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ABSTRACT 

Until recently, street view imagery is not considered a data source for scientific research. With growing 

interest in deep learning and computer vision, street view imagery evolved as a novel data source due to its 

fine resolution and rich visual scene content. They replace the tedious field surveys with virtual audits. Of 

late, street view imagery is used to relate visual perception of predicting non-visual attributes like building 

age estimation, property evaluation, walking likelihood etc. In addition to these, a few research works also 

used street view imagery to predict crime rates. Predicting crime rate from street view imagery is based on 

famous environmental theories like Broken Windows theory or Routine Activity of Places theory. They 

state that environmental variables influence crime occurrence. The fast-paced urbanisation and growing 

population can motivate criminals and encourage crime occurrences in cities. There is a need to manage 

the resources of the law enforcement department effectively to control the crime. This research takes the 

motivation from the theories mentioned above works and investigates the effect of visual variables from 

street view imagery on predicting crime rates. 

Previous research mainly concentrated on classifying crimes based on the severity or ranked the most 

occurred crime in each place. This work tries to predict the crime counts of four different types from the 

street view imagery by solving a multi-output regression problem. Greater London is selected as the study 

area of research, and the crime data of one year is considered. A deep learning model is built to achieve 

this, taking multiple inputs, and simultaneously predicting crime counts for four different crime types. 

ResNet18 is used as a building block for building the model. A workflow is designed to model the crime 

data and prepare the labelled dataset for input to the built model. Kernel Density Estimation is used to 

model the crime data, and the outputs are used to extract the street view imagery and label the data. Four 

street view images and population density are given as inputs, and the crime rates of burglary, robbery, 

other thefts and vehicle crimes are predicted simultaneously. Different configurations of models are 

trained and compared to understand the effect of visual variables in crime rate prediction. The results 

obtained show a considerable relationship between visual variables of the built environment and crime 

rate. The R-squared value for burglary is 51%, robbery is 44%, other thefts is 50%, and vehicle crimes is 

49%. However, there were no significant changes in the R-squared values, excluding population density as 

an explanatory variable. The scatterplots of actual and predicted crime rates are interpreted to understand 

and evaluate the model's performance. The inclusion of additional variables like socio-economic variables 

might have affected the performance of the model. 

 

Keywords: Crime rate prediction, street view image, deep learning, multi-output regression, kernel density 

estimation 
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1. INTRODUCTION 

1.1. Background and Motivation 

 

The occurrence of crime in a neighbourhood is a threat to public safety and livelihood. In major cities, 

with a growing population day by day, there is a scope of uncontrolled criminal activity. It is difficult and 

impractical for the police force to keep track of criminal activities all over the city. The crime rate per 1000 

inhabitants has increased since the last decade in London (Clark, 2021). On the other hand, there is no 

considerable increment in the police force strength in the statistics published by London Datastore 

(https://data.london.gov.uk/). The disparity in crime and the police force emphasizes the need to 

understand the crime and its distribution, identify the hotspots of crime, and effectively manage the police 

force's resources. Over the years, many theories have been proposed to explain crime and criminal 

behaviour.  

 

The famous Broken Windows Theory (Wilson & Kelling, 1982) suggests that the environment strongly 

influences the behaviour of its people. Environmental theories consider that along with the offender, 

spatio-temporal setting and victim also influence the crime event (Brantingham & Brantingham, 1995). 

The crime occurrence depends on a multitude of factors, and its distribution is non-random. These factors 

are categorized into crime attractors and crime generators based on their interaction with the crime event 

(Kinney et al., 2008). The crime occurrence varies from place to place and is regulated by appearance and 

perception of the built environment and other determinants. In addition to crime, built environments also 

influence other variables like health (Cohen et al., 2003), education (Milam et al., 2010), and mobility (Piro 

et al., 2006). The theories proposed in the past are formulated either by social experiments or physical 

audits. Understanding the built environments and their relation to crime patterns can help control and 

prevent crime. This research attempts to quantify the relationship between crime occurrence and built 

environments using Street View Imagery (SVI). 

 

Street View Imagery (SVI) is a 360° panoramic image taken at eye level. It captures the visual scene of the 

built environments and can be the best substitute for human perception. Though SVI is not introduced 

for research originally, the potential in research is discovered in the recent past. The excellent resolution of 

images provides great information about the neighbourhood’s appearance, which is the key to understand 

the built environments. A few of the data sources include Google Street View (GSV), Tencent Street View 

(TSV), Mapillary etc. With the exhaustive amount of SVI data in hand, now the audits for understanding 

built environments can be conducted virtually by trained experts (Kelly et al., 2013) and crowdsourcing 

(Salesses et al., 2013). 

  

However, virtual audit on such huge data is still an unrealistic task. Computer vision and Deep Learning 

help handle such massive data. Computer vision deals with how a computer sees images and understands 

them. It can be an alternative for human vision in a cognitive understanding of the scene when trained 

with the data sets in a task-specific manner (Ibrahim et al., 2020). Deep learning, Convolutional Neural 

Networks (CNN), to be specific, made computer vision perform the tasks of classification, segmentation, 

feature extraction from the images more precise and accurate (Lecun et al., 2015). Machine learning 

techniques and computer vision advancements aid in understanding built environments and quantifying 

crime occurrence. As it is difficult for even an expert to understand the impact of the environment on 

https://data.london.gov.uk/
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crime for such vast amounts of data, this study will use a deep learning model to learn the association 

between visual variables of the scene and crime occurrence. 

 

In recent years, due to its cost-effectiveness and ease of availability, SVI substitutes human perception in 

understanding the built environments. With technological advancements, computer vision and deep 

learning have progressed noticeably in the last decade. SVI and computer vision models are used together 

to relate urban built environments with physical urban change (Naik et al., 2017), safety (Dubey et al., 

2016), physical activity (Kelly et al., 2013), urban mobility (F. Zhang et al., 2019), building age (Li et al., 

2018), etc. Crime rate prediction and forecasting usually require fine-grained data about the crime events 

and their affecting factors. However, the availability of such fine-grained data is not possible in all 

scenarios. This research attempts to find out if SVI can explain the number of crimes for a location. It is 

noteworthy that the number of crimes is a non-visual attribute that model must predict. As mentioned 

above, if the fine-grained data about the area is not available, this model can be used to predict the crime 

rates and identify hotspots. The results and findings are helpful, not only to the police but also to other 

decision-makers like urban planners. The next section discusses the research objectives and research 

questions. 

 

1.2. Research gap identification 

 

Few researchers worked on predicting crime and crime rates from SVI. Dubey et al. (2016) tried to rank 

the streets on the perception of safety, from SVI, by crowdsourcing and the Convolutional Neural 

Networks (CNN) model. Andersson et al. (2017) used a Siamese CNN model to classify crime rates using 

SVI into four types based on the intensity of crimes. Kang & Kang (2017) predicted the crime rate using 

multi-modal analysis by taking multiple variables, including spatial, temporal, and socio-economic factors. 

Fu et al. (2018) developed a CNN architecture to rank crime types using a preference learning technique. 

Almost all the studies; treated crime prediction as a classification problem or a ranking problem. However, 

there is a limitation with the classification of the crime. Though we get to know the intensity of crime, a 

slight deviation in the threshold can change the class. At times, it is necessary to know the quantity to 

make clear decisions. This work looks at predicting the crime rate from SVI as a regression problem. The 

idea is to simultaneously predict the crime rates of four different crimes from SVI by solving a 

multioutput regression problem. Instead of predicting a class, this research tries to predict the crime count 

given the SVI. 

1.3. Research Objectives and Research Questions 

1.3.1. Main Objective 

 

The main objective is to build a deep learning model to simultaneously predict crime rates of different 

crime types from SVI in one year. This research attempts to quantify the relationship between visual 

variables of the environment and crime rate by solving a multi-output regression problem. 

1.3.2. Specific objectives  

 

1. To model the crime data distribution in the study area and label SVI. 

2. To choose one state-of-art architecture to learn features of SVI. 

3. To implement the deep learning model to predict the crime rate. 

4. To assess the performance of the developed model. 
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1.3.3. Research Questions 

 

1. To model the crime data distribution in the study area and label SVI. 

1. What crime types are to be considered for the study? 

2. How to model the distribution of crime data? 

3. What is the best strategy to label the SVI? 

2. To choose one state-of-art architecture to learn features of SVI. 

1. Which CNN architecture best quantifies the relationship between SVI and crime occurrence? 

2. How to achieve the multiple-output regression? 

3. To implement the deep learning model to predict the crime rate. 

1. How to implement the model to handle multiple inputs and multiple outputs? 

2. How to select training, validation and test sets to train and configure the deep learning model? 

4. To assess the performance of the developed model. 

1. To what extent can the visual variables from SVI explain the crime occurrence? 

1.4. Thesis structure 

 

The thesis structure is as follows 

Chapter 2 reviews the literature and describes necessary theoretical principles related to the study.  

Chapter 3 introduces the study area of the research and the datasets used to achieve the objective. 

Chapter 4 explains the workflow and the methodology of the thesis.  

Chapter 5 presents the results and ends with a discussion and critical findings.  

Chapter 6 concludes the thesis with conclusions and recommendations for future work.  
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2. LITERATURE REVIEW 

This chapter provides a comprehensive overview of the related work and the concepts used in the 

research.  

2.1. Crime prediction 

 

The occurrence of crime is non-random and often is affected by a multitude of factors.  There is a need to 

analyse the non-randomness of crime occurrence. Crime prediction models are the approaches or 

techniques which help us to analyse and understand the crime patterns. Although it is impossible to 

predict the location and time of occurrence, we can understand the reason for crime patterns and lower 

the risk in the future. Crime prediction is made by following different methods: density estimation, 

machine learning and deep learning. This research mainly concentrates on the Kernel Density Estimation 

method (KDE), an approach of density estimation to model the crimes in the study area. So, the concepts 

related to KDE are reviewed and discussed in this section. Hotspots in crime analysis generally refer to 

places with a high concentration of crime events either in space or time or both. The concentration of 

crime events in a location is represented as a heatmap to easily identify regions with high and low crimes. 

The historical crime data of a given location in space and time is used to generate crime heatmaps. 

Hotspot identification is made by two approaches based on aggregated crime event locations and analysis 

of individual crime events (Hart & Zandbergen, 2014).  The aggregated crime events techniques usually 

use a uniform grid or geographical boundaries to aggregate the crime counts and produce thematic maps.  

A wide range of methods is present in the current literature for aggregated crime events approach. KDE is 

one of the methods and is proven to give better results (Chainey et al., 2008).  

 

KDE estimates the probability density function (PDF) of a random variable which is the outcome of a 

random process. In spatial analysis, KDE is used to smoothen the point pattern (in this case crime event 

locations) and create a density map. Hart & Zandbergen (2014) used KDE for hotspot mapping and crime 

prediction. The data used for the study is the crime data of four different crime types in the jurisdiction of 

the Arlington (Texas) Police Department between 2007 and 2008. The hyperparameters involved in KDE 

are grid cell size, kernel function and bandwidth. The authors have experimented with 12 different 

combinations of kernel function and bandwidth, four settings for kernel function (uniform, linear, normal, 

and quartic) and three settings for bandwidth. For each combination, KDE is implemented, and the crime 

density maps are generated. A benchmark definition for the hotspot is required to assess the prediction 

accuracy. For the study, authors have defined hotspots as grid cells that exceeded the sum of average 

density scores and 1.96 times the standard deviation of density scores. The metrics used for measuring 

accuracy are Hit Rate (HR), Predictive Accuracy Index (PAI) and Recapture Rate Index (RRI). The 

authors conclude their work by following recommendations. First, use quartic or linear functions as they 

performed consistently better than uniform and normal kernel functions. Second, they recommend a cell 

size of one-third of the block-face of the study area. Though the predictive accuracy is not improved, the 

generated hotspot map may have better visual quality. Third, usage of a small bandwidth to predict future 

crimes generally decreased with an increased search radius. 

 

In their work, Hu et al. (2018) explored the inclusion of temporal dimension with spatial dimension in 

KDE for crime prediction. The method is called as Spatio-Temporal Kernel Density Estimation 

(STKDE). The study area for the research is the City of Baton Rouge and focuses on residential burglaries 

for time-period 2011. Like KDE, STKDE also has the same hyperparameters but is modified to add 

temporal dimension. A temporal bandwidth is also considered in addition to spatial bandwidth. For 
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bandwidth selection a data-driven optimization approach is followed. Instead of randomly experimenting 

with the bandwidths, the spatial and temporal bandwidths are selected using the inferences from the 

recommended data in different disciplines (Horne & Garton, 2006; Z. Zhang et al., 2011). The approach 

minimizes the Kullback-Leibler loss which measures the distance between two PDFs (Hall, 1987). The 

study area is overlayed with a 100m by 100m grid and Epanechnikov kernel function (Epanechnikov, 

1969) is used as a kernel function. Simulations are run to test the statistical significance of the predicted 

hotspots. The output is a raster with significant hotspots where crime is more likely to occur in a time 

window in the future. PAI curve is used as an evaluation metric for the study that gives a comprehensive 

overview of accuracy variation with different PAI values and factors affecting a PAI value. The 

performance is compared against two methods i) baseline spatial KDE (SKDE), regular KDE without 

time component ii) ProMap, developed by Bowers et al., (2004) and is easy to implement. The STKDE 

model outperforms the other two models significantly. The STKDE model identifies 14 hotspots, whereas 

SKDE and ProMap identified 11 hotspots each. The data-driven approach for bandwidth selection and 

simulations for obtaining statistically significant hotspot cells had an impact on the result. They also 

proposed the PAI curve as an accuracy metric rather than using the traditional PAI value. In addition to 

these works, there is a growing literature on using KDE for spatial crime analysis. It is one of the most 

chosen models for crime prediction and is used as a baseline method in few works (Kounadi et al., 2020). 

The current research adapts the KDE method to generate the crime density map which is used for further 

analysis. 

2.2. Visual Scene Analysis 

 

Deep learning and computer vision techniques are used to quantify the visual and non-visual attributes 

based on urban perception. SVI is used as a substitute for urban perception due to its fine resolution and 

neighbourhood representation. A few related works which use SVI for visual scene analysis have been 

reviewed and discussed in this section. 

 

Salesses et al. (2013) used SVI to perceive the safety, uniqueness, and wealth attributes of a 

neighbourhood. They collected the SVI from four cities New York, Boston, Linz, and Salzburg. The data 

was prepared by crowdsourcing, where the participants are posed questions. The question posed was 

either of the three: i) Which places looks safer? ii) Which place looks more upper-class? iii) Which place 

looks unique? The responses for the evaluative question were either of the images which were randomly 

chosen from the dataset. The dataset was used to understand the relationship between visual appearance 

and the attributes considered. It is observed that the result is not affected by the difference in the age, 

gender, or location of the participant but the differences in the visual appearance in the images. Moreover, 

the perception is significantly different in cities in the United States of America compared to their 

counterparts in Europe. Naik et al. (2014) employed a computer vision algorithm to quantify the perceived 

safety from SVI using the dataset created by the work of Salesses et al. (2013). The preferences of images 

in the dataset are converted to ranked scores by Microsoft Trueskill Algorithm and are used in training the 

predictor. First, the features responsible for the variation in the score, like buildings, ground, trees, and 

sky, are extracted from the images. The extracted features were used along with scores are used to train 

the Support Vector Regressor (SVR). Similarly, binary classification is also performed with the same 

dataset by assuming a threshold in the score to classify it as high and low. The models tend to perform 

better for both regression and classification problems. The results obtained show that the visual 

appearance of the urban environment had an impact on the neighbourhood perception. However, the 

work has few limitations as it cannot be generalized to all cities because the dataset contains images from 

only four cities. 
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Later Dubey et al. (2016) extended the work to a global scale by collecting the data from 56 cities from 

different countries spread across all the continents. They created a web interface similar to the game 

created by Salesses et al. (2013) to prepare the data. They call the dataset Place Pulse 2.0. The dataset 

contained 1.17 million pairwise comparisons for 110,998 images. This dataset is prepared for the 

preference of different perception attributes like safety, healthy, lively, depressing, boring, and beautiful.  

The preferences are converted to ranked scores using the Trueskill algorithm to train the deep learning 

model. The authors propose a Siamese (Chopra et al., 2005) like network that shares the parameters to 

learn the pairwise comparisons.  

 

The same network is extended, and a ranking sub-network is added to learn the pairwise comparisons and 

to rank simultaneously. The proposed CNN performed better compared to other pre-trained models. The 

research was mainly related to ranking and comparing street view images and studies the connection 

between urban appearance and visual perception. Similarly, Naik et al. (2017) used SVI and computer 

vision to measure the changes in urban appearance. In this study, time-series street-level imagery is used to 

assess and quantify the built environments’ changes. The images captured in 2007 and 2014 were 

compared to observe the change in physical appearance. The streetscore is estimated using the algorithm 

built by Naik et al. (2014). The street scores are then compared to observe the changes in appearance. The 

measured changes are then correlated with neighbourhood characteristics of built environments to predict 

the variables responsible for the physical change. The results of the research concluded that education and 

population density affect the changes in the neighbourhood. Though the study was restricted to few cities 

in the north-eastern United States, they quantified the visual attributes accurately. It was observed that 

neighbourhoods with good socio-economic status and education tend to improve over time compared to 

the neighbourhoods with poor education and population density.  

 

Another such remarkable work by Khosla et al., 2014 explored the SVI’s capability and deep learning to 

predict the distances of fast-food restaurants and hospitals from the visual scenes of establishments. The 

idea is to predict the closest establishment based on visual cues from the SVI. The authors experimented 

with different descriptors like GIST, texture, colour, and the deep learning descriptor (the layer before the 

fully connected layer (FCN)) as features from the SVI. The distance to the closest establishments is 

calculated and considered as labels for the SVI extracted. The four images extracted from a point are 

considered as individual inputs with the same labels. The features and labels are used to train the SVR to 

predict the distances to establishments. In addition to finding the closest establishments, the authors also 

experimented to find out the crime rate in the area based on the visual features extracted from SVI. The 

deep learning model's accuracy seems to be better than the human tests in both cases. Likewise, Li et al. 

(2018) used SVI to estimate the building age. The authors treated the building age estimation as a 

regression problem and used pre-trained architectures to estimate the building age. The study area for the 

research is the North and West Metropolitan Region of Victoria, Australia. CNN architectures AlexNet 

(Krizhevsky et al., 2012), ResNet18, ResNet50 (He et al., 2015), DenseNet161 (Huang et al., 2017) pre-

trained on places365  dataset (Zhou et al., 2018) are used for feature extraction from the images. The 

extracted features are input to the SVR to estimate the building ages. The inferences from the results 

obtained are that the appearances of the building impacted the building age, and the deeper models 

performed better compared to the shallower models. It is evident from the above-mentioned research 

works that the image regression of SVI gives better results for the estimation of non-visual attributes. 
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2.3. Crime prediction with SVI 

 

The work mentioned above is closely related to understanding urban built environments based on 

appearance and perception. A few works explored the possibility of predicting crime from SVI. Doersch 

et al. (2012) proposed a methodology to find the visual elements from GSV images geographically 

distinctive to specific cities. Using the Nearest Neighbour algorithm, the authors used a Histogram of 

Gradient (HOG) and colour components as feature descriptors and clustered the data into positive and 

negative data. Later trained a Support Vector Machine (SVM) detector for classification and achieved 

appreciable accuracy for the selected cities. Arietta et al. (2014) adapted the model by Doersch et al. (2012) 

to predict the relationships between visual elements in the SVI and non-visual attributes for the 

neighbourhood like theft rates, population density, housing prices, and perception of danger. The non-

visual attributes are interpolated over the city. The features responsible for the corresponding attribute 

values are identified, and then the SVR is applied to estimate the non-visual attribute. The authors 

compared HOG and colour descriptors with Caffe's ImageNet CNN model and concluded that the latter 

captured the city semantics more effectively than the former descriptor. These works laid the foundation 

to study and understand the crime from SVI.  

 

Andersson et al. 2017 proposed a 4-Cardinal Siamese CNN (4-CSCNN) inspired by the work of Dubey et 

al. (2016) to classify visual scenes into four categories, from low to high crime rates. The authors labelled 

the data by dividing the Chicago city area into a grid of 2500 equal squares. The squares are given a label 

according to the intensity of crimes in a unit grid element. Later GSV images are collected at locations 

along the roads at a predefined interval in cardinal directions. The CNN architecture used for the 4-

CSCNN is AlexNet pre-trained on ImageNet dataset. The weights of the CNN architecture are frozen to 

leverage the knowledge of model learning on ImageNet dataset. The outputs from the four CNNs are 

concatenated to form a one-dimensional vector which is then input to a Multi-Layer Perceptron (MLP). 

The final layer of the network has four nodes, and a softmax activation function is used. The proposed 

CNN takes four images corresponding to a location and predicts a class of crime. The overall accuracy 

obtained is 54.3% and per class average accuracy is 77%. 

 

Fu et al. (2018)'s work predicts the crime rankings of multiple crimes from the GSV. The authors 

developed a new CNN StreetNet to predict the rankings. The proposed CNN is based on the preference 

learning framework. The model takes the SVI as input and gives the preference of crime that can happen 

for the given location. The study areas of the work were New York and Washington DC. They followed a 

new approach for retrieving SVI at a location. Instead of acquiring the images in cardinal directions, the 

images are obtained perpendicular to the road to capture the context of built environments. A new 

procedure has been proposed for data labelling. Images are labelled according to local crime density 

estimated within a time window and a distance of 1k and 2k feet from the street view sample points. They 

follow a data-driven approach to label the images to reduce the bias in the labelling. The results are 

compared with the other benchmark architectures AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan 

& Zisserman, 2015), PlacesNet (Zhou et al., 2014). The results obtained from StreetNet are better 

compared to the legacy architecture models. Similarly, H. W. Kang & Kang (2017) predicted crime 

occurrence using multi-modal data. The authors considered features extracted from SVI as visual features, 

socio-economic variables, and weather variables to build a deep neural network (DNN) to predict crime. 

Compared to Support Vector Machines (SVM) and KDE, the proposed data fusion DNN performed 

better in predicting crime.  
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2.4. Multi-output regression 

 
As the research uses multi-output regression to predict the crime rates of four crime types simultaneously, 

the concept of multi-output regression is explained briefly in this section. 

 

Multi-output regression, also called multi-target regression, is an extension of single-target regression. In 

single-target regression, input is a 𝑁 dimensional vector, and output is a scalar value, whereas in multi-

output regression, both input and output are 𝑁  and 𝑀  dimensional vectors, respectively (Watt et al., 

2016). Consider a dataset 𝐷 with a vector inputs and vector outputs. For a datapoint (𝒙𝒑, 𝒚𝒑) of 𝐷, 𝒙𝒑 is 

a vector of inputs and represented as a column vector and  𝒚𝒑 is a vector of outputs. In matrix notation 

𝒙𝒑 can be considered as a column matrix and 𝒚𝒑 can be represented as a row matrix as follows. 

 

𝒙𝒑 = [

1
𝑥1,𝑝

⋮
𝑥𝑁,𝑝

]         𝒚𝒑 = [𝑦0,𝑝 𝑦2,𝑝 … 𝑦𝑀−1,𝑝] (1) 

Suppose if a linear relationship exists between 𝒙𝒑 and 𝑦𝑖,𝑝 , 𝑖𝑡ℎ  element of 𝒚𝒑  then it is a single-target 

regression, and the weights can be represented by 𝒘𝒊 and the equation to estimate the output can be given 

by the following formula. 

 

𝒘𝒊 = [

𝑤0,𝑖

𝑤1,𝑖

⋮
𝑤𝑁,𝑖

]         𝒙𝒑 = [

1
𝑥1,𝑝

⋮
𝑥𝑁,𝑝

]          (2) 

 𝒙𝒑
𝑻𝒘𝒊 =  𝑦𝑖,𝑝 (3) 

Here the weights matrix 𝒘𝒊 needs to be estimated and appropriately fine-tuned, assuming that there is a 

linear relationship. Similarly, in place of 𝑦𝑖,𝑝 if we have a vector of outputs 𝒚𝒑, then the weight matrix of 

such equation can be represented as a row matrix of 𝑀 vectors as shown below. 

 

 

𝑾 = [

𝑤0,0 𝑤0,1 … 𝑤0,𝑀−1

𝑤1,0 𝑤1,1 … 𝑤1,𝑀−1

⋮ ⋮ … ⋮
𝑤𝑁,0 𝑤𝑁,1 … 𝑤𝑁,𝑀−1

]                   (4) 

 

And the relationship of 𝒙𝒑 and 𝒚𝒑 is given by the formula, 

 𝒙𝒑
𝑻𝑾 =  𝒚𝒑 (5) 

where 𝑾 weights matrix of dimensions  (𝑁 + 1) ✕ 𝑀 , 𝒙𝒑 is an input vector and 𝒚𝒑 is an output vector. 

The weights need to be estimated to solve the multi-output regression problem. To fine-tune the weights, 

the cost function needs to be optimized. We can extend and use the least-squares cost function like linear 

regression and single-target regression. As the output is a vector, the average squared deviations are 

calculated and considered to optimize the weights. 

 

There is no significant change in the implementation of multi-output regression in deep learning models. 

The loss functions and activation functions can be used the same as single output regression models but 

with additional outputs. Or the traditional regressors like Support Vector Regressors (SVR) or Random 

Forest Regressors can be used on the features extracted from the images. 
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3. STUDY AREA AND DATASETS 

This chapter explains the study area and the datasets used for the research in different sections. Various 

types of datasets are used throughout the research. Each of them will be discussed in detail in the below 

sections. 

3.1. Study Area 

 

The study area of this research is in London, England. London is the capital and the largest city in the 

England and United Kingdom, situated in the southeast, on the banks of the River Thames. It covers 

1572 square kilometres and consists of two major regions, Greater London and the City of London. It is 

divided into 33 administrative districts, one of which is the City of London, and others are referred to as 

the London Boroughs, which collectively fall under Greater London. According to the Office of National 

Statistics (ONS), the estimated population of London increased from 8.1 million in 2011 to approximately 

9 million by mid-2018. The growth in different sectors of industry and education is a factor in attracting 

immigrants, making it the most populous city in England and the United Kingdom. It stands second to 

New York in terms of the immigrant population in the world. The London population is very diverse, 

with different ethnic groups and religions. On the flip side, the statistics by ONS show a rise in recorded 

crimes over the years. It is noteworthy to mention that the crime rates have been different across different 

areas of London. The dynamic situation of London and its demographic distribution made it a better 

choice to study crime. The whole London region is considered for the study. The study area is divided 

into equal units of 250 meters x 250 meters for the convenience of analysis. The choice of spatial 

resolution and the process followed is discussed in detail in 4.2.2. 

 

The policing for London is provided by three forces, namely The Metropolitan Police, the City of London 

Police, and the British Transport Police. The Metropolitan Police is responsible for services in Greater 

London, whereas the City of London Police serves only the City of London. Moreover, The British 

Transport Police looks after National Rail, London Underground, Docklands Light Railway, and Tramlink 

Figure 3.1: Study area location 
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services.  The crimes reported to and reported by the City of London Police, and the Metropolitan Police 

are considered for the research. The details of the datasets used will be discussed in the following section. 

3.2. Data Description 

 
In this research, four types of data are used to estimate the crime rate. The data and the sources are 
mentioned in the following Table 3.1. 
 

Data Time Source 

Crime data 2018 https://data.police.uk/  
   
Road 
Network 

2020 https://osdatahub.os.uk/downloads/open/OpenRoads 

   
Population 
Density 

2011 https://data.london.gov.uk/ 

   
Geographical 
Boundaries  

2011 https://data.london.gov.uk/ 

   
Street View 
Images 

2018-2019 https://developers.google.com/maps/documentation/streetview/overview 

Table 3.1: Overview of datasets 

3.2.1. Crime data 

 
It is the recorded crime data in London. The recorded crime data is the crime incidents reported to and 
reported by various police forces across the country. The data for the whole United Kingdom is available 
in data.uk.police website. The data is organized in months per year and is available in the CSV (comma-
separated-values) file format. The data is filtered by the police forces that serve the London region. The 
main attributes of the data records include crime id, crime type, jurisdiction, longitude, latitude, place, area 
code, and time period. A brief description of each attribute is described in Table 3.2. 
 

Attribute Description 

Crime ID Unique identifier for each crime. 

Crime type It refers to one of the 16 crime categories defined by UK police. 

Jurisdiction The name of the police force to/by which the incident is reported. 

Longitude and Latitude The anonymised coordinates, where the incident occurred in WGS84 
coordinate system (EPSG: 4326). 

Place It refers to the landmark where the incident occurred. 

Area Code and Name The Lower layer Super Output Area (LSOA) code and the name in which the 
incident occurred. An LSOA is a geographic hierarchy designed for better 
organization of small areas in England and Wales.   

Time period The month in which the incident is reported. 

Table 3.2: Description of attributes in the crime data 

The crime data is processed and used for further analysis. The details will be clearly discussed in sections 
4.2.1 and 4.2.2 
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3.2.2. Road Network 

 
The road network for the study area is acquired from the website of Ordnance Survey, the national 
mapping agency of Great Britain. The data is available for the whole United Kingdom in shapefile format 
and British National Grid (EPSG:27700) coordinate system. It is updated twice a year in April and 
November. The London data is available in tile TQ. The shapefile is processed in ArcGIS to select the 
roads to the extent of London. A Road network is required to extract the street view images. The street 
view images are downloaded in perpendicular and parallel directions of the road instead of cardinal 
directions. So, the bearing of the road is required to extract the images in the desired direction. The 
processing and extraction for street view images are discussed in detail in section 0. Some of the important 
attributes of the road network data are road identifier, class of the road, name of the road, length of the 
road and function of the road. 
 

3.2.3. Street View Images 

 

Street View Images at preferred locations are downloaded using the Google Street View Static API. The 

bearings of roads are calculated and used to download the images in the desired direction. A bearing of the 

road is the angle made by the road with the true North. Similarly, other parameters can be adjusted to 

obtain the desired view of the street view images. A brief description of the parameters used is mentioned 

in Table 3.3. 

 

Parameter Description 

Location It is the required location in terms of latitude/longitude values in the WGS84 

coordinate system. For example, location=52.22,6.89, where 52.22 is latitude and 6.89 

is longitude. 

 

Size It is the required size of the image and is specified as width x height. Width and 

Height are measured in pixels. For this work, the size of the images downloaded is 512 

x 512.  

 

Heading It defines the direction of the image. It takes values in the range of 0 to 360. Usually, 0 

indicates North, 90 East, 180 South and 270 West for cardinal directions. In this work, 

the bearing of the road is added additionally to acquire the images perpendicular and 

parallel to the roads. For example, Final heading value = cardinal directions heading + 

bearing. If the bearing is 2°, then heading for North is 0° + 2° = 2°. The same applies 

to other directions also. 

 

FOV (Field of 

View) 

It defines the horizontal field of view of the image. It is expressed in degrees, and the 

maximum allowed value is 120. In this work, the maximum allowed value of 120 is 

used to obtain images.  
Table 3.3: Parameters to download street view images 

In addition to these, there are other parameters, pitch and radius. Pitch defines the vertical field of view, 

and radius is the distance in meters to search for a panorama. The default values of pitch and radius are 0° 

and 50 meters, respectively, which are left unaltered. The street view images are downloaded using the 

parameter mentioned above values. After eliminating the images with no data, 148,704 images in total are 

selected for the analysis 
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The images are named after the coordinate identification number, and 0,1,2 and 3 indicate the directions 

North, East, South and West. The images are obtained by adding the bearing values to heading values of 

cardinal directions, as mentioned in Table 3.3 

3.2.4. Population density and Geographical Boundaries 

The population density of an area is the number of inhabitants per square kilometre. The population 

density data is downloaded from the website of London Datastore. The population density data is 

available for the Output Areas (OA) in the shapefile format with geographical boundaries of OAs. 

According to ONS, OA is the lowest geographical level at which census data is available. An OA should 

have at least 40 resident households or 100 resident people. With the changing population size, the 

boundaries of OAs are redesigned, i.e., they are split up or merged. In addition to OAs, there are Lower 

layer Super Output Areas (LSOAs) and Middle layer Super Output Areas (MSOAs), formed by grouping 

OAs. As the name suggests, the limits of population size differ for both the Super Output Areas. In this 

work, the population density of OA is considered, as it is the smallest geographical unit, and it best suits 

the unit of analysis. The boundary files of Boroughs, MSOAs, LSOAs and Wards of London are also 

downloaded from London Datastore. The coordinate system of all the shapefiles is British National Grid 

(EPSG: 27700). 

 
  

Figure 3.2: An example of Street View Images downloaded. It can be observed that the images obtained are parallel 
and perpendicular to the road. 
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4. METHODOLOGY 

This chapter explains the methodology and methods followed to perform image regression and predict 

crime rates from SVI. First, a brief description of the software and tools used for the analysis are 

mentioned, and then the methodology followed is explained. The workflow of the research is shown in 

Figure 4.1. The methodology can be divided into three parts for logical explanation: i) Data Preparation, ii) 

CNN model design, iii) Model training and evaluation. Each of them will be discussed in detail in the 

following sections. 

 

Figure 4.1: Workflow 
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4.1. Software 

 

The spatial analysis part is carried out using ArcGIS software to leverage the existing tools. Postgres, 

database management systems are used for data handling and data cleaning in the initial stages. Once the 

data is cleaned and spatial analysis is performed, all the data preparation and model configuration are 

entirely handled in the python programming language. The Pytorch and Keras frameworks are used to 

build and configure the deep learning models in python. Jupyter notebook and Jupyter lab are the 

preferred python IDEs (Integrated Development Environment). Experiments are performed on a 

Windows 64-bit machine that runs on Intel Core i7-8750H with 16GB RAM and a GPU with 6GB 

VRAM. Once the models are finalized, the actual models are run on Geospatial Computing Platform 

(CRIB) by ITC, which offers GPU 32GB VRAM. The computing power is leveraged to train the models 

simultaneously. 

4.2. Data preparation 

 

The steps involved in data cleaning and data processing to prepare data as an input to the model are 

discussed in detail in this section. The dataset is not a legacy dataset; the input data must be prepared 

carefully for the image regression task. As the crime rates are being predicted in this work, the data is 

prepared to assign a crime rate to 4 images obtained per point. 

4.2.1. Data pre-processing 

 
The crime data obtained is the crime records reported to/reported by police forces all over the UK and 

are compiled month-wise from January to December for the year 2018. So, all the CSV files are input into 

the database for ease of data handling. The data is then filtered for the crimes reported to police forces 

serving Greater London, i.e., the Metropolitan Police and the City of London police. The reported crimes 

are categorised into different crime types. From different crime types, burglary, robbery, other thefts, and 

vehicle crimes are selected for the analysis, referred to as street crimes. Street crimes are the crime which 

often happens in public spaces and involves offence against people or property in a violent manner. The 

hypothesis is that street crimes have a better correlation with the environment compared to other crimes. 

So, the four crime types that fall under the street crime category are considered for analysis. Crime types 

like bicycle theft, violent and sexual offences also fall under street crimes but are not selected due to 

ambiguity in the data. Crime types like forgery, perjury etc., which are considered white-collar crimes, are 

excluded. Once the data is filtered with the above-stated conditions, the records with missing attributes are 

removed. Mainly latitude, longitude, unique identifier of crime, and the police jurisdiction reported to, are 

checked, and the data is cleaned accordingly to address the uncertainty. After the data cleaning, we are left 

with criminal records of four crime types selected recorded under the jurisdiction of Greater London 

police. Now, the criminal records of different crime types are segregated into four different files for 

further analysis. 

The latitude and longitude information of the records is used to map each record as an event (point) layer 

using ArcGIS software. A boundary shapefile is used to check if all the points mapped are within the 

boundary. If there are any errors in the location information, such points are removed from the data. The 

same process is carried out for all four crime types. This step is to avoid the data with erroneous location 

information for the analysis. Then the prepared point shapefiles are used for Kernel Density Estimation. 
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4.2.2. Kernel Density Estimation 

 

The point data obtained from the data pre-processing step is used to prepare crime density maps using 

KDE. In spatial analysis, KDE is used to smoothen the point pattern (in this case, crime event locations) 

and create a density map. The underlying mechanics of KDE is straightforward. Initially, a grid of equal 

cell size is overlayed on the study area. Then for each cell, densities are estimated based on the known 

crime locations. The density is estimated by a weighted distance of crime locations from the cell centre 

(based on a kernel function) and the search radius (bandwidth). In other words, a kernel is moved cell by 

cell, and density is estimated and assigned to the cell based on the kernel function and the bandwidth. A 

simple illustration of the KDE is shown in Figure 4.2.  

 

 

The hyperparameters involved in the process of KDE are grid cell size, kernel function, and bandwidth. 

First, the grid cell size is the size of grid cells with which the study area is overlayed. The cell size affects 

the resolution of the resulting heatmap. Larger the cell size, the coarser the resolution, and the smaller the 

cell size, the finer the resolution. Additionally, it impacts the density values estimated. If the cell size is too 

large, there is a risk that local crime patterns or local hotspots cannot be identified. Second, the kernel 

function is used for interpolating the density of crime events. There are different kernel functions, namely 

uniform, quartic, triangle, Gaussian, etc., that are used to interpolate the weighted distances of crime 

locations from the centre of the cell. Uniform distribution is a flat distribution that gives equal weight to 

all the crime locations that fall in the search radius. Third, bandwidth to look for the crime locations. 

Bandwidth can also be understood as the search radius for the kernel function used. The kernel function 

considers the crime locations that fall within the bandwidth distance to interpolate the density value. With 

a change in bandwidth distance, there is a risk of under-representing the density of crimes in each cell. 

Therefore, bandwidth value needs to be chosen carefully. 

 

The grid cell size and the kernel function do not impact the KDE result (Hart & Zandbergen, 2014). 

However, the authors suggested using linear or quartic kernels as kernel functions as they performed 

consistently in most of the situations. So, the quartic kernel is selected as a kernel function used by default 

in ArcGIS. Experimentation is carried out to select the grid cell size and bandwidth. Though the cell size 

does not affect the result performance-wise for KDE, it is the key for data preparation. Grid cell size is 

uniform over the study area and has equal length and width. Cell sizes of 100m, 250m, 500m and 1000m 

are considered, and the analysis is performed. A range of bandwidths is used for the analysis of each cell 

size. For 100m, cell size bandwidths of 150m, 200m, and 250m are considered. Similarly, for other cell 

sizes, bandwidth sizes within intervals of 50m of respective cell size are considered. As the density 

estimated is assigned to the centre of the cell, the hotspots identified in the case of 500m and 1000m cell 

sizes are huge and are noticed to ignore the local clustering of crime events. For 100m cell size, the 

Figure 4.2: An illustration of kernel density estimation (Hart & Zandbergen, 2014) 
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hotspots identified have sharp boundaries. The bandwidths have a significant effect on the result. It is 

observed that the result is spiky for smaller bandwidths, and for larger bandwidths, the result is 

smoothened. Another major concern is the generation of random points for SVI collection. As the cell 

size is small, random point generation and collection of SVI, which represent the whole cell area, is a 

challenge. The details of the random point generation and challenges involved are discussed in detail in the 

next section. Due to this challenge, 100m cell size is not considered for the analysis. The remaining cell 

size is 250m, which addresses the challenge mentioned above and gives a reasonable output.  

 

As mentioned earlier, the variation in bandwidths affected the result. Larger bandwidth distances 

smoothened the output. However, after fine-tuning, a 275m bandwidth is considered for the analysis. A 

275m bandwidth covers all the eight neighbourhood cells for density estimation from the centre of a cell, 

as shown in Figure 4.3. The output is neither spiky nor smooth, representing the crime incidents better 

than the other cell sizes and bandwidths. Though the distribution of crimes is different in different crime 

types, the same hyperparameters chosen are the same to maintain uniformity. As the model performs 

multi-output regression analysis, it is necessary to input uniform data and labels for all crimes. 

 

Figure 4.3: The density for the cell is estimated considering all the crime incidents inside the bandwidth distance, by 
weighing them using the kernel function applied. 

Finally, the hyperparameters chosen for KDE are 250m for grid cell size, 275m for bandwidth distance 

and quartic kernel function. The KDE is performed for the crime types, and the corresponding crime 

density maps are generated. The crime density maps generated are rasters. The value of a cell is density 

and not yet crime count. The density is multiplied by the area of the cell (density x 250m x 250m here) to 

obtain the crime count of each cell. It is to be noticed that the crime count obtained by KDE is different 

from the crime count obtained by overlaying the uniform grid on the study area. The crime count 

obtained by KDE also considers the neighbourhood effect, which is accounted by bandwidth in KDE. 

The result generated by KDE is the key to prepare labels for the SVI. 

4.2.3. Random Point Generation 

 

Now that the crime density maps are generated, and the crime counts per cell are obtained, the next step is 

to generate random points for the acquisition of SVI. As the output generated in the previous step is a 
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raster, a grid with a cell size of 250m x 250m is generated and overlayed on the KDE output. The 

individual cells are the unit of analysis. The road network is required for random point generation and 

acquisition of SVI. Few roads are not single segments and have multiple line segments in a single road. As 

the SVI is acquired in directions parallel and perpendicular to roads, this setup affects the calculation of 

the bearing of the road, which takes the start and end node of the road to calculate the bearing.  

  

To handle the above-mentioned challenge, the roads are split into multiple road segments. For long 

straight segments, it does not affect the bearing result. The change can be observed for roads that are not 

appropriately digitized and have one or more deviations in the road. For the obtained new road network, 

two random points are generated per cell with an average distance of 100m. The distance is kept at 100m 

to ensure that points generated are well apart from each other and represent the whole cell. However, the 

points generated are not as expected. There were many points within a very close distance and on the 

same road but in different cells. As the roads are split, both roads are different road segments but part of 

the same road. The points within such proximity can confuse the model to learn the features and associate 

them with the crime count. 

  

So, the road segments intersecting the grid cells are removed, and the remaining road segments inside the 

cell are combined to form a single object. Then two random points are generated per object inside the 

cells, and we call them SVI collection points. An illustration is shown in Figure 4.4. This method helped to 

overcome the challenges stated above. Now the points generated are far apart and not in proximity with 

points from neighbouring cells. However, only one point is generated in few cells near the study area 

boundary due to fewer roads in those cells. Even if the points are generated, they are within a very close 

distance. So, only one SVI collection point represents the crime count of such cells. This situation is 

mainly observed towards the study area boundary, where the road network is sparse. The random points 

generated are used for SVI acquisition and label preparation. As the unit of analysis is 250m x 250m cell, 

the outputs obtained per point are averaged per cell to get the crime count per cell and used in the 

evaluation. 

Figure 4.4: The road segments intersecting the grid lines are removed and SVI collection points are generated so that 
they do not belong to the same road segment. It is also to make sure that two points from different cells are not too 
close. 
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4.2.4. SVI Extraction 

 

The random points are generated, and the road network is used to calculate the bearings of the road 

segments. The bearing value is between 0° and 90°. The heading values used for acquiring images in 

cardinal directions are 0, 90, 180, and 270. The bearing value obtained is added to these values to account 

for the deviation in roads. In doing so, the images are acquired in directions parallel and perpendicular to 

the roads. A simple illustration of SVI acquisition is shown in Figure 4.5. The images acquired tend to 

capture the context of the built environment information much better than the images acquired in cardinal 

directions (Fu et al., 2018). As mentioned in chapter 3, FOV of 120 and size of 512x512 are considered as 

the parameters for downloading SVI.  

Figure 4.5: The solid black line is the road and red dotted lines are the parallel and perpendicular directions to the 

road. ϴ is the bearing of the road with true north. The bearing is calculated and added to the parameters to obtain 
the SVI in desired direction. 

 

Every random point generated has a unique id, which is used to label the acquired images. As shown in 

Figure 3.2, the images are labelled by appending a number to the unique id of the SVI collection point. If 

the image is not available, a blank image is downloaded to a folder. Similarly, few images are captured in 

the building interiors. These images are removed before preparing the labelled dataset. The blank images 

are sorted for less size and removed. However, it is challenging to remove the images which are captured 

in the interiors of the building. As the dataset is huge, the best effort is put to search and remove such 

images manually. Once the data is cleaned, 148,704 images are corresponding to 37,176 SVI collection 

points spread across 20,398 cells. The images and the SVI collection points are further used to prepare 

labelled data set for the CNN model. 
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4.2.5. Labelled data preparation 

 

The values of the crime density raster obtained by KDE are extracted to SVI collection points using the 

Extract values to points tool in ArcGIS. First, the values are extracted for individual crime types and are 

spatially joined to get the values of all crime types in a single table. The attributes of the table include 

crime counts of all crime types, i.e., burglary, robbery, other thefts and vehicle crimes, the unique id of 

SVI collection point, and unique id of the uniform grid cell to which the SVI collection points belong. The 

unique id of the SVI collection point is used as an identifier for the SVI also. The method followed to 

input the data into the model will be discussed in detail in section 4.3.2. Finally, the population density 

values from the OA shapefile are spatially joined to respective points. The population density is not 

generated as a raster. The grid cells are accommodating more than two OAs. So, the implementation of 

KDE or rasterizing shapefile is resulting in a loss of data. Therefore, the population density values in 

which the SVI collection point falls is directly joined to the existing table. Now all the data required for the 

data labelling is in a single table. The explanatory variables are population density value along with SVI, 

and the target variables are the crime counts of four crimes, i.e., burglary, robbery, other thefts, and 

vehicle crimes. 

 

The data distribution of the variables for input and output is as shown in Figure 4.6 (a). They are highly 

skewed and distributed across various orders of values. As the data for different crime types is on different 

scales, it is a potential problem for the model to learn and adjust weights. The higher values may have 

much more impact on the model in the training process than the lower values. So, the values of all 

variables are transformed using logarithmic transformation. After logarithmic transformation, the data 

distribution is as shown in Figure 4.6(b). The data table obtained will be used to input data to the CNN 

model. Once the data transformation is performed, the data is ready to be split into training, validation, 

and testing datasets. 

Figure 4.6: a) The frequency distribution of crime rates of selected crime types before logarithmic transformation. 
The value ranges are different for each crime type. b) The frequency distribution of crime rates after logarithmic 
distribution. Now the values are considerably in the same range, and this helps in training process. 

 

4.2.6. Training, Validation and Testing data split 

 

Each record corresponds to a SVI collection point in labelled data and is to be split into training, 

validation, and testing datasets. The training and validation sets are used for training and parameter tuning, 
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while the testing set is used to evaluate the model. Initially, a uniform grid with a cell size larger than the 

unit of analysis is considered for splitting the data. The alternate grid cells are considered for training and 

testing split in a checkered manner. One set is used for training, and the other is used for validation and 

testing by random selection. In this type of data selection, there is a risk that the neighbourhoods that fall 

in the training set may be completely different from the validation and testing split as the area is large. This 

may affect model performance and generalisation. 

 

Hence, the uniform grid which is overlayed on the KDE map is used as a basis for splitting the data. The 

points for the data split are taken so that two points from the same cell fall into the same split. All the SVI 

collection points are grouped by the unique id of the cell, and then the data records are split between the 

ratio of 60, 20 and 20 for training, validation, and testing datasets, respectively, by random selection. Table 

4.1 below shows the number of points and number of images per split. This is the final step in the data 

preparation, and the following sections discuss the model design and model training. 

 

Dataset SVI collection points SVI 

Training 22,278 89,112 

Validation 7,424 29,696 

Testing 7,474 29,896 

Total 37,176 148,704 

   
  Table 4.1: Dataset split for training, validation, and testing 

4.3. Model design and training 

4.3.1. Configuring CNN model 

 

The ongoing research in DL helped build great CNN architectures for feature extraction from images 

used for different tasks like image classification, image regression, semantic segmentation, image 

recognition, etc. Architectures like AlexNet (Krizhevsky et al., 2012) and VGG-Net (Simonyan & 

Zisserman, 2015)  are considered legacy architectures and the basis for all modern architectures. The 

modern architectures are deep compared to legacy architectures and have proven to perform better than 

them with a reduced number of parameters. ResNet (He et al., 2015) is one such architecture that is a deep 

residual network trained on the Imagenet dataset. It uses skip connections to handle the vanishing 

gradient problem. The example of skip connections between the ResNet layers is shown in Figure 4.7. 

 
Figure 4.7: Residual block and usage of skip connections in ResNet (He et al., 2015) 

The residuals from the previous blocks are added to the current block output to address the vanishing 

gradient problem. However, repeated convolutions if the dimensions of the output are reduced in the 

current layers, the same convolutions are applied to the residuals before adding to the current output to 

match the dimensions. In Figure 4.6, the identity block is replaced by a convolution and added to the 
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further layers. Though the network is deep compared to the legacy architectures, it has fewer parameters 

and is easy to optimize. The ResNet18 architecture is chosen to build the 4-CNN model to handle this 

research's muti-output image regression problem. 

ResNet18 belongs to the ResNet family and, as the name suggests, is 18 layers deep. It is much shallower 

to than the other ResNet family variants like ResNet50 and ResNet101, which are most used.  The original 

ResNet18 trained on the Imagenet dataset has around 11 million parameters, much less than the legacy 

architectures. Though the network is shallow, it leverages the skip connections to perform better. The 4-

CNN model built in our research work is inspired by Dubey et al. (2016) and Andersson et al. (2017), 

where the authors used the model to input 4 SVI simultaneously to perform the ranking and classification 

tasks, respectively. A pre-trained model of Resnet18 on the Places365 dataset (Zhou et al., 2018) is 

configured to build the model’s CNN blocks. Before the output layer Global Average Pooling is 

performed to produce a vector of length 512, which is then fully connected to the output layer with 365 

neurons. 

  

The convolutional backbones of the ResNet18 pre-trained on the places365 dataset are taken as individual 

blocks of 4-CNN. The output of each block is a feature vector of length 512. The four images 

corresponding to a point are passed through one CNN block each simultaneously, and the obtained 

outputs are concatenated to form a feature vector of length 2048. The corresponding population density is 

also concatenated to the current output. The final feature vector of length 2049 is fully connected to the 

output layer with four neurons, where each neuron is corresponding to a crime type. The linear activation 

is used in the final layer as the problem is regression. The final model designed is shown in Figure 4.8, 

which takes five inputs and gives four outputs. 

 

Figure 4.8: 4-CNN model implemented using ResNet18 convolutional backbones. The designed model takes 5 
inputs including population density and gives crime counts as outputs for four crime types: burglary, robbery, other 
thefts, and vehicle crimes. 

The pre-trained model with places365 weights is available in the Pytorch framework. The ResNet18 is 

transformed from Pytorch to Keras, and the rest of the model is built using Keras functional API. As the 

problem is multi-output regression, Mean Square Error (MSE) is used as a loss function. MSE is the 

average of squared differences between the actual values and the predicted values. The formula for MSE is 
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𝑀𝑆𝐸 =
∑ (𝑦𝑖 − 𝑦𝑖

′)2𝑛
𝑖=1

𝑛
 

Where n is the total number of observations, 𝑦𝑖 is the actual value and 𝑦𝑖
′ is the predicted value. For a 

single output regression model, the MSE is calculated directly from the actual and predicted values. 

However, in the case of multi-output regression, the MSE value is calculated for individual outputs and 

then averaged to get the single value used for optimization. So, the MSE, considered for optimization, is 

the average MSE value of all the outputs. The adam optimizer is used as the optimizer for the model. 

  

4.3.2. Model training 

 

The input data table is to be processed to load input to the model. The data generators are already present 

for processing the tables to prepare the data and input the model. However, they are designed to handle 

single input and single data types, i.e., image or numeric/categorical data. They generally take the image 

identifier, preprocess the image as the model requires, and prepare the input. Similarly, take the columns 

with outputs and prepare output for training. However, in our model, there are multiple inputs of 

different data types and multiple outputs. Therefore, a custom data generator is built to prepare the inputs 

and outputs for the model. The custom data generator takes the inputs and outputs columns from the 

table prepared in the labelled data preparation step to prepare the data for input. As mentioned earlier, the 

unique id of the SVI collection point is used to fetch all the four images and the population density from 

the table and prepare a tensor to input to the model.  

 

Similarly, the columns with output values are used to prepare the output data. As the dataset is huge, mini-

batches of data are used for training the model. The batch size is 8 for training the model, which implies 

that eight records in the labelled dataset table are processed. The custom data generator generates 32 

images, their corresponding population densities, and outputs. If larger batch size is taken, the system 

requirements are insufficient to carry out the training process. The training, validation and testing datasets 

are processed in the same way. The training and validation datasets are used to train and finetune the 

model, where the testing dataset is used to evaluate the model. 

 

As we know that the weights are initialised from the ResNet18 network pre-trained on the Places365 

dataset, finetuning of the model is done by freezing the top half of the original network weights. The 

dataset used in our work is not so huge, and training the model from scratch is not viable. Hence, transfer 

learning is used to leverage the network trained on the places365 dataset, a scene-centric database. The 

experimentation is carried out by changing the trainable parameters. Different models are trained by 

changing the combinations of inputs and outputs. 

 

The initial learning rate is set to 0.0001 and is decreased by order of 0.1 for every five epochs. Early 

stopping is used to stop the model if the loss flattens. The validation loss is monitored to stop the model 

and to avoid overfitting. As the model is pre-trained and the dataset is similar to the original dataset, the 

model reaches minimum validation loss in fewer epochs. However, the model is run for 30 epochs 

without early stopping, and the weights are saved for every epoch.  Once the model is trained, the best 

weights with minimum validation loss are considered for evaluation of the model. Now that the model is 

trained and ready, the next step is the evaluation of the model. 
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4.4. Model Evaluation 

 

Model evaluation is to evaluate the built model's performance and estimate how better the model can 

generalize on unseen data. The testing dataset is used to evaluate the model. As the model is a regression 

model, the following statistics are used to evaluate the model. 

 

 

1. Mean Squared Error (MSE) 

Mean Squared Error (MSE) is the average squared differences (errors) between actual and predicted 

values. It is sensitive to outliers and always positive as the differences are squared. The formula for MSE is 

given by 

𝑀𝑆𝐸 =
∑ (𝑦𝑖 − 𝑦𝑖

′)2𝑛
𝑖=1

𝑛
 

Where n is the total number of observations, 𝑦𝑖 is the actual value and 𝑦𝑖
′ is the predicted value. 

 

2. Root Mean Squared Error (RMSE) 

Root Mean Squared Error (RMSE) is the standard deviation of the errors in predicted values. It is 

obtained by finding the square root of MSE. The formula for RMSE is given by  

  

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 − 𝑦𝑖

′)2𝑛
𝑖=1

𝑛
 

 

3. Mean Absolute Error (MAE) 

Mean Absolute Error (MAE) is the measure of absolute differences in the actual and predicted values. It 

does not consider the direction of the error and represents how close the predicted value is to the actual 

value. The formula for MAE is given by  

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − 𝑦𝑖

′|𝑛
𝑖=1

𝑛
 

 

4. R-squared 

R-squared (𝑅2) also known as the coefficient of determination is a statistical measure that explain the 

proportion of variance in the target variable explained by the explanatory variables. The value of 𝑅2 ranges 

between 0 to 1 (0%-100%). The higher the value better the model predicts the target variable. The formula 

for 𝑅2 is given by  

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖

′)2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖=1

 

Where 𝑦 is the mean of the all observations. 
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5. RESULTS AND DISCUSSION 

This chapter explains the results obtained from data preparation and the evaluation of the 4-CNN model 

built. Section 5.1 shows the results obtained throughout the research. Performance and predictions of the 

model are discussed in section 5.2. section 5.3 discusses the results of the research. Finally, the limitation 

of the work is mentioned in section 5.4. 

5.1. Results of data preparation 

5.1.1. Results of KDE 

The crime data points of four crime types: burglary, robbery, other thefts, vehicle crimes are modelled 

using KDE, and the respective crime density maps are created with a cell size of 250m x 250m. The pixel 

values are multiplied by the cell area to obtain the crime count in each cell. The estimated crime type crime 

count for a particular cell is the label for the SVI extracted from the corresponding cell. The following 

figures are the crime rate maps of the four crimes and the distribution of their frequency. 

 

 

Figure 5.1: Burglary crime rate map 
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Figure 5.3: Other thefts crime rate map 

Figure 5.2: Robbery crime rate map 
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The frequency distribution of crime rates of different crime types is as shown in Figure 5.4 below 

a) b) 

c) d) 

 Figure 5.5: Vehicle crimes crime rate map 

Figure 5.4: Frequency distribution of crime rates of a) burglary b) robbery 
c) other thefts and d) vehicle crimes 
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For visualization purposes, crime rates of each crime type are divided into five class intervals. The range of 

crime rates for each crime type is not in the same value range. It can be noticed that the distribution of 

every crime type is highly skewed and most of the values are zero.  As mentioned in chapter 4, the cell size 

of KDE (250m x 250m) is considered as the unit of analysis and further analysis is carried out. The values 

of each cell are assigned as labels to SVI extracted from the individual cell, and the labelled data is 

prepared. 

 

5.1.2. Training, validation, and testing data split 

 

After extraction of SVI, the already prepared labelled data table is cleaned by removing the records for 

which the SVI images are not available. The labelled data table has the unique cell id, unique SVI 

collection point id, population density and the values of four crime types. The SVI collection point id is 

assigned as an image identifier. Once the data is cleaned, the data is split into training, validation, and 

testing based on the unique cell id by random selection. The following image shows the data split setup 

mapped on the study area.  

 

 

As shown in Figure 5.6, SVI is not available in few parts of the study area. After removing them, the 

remaining cells are considered to split the data into training (12239 cells), validation (4080 cells), and 

testing (4079) by random selection. This step completes the data preparation part, and the labelled data is 

ready to input into the model. 

 
Figure 5.6: Map showing training, validation and testing cells split 
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5.2. Results of CNN model  

 

4-CNN model is designed which takes multiple inputs and give multiple outputs. The model is initialized 

with Places365 weights, which is trained on a scene-centric image database. Half of the weights are frozen, 

and the bottom half of the weights are learned by the model. Three different models with different input 

and output combinations are trained, and the results are compiled: 

i) SVI as input and crime rates of selected crime types as output (multi-output) 

ii) SVI and population density as inputs and crime rates as output (multi-output) 

iii) SVI and population density as input and total crimes as output (single-output) 

 

5.2.1. Model 1: SVI as input and crime rates as output 

 

The custom data generator which feeds data to the model for training is configured to take four inputs 

and four outputs. As mentioned above, the upper half of the weights are frozen in the model. MSE is used 

as a loss function to be optimized, and adam optimizer is used to adjust the weights. The model is trained 

for 30 epochs, and the weights are saved after each epoch. The training set is used for training, and the 

validation set is used to tune the weights based on the loss value. The output is obtained per 4 images, i.e., 

one SVI collection point. As the unit of analysis is a cell with two SVI collection points, the results are 

averaged later to estimate the output. The evaluation metrics used are MSE, RMSE, MAE and R2. The 

metrics are tabulated per SVI collection point and per cell for both training and testing sets. All the plots 

and error metrics use the logarithmic transformed data. 

 

 Burglary Robbery Other thefts Vehicle Crimes 

MAE 0.45 0.41 0.54 0.49 

MSE 0.33 0.31 0.52 0.39 

RMSE 0.57 0.55 0.72 0.62 

R2 0.44 0.39 0.46 0.41 

     
    Table 5.1: Evaluation metrics of the testing set for Model 1. Metrics calculated are per SVI collection point (4 
images) 

 Burglary Robbery Other thefts Vehicle Crimes 

MAE 0.37 0.33 0.42 0.40 

MSE 0.21 0.18 0.31 0.26 

RMSE 0.46 0.43 0.55 0.51 

R2 0.64 0.63 0.69 0.61 

     
    Table 5.2: Evaluation metrics of the training set for Model 1. Metrics calculated are per SVI collection point (4 
images) 

The scatterplots of the actual and predicted values for training and testing sets are as shown in Figure 5.7. 
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As the unit of analysis is a unit cell, the outputs are grouped and averaged per cell to check the 

performance of the model. The evaluation metrics for testing and training sets are calculated and compiled 

in Table 5.3 and Table 5.4.  

 

 Burglary Robbery Other thefts Vehicle Crimes 

MAE 0.44 0.39 0.50 0.47 

MSE 0.30 0.27 0.45 0.36 

RMSE 0.55 0.52 0.67 0.60 

R2 0.51 0.45 0.53 0.49 

     
Table 5.3: Evaluation metrics of the testing set for Model 1. Metrics calculated are for single-cell (8 images) 

 Burglary Robbery Other thefts Vehicle Crimes 

MAE 0.35 0.31 0.39 0.39 

MSE 0.20 0.16 0.26 0.24 

RMSE 0.44 0.40 0.51 0.49 

R2 0.68 0.67 0.73 0.66 

     
Table 5.4: Evaluation metrics of the training set for Model 1. Metrics calculated are for single-cell (8 images) 

The scatterplots of the actual and predicted values of the modified outputs for testing and training sets are 

as shown in Figure 5.8. 

 

 

 Figure 5.7: Scatterplots of actual vs. predicted values (4 images) for Model 1. 

Figure 5.8: Scatterplots of actual vs. predicted values (8 images) for Model 1. 
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5.2.2. Model 2: SVI & population density as input and crime rates as output 

 

In addition to SVI, population density is also added as an input to observe the effect of population density 

on model prediction. So, the data generator for the model is configured to take five inputs and four 

outputs. The rest of the configuration of the model is the same as Model 1. The evaluation metrics are 

calculated the same as mentioned in section 5.2.1. The results are segregated for training, testing sets and 

per point, per cell outputs. The results did not improve significantly, even with the inclusion of population 

density as an additional variable. However, the results were slightly better when the predictions were 

averaged per cell.  The metrics calculated per SVI collection point are shown in Table 5.5 and Table 5.6. 

 

 

 Burglary Robbery Other thefts Vehicle Crimes 

MAE 0.45 0.41 0.55 0.49 

MSE 0.33 0.31 0.54 0.39 

RMSE 0.57 0.55 0.74 0.62 

R2 0.44 0.38 0.44 0.41 

     
Table 5.5: Evaluation metrics of the testing set for Model 2. Metrics calculated are per SVI collection point (4 
images) 

 

 Burglary Robbery Other thefts Vehicle Crimes 

MAE 0.35 0.31 0.39 0.38 

MSE 0.19 0.17 0.28 0.23 

RMSE 0.44 0.41 0.52 0.48 

R2 0.67 0.66 0.72 0.65 

     
Table 5.6 Evaluation metrics of the training set for Model 2. Metrics calculated are per SVI collection point (4 
images) 

 

The scatterplots of actual versus predicted crime rates of training and testing sets are as shown in Figure 
5.9. 

 Figure 5.9: Scatterplots of actual vs. predicted values (4 images) for Model 2. 
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The evaluation metrics of the outputs modified per cell for testing and training datasets are as shown in 

Table 5.7. and Table 5.8. 

 

 

 Burglary Robbery Other thefts Vehicle Crimes 

MAE 0.44 0.39 0.51 0.47 

MSE 0.30 0.27 0.48 0.36 

RMSE 0.55 0.52 0.69 0.60 

R2 0.51 0.44 0.50 0.49 

     
Table 5.7: Evaluation metrics of the testing set for Model 2. Metrics calculated are per single cell (8 images) 

 

 Burglary Robbery Other thefts Vehicle Crimes 

MAE 0.34 0.29 0.37 0.37 

MSE 0.18 0.15 0.24 0.22 

RMSE 0.42 0.39 0.49 0.47 

R2 0.71 0.69 0.76 0.69 

     
             Table 5.8: Evaluation metrics of the training set for Model 2. Metrics calculated are per single cell (8 images) 

 

The scatterplots of actual vs predicted crime rates for the modified outputs is shown in Figure 5.10.  

5.2.3. Model 3: SVI & population density as input and total crime rate as output 

 

In this model, instead of individual crime rate per crime type, crime rates are summed up, and the total 

crime rate is considered output. The model is trained to solve the single-output regression problem. The 

custom data generator is modified to handle the inputs and output. The rest of the configuration is the 

same as Model 2. In this model, evaluation metrics are calculated for a single output. Like the previous 

model, one set of evaluation metrics is for SVI collection point output, and one is for the cell output. The 

R-squared values are higher than the average R-squared of all crime types obtained in model 1 and model 

 
Figure 5.10: Scatterplots of actual vs. predicted values (8 images) for Model 2. 
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2. However, the other metrics are relatively lower than that of previous models. The R-squared value 

significantly improved when the predictions are averaged per cell. The evaluation metrics for point output 

are shown in Table 5.9 and Table 5.10. 

 

 Total Crimes 

MAE 0.56 

MSE 0.55 

RMSE 0.74 

R2 0.50 

  
Table 5.9: Evaluation metrics of the testing set for Model 3. Metrics calculated are per SVI collection point (4 
images) 

 

 Total Crimes 

MAE 0.52 

MSE 0.49 

RMSE 0.70 

R2 0.59 
Table 5.10: Evaluation metrics of the training set for Model 3. Metrics calculated are per SVI collection point (4 
images) 

 
The evaluation metrics per single cell for testing and training sets are tabulated and shown in Table 5.11 
and Table 5.12. 
 
 

 Total Crimes 

MAE 0.35 

MSE 0.21 

RMSE 0.46 

R2 0.81 

  
              Table 5.11: Evaluation metrics of the testing set for Model 3. Metrics calculated are per single cell (8 images) 

 

 Total Crimes 

MAE 0.32 

MSE 0.18 

RMSE 0.42 

R2 0.85 

  
             Table 5.12: Evaluation metrics of the testing set for Model 3. Metrics calculated are per single cell (8 images) 
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The scatterplots of actual versus predicted total crime rates per SVI collection point and per single cell for 
training and testing sets are shown in Figure 5.11.  

5.2.4. Prediction results 

 

The training, testing and validation set predictions are taken from model 2 and are mapped to compare 

against the original labels. Inverse logarithmic transformation is applied to predicted values, and the raster 

is generated based on the unique cell id. To compare the output with the initial KDE map, the same 

intervals are chosen to show the intensity of the crime. The maximum value and the number of crimes 

predicted changed, but the hotspots did not change compared to the KDE output. The results are shown 

in the figures below.  

 Figure 5.11: Scatterplots of actual vs. predicted total crime rates. 
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. 

 

Figure 5.13: Predicted crime rate - Burglary 

Figure 5.12: Predicted crime rates - Robbery 
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Figure 5.14: Predicted crime rate – Other thefts 

Figure 5.15: Predicted crime rate – Vehicle crimes 
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5.3. Discussion 

 

This section briefly reflects on the results and evaluates the methodology followed to achieve the main 

objective of building a model to predict the crime rate from the visual variables by solving a regression 

problem. 

 

The maps generated by KDE show the distribution of crime in different parts of the study area. In almost 

all maps, the crime is majorly concentrated in the centre, and as we move towards the boundary, the crime 

occurrence is very low. The output of KDE is the key in preparing the labelled data for the model. In 

almost; all crime types, the higher frequency of cells with zero value skewed the distribution. In general, if 

the distribution is normal for regression tasks, the model learns better and performs well. 

 

Nevertheless, in this case, the values cannot be removed as they have information about the areas with 

fewer crimes. The neighbourhoods in such a large study area differ considerably, and the elimination of 

few areas may affect the model training process. The chosen hyperparameters are a grid cell size of 250m 

x 250m and a bandwidth of 275m to consider the neighbouring cells. A smaller cell size is chosen because 

aggregation can be done at a later stage, but the segregation will be difficult. However, the bandwidth 

choice may be the reason for such data distribution. If the bandwidth is large, then the search area is 

larger, and apparently, more crimes would have been considered to estimate the density of crime. A choice 

of larger bandwidth may have smoothened the crime density map affecting the data distribution. This may 

influence the model training and performance considerably.  

 

The 4-CNN model designed is inspired by previous works. This has a major influence on the model 

training process. If a model with a single CNN is used for training, the 4 street view images corresponding 

to a single point are considered as individual inputs. Using the 4-CNN model, the model gets the holistic 

view of the environment, which affects the model’s performance. If individual images are given as input, 

then the outputs need to be averaged twice to predict for the unit of analysis. Now the model takes five 

inputs at once and learns the crime rate from all the variables provided. There are advantages and 

disadvantages to both methods. If a single image is given as an input, we can infer the features in the 

image that influence the crime rate, but by averaging multiple times, the information is lost. It is difficult 

for four images to interpret which image or visual variables affect the crime, but the advantage is that the 

model sees the whole scene and learn from the data. However, there are methods to see which image has 

the dominant features affecting the predictions. 

 

The results of the model evaluation are encouraging. Model 1 with four images as input has performed 

competitively with model 2. For the metrics calculated per point, there is hardly any difference between 

the metric values. Even the R-squared value, which explains the variance in the target variables, is similar. 

However, the evaluation metrics are slightly better when calculated per cell. This may be due to the 

inclusion of the population density variable in model 2. The extra information of population density might 

have caused a slight variation in the result.  

 

The models tend to give better predictions with training sets as the models already sees them. However, in 

model 1 and model 2, we can see a significant change in the error metrics. From this, it can be inferred 

that either the information provided for the model is insufficient to make the predictions or the model is 

overfitting on training datasets. Even though the results seem to be considerate, model 1 and model 2 are 

not generalizing for the unseen data. The possible reasons are insufficient training data, insufficient 

information, or better data preparation. It can be either of them or all of them. Insufficient data can be 

handled by either extracting more images from the same cell, i.e., more SVI collection points or by data 
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augmentation. For insufficient information, more relevant variables can be added as explanatory variables. 

As mentioned above, better bandwidth can be chosen to model the crime data for better data preparation. 

 

The model 3 evaluation metrics are interesting. In this model, all the crimes are summed up and 

considered a single output to be predicted. The R-squared value of model 3 calculated on the testing set 

per point and cell is 0.50 and 0.81, respectively. There is a remarkable improvement in the explained 

variance of crime rate by SVI, unlike model 1 and model 2. However, there is not much difference in the 

training and testing set evaluation metrics as observed in model 1 and model 2. It is safe to say that model 

3 generalizes well compared to model 1 and model 2. However, this can be the case because all the crime 

rates are summed up and considered a single output.  

 

The scatterplots of actual versus predicted tell us about how better the model performed. It tells about the 

deviation of predicted values from the actual values along with the direction of deviation. In an ideal 

scenario, all the data points of the plot should fall on a straight line which makes 45° with the X-axis. 

However, usually, that is not the case as the model has few limitations. It can be observed from the 

scatterplots that the lower values are overestimated, and the higher values are underestimated. A bulge can 

be observed near the origin, and as the value gets higher, the clustering narrows down even though 

underestimated. Insufficient information can be a potential reason for this behaviour.  

 

The crime rate predictions of burglary are consistently better than the other crime types. The scatterplots 

of burglary are consistent and follow the straight line in both model 1 and model 2 even though there is an 

estimation problem as stated. The scatterplots of robbery and other thefts are clustered, and the dispersion 

is high compared to burglary and vehicle crimes. In the vehicle crimes scatterplot, the dispersion of values 

from the straight line is almost the same for lower and higher values. However, as expected, the scatter 

plots of training sets for model 1 and model 2 are better than the testing sets. Model 3 is much better in 

terms of estimation problem compared to model 1 and model 2. A definite pattern following a straight 

line can be observed, and the deviation from the actual value is less in comparison with model 1 and 

model 2. The maps generated from the predictions of model 2 show the underestimation and 

overestimation clearly. Even if the hotspot pattern is the same, the crime density is different from the 

original KDE outputs.  

 

Two sets of images, their actual values, and predictions, are shown in Figure 5.16 and Figure 5.17.  

 

Figure 5.16: Actual and predicted values for a set of images. The predicted values are closer to the actual values.  
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Comparing the above figures, the built environment in Figure 5.16 is comparatively new. It seems well 

organized with pavements and fewer vehicles parked on the street. In Figure 5.17, it can be observed that 

most of the vehicles are parked outside, and the construction of a building is in progress. This can be a 

possible factor for a high number of vehicle crimes. The difference is evident by the visual interpretation 

of two sets of images. However, only the visual interpretation cannot justify the crime rates predicted. The 

visual features or elements are not explicitly extracted from the images, so it is difficult to interpret the 

results. As the scatterplots suggest, the underestimation of higher values is evident in the predictions of 

Figure 5.17. Class activation maps can be generated to interpret the attention of CNN to image in 

predicting a class. The heatmaps can be generated to understand the features responsible in an image for 

certain predictions. As the model is heavily altered from the original model, generating these class 

activation maps is cumbersome. Finally, it can be understood from the results obtained that visual features 

extracted from SVI can be used to predict the crime rate. However, there are few limitations which are 

explained in the next section.   

5.4. Limitation 

 

First, the population density data available is dated back to 2011. However, the crime data and the SVI are 

obtained for the time period 2018-2019. So, this may be the most likely reason for population density not 

affecting the result as expected. Second, the availability of socio-economic data at the desired scale. Socio-

economic variables may have a greater impact on predicting crime. The socio-economic data can help in 

understanding the neighbourhood better in addition to visual variables. This data is not available at the 

desired scale, and disassociation of such properties can be difficult and heavily altered. The availability of 

such data helps in the model training process. Third, the capability and generalizing the model with other 

study areas. The comparison studies help to transfer the model to predict for the areas with limited data 

availability. Fourth, better system requirements. Initially, in place of ResNet18, a more common model, 

ResNet50 is used for the experimentation. However, the hardware is not compatible and handling the 4-

CNN was not possible. ResNet50 is deeper than ResNet18 and has better accuracy for classification. 

Fifth, if a single CNN module is used, class activation maps can be generated, and the features in an image 

responsible for a certain prediction can be interpreted and understood. With the current configuration of 

the model, it is not easy to generate the activation maps.   
  

Figure 5.17: Actual and predicted values for street view images. There is a huge difference between actual and predicted 
values. 
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6. CONCLUSION AND RECOMMENDATIONS 

The previous chapter evaluated the results and the methodology. This chapter outlines the research work 

done and answers the research questions framed in chapter 1. Finally concludes with few 

recommendations for future work. 

6.1. Conclusion 

 

This research studies the effect of visual variables of environment inferred from SVI in quantifying the 

crime rate. A CNN model is used to learn the features from SVI and associate them with the crime rates 

of four different crime types. The multi-value prediction is achieved by solving the multi-output regression 

problem. A workflow is designed to model the crime rates and prepare the data for input to the model. 

Initially, the crime data is modelled using KDE, which is used commonly for crime hotspot analysis. The 

output of KDE, along with the road network, is used to extract SVI and eventually prepare input data for 

the model. Finally, a 4-CNN model is built with ResNet18 blocks, and the multi-output regression is 

implemented to handle the multiple inputs and outputs. The model takes five inputs, population density, 

and SVI and predicts crime rates for four crime types: burglary, robbery, other thefts and vehicle crimes. 

Different models are configured to handle different combinations of inputs and outputs. The results show 

a considerate relationship between visual variables and crime. Three models with different configurations 

are compared to evaluate the extent of the relationship between SVI and crime rate. The results show a 

significant relationship between visual variables and the crime rate, but additional variables like socio-

economic variables can significantly impact the model’s performance. 

 

The answer to research questions are as follows: 

1) What crime types are to be considered for the study? 

The crime types of burglary, robbery, other thefts, and vehicle crimes are considered for the study. The 

UK police classify the crime types and their subclasses on their website. These crime types are also 

considered street crimes. Street crimes usually happen in public places and often involve violence. Bicycle 

theft, violent and sexual offences, arson, and white-collar crimes are not considered due to inadequate data 

and ambiguity in the data.  

 

2) How to model the distribution of crime data? 

The crime data is modelled using Kernel Density Estimation (KDE). KDE is a density estimation 

technique that smoothens the crime point pattern and assigns a density value to the decided cell size (the 

cell size is 250m x250m). It also takes the crimes in neighbourhood cells for density estimation. When 

multiplied by the cell area size, the density gives the respective crime count or crime rate. The obtained 

density map is used for further analysis in the research. 

 

3) What is the best strategy to label the SVI? 

A uniform grid of cell size 250m x 250m is overlayed on the KDE output, and this cell is used as a unit of 

analysis in the research. In each cell, two points are generated which represent the cell. The value of the 

cell is assigned to the point, and the SVI extracted from the point. Similarly, the population density values 

are also taken from the OA in which the point is present. The identifiers for the SVI are generated by 

appending a number (0,1,2,3) to the point identifier from which the SVI is extracted. All the identifiers, 

crime rate values, and population density are compiled in a table which is then processed to input the data 

to the model. 
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4) Which CNN architecture best quantifies the relationship between SVI and crime occurrence? 

ResNet18 is selected to build the DL model. It belongs to the ResNet family and is a lightweight model 

with fewer parameters than legacy architectures like AlexNet and VGGNet. Moreover, it uses skip 

connections to handle the vanishing gradient problem and trains faster than other heavy models. As the 

model built uses 4 CNN backbones, ResNet18 is the best suited lightweight architecture for the purpose. 

 

5) How to achieve the multiple-output regression? 

Multi-output regression is an extension of single-output regression. In the output layer of the built 4-CNN 

model, a linear activation is used and Mean Square Error (MSE) is used as a loss function. The MSE is 

calculated for all the crime types and averaged to get a single value to adjust the weights. 

 

6) How to implement the model to handle multiple inputs and multiple outputs? 

The model is built to simultaneously take five inputs, out of which four inputs are images. The images are 

processed through CNN, and features are extracted. The extracted features are then fused together and 

progressed forward to the output layer with four nodes and have a linear activation function. A custom 

data generator is built to process a table and generate data to input to the model. The data generator takes 

the records from the labelled data table and prepares the inputs and outputs to input to the model. 

 

7) How to select training, validation, and test sets to train and configure the deep learning 

model? 

The uniform grid cells overlayed on KDE output are used to split the dataset. Once the images are 

extracted, and the data is cleaned for blank and interior images, the remaining cells are considered for data 

selection. The total cells are divided in ratios 60%, 20%, 20% for training (12239 cells), validation (4080 

cells), and testing (4079 cells) sets by random selection. 

 

8) To what extent can the visual variables from SVI explain the crime occurrence? 

A model which takes only SVI as input and predicts the crime rates is configured. The R-squared value 

explains the variance of crime occurrence by SVI. The R-squared value for burglary is 51%, robbery is 

44%, other thefts is 50%, and vehicle crimes is 49%. The values are calculated on the predictions obtained 

from an unseen dataset by the model. 

6.2. Recommendations 

 
The recommendations for future works and stakeholders are suggested in this section. The model built in 

this work uses a fully connected layer with the help of a loss function to perform the multi-output 

regression. However, first, the features can be extracted from the model, and a different regressor like 

Random Forest regressor or Support Vector Regressor can be used to perform the multi-output 

regression. Socio-economic variables also play a major role along with environmental variables. There is 

scope to add more variables to the developed model. However, the scale at which the data is available, its 

pre-processing, and the cell size for the unit of analysis needs attention. The dataset size also needs to be 

chosen accordingly. The temporal dimension can be considered in the crime rate prediction. The factors 

affecting the distribution of crime in time and the time itself can be added as variables. The predictions of 

different crime types can be combined to create a prospective risk map that helps the police department 

and the public. Certain crime types can be given weightage if needed. It helps the police department to 

manage the resources at hand effectively. Urban planners can use the outputs to understand the built 

environments much better and plan the city accordingly. It reduces the effort of field surveys. 

Nevertheless, there is a major scope of improvement in the proposed workflow and developed model.  
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