
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DRONES FOR CONSERVATION: 

INTEGRATING UAVS WITH FIELD 

METHODS TO CLASSIFY 

SATELLITE IMAGERY TO MAP 

PLANT COMMUNITIES – A CASE 

STUDY OF DRENTSCHE AA, THE 

NETHERLANDS 

RHEA SINGH CHIB 

August, 2021 

SUPERVISORS: 

Dr. P. Nyktas  

Dr.ir. W. Bijker  





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis submitted to the Faculty of Geo-Information Science and Earth 

Observation of the University of Twente in partial fulfilment of the 

requirements for the degree of Master of Science in Geo-information Science 

and Earth Observation. 

Specialization: Geoinformatics (GFM) 

 

 

 

SUPERVISORS: 

Dr. P. Nyktas 

Dr.ir. W. Bijker 

 

THESIS ASSESSMENT BOARD:  

Dr.ir. T.A. Groen (Chair) 

Dr.ir. C.A. Mücher (External Examiner, Wageningen University & Research,     

The Netherlands) 

 

 

  

DRONES FOR CONSERVATION: 

INTEGRATING UAVS WITH FIELD 

METHODS TO CLASSIFY 

SATELLITE IMAGERY TO MAP 

PLANT COMMUNITIES – A CASE 

STUDY OF DRENTSCHE AA, THE 

NETHERLANDS 

 

RHEA SINGH CHIB 

Enschede, The Netherlands, August, 2021 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCLAIMER 

This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and 

Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the 

author, and do not necessarily represent those of the Faculty. 



DRONES FOR CONSERVATION: INTEGRATING UAVS WITH FIELD METHODS TO CLASSIFY SATELLITE IMAGERY TO MAP PLANT COMMUNITIES – A CASE STUDY OF 

DRENTSCHE AA, THE NETHERLANDS 

i 

ABSTRACT 

Plant Communities are the rudimentary unit of natural habitats and have high ecological importance. With 

the increasing rate of biodiversity loss, vulnerable plant communities and associated species are at higher 

risk. Hence, mapping their extent becomes important to assess the conservation status of an area. The 

traditional method of ground survey is the most precise, but laborious and expensive, restricting it to 

smaller areas. On the other hand, satellite imagery can cover larger areas, but the spatial resolution of 

freely available imageries does not allow detailed mapping. UAVs have several advantages over these 

methods like very high spatial resolution, being more cost-efficient and allowing flexible data collection, 

but limitations of lower spatial coverage and restrictive flying regulations. Hence, all these three methods 

have their advantages and disadvantages but integrating them could result in a promising approach to 

precisely map plant communities. This study proposes a method to integrate UAVs with ground surveys 

to improve the classification results of the satellite imagery. It aims to combine the benefits of high spatial 

resolution of the UAV imagery with the high spatial coverage of satellite imagery, to produce detailed 

maps on a larger scale. The National Park of Drentsche Aa, the Netherlands is used as a case study area to 

test this approach. The results show that OBIA efficaciously classifies the UAV imagery and produces 

detailed maps, with an accuracy of 87% for the classes of interest i.e., plant communities (different from 

the overall accuracy). The UAV imagery was then used to create additional samples to train RF to classify 

the satellite imagery; SuperView-1 and Sentinel-2 were used for the analysis. It produced better results in 

comparison to using only field samples (64% for Sentinel-2 and 67% for SuperView-1). The results did 

not have high accuracy as the spatial resolution of the satellite imageries did not allow clear separation of 

some classes. However, to make the classified maps more comparable to the broader scale of the existing 

vegetation map, the classes were systematically merged. It resulted in an increase in the accuracy (92% for 

Sentinel-2 and 93% for SuperView-1), though the level of detail was reduced. Nevertheless, this approach 

with some further improvements can emerge as a promising technique to precisely map plant 

communities on a larger scale for conservation.  

 
Keywords: UAVs, Plant Communities, Conservation, Object-Based Image Analysis (OBIA), Random 

Forest, Sentinel-2, SuperView-1 

 

 



DRONES FOR CONSERVATION: INTEGRATING UAVS WITH FIELD METHODS TO CLASSIFY SATELLITE IMAGERY TO MAP PLANT COMMUNITIES – A CASE STUDY OF 

DRENTSCHE AA, THE NETHERLANDS 

 

ii 

ACKNOWLEDGEMENTS 

The process undertaken to complete this research required sincere and continuous efforts, along with 

assistance, guidance and motivation from a whole lot of people. Having successfully completed this 

research, I would like to use this opportunity to thank all, who have directly or indirectly helped me in this 

journey.  

First and foremost, I would like to thank my supervisors, Dr. P. Nyktas and Dr.ir. W. Bijker for their 

constant guidance, encouragement, supervision and support throughout my research period. I would also 

like to thank them for making time for the weekly meetings, which not only helped me track my progress 

but the relentless feedback and discussions helped me improve my work. 

I would further like to extend my gratitude to the drone pilots that is my first supervisor, Dr. P. Nyktas 

and Mr. T.M.R. Roberts for helping me collect the UAV data and Dr. P. Nyktas again for guiding me 

during the field work and making the necessary arrangements. 

I would like to offer my special thanks to the management of the National Park, Drentsche Aa 

(Staatsbosbeheer) for granting us permission to fly the drone and collect the data. I highly acknowledge 

and appreciate Mrs. Judith Bosman for organizing it all for us and accompanying us in the field to give a 

general idea about the area and plant communities present in it.  

I would also like to express my gratitude to Drs. P.E. Budde for assisting me with the satellite data and 

downloading the SuperView-1 imagery for me, Dr. M. Belgiu for her valuable suggestions and guidance 

with the Random Forest classification, Dr.ir. R.A. de By, my mentor during my first year of study, for his 

support and encouragement, Drs. J.P.G. Bakx, the specialization coordinator for GFM (Geoinformatics) 

for encouraging me to pick a topic from another specialization and apply my GFM skills to solve an NRM 

(Natural Resources Management) problem, and Dr.ir. T.A. Groen, the Chair of the Assessment Board for 

his insightful comments and suggestions during the proposal defense and the mid-term presentation. 

At the same time, I would like to extend my sincere indebtedness to the Faculty of Geo-Information 

Science and Earth Observation (ITC), for awarding me the ITC Excellence Scholarship and for giving me 

the opportunity to pursue this course and for providing me with all the resources to complete my studies. 

I would also like to thank the GFM staff and my colleagues for their help and support and, Student 

Affairs to ensure I had a comfortable stay. 

My deepest gratitude goes to my family and friends for providing me with the emotional and moral 

support to be able to finish my studies. I am extremely grateful for their unwavering encouragement and 

belief in me. I would especially like to thank my parents and my brother for encouraging me to follow my 

dreams and make use of this opportunity to study abroad. 

Last but not the least, I would like to thank God for keeping me healthy and giving me the strength to go 

through these tough times. 

 



DRONES FOR CONSERVATION: INTEGRATING UAVS WITH FIELD METHODS TO CLASSIFY SATELLITE IMAGERY TO MAP PLANT COMMUNITIES – A CASE STUDY OF 

DRENTSCHE AA, THE NETHERLANDS 

iii 

TABLE OF CONTENTS 

ABSTRACT...…………………………………………………………..………………………………..…………………………………………………… i 

ACKNOWLEDGEMENTS...…………………………………………………………..………………………………..………………………… ii 

TABLE OF CONTENTS...…………………………………………………………..………………………………..……………………………. iii 

LIST OF FIGURES...…………………………………………………………..………………………………..……………………………………… v 

LIST OF TABLES...…………………………………………………………..………………………………..………………………………………. vii  

LIST OF ABBREVIATIONS...…………………………………………………………..………………………………..…………………… viii 
 

1. INTRODUCTION .............................................................................................................................................. 1 

1.1. Background & Motivation .........................................................................................................................................1 
1.2. Problem Statement & Justification ...........................................................................................................................3 
1.3. Research Indentification.............................................................................................................................................4 

 
2. MATERIALS AND METHODS ..................................................................................................................... 5 

2.1. Overview of Study Area .............................................................................................................................................6 
2.2. Data Collection ............................................................................................................................................................7 

                  2.2.1.    Field Observations……….…………………………………………..………………………………..…………………………………………...7 

                  2.2.2.    UAV Image Acquisition...…………………………………………………………..………………………………..……………………….. 9 

2.3. Data ............................................................................................................................................................................. 11 
            2.3.1.    Field samples .............................................................................................................................................. 11 

            2.3.2.    UAV acquired data .................................................................................................................................... 11 
            2.3.3.    Satellite Data ............................................................................................................................................... 12 

                   2.3.4.    Vegetation Report….………………………………………………………..………………………………..………..………………………..13 

2.4. Software ..................................................................................................................................................................... 15 
2.5. Data Processing, Classification & Accuracy Assessment .................................................................................. 15 

                    2.5.1.     Field Samples Processing.....…………………………………………………………..………………………………..…………………15 

                    2.5.2.     UAV Data Processing.…………………………………………………………..………………………………..…………………………..16 

                                  a.    Orthomosaic Generation.…………………………..………………………………..………………………………..……………16 

                                  b.    Object-Based Image Analysis (OBIA).…...………………………………………………………..………………………17 

                                  c.     Combining the two seasons..……..…………………………………………………..………………………………..………..18 

                    2.5.3.     Satellite Data Processing.…………………………………………………………..………………………………..………………………19 

                                  a.     Pre-processing.…………………………………………………………..………………………………..……………………………...19 

                                  b.     Classification.…………………………………………………………..………………………………..………………………………..20 

                                  c.     Accuracy Assessment.…………………………………………………………..………………………………..…………………. 20 

                                  d.     Variable Importance.…………………………………………………………..………………………………..…………………... 21 

2.6. Comparison of Results ............................................................................................................................................ 21 

                   2.6.1.     Comparison of UAV and Satellite classification results.…………………………………………………………..…... 21 

                     2.6.2.     Comparison of Satellite Classified maps and Vegetation Report map.…………..…………………………... 22 

 

3. RESULTS ........................................................................................................................................................... 23 

3.1. UAV Results .............................................................................................................................................................. 23 

                   3.1.1.     Orthomosaics.…………………………………………………………..………………………………..……………………………………… 23 

                     3.1.2.     Classification.…………………………………………………………..………………………………..……………………………………….. 24 

                     3.1.3.     Accuracy Assessment.…………………………………………………………..………………………………..…………………………. 27 

3.2. Satellite Results ......................................................................................................................................................... 29 

                     3.2.1.     Classification.…………………………………………………………..………………………………..……………………………………….. 29 

                     3.2.2.     Accuracy Assessment.…………………………………………………………..………………………………..…………………………. 32 

                     3.2.3.     Variable Importance.…………………………………………………………..………………………………..…………………………... 34 



DRONES FOR CONSERVATION: INTEGRATING UAVS WITH FIELD METHODS TO CLASSIFY SATELLITE IMAGERY TO MAP PLANT COMMUNITIES – A CASE STUDY OF 

DRENTSCHE AA, THE NETHERLANDS 

 

iv 

3.3. Comparison of Results ............................................................................................................................................ 38 

                   3.3.1.     Comparison of UAV and Satellite.…………………………………………………………..………………………………..…….. 38 

                     3.3.2.     Comparison of Satellite and Vegetation Report Map.…………………………………………………………..……… 39 

 

4. DISCUSSION .................................................................................................................................................... 43 

4.1. Effect of Seasons and Plant life-forms on the UAV classification results ..................................................... 43 
4.2. Effect of Spatial and Spectral Resolution on the Satellite classification results ............................................ 46 
4.3. Effect of Seasons and Spectral Resolution on the classification results ......................................................... 48 
4.4. Comparison of UAV and Satellite Results ........................................................................................................... 49 
4.5. Comparison of Satellite Results with Vegetation Report Map ......................................................................... 51 
4.6. Applicability of the methods .................................................................................................................................. 52 
4.7. Limitations of the Research .................................................................................................................................... 53 

 
5. CONCLUSION & RECOMMENDATIONS ............................................................................................. 55 

5.1. Conclusion ................................................................................................................................................................. 55 
5.2. Recommendations .................................................................................................................................................... 57 

 

LIST OF REFERENCES...…………………………………………………………..………………………………..…………………………….59 

APPENDICES...…………………………………………………………………………..………………………………..……………………………..64 



DRONES FOR CONSERVATION: INTEGRATING UAVS WITH FIELD METHODS TO CLASSIFY SATELLITE IMAGERY TO MAP PLANT COMMUNITIES – A CASE STUDY OF 

DRENTSCHE AA, THE NETHERLANDS 

v 

LIST OF FIGURES 

 
Figure 1. Flow chart showing the methodology used for this research ..................................................................................... 5 

Figure 2. Location and extent of the Drentsche Aa, along with specific study area for the satellite and the UAV ................ 6 

Figure 3. Field Photographs from winter with the scientific names of the dominant species representing the plant communities, 

along with a photograph of the iron-rich soil (d) representing the habitat in which Juncus effusus (c) usually grows ................. 7 

Figure 4. General specifications of Parrot Sequoia multispectral sensor and the sunshine sensor (Parrot Sequoia, n.d.) ......... 9 

Figure 5. Parrot Sequoia and sunshine sensor mounted on DJI Phantom 4, along with its battery, in the field .................. 10 

Figure 6. DJI Phantom 4 with Parrot Sequoia and sunshine sensor, the controller connected to a tablet and the calibration 

plate in the field ............................................................................................................................................................... 10 

Figure 7. Flight plan in Pix4D capture and Parrot sequoia settings in the Parrot Sequoia app ........................................ 11 

Figure 8. Calibration Plate ............................................................................................................................................. 11 

Figure 9. Field photographs of the plant species that started to flourish in spring, but could not be recorded as their cover 

didn't meet the minimum area requirement for this study .................................................................................................. 14 

Figure 10. The difference in the level of flooding at a site in the study area between the two seasons .................................... 16 

Figure 11. RGB orthomosaics for Winter & Spring along with a legend representing the colour in which the bands are 

displayed.......................................................................................................................................................................... 23 

Figure 12. Winter MS orthomosaics along with their value scale bar ................................................................................ 24 

Figure 13. Spring MS orthomosaics along with their value scale bar ................................................................................. 24 

Figure 14. Classified plant communities map for the winter orthomosaic ........................................................................... 25 

Figure 15. Classified plant communities map for the spring orthomosaic ........................................................................... 26 

Figure 16. Classified plant communities map for the combined orthomosaic (winter + spring) ........................................... 27 

Figure 17. Classified Plant Communities Map: Sentinel-2 produced using only field samples ........................................... 30 

Figure 18. Classified Plant Communities Map: Sentinel-2 produced using additional UAV samples .............................. 30 

Figure 19. Classified Plant Communities Map: SuperView-1 produced using field only samples ...................................... 31 

Figure 20. Classified Plant Communities Map: SuperView-1 produced using additional UAV samples ......................... 31 

Figure 21. Variable Importance plot for Sentinel-2, produced while using only field samples to classify the imagery using RF

 ....................................................................................................................................................................................... 35 

Figure 22. Variable Importance plot for Sentinel-2, produced while using additional UAV-obtained samples to classify the 

imagery using RF ............................................................................................................................................................ 35 

Figure 23. Variable Importance plot for SuperView-1, produced while using only field samples to classify the imagery using 

RF .................................................................................................................................................................................. 36 

Figure 24. Variable Importance plot for SuperView-1, produced while using additional UAV obtained samples to classify 

the imagery using RF ....................................................................................................................................................... 36 

Figure 25. Comparison of the UAV classification results for the combined orthomosaic (winter + spring) with the classified 

maps for both Sentinel-2 and SuperView-1, along with a common legend for all the classifications .................................... 38 

Figure 26. Classes in the satellite classified maps translated to the ones in the Vegetation Report for comparison, along with 

a new legend representing the newly merged classes (based on the main life-forms of plant communities) .............................. 39 

Figure 27. Comparison of the classification results of SuperView-1, using additional UAV-obtained samples with the 

reference map from the Vegetation Report along with their legends .................................................................................... 40 

Figure 28. A visual comparison of the seasonal differences in the vegetation present at a site in the study area ................... 43 

Figure 29. Seasonal differences in the physical appearance of Juncus effusus and Phalaris arundinacea in winter (w) and 

spring (s) ......................................................................................................................................................................... 44 

Figure 30. Screenshots from the RGB winter and spring orthomosaics to show the seasonal differences and separability of the 

plant communities present in the study area, where red, green and blue colours are represented by bands 1, 2 and 3 

respectively ....................................................................................................................................................................... 44 



DRONES FOR CONSERVATION: INTEGRATING UAVS WITH FIELD METHODS TO CLASSIFY SATELLITE IMAGERY TO MAP PLANT COMMUNITIES – A CASE STUDY OF 

DRENTSCHE AA, THE NETHERLANDS 

 

vi 

Figure 31. A subset of SuperView-1 imagery (06 November 2020) highlighting some marked areas ................................ 47 

Figure 32. Screenshots of the same area in the satellite imageries and the orthomosaic at scale 1:250, where red, green and 

blue colours are represented by bands 1, 2 and 3 respectively .............................................................................................. 49 

Figure 33. Water in the flooded area reflecting the grey sky in winter ................................................................................ 50 

Figure 34. Screenshot of the misclassified patch in two SuperView-1 imageries, where red, green and blue colours are 

represented by bands 1, 2 and 3 respectively ...................................................................................................................... 50 

 

 

  

file:///H:/ITC/MSc%20Research/Research%20Phase%202021/Write%20up/Main%20Document/s2337290_Chib_MScThesis.docx%23_Toc79051920


DRONES FOR CONSERVATION: INTEGRATING UAVS WITH FIELD METHODS TO CLASSIFY SATELLITE IMAGERY TO MAP PLANT COMMUNITIES – A CASE STUDY OF 

DRENTSCHE AA, THE NETHERLANDS 

vii 

LIST OF TABLES 

 
Table 1.  Sentinel-2 specifications: Band names and numbers, spatial resolution in meters, central wavelength in nano-meters 

for both Sentinel-2A and Sentinel-2B (Earth Observing System, n.d.a) ........................................................................... 12 

Table 2. Sentinel-2 data used for this research along with its acquisition date and product identifier (Copernicus Sentinel 

Data, 2020) ................................................................................................................................................................... 12 

Table 3. Description of the downloaded Sentinel-2 data used for this study ....................................................................... 12 

Table 4. SuperView-1 specifications: Band names and numbers, spatial resolution in meters, and spectral resolution in 

micro-meters (Earth Observing System, n.d.b) .................................................................................................................. 13 

Table 5. SuperView-1 data used for this research along with its acquisition date and product identifier (Beijing Space View 

Technology Co. Ltd., China, 2020) ................................................................................................................................ 13 

Table 6. Description of the downloaded SuperView-1 data used for this study .................................................................. 13 

Table 7. Software used for this study along with the tasks they were used for ..................................................................... 15 

Table 8. Equations to calculate the vegetation indices used for the analysis of Sentinel-2 for this study ............................... 19 

Table 9. Description of the processed Sentinel-2 data used for this study ........................................................................... 19 

Table 10. Description of the processed SuperView-1 data used for this study .................................................................... 19 

Table 11. Error matrix produced for the accuracy assessment of the classification results for the winter orthomosaic, where the 

shades of green from light to dark indicate grass, shrub and tree life forms respectively ........................................................ 28 

Table 12. Error matrix produced for the accuracy assessment of the classification results for the spring orthomosaic, where the 

shades of green from light to dark indicate grass, shrub and tree life forms respectively ........................................................ 28 

Table 13. Error matrix produced for accuracy assessment of the classification results for the combined orthomosaic, where the 

shades of green from light to dark indicate grass, shrub and tree life forms respectively ........................................................ 29 

Table 14. Error matrix produced for accuracy assessment of the classification results of Sentinel-2 using only field samples, 

where the shades of green from light to dark indicate grass, shrub and tree life forms respectively ......................................... 32 

Table 15. Error matrix produced for accuracy assessment  of the classification results of Sentinel-2 using additional UAV 

samples, where the shades of green from light to dark indicate grass, shrub and tree life forms respectively ........................... 33 

Table 16. Error matrix produced for accuracy assessment of the classification results of SuperView-1 using only field 

samples, where the shades of green from light to dark indicate grass, shrub and tree life forms respectively ........................... 33 

Table 17. Error matrix for accuracy assessment of classification results of SuperView-1 using additional UAV samples, 

where the shades of green from light to dark indicate grass, shrub and tree life forms respectively ......................................... 34 

Table 18. Error matrix for the classification results for the additional analysis of Sentinel-2 with only field samples, where 

the shades of green from light to dark indicate grass, shrub and tree life forms respectively .................................................. 37 

Table 19. Error matrix for the classification results for the additional analysis of Sentinel-2 with additional  UAV 

obtained samples, where the shades of green from light to dark indicate grass, shrub and tree life forms respectively ............. 37 

Table 20. Merged error matrix for classification results of Sentinel-2 using only field samples ........................................... 41 

Table 21. Merged error matrix for classification results of Sentinel-2 using additional UAV samples .............................. 41 

Table 22. Merged error matrix for classification results of SuperView-1 using only field samples ...................................... 42 

Table 23. Merged error matrix for classification results of SuperView-1 using additional UAV obtained samples ........... 42 
 



DRONES FOR CONSERVATION: INTEGRATING UAVS WITH FIELD METHODS TO CLASSIFY SATELLITE IMAGERY TO MAP PLANT COMMUNITIES – A CASE STUDY OF 

DRENTSCHE AA, THE NETHERLANDS 

 

viii 

LIST OF ABBREVIATIONS 

 
2D               2-Dimensional 

3D               3-Dimensional 

ACoI           Accuracy for Classes of Interest 

CSV            Comma-Separated Values 

ESP             Estimation of Scale Parameter 

EVI             Enhanced Vegetation Index 

GCP            Ground Control Point 

GNDVI      Green Normalized Difference Vegetation Index 

GRVI          Green-Red Vegetation Index 

GSD            Ground Sampling Distance 

H                 Hypothesis 

MDA           Mean Decrease Accuracy 

MDG           Mean Decrease Gini 

ML               Machine Learning 

MS               Multi-Spectral 

MTP            Manuel Tie Point 

NDVI          Normalized Difference Vegetation Index 

NDWI         Normalized Difference Water Index 

NIR             Near-Infrared 

OBIA          Object-Based Image Analysis 

PA               Producer’s Accuracy 

RF               Random Forest 

RGB            Red Green Blue 

RO              Research Objective 

RQ              Research Question 

SfM             Structure from Motion 

spp.             species pluralis 

SPU            Service Providing Unit 

SVM           Support Vector Machine  

UA             User’s Accuracy 

UAV          Unmanned Aerial Vehicle 

 

 

  



DRONES FOR CONSERVATION: INTEGRATING UAVS WITH FIELD METHODS TO CLASSIFY SATELLITE IMAGERY TO MAP PLANT COMMUNITIES – A CASE STUDY OF 

DRENTSCHE AA, THE NETHERLANDS 

1 

1. INTRODUCTION 
 

1.1. Background & Motivation 

Plant Communities are an assemblage of plant species growing together within a local area, showing a definite 

affinity with each other (Kent, 2012). They are the rudimentary unit of natural habitats and provide the 

structural and functional basis to the ecosystem, which in turn provides the fundamental support to life on 

earth (Corlett, 2016). With the increasing rate of climate change, half of the world’s plant species are at risk of 

extinction (Román-Palacios & Wiens, 2020). We are in the midst of biodiversity loss and plant conservation is 

an urgent task. Plant Communities are considered a powerful indicator to assess the conservation status of an 

area (Rapinel et al., 2019). They are regarded as Service Providing Units (SPUs) which are of high ecological 

importance (Villoslada et al., 2020). Identifying the extent and location of these communities can give major 

insights about an area. They can even indicate the soil properties and habitat conditions that influence and get 

influenced by plant communities (Fischer et al., 2019). 

One way to observe the occurrence, distribution and status of plant communities is via mapping. Personnel 

involved in the field of conservation, especially for mapping plant communities, have traditionally relied on 

ground surveys, aerial photographs and/or satellite imagery (Koh & Wich, 2012; Tay et al., 2018). These 

methods have several drawbacks in comparison to what can be accomplished with the current technological 

advancement. Ground surveys can be significantly expensive, time-consuming, laborious and pragmatically 

challenging in inaccessible landscapes (Koh & Wich, 2012). Some areas are so large that it is practically not 

possible to collect data to map the location & extent of all the plant communities (Villoslada et al., 2020). 

Moreover, ground surveys can also have a direct negative impact on plants, as some habitats are so delicate 

that they can even be damaged by foot (Rominger & Meyer, 2019). On the other hand, the development in 

Remote Sensing techniques made it possible to map large areas in a more time and cost-efficient manner, with 

additional spectral information (Rocchini et al., 2016). However, the spatial resolution of freely available 

satellite data is still considered coarse to be used for some applications dealing with fine-scale plant species 

(Manfreda et al., 2018). While using time-series or multi-temporal data to map plant communities based on 

their phenological behaviour has produced better results than single-date images, it remains challenging for 

certain landscapes (Rapinel et al., 2020). For instance, grasslands, where species are highly mixed, have a fine-

grained pattern and similar phenology, satellite imagery fails to precisely capture their spatial variability, as 

coarse spatial resolution tends to smoothen the spectral differences between them (Rocchini et al., 2013; 

Strong et al., 2017).  Moreover, for conservation, it is essential to discriminate species at a finer scale with high 

accuracy. The European Biodiversity Conservation Policy requires the production of detailed maps in which 

even small-scale plant communities can be distinguished, to precisely monitor the change and conservation 

status of a protected area (Pesaresi et al., 2020).  

This gap due to spatial comparability issues makes it difficult to integrate fine-scaled ground survey data with 

satellite imagery (Reinke & Jones, 2006). The collection of the ground survey data is often not designed to be 
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combined with remote sensing data (Rocchini et al., 2013). It creates a problem when the size of the pixel is 

much bigger than the field sampling units which itself might consist of several species (Rocchini et al., 2010). 

Therefore, data at a finer spatial scale is required to precisely map plant communities for conservation. 

Whereas, for very high-resolution satellite imagery, the cost can again be a major barrier (Zweig et al., 2015). 

Besides, issues like persistent cloud cover can hamper the analysis (Baena et al., 2017).  

Of course, there is nothing that can replace good scientists, but drones also referred to as Unmanned Aerial 

Vehicles (UAVs), have the potential to fill the above-mentioned gap and assist them to easily carry out 

conservation projects. They can systematically observe natural phenomena at high spatio-temporal resolution 

and can be coupled with lightweight cameras and multispectral sensors at a lower cost (Assmann et al., 2019). 

Besides, as they fly at low altitudes they do not have many cloud cover constraints (Sibaruddin et al., 2018). 

Though rain and strong wind conditions pose some constraints, the flexibility to plan the UAV flight when 

the weather conditions are suitable is an advantage. In recent years, drones have progressively been used in 

many aspects of ecosystem management, monitoring and mapping (Rominger & Meyer, 2019). They have 

successfully demonstrated the potential to produce highly precise vegetation maps, which could differentiate 

plants at the community level (Kaneko & Nohara, 2014). There has also been an increase in the overall 

accuracy when UAV imagery was used to classify vegetation on species-level (Manfreda et al., 2018). The level 

of detail in UAV imagery is so high that even individual plant species can be identified, which makes it 

comparable to field observations (Baena et al., 2017; Manfreda et al., 2018). Due to this, some recent studies 

have even proposed using UAVs as an alternative to ground surveys (Kattenborn et al., 2019; Hegarty-Craver 

et al., 2020).  

However, the precision of field methods cannot be completely replicated by drones yet (Zhang et al., 2020). 

UAV imagery is only restricted to the visible plant communities from an aerial view. Some plant species might 

be covered under tree canopies or other bigger plants. Moreover, sole reliance on UAVs could result in 

classification and interpretation problems, as remote pilots might be lacking the basic understanding of the 

ecosystem and the plant communities present in it, due to a lack of direct interaction with the habitat (Gray et 

al., 2018). Some species which are so small that differences between them can only be observed by a 

magnifying glass might never be identified. Therefore, with the current UAV technology, ground surveys 

cannot be completely eradicated. They still play a vital role to validate and measure the accuracy for both the 

UAV and Satellite Imagery. The idea should be to minimize the area/extent of the ground survey, to make it 

as little invasive as possible. This becomes extremely important when the area is sensitive or unsafe to access, 

where a group of surveyors and scientists trekking through these landscapes would not only be at risk but also 

could disturb the habitat over time. Therefore, drones have the potential to complement ground surveys, as 

they offer a relatively risk-free, non-hazardous and reliable monitoring technique to collect ecological data 

(Jiménez-López & Mulero-Pázmány, 2019). However, this benefit is only restricted to areas having a relatively 

small extent. Economically drones work best for areas preferably less than 20 hectares (Manfreda et al., 2018). 

Whereas protected areas usually refer to much larger areas. Moreover, the overly restrictive regulatory 

framework still limits the application of drones in the field of conservation, despite following guidelines to 
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minimize its impact on the natural environment. Some authors even argue that it can have disturbance effects 

on birds and mammals (Jiménez López & Mulero-Pázmány, 2019). Besides, the issue of privacy and safety 

further restricts the application of drones (Duffy et al., 2018). Therefore, to cover large-protected areas, one 

still has to rely on satellite imagery as drones cannot compete with it in terms of spatial coverage. Whereas to 

map fine-scale plant communities satellite imagery has several limitations, as discussed earlier. Hence, all these 

three methods have their advantages and disadvantages but integrating them could result in a promising 

approach to precisely map plant communities.  

1.2. Problem Statement & Justification 

To assess the conservation status of plant communities, it is essential to have accurate detailed maps. Field 

methods are most precise but are restricted to smaller areas. While satellite imagery can cover larger areas, but 

the coarser spatial resolution doesn’t allow detailed mapping. A method to produce accurate maps on a larger 

spatial scale is needed. Therefore, this research intends to investigate the potential of UAVs to bridge the gap 

between field methods and satellite imagery to map plant communities for conservation; by using an approach 

to integrate UAVs with ground surveys to improve the classification results of the Satellite Imagery.  

 
For this, ground surveys can be conducted in smaller sample areas to obtain the ground truth, instead of 

intruding the whole area, which can be covered using a drone. When the protected area is too large to be 

mapped using drones or some regulations might restrict the area it can cover, then drones can be deployed on 

the smaller sensitive terrains of that area, where it is possible to fly or where signs of disturbances have already 

been detected using satellite imagery (Jiménez-López & Mulero-Pázmány, 2019). The UAV imagery can then 

be classified and used to create additional samples to classify the satellite imagery, covering the whole area. 

Drones have the same bird’s eye perspective as the satellite imagery which makes it more comparable and 

easier to match in terms of spatial scale to collect additional samples. Furthermore, some of the advanced 

classifiers perform better and produce more stable results with an increase in sample size (Shang et al., 2018). 

Therefore, these additional samples could help to improve the satellite classification results, making them 

closer to the field observations. This would not only minimize the invasion of the landscape but also result in 

reliable data covering a larger area, in a more cost-efficient way. Therefore, the benefits of high spatial 

resolution in the UAV imagery can be directed towards the satellite imagery with high spatial coverage. This 

would improve the remote sensing techniques to accurately map plant communities in a way that ground 

surveys alone can never replicate (Manfreda et al., 2018). Such analysis could be used as a tool to assess the 

conservation status of an area, which could expose the state of plant communities, which can further serve as 

a basis for improving adaptive community-based conservation and restoration of an area (Baena et al., 2017). 

It would help the management to amend the protocols, to ensure the survival of rare or diminishing plant 

communities. It will further spread more awareness about the need for conservation and the importance plant 

communities hold. Therefore, drones have so much potential, and this research aims to further explore their 

use in the field of conservation of critical and vulnerable plant communities and associated species. 
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1.3. Research Identification 

The overall aim of the proposed research is to assess the efficacy of drones, to bridge the gap between 

field methods and satellite imagery to map plant communities for conservation. The research objectives 

(RO), research questions (RQ) and their subsequent hypotheses (H) are as follows: - 

 
RO1. To assess the ability of drones to map plant communities, based on the visibly dominant species and 

to evaluate the effect of different seasons and dominant plant life-form on the classification results. 

RQ1.1.  What is the accuracy of classifying UAV imagery to map plant communities? 

H1.1. The high-resolution UAV imagery would lead to a precise classification of plant 

communities and high overall accuracy. 

RQ1.2. What is the effect of different seasons on the classification accuracy?  

H1.2. The seasons would affect the overall and the individual accuracies of plant communities.  

RQ1.3. Does combining images from different seasons improve the classification results? 

H1.3. Combining images from different seasons will yield higher classification accuracy than 

single-season imagery. 

RQ1.4. What is the effect of dominant plant life-forms on the classification accuracy?  

H1.4. The communities dominated by larger plant species like trees and shrubs will be 

classified with higher accuracy than those of smaller plants, like dwarf shrubs and grasses. 

 
RO2. To assess the effect of using additional UAV obtained samples on the accuracy of satellite image 

classification of various spatial and spectral resolutions, to map plant communities. 

RQ2.1. How do the additional UAV obtained samples affect the classification results of satellite 

imagery in comparison to using only field samples? 

H2.1. Additional samples obtained from visual interpretation of the UAV imagery will result in 

higher accuracy than the classification with only field samples. 

RQ2.2. What is the effect of different spatial and spectral resolutions on the satellite image 

classification results? 

H2.2. The spatial resolution would be more important for accurate classification of smaller 

plant life-forms like grasses, whereas the spectral resolution would be more important for 

classifying plants with similar phenology and spectral properties.  

 
RO3. To qualitatively compare the classification results with existing vegetation surveys aiming to assess 

the conservation status of plant communities. 

RQ3.1. What differences can be observed between the classified maps and the existing vegetation 

survey maps? 

H3.1. Integrating UAVs with field methods will improve the quality of the satellite classification 

results and the classified maps will have more information than the vegetation survey maps.  
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2. MATERIALS AND METHODS 
 
The methodology followed for this research consists of four main parts: (i) Selection of a case study area 

(ii) Data collection – primary and secondary data, (iii) Data processing, classification & accuracy 

assessment and (iv) Comparison of the results, with each other and with the existing map(s). A detailed 

description of the steps is mentioned in the subsequent sections. The overview of the methodology is 

shown in the flow chart below (Figure 1). 

 

 

Figure 1. Flow chart showing the methodology used for this research 
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2.1. Overview of Study Area 

The study area is located in the National Park Drentsche Aa, in the province of Drenthe, in the North of the 

Netherlands. The area has been among the most beautiful landscapes in the Netherlands and the best-

preserved village landscape of Western Europe. It is a wooded wetland region with river valley grasslands, 

green villages, and agricultural heathlands. The landscape is nearly the same as it was a hundred years ago, 

and the streams still follow their natural meandering course. Nature, water and agriculture are the defining 

characteristics of the landscape, and the streams are its lifelines (National Park Drentsche Aa, n.d.a).  

        

Figure 2. Location and extent of the Drentsche Aa, along with specific study area for the satellite and the UAV 

 
At present, the area is predominantly agricultural, and the remaining is forest and natural area. The area is 

one of the ecological gems of the country with a variety of plant and animal species. Moreover, the cultural 

and historical importance adds to the landscape. In terms of natural wealth, approximately 3900 hectares of 

the area falls under Natura 2000, which mainly consists of the catchment area of the stream valleys. 

Important parts of the area, such as the narrow strips along the streams and the river valley grasslands are 

protected areas, with some rare plant species too. The area has around 850 plant species, which is almost 

half of the plant species in the Netherlands (National Park Drentsche Aa, n.d.b). The ground and surface 

water system and the soil highly influence the distribution of plant species in the area. Some of these areas 

are sensitive and not easy to access due to seasonal flooding, which allows exploring the potential of UAVs 

to collect data. Moreover, the plant communities present in the area allow addressing the research problem 

and further investigating the RQs. Besides, the UAV flight restrictions, breeding and migration seasons of 

birds also influenced the selection of the site; Figure 2 shows the location and extent of the study area. 

Legend 

          Drentsche Aa (34,112 ha) 

          Satellite extent (1,052 ha) 

          UAV extent (14 ha) 

Coordinate System: WGS 1984 UTM Zone 32N 

Projection: Transverse Mercator 

Datum: WGS 1984 

 

N 
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2.2. Data Collection  

The data was collected between December 2020 and April 2021. Multiple field visits were made to collect 

the data. It mainly consists of two parts, the field observations, and the UAV image acquisition.  

2.2.1. Field Observations 

For the field observations, plant communities were identified via the dominant species. Observations were 

made following the Purposive Sampling approach at points (Wulfsohn, 2010). Samples were collected 

based on prior knowledge of the study area with a focus on specific communities representing different 

plant life-forms, to fulfil the objectives of this study. Approximate centres (points-x,y) of the 

representative patches of plant communities were recorded, which were covering a minimum of roughly 

1-meter area around the centre. The field survey forms (Appendix I) were filled, noting down all the 

necessary information and photographs were taken for reference. Figure 3 illustrates the photographs of 

the dominant species representing the plant communities selected for this study. The non-biotic 

components were recorded as well, as they also contribute to the spectral signature representing a certain 

plant community (Figure 3d). These samples were used as ground truth. A part of these observations was 

used for classification, while the rest was used for the accuracy assessment. 
 

             
         a.  Poa annua                   b.  Phalaris arundinacea                 c.  Juncus effusus                       d.  Iron-rich soil       

             

                
      e.  Phragmites australis                   f.  Carex spp.                         g.  Salix spp.                     h.  Alnus glutinosa 

Figure 3. Field Photographs from winter with the scientific names of the dominant species representing the plant communities, along with a 
photograph of the iron-rich soil (d) representing the habitat in which Juncus effusus (c) usually grows 
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- Poa annua known as Straatgras in Dutch and Annual meadow grass in English is the most common 

grass which can be found everywhere from lawns to in between paving stones. It grows all year round 

and is very short and grows close to the ground, almost like creepers. The colour ranges from light 

green to yellow (Flora of the Netherlands, n.d.a).  

- Phalaris arundinacea known as Rietgras in Dutch and Reed canary grass in English is usually found along 

streams in wet soils with blade-like flat long leaves (Flora of the Netherlands, n.d.b). In the study area, 

it was found growing together with Juncus effusus in several spots.  

- Juncus effusus known as Pitrus in Dutch and Soft rush in English, is a grass-like plant with needle-shaped 

erect stems, without any knots (Flora of the Netherlands, n.d.c). In the study area, it was found in wet 

iron-rich soil in temporarily flooded areas (grasslands).  

- Phragmites australis known as Gewoon riet in Dutch and Common reed in English is an erect plant with 

long stems and a hairy top. It is predominant on waterfronts and wet soils of river valleys (Flora of the 

Netherlands, n.d.d). In the study area, it was maintained in geometric patches by the management.  

- Carex known as Zegge in Dutch and Sedge in English is a plant with solid stems. Their leaves are 

similar to grasses, though the exact shape can vary between species (Lizzie Harper, 2018). In the study 

area, it could be either Carex acuta (Scherpe zegge in Dutch and Sharp sedge in English) or Carex nigra 

(Zwarte zegge in Dutch and Black sedge in English). The exact species could not be identified; 

therefore, for this study, they are referred to as Carex spp. (where spp. stands for species pluralis i.e., 

multiple species).  

- Salix known (Wilg in Dutch and Willow in English) is a deciduous tree species chiefly found in wet 

soils of cold and temperate regions (New World Encyclopedia, n.d.). In the study area, it can either be 

Salix repens (Kruipwilg in Dutch and Creeping willow in English) or Salix alba (Schietwilg in Dutch and 

White willow in English); as the exact species could not be confirmed they are referred to as Salix spp. 

for this study.  

- Alnus glutinosa (Zwarte els in Dutch and Black Alder in English) is a common tree species of the Birch 

family. It prefers soils with sufficient moisture like along riverbanks, wetlands, etc. It is a multi-

stemmed tree with dark coloured branches and small pine-like buds (Flora of the Netherlands, n.d.e).  

 
These species are indicative of plant communities that are named after them. They are further categorized 

according to their main plant life-form, based on their general physical characteristics and height during 

their vegetation period (Einar & Rietz, 1931). The types used for this study are Trees (plants with a 

distinct main trunk), Dwarf-shrubs (smaller bushy woody plants) and Herbaceous plants (herbs and 

grasses). For simplicity, these are referred to as trees, shrubs and grasses for this study. Hence, the 

community of Poa annua, Phalaris arundinacea and Juncus effusus are categorized as grasses, Phragmites australis 

and Carex spp. as shrubs and Salix spp. and Alnus glutinosa as trees. 

Most observations were made in winter as the communities in focus are more visible in that season.  

During the field visit in spring, the same locations were revisited. It was observed that the extent of the 
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communities did not change, allowing for the same dataset to be used for spring as well. Moreover, some 

additional samples were collected in spring from previously inaccessible, flooded areas due to higher water 

levels in winter. Likewise, the plant and the site description were added for spring in the field survey forms 

and more photographs were taken. There were also some new species that emerged in spring, but their 

extent did not meet the minimum requirement for this research, the patches were so tiny to even be 

recorded. These species could possibly grow and spread out more in summer, but for this research due to 

time constraints, these new species could not be added.  

 
2.2.2. UAV Image Acquisition 

For the UAV image acquisition, a pre-flight site visit was made to assess the site and choose a suitable area 

considering various factors like the plant communities present to investigate the RQs, legal restrictions to 

fly, breading seasons of birds, etc. After the area was finalized, permission to fly a drone was sought from 

the authority. Then the pre-flight preparations were made and test flights were conducted, where the 

different parameters were adjusted and the most suitable specifications were used for the final acquisition.  

The winter images were acquired on 22 December 2020 (10:30 to 14:00). The weather conditions were 

good enough to fly but due to the season, it had a grey sky and scattered clouds resulting in low lighting 

conditions. Whereas the spring images were acquired on 26 April 2021 (9:45 to 12:00) where the weather 

conditions were better, with a higher solar incidence angle and a clear sky. 

A multi-spectral sensor was considered to be most suitable for this research, as the prime focus was on 

vegetation. It can measure the surface reflectance for two or more specific wavelengths, which allows the 

calculation of various vegetation indices, which further helps in a more detailed spectral differentiation 

among plants (Assmann et al., 2019). Therefore, Parrot Sequoia multispectral sensor was used. It captures 

images across four spectral bands (Red, Green, Red Edge & Near Infrared) plus RGB imagery. It also 

comes with a sunshine sensor, which records the incoming radiation and automatically calibrates the 

captured images. (Parrot Sequoia, n.d.) Their specifications are shown in Figure 4. 
 
 

       
a. Specifications of Parrot Sequoia                                             b. Sunshine sensor 

Figure 4. General specifications of Parrot Sequoia multispectral sensor and the sunshine sensor (Parrot Sequoia, n.d.) 
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The sequoia was mounted at the bottom of a quadcopter - DJI Phantom 4, whereas the sunshine sensor on 

the top as can be seen in Figure 5(a, b). DJI Phantom 4 is operated via a remote controller, which can be 

connected to either a tablet or a smartphone where the flight can be planned (Figure 6). It also comes with an 

intelligent flight battery (Figure 5c), which prompts the pilot when it reaches the minimum distance required 

to come back to the take-off point.  

 

         
a. Parrot Sequoia                                  b.  Sunshine Sensor                             c.  Battery 

Figure 5. Parrot Sequoia and sunshine sensor mounted on DJI Phantom 4, along with its battery, in the field 

      

 

Figure 6. DJI Phantom 4 with Parrot Sequoia and sunshine sensor, the controller 
connected to a tablet and the calibration plate in the field 

 
Then a flight plan was created using Pix4D capture (Figure 7a). A single grid mission was sufficient for this 

research as the terrain was relatively flat and the focus was to only generate a 2D output i.e. an orthomosaic. 

The flying height was set to 60m to acquire the Ground Sampling Distance (GSD) of 2.62 cm and the speed 

was set to slow, to avoid any blurry images. The camera specifications were set using the Parrot Sequoia app 

on a smartphone using its Wi-Fi hotspot, which can be seen in Figure 7b. Furthermore, GCPs (Ground 

Control Points) were not used for these missions as the area being a flat grassland region, did not have many 

well distributed natural intersections or conspicuous points. Additionally, as the first UAV dataset was 

acquired in winter, the area was flooded not only making it harder to access but also not making it possible 

to place artificial points using checkboards.  
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a. Flight plan in Pix4D capture                                                                b. Camera settings 

Figure 7. Flight plan in Pix4D capture and Parrot sequoia settings in the Parrot Sequoia app 

 

Then finally radiometric calibration was done using the calibration plate 

(Figure 8). The drone needs to be held perpendicular over the plate for it to 

automatically capture the images for calibration. It took a total of 5 flights 

to cover the entire area as the battery had to be changed after every 6 to 7 

flight lines. Hence, radiometric calibration was done before every flight. 

                                                                                                                                         Figure 8. Calibration Plate 

2.3. Data 

The data used for this study includes the primary data i.e., the field samples and the UAV acquired data, as 

well as some secondary data like the satellite imagery and the reference map from the Vegetation and Plant 

Species Mapping Report. 

2.3.1. Field samples 

A total of 298 points were collected in winter for 10 classes. A few additional points were collected in 

Spring, resulting in a total of 310 points for Spring along with an additional class, making the total number 

of classes 11. Moreover, the field photographs along with the details recorded on the field survey forms 

served as additional information.  

2.3.2. UAV acquired data 

A total number of approximately 2,500 images were acquired for each season, including both the RGB 

and MS images. The images from each flight as well as the calibration images for each one of them were 

stored in separate folders in the internal memory of parrot sequoia.  
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Sentinel-2 imagery was selected due to its wide range of spectral resolution. It has 13 spectral bands, 

including three red-edge bands, which are very helpful for calculating various vegetation indices (Rapinel 

et al., 2019). Clear cloud-free imageries were downloaded from Copernicus Open Access Hub. The 

specifications of the imagery are shown in Table 1, and the details of the images used for this research, 

along with their description in Table 2 and Table 3, respectively. 

 

2.3.3. Satellite Data 

Two different Satellite images were used for this research i.e., Sentinel-2 and SuperView-1. These 

imageries have different spatial and spectral resolutions, but the temporal dimension was kept the same to 

have the same multi-temporal dimension to have a basis for comparison. 

 

 

 

 

 

 

 

                                                                                          Central Wavelength (nm) 

                                                                                          S-2A             S-2B 

 B1 - Coastal aerosal                                  60                             443.9            442.3 

 B2 - Blue                                                  10                             496.6            492.1 

 B3 - Green                                               10                             560.0            559 

 B4 - Red                                                   10                             664.5            665 

 B5 - Vegetation Red Edge                        20                             703.9            703.8 

 B6 - Vegetation Red Edge                        20                             740.2            739.1 

 B7 - Vegetation Red Edge                        20                             782.5            779.7 

 B8 - NIR                                                  10                              835.1            833 

 B8A - Narrow NIR                                  20                              864.8            864 

 B9 - Water Vapour                                   60                              945.0            943.2 

 B10 - SWIR - Cirrus                                 60                             1373.5          1376.9 

 B11 - SWIR                                              20                             1613.7          1610.4 

 B12 – SWIR                                             20                             2202.4          2185.7 

 
Table 1.  Sentinel-2 specifications: Band names and numbers, spatial resolution in meters, central wavelength in 

nano-meters for both Sentinel-2A and Sentinel-2B (Earth Observing System, n.d.a) 

 
Date Product Identifier 

22-04-2020 S2B_MSIL2A_20200422T103619_N0214_R008_T32ULD_20200422T140230 

26-06-2020 S2A_MSIL2A_20200626T104031_N0214_R008_T32ULD_20200626T135731 

03-11-2020 S2A_MSIL2A_20201103T104221_N0214_R008_T32ULD_20201103T133056 
      

       Table 2. Sentinel-2 data used for this research along with its acquisition date and product identifier 
(Copernicus Sentinel Data, 2020) 

 
Columns and Rows 10980, 10980 

XY Coordinate System WGS_1984_UTM_Zone_32N 

Datum D_WGS_1984 

Format TIFF 
                      

                      Table 3. Description of the downloaded Sentinel-2 data used for this study 

       Bands                           Spatial Resolution (m)        

      

       Table 2 and                       

                      Table 3, respectively. 
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SuperView-1 offers a pan-sharpened imagery as well, therefore it was used for this research to get even a 

higher resolution. Table 6 provides a description of the data. 

 

         

         Table 6 provides a description of the 

data. 

 

 

 

 

 

  Bands          Spatial Resolution (m)    Spectral Resolution (µm) 

  PAN                             0.5                                  0.45 - 0.89 

  B1 - Blue                        2                                   0.45 - 0.52 

  B2 - Green                     2                                   0.52 - 0.59 

  B3 - Red                         2                                   0.63 - 0.69 

  B4 - NIR                        2                                   0.77 - 0.89 

 
Table 4. SuperView-1 specifications: Band names and numbers, spatial resolution in 

meters, and spectral resolution in micro-meters (Earth Observing System, n.d.b) 

 

 

Table 5. SuperView-1 data used for this research along with its acquisition date and product identifier 
(Beijing Space View Technology Co. Ltd., China, 2020) 

  
 
 
 
 

Columns and Rows 31520,32344 

Cell Size (X,Y) 0.5, 0.5 

XY Coordinate System RD_New 

Datum D_Amersfoort 

Format TIFF 
         

         Table 6. Description of the downloaded SuperView-1 data used for this study 

 

2.3.4. Vegetation Report  

To compare the results produced for this study, the already mapped data by Staatsbosbeheer for the 

Vegetation and Plant Species Mapping Report, Drentsche Aa 2015-16 was used. For the report, the quality 

and distribution of the vegetation types and specific plant species have been mapped, where communities 

are also distinguished based on the level of associations. The area was mapped using digital true colour 

aerial photographs. The level of detail was on a coarser level, with the scale being 1:5,000 and the 

minimum mapping unit as 25 by 25 m (10 by 50 m for elongated surfaces). Only in exceptional cases for 

valuable vegetation, this was adjusted (Ecologengroep Groningen, 2017). The report also has a detailed 

description of all the plant species along with the communities they represent or are a part of. Moreover, 

the report document was in Dutch and hence was translated to English. The plant communities that 

correspond to the area where the data was collected are mentioned as follows. 

Date Product Identifier 

04-04-2020 20200404_103926_SV1-01_SV_RD_11bit_RGBI_50cm_Assen 

23-06-2020 20200623_111355_SV1-02_SV_RD_11bit_RGBI_50cm_Assen 

06-11-2020 20201106_105752_SV1-04_SV_RD_11bit_RGBI_50cm_Assen 

SuperView-1 was selected due to its high spatial resolution and data availability for at least three seasons. 

The imagery was downloaded from Satellite Data Portal. The specifications of the imagery are shown in  

Table 4 and the details of the images used for this research in Table 5. 
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As per the report, Poa annua is found with other grasses like Juncus bufonius (Greppelrus in Dutch and Toad 

rush in English) and Polygonum aviculare (Gewoon varkensgras/Common pig grass), forming a community 

represented by the code 12A1-1. The community of Phalaris arundinacea is represented by the codes 08-16, 

08-17 and 08-18. The community of Juncus effusus is denoted by the code 16-32. It is also found with some 

other plants like Holcus lanatus (Gestreepte witbol/Yorkshire-fog) and Lotus uliginosus 

(Moerasrolklaver/Swamp roll clover). Holcus lanatus is a soft grassy erect plant with a hairy top, which 

flowers between May to September (Flora of the Netherlands, n.d.f). While Lotus uliginosus is a leafy plant 

with tiny yellow flowers which flowers between June to August (Flora of the Netherlands, n.d.g). These 

three together represent a community which is denoted by the codes 16-1, 16-2, 16-6 and 16B-7. Phragmites 

australis is found growing with Juncus articulates (Zomprus) and Mentha Aquatica (Water Mint), represented 

by the code 08A-2. The area also consists of various species of Carex like Carex acuta (Scherpe 

zegge/Sharp sedge), Carex nigra (Zwarte zegge/Black sedge) denoted by the codes 08C2-1, 08C2-2, 09A-2, 

09A-3 and 09A3-5. Carex nigra also grows together with Equisetum fluviatile (Holpijp/Hollow) represented 

by the code 09A3-2. As the English name suggests, Equisetum fluviatile is a hollow pipe that almost looks 

like bamboo with knots dividing each section (code: 09-2) which flowers between April and July (Flora of 

the Netherlands, n.d.h). Some of these species’ flower in the summer months like Holcus lanatus, Lotus 

uliginosus, etc., while the last field data for this study was collected in spring. Therefore, these species could 

not be recorded, as they had just started to flourish and their extent did not match the minimum area 

requirement for this study; some of them are shown in Figure 9. The report also mentions some more 

grass species, which could not be seen in the study area yet, possibly because they grow later in the year. 

Hence, for comparison, these species are collectively referred to as ‘Other grasses’ for this study. 

 

          
a. Holcus lanatus                 b.   Lotus uliginosus             c.   Equisetum fluviatile            d. Unidentified species 

Figure 9. Field photographs of the plant species that started to flourish in spring, but could not be recorded as their cover didn't meet the 
minimum area requirement for this study 

  
For the trees, a species of Salix, Salix repens (Kruipwilg/Creeping willow) was found with other tree species 

like Quercus robur (Zomereik/English oak), Corylus avellana (Hazelaar/Hazel), etc. denoted by the code 43-1. 

While Alnus glutinosa is represented by the code 39A-5 in the report. Lastly, the other classes were treated 

as one, which includes river, road, bare soil, etc., denoted by the codes 50C-1, 50C-4 and 50A-2.  
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2.4. Software  

Table 7 presents the software used for this study. It mainly consists of the UAV flight planning and data 

processing software, image analysis and visualization software and finally the ones used for report writing. 

 

Software Use 

ArcGIS 10.8.1 Pre-Processing & Visualization 

eCoginition 10.0.2 Object-Based Image Analysis 

ERDAS Imagine 2018 Pre-Processing 

Google Earth Pro 7.3 Site Inspection & Pre-flight planning 

Mendeley 1.19.8 Citation and referencing 

Microsoft Office 365 Analysis, Data entry, Presentation & Writing 

Pix4D Capture 4.12.1(1) UAV Flight Planning 

Pix4D Mapper 4.6.4 UAV Image Processing 

Parrot Sequoia 1.4.1 Radiometric Calibration & Camera Settings 

QGIS 3.16.0 Field Data Processing & Visualization 

RStudio 1.2.5033 Random Forest Classification 

 
Table 7. Software used for this study along with the tasks they were used for 

2.5. Data Processing, Classification & Accuracy Assessment 

For the data processing, the field samples, UAV data and satellite data were processed. The field data 

processing mainly consists of splitting the samples for training and testing. While the UAV data processing 

consists of photogrammetric processing to generate orthomosaics, classification, and accuracy 

assessment. Whereas the satellite data processing consists of pre-processing, classification, and accuracy 

assessment.  

2.5.1. Field Samples Processing 

The field samples were stored in a CSV (Comma-Separated Values) file with a unique ID for each class. 

After that, the samples were prepared for classification by using the train-test split procedure. It is used to 

evaluate the performance of the classification algorithm, by making predictions on the test set which is not 

used to train the algorithm (Brownlee, 2020). Adelabu et al. (2015) concluded that Random Forest resulted 

in the lowest error rate and highest accuracy with a 70-30% split. Therefore, this split was used for this 

research, where roughly 70% of the sample points were used for training and 30% for testing. Then these 

CSV files were converted to shapefiles; the points were visually inspected to make sure that for each class 

the validation points were spatially independent of the training points.  

Samples for a new community or a class were not collected in spring, only additional samples of the same 

communities were added, however, some alterations were still made in the already existing samples. For 
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instance, there were areas which were completely flooded in winter but not so much in spring (Figure 10). 

Therefore, samples in the areas which were not flooded anymore were removed and samples only for the 

patches that were still wet were kept and called ‘Iron-rich water’. For the combined images, where the 

samples from the two seasons were merged, these two classes were treated separately. The area flooded 

only in winter (Flooded area) was labelled as ‘Periodically Flooded’ and the area that was flooded or wet in 

both seasons (Iron-rich water) was labelled as ‘Permanently Flooded’.  

 

    

a. Area in winter (22 Dec 2020)                          b.   Area in spring (26 April 2021) 

Figure 10. The difference in the level of flooding at a site in the study area between the two seasons 

 

2.5.2. UAV Data Processing 

The UAV data processing involves photogrammetric processing to generate orthomosaics, segmenting 

and classifying these orthomosaics, accuracy assessment and finally visualizing the results to produce 

classified maps of plant communities. 

a. Orthomosaic Generation 

The UAV data was processed by applying Structure from Motion (SfM), using the software ‘Pix4D 

Mapper’. It processes the sequence of overlapping drone images and extracts the 3D & 2D structure of 

the scene along with its camera positions (Alsadik & Nex, 2020). First, the UAV data was cleaned, and the 

RGB & MS images were separated for easy processing as Pix4D has different templates to process the 

RGB & MS images (‘3D Maps’ for RGB images and ‘Ag Multispectral’ MS images). The coordinate 

system was automatically detected as WGS_1984 (UTM Zone 32N). Then for processing, Pix4D consists of 

3 steps i.e., 1. Initial Processing, 2. Point Cloud and Mesh and 3. DSM, Orthomosaic and Index. The 

second step was skipped for this study to save time and storage space as a point cloud was not required 

and the prime focus was to generate an orthomosaic. 

Most of the default settings were used except for one, where for initial processing, the ‘Internal 

Parameters Optimization’ was set to ‘All Prior’ (Appendix II), without which the images were not properly 

aligned or geo-located and there were false height differences as well. This issue seems to occur in the case 
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of perfectly nadir flights over flat terrains (Pix4D Community, n.d.), therefore, changing this setting is 

extremely important to ensure good quality of the orthomosaics. 

To generate the RGB orthomosaic, images from all the flights were processed together. Whereas to 

generate the MS orthomosaic, each flight was processed separately as the radiometric calibration was done 

before each flight. It is important to make sure that the images are properly calibrated for each flight. 

Once the flights were processed individually, then all of them were merged using Manual Tie Points 

(MTPs). For an MS project, MTPs must be marked in all the bands, in a minimum of 3 sets of images 

(Pix4D, n.d.). In this case, as there were 4 bands, therefore at least 12 MTPs were marked. Both the winter 

& spring datasets were processed in the same manner, except for an additional step for the spring dataset, 

where GCPs were used for the generation of the orthomosaic. They were created by taking measurements 

from the winter orthomosaic, to make sure that both the orthomosaics overlap perfectly.                
 

b. Object-Based Image Analysis (OBIA) 

OBIA was used to classify the orthomosaics. Based on the literature, for high-resolution imagery, OBIA 

performs better than the pixel-based classification (Makinde et al., 2016; Sibaruddin et al., 2018). A pixel-

based approach is substantially limited for very high-resolution imagery, as it does not consider the rich 

spatial information which results in low accuracy with the salt and pepper effect (Blaschke et al., 2000; 

Zhang et al., 2020). Whereas OBIA can delineate ecologically meaningful objects by aggregating 

homogeneous groups of pixels, instead of classifying single pixels (Ventura et al., 2018). Along with the 

spectral information, it takes into consideration the spatial and contextual (shape & texture) properties as 

well. Moreover, it is closer to human visual perception as humans see objects in space, not pixels 

(Blaschke & Strobl, 2001; Belgiu, 2020). A study by Lu & He (2017) even demonstrates its effectiveness in 

classifying species in heterogeneous grasslands. 

 
The typical OBIA workflow involves two steps, first is image segmentation and then the classification of 

these segments (Ventura et al., 2018). The software ‘eCognition’ was used for this purpose.  

i. Pre-processing/Index Calculation 

In addition to the RGB and MS layers, some additional indices were also created in eCognition itself. They 

include Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), 

Enhanced Vegetation Index (EVI) & Green-Red Vegetation Index (GRVI). A total of 11 layers were used 

for the following steps i.e., 3 from RGB, 4 from MS and 4 indices. 

 
 

ii. Segmentation 

To delineate plant communities, multi-resolution segmentation was used. It is a bottom-up approach that 

starts with a single pixel and iteratively merges similar neighbouring pixels into bigger objects. It works 

based on the homogeneity criteria, which is determined by certain parameters like Scale Parameter (SP), 
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Shape, Compactness, etc. Some of these parameters need to be fine-tuned and are usually determined by a 

trial-and-error process (Belgiu, 2020). Segmentation results are sensitive to these parameters; therefore, 

they were visually inspected before moving to the next step. A rough guideline one can use is that the 

image objects should be considerably larger than the size of noise relative to texture, which would ensure 

that meaningful segments are created (Blaschke et al., 2000). Moreover, attention should be paid to areas 

with shadows as they can be treated as separate objects and cause problems (Lechner et al., 2012).  

Keeping these things in mind, the following parameters were selected as they seemed to work well for the 

given dataset: Scale Parameter (SP) was set as 900, Shape as 0.1 and Compactness as 0.3. Moreover, 

different weights were assigned to the layers; more weight was assigned to the indices, NIR and red layers, 

whereas less to the RGB layers (Appendix III). 

 

iii. Classification 

The segments were classified following a supervised approach. It was trained using 70% of the field 

samples i.e., the training points. The points (shapefile) were added as a thematic layer and segments 

(objects) were assigned to the corresponding classes, which resulted in labelled segments. ‘Random trees’ 

algorithm was used for classification as it resulted in slightly better accuracy in comparison to Decision 

Trees (DT) and Support Vector Machine (SVM). 
 

iv.    Accuracy Assessment 

Finally, the validation points i.e., 30% unused observations were added in the same manner as the training 

points (as a thematic layer). Then an error matrix was generated and the classes that are not in focus i.e., 

river, road, etc. were merged as ‘others’ to present the final results. Along with the overall, producer’s and 

user’s accuracy, the accuracy for only the classes of interest i.e., plant communities were also presented. 

 
Both the winter and spring data were processed in the same manner, with the winter and spring samples 

respectively, using the same weights, parameters, and classification algorithm. 

c. Combining the two seasons. 

For combining the two seasons the same workflow was followed. Here the orthomosaics from both 

seasons were added as layers in eCognition and used for OBIA. First the pre-processing was done, where 

the four indices were calculated for each season, resulting in a total of 22 layers (11 from each season), 

followed by a multi-resolution segmentation, with the same parameters, weights and specifications. Then 

the merged samples (winter + spring) were used for both classification and accuracy assessment.  

 
Finally, all the classification results were exported and visualized in ArcGIS and three classified maps for 

plant communities were produced for winter, spring and combination of the two seasons. Consistent 

colours were assigned to the classes, throughout the analysis. 
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2.5.3. Satellite Data Processing 

The satellite data processing mainly consists of pre-processing, which involves preparing the satellite 

imagery for classification, the accuracy assessment of the classification results and finally visualization of 

the results to produce classified maps for plant communities. 

a. Pre-processing 

For Sentinel-2, the following bands were used for the analysis: band 2 (blue), band 3 (green), band 4 (red), 

band 5 (vegetation red edge), band 6 (vegetation red edge), band 7 (vegetation red edge) and band 8 

(NIR). The bands 2, 3, 4 and 8 are of 10m resolution, whereas bands 5, 6 and 7 are 20m. Therefore, the 

20m bands were resampled to 10m resolution using the nearest neighbour interpolation. Then the 

following indices were calculated:  

 
                                Index                                                                   Equation                             Reference 

Normalized Difference Vegetation Index (NDVI)                  (NIR – Red)/(NIR + Red)         Tucker & Sellar (1986) 

Green Normalized Difference Vegetation Index (GNDVI)    (Green – Red)/(Green + Red)    Tucker (1979) 

Normalized Difference Water Index (NDWI)                        (Green – NIR)/(Green + NIR)   McFeeters (1996) 
 

Table 8. Equations to calculate the vegetation indices used for the analysis of Sentinel-2 for this study 

 

 
 

Columns and Rows 293, 364 

Number of bands 30 

Cell Size (X,Y) 10, 10 

XY Coordinate System WGS_1984_UTM_Zone_32N 

Datum D_WGS_1984 

Format TIFF 
 

                                          Table 9. Description of the processed Sentinel-2 data used for this study 

 
For SuperView-1, all four bands (of the three images) were used for the analysis. Then these images were 

stacked together, resulting in a stack of 12 layers. This stack was then reprojected into the same coordinate 

system as of the Sentinel-2, i.e., from RD_New to WGS_1984. Finally, a subset was created of the same 

extent as the Sentinel-2; Table 10 presents its description. 

 

Columns and Rows 6591, 7870 

Number of bands 12 

Cell Size (X,Y) 0.5, 0.5 

XY Coordinate System WGS_1984_UTM_Zone_32N 

Datum D_WGS_1984 

Format TIFF 
 

                                      Table 10. Description of the processed SuperView-1 data used for this study 

This was done for all three images individually. All the layers (7 bands + 3 indices for each image) were 

then stacked together, resulting in stack of 30 layers. Finally, a subset was created to match the extent of 

the study area. Table 9 presents a summary of the processed Sentinel-2 data. 

 

 



DRONES FOR CONSERVATION: INTEGRATING UAVS WITH FIELD METHODS TO CLASSIFY SATELLITE IMAGERY TO MAP PLANT COMMUNITIES – A CASE STUDY OF 

DRENTSCHE AA, THE NETHERLANDS 

 

20 

b. Classification 

A pixel-based classification approach was used to classify the satellite imagery as it seemed more suitable 

considering the spatial resolution of the imageries. For the classifier, Random Forest (RF) was selected as 

based on literature it has previously performed well to classify plant communities (Rapinel et al., 2019; 

Villoslada et al., 2020). It is a supervised Machine Learning (ML) algorithm, which is an ensemble of 

decision trees created by a bootstrap aggregation approach, to make a prediction (Belgiu & Drăgu, 2016). 

It runs efficiently on large data sets, is computationally efficient and resists overfitting (Gislason et al., 

2006; Sabat-Tomala et al., 2020). It is also a good choice when there are sufficient training samples (Shang 

et al., 2018) Additionally, it rates the variables based on their importance or contribution in classifying the 

data. Moreover, as the same classification algorithm was used for OBIA in eCognition, it became a more 

preferred choice. Therefore, the satellite imageries were classified using RF in RStudio. Besides, the RF 

results are sensitive to the parameters like the number of trees (ntree), number of variables randomly 

selected to split the tree nodes (mtry), etc. These parameters can be fine-tuned to ensure that the results 

are a good representative of the characteristics of the data. For this study, the most suitable value for ntree 

was 500, while mtry was set as default i.e., square root of total number of input parameters. 

The merged samples were used for classification as the satellite imagery was a multi-temporal stack 

consisting of both seasons. The satellite imagery was classified in two different ways, mentioned as 

follows: - 

(i) Using only field samples (239 training points) 

(ii) Using additional UAV-obtained samples, along with the field samples. The orthomosaic and the 

UAV classified image was used to create these additional samples. These samples were only added to 

the training points, as they cannot serve as the ground truth yet. Therefore, an additional 148 samples 

were collected, which resulted in the total number of training points being 387.  

Another point to be noted is that RF produces slightly different results each time as it uses a random 

subset of the training data, which could make it hard to decide which result to report in the end. 

Therefore, the function ‘set.seed’ was used to ensure that the same results were produced each time. 

 
Both the satellite imageries i.e., Sentinel-2 and SuperView-1 were classified in the same manner. Finally, 

the results were exported and visualized in ArcGIS and four classified maps were produced (two for each 

satellite imagery i.e., one with only field samples and one with additional UAV obtained samples). 

 

c. Accuracy Assessment 

The accuracy assessment was done in RStudio as well, by producing an error matrix by using the same 

validation points for both classifications. Then similar to the UAV, the classes that were not in focus i.e., 

non-plant communities were merged as others. Along with the overall, user’s and producer’s accuracies, 

the accuracy for only plant communities was also reported.  
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d. Variable Importance  

The variable importance plots were also generated in R (ggplot), to assess the importance of each variable 

or layer in classifying the data. The sole purpose was to analyse the importance of the variables and not to 

select the most important ones for classification, also known as variable selection. The code consists of 

two measures, one is ‘Mean Decrease Accuracy’ which illustrates the importance of the variables on the 

accuracy i.e., how much the accuracy would decrease if a variable is discarded or excluded. The second is 

‘Mean Decrease Gini’ which measures the importance of a variable based on the Gini impurity index. The 

variables are ranked based on how much they contribute to the homogeneity of the nodes and leaves in 

building the RF model (Martinez-Taboada & Redondo, 2020).  

 

Additional Analysis 

A brief analysis was done for Sentinel-2 to further investigate the effect of additional information layers on 

the classification results. The aim was to explore the possibilities of improving the classification results 

with additional temporal and spectral information, which could not be done for SuperView-1 due to 

limited data availability and spectral resolution. Moreover, this is referred to as additional analysis as it is 

not the main focus of this study and is not used to investigate any of the RQs. The sole purpose is to 

support certain statements to explain and critically reason the classification results.  

Therefore, to do so, three more Sentinel-2 imageries were added to the stack. i.e., from March (23-03-

2020), May (07-05-2020) and September (14-09-2020). The same pre-processing steps were followed 

where the same number of bands and indices were added (10 per image), which resulted in a stack of 60 

layers (30 additional information layers). Then using RF, the imagery was classified in the same manner, 

first using only field samples and then with additional UAV obtained samples. Finally, the accuracy was 

assessed using the validation points and error matrices were generated. In this case, classified maps and 

variable importance graphs were not produced as the aim was to assess the accuracies, mainly the accuracy 

for the classes of interest (plant communities) and the overall accuracy. 

2.6. Comparison of Results 

The classified maps produced for this study i.e., UAV and satellite were compared amongst each other and 

finally, the satellite classified maps were compared with the existing map produced for the vegetation 

report.  

2.6.1. Comparison of UAV and Satellite classification results 

To compare the classification results, the differences in the classification approach i.e., OBIA for UAV 

and pixel-based for the satellite, were kept in mind. The focus was more on comparing the level of detail 

achieved by each method and the quality of the classified maps. Therefore, the classified maps were 

visually compared. For this, all the four satellite classified maps were zoomed in to the same extent as the 
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UAV for a direct visual evaluation. This was done to examine how close the satellite results are to the 

UAV and the effect of different spatial and spectral resolutions on the classification results. For the UAV 

part, the results for the merged orthomosaic were used for this purpose as the processed satellite imagery 

was a multi-temporal stack, consisting of both seasons. Moreover, as the same samples and classes were 

used for classification and the same colours were assigned to the corresponding classes, it ensured an easy 

and fair comparison.  

 

2.6.2. Comparison of Satellite Classified maps and Vegetation Report map 

This comparison is done assuming that the extent and composition of the plant communities did not 

change in these 4-5 years and the differences would only be due to the difference in data, field sampling 

technique, spatial and temporal scales, mapping methods, etc. Moreover, to make the satellite classification 

results and the vegetation report map comparable, the classes in the classified maps were merged to make 

them closer to the ones in the report. This was done by analysing the error matrices to observe 

overlapping classes; alongside the vegetation report was also used as a reference. Finally, the classes were 

merged based on their main life-forms. The results were only visually compared and to do so, the same 

area as of the UAV was zoomed-in both the satellite results and the vegetation report map. This was done 

to make the maps readable and ensure a more detailed comparison. Lastly, the maps were visualized with 

the new classes and the same colours were assigned to corresponding classes. Additionally, the error 

matrices for the satellite classification results were also merged to see how the new classes affect the 

accuracy.  
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3. RESULTS 

The first part of this section consists of the UAV results, the second part consists of the satellite results 

and the final part consists of a comparison of these results with each and with the existing map from the 

vegetation report. 

3.1. UAV Results 

The UAV results consist of the orthomosaics, classified maps and their error matrices for winter, spring 

and the combination of the two seasons. 

3.1.1. Orthomosaics 

The orthomosaics generated in the SfM photogrammetric processing of the UAV data in Pix4D are 

shown in the following figures. The RGB orthomosaics for both the seasons are shown in Figure 11 and 

the four MS orthomosaics (Green, NIR, Red Edge & Red) for winter and spring in Figure 12 & Figure 13, 

respectively. 

 

  
a. Winter RGB orthomosaic                                           b.   Spring RGB orthomosaic 

Figure 11. RGB orthomosaics for Winter & Spring along with a legend representing the colour in which the bands are displayed 

 

The orthomosaics cover an area of approximately 13.50 ha/0.135 km2/0.05 sq. mi./33.390 acres. For the 

RGB orthomosaics, 98% images were calibrated and all images were enabled; while for the MS 
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orthomosaics 99% images were calibrated and a few were disabled. All the orthomosaics have a very good 

overlap, where most of the area has more than 5 overlapping images for every pixel (Appendix IV). 

 

 
a.  Green                               b. NIR                               c. Red Edge                              d.  Red 

                                         High: 65472                                                      Low: 0 

Figure 12. Winter MS orthomosaics along with their value scale bar 

 

 
a. Green                                b. NIR                               c. Red Edge                              d.  Red 

                                         High: 65472                                                      Low: 0  

Figure 13. Spring MS orthomosaics along with their value scale bar 

 

3.1.2. Classification 

The classification results for the orthomosaics produced using OBIA in eCognition are presented in the 

following figures. The results for the winter, spring & combined (winter + spring) orthomosaic are shown 

in Figure 14, Figure 15  & Figure 16 respectively.  

 
A total of seven classes were created for plant communities, representing different plant-life forms i.e., 

grasses, shrubs, and trees. The communities of Poa annua, Phalaris arundinacea and Juncus effusus represent 

grasses, Phragmites australis and Carex spp. represent shrubs, and Salix spp. and Alnus glutinosa represent 

trees. The classes for plant communities remain consistent for all three UAV classifications, the only 

changes were made in the class ‘Others’ due to the seasonal differences, as has been explained in section 

2.5.1. For the winter orthomosaic (Figure 14), the ‘Others’ consists of three classes - River, Road and 
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Flooded area, resulting in a total of 10 classes (7 for plant communities and 3 for others). Whereas, for the 

spring orthomosaic (Figure 15), the class ‘Flooded area’ was replaced by ‘Iron-rich water’, as the area was 

not as flooded in spring and only had some wet patches of iron-rich water. However, for the combined 

orthomosaic (winter + spring), these two classes were treated separately, resulting in a total of 11 classes 

for classification (7 for plant communities and 4 for others). The class ‘Flooded area’ was referred to as 

‘Periodically Flooded’ and ‘Iron-rich water’ as ‘Permanently Flooded’ as can be seen in Figure 16. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 14. Classified plant communities map for the winter orthomosaic 

 
The winter classification results when visually compared with the orthomosaic (Figure 11a), it can be 

observed that most of the area seems to be correctly classified, except for the upper left corner. A lot of 

that area has been misclassified as Alnus glutinosa (tree) whereas in reality it is majorly dominated by Poa 

annua (grass). Besides that, though the other class is not a focus for this study, some parts of the river have 

been misclassified as flooded area. 
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Figure 15. Classified plant communities map for the spring orthomosaic   

 
For the spring classification results (Figure 15), the same issue can be observed with the upper left corner. 

Here, more area is misclassified, not only as Alnus glutinosa but also as Phalaris arundinacea and a little as 

Juncus effusus. Other than that, not many differences can be visually spotted within plant communities. 

However, concerning the other class, a positive difference can be seen, where the river now seems to be 

perfectly classified as there is no flooded area to be confused with. 

 
Lastly, the combined classification results (Figure 16) visually seem to be more dominated by the winter 

image. The problem with the misclassification of the upper left area is still there; it seems like a difference 

between the two seasons, where it is slightly more misclassified than in winter, but less than that in spring. 

Nevertheless, the rest of the area looks fine. Moreover, here there is no confusion between the river and 

the flooded area; the river is nicely classified. Therefore, combining the images from the two seasons 

visually improves the overall classification results. 
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Figure 16. Classified plant communities map for the combined orthomosaic (winter + spring) 

 

3.1.3. Accuracy Assessment 

The following figures present the error matrices for the classification results of the orthomosaics. The 

values in the error matrices were rounded off for easy interpretation and the classes that are not of interest 

were merged as ‘Others’. The actual classes along with their original values can be found in Appendix V.  

As can be seen in Table 11, the Accuracy for the Classes of Interest (ACoI) and the Overall Accuracy (OA) 

of the winter orthomosaic in classifying plant communities is 84% and 86%, respectively. The community 

of Carex spp. (shrub) and Salix spp. (tree) have the highest Producer’s Accuracy (PA) i.e., 100%. Whereas 

the community of Phragmites australis (shrub) has the lowest PA, i.e., 70%. In terms of the User’s Accuracy 

(UA), shrubs consisting of the communities of Phragmites australis and Carex spp. have the highest accuracy 

i.e., 100%, whereas the community of Salix spp. (tree) has the lowest i.e., 67%. 
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Table 11. Error matrix produced for the accuracy assessment of the classification results for the winter orthomosaic, where the shades of 

green from light to dark indicate grass, shrub and tree life forms respectively 

 
For the spring error matrix (Table 12), the ACoI is 60% and the OA is 65%, which is the lowest out of the 

three classifications. Both the PA and UA are the highest for the class ‘Others’, but as the focus of this 

study is on plant communities, this class is not considered in the following description. Therefore, the 

community of Alnus glutinosa (tree) has the highest PA i.e., 82%, whereas Poa annua (grass) has the lowest 

PA i.e., 42%. In terms of the UA, Phragmites australis (shrub) has the highest (75%) while Phalaris arundinacea 

(grass) has the lowest (45%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Table 12. Error matrix produced for the accuracy assessment of the classification results for the spring orthomosaic, where the shades of 

green from light to dark indicate grass, shrub and tree life forms respectively 

 
As can be seen in Table 13, both the ACoI and OA for the combined orthomosaic are 87%. In terms of 

the PA, the community of Carex spp. (shrub) and Salix spp. (tree) have the highest i.e., 100%, while the 

lowest i.e., 70% is for the community of Phragmites australis (shrub). Whereas, the UA is the highest for the 

community of Phragmites australis (shrub) and Poa annua (grass) i.e., 100% and lowest for the community of 

Carex spp. (shrub) i.e., 67%. 
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Table 13. Error matrix produced for accuracy assessment of the classification results for the combined orthomosaic, where the shades of 

green from light to dark indicate grass, shrub and tree life forms respectively 

 
In conclusion, the combined orthomosaic results in the highest accuracy (both ACoI and OA), followed 

by the winter and the spring orthomosaic.  

 

3.2.  Satellite Results 

The results for Satellite Imagery include the classified maps and their error matrices for both Sentinel-2 

and Superview-1 and their variable importance graphs. 

3.2.1.   Classification 

The classification results for the Satellite Imagery produced using Random Forest in R, are presented in 

the following figures. The classified plant communities map for Sentinel-2 produced using only field 

samples is presented in Figure 17, whereas the one produced using additional UAV-obtained samples is in 

Figure 18. The classified maps for SuperView-1 are presented in Figure 19 & Figure 20, with only field 

samples and with additional UAV-obtained samples, respectively. As the Satellite Imagery is a multi-

temporal stack, the combined samples with 11 classes (7 for plant communities and 4 for others) were 

used for the classification. The additional UAV samples were also collected for these 11 classes. Moreover, 

in the following description, the abbreviation FS is used to refer to the classified maps produced using 

only field samples, whereas FAS is used to refer to the classified maps produced using the additional UAV 

obtained samples i.e., Field samples + UAV obtained samples. 

 
In the case of Sentinel-2, the visual comparison of the classification results show significant differences 

between the two maps. A lot of the area classified as Salix spp. in the FS (Figure 17), is classified as Alnus 

glutinosa in FAS (Figure 18), both are trees. The same difference can be observed where a lot of areas 

classified as Phalaris arundinacea and Juncus effusus in FS are classified as Poa annua in FAS (all three are 

grasses). Lastly, the class ‘Periodically Flooded’ is more visible in the FAS roughly in the centre, whereas in 

the FS it is comparatively not.  
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Figure 17. Classified Plant Communities Map: Sentinel-2 produced using only field samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18. Classified Plant Communities Map: Sentinel-2 produced using additional UAV samples 
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Figure 19. Classified Plant Communities Map: SuperView-1 produced using field only samples  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 20. Classified Plant Communities Map: SuperView-1 produced using additional UAV samples 
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In the case of SuperView-1, there is not as much visible difference between the two classification results at 

the given scale. However, some similar differences as were in the case of Sentinel-2, can be observed, 

though they cover a comparatively smaller area in this case. One is with trees, where the area classified as 

Salix spp. in the FS (Figure 19), is classified as Alnus glutinosa in FAS (Figure 20). Another difference can be 

observed along the stream, which is classified as ‘River’ in FS (Figure 19) but as ‘Periodically Flooded’ in 

FAS (Figure 20). Moreover, the maps also look a bit speckled and have more noise as compared to 

Sentinel-2, which could be due to the difference in spatial resolutions.  
 

3.2.2. Accuracy Assessment 

This section consists of the error matrices produced for the accuracy assessment of the satellite 

classification results. The error matrices for the classification results of Sentinel-2 with only field samples 

and with additional UAV obtained samples are presented in Table 14 and Table 15, respectively. Whereas 

the ones for SuperView-1 with only field samples and with additional UAV obtained samples are 

presented in Table 16 and Table 17, respectively. Here also the classes that are not of interest have been 

merged as ‘Others’ and the values have been rounded off. The error matrices with the original values for 

all 11 classes can be found in Appendix VI. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Table 14. Error matrix produced for accuracy assessment of the classification results of Sentinel-2 using only field samples, where the 

shades of green from light to dark indicate grass, shrub and tree life forms respectively 

 
As can be seen in Table 14, for Sentinel-2, the classification using only the field samples resulted in the 

ACoI of 60% and OA of 49%. The community of shrubs Phragmites australis and Carex spp. have the 

highest PA of 100%, whereas the community of Phalaris arundinacea (grass) has the lowest of 23%. For the 

UA, the community of Salix spp. (tree) has the highest accuracy of 100%, while Poa annua (grass) has the 

lowest of 18%. 
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Table 15. Error matrix produced for accuracy assessment  of the classification results of Sentinel-2 using additional UAV samples, 

where the shades of green from light to dark indicate grass, shrub and tree life forms respectively 

 
The classification using additional UAV obtained samples (Table 15) increases the ACoI by 4% and the 

OA by 13%. In this case, the community of Alnus glutinosa (tree) has the highest PA i.e., 92%, while the 

community of Phalaris arundinacea (grass) has the lowest i.e., 23%. In the case of the UA, three 

communities have 100% accuracy i.e., Carex spp. (shrub), Salix spp. (tree) and Alnus glutinosa (tree), while 

the lowest is for the community of Phalaris arundinacea (grass) i.e., 33%. 

For SuperView-1 as can be seen in Table 16, the classification results using only field samples resulted in 

the ACoI of 64% (same as the one for Sentinel-2 classified using additional UAV samples) and the OA of 

87%. Here the community of Alnus glutinosa (tree), has the highest PA of 83%, while the lowest is of 

Phalaris arundinacea (grass) i.e., 23%. In the case of the UA, the community of Phragmites australis (shrub) has 

the highest i.e., 88%, while Phalaris arundinacea (grass) has the lowest i.e., 38%.  

 

 

 

 

 

 

 

 

 

 

 

   

 

 
Table 16. Error matrix produced for accuracy assessment of the classification results of SuperView-1 using only field samples, where the 

shades of green from light to dark indicate grass, shrub and tree life forms respectively 
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For SuperView-1, the classification using additional UAV-obtained samples (Table 17) increases the ACoI 

by 3%, whereas it reduces the OA by 19%. The communities of Alnus glutinosa (tree) and Poa annua (grass) 

have the highest PA i.e., 92%, while the lowest is for Phragmites australis (shrub) i.e., 40%. However, in the 

case of the UA, Phragmites australis (shrub) has the highest accuracy of 100%, while the community of 

Carex spp. (shrub) has the lowest i.e., 33%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 17. Error matrix for accuracy assessment of classification results of SuperView-1 using additional UAV samples, where the 

shades of green from light to dark indicate grass, shrub and tree life forms respectively 

 
In conclusion, SuperView-1 classified using additional UAV-obtained samples has the highest ACoI and 

Sentinel-2 with only field samples has the lowest. In the case of the OA, SuperView-1 with only field 

samples has the highest and Sentinel-2 with only field samples has the lowest. 

 
Therefore, based on this analysis it can be concluded that SuperView-1 results in higher ACoI and OA 

than Sentinel-2. Moreover, the additional UAV-obtained samples improve ACoI for both Sentinel-2 and 

SuperView-1, however it does not improve the OA for SuperView-1.  

3.2.3. Variable Importance  

The Variable Importance plots generated during the Random Forest classification for the satellite imagery 

are presented in the figures below. It consists of two plots - the Mean Decrease Accuracy (MDA) and 

Mean Decrease Gini (MDG). The variables are presented in descending order, from the highest 

importance to the lowest (top to bottom). The variables are denoted in the format of 

‘XDate_Month_Year_Layer/Band/Index’. 

As can be seen in Figure 21, for Sentinel-2 classified using only field samples, the green layer of the 26-06-

2020 imagery has the highest Mean Decrease Accuracy (MDA), very closely followed by the red layer of 

03-11-2020. While in the case of Mean Decrease Gini (MDG) the red layer of 03-11-2020 has the highest, 

very closely followed by the green layer of the 26-06-2020 imagery. Whereas band 5 (Vegetation Red 

Edge) of the 22-04-2020 imagery has both the lowest MDA and MDG. 
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Figure 21. Variable Importance plot for Sentinel-2, produced while using only field samples to classify the imagery using RF 

 

In the case of Sentinel-2 with additional UAV samples (Figure 22), again the green layer for 26-06-2020 has 

both the highest MDA and MDG, closely followed by the NDWI layer of the 03-11-2020 imagery. 

Whereas band 7 (Vegetation Red Edge) for 26-06-2020 has the lowest MDA and band 6 (Vegetation Red 

Edge) for the same date has the lowest MDG value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 22. Variable Importance plot for Sentinel-2, produced while using additional UAV-obtained samples to classify the imagery 

using RF 
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For SuperView-1 classified using only field samples (Figure 23), the plot shows that the NIR layer of the 

04-04-2020 imagery has both the highest MDA and MDG values. Whereas the red layer of the same date 

has the lowest MDA and MDG values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 23. Variable Importance plot for SuperView-1, produced while using only field samples to classify the imagery using RF 

 
In the case of SuperView-1 classified using additional UAV obtained samples (Figure 24), follows the same 

pattern, where the NIR layer for 04-04-2020 has the highest MDA and MDG values and the red layer of 

the same date has the lowest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Variable Importance plot for SuperView-1, produced while using additional UAV obtained samples to classify the imagery 
using RF 
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Additional Analysis 

 
The error matrices for the classification results for the additional analysis performed for Sentinel-2 are 

presented in the following tables. The error matrix for the classification done using only field samples is 

presented in Table 18 and the one with additional UAV obtained samples is presented in Table 19. The 

error matrices with the original values (before rounding off) for all 11 classes (before merging the others) 

are presented in Appendix VII. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Table 18. Error matrix for the classification results for the additional analysis of Sentinel-2 with only field samples, where the shades of 

green from light to dark indicate grass, shrub and tree life forms respectively 

 
As can be seen in Table 18, the ACoI with only field samples is 61%, whereas the OA is 49%. Whereas, 

with additional UAV obtained samples (Table 19) the accuracies improve. The ACoI increases by 9% and 

OA by 17%. Moreover, the ACoI in this case (70%) is the highest out of all the satellite classification 

results, including the SuperView-1 results.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 19. Error matrix for the classification results for the additional analysis of Sentinel-2 with additional  UAV obtained samples, 
where the shades of green from light to dark indicate grass, shrub and tree life forms respectively 
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3.3. Comparison of Results 

In this section, firstly, the UAV classification results have been compared to the satellite classification 

results. Secondly, the results of the satellite have been compared with the map in the vegetation report. 

3.3.1. Comparison of UAV and Satellite 

The classification results of the combined orthomosaic and the satellite imagery have been compared in 

Figure 25. In terms of the level of detail, SuperView-1 results are closer to the UAV results, apparently due 

to higher spatial resolution. Moreover, the same misclassification can be spotted in the SuperView-1 

results, i.e., in the upper left corner (here classified as road), whereas in Sentinel-2 it is correctly classified. 

Besides that, in the maps classified using only field samples, there is more area classified as Carex spp. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a. UAV – Combined                        b.   Sentinel-2 (Field samples)               c.   Sentinel-2 (UAV samples)  

 

                                                                                     

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                             d.   SuperView-1 (Field samples)           e.   SuperView-1 (UAV samples) 
 

Figure 25. Comparison of the UAV classification results for the combined orthomosaic (winter + spring) with the classified maps for 
both Sentinel-2 and SuperView-1, along with a common legend for all the classifications 
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3.3.2. Comparison of Satellite and Vegetation Report Map 

To make the satellite classified maps and the vegetation report map comparable, the classes in the satellite 

results were translated to that of the report as depicted in the legend in Figure 26. The 11 classes were 

merged according to their main life-forms, resulting in a total of four classes for the satellite classification 

i.e., grasses, shrubs, trees and others. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a. Sentinel-2 (only field samples)                                     b.   Sentinel-2 (additional UAV samples)  

 

 

 

 

                                                                                

 

 

  

 

 

 

 

 

 

 

 

                                                                                   
                                                                      

  c.   SuperView-1 (only field samples)            

Figure 26. Classes in the satellite classified maps translated to the ones in the Vegetation Report for comparison, along with a new legend 
representing the newly merged classes (based on the main life-forms of plant communities) 
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For comparison with the already mapped data of Drentsche Aa for the vegetation report, the satellite 

classification with the highest ACoI i.e., SuperView-1 classified using additional UAV-obtained samples, 

was selected. Figure 27 presents a one-on-one comparison of the two. 

 
a. SuperView-1 (additional UAV samples)                                    b.   Vegetation Report Map 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                       

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 27. Comparison of the classification results of SuperView-1, using additional UAV-obtained samples with the reference map 

from the Vegetation Report along with their legends 

 
The reference map from the vegetation report has more classes than the SuperView-1 classified map. 

Some of these additional classes represent communities that had just started to flourish in Spring, but their 

extent did not meet the minimum area cover requirement for this study and consequently, they could not 

be recorded. These communities mainly flower in the summer months, thus could have possibly 

flourished after the last field survey was conducted in spring. Therefore, the temporal difference in the 

field data collection has been kept in mind while qualitatively comparing the results. Also, the blank area in 

the vegetation report map is the one that was not mapped by the authority. A lot of this area consists of 

trees, as can be seen in the SuperView-1 classified map. 
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Merged Error Matrices for the Satellite 

As the classes in the classified maps for the satellite imagery were merged to make it comparable to the 

reference map from the Vegetation Report, the error matrices were merged as well to examine how it 

influences the accuracies. The following tables represent the newly merged error matrices for all four 

satellite classification results. In all the descriptions below, the class ‘Others’ is not considered while 

discussing the PA and UA.  

 
 
 

 

 

 

 

 

 

Table 20. Merged error matrix for classification results of Sentinel-2 using only field samples  

 

The ACoI for Sentinel-2 classified using only field samples increased by 21% by merging the error matrix, 

whereas the OA increased by 16%. As can be seen in Table 20, the shrubs have the highest PA of 100%, 

while the trees have the lowest i.e., 47%. In the case of the UA, the trees have the highest i.e., 82% and the 

shrubs have the lowest i.e., 58%. 

 

 

 

 

 

 

 

 

Table 21. Merged error matrix for classification results of Sentinel-2 using additional UAV 
samples 

 
For Sentinel-2 classified using additional UAV-obtained samples, the ACoI increased by 28% and OA 

increased by 18% by merging the classes, resulting in the new ACoI and OA to be 92% and 80% 

respectively (Table 21). Here, the grasses have the highest PA of 89%, while the lowest is for shrubs i.e., 

50%. Whereas for the UA, the trees have the highest i.e., 100%, while the shrubs again have the lowest 

i.e., 78%. 
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Table 22. Merged error matrix for classification results of SuperView-1 using only field samples 

 
 
The ACoI and OA in the case of SuperView-1 classified using only field samples increased by 27% and 

1% respectively, resulting in the new ACoI to be 91% OA to be 88%, as can be seen in Table 22. Grasses 

have the highest PA of 95%, while the shrubs have the lowest of 79%. However, in the case of the UA, 

the shrubs have the highest (92%), while the trees have the lowest (85%). 

 
 

 

 

 

 

 

 

 

 

 
 

Table 23. Merged error matrix for classification results of SuperView-1 using additional UAV 
obtained samples 

 
For SuperView-1 classified using additional UAV-obtained samples, the ACoI increased by 26% resulting 

in the new accuracy to be 93%, while OA increased by 20% resulting in the new accuracy to be 88% as 

can be seen in Table 23. Grasses have the highest PA (100%), while the shrubs have the lowest (71%). 

Whereas for the UA, the shrubs have the highest (100%) and grasses have the lowest (84%).  

 
In conclusion, the accuracies follow the same order as with 11 classes, however the values significantly 

change. Here, SuperView-1 classified using additional UAV-obtained samples has the highest ACoI (93%), 

very closely followed by Sentinel-2 classified with additional UAV-obtained samples (92%) and 

SuperView-1 classified with only field sample (91%). In terms of OA, both the SuperView-1 results have 

the same accuracy of 88%, which is the highest. While Sentinel-2 classified using only field samples has the 

lowest ACoI (81%) and OA (65%). Moreover, here also the additional UAV-obtained samples improve 

the ACoI for both Sentinel-2 and SuperView-1.  
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4. DISCUSSION 

The first part of this section discusses the effect of the seasons and plant life-forms on the classification 

results. The second and third part discusses about the effect of spatial and spectral resolution, the fourth 

and the fifth part consists of the discussion related to comparison of results. Finally, the last sections 

discuss the applicability and limitations of the methods. 

4.1. Effect of Seasons and Plant life-forms on the UAV classification results 

For the UAV part, two seasons were considered for this study - winter and spring; an additional analysis 

was done by combining the images from these two seasons to have a bi-seasonal stack. The plant 

communities were further divided into different plant life-forms namely grass, shrub and tree.  

First, in terms of the ACoI, the highest was achieved by the combined orthomosaic (87%), followed by 

the winter (84%) and the spring orthomosaic (60%). The OA also follows the same order. Moreover, the 

individual accuracies (both PA & UA) for the combined and the winter orthomosaic are on the higher side 

compared to the spring orthomosaic, which declines for almost all classes and is the lowest. The reason 

for low accuracy in spring could be that most of the plant communities in focus were better visible and 

more distinguishable in winter. Figure 28 & Figure 29, show the seasonal differences affecting the plants 

present in the study area.  

 

 

 

 

 

 

 

    

 

 
 

a. Area in winter – 22 December 2020              b.   Area in spring – 26 April 2021 
 

Figure 28. A visual comparison of the seasonal differences in the vegetation present at a site in the study area 

 
In winter, the plants have more colour differences and variations which are unique to each plant 

community, making them more separable. Whereas in spring the plant communities appear to be in the 

same colour tone i.e., in different shades of brown and a bit of green. The difference in physical form in 

terms of colour was lost due to the monochromatic appearance of the landscape in spring. Therefore, it 

led to a lot of misclassifications as there was no clear separation between the classes, which can also be 

observed in the spring error matrix in Section 3.1.3 (Table 12).  
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a.  Juncus effusus (w)                    b.  Juncus effusus (s)              c.  Phalaris arundinacea (w)  d.  Phalaris arundinacea (s)          
      

Figure 29. Seasonal differences in the physical appearance of Juncus effusus and Phalaris arundinacea in winter (w) and spring (s) 

 
As can be seen in Figure 29, the grasses have a more distinctive appearance in winter than in spring. The 

same was with shrubs. These differences in the phenology of plant communities also influenced the 

merged accuracies for the dominant plant-life forms (Appendix VIII). In winter, grasses and shrubs have 

high average accuracies ranging from 89 to 95%, whereas in spring, the accuracies considerably drop, with 

grasses having the lowest accuracies ranging from 77 to 79%. These seasonal differences can further be 

visually observed in the orthomosaics (Figure 30). In winter, Juncus effusus was dark green in colour, Phalaris 

arundinacea had a yellowish appearance, Poa annua was light/lime green and the colour of shrubs ranged 

from dark to light brown as can be seen in Figure 30a. This made these communities very distinguishable. 

Whereas in spring (Figure 30b), there was not much contrast in the landscape which caused overlapping 

among different classes. In the case of trees, they did not have leaves in both the seasons when the UAV 

images were acquired, but in winter as the rest of the landscape had a more distinctive appearance, trees 

could still be distinguished (Figure 30c). Whereas in spring, the trees had a similar appearance to the rest of 

the landscape (Figure 30d) and hence, classes were not very well separable.  

 
 

 

 

 

 

 

 

 
 

 

a. Shrubs & grasses in winter      b.   Shrubs & grasses in spring          c.   Trees in winter        d.   Trees in spring 
 

Figure 30. Screenshots from the RGB winter and spring orthomosaics to show the seasonal differences and separability of the plant 
communities present in the study area, where red, green and blue colours are represented by bands 1, 2 and 3 respectively 

 
Additionally, the spring images were acquired on a sunny day where the trees created shadows too. These 

shadowed areas could have negatively affected the accuracy, as also shown in a study by Lopatin et al. 

(2019) where shadows caused interclass variability and led to misclassification which significantly affected 
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the classification results. Consequently, in spring, the grasses seem to overlap amongst each other and with 

shrubs and trees as well, for instance, Juncus effusus (grass) and Salix spp. (tree) seem to overlap as can be 

seen in the error matrix for the spring results (Table 12). This could be because, in spring Juncus effusus had 

a branch-like brownish appearance (Figure 29b), which resembled the small branches of Salix spp., hence 

the possible reason for the misclassification. In conclusion, the winter orthomosaic results in better 

classification of plant communities in the study area than the spring orthomosaic. Besides, this year 

experienced the coldest spring in 30 years which delayed the vegetation growth and blossoming period 

(NL Times, 2021), which could have negatively affected the spring results. 

 
Regarding the combined data which has the highest accuracy (both ACoI and OA), a point of discussion 

is that, if using the spring orthomosaic has any benefits i.e., if combining the two seasons improves the 

classification results. If analysed in terms of numbers, the ACoI increases by 3% and OA by only 1% for 

the combined results (in comparison to the winter results). Moreover, the individual accuracies (PA & UA) 

also seem to be mainly dominated by the winter results. However, the results when visually compared, tell 

a different story. In the classified map for winter (Figure 14) it can be noticed that some parts of the river 

are misclassified as flooded area and some flooded area as road. Whereas for the combined results (Figure 

16) these misclassifications cannot be visually detected, due to the information from the spring 

orthomosaic, where these classes do not overlap as the area was not as flooded. Though these classes were 

not the focus of this study (were merged as others), they still positively influence the overall classification 

results. Moreover, another benefit of combining the two seasons is the merged field samples. Additional 

field samples could be collected for trees in spring as the area was more accessible, which did improve the 

individual accuracies for the community of trees, where the combined results have the highest PA and UA 

for trees (Appendix VIII). Thus, the nature of the plant communities of interest with respect to the season 

when they are more distinctive is crucial to consider while planning the UAV data acquisition.  

 
These results are in line with a previous study by Lu & He (2017) which demonstrates the potential of 

UAV acquired data to effectively classify species in a heterogeneous grassland. The study also investigates 

the difference in the classification results for four different months (April, June, July and September) and 

identifies the month when species are most distinctive or dominant, which differs for each species. The 

highest accuracy of 86% was produced in the month of June. The study also encourages exploring the 

optimal spatial resolution and accordingly choosing a reasonable flying height for species classification. 

For this current study, the resolution of 2.6 cm worked well in classifying the plant communities in the 

study area. Contrastingly, in a study by Zweig et al. (2015) the resolution of 5 cm was too fine to work 

with the wetland vegetation. It resulted in a lot of misclassifications due to the similar colour and texture 

of the communities in focus, making them non-separable which led to high error rates and did not provide 

satisfactory classification results, until the classes were merged later. Thus, the resolution plays a very 

important role in determining the results. The importance of resolution, both spatial and spectral is 

discussed in more detail in the next sections.  
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4.2. Effect of Spatial and Spectral Resolution on the Satellite classification results 

For this study two satellite imageries were used – Sentinel-2 and SuperView-1, both having different 

spatial and spectral resolutions. Concerning the classification results (in terms of accuracy), the ACoI 

improves by using additional UAV obtained samples for both the imageries. 

 
In the case of Sentinel-2, the individual accuracies (PA & UA) significantly improve for some classes. 

However, in the error matrices (Table 14 & 15), high overlap can be observed amongst grasses. The 

additional UAV samples help in reducing the overlap and misclassification of grasses with shrubs and 

trees, but the confusion within the three grass communities still remains quite apparent. This could be due 

to the comparatively coarse spatial resolution of Sentinel-2, where one pixel could contain several classes 

(mixed pixels), making it difficult to assign it to one class. Therefore, the spatial resolution of Sentinel-2 

does not allow to accurately separate all the grasses, even with additional UAV samples. On the other 

hand, the additional UAV samples clearly benefit the classification of trees, whereas shrubs seem to be 

classified better with only field samples. It could be because of the limited spatial resolution, where the 

UAV samples instead of providing additional information, confused the classifier in the case of shrubs as 

they covered smaller areas in comparison to that of trees. Lastly, the accuracy of ‘others’ significantly 

improves with additional UAV obtained samples, which also improves the OA (by 13%). 

 
In the case of SuperView-1, the ACoI with only field samples is the same as the ACoI of Sentinel-2 with 

additional UAV-obtained samples (64%). With additional UAV samples the ACoI further increases, which 

is the highest out of all four classifications (67%). Grasses seem to be benefitted the most with better 

spatial resolution and additional UAV obtained samples, especially Poa annua. However, in the error matrix 

(Table 17), high overlap can still be observed between the remaining two grass communities (Phalaris 

arundinacea and Juncus effusus). Additionally, Carex spp. (shrub) is largely misclassified as Phragmites australis 

(shrub), which caused some overlap between the two shrub communities as well. However, trees are 

comparatively less misclassified. 

 
The possible reason for this could be that in the study area (as viewed in the satellite), the trees are found 

in continuous patches, with a distinct texture that makes them easier to be distinguished, as can be seen in 

Figure 31. Shrubs are not as homogeneous and distinct, but the way the management of the area has 

maintained them in geometric/symmetrical patches makes them somewhat dissociable. However, they are 

still confused with trees and grasses due to smaller patches and slightly similar physical appearance as 

perceived by the satellite imageries. On the other hand, grasses are more heterogeneous and found in 

discontinuous scattered patches, which makes it harder to separate with the given spatial resolution of the 

satellite imageries. Moreover, as the grasses have the lowest height, the shadow of trees and other larger 

plants happens to fall on them (Figure 31), which creates further problems and causes overlap with other 

classes. On the whole, trees and shrubs are more separable than grasses with the chosen satellite imageries. 

These results are in accordance with a study by Kattenborn et al. (2019), which shows that plant 
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community that occur in large patches and have distinct phenology are easier to classify and map than the 

ones that occur in scattered/small patches and have similar phenology. It also states that it further affects 

the visual delineation of classes and the process of collecting samples. 
 

 

 

 

 

 

 

              
                       Figure 31. A subset of SuperView-1 imagery (06 November 2020) highlighting some marked areas  

  
In conclusion, the satellite classification results are not satisfactory. The approach of using additional UAV 

samples does improve the accuracy for some classes but overall, in the end, some classes still remain 

inseparable. This is largely due to the spatial resolution of the satellite imageries which did not allow clear 

separation of the fine-scale grass communities. This inference is in congruence with a study by Rapinel et 

al. (2020) which shows that the plant communities map produced using Sentinel-2 was not accurate 

enough to be used as reference data, however, integrating it with field methods can be a useful approach 

and provide valuable information to select areas for further analysis. 

 
The possible reasons for this could be, first, the field samples were collected in a very detailed manner 

which was more suitable for the UAV classification. Due to a large difference in spatial resolutions, the 

field samples need to be adjusted or merged to make them more appropriate for the satellite image 

classification. Nevertheless, these results do give insights on the classes which can and cannot be 

separated, along with the role the spatial and spectral resolution plays. Second, the field samples were 

concentrated in the area covered by the UAV, more samples could have been collected from nearby areas 

to ensure a better distribution for the satellite. Another reason could be the limited temporal information. 

For this study, the multi-temporal aspect for the satellite included three months, as SuperView-1 only had 

three good images of the study area for the year 2020. Sentinel-2 had abundant good images available, but 

they were not used to keep the temporal aspect similar to have a basis for comparison, as the spatial and 

spectral resolutions differed already. Additional temporal and spectral information could have 

compensated for the coarser spatial resolution. The results of the additional analysis for Sentinel-2 (Table 

18 & 19) further verify this argument. The image with additional information layers (60 layers) when 

classified using the additional UAV obtained samples, significantly improves the accuracy. It produces the 

Shrubs 

Trees 

Shadow on grasses 
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highest ACoI (70%) out of all satellite classifications (including the SuperView-1). However, this image 

with additional layers when classified using only field samples does not seem to benefit the results. It gives 

almost the same results as without the additional layers (30 layers). The ACoI only improves by a percent 

and the OA remains the same. Hence, this not only validates that the additional temporal and spectral 

information improves the classification but also reemphasizes the benefit of using additional UAV 

obtained samples. Therefore, it can be concluded that Random Forest performs better with more samples. 

This is in line with a study by Shang et al. (2018), which also concludes that some of the advanced 

classifiers perform better and produce more stable results with an increase in sample size. 

4.3. Effect of Seasons and Spectral Resolution on the classification results 

For this study, satellite imagery from three months was used i.e., April, June and November. Based on the 

variable importance graphs for Sentinel-2 (Figure 21 & 22), the green, red, NDWI, NDVI, GNDVI, NIR 

(band 8) and Vegetation Red Edge (band 5) layers from June and November influence the accuracy more 

than band 6 & 7 (Vegetation Red Edge) from June and band 5 from April. For SuperView-1 (Figure 23 & 

24), the NIR layer for April plays the most important role in classification, whereas the red layer of the 

same date is the least important. Therefore, for the satellite image classification, there is not one consistent 

date or month which is the most or least important. Here the different spectral bands or vegetation indices 

from the same date have varying importance.  

 
On contrary, a study on floodplain grassland plant communities by Rapinel et al. (2019) concludes that the 

date/season has a higher influence on the accuracy as compared to the spectral bands. The study found 

out that between spring and early summer (April to June) is the most informative period to discriminate 

between plant communities. Whereas, between November to February is not suitable as it resulted in the 

lowest accuracy. The study determines the most suitable period for classification based on vegetation 

dormancy and senescence. This inference is not in line with the results produced for this current study.  

 
Moreover, to further support this disagreement, the UAV results are discussed as they were the most 

accurate and detailed out of the ones produced for this study. The plant communities in focus were more 

distinct and easier to classify and map in winter (December) than in spring (April) as has been discussed in 

section 4.1. The information from spring only helped with the classification of plant communities in the 

combined orthomosaic (i.e., when combined with winter), while the winter orthomosaic on its own was 

more beneficial for discriminating plant communities. Although this is something entirely area and plant 

community-specific, which could further differ due to the change in climatic conditions or the 

management of the protected area. Yet, considering the delay in spring this year and assuming that in 

summer the vegetation in the area would have been at its peak, the following argument is stated. In a 

scenario like this where the vegetation is in full bloom and the landscape looks visually more similar (is 

mostly green), the spectral information becomes even more important. Particularly, in the case of the 

chosen satellite imageries with comparatively limited spatial resolutions. One of the advantages of Remote 
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Sensing techniques is the additional spectral information and possibility to calculate vegetation indices, 

which play an important role in classification (as evident in the case of Sentinel-2 for this study). 

Therefore, the classification of plant communities is also influenced by how distinct the classes are from 

each other along with the differences in their spectral reflectance, rather than primarily being determined 

by their peak growth period.  

  
Another point of discussion here is that ideally vegetation surveys are conducted in spring or early 

summer. At the time when vegetation is usually at its peak, the weather conditions are more ideal to 

conduct field surveys and good quality satellite data is readily available too. While in winters, the harsh 

weather conditions could make it difficult to conduct fieldwork. Moreover, it is usually difficult to find 

good quality satellite imagery. For instance, none of the satellite images of the study area between 

December to February could be used for the analysis due to extremely high cloud cover. These conditions 

restrict exploring the information the winter season can offer. Winter could give insight into the habitat 

characteristics of a region like soil, level of flooding, etc. which could indirectly help in identifying the 

plant communities. However, the usefulness of this information depends on the nature of plant 

communities in focus. Nevertheless, it could be very beneficial in some cases, as was for this study. If the 

analysis relied entirely on satellite imagery, the results could have been completely different. Therefore, 

UAVs can fill this information gap, by providing good cloud-free data for winter. 

4.4. Comparison of UAV and Satellite Results 

The UAV imagery classified using OBIA produces the best classification results with the combined 

orthomosaic, with the highest ACoI of 87%. The individual accuracies are also on the higher side and the 

error matrix (Table 13) has fewer overlaps or misclassifications as compared to the satellite classification 

results. The UAV imagery with only two seasons provides better classification results than the satellite, 

which has information from three seasons. The reason is evidently the difference in spatial resolutions, as 

can be seen in Figure 32.  

 
 

 

 

 

 

  

 

 

 
                

a. Sentinel-2 (03 Nov)               b.  SuperView-1 (06 Nov)                  c. UAV (22 Dec) 

Figure 32. Screenshots of the same area in the satellite imageries and the orthomosaic at scale 1:250, where red, green and blue 
colours are represented by bands 1, 2 and 3 respectively 
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Though, one thing to notice here is that the ACoI for Sentinel-2 (64%) even with a coarser spatial 

resolution, is not very far away from that of SuperView-1 (67%) which has a comparatively better spatial 

resolution (both with additional UAV samples). It could be that the higher spectral resolution along with 

the additional information from the vegetation indices compensated for the coarser spatial resolution (as 

also shown in the additional analysis). 

 
However, when the results are visually compared, the UAV classified 

maps have one very evident misclassified area in the upper right corner. 

The reason for this could be, that in winter, the water in the flooded 

areas reflected the grey sky as can be seen in Figure 33. It could have 

been confused with the greyish bare branches of trees, due to similar 

reflectance. Whereas in spring, the plant communities had a similar 

appearance as has been discussed in section 4.1, hence the reason for the 

misclassification. These differences were captured in the UAV images 

and can be seen in the orthomosaics as well (Figure 11), which 

consequently reflected in the classification results. 

 
The satellite imagery seems to have helped with this issue. When comparing the classified maps (Figure 25), 

it can be observed that in the case of Sentinel-2 this misclassification does not occur; the area is correctly 

classified as Poa annua (grass). This could be due to the additional information from the summer imagery, 

which was not there in the case of UAV. This could also be due to the higher spectral resolution of 

Sentinel-2. Whereas SuperView-1 only correctly classifies a part of this area, while the remaining area is 

misclassified as road (others). This could be due to two possible reasons; first the mowing pattern in the 

summer image (Figure 34a) and the slightly hazy winter image with shadows (Figure 34b). Moreover, in the 

study area, Poa annua was also found growing along the sides of the narrow strip of road. While 

reprojecting SuperView-1 in the same coordinate system, even a slight shift could have caused some 

samples to be on the wrong land cover class.  

 

            
    a.  23 June 2020 (summer)                        b.  06 November 2020 (winter) 

Figure 34. Screenshot of the misclassified patch in two SuperView-1 imageries, where red, green and blue 
colours are represented by bands 1, 2 and 3 respectively 

Figure 33. Water in the flooded area 
reflecting the grey sky in winter 
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While comparing the rest of the map, some other differences can also be observed. First of all, the 

SuperView-1 classified maps visually seem to be closer to the UAV maps, whereas the Sentinel-2 maps are 

not as detailed. This is largely because of the difference in spatial resolution, but the overall pattern and 

classification on a coarser scale is still intact for Sentinel-2. However, with the maps classified using only 

field samples, over-classification can be observed. For both Sentinel-2 (Figure 25b) and SuperView-1 

(Figure 25d) a lot more area is classified as Carex spp. (shrub). From knowing the study area, and the way 

the authority manages some communities, it cannot be that this is due to the information from the 

summer layer (the spread of these communities would not drastically change). This possibly comes from 

the limited field samples, which do not cover as many spectral differences representing the communities, 

as much as the additional UAV samples do. Hence, the satellite maps produced using additional UAV 

obtained samples visually seem to be closer to the UAV classified map. Therefore, additional UAV 

samples not only improve the figures/accuracies, but also the classified maps. Now between these two 

maps, the one with Sentinel-2 (Figure 25c) visually seems better, as the map with SuperView-1 (Figure 25e) 

under classifies Salix spp. and also has the misclassified upper left corner as road. 

4.5. Comparison of Satellite Results with Vegetation Report Map 

To compare the satellite classified maps with the vegetation report map, the classes were merged i.e., 

generalized to the plant life-form level, to link it to the ones in the report. In terms ACoI, it significantly 

improves for all four classification results, as the misclassification among the overlapping classes reduces. 

Here also the additional UAV obtained samples produce better classification results as compared to using 

only field samples. However, here the order slightly changes; the highest ACoI is obtained by Superview-1 

with UAV samples (93%), closely followed by Sentinel-2 with UAV samples (92%) and SuperView-1 with 

field samples (91%). 

 
While visually comparing the classified maps (Figure 26 & 27), the only major difference that could be 

observed is that the maps produced using UAV samples have more area classified as ‘others’, especially in 

the middle, which could be due to the flooded area. Other than that, the SuperView-1 maps still consist of 

the wrongly classified upper right corner (as others). However, for the one-on-one comparison with the 

vegetation report map (Figure 27), the SuperView-1 classified map produced using additional UAV samples 

was selected, as it has the highest (merged) ACoI. The first thing that comes into notice is that the 

vegetation report map has some empty spaces that are not mapped, which mainly consists of trees (strips 

of trees) and some grasses (right-hand side). It could be that this area was not under the management 

when the vegetation survey was conducted or could have not been mapped due to some other reason. In 

any case, the classified maps update and fill in this missing information. Besides that, the vegetation report 

map consists of a few more classes of plant communities. A lot of these communities are the ones that 

had just started to flourish when the last field samples were collected and as their extent did not match the 

minimum area requirement for this study, they could not be included in the analysis (these indicative 



DRONES FOR CONSERVATION: INTEGRATING UAVS WITH FIELD METHODS TO CLASSIFY SATELLITE IMAGERY TO MAP PLANT COMMUNITIES – A CASE STUDY OF 

DRENTSCHE AA, THE NETHERLANDS 

 

52 

species are mentioned in section 2.3.4.). These species perhaps could have flourished in the summer 

months; thus, this difference could be due to the time/seasonal difference in the field survey period. This 

could also be a reason that Juncus effusus is mainly found with other grasses in the vegetation map and only 

one patch of its pure community is found. Juncus effusus was more distinct in winter, when the field samples 

for this study were collected, while the field survey for the vegetation report was conducted between May 

and September. Another difference is that the area covered mainly by sedge species in the vegetation map 

is classified as others and shrubs in the classified map. This again could be due to the seasonal differences, 

in summer when this area would not be flooded, it could possibly have sedge species. Therefore, the 

assumption that the differences between the two maps are due to the differences in data, methods and 

techniques used is most likely true. However, the country did experience two dry summers in 2018 and 

2019, which could have had an impact on these communities. The study is a flooded grassland region, 

where the water table and the soil saturation are important characteristics of the vegetation. On the other 

hand, it could also be that the plant communities recovered from it last year (2020) as the country 

experienced a good amount of rainfall as compared to the previous two years. In fact, February 2020 was 

the wettest February in Dutch history; it was also the second warmest (NL Times, 2020). This could have 

positively affected the plant communities in the study area and hence a possible reason for no substantial 

change or shift in their extent. Therefore, it still cannot be assertively concluded if there is any change in 

the extent of plant communities, or if it is simply because of the differences in the mapping methods. 

 
The final point of discussion is which out of the two satellite imageries is more suitable to classify plant 

communities in the study area. In terms of numbers, there is only one percent difference between the two 

highest ACoIs i.e., 93% for SuperView-1 and 92% for Sentinel-2, both classified using additional UAV 

obtained samples. With respect to the classified maps, the one for Sentinel-2 looks better, majorly due to 

the correctly classified area (upper left) which even the UAV could not correctly classify. Additionally, 

Sentinel-2 allows adding more information layers (dates, bands & indices) and increasing the temporal 

dimension of the analysis, which enhances the possibility of further improving the results (as shown by the 

additional analysis, Table 19). Other than that, SuperView-1 imagery is harder to access and download in 

comparison to Sentinel-2. It is only available to Dutch nationals and Dutch institutes (Netherlands Space 

Office, n.d.). In conclusion, the results of this study are more in favour of Sentinel-2 amongst the satellite 

data for similar applications. 

4.6. Applicability of the methods 

This study investigates if UAVs can be used to bridge the gap between field methods and satellite imagery 

to map plant communities for conservation. It tests an approach to see if the benefits of high spatial 

resolution of UAV imagery can be directed towards the satellite imagery to produce accurate maps 

covering a larger area. It uses Drentsche Aa as a case study area to test this method. Firstly, the UAV 

imagery produces very accurate and detailed maps, especially with the combined orthomosaic (winter and 
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spring). It furthermore revealed the advantage of the winter season over spring to classify the communities 

in focus, which is contrary to previous studies that claim spring to be the most ideal season for vegetation 

surveys and related work. Therefore, the UAV imagery successfully classifies plant communities in the 

study area with high accuracy. It further gives the management of the area scope of detailed mapping in a 

more efficient way. Secondly, the additional UAV obtained samples improve the classification results and 

accuracy of the satellite imagery. However, the results and the classified maps are still not as accurate. 

Nevertheless, when the classes were generalized to the plant life-form level to make it more comparable to 

the broader scale of the report, the accuracies and the classified maps improved. However, the finer details 

were lost; there was a trade-off between the number of classes and the accuracy.  

 
This study aimed to bring the satellite classification results closer to the field observations with the help of 

UAVs, which it successfully does. But it was expected for the accuracy to be higher; nonetheless, it is a 

good starting point and can act as a road map to integrate UAVs with field methods. It revealed 

limitations of the data, methods, seasonal differences, nature of the plant communities in focus, etc. which 

provides a lot of scope of improvement for future work. In terms of the applicability of this method, with 

some refinements, it can be used to produce more detailed and reliable maps on a larger scale. This 

method can further be improved and adapted for classifying plant communities in another area or habitat, 

with necessary adjustments made in the data collection techniques (sampling method, UAV flying heigh, 

etc.) based on the area requirements. Moreover, if this approach is repeated yearly or with an interval of a 

few years, it could be used as a technique for a change detection analysis. 

 
In conclusion, UAVs do have the potential to produce results that are close to ground surveys. Though 

field methods still play an important role in mapping plant communities, integrating them with UAVs can 

be a promising approach to improve the classification results of the satellite imagery. However, some 

further research is required to make it more precise on a large scale. 

4.7. Limitations of the Research 

The following points summarize the limitations of this research: - 

 
- The number of field samples was not evenly distributed among all the plant communities. The study 

area is a grassland; hence it was majorly covered with grasses, therefore enough samples could be 

collected for grass communities. Even for trees, there were sufficient samples, as they were found in 

clusters covering a reasonable area. However, for shrubs it was not the case; they covered a 

comparatively smaller area. Furthermore, as the training points had to be kept spatially independent 

from the validation points, it further restricted the number of samples that could be collected. This 

was especially the case with Carex spp. which only had two patches, one of which was not accessible 

in winter due to flooding. However, in spring a few more samples could be collected, but the total 

number still remained comparatively low.  
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- Moreover, the field samples were only collected in the area covered by the UAV. Though the training 

and validation points were spatially kept independent, but for the satellite imagery, it could have 

resulted in some spatial autocorrelation. The time restrictions along with the breeding and migration 

season of birds (in nearby areas) did not allow acquiring more UAV data, which could have been 

used to collect more samples to classify the satellite imagery. 

- GCPs could not be used to improve the positional accuracy of the orthomosaics. The study area did 

not have many well-distributed natural distinct points. Some natural intersections were found along 

the river and road, but they were very close to the edges. Theoretically, GCPs should be marked away 

from the boundary of the area, therefore, the points along the road and river could not be used. 

Additionally, as the first UAV dataset was acquired in winter, the area was flooded, not only making 

it harder to access but also not making it possible to place artificial points using checkboards. Due to 

the same reason, it was also difficult to mark MTPs while combining all the individually processed 

MS flights. In the end, the positional accuracy of the orthomosaics was visually validated with 

ArcGIS online, by observing if they fit well with some recognisable or linear features like the road 

and river. 

 
- The ESP (Estimation of Scale Parameter) tool could not be used to determine the best parameters 

values for segmentation during OBIA. The processing power of the computer did not allow this tool 

to successfully work. Therefore, the values were determined by a trial-and-error method. 

 
- The limited data availability for SuperView-1 imagery restricted the multi-temporal dimension for the 

satellite analysis to only three dates/imageries. Adding more layers to the satellite stack could have 

allowed exploring the possibilities of improving the results, as has been demonstrated by the 

additional analysis (Table 19).  

 
- The difference between the classified maps and the vegetation map, not only with respect to data 

type and methods but the seasonal difference of data collection and field survey. Moreover, the UAV 

data did not have a summer image, when the samples for the vegetation report were mainly collected, 

therefore, it could not be concluded if there is a change in the extent of the plant communities. 
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5. CONCLUSION & RECOMMENDATIONS 

5.1. Conclusion 

This study investigates the potential of UAVs to improve the remote sensing techniques to map plant 

communities for conservation. It tests a method to combine the benefits of high spatial resolution of 

UAV imagery with high spatial coverage of satellite imagery to produce accurate maps on a large scale. 

The final outcomes include the classified maps for plant communities at two scales i.e., UAV and satellite. 

For the UAV part, the orthomosaics produced detailed maps with high accuracy. OBIA worked well to 

classify the plant communities in the study area. For the satellite imagery, the additional UAV obtained 

samples provided better classification results in comparison to using only field samples, but the results 

were not as accurate. However, when the classes were generalized to the plant life-form level to make the 

classified maps comparable to the broader scale of the vegetation report map, the accuracies improved. 

This study aimed to bring the satellite classification results closer to the field observations with the help of 

UAVs, which it successfully does. But it was expected for the accuracy to be higher. Nonetheless, this 

approach with some further refinements can emerge as a promising technique to integrate UAVs with 

field methods to improve the classification results of the satellite imagery. Therefore, drones do have the 

potential to bridge the gap between field methods and satellite imagery to map plant communities for 

conservation. However, field methods still remain an integral part of the whole process, but UAVs can 

complement them and improve the remote sensing techniques of mapping plant communities. 

 

Answer to Research Questions 

Based on the findings of this study, the following conclusion can be drawn for the RQs: - 

 
RQ1.1. What is the accuracy of classifying UAV imagery to map plant communities? 

- The accuracy of classifying UAV imagery to map plant communities is 87%, which was achieved 

by combining the images from the two seasons. 

It holds true with the hypothesis which stated that ‘the high-resolution UAV imagery would lead 

to a precise classification of plant communities and high overall accuracy’. 

 
RQ1.2. What is the effect of different seasons on the classification accuracy?  

- The ACoI was affected by the seasons, where the winter orthomosaic produced an accuracy of 

84%, which dropped to be 60% for the spring orthomosaic. The same pattern could be observed 

in the case of the individual accuracies (PA & UA) which were on the higher side for the winter 

results, while it declined in spring for all the classes.  

The hypothesis holds true which stated that ‘the seasons would affect the overall as well as the 

individual accuracies of plant communities’. 
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RQ1.3. Does combining images from different seasons improve the classification results? 

- Yes, combining the images from the two seasons improves the classification results; it resulted in 

the highest ACoI and OA out of the three UAV classifications i.e., 87%.  

The hypothesis holds true which stated that ‘combining images from different seasons will yield 

higher classification accuracy than single-season imagery’. 

 
RQ1.4. What is the effect of dominant plant life-forms on the classification accuracy? 

- The grasses have consistently higher accuracies; it is not the lowest in any season (including the 

combined orthomosaic). In winter and spring, the PA for grasses is higher than that of shrubs and 

trees, while the UA for grasses is higher than that of trees. For the combined orthomosaic, trees 

have the highest PA and UA, followed by grasses and then shrubs. 

The hypothesis which stated that ‘the communities dominated by larger plant species like trees 

and shrubs will be classified with higher accuracy than those of smaller plants, like dwarf shrubs 

and grasses’ does not hold true in this case. 

 
RQ2.1. How do the additional UAV obtained samples affect the classification results of satellite imagery 

in comparison to using only field samples? 

- The additional UAV obtained samples improved the ACoI for Sentinel-2 by 4% and for 

SuperView-1 by 3%.  

It holds true with the hypothesis which stated that ‘the additional samples obtained from visual 

interpretation of the UAV imagery will result in higher accuracy than the classification with only 

field samples’. 

 
RQ2.2. What is the effect of different spatial and spectral resolutions on the satellite image classification 

results? 

- The classification results (in terms of ACoI) with a higher spatial resolution (SuperView-1) are 

slightly better than those with higher spectral resolution (Sentinel-2). Higher spatial resolution 

improved the accuracy, especially for grasses. However, confusion could still be seen among the 

grass communities in the error matrices. Overall, the communities of trees and shrubs are more 

separable than of grasses with the given satellite imageries. 

The hypothesis which stated that ‘spatial resolution would be more important for accurate 

classification of smaller plant life-forms like grasses, whereas the spectral resolution would be 

more important for classifying plants with similar phenology and spectral properties’ holds true 

only with respect to the spatial resolution aspect, which played a more important role in 

classifying grasses. However, the hypothesis about spectral resolution is not true. The study area 

consists of some plant communities that appear distinct (spectrally different) only for a brief 

period (winter). Whereas the satellite imagery used for the analysis was a multi-temporal stack 

with information from other seasons too (spring and summer), and in spring the communities 



DRONES FOR CONSERVATION: INTEGRATING UAVS WITH FIELD METHODS TO CLASSIFY SATELLITE IMAGERY TO MAP PLANT COMMUNITIES – A CASE STUDY OF 

DRENTSCHE AA, THE NETHERLANDS 

57 

look more similar. Moreover, the most important layers for classification were from summer and 

winter, and the least important from spring (according to the variable importance graphs). 

Therefore, it cannot be assertively concluded if spectral resolution played an important role for 

these similar-looking communities or was it classified better due to the information from the 

summer and winter layers, where the communities appeared comparatively distinct. 

 
RQ3.1. What differences can be observed between the classified maps and the existing vegetation survey 

maps? 

- The classified maps are updated and fill in the plant communities (classes) for the missing areas in 

the vegetation report map. The classified maps were more detailed, and the classes had to be 

merged to match the broad classes of the vegetation report map, which also led to a significant 

increase in the accuracy. 

It holds true with the hypothesis that ‘Integrating UAVs with field methods will improve the 

quality of the satellite classification results and the classified maps will have more information 

than the vegetation survey maps’.  

5.2. Recommendations 

From the problems encountered during the research and limitations of the methods, the following are 

some recommendations that can be considered to improve future work: - 

 
- A UAV dataset for two more seasons i.e., summer and autumn could be acquired and added to 

the analysis. It would be interesting to see how the phenology of plant communities changes in 

these seasons and its influence on the classification results and accuracy. 

 
- More UAV obtained samples could be collected and used for training the classifier. It could be 

interesting to systematically add the UAV obtained samples to see up to which point these 

additional samples are beneficial. One can conclude a threshold or maximum range after which 

these additional samples do not significantly improve the accuracy. This could help in planning 

the fieldwork accordingly. 

 
- However, if the area is not large enough to collect more samples (as was the case for the current 

study), then quick additional flights (long strips transecting different communities, instead of a 

whole area) could be conducted in a nearby area, with the same plant communities. These 

additional flights then could be used to collect more samples to classify the satellite imagery. It 

could further provide widely distributed samples for the satellite imagery and can help to deal with 

spatial autocorrelation.  

 
- Moreover, other outputs of SfM photogrammetric processing like point clouds or Digital Surface 

Model (DSM) could also be used. It could provide additional information to understand the plant 
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communities with respect to variations in the height differences and level of flooding. This could 

be done if one wants to include the habitat and geographic factors in the analysis. 

 
- For segmentation (OBIA) in eCognition, the ESP tool could be used to automatically calculate 

the best parameter values and settings. 

 
- Data fusion of the satellites could be explored. Different satellite imageries, in this case, Sentinel-2 

and SuperView-1 could be fused to combine the advantages of spectral and spatial resolutions. 

 
- The variable importance graphs (RF) could further be explored to perform ‘Feature Selection’ 

where variables or layers that do not contribute much to the classification can be systematically 

removed and its impact on the accuracy could be observed. 

 
- Lastly, if after all these improvements to the methods, it still does not produce satisfactory results, 

then a sub-pixel classification approach like fuzzy c-means could be used; it might be more 

appropriate given the spatial resolution of the satellite imageries and the nature of plant 

communities. 
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APPENDICES 

 
Appendix I 

 

FIELD SURVEY FORM 

PLANT COMMUNITIES IN DRENTSCHE AA, THE NETHERLANDS 

 

Date: Time: Weather: 

 

Relative location: 

GPS/Coordinates: 

 

 

 

Additional Remarks: ________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

1. 
Name of the 
Indicative or 
Dominant Species 

Scientific  

English  

Dutch  

2. Vegetation Code  

3. Habitat Code  

4. Landform  

5. Soil Type  

6. Level of flooding  

7. Total no. of Observations  

Plant Description Site Description 

Winter Spring Winter Spring 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 
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Appendix II 

 
i. Change in the default settings in Pix4D during the first step i.e., Initial Processing   

 

 
 

Appendix III 

 
i. Weights assigned to different layers for segmentation in eCognition 

 

 

                                                                          *Layers 5, 6 & 7 are RGB layers respectively 
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Appendix IV 

 

i. Overlap of the RGB images for winter (left) and spring (right) 

  
 

ii.   Overlap of the MS images for winter (left) and spring (right) 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
*Green areas indicate a good overlap i.e., over 4 images for every pixel, whereas red, orange and yellow areas 

indicate low overlap i.e., less than 3 images. 
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Appendix V 

 

i. Error matrix for the classification results of the winter orthomosaic  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

ii.   Error matrix for the classification results of the spring orthomosaic 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

iii.   Error matrix for the classification results of the combined orthomosaic 
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Appendix VI 

 

i. Error matrix for the classification results of Sentinel-2 with only field samples  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

ii.   Error matrix for the classification results of Sentinel-2 with additional UAV obtained samples  

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

iii.   Error matrix for the classification results of SuperView-1 with only field samples 
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iv.   Error matrix for the classification results of SuperView-1 with additional UAV obtained samples  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix VII 

 

i. Error matrix for the classification results of the additional analysis of Sentinel-2 with only field 

samples 

 
 

 

 

 

 

 

 

 

ii.     Error matrix for the classification results of the additional analysis of Sentinel-2 with additional UAV 

obtained samples 
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Appendix VIII 

 
i. A summary of the results from all three UAV classifications, along with merged PA and UA for each 

plant-life form 

 

 

 

 

 

 

 

 

 

 

 
 
                                      * The shades of green from light to dark indicate grass, shrub and tree life forms respectively 

 

 

 

 

 

 


