (m) 4 2 

5.2.2.3 Segmentation of individual trees 

The individual tree segmentation was described in Chapter 2, see section 2.2.3. 
We visually verified the identified sample trees that were visible in the two 
hyperspectral images using the procedure proposed in section 2.2.3. In total, 90 
fir trees, 77 beech trees, 56 birch trees, 68 maple trees and 88 spruce trees from 
the two study sites were selected for further analysis. Once the sample trees were 
verified, the 3D points within each correct segment were extracted and assigned 
to the corresponding sample trees for the derivation of LiDAR metrics. 

 
Fig. 5.2 Segmented individual tree crowns for the two study site.  

5.2.3 Feature generation  

Previous studies demonstrated that sunlit pixels of hyperspectral images can often 
provide more accurate species information for classification (e.g. Clark et al. 
2005; Dalponte et al. 2013; Richter et al. 2016). To reduce the effect of 
shadowing, as well as the errors in individual tree crown delineation, we manually 
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selected the sunlit pixels within each tree crown and extracted the spectral 
information. The mean spectral value of each waveband (B1, B2, …, B290) from 
each year’s hyperspectral data was calculated within each tree crown. Based on 
the results of Chapter 4, we also derived four vegetation indices: the Anthocyanin 
Content Index (ACI2), the Disease-Water Stress Index (DWSI2), the Red-edge 
Vegetation Stress Index (RVSI), and the Shortwave-Infrared Vegetation Index 
(SWIR_VI), which is related to plant pigment content, water content and stress 
(Table 5.3). 

To better understand how LiDAR metrics represent the structural characteristics 
of tree species, we classified the LiDAR metrics into three primary categories 
(Table 5.3). Specifically, these included (1) point distributions, which reflect the 
structural features of different tree species with the number of laser points tend 
to decrease from tree top to bottom due to laser obstruction by crowns (Lin and 
Hyyppä 2016); (2) radiometric metrics (i.e. intensity and echo width), which 
suggest that laser amplitudes tend to deteriorate from tree top to bottom, and have 
different behaviours according to the foliage type, leaf size and density from 
different tree species; (3) geometric metrics, including tree height, crown shape 
and crown volume features. The derivation of LiDAR metrics was conducted 
using the  “rLiDAR” package in the R language environment (http://www.r-
project.org/). 
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Table 5.3 List of generated LiDAR metrics and hyperspectral features 
Category Generated features Definition or formula Reference 
Point 
distributions 

Percent_first Percentage of first returns above 2m (Puttonen et al. 
2010) 

 Percent_last Percentage of last returns above 2m (Dalponte et al. 
2012) 

Percent_all Percentage of all returns above 2m (Korpela et al. 2010) 
 Percent_first_mean Percentage of first returns above mean height  
 Percent_all_mean Percentage of all returns above mean height  
 All_counts Total counts of all returns  
 First_counts Total counts of first returns  
 Counts_returns (1st – 

7th) 
The counts of different number of returns (1st 
-7th  returns) 

 

Radiometric 
metrics 

Imean, Isd, Ivar, Icv, 
Ikur, 
Iske, Ip_nth 

Intensity parameters in the tree crown, 
including mean value (Imean), standard 
deviation (Isd), variation (Ivar), coefficient 
variance (Icv), kurtosis (Ikur), skewness 
(Iske), and nth percentile of intensity (5th, 
10th, …, 95th, 99th) 

(Dalponte et al. 
2008) 
(Yao et al. 2012) 
(Heinzel and Koch 
2011) 

 Imean_single, 
Imean_first 

The mean intensity value of single returns 
(Imean_single), 
the mean intensity value of the first returns 
(Imean_first) 

 

 EWmean, EWsd, 
EWvar, EWcv, EWkur, 
EWske, EWp_nth 

Echo width parameters in the tree crown, 
including mean value (EWmean), standard 
deviation (EWsd), variation (EWvar), 
coefficient variance (EWcv), kurtosis 
(EWkur), skewness (EWske), and nth 
percentile of echo width (5th, 10th, …, 95th, 
99th) 

 

 EWmean_single, 
EWmean_first 

The mean echo width of single returns 
(EWmean_single), 
the mean echo width of the first returns 
(EWmean_first) 

 

Geometric 
metrics 

Height, Hmean, Hsd, 
Hvar, Hcv, Hkur, Hske, 
Hp_nth 

Height parameters of the tree, including tree 
height (Height), mean value (Hmean), 
standard deviation (Hsd), variation (Hvar), 
coefficient variance (Hcv), kurtosis (Hkur), 
skewness (Hske), and nth percentile of height 
(5th, 10th, …, 95th, 99th) 

(Li et al. 2013) 
(Lin and Herold 
2016) 
(Puttonen et al. 
2010) 

 Hmean_single, 
Hmean_first 

The mean height of single returns 
(Hmean_single), 
the mean height of first returns (Hmean_first) 

 

 CBH:H, C_volume:area, 
CNR 

Ratio of crown base height to height (CBH:H), 
ratio of crown volume to crown area 
(C_volume:area), and canopy relief ratio 
(CNR) 

 

Band 
reflectance 

B1-B290 Band reflectance from 415.7-2496.5 nm 

Vegetation 
indices 

ACI2 Anthocyanin Content Index, 
ACI2=ρ650/ρ550 

(Gamon and Surfus 
1999) 

DWSI2 Disease-Water Stress Index, 
DWSI2=ρ1660/ρ550 

(Apan et al. 2004) 

RVSI Red-edge Vegetation Stress Index, 
RVSI= (ρ714+ρ752)/2−ρ733 

(Merton 1998) 

SWIR_VI Shortwave-Infrared Vegetation Index, 
SWIR_VI=37.72*(ρ2210-ρ2090) 
+26.27*(ρ2280-ρ2090)+0.57 

(Lobell et al. 2001) 
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5.2.4 Feature selection approaches 

Feature selection is a procedure that enables a meaningful interpretation of the 
selected predictors and, in the context of tree species classification, increases the 
understanding of what exactly drives the discrimination of the species (Fassnacht 
et al. 2016). To select the most valuable wavebands from the hyperspectral 
images, we aimed to optimize the spectral separability between fir and other 
species, and used the principles of the Uncorrelated Stable Zone Unmixing 
approach proposed by Somers and Asner (2013b) for spectral bands selection. 
The rationale for this method is to balance the relationship between the spectral 
separability and the spectral correlation in the final subset (Somers and Asner 
2013b). Firstly, the spectral separability between fir and the other species (i.e. fir 
and beech, fir and birch, fir and maple, and fir and spruce) was evaluated using 
the Separability Index (SI), defined as the ratio of the inter-species and the intra-
species variability: 

𝑆𝐼 ൌ  
∆௧,

∆௧,
ൌ  

ห𝑅,ଵ, െ  𝑅,ଶ,ห

1.96 ൈ  ൫𝜎ଵ,    𝜎ଶ,൯
 

where 𝑅,ଵ, and 𝑅,ଶ, are the mean reflectance values at wavelength i for 

species 1 (i.e. fir) and species 2 (e.g. beech, birch, maple, and spruce), 
respectively, whereas 𝜎ଵ, and 𝜎ଶ, are the standard deviations of species 1 and 2, 

respectively. Higher SI values indicate greater separability between the species 
in the specified waveband (Somers and Asner 2013b). Secondly, the spectral 
correlation (Corr) of the selected band with all the other wavebands was 
calculated according to: 

𝐶𝑜𝑟𝑟 ሺ𝑋, 𝑌ሻ ൌ  
𝑐𝑜𝑣 ሺ𝑋, 𝑌ሻ

𝜎𝜎
 

where 𝑐𝑜𝑣 ሺ𝑋, 𝑌ሻ is the covariance between the selected band (X) and the other 
wavebands (Y), and 𝜎 is the standard deviation of the wavebands. Finally, the 
selection of wavebands was done iteratively by repeatedly selecting the band with 
the highest separability index and removing the highest correlated band until no 
bands remained (Somers and Asner 2014).  

To select the final set of features (i.e. from both the hyperspectral and LiDAR 
metrics)  we employed a wrapper algorithm using Support Vector Machines 
(SVM), a method proposed by Maldonado and Weber (2009). It is based on a 
sequential backward selection, which uses the number of errors in a validation 



Chapter 5 

91 

subset as the measure to decide which feature to remove in each iteration. This 
approach has several advantages with respect to the objectives of the current 
study, including (1) it determines the contribution of each feature to the respective 
classifier, (2) it is capable of measuring the validation error while avoiding 
overfitting by doing a random split of the dataset in each iteration, and (3) it can 
be easily generalized to variations of SVM classifiers (Maldonado and Weber 
2009). The feature selection procedure was carried out with the packages “caret” 
and “e1071” in the R language environment (http://www.r-project.org/).   

5.2.5 One-class classifiers 

Among various one-class classifiers, one-class support vector machine 
(OCSVM), biased support vector machine (BSVM) and Maxent have been 
frequently used (Mack and Waske 2017). The OCSVM (Schölkopf et al. 1999) 
uses only data from the class of interest to train the classifier, while the BSVM is 
a semi-supervised classification algorithm that utilizes both positive and 
unlabelled samples (Liu et al. 2003). The BSVM is a special form of a binary 
SVM and is adapted to one-class classification with a positive and unlabelled data 
training set (Stenzel et al. 2017). The Maxent classifier is based on the maximum 
entropy approach (Sethna 2006), which is able to perform efficiently even with 
few occurrence records (Pearson 2007).  

We used only positive and unlabelled data (PU-data) during the model training. 
The spectral features derived from each hyperspectral image, along with the 
LiDAR metrics, were used in three different one-class modelling approaches, 
tuned with optimal parameters for fir classification (Table 5.4). More information 
on the kernel parameters, the method and the criteria can be found in the 
description of the R package “oneClass” (https://github.com/benmack/oneClass) 
and the corresponding publication (Mack et al. 2014). 
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Table 5.4 Description of one-class classifiers   

One-class 
classifiers 

Training 
mode 

Parameters Tuning settings 

OCSVM P-classifier Sigma (σ): the width of Gaussian 
radial basis function (RBF) kernel 
 
Nu (): rejection fraction 

2-10, 2-9, … , 22 
 
 
0.01, 0.02, …, 0.5 

BSVM PU-classifier Sigma (σ): the width of Gaussian 
radial basis function (RBF) kernel  
 
cNeg: penalty parameter for 
unlabeled samples  
 
cMultiplier: penalty parameter for 
positive samples 

2-4, 2-3, … , 22 
 
 
2-7, 2-5, … , 22 
 
 
20, 21, … , 26 

Maxent PU-classifier Fc: feature class (lineal (L), 
quadratic (Q), product (P), 
threshold (T), and hinge (H)) 
 
Beta (): regularization multiplier 

LQHPT 
 
 
 
1, 2, …, 40 

5.2.6 Mapping accuracy assessment 

The classifiers were trained using a 10-fold cross-validation strategy. The training 
samples were split into 10 independent sets (folds), in which 9 were used for 
training and the remaining one for validation. After repeating 10 times, the best 
combination of parameters was chosen by minimizing an average error 
measurement computed with the predictions on the 10 different validation sets 
(Muñoz-Marí et al. 2010). We selected the best performing model based on the 
ranking of puAUC (Phillips et al. 2006; Phillips and Dudík 2008), which 
resembles the area under the receiver operator characteristic curve (AUC) as an 
independent measure using randomly sampled observations (Piiroinen et al. 
2018). The Kappa coefficient was also measured for the each model. In 
comparative studies, it is rare to see Kappa reported, due to lack of absence 
samples in the validation data. However, it remains informative since it reveals 
the relative accuracy of the PU data-based model selection approaches (Waske 
2017). 
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5.3 Results 

5.3.1 Differences in spectral and structure features between silver 
fir and other four tree species 

Fig. 5.3 shows the mean spectral signatures (400–2498 nm) of five tree species, 
derived from the hyperspectral data of 2015 and 2016. The spectral signature of 
fir is clearly distinguishable from the deciduous trees (i.e. beech, birch, and 
maple), but the difference between fir and spruce is minor. The difference 
between the spectral signatures of fir and spruce was larger in the 2016 data than 
that of 2015. 

Fig. 5.4 shows the four vegetation indices (ACI2, DWSI2, RVSI and SWIR_VI), 
derived from 2015 and 2016, for the five species. The differences between 
conifers and deciduous trees were more distinct in RVSI and SWIR_VI than in 
ACI2 and DWSI2. The variation pattern of vegetation indices among the five 
species was similar in 2015 and 2016, while for each single species, the 
distribution of vegetation indices varied between 2015 and 2016. 

Fig. 5.5 shows the variation of derived LiDAR metrics between fir and the other 
four tree species. Six metrics from each LiDAR category (i.e. “Percent_first” and 
“Percent_all” from point distributions, “Ip95” and “EWmean_single” from 
radiometric metrics and “Hp99” and “Hmean_first” from geometric metrics) are 
displayed as examples. Fig. 5.5a shows that the variation of “Percent_first” (i.e. 
the percentage of first returns above 2m) of fir is the smallest among the five 
species. Fig. 5.5c and Fig. 5.5f show distinct differences for the 99th percentile 
of tree height (Hp99) and the mean height of first returns (Hmean_first) between 
fir and deciduous trees. However, the differences between fir and spruce were 
minor. 
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Fig. 5.3 The mean reflectance value ( 1000, ± 1 standard deviation) of five species (i.e. 
beech, birch, fir, maple and spruce) at 400–2498 nm wavelengths derived from HySpex 
data acquired in 2015 and 2016, respectively. 
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Fig. 5.4 Box plots of four vegetation indices (i.e. ACI2, DWSI2, RVSI and SWIR_VI) 
derived from 2015 (first row) and 2016 (second row) among sample tree species. 
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Fig. 5.5 Box plots of the percentage of first returns above 2m (a), the percentage of all 
returns above 2m (b), 99th percentile of tree height (c), the intensity of 95th percentile of 
normalized tree height (d), the mean echo width of single returns (e), the mean height of 
first returns (f) among sample tree species. 

5.3.2 Feature selection results 

Based on the spectral separability and correlation assessment, we selected a set 
of bands maximizing the separability between each combination of two species. 
Fig. 5.6 shows the spectral separability index (SI) between fir and the other four 
tree species (i.e. maple, beech, birch, and spruce) based on each year of HySpex 
data. The most distinguishable wavelengths between all pairs were located at 
689.3–743.3 nm, 1087.7–1219.6 nm, and 2244.7–2412.6 nm. After feature 
selection, using the Uncorrelated Stable Zone Unmixing approach and the 
wrapper SVM algorithm (see section 2.5), 18 wavebands from the 2015 HySpex, 
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19 wavebands from the 2016 HySpex, five vegetation indices calculated from 
both years, and 14 LiDAR metrics, were selected for fir classification (Table 5.5).  

 
Fig. 5.6 The spectral separability index (SI) between fir and other four tree species (i.e. 
maple, beech, birch, and spruce) in the year of 2015 and 2016. 0 indicates the lowest SI 
and 1 indicates the highest SI between two species. 
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Table 5.5 Selected features derived from hyperspectral and LiDAR data 
Input variables Index or description 
LiDAR metrics  

 

Imean_first Mean intensity of first-or-single returns 
Imean_single Mean intensity of single returns 
Imean Mean intensity 
Ivar Variation of intensity 
Isd Standard deviation of intensity 
Ip95 Intensity of 95th percentile of normalized tree height 
Ewmean_single Mean echo width of single returns 

EWp55 Echo width of 55th percentile of normalized tree 
height 

Hmean_first Mean height of first-or-single returns 
Hmean_single Mean height of single returns 
Hvar Variation of height 
Hp99 99th percentile of normalized tree height 
Percent_first Percentage of first returns above 2m 
Percent_all Percentage of all returns above 2m 
  
Spectral features (HSI)   
Band reflectance (nm)  
2015 HySpex 415.7 nm, 433.7 nm, 502.1 nm, 527.3 nm, 692.9 nm, 

700.1 nm, 714.5 nm, 732.5 nm, 764.9 nm, 872.9 nm, 
1201.6 nm, 1219.6 nm, 1597.3 nm, 2106.8 nm, 
2262.7 nm, 2382.6 nm, 2400.6 nm, 2418.6 nm 
 

2016 HySpex 419.3 nm, 437.3 nm, 458.9 nm, 678.5 nm, 689.3 nm, 
692.9 nm, 700.1 nm, 707.3 nm, 714.5 nm, 746.9 nm, 
854.9 nm, 883.7 nm, 1195.6 nm, 1591.3 nm, 1723.2 
nm, 1771.1 nm, 2070.9 nm, 2406.6 nm, 2412.6 nm 

Vegetation Indices  
ACI2 ACI2=ρ650/ρ550 

SWIR_VI SWIR_VI=37.72*(ρ2210-ρ2090)+26.27*(ρ2280-
ρ2090)+0.57 

DWSI2 DWSI2=ρ1660/ρ550 

RVSI RVSI= (ρ714+ρ752)/2−ρ733 

5.3.3 Performance of classification 

Table 5.6 shows the one-class classification results of silver fir using three 
different classifiers. Classifications using BSVM generated higher accuracy than 
OCSVM and Maxent. The classification result using BSVM with LiDAR and 
HySpex data from 2016 achieved the highest accuracy (puAUC 0.95 and Kappa 
0.90), while the model using 2015 HySpex data had the same puAUC and a 
slightly lower Kappa value (0.89). 
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Table 5.7 shows the significant levels between classification results generated 
from different combinations based on p values in McNemar’s test. Significant 
improvements were found between the results from BSVM and the results using 
OCSVM or Maxent.   

Fig. 5.7 shows the normalized importance of selected features from hyperspectral 
and LiDAR data for fir classification. The most important spectral bands for fir 
classification varied between the different HySpex acquisitions: for 2015, the 
most important bands were 700.1 nm, 714.5 nm, 1201.6 nm, 1219.6 nm, 2262.7 
nm, and 2382.6 nm, while for 2016, the most important bands were 700.1 nm, 
714.5 nm, 1201.6 nm, 1591.3 nm, 1723.2 nm, 1771.1 nm, 2070.9 nm. However, 
there were several bands that were considered important in both years (700.1 nm, 
714.5 nm, and 1201.6 nm) (Fig. 5.7). The percentage of first returns above 2 m 
(Percent_first) and the intensity of 95th percentile of normalized tree height (Ip95) 
were the most important LiDAR metrics for fir classification.  

Fig. 5.8 displays the fir mapping results using 2016 HySpex and LiDAR data, 
based on the optimized BSVM model, for the two study sites. The mapped fir 
crowns are marked in yellow against the background of a colour-infrared aerial 
photograph. The point clouds of fir trees are highlighted in red.  

Table 5.6 One-class classification results of fir trees from hyperspectral and LiDAR data 
using three different classifiers 

 LiDAR+2015 HySpex LiDAR+2016 HySpex 

 puAUC Kappa puAUC Kappa 

OCSVM  0.89  0.87 0.90 0.87 

BSVM  0.95  0.89 0.95 0.90 

Maxent  0.83  0.82 0.87 0.85 

 
Table 5.7 McNemar’s test for pairwise comparison between classification results using 
different classifiers. NS: p > 0.05. ***p < 0.001.**p < 0.01. *p < 0.05. 
 LiDAR + 2015 HySpex LiDAR + 2016 HySpex 

 OCSVM Maxent OCSVM Maxent 
BSVM * ** * * 
Maxent * - NS - 
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Fig. 5.7 The normalized importance of selected features from the combination of each 
year HySpex and LiDAR data for fir classification. 
 

 
Fig. 5.8 Maps of fir trees in two study sites (500 m  500 m for each site) in the Bavarian 
Forest National Park. The crown of fir trees are highlighted in yellow. The point clouds 
of mapped fir are highlighted in red. 

5.4 Discussion  
This study accurately mapped individual silver fir trees in a Norway spruce 
dominated forest using one-class classification methods, employing key spectral 
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and structure features closely linked to species-specific traits. Our results 
demonstrated that the biased support vector machine classifier yielded the highest 
mapping accuracy, with the area under the curve for positive and unlabeled 
samples (puAUC) achieving 0.95 (kappa 0.90). 

Identifying key features that can reflect the specific traits of tree species is an 
important issue for tree species classification. Our study revealed that the most 
robust spectral bands from HySpex datasets for mapping of silver fir were located 
at wavebands 700.1 nm and 714.5 nm, which are strongly affected by leaf 
chlorophylls (Ustin et al. 2009), as well as the waveband of 1201.6 nm, which is 
sensitive to foliar water content (Kokaly et al. 2009). This result is in line with 
Gitelson et al. (2003)  and Ustin et al. (2009), who indicated that the total 
chlorophyll content in leaves is closely related to  the green (540-560 nm) and 
red edge (700-730 nm) wavelengths. In Chapter 4, leaf chlorophyll (Cab) and 
equivalent water thickness (Cw) were measured from field samples of five tree 
species (i.e. beech, birch, fir, maple and spruce); fir showed the highest leaf 

chlorophyll (mean: 56.3 g cm-2, sd: 11.0 g cm-2) and equivalent water thickness 
(mean: 0.0166 cm; sd: 0.0012 cm) among the five tree species. Norway spruce, 
as the other conifer, caused the main confusion in fir classification. However, it 

showed a comparatively low leaf chlorophyll (mean: 34.5 g cm-2, sd: 6.4 g cm-

2) and equivalent water thickness (mean: 0.0140 cm; sd: 0.0024 cm). This 
highlights that optimizing spectral separability between the focal tree species and 
others can help the discrimination of tree species, since absorption features 
caused by biochemical composition control the shapes of leaf reflectance spectra. 
It is worth noting that the specific wavebands that contribute most in a focal 
species mapping are highly depend on the species of interest and the neighboring 
species (e.g. the species with similar reflectance) as well as the forest 
characteristics (e.g. homogeneity and heterogeneity). 

Our results indicated that the most important LiDAR metrics for fir identification 
were the percentage of first returns (Percent_first) and the intensity of 95th 
percentile of normalized tree height (Ip95). The percentage of first returns reflects 
the shape of “crown shell” and the pattern of outer layers of a tree. Similarly, the 
intensity of 95th percentile of normalized tree height is related to the distribution 
of branches at the top of the canopy. From an autecological point of view, silver 
fir has a pyramidal crown that becomes flat-topped with age – the so called stork´s 
nest – while spruce displays a conic crown with an ascending upper level and 
drooping lower level (Farjon 1990; Silba 1986) (Fig. 5.9). The variation of the 
“Percent_first” captured the “flat-topped” crown traits of fir, which was the 
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smallest among other tree species. Our results suggest that the structural 
differences at the top of canopy among tree species that can be captured by 
airborne LiDAR are valuable for tree species discrimination. Moreover, 
combining the complimentary information from both airborne hyperspectral and 
LiDAR data provides additional perspectives for the discrimination of the focal 
species. 

 

                               (a) Sliver fir                      (b) Norway spruce    

Fig. 5.9 The crown shape of a silver fir tree (a) and a Norway spruce tree (b). (Photos by 
Rainer Simonis) 
 

We did not find a significant difference between the classification results using 
HySpex at 4 m (2015) and HySpex at 2 m (2016) (0.03-0.06 improvement of 
puAUC and 0.02-0.04 improvement of Kappa). The slight difference between the 
results may due to the variances in illumination conditions, the number of 
reference pixels as well as the spatial resolution from different years. Given that 
the crown size of the sample trees in this study were 5-12 m, a spatial resolution 
smaller than the scale of tree crowns was found to be adequate for individual tree 
species discrimination, as also indicated by Clark et al. (2005). Our reason for 
using two HySpex images in this study was to evaluate the robustness of the 
selected features and classification methods. Given the similar acquisition date of 
the year and the focal species (i.e. fir as a conifer species), we did not attempt to 
capture phenological changes among different years for classification. However, 
it is notable that our study was situated in a natural temperate forest in Central 
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Europe, the optimal spatial resolution for individual tree species mapping in other 
forests is closely related to the ecosystem under consideration.         

In this study, the BSVM classifier produced the highest mapping accuracies under 
all dataset combinations, especially in comparison to Maxent. Similar results 
have been reported in previous studies. For example, Waske (2017) showed that 
BSVM had the highest discriminative potential, followed by Maxent (with 
parameter tuning), Maxent (with default parameters) and OCSVM, while Stenzel 
et al. (2017) found that BSVM outperformed Maxent (with default parameters) 
and OCSVM in the classification of high nature value grassland areas (Piiroinen 
et al. 2018). Although the model performance has been optimized by searching 
for the best combination of parameters in our study, it should be noted that input 
feature combinations may also influence the performance of classifiers, as 
mentioned by Skowronek et al. (2017). This suggests that the correlation between 
input features as well as the optimization of parameters within the models should 
be both considered for improving classification results.  

Our study accurately mapped silver fir in a natural temperate forest using one-
class classification, however, broadly speaking, tree species mapping via remote 
sensing remains challenging. The mapping accuracy of the focal species is highly 
dependent on the tree species diversity in the study area, the similarity between 
the species of interest and co-existing species, and the amount of field data 
available. More presence and absence field data may be required before the model 
can be applied over a larger extent. Furthermore, as mentioned by Budei et al. 
(2018), having a diversity of tree ages in the sampled crowns comparatively 
increases the intra-species variability and the classification error probability 
because of the changes in tree architecture, leaf shapes and reflectance with tree 
age. Given the architectural variability of the top crown of fir between different 
ages, for example, an understanding of whether stratification by tree age or 
environmental factors (e.g. soil type and topographic condition) could improve 
classification performance should be explored in future research. 

5.5 Conclusions  
This study demonstrated that spectral and structure features derived from airborne 
hyperspectral and LiDAR data can capture species-specific traits, which, when 
used in a one-class classification model, can accurately identify the ecologically 
important silver fir trees in a temperate mixed forest. The mapping results 
identified areas with a high occurrence probability of silver fir trees, which can 
increase the efficiency of subsequent field campaigns for forest management and 
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biodiversity monitoring. The methodology we demonstrated in this study could 
be applied in the mapping of other tree species, which enriches the knowledge of 
species-specific characteristics and the related remotely sensed signatures. Forest 
managers and policy makers increasingly require individual tree species 
information, which can inform management strategies to assist forest inventory 
in larger spatial scales and protect important species such as the silver fir.  
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Chapter 6  

Synthesis: Mapping individual tree species 
using multi-source remotely sensed data 
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6.1 Summary  
Accurately identifying individual tree species is crucial for economic and 
ecological applications. Tree species mapping is also important for forestry 
production and conservation management. Therefore, more efficient techniques 
for mapping of tree species are required (Lin and Hyyppä 2016). 

This thesis explored species-specific features derived from various remote 
sensing datasets, including digital aerial colour-infrared photographs, airborne 
hyperspectral and LiDAR data for accurately mapping individual tree species 
using machine learning algorithms. Chapter 2 evaluated the performance of 37 
frequently used LiDAR metrics derived under leaf-on and leaf-off conditions, 
respectively, for discriminating six tree species in a mixed natural forest. It 
revealed that radiometric features, especially intensity related metrics, provided 
more consistent and significant contributions than geometric features for tree 
species discrimination. Chapter 3 examined whether multi-temporal colour-
infrared (CIR) orthophotos can be used to improve airborne LiDAR-based 
individual tree species mapping in a natural forest. The results showed that 
texture features derived from multi-temporal CIR orthophotos (three years) under 
different illumination conditions can capture the species-specific differences 
which significantly improved the species classification performance. Chapter 4 
integrated three plant functional traits (i.e. equivalent water thickness, leaf mass 
per area and leaf chlorophyll) retrieved from hyperspectral data with 
hyperspectral derived spectral features and airborne LiDAR derived metrics for 
tree species mapping. We found that adding plant functional traits significantly 
improved the classification accuracy than using LiDAR or hyperspectral data 
alone. Chapter 5 chose silver fir (Abies alba) as an example focal species in the 
Bavarian Forest National Park and identified key spectral and structure features 
derived from remotely sensed data closely linked to species-specific traits, which 
contributed accurately mapping of this species using one-class classification. 
Morphological and spectral difference between silver fir and other four tree 
species were identified and linked with species-specific traits, leading higher 
mapping accuracy of silver fir.  

The region covered in  Chapters 2, 3, 4 and 5 comprised two study sites identified 
in the Bavarian Forest National Park. The fieldwork was conducted in 2016 and 
2017. However, due to the different datasets employed in each chapter and the 
amount of sample trees coinciding with the integrated datasets, the sample size 
of tree species differs from each chapter. Moreover, although the Random Forest 
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algorithm was employed in Chapters 2, 3 and 4, it serves different purposes in the 
thesis through evaluating various integrated features derived from multi-source 
remotely sensed data. 

6.2 The potential of geometric and radiometric features 
derived from LiDAR in tree species mapping 

The availability of LiDAR system to measure three-dimensional information of 
trees, such as foliage distributions and branching patterns, provides an 
opportunity to significantly improve forest tree species classification accuracy (Li 
et al. 2013). Among the LiDAR derived metrics, the geometric metrics describe 
the geometric structure of trees (e.g. crown shape, tree height and crown volume) 
while the radiometric metrics refer to specific echo parameters that are extracted 
from the received waveform (e.g. the backscatter cross-section, the energy of 
laser points, and the distance between two waveform echoes) (Koenig and Höfle 
2016; Wagner 2010). Over the past decade, a large number of airborne LiDAR-
derived metrics have been proposed for tree species classification (Kim et al. 
2011; Ørka et al. 2009). Yet an in-depth ecological and biological understanding 
of the significance of these metrics for tree species mapping remains largely 
unexplored. 

The potential of LiDAR derived metrics is essential for efficiently and accurately 
mapping individual tree species. Chapter 2 explored the potential of frequently 
used geometric and radiometric LiDAR metrics under leaf-on and leaf-off 
conditions for the classification of six tree species in a mixed temperate forest. 
Chapter 2 indicated that radiometric features consistently contributed a higher 
accuracy compared to geometric features for classifying tree species under both 
leaf-on and leaf-off conditions. Particularly, the mean intensity of first-or-single 
returns provides consistent valuable contribution for tree species discrimination 
due to its ability of depicting the outer “crown shell” of trees. It implies that the 
difference in the spatial distribution of branches between different species is most 
prominent at the top of canopy. However, many geometric features are affected 
by tree height, which may be also related to other properties, such as crown 
volume, crown shape and the interior structure of the tree crown. 
Misclassifications may be due to the similarities of the morphology among 
different tree species and also the architectural variations within the same tree 
species. For future research, more detailed radiometric features derived from 
multi-spectral LiDAR related to internal foliage and branch patterns of an 
individual tree may be used to increase species discrimination.  
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6.3 The contribution of multi-temporal airborne remotely 
sensed data in tree species mapping 

An important contribution of remotely sensed data to tree species mapping is its 
potential to capture the changes that occur in different tree species over extended 
period of time. Multi-temporal passive remote sensing data, such as aerial 
photographs, multispectral and hyperspectral imagery, can capture the spectral 
signatures linked to biochemical and biophysical attributes of tree species during 
different phenological periods (e.g. bud burst, leaf flushing, flowering, 
senescence and dormancy) (Fang et al. 2018). Multi-temporal active remote 
sensing data, such as LiDAR under leaf-on and leaf-off conditions, can measure 
the changes of three dimensional features describing species differences in crown 
architecture and structure (Fig. 6.1). Digital colour-infrared (CIR) aerial 
photographs, which have been collected routinely in many parts of the world, are 
an invaluable data source for the monitoring and assessment of forest resources. 
Yet, the potential of these data for automated mapping of individual tree species 
remains largely unexplored. Moreover, due to the incompatibility of 
hyperspectral and LiDAR collections, data availability as well as the high costs 
associated with acquisitions and data processing efforts, the full potential of 
multi-temporal remotely sensed datasets for tree species classification has yet to 
be realized.  

To evaluate the capacity of multi-temporal LiDAR data for discriminating tree 
species, chapter 2 tested 37 frequently used LiDAR metrics under leaf-on and 
leaf-off conditions to classify six different tree species in  the Bavarian Forest 
National Park. Chapter 2 indicated a significant improvement of overall accuracy 
and kappa value when combining leaf-on and leaf-off LiDAR metrics (OA: 
66.5%, kappa: 0.58) than using only leaf-on LiDAR metrics (OA: 58.2%, kappa: 
0.47) or only leaf-off LiDAR metrics (OA: 62.0%, kappa: 0.51). However, there 
was no statistically significant difference between the use of leaf-on and leaf-off 
LiDAR metrics. Nonetheless, due to the LiDAR metrics under leaf-off condition 
may offer a better chance to describe the interior structure of trees, a large 
proportion of important metrics were generated under leaf-off condition (Shi et 
al. 2018b). 
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Fig. 6.1 An example of the LiDAR returns under leaf-on and leaf-off conditions 
 

To examine the role of multi-temporal aerial photographs in LiDAR-based 
individual tree species mapping, chapter 3 demonstrated how texture features 
generated from multi-temporal digital CIR orthophotos under different view-
illumination conditions can further improve the mapping accuracy in a temperate 
mixed forest. Species-specific information can be captured by the texture features 
derived from multi-temporal digital aerial photographs with different 
illumination geometry. Due to the high correlation between texture features 
(especially those derived from the same year) as well as the spectral variance 
within same species, only combining digital CIR orthophotos from more than two 
years with LiDAR data delivered a statistical significant improvement compared 
with using LiDAR data alone.  
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To explore the potential of multi-temporal hyperspectral data for individual tree 
species mapping, spectral, spatial and temporal variability are important 
considerations for classifying tree species (Dudley et al. 2015). Chapter 5 
presented an example of how hyperspectral imageries with different spatial 
resolution (2 m from 2016 and 4 m from 2015) and one-year time difference can 
be used for a focal tree species mapping in conjunction with LiDAR data. The 
difference between the classification results using 2 m and 4 m hyperspectral 
imageries was marginal. However, the multi-temporal hyperspectral data were 
mostly collected in July and August in the  Bavarian Forest National Park, thus, 
phenological changes can hardly see from the datasets. Further research is 
required to understand how multi-temporal hyperspectral imageries may capture 
distinct phenological periods for tree species mapping.  

6.4 The role of remotely sensed plant functional traits in 
tree species mapping 

The characteristics of different tree species closely related to genetics, 
environmental conditions and the biophysical and biochemical compositions 
(Kozhoridze et al. 2016). Due to the improvements in 400–2500 nm imaging 
spectrometers, the capabilities of remote sensing to determine plant functional 
traits have been established during the past few decades (Asner and Martin 2009; 
Féret and Asner 2011; Martin et al. 2018). Previous studies have indicated that 
tree species vary markedly in leaf water content (Huber et al. 2008), leaf mass 
per area (Casas et al. 2014), nitrogen and carbon concentration (Huber et al. 2008; 
Wang et al. 2016). For example, based on the data collected in a highly diverse 
tropical forest, Asner and Martin (2009) found that spectral signatures linked to 
seven leaf functional traits (chlorophyll a, chlorophyll b, carotenoids, nitrogen, 
phosphorus, water content, and specific leaf area) are unique for 41 tree species. 
Based on our fieldwork conducted in July 2017, six tree species (including 53 
beech trees, 37 birch trees, 44 fir trees, 44 maple trees, 12 rowan trees, 47 spruce 
trees) show distinct differences of measured plant functional traits (Fig 6.2). 
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Fig. 6.2 Plant functional traits measured in the field among six tree species in the Bavarian 
Forest National Park, Germany. 
 

Plant functional traits have been extensively used to describe, rank and 
discriminate species according to their variability between species in classical 
plant taxonomy. However, the utility of plant functional traits for tree species 
classification from remotely sensed data in natural forests has not been clearly 
established. In chapter 4, we have hypothesized that combining plant functional 
traits retrieved from hyperspectral data with airborne LiDAR-derived metrics and 
spectral features generated from hyperspectral data could improve the 
performance of tree species classification. One of the radiative transfer models 
(RTMs) – INFORM model was used to retrieve three plant functional traits (i.e. 
equivalent water thickness (Cw), leaf mass per area (Cm) and leaf chlorophyll 
(Cab)). Chapter 4 demonstrated that when plant functional traits (i.e. equivalent 
water  thickness (Cw), leaf mass per area (Cm) and leaf chlorophyll (Cab)) were 
combined with spectral features and LiDAR metrics, an overall  accuracy of  84.2% 
was obtained, which was statistically significantly higher than using LiDAR 
(65.1%) or hyperspectral (69.3%) data alone. Using the retrieved plant functional 
traits significantly increased tree species classification accuracy – especially 
when combined with LiDAR metrics. This result validated the assumption that 
adding species-specific plant functional traits into classification with unique 
structural profiles aids the discrimination of tree species, which, has a profound 
meaning for ecology and remote sensing research. 
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To further explore the potential of the various types of remote sensing data for 
applications dedicated to the accurate retrieval of plant functional traits of tree 
species, realistic and accurate simulations of forest ecosystems are required 
(Ferreira et al. 2018). More comprehensive 3D RTMs, such as the discrete 
anisotropic radiative transfer (DART) model, can be employed to simulate the 
radiative transfer of forest canopies, helping to interpret the radiometric signal 
measured by remote sensing. Combining airborne hyperspectral, LiDAR and in 
situ measurements for 3D RTMs parameterizing and plant functional traits 
retrieving for tree species classification purposes need to be further explored in 
the future work.  

6.5 Improving mapping accuracy of single tree species by 
connecting remotely sensed features and species-
specific traits  

From an ecological and biological perspective, classification of individual tree 
species requires species-specific features, which can be morphological (e.g. tree 
height, tree branching pattern), physiological (e.g. photosynthesis rate), 
biochemical (e.g. leaf chlorophyll, leaf water content) or phenological (e.g. leaf 
phenology, flowering time) features (Shi et al. 2018a). Tree species mapping with 
remote sensing should be linked to an understanding that tree species have unique 
structural profiles and spectral signatures as well as genetic characteristic 
properties (Asner et al. 2009; Cho et al. 2010; Clark et al. 2005). Given the 
advantage of various remote sensing sensors, discovering the connections 
between spectral and structural features derived from remote sensing datasets and 
species-specific traits of trees becomes crucial for accurate classification of 
individual tree species. However, an in-depth understanding of how remotely 
sensed information depicts the species of trees, in other words, how trees display 
differently in remote sensing data, is still poorly developed. Moreover, the critical 
obstacles in traditional multi-class tree species classification remain challenging, 
such as the limited samples size, inter-species similarities, intra-species variations, 
feature redundancy and classifiers inapplicability.  

The principle of tree species classification is to identify species-specific traits and 
link them to remotely sensed signals. Chapter 5 used silver fir as the focal tree 
species, and demonstrated a workflow of accurately mapping this species using 
species-specific traits. Chapter 5 showed that multi-source remote sensing 
datasets (i.e. LiDAR and hyperspectral data) can provide complimentary species-
specific information. For example, wavebands of 700.1 nm, 707.3 nm from 
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HySpex data provide great spectral information to identify fir trees, which are 
strongly affected by chlorophylls of leaves. Meanwhile, the best performed 
LiDAR metrics – the percentage of first returns and the 95th percentile of 
intensity capture the main morphological difference between silver fir and 
Norway spruce which appears at the top of tree crown. Given the architectural 
variability of top crown of fir between different age as an example, the 
understanding of whether stratification by tree age or environmental factors (e.g. 
soil type and topographic condition) could improve classification performance 
should be explored in future research. 

6.6 The role of machine learning techniques in tree 
species mapping 

Machine learning, a family of statistical techniques with origins in the field of 
artificial intelligence, is recognized as holding great promise for efficient 
processing of remote sensing data and modeling ecological systems (Olden et al. 
2008). For remotely sensing the species of individual trees, machine learning has 
the capacity of handling datasets with high dimensionality, reduce variable 
redundancy and noise, and simplify the process of combining datasets (Marrs and 
Ni-Meister 2019). Many previous studies have attempted to identify and map 
individual tree species based on the developments in remote sensing technology 
coupled with machine learning techniques (e.g. Dalponte et al. 2019; Kamal and 
Phinn 2011; Lim et al. 2019; Marrs and Ni-Meister 2019; Maxwell et al. 2018). 
It is also increasingly easy to implement such techniques: free, user-friendly data 
mining and machine learning applications have already been made available in 
software such as Matlab, R, and Python.  

Historically, visual interpretation of aerial photography was the most popular 
form of remote sensing of forests (Barrett et al. 2016; Spurr 1960). Compared to 
this traditional means based on expert knowledge, machine learning techniques 
allow the computer to learn from input data and establish a workflow presenting 
the prediction. The identification of spectral, textural, and structural variables 
from various remotely sensed datasets suggests that machine learning techniques 
can successfully identify variables with high explanatory power for 
differentiating among tree species, and opens the possibility of addressing large-
scale forestry questions using optimized remote sensing workflows. A sample 
workflow for comparing machine learning methods for tree species classification 
is shown in Fig. 6.3 (Marrs and Ni-Meister 2019). This thesis tested several 
machine learning algorithms  for tree species classification. Chapter 2, chapter 3 
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and chapter 4 showed great capability of the Random Forest algorithm for 
handling multi-source variables, feature importance evaluation and multi-class 
classification. Chapter 5 compared three one-class classifiers (i.e. OCSVM, 
BSVM, and Maxent) for the focal species identification. Despite the advantages 
of machine learning techniques for tree species mapping from remote sensing, 
our results also indicate that feature selection and parameters tuning should be 
carefully investigated for optimizing the classification performance. Future 
research is needed to further investigate the uncertainties and transferability of 
machine learning techniques for tree species mapping. 

As machine learning is still an active area of research in remote sensing and the 
wider research community, new developments and new algorithms are likely to 
provide enhanced and improved functionality for tree species classification from 
remotely sensed data (Maxwell et al. 2018). For example, deep learning methods 
(e.g. deep neural networks) allow for new input features to be produced from the 
low-level input data, such as image bands, that can more adequately describe the 
classes of interest. 
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Fig. 6.3 Sample workflow for comparing machine learning methods for tree species 
classification (Marrs and Ni-Meister 2019).  

6.7 Applications of remote sensing in forestry improve the 
efficiency of government management and industry  

Remote sensing based mapping of forests can improve the efficiency of forestry 
management at multiple scales. It is essential that the spatial and temporal 
resolution of remotely sensed data be matched to the relevant scales of 
biodiversity, major threats, and management actions (Wiens et al. 2009). At a 
global scale, remote sensing based  mapping of forests can build the foundation 
for setting spatial priorities about where to focus conservation efforts, assessing 
the condition of ecological systems, and evaluating the effectiveness of 
management practices or strategies (Hoekstra et al. 2005). At a regional scale, 
remote sensing based  mapping of forests provides valuable information for 
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national forest inventories which can also be updated accordingly for forest 
monitoring purposes. At a local scale, remote sensing based mapping of forests 
can display detailed forest characters and parameters at individual tree level, 
aiding site-specific and species-specific applications.     

Remote sensing based mapping of forests assists efficient forestry management 
in long run. With the advances in spatial, spectral and temporal resolution of 
remotely sensed data, tree species composition and distribution can be mapped 
and monitored in various scales with long time span, deriving valuable 
information for biodiversity assessment and conservation planning. For example, 
time-series forest maps help managers identify early warning signs of climate 
change based on early identifications of changes in plant physiology and 
phenology (Nagendra et al. 2013). Meanwhile, remote sensing can be used to 
establish spatial priorities, assess the condition of ecological systems, and 
evaluate the effectiveness of management practices or strategies, as indicated by 
Wiens et al. (2009). Furthermore, remote sensing based mapping of forests is 
being used to assess forest cover changes observed across large areas with 
different forest types and management goals, while still providing high-quality, 
comparable data that allow characterization, quantification and interpretation of 
changes based on site-specific conservation objectives. 

6.8 Future work and broader implications 
Individual tree species classification in natural forests remains a challenging task. 
The ability to accurately discriminate tree species on local to global scales 
represents a major advance in remote sensing science (Asner 2013). However, 
success depends, in large part, on a solid understanding of the spectral, spatial 
and temporal resolution constraints on mapping species within and across a 
diverse set of ecosystems. Future work should be focusing on discovering and 
employing species-specific biophysical and biochemical plant traits to improve 
the interpretability of remotely sensed data for tree species mapping.  

Recently, small-format hyperspectral cameras on-board unmanned aerial 
vehicles (UAVs) have been on the spotlight and they began to be explored for 
tree species classification in forests (Nevalainen et al. 2017; Tuominen et al. 
2018). Compared to satellite and airborne data acquisition, UAV-borne methods 
have many advantages, such as the possibility to collect data even under poor 
imaging conditions (e.g. under cloud cover), which makes it very operational in 
a wide range of environmental measuring applications (Sothe et al. 2019); the 
cost-efficient data collection with the desired spatial and temporal resolutions; 



Chapter 6 

117 

and the non-dependence on airports for take-off, or satellite availability in the 
desired area (Paneque-Gálvez et al. 2014). As they operate at a lower flight 
altitude than conventional aerial platforms, they offer a finer spatial resolution. 
On the other hand, UAVs have limited payload, short flight endurance and they 
present instability in windy conditions, which restrict their use in large scale 
applications (Nex and Remondino 2014).  

Due to increased information on plant phenology, dense time series of 
multispectral Landsat-8 and Sentinel-2 data can serve as a good basis for the 
mapping of forest composition at national scales, considering major tree species 
typically occurring in temperate and boreal ecosystems (Fassnacht et al. 2016). 
The WorldView-2 satellite (DigitalGlobe Inc., Westminster, CO, USA), which 
has eight spectral bands and a spatial resolution of 0.5 m in the panchromatic 
band and 2 m in the VNIR bands, is probably capable to provide relatively 
accurate estimates of both species diversity and stand structure (Nex and 
Remondino 2014). Furthermore, the WorldView-3 satellite was launched in 
August 2014 with a 16-band mode that consists of eight VNIR bands, similar to 
WorldView-2, in addition to eight short-wave infrared (SWIR) bands that may 
enhance species-specific analysis (Hartling et al. 2019). 

A major aim of several spaceborne hyperspectral missions is to map plant species 
in support of ecosystem research, including the upcoming NASA's Hyperspectral 
Infrared Imager, and EnMAP (Environmental Monitoring and Analysis Program) 
(Abrams and Hook 2013) as well as the ongoing Global Ecosystem Dynamics 
Investigator (GEDI) spaceborne LiDAR which provides the first detailed 3D 
structure of forested ecosystems. The relative high resolution and global coverage 
with revisit observations indicate the potential ability of combining spaceborne 
hyperspectral and LiDAR sensors for mapping dominant tree species at pixel 
level in different forest ecosystems. By combining the spaceborne data sets, we 
attempt to explore their capacity to map tree species across multiple ecosystems 
simultaneously, which will be the goal for the ongoing and upcoming spaceborne 
hyperspectral and LiDAR data. 
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Summary 
The accurate identification of tree species is critical for the management of forest 
ecosystems. Mapping of tree species is an important task as it can assist a wide 
range of environmental applications, such as biodiversity monitoring, ecosystem 
services assessment, invasive species detection, and sustainable forest 
management.  

Compared to the conventional approaches based on labor-intensive field 
measurements, remote sensing has supplied a large variety of cutting-edge 
techniques to accomplish forest inventory. However, individual tree species 
classification in natural mixed forests, as it is typical in central Europe, is still a 
challenging task. High spectral and structural intra-species variability and inter-
species similarity, due to phenological effects, differences in tree age and 
openness of canopies, shadowing effects, and environment variability, restrict 
tree species separability. An in-depth understanding of the relationship between 
species-specific features and remote sensing observations for tree species 
classification needs further investigation.  

This thesis aimed to accurately map the species of individual trees using multi-
source remotely sensed data, including aerial photographs, airborne LiDAR and 
hyperspectral data. The research in the thesis firstly evaluated the performance of 
geometric and radiometric metrics from airborne LiDAR data under leaf-on and 
leaf-off conditions for individual tree species discrimination. The results 
empathized the importance of intensity-related LiDAR metrics for tree species 
identification under both leaf-on and leaf-off conditions. Then, the thesis 
examined whether multi-temporal digital CIR orthophotos could be used to 
further increase the accuracy of airborne LiDAR-based individual tree species 
mapping. The results showed that the texture features generated from multi-
temporal digital CIR orthophotos under different view-illumination conditions 
are species-specific. Combining these texture features with LiDAR metrics 
significantly improved the accuracy of individual tree species mapping. To 
explore more valuable species-specific features, the thesis consequently 
integrated three plant functional traits (i.e. equivalent water thickness, leaf mass 
per area and leaf chlorophyll) retrieved from hyperspectral data with 
hyperspectral derived spectral features and airborne LiDAR derived metrics for 
mapping five tree species. Three selected plant functional traits were accurately 
retrieved using radiative transfer model and further improved the accuracy of tree 
species classification. Eventually, the thesis focused on an important tree species 
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–  silver fir, and accurately mapped individuals of this species based on one-class 
classifiers using integrated airborne hyperspectral and LiDAR data. The mapping 
results provided the references locating the areas with a high occurrence 
probability of silver fir trees and hence increase the efficiency in subsequent field 
campaigns for forest management and biodiversity monitoring.  

This thesis explored the potential of various remotely sensed datasets for 
individual tree species mapping. The methodologies and findings in this thesis 
can be applied in the mapping of other tree species, which enriches the knowledge 
of species-specific characteristics and related remotely sensed signatures. The 
emerging of UAVs and the upcoming hyperspectral missions such as EnMAP 
and HySPIRI deliver valuable datasets with multi-scale coverage and revisit 
observations, which can be used for mapping the diversity of tree species at stand 
or regional level.  
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Samenvatting 
De nauwkeurige identificatie van boomsoorten is van cruciaal belang voor het 
beheer van bosecosystemen. Het in kaart brengen van boomsoorten is een 
belangrijke taak omdat het een breed scala aan milieutoepassingen kan 
ondersteunen, zoals monitoring van de biodiversiteit, beoordeling van 
ecosysteemdiensten, detectie van invasieve soorten en duurzaam bosbeheer. 

In vergelijking met de conventionele benaderingen op basis van arbeidsintensieve 
veldmetingen, heeft teledetectie een grote verscheidenheid aan geavanceerde 
technieken opgeleverd om bosinventarisatie uit te voeren. De individuele 
classificatie van boomsoorten in natuurlijk gemengde bossen, zoals gebruikelijk 
in centraal Europa , is echter nog steeds een uitdagende taak. Hoge spectrale en 
structurele intraspecifieke variabiliteit en gelijkenis tussen species, vanwege 
fenologische effecten, verschillen in structuur leeftijd en openheid van luifels, 
schaduweffecten en milieu variabiliteit beperken de mogelijkheid om 
boomsoorten te kunnen onderscheiden. Een diepgaand begrip van de relatie 
tussen soortspecifieke kenmerken en teledetectieobservaties voor classificatie 
van boomsoorten moeten nader worden onderzocht. 

Dit proefschrift heeft als doel om de soorten individuele bomen nauwkeurig in 
kaart te brengen met behulp van op afstand gedetecteerde gegevens uit meerdere 
bronnen, waaronder luchtfoto's, LiDAR in de lucht en hyperspectrale gegevens. 
Het onderzoek in het proefschrift evalueerde eerst de prestaties van geometrische 
en radiometrische metrieken van LiDAR-gegevens in de lucht onder leaf-on en 
leaf-off omstandigheden voor individuele boomsoortendiscriminatie. De 
resultaten benadrukten het belang van intensiteitsgerelateerde LiDAR-
statistieken voor de identificatie van boomsoorten onder zowel leaf-on als leaf-
off omstandigheden. Vervolgens is in het proefschrift onderzocht of multi-
temporele digitale CIR-orthofoto's kunnen worden gebruikt om de 
nauwkeurigheid van op LiDAR gebaseerde individuele boomsoortenkaarten 
verder te vergroten. De resultaten toonden aan dat de textuurkenmerken 
gegenereerd door multi-temporele digitale CIR-orthofoto's onder verschillende 
belichtingsomstandigheden soortspecifiek zijn. De combinatie van deze structuur 
functies met LiDAR metrics een aanzienlijke verbetering van d de 
nauwkeurigheid van individual boomsoorten mapping. Om meer waardevolle 
soortspecifieke kenmerken te onderzoeken, integreerde het proefschrift daarom 
drie plantfunctionele eigenschappen (dwz equivalente waterdikte, bladmassa per 
oppervlakte en bladchlorofyl) verkregen uit hyperspectrale gegevens met 
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hyperspectrale afgeleide spectrale kenmerken en uit de lucht afkomstige LiDAR-
metrieken voor het in kaart brengen van vijf boomsoorten. Drie geselecteerde 
functionele kenmerken van planten werden nauwkeurig opgehaald met behulp 
van het stralingsoverdrachtmodel en verbeterden verder de nauwkeurigheid van 
de boomsoortclassificatie. Uiteindelijk richt het proefschrift  zich op een 
belangrijke soort – zilver spar, en nauwkeurig in kaart gebracht van deze soort op 
basis van één-class classifiers met behulp van geïntegreerde airborne 
hyperspectrale en LiDAR data. De karteringsresultaten verschaffen verwijzingen 
om de gebieden met een grote optredingswaarschijnlijkheid voor de zilver 
sparren te lokaliseren en daarmee de efficiëntie volgende gebied campagnes 
bosbouw en daarmee de monitoring van biodiversiteits te verhogen. 

Dit proefschrift onderzocht het potentieel van verschillende op afstand 
gedetecteerde datasets voor het in kaart brengen van individuele boomsoorten. 
De methodologieën en bevindingen in dit proefschrift kunnen worden toegepast 
bij het in kaart brengen van andere boomsoorten, wat de kennis van 
soortspecifieke kenmerken en gerelateerde op afstand gedetecteerde 
handtekeningen verrijkt. De opkomst van UAV's en de aankomende 
hyperspectrale missies zoals EnMAP en HySPIRI leveren waardevolle datasets 
met multi-schaal dekking en herwaarderingswaarnemingen , die kunnen worden 
gebruikt voor het in kaart brengen van de diversiteit van boomsoorten op stand 
of regionaal niveau. 
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