
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BEATRICE ANTHONY KAIJAGE 

July, 2021 

SUPERVISORS: 

Dr M. Belgiu 

Dr. ir.W. Bijker 

DEVELOPMENT OF A SPATIALLY 

EXPLICIT ACTIVE LEARNING 

METHOD FOR CROP TYPE 

MAPPING FROM SATELLITE 

IMAGE TIME SERIES 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis submitted to the Faculty of Geo-Information Science and Earth 

Observation of the University of Twente in partial fulfilment of the 

requirements for the degree of Master of Science in Geo-information Science 

and Earth Observation. 

Specialization: Geoinformatics 

 

 

 

SUPERVISORS: 

Dr M. Belgiu 

Dr. ir.W. Bijker 

 

THESIS ASSESSMENT BOARD: 

Prof.dr.ir. A. Stein (Chair)  

Dr.ir. T.A. Groen (External Examiner, NRS-ITC) 

 

 

  

DEVELOPMENT OF A SPATIALLY 

EXPLICIT ACTIVE LEARNING 

METHOD FOR CROP TYPE 

MAPPING FROM SATELLITE 

IMAGE TIME SERIES 

]  
BEATRICE ANTHONY KAIJAGE 

Enschede, The Netherlands, July, 2021 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCLAIMER 

This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and 

Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the 

author, and do not necessarily represent those of the Faculty. 

 



DEVELOPMENT OF A SPATIALLY EXPLICIT ACTIVE LEARNING METHOD FOR CROP TYPE MAPPING FROM SATELLITE IMAGE TIME SERIES 

i 

ABSTRACT 

Insufficient training samples for effective classification is one of the drawbacks of existing supervised 

classification methods. Collecting training samples via field campaigns is time-consuming and costly, 

especially when gathering data from a vast area. As a result, Remote Sensing(RS) requires approaches that 

can work with a small number of training samples while still providing excellent accuracy. Active Learning 

(AL) is one of these approaches. AL is a Machine Learning(ML) method whose purpose is to attain 

satisfactory classification results with a small number of training datasets, resulting in accurate information 

extraction at low annotation costs. AL reduces the training sample size required for training a classifier up 

to tenfold by identifying the most informative and diverse samples from a set of unlabeled samples. 

Informative samples are those for which a classifier has difficulty classifying or labeling them, and sample 

diversity refers to how dissimilar the selected samples are from one another. Most of the existing AL 

approaches are dedicated to querying informative samples based on their spectral characteristics, 

neglecting spatial information. This research aims to develop a spatially explicit AL method for crop type 

mapping using Satellite Image Time Series(SITS) and assesses its performance compared to the existing 

AL techniques that ignore the spatial component in the selection of informative samples. The developed 

AL method that includes the spatial component and the AL technique that excludes the spatial 

component were both evaluated using crop data and Sentinel-2 time-series images collected in 2019. The 

two AL techniques were compared to the classification performance obtained utilizing the whole training 

dataset. The AL method with the spatial component used 27% of the entire training sample dataset and 

57% of the informative training samples acquired from the AL method that excludes the spatial 

component to achieve an overall accuracy of 80%.This accuracy is almost identical to the overall accuracy 

of the AL method without the spatial component (82%) and when using the entire data set (84% ). 

Comparisons were made using other metrics like Kappa statistic, user’s and producer’s accuracy and 

quality of the sample design. The developed spatially explicit AL method showed a good performance 

with a low number of samples. In addition, it performed better in the case of crop types with high 

interclass similarities like potatoes and maize. A challenge was faced in classifying mixed classes consisting 

of different land cover classes. 

  

Given these findings, adding the spatial component in AL is a critical contribution to the field of 

agriculture, especially in developing countries where we do not have access to a large number of samples 

required for accurate crop mapping and monitoring due to the high cost of sample acquisition. 

 

Keywords: Active Learning, machine learning, satellite image time series, variogram, crop types. 
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1. INTRODUCTION 

1.1. Motivation & problem statement 

Hunger is one of the most sensitive issues that affect human life globally. Previous studies revealed that 

11% of people worldwide suffer from intense hunger and malnutrition (Cervantes-Godoy et al., 2014). 

The Sustainable Development Goal 2 (SDG2), "Zero Hunger", deals with all matters relating to food 

security and efficient food production to combat hunger.  One of the strategies to attain food security is 

the proper management of food sources, for example, establishing resilient agricultural systems (Wu, Ho, 

Nah, & Chau, 2014). Efficient agricultural systems are maintained through monitoring, proper planning, 

and management.  

 

Remote sensing (RS) has made it possible to acquire information that is useful for the efficient 

management of agricultural systems through various data sources and satisfactory information processing 

methods (Treitz & Rogan, 2004). In the field of agriculture, RS has been used for crop mapping, crop 

monitoring, assessing crop risks, and crop yield prediction, among others (Khanal, Kc, Fulton, Shearer, & 

Ozkan, 2020). RS has been applied in large scale crop mapping based on multisource datasets (X. Liu et 

al., 2020), crop productivity assessment (Richter, Agostini, Barker, Costomiris, & Qi, 2016), active and 

fallow lands determination (Xie, Tian, Granillo, & Keller, 2007), crop quantity monitoring (Khan, de Bie, 

van Keulen, Smaling, & Real, 2010), crop yield assessment (Shanmugapriya, Rathika, Ramesh, & Janaki, 

2019) and crop classification (Belgiu & Csillik, 2018).  

 

Image classification is one of the RS techniques suitable for crop mapping since it helps recognize patterns 

that exist in the real world from images (Radhika, 2016). Several image classification approaches exist, 

namely unsupervised, semi-supervised and supervised methods (D. Lu & Weng, 2007). Unsupervised 

methods create classes in an image using the spectral characteristics inherent in the image solely. The user 

is not required to provide training data (Naghdy, Todd, Olaode, & Naghdy, 2014). Semi-supervised 

classification falls between unsupervised and supervised classification approaches. It is suitable when the 

training samples are insufficient, whereby informative unlabeled samples are identified, assigned to the 

target classes and further used to classify the image iteratively (Xiong, Zhang, & Jiang, 2010). Semi-

supervised classification and Active Learning (AL) are machine learning methods used for classification 

(Bruzzone & Persello, 2010). The fundamental distinction between these two methods is that the semi-

supervised approach labels the informative pixels iteratively automatically without user interaction 

whereas, the AL approach involves interaction between the user and the system (Bruzzone & Persello, 

2009). The supervised approach relies on training data to learn the characteristics of the specific classes of 

interest from the remote sensing dataset (Miranda, Mutiara, Ernastuti, & Wibowo, 2018). 

 

One of the drawbacks of existing supervised classification methods is insufficient training samples for 

effective classification (Stumpf, Lachiche, Malet, Kerle, & Puissant, 2014). Collecting training samples 

through field campaigns is a time-consuming and expensive task, especially when we want to extract 

information from a large area. Therefore, RS requires methods that can operate with a low number of 

training samples and yet give high accuracy (Ball, Anderson, & Wei, 2018). Various techniques like 

Transfer Learning (TL), AL (Cao, Yao, Xu, & Meng, 2020), among others, have been used to address the 

issue of insufficient training samples. Transfer learning involves using information from already acquired 

images known as the source domain to classify newly acquired images (target domain) whose information 
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is not available (Begüm Demir, Bovolo, & Bruzzone, 2013b). The target domain might be an image of the 

same area taken at different times or an area with a different but related distribution to the source domain 

(Pan & Yang, 2010). The AL method enriches the training sample set repeatedly by selecting informative 

samples from the unlabeled samples set, labelling them, adding them to the labelled sample set and then 

performing image classification (Tuia, Ratle, Pacifici, Kanevski, & Emery, 2009).  As a result of the 

classification of images, various maps are generated depending on the purpose of the study. In this 

research, AL will be used for crop type mapping using Satellite Image Time Series (SITS). This will aid 

continuous monitoring, planning, and proper management of crop areas leading to efficient food 

production, hence addressing hunger. 

 

As mentioned above, AL heuristics rely on selecting the most informative samples from the unlabeled 

sample pool iteratively (Begüm Demir, Bovolo, & Bruzzone, 2012). Informative samples are the samples 

for which a classifier has a hard time predicting their classes or labels. The great majority of previous 

studies have used AL methods considering only the spectral characteristics in the feature space when 

selecting unlabeled informative samples (Rajan, Ghosh, & Crawford, 2008). However, they may be 

spatially close to each other, reflecting a high probability of being similar, leading to redundancy in their 

selection. The inclusion of spatial information in AL might prevent the selection of redundant samples. 

Unfortunately, most AL heuristics do not account for spatial information when selecting the most 

informative samples (Xue, Zhou, & Zhao, 2018). Previous studies proved that incorporating both the 

spectral and spatial information in AL gives more robust results than those that rely on spectral 

measurements only (Patra, Bhardwaj, & Bruzzone, 2017). Therefore, the use of both spectral and spatial 

components as criteria for selecting informative unlabeled samples improves the efficiency of AL 

methods. In Pasolli et al.(2011), a criterion based on spatial information was proposed and combined with 

the spectral criteria in selecting informative samples for AL. The first heuristic calculated the distance of 

the samples to the support vectors in the feature space, and the second heuristic calculated the distance of 

the samples to the nearest support vector in the spatial domain. The two combined heuristics generated 

highly uncertain samples in the feature space but far from support vectors spatially. The classification 

accounting for the combined heuristics gave higher accuracy than the classification that excluded the 

spatial component. Our research is dedicated to investigating different solutions to integrate spatial 

information in AL. Thus, we aim to develop an AL method that incorporates both the spatial and spectral 

domain for application in crop type mapping from satellite image time series. 

1.2. Research objective and questions 

The main goal of the research topic is to develop a spatially explicit AL method for crop type mapping 

using satellite image time series. Thus the research aims to address the following specific objectives and 

the related questions:  

 

Objective 1: To systematically investigate different spatial metrics that can be used to improve state-of-

the-art AL methods. 

Research question 1.1: What metrics can be used to assess spatial autocorrelation between the 

labels in the spatial domain?  

Research question 1.2. : What criteria should be considered in choosing the best metrics for 

assessing the spatial autocorrelation between the labels in the spatial domain? 

 

Objective 2: To test the developed AL method's performance and assess its effectiveness in crop type 

mapping for satellite image time series. 

Research question 2.1:  How does the developed AL method perform in comparison to the AL 

algorithm that excludes the spatial component? 
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1.3. Organization of the thesis 

The rest of the thesis comprises six chapters. The literature review follows, which delves deeper into the 

research concepts and terminologies employed in the study. The study area description, data acquisition, 

and data preprocessing steps are covered in the third chapter. The methodological workflow of the 

research is described in detail in the fourth chapter. The fifth chapter displays the results attained in this 

research, the sixth chapter discusses the research findings, and the final presents the conclusions drawn 

from the preceding chapter's discussions. This chapter also reflects how the research questions were 

addressed and gives recommendations of the thesis based on the findings. 
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2. LITERATURE REVIEW 

2.1. Introduction 

Most machine learning techniques need large training data sets to perform well in their tasks 

(Konyushkova, Raphael, & Fua, 2017). Methods like the use of a learning curve have been used to 

determine the required amount of training datasets for performing a machine learning task by looking at 

the performance of a model with respect to the amount of training data  (Beleites, Neugebauer, Bocklitz, 

Krafft, & Popp, 2013). However, insufficient training data is currently identified as one of the challenges 

in RS data classification using machine learning methods (Li, Martin, & Estival, 2019). This challenge has 

been highlighted in different studies dedicated to hyperspectral image classification (Willis, 2004), 

multispectral image time series classification(Begüm Demir, Bovolo, & Bruzzone, 2013a), among others. 

The problem of insufficient training samples exists, especially when applying deep learning techniques to 

perform different remote sensing tasks like semantic segmentation or object detection (Ball, Anderson, & 

Chan, 2017; Matsuoka, Hayasaka, Fukushima, & Honda, 2007; Milan et al., 2018). This is because deep 

learning requires large datasets to capture target features efficiently. Previous literature suggests methods 

that could be used to address the problem of insufficient training data availability. In Ball et al. (2018), for 

example, Transfer Learning, Generative Adversarial Networks(GANs) and Unsupervised Learning were 

suggested as possible ways to address the issue of having small amounts of training data in deep learning. 

AL is another solution to address the issue of insufficient training data that state-of-the art supervised 

classification methods are currently confronted with (Tuia et al., 2009). 

2.2. Active Learning 

AL is a field in machine learning which is sometimes referred to as query learning. In this field, the learner 

can choose the data from which it learns to perform classification. Its goal is to attain satisfactory 

classification results with few training datasets, leading to accurate information extraction at low 

annotation costs (Settles, 2009). AL reduces the training sample size required for training a classifier up to 

tenfold by identifying the most informative and diverse samples from the pool of unlabeled samples 

(Sugiyama & Nakajima, 2009). Informative samples are the samples for which a classifier has a hard time 

predicting their classes or labels. The sample diversity refers to how different the selected samples are 

from each other. AL has been applied in various image analysis tasks such as multispectral image 

segmentation (Mitra, Uma Shankar, & Pal, 2004), hyperspectral image classification (Rajan et al., 2008), 

object-based image classification (Ma, Fu, & Li, 2018), or regression (Pasolli, Melgani, Alajlan, & Bazi, 

2012). 

 

An Active Learner consists of five components, a classifier or set of classifiers C, trained using a labelled 

dataset L, a query Q, for selecting informative labels from a pool of unlabeled samples U and a supervisor, 

S, who assigns labels to the unlabeled samples (M. Li & Sethi, 2006). This makes a quintuple structure 

with components C, L, Q, U and S. The initial labelled training samples are used to train the classifier, and 

a classification task is performed. The query Q uses a particular criterion to select informative unlabeled 

samples from the unlabeled sample set U while accommodating the classification output. Then, the 

supervisor labels these unlabeled samples, which are later added to the training dataset, and the classifier is 

retrained for classification. This process is iterative until a specified stopping criterion is achieved, for 

example, looking at the confidence level of the classifier (Vlachos, 2008).  
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2.3. Active Learning scenarios 

Based on the AL literature survey, learners query samples in a variety of contexts, including stream-based, 

pool-based, and membership query synthesis (Settles, 2009). These scenarios are described in Table 2-1. 

Based on the fact that AL aims to be cost-effective, pool-based AL is considered for this research over 

stream-based AL since stream-based AL assumes label acquisition cost is free and thus selects each sample 

for querying to decide the informativeness instead of choosing only informative ones only. In the case of 

Membership Query Synthesis, labelling the artificially generated instances is a challenging task. Therefore, 

pool-based sampling is the preferred AL. 

 
Table 2-1 Active Learning scenarios description 

Pool based AL Stream-based AL Membership Query Synthesis 

The cost of acquiring an 

unlabeled instance is 

considered. 

 

Assumes that the cost of 

acquiring an unlabeled instance is 

free. 

 

 

AL algorithm generates a new 

unlabeled instance within the 

input space and queries 

supervisor(labeler) for labelling. 

 

Instances are drawn from the 

pool according to a user-

defined informativeness 

measure. Only the informative 

ones are drawn from the pool. 

 

Selects each unlabeled instance in 

the pool, and the Active Learner 

has to decide whether to ask the 

supervisor to label the current 

data sample or not based on a 

query strategy. 

 

The supervisor labels the 

artificially generated instances, 

which is difficult because some 

textual instances are 

incomprehensible to human 

annotators. 

Focuses on more than one data 

sample at a time. 

It focuses on only one data 

sample at a time. 

Focuses on more than one data 

sample at a time. 

Assumes the presence of a large 

pool of unlabeled data 

Assumes the presence of a large 

pool of unlabeled data 

Generates artificial AL instances 

from the region of uncertainty of 

the classifier 

The distribution of the samples 

is considered 

The distribution of the samples is 

considered 

Sample distribution is not 

considered since the Active 

Learner may request labels for 

any unlabeled instances, including 

the new instances it generates. 

 

 

AL workflows depend on three main components: the model (learner) chosen, the uncertainty measure, 

and the query strategy used to select informative samples (He et al., 2014). The query selection criteria are 

the root of the AL algorithm since they decide which samples are informative based on various 

uncertainty measures and entirely depend on the classification output (Crawford, Tuia, & Yang, 2013). 

Most previous approaches account for the spectral domain when querying informative samples while 

ignoring the spatial one. 

2.4. Spectral-domain heuristics and metrics in AL 

Many AL heuristics that query samples based on their spectral characteristics in the feature space exist, for 

example, the uncertainty sampling-based and Committee-based heuristics (Adla, Group, Engineering, & 

Lafayette, 2014).  
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Under the uncertainty sampling query technique, the learner selects instances for which it is least certain 

on how to label (Breiman, 2001). Uncertainty sampling has several measures of uncertainty. One of them 

relies on models that use posterior probability to decide the class to which an instance belongs. For 

example, in a  binary classification scenario, instances that give a probability close to 0.5 are informative. 

An alternative measure of uncertainty sampling is the Least Confidence (LC) measure, in which the learner 

chooses the instance for which it has the least confidence in its most likely label. This approach considers 

only the most probable label but ignores other label probabilities. To overcome this, the Margin Sampling 

approach as a measure of uncertainty selects the instance for which the difference between the first and 

second most probable labels is the smallest. To utilize all the possible label probabilities, the uncertainty 

measure used is entropy, sometimes known as Shannon entropy (Shannon, 1948). Application of the 

entropy formula is made to each instance, and the one with the largest value is queried. The higher the 

entropy, the more the uncertainty.  

 

                                𝐻(𝑥) = − ∑ (𝑃(𝑦|𝑥)𝑙𝑜𝑔𝑃(𝑦|𝑥)   
𝑦∈𝑌

                                                    (1)                                                        

where P(y|x) is the a posteriori probability 

y ∈ Y={y1, y2, …, yk} denotes the output class 

 H(x) is the uncertainty measurement function based on the entropy estimation 

of the classifier’s posterior distribution. 

Uncertainty sampling can also be used by non-probabilistic models such as Support Vector Machine, 

which assumes that instances near the decision boundaries are the most informative. 

 

 The Query By Committee framework can also be used as a query technique in AL as an alternative to 

uncertainty sampling. In this approach, a committee of learners are all trained with the labelled training 

dataset, and each learner is allowed to vote for which label an instance belongs to (X. Li, Zaïane, & Li, 

2006). The most informative instance is the one for which the majority of the learners disagree. This 

method is said to be less computational than other active learning approaches and has the advantage of 

being independent of the classifier since several committee members (learners) are involved in selecting 

the most informative sample (Stumpf et al., 2014). For this reason, it was chosen for this research. In 

addition, the model used in this research is a Random Forest, which is an ensemble of classifiers and, 

therefore, getting votes from the ensemble classifiers will ease the detection of informative samples. There 

should be a construction of a committee of learners and a measure of disagreement between the 

committee members to perform a QBC algorithm of selecting informative samples. Query by bagging, 

which executes bootstrap aggregation by randomly sampling instances with replacement, thus conserving 

the sample distribution, and query by boosting, which performs sampling without replacement, thus 

changing the sample distribution, is used to construct committee members. The query by boosting and 

query by bagging techniques create randomness in samples' choice, making this approach more robust. 

The commonly used metrics as a measure of disagreement between the committee members are the vote 

entropy and the Kullback-Leibler (KL) divergence, also referred to as relative entropy. Entropy is a 

measure of sample uncertainty (Crawford et al., 2013). For vote entropy, each committee member votes 

on the labels of query candidates and the most informative query is the instance about which they most 

disagree. Instances with high vote entropy will be considered for labelling and later added to the training 

samples. KL divergence estimates the difference between two probability distributions. It measures how 

one probability distribution differs from the reference probability distribution: the observed and actual 

probability distribution. The larger the KL divergence between a committee member’s posterior label 

distribution, the more informative the query is. 
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KL (P || Q) = – sum x in X P(x) * log(Q(x) / P(x))                                                                (2) 

where KL (P || Q) is the L divergence between two distributions Q and P 

                  “||” operator indicates “divergence” or divergence of P from Q, which are probability 

distributions.  

KL divergence is calculated as the product of the negative sum of probability of each event in P and the 

log of the probability of the event in Q over the probability of the event in PA. A drawback of this 

approach is its tendency to leave out some cases in which committee members disagree, making it 

uncertain (Settles, 2009). For this reason, vote entropy will be used as an uncertainty measure in our 

research. 

2.4.1. Weakness of Spectral-domain based AL 

Most of the literature deals with AL heuristics that consider spectral data only. This approach solves the 

uncertainty of the samples in feature space. Still, the samples may be similar or relative to each other, 

leading to redundancy in selecting training samples (Crawford et al., 2013). Retraining a classifier based on 

a single most informative sample drawn from the unlabeled pool for each iteration is computationally 

costly and time-consuming. Some selected samples might be similar and do not bring important changes 

to the model (Stumpf et al., 2014). Methods on reducing the sample labelling time have been proposed in 

different literature (Stumpf et al., 2014). An example is batch mode AL, which considers sample 

uncertainty and diversity (Begm Demir, Persello, & Bruzzone, 2011). Uncertainty refers to how 

informative a sample is in the classification process, and sample diversity refers to how dissimilar the 

selected samples are with each other in the spectral domain. This research proposes a method that 

incorporates the spatial component in selecting informative samples with the hopes of lowering 

computing costs, saving time, and eliminating redundant samples while achieving comparable results to 

using many training samples. 

2.5. Incorporating the spatial component in AL 

Just as the batch mode AL heuristics are included to avoid redundancy in the selection of spectrally similar 

samples in the feature space, it is possible to extend the same idea to the geographic space whereby pixels 

that are geographically close to the initial training samples are more likely to give similar information to the 

model (Crawford et al., 2013). This idea has been used in previous studies for determining the selection of 

spatially collocated samples (Munoz-Mari, Tuia, & Camps-Valls, 2012), coherent clusters (Volpi, Tuia, & 

Kanevski, 2012) and in  Liu et al. (2008), who considered minimization of the cost function of travel time 

to minimize the travel distances between sample locations in geographic space using the Traveling 

Salesman Problem. Our research aims to develop an AL method that incorporates both the spatial and 

spectral domain for application in crop type mapping from satellite image time series. 

2.6. Spatial-domain heuristics and metrics in AL 

Previous studies have successfully incorporated the spatial domain in AL(Patra et al., 2017; Crawford, 

Tuia, & Yang, 203; Q. Lu, Ma, & Xia, 2017). The spatial component was used to select informative 

samples considering the geographic space. The metrics used for the spatial component included the 

distance minimization using the Travelling Sales Man approach to minimize label acquisition costs (A. Liu, 

Jun, & Ghosh, 2009), minimization of spatially collocated samples, characterized by a decrease in model 

efficiency if the selected pixels are similar to the chosen ones in the previous iteration (Volpi et al., 2012) 

and the level of clustering for each class (Lee & Crawford, 2005). This research incorporates the spatial 

component by making use of the spatial distribution of the samples. Spatial distribution analysis has been 

accounted for in crop mapping studies using the idea of spatial autocorrelation (Mathur, 2015). Spatial 

autocorrelation measures the similarity of objects within an area, the level of dependence between 
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variables, and dependence strength. The quantification of spatial autocorrelation has been categorized into 

local measures, global measures and variogram, which is a geostatistical approach.  

2.6.1. Global and Local measures of spatial autocorrelation 

Global measures look at the level of clustering across the entire area of interest. They generally answer the 

question if there is a clustering pattern or not. Examples include Moran’s I (Moran, 1950), Geary’s C ratio 

(Geary, 1954), and joint count statistics. Moran’s I index has been used in different applications, including 

plant population study (Mathur, 2015). It measures the overall spatial autocorrelation of an area and 

returns a single index to display the pattern. Moran’s I ranges from -1 to 1, whereby -1 is perfect clustering 

of dissimilar values (perfect dispersion),0 is no autocorrelation (perfect randomness), and +1 indicates 

perfect clustering of similar values (it’s the opposite of dispersion). Moran’s I and other  Global measures 

of spatial autocorrelation yield only one single statistic that describes the spatial autocorrelation of the 

entire region without identifying where the similarity (or dissimilarity) occurs. This makes it unsuitable for 

this research since it is vital to understand where the dissimilarity or similarity in sample distribution 

occurs to select informative samples. Local measures such as Local Indicator of Spatial Association 

(LISA), local Moran’s I, among others, zoom to a local extent to identify the clusters that are explained in 

the overall global pattern. They locate the location of clusters. These also give a single statistic for each 

locality. In this research, the aim is to look at the spatial autocorrelation to the point level, that is, the 

point-to-point relation in terms of the spatial distribution. A variogram fits this task since it models the 

spatial autocorrelation and distance dependence between observations(point locations). 

2.6.2. Variogram  

A variogram is one of the geostatistical tools used to show spatial correlation by plotting the variance of 

point pairs with increasing distance between them (Curran, 1988). It is used to visualize and model spatial 

variation. The variogram increases as a function of the distance between point location pairs to portray 

that points close to each other may have similar values to those far from each other. In other words, it 

quantifies the spatial autocorrelation and shows how spatial variation changes as a function of the distance 

between point location pairs. The variogram has three main parameters: the sill, range, and nugget (Liu, 

Xie, & Xia, 2013). The nugget represents the non-spatial variability, and the sill is the total variability. The 

variance between point pairs increases until the sill and then becomes constant after the sill. The distance 

until which the semivariance levels off at the sill is called the range. The samples that appear above the 

range are not spatially correlated and hence can be selected for labelling. The variogram has been used in 

RS for various applications like textual image classification (Jakomulska & Clarke, 2001), structural and 

statistical analysis of textural images (Pham, 2016) and classification of SAR images (Tonye et al., 2011). In 

this research, the variogram is used for querying uncertain samples based on their degree of spatial 

correlation as a function of distance. Thus, the variogram model is used to incorporate the spatial 

component in the AL algorithm by assessing the lag or distance between training sample pairs. The 

uncertainty in the spatial domain will be considered by looking at the points whose in-between distance 

lies above the range since they are spatially uncorrelated and are dissimilar based on Tobler's law, which 

states that "everything is related to everything else, but near things are more related than distant things" 

(Tobler, 1970). 

2.7. Classification 

AL uses a supervised approach in classification since training samples are required to train a model 

initially. Different supervised classification methods exist, for example, Random Forest (RF), Maximum 

Likelihood Classifier (MLC) and Support Vector Machine (SVM). However, a good classifier should have 

the ability to handle feature nonlinearity, address the insufficiency of training samples due to a large 

number of features, also known as the "curse of dimensionality" or Hughes phenomenon (Chutia, 
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Bhattacharyya, Sarma, Kalita, & Sudhakar, 2016), handle imbalanced training samples and reduce the 

computational time (Gislason, Benediktsson, & Sveinsson, 2006). The MLC assumes that the data follows 

a normal distribution (parametric), which is not true with remote sensing data, while SVM and RF are 

non-parametric classifiers. RF has proved to be an efficient classifier for classification using a small 

number of training samples (Han, Jiang, Zhao, Wang, & Yin, 2018). SVM and RF are mostly used 

interchangeably in most RS tasks though RF has been observed to perform better when many input 

variables are available such as in the case of the hyperspectral image classification scenarios (Abdel-

Rahman, Mutanga, Adam, & Ismail, 2014).  

2.7.1. Random Forest classifier  

A RF is a classifier consisting of an ensemble of decision trees built using a subset of features and training 

samples (Breiman, 2001). It uses bagging and bootstrapping approaches to select subset training samples 

and features and generate trees that are used for prediction. The randomness in selecting training samples 

and features for splitting the decision tree nodes minimizes the correlation between the tree hence 

addressing the overfitting problem (Gislason et al., 2006). Almost two-thirds of the data are used for 

training, and the remaining third, also known as the Out Of Bag (OOB) samples, is used for internal 

cross-validation of the model (Breiman, 2001). RF is a computationally light algorithm and has only a few 

parameters to adjust, namely the number of trees (ntree) and the number of features to be considered for 

splitting the decision tree nodes (mtry parameter). The assessment of the model's accuracy is done using 

independent validation samples, and the overall accuracy of the classified area is determined based on the 

confusion matrix. This research will use the RF classifier. 
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Figure 3-1 Location map of the study area (Source: Google Earth). 

3. STUDY AREA DESCRIPTION, DATA ACQUISITION AND 
PREPROCESSING 

3.1. Study area description 

The study area is Noord Beveland, situated in the Southwestern Netherlands. It is one of the 

Municipalities in the province of Zeeland. Different municipalities border Noord-Beveland: Schouwen-

Duiveland in the north, Veere in the west, Middleburg in the southwest, Goes in the south, Kapelle to the 

southeast, and Tholen in the east. The municipality has a population of 7,308 inhabitants. It has an area of 

121.6 km², whereby 85.96 km² is land, and 35.62 km² is water. Various activities are practised in this area, 

for instance, recreation activities, but the main one is the agricultural activities with different crops grown 

such as wheat, potatoes, corn etc.(Koks, de, & Koome, 2012). Figure 3-1 shows the study area. 
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3.2. Data description 

Table 3-1 describes the data used in our proposed research. Further details about the data and data 

management plan for this research are presented in Appendix A.  

 
Table 3-1 Data description 

Data Temporal 

resolution 

Spatial resolution Type 

Sentinel 2 Satellite image time series 5 days 10m, 20m, 60m Raster 

Crop parcel data (Ground Truth) 1 Year(2019)  Shapefile 

The boundary of the study area   Shapefile 

 

3.3. Ground truth data acquisition and preprocessing 

The crop data consists of the location of agricultural parcels in the Netherlands with the cultivated crop 

linked to it. This data is available nationwide and is updated every year. It is a selection of information 

from the Basisregistratie Parcelen (BRP) of the Netherlands Enterprise Agency, and the parcel boundaries 

are based on the boundaries from the AAN file (Agricultural Area of the Netherlands) (Esri, 2018). 

3.3.1. Ground truth data acquisition  

A total of 1584 crops cultivated in the study area were  grouped into four different crop categories, 

namely: 

• Arable land/farm land/ploughland (Bouwland) 

• Grassland (Grasland) 

• Nature area (Natuurterrein) 

• Fallow land (Braakland) 

 

Given the focus of our research on crop type mapping, only arable land was considered for the research, 

resulting in a total of 54 crop classes. The classes were filtered into seven crop classes based on the fact 

that some crop classes had very few plots (less than five plots). The resulting classes to be used for the 

research were cereals, maize, potatoes, alfalfa, beets, onions and orchard. Figure 3-2 shows the distribution 

of these crop classes in the study area, and Figure 3-3 shows the number of plots used per crop class for 

this research. The cereals class had the highest number of plots, followed by potatoes, beets, onions, 

orchard, maize, and the alfalfa class. Two additional classes for water and ‘other’ areas were added to 

distinguish crop areas from non-crop regions, making a total of nine classes.  
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Figure 3-2  Agriculture plot distribution over the study area. The other areas are other types of landcover present in 
the study area 

Figure 3-3 Number of plots per crop type class 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2. Training sample preparation 

A total of 630 samples were obtained for the nine target classes (70 samples per class). The Sampling 

Design tool in ArcMap was used to sample the points using the stratified sampling technique (Buja & 

Menza, 2013). Raster values (NDVI values) at point locations of the training samples were extracted using 

the Extract Multi Values to Points tool in ArcMap. The dataset was lastly divided into (70%) and 
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Figure 3-4 Training and validation sample locations for the nine target classes 

validation samples (30%). Therefore, we generated a total of 450 training samples (50 samples per class) 

and 180 validation samples(20 samples per class). The training and validation data were sampled from 

different plots ensuring the spatial dependence of training and validation samples. Figure 3-4 shows the 

training and validation sample distribution within the study area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Image acquisition and preprocessing 

For this proposed research, a monthly time-series of Sentinel-2 mission (Bottom of Atmosphere product) 

images were acquired from the European Space Agency. The acquired images were for the year 2019, and 

their acquisition was done using Google Earth Engine. They were a total of 12 images. The images had 13 

bands with 10m, 20m and 60m resolution, respectively. Table 3-2 shows the band properties of the images 

acquired. The images were acquired by first loading the image collection and then filtering the images 

using different criteria such as date range, area of interest and cloud cover percentages.  
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Figure 3-5 Illustration of the Earth Engine App used to get an overview of the cloud percentage values for all 
images in each month. 

Table 3-2 Band properties of acquired Sentinel images 

Band Resolution Central Wavelength Description 

B1 60 m 443 nm Coastal aerosol 

B2 10 m 490 nm Blue 

B3 10 m 560 nm Green 

B4 10 m 665 nm Red 

B5 20 m 705 nm Red-Edge 

B6 20m 740 nm Red-Edge 

B7 20m 783 nm Red-Edge 

B8 10m 842 nm NIR 

B8a 20m 865 nm NIR narrow 

B9 60m 940 nm Water Vapour 

B10 20 m 1375 nm Cirrus 

B11 20 m 1610 nm Short Wave Infrared (SWIR 1) 

B12 20 m 2190 nm Short Wave Infrared (SWIR 2) 

3.4.1. Cloud masking 

Since the target was to get at least one image per month, the cloud percentage value was set in such a way 

that it was not too low to avoid excluding too many images or too high to get cloudy images. The Earth 

Engine App was used to identify the cloud percentages for the images monthly. Figure 3-5 shows a cross-

section of the Google Earth engine app that helped in viewing the cloud cover percentages for all images 

in each month. The marked area(purple point) is the study area. 

 

Images with the least cloud percentage per month were selected monthly. Figure 3-6 shows the cloud 

percentages for each image acquired with their respective dates of acquisition. Images of May, October 

and November had high cloud cover percentages, while February, July, August, and September had the 

least cloud cover. 
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Figure 3-6 Image acquisition dates with respect to cloud cover percentage. 

Three QA bands were present in each image, where QA60 is a bitmask band containing cloud mask 

information. QA stands for ‘Quality Assessment’ while 60 stands for the spatial resolution in meters. Bit 

10 stands for opaque clouds. When the value of Bit 10 is 0, there are no opaque clouds present, and when 

the value is 1, there are opaque clouds present. Bit 11 stands for cirrus clouds. If the value is 0, there are 

no cirrus clouds, but if the value is 1, then cirrus clouds are present. Both bit values were set to 0 to 

indicate clear conditions. The maskS2clouds function in Google Earth Engine was used for this task.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The increase in spatial and temporal resolution in satellite data calls for analysis that considers the time 

component (Belgiu & Csillik, 2018). Some researches in crop mapping demonstrate that time-series 

images perform better than single date images (Xiong et al., 2017). The assessment of vegetation 

productivity, health, and monitoring uses various vegetation indices in RS (Nirbhay Bhuyar, 2020). 

Monitoring also involves the time component, looking at different stages of the crops as they progress in 

their growth. Some of the vegetation indices used are the Normalized Difference Vegetation Index 

(NDVI), Leaf Area Index (LAI), among others. To get an overview of the crop stages and track the 

changes, it is essential to have images acquired at different times (C. Sun, Y. Bian, T. Zhou, 2019). This 

research uses NDVI (Rouse, Jr., Haas, Schell, & Deering, 1973) as an index to track crop changes with 

time. NDVI is calculated using the Red and Near Infrared bands. Equation 3 illustrates the calculation of 

the NDVI index.  

 

                              𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
                                                                                              (3)                                                                

3.4.2. NDVI calculation 

NDVI values range from -1.0 to +1.0, whereby very low NDVI values indicate bare soil(0.1 or less), 

moderate NDVI values(0.2 to 0.5) express sparse vegetation or season of emergence in vegetation growth 

and high values(0.6 and above) indicate crops being at the peak of their growth stages (USGS, n.d.). In this 

research, the NDVI indices were calculated for each image. Figure 3-7 shows NDVI temporal profiles for 
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Figure 3-7 Temporal profiles for a) alfalfa, b) beets, c) cereals, d) maize, e) orchard, f) onions, g) potatoes, 
h) a combination of all target classes 

crop classes used in this research. In the end, an NDVI image composite was attained by stacking all the 

NDVI images calculated for each month. NDVI image products were exported from GEE for further 

processing in R software. 
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The temporal profiles generated using the NDVI values of the target classes reflect the crop growth 

stages. The NDVI peaks indicate the stage at which the crops are at the peak of growth. The alfalfa and 

cereals target classes had two peaks. This means these crop had two cropping cycles. The beets class were 

at their peak growth from June to August, maize crops in July and August, onions in July and potatoes in 

June. The low NDVI values in the graphs represent a stage when the crops are sown or harvested. The 

land appears almost bare in these stages hence the low NDVI values. An example is the potatoes class, 

whereby the crops start growing(emergence stage) in April and May, and in October and November, the 

potatoes are harvested. 

3.4.3. Image co-registration 

Image co-registration is required to ensure the spatial alignment of the images.  A base or master image 

was selected, and other images were aligned to it. The master image selection was made by taking into 

consideration the cloud cover percentage. The image with the lowest cloud cover percentage was 

considered as the master image. Based on the available images, the image acquired on the 23rd of July 2019 

was the master image, with a cloud cover percentage of 0.04. Common features such as road corners and 

plot corners were identified in the master image, and they were checked for alignment. This was done in 

ArcMap by overlaying the images on each other.  In our case, the images were all aligned. After all the 

above steps, the twelve NDVI images were stacked to form an NDVI composite image. 
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Figure 4-1 Flow chart of the proposed methodology of the research. 

4. METHODOLOGY 

This chapter describes how AL has been used to generate samples required to perform crop mapping for 

time-series satellite images. The following workflow provides a general overview of the steps of this 

research in figure 4-1. 

4.1. Workflow of the thesis 

The initial steps of the workflow were the acquisition and preprocessing of ground truth crop data and the 

satellite image time series required for this research. Section 3.4 in the previous chapter explains the image 

acquisition and preprocessing steps carried out in detail, as shown in figure 4-1(highlighted in red). Section 

3.3 in the previous chapter also explains the ground truth data acquisition and preprocessing, as seen in 

figure 4-1 (highlighted in green). Next was the use of AL in the selection of informative training samples 

out of all the available training samples. This was done using an AL algorithm that excludes the spatial 

component(considers spectral domain only) and later on developing an algorithm that incorporates the 

spatial component in selecting informative samples. Classification was then performed using all training 

samples and then performed using informative samples generated from both AL algorithms 

independently, yielding crop type maps. Analysis of the results was done by comparing the outputs of the 

two AL algorithms to the outputs generated from using the entire training sample dataset, and later on, a 

comparison between the two AL algorithms. This was done through accuracy assessment and 

performance evaluation of the AL algorithms. 
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Figure 4-2 Active Learning components  

4.2.  Active learning components 

The AL technique has a quintuple structure with five elements which are a classifier or set of classifiers C, 

a labelled dataset L, a query Q, for selecting informative labels from a pool of unlabeled samples U and a 

supervisor, S, who assigns labels to the unlabeled samples (M. Li & Sethi, 2006). This AL structure is 

displayed in figure 4-2. AL workflows are dependent on three main components: the model (learner) 

chosen, the uncertainty measure, and the query strategy used to select informative samples (He et al., 

2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the AL part, only the seven crop classes were used.  The remaining two classes(water and ‘other’ ) were 

used in the final steps of mapping to distinguish the crop classes from other classes outside the scope of 

this research. For the seven crop classes, there were 350 total samples(50 samples per class). The 

distribution of the target classes in the feature space is depicted in figure 4-3. Principal Component 

Analysis (PCA) transformation was applied to the dataset for visualization purposes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3 Distribution of target classes in feature space before applying Active Learning. 
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It is evident in figure 4-3 that there is a high inter-class overlap in the feature space between maize, 

potatoes, beets, onions, and alfalfa classes. This could be due to the existence of several crops on the same 

field(mixed cropping). Classification in such scenarios is a challenge and may affect the information 

derived from the samples since one class may be wrongly assigned to the other class due to close 

resemblance (Gebbinck, 1998). Furthermore, some classes in a specific dataset may have significant 

spectral overlap, which means that these classes cannot be discriminated by image classification. The 

following sections describe how AL was applied to meet the research objectives considering both the 

spectral and spatial domain. 

4.3. Active Learning considering the spectral domain only 

In this approach, the informative samples were queried based on their spectral characteristics in the 

feature space, as explained in the steps below: 

4.3.1.  Pool generation 

The AL scenario used for this research was pool-based AL described in Table:2-1 in the second chapter. A 

pool refers to the set of unlabeled samples from which the Active Learner draws informative samples. To 

create a pool, the 350 training samples were divided into a training set L of 40 samples and an unlabeled 

set U with 310 samples that form the pool. Instances were to be drawn from the pool according to a user-

defined informativeness measure. The labels for the 40 initial training samples were known, while for the 

310 samples forming the pool, the labels were assumed to be unknown. 

4.3.2. Initializing a committee(Model) 

Referring to section 2.4, which describes the spectral domain heuristics used for querying informative 

samples from the pool, the query strategy to be used was the Query By Committee (QBC) strategy. This 

required generation of a committee of AL members. Different studies state that there is no specific 

number of committee members that should generally be used. A  small number of committee members 

have worked well in various studies (Seung, Opper, & Sompolinsky, 1992; Settles, 2009). Based on the 

previous studies, the committee used for the selection of informative samples had two members. The 

committee members consisted of the estimator, which is the RF classifier, and the uncertainty measure, 

the vote entropy discussed in chapter two. These committee members(model) were trained using the 

labeled dataset and later used to predict the labels of the samples in the pool. 

4.3.3. Iterative selection of informative samples, labelling and prediction 

Using the QBC strategy,  informative samples were queried from the pool while assessing the prediction 

accuracy of the committee with an increment of the training samples used to train the model. The samples 

were queried based on their NDVI values, and the informativeness was determined using vote entropy as 

a metric. One of the stopping criteria in AL would be to measure the performance of the trained classifier 

on an annotated dataset and stop when the performance of the model increases at a non-satisfactory rate 

or stops improving. After 129 queries, the classification accuracy increased at a very slow rate and later 

stopped improving. This happened every time the classification was run. These samples were exported 

and saved to be used for crop type mapping. Using the ‘water’ and ‘others’ class samples and the samples 

generated from AL based on the spectral component only, classification was performed on the composite 

NDVI image to get a crop type map. RF classifier was used for this classification purpose. The code for 

the above processes is displayed in GitHub(https://github.com/beatrice327/Active-Learning-thesis). 

 

 

 

https://github.com/beatrice327/Active-Learning-thesis
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Figure 4-4 AL workflow involving the spatial component in querying informative samples       

Figure 4-5 Crop type spatial distribution in geographical space before AL 

4.4. Incorporating the spatial component in AL 

In this approach, the informative samples were queried based on their spectral and spatial characteristics 

in the feature space as explained in the steps below: Several spatial domain heuristics were surveyed as 

described in section 2.6 and in this research, the variogram was chosen to be used in the selection of 

informative samples in the spatial domain. In the classic AL workflow (Figure 4-2), the query criteria used 

are spectral based. This step involves the spatial component in the selection of informative samples. 

Informative samples, in this case, are the samples from the pool that fulfil the spectral and spatial criteria 

when queried. The learner iterates through all the samples in the pool to select informative samples. 

Figure 4-4 shows this AL procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The spatial distribution of the 350 crop samples before AL is as shown in Figure 4-5. The red-highlighted 

regions show that the same crop class is sampled many times at close locations. Having many samples of a 

particular class taken many times at the same location or near locations surrounded by the same class is 

redundant and time-consuming. It is more efficient to obtain more samples of the same class at a 

reasonable distance that is not near the already sampled area. 
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Introducing the spatial component in the selection of informative samples can minimize this redundancy. 

The variogram is used for this purpose since it characterizes the spatial structure of an area. As explained 

in section 2.6.2, the variogram has a parameter called range which is the distance at which a variogram 

achieves a plateau (levels off). Sample pairs whose in-between distance lies above the range are said to be 

spatially uncorrelated. This means these samples are informative spatially since they are far from each 

other and are likely to differ in properties with reference to Tobler's law of Geography which states that 

"Everything is related to everything else, but near things are more related than distant things"(Tobler, 

1970). Choosing points below the range is not recommended since the samples are correlated, and they 

may likely share similar characteristics. Therefore, the spatial component was incorporated in AL by taking 

points above the range of a variogram. The learner queries an informative sample spectrally from the pool, 

then checks the Euclidean distance between this chosen point and all points in the training set. If any of 

the Euclidean distances between the chosen point and the labelled points in the training set is below the 

range, the point does not qualify to be informative, but if it is above the range, the point is considered 

informative. By combining spatial and spectral dimensions, the AL strategy selected informative samples 

representative of all classes spectrally and at different spatial locations. The following steps explain the 

stages in this task. 

4.4.1. Variogram estimation 

Variograms were estimated monthly for all NDVI images considering values for the 350 training samples. 

Variogram estimation was done monthly to highlight the differences in crop stages. Parameter values like 

the number of point pairs per lag distance, cutoff, among others, were considered. By default, the gstat 

package in R calculates the sample variogram of 0.33 of the maximum possible lag and a default of 15 

bins. At least 30 pairs of points are needed for a reliable estimate of a sample variogram for each lag 

distance (Esri, 2016). An example is shown in Table  4-1, in which all bins or lags have a number of point 

pairs greater than 30. Parameters np show the number of pairs of points used to estimate the sample 

variogram for a given distance (lag), dist stands for the lag (distance), which is the mean distance between 

the point pairs in a bin, gamma is the sample variogram value at that lag which is attained by calculating the 

mean of the variogram cloud points in the bin. 

 
Table 4-1 Estimated variogram parameters, np (the number of point pairs per lag), dist (lag distance) and gamma 
(mean of the variogram cloud points in the bin) 

                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

np dist(m) gamma 

569 232.86 0.09 

1138 570.18 0.12 

1578 940.47 0.11 

1950 1305.25 0.12 

2390 1674.59 0.12 

2798 2045.96 0.12 

2919 2412.35 0.12 

2853 2789.36 0.12 

3073 3156.93 0.12 

2972 3534.45 0.11 

2992 3898.13 0.13 

2470 4269.12 0.12 

2233 4646.14 0.12 

2218 5019.31 0.12 

2105 5391.97 0.12 



DEVELOPMENT OF A SPATIALLY EXPLICIT ACTIVE LEARNING METHOD FOR CROP TYPE MAPPING FROM SATELLITE IMAGE TIME SERIES 

23 

Figure 4-6 Variogram model parameters, range, sill, nugget, and partial sill. 

4.4.2. Fitting a variogram model to the data 

Different variogram models are normally used in geostatistics to model spatial variability; however, the 

choice of the variogram model to use depends on the parameters such as the sill, nugget, and range. These 

parameters were used as a metric to select informative samples in the new AL algorithm that considers the 

spatial component. These parameters are illustrated in figure 4-6. The distance at which the model levels 

out is called the range. It is the distance up until which the regionalized variable(NDVI in our case) is 

autocorrelated. At greater distances than the range, the regionalized variable is uncorrelated. The value at 

which the semivariogram model attains the range is called the sill (also known as the total variability in the 

data). The nugget refers to the non-spatial variability, which are measurement errors or spatial sources of 

variation at distances that are less than the sampling interval or both. It is some value greater than 0, and it 

intercepts at the y-axis of the variogram. For example, if the semivariogram model intercepts the y-axis at 

1, then the nugget is 1. Partial sill refers to the difference between the sill and the nugget values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fitted models were the spherical, exponential, and Gaussian models since they are the most used 

models in variogram modelling (Mohebzadeh, 2018). The optimal model was chosen by considering the 

Sum of Square Error (SSErr) of the estimates of the variograms fitted from all models. The SSErr is 

considered since it gives the "goodness of fit".The higher the SSErr, the less the goodness of fit of the 

variogram. Different ranges were set while examining the SSErr for each model type, as shown in Table 4-

2. After several runs, the spherical model gave the least SSErr for most of the variograms modelled for 

each month. Figures 4-7,4-8, and 4-9 show the model types as fitted on the variogram. 
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Figure 4-7 Gaussian model fitted from the data for one month 

Figure 4-8 Exponential model fitted from the data for one month 

Table 4-2 Sum of Square Error values for monthly variograms considering all variogram model types (Exponential, 
Spherical and Gaussian) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Month SSErr(Exponential model) SSErr(Spherical model) SSErr(Gaussian model) 

January               0.238                0.22                 0.22 

February               0.168                0.157                 0.155 

March               0.379                0.374                 0.528 

April               0.976                0.916                 0.914 

May               0.488                0.465                 0.619 

June               0.251                0.237                 0.244 

July               0.321                0.32                 0.321 

August               0.199                0.198                 0.198 

September               0.577                0.589                 0.643 

October               0.6                0.579                 0.598 

November               0.434                0.408                 0.513 

December               0.389                0.379                 0.392 
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Figure 4-9 Spherical model fitted from the data for one month 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the above scenarios, Figures 4-7,4-8 and 4-9, the curve fit for the spherical and exponential models 

appear better than the Gaussian model since they are close to the data. On the other hand, the 

Exponential and Gaussian variograms approach the sill asymptotically, and so they do not have strict 

ranges. The ranges for these models are normally taken as the lag distances at which the variance reaches 

95% of the total sill (Blöschl, 2002). This means these two models estimate the range, not the exact range 

like the spherical model. For this reason, too, the spherical variogram was chosen. 

4.4.3. Selection of range value 

Different ranges were applied in modelling the variograms using the spherical model for all the 12 NDVI 

images while considering the  350 samples. The nugget value(variance) was used as a determinant for each 

month to choose the ranges, whereby variogram models with low nugget values were chosen. The nugget 

variance is a value for variance when the lag distance (h) = 0 on the variogram. It explains the randomness 

of the data (Diggle, Tawn, & Moyeed, 1998). The higher the nugget, the higher the uncertainty or 

randomness of the data. The nugget accounts for different error sources, such as measurement errors at 

distances that are smaller than the sampling interval. Measurement errors can be errors from instruments, 

observation errors, among others.  Therefore, the nugget value is an estimate of the sum of all residual 

variance contributions from all measurement steps such as sampling, observation, and analysis, among 

others(Engström & Esbensen, 2018).In selecting the best ranges, the variograms chosen for each month 

were the ones with the least nugget values. The variograms of the 12 months are attached in Appendix B 

of this research. 

 

As mentioned earlier, the variograms were estimated monthly to account for the crop growth stages. 

Figure 3.7 illustrates the NDVI temporal files for the seven crop classes. It is observed that the crops 

displayed different patterns, which portray different stages of crop growth. The months to be considered 

for the range choice were the ones for which the crops appear separable. From graph 3.7 (h), all months 

showed separability for some crops classes, but not all. It was therefore challenging to select a range based 

on crop separability per month. Table 4-3 shows that the smallest range is 417.6m, and the largest is 

905.4m. To choose a range to be considered for selecting informative samples spatially, the smallest range 

was considered. This is because it is the shortest distance above which spatial dependency of all the 350 

samples is no longer present considering all bands(12 NDVI images in this case). The larger range values 

were not chosen because taking a larger value means spatially uncorrelated points will also be considered 

to be spatially correlated. In addition, the in-between distance between the chosen points will be large, 

hence having few points and a chance of leaving out informative samples. For this reason, the chosen 

range was 417.6m. Therefore, all samples whose in-between distance is above this range will be considered 

informative spatially for the AL part. 
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Table 4-3 Variation of the ranges with their respective nugget values for the variograms fitted for each month 

Month Range(m) Nugget 

January       462.3     0.008 

February       477.4     0.005 

March       611.2     0.029 

April        513     0.029 

May       417.6     0.025 

June       587.3     0.008 

July       905.4     0.043 

August       721.1     0.050 

September       804.9     0.043 

October      733.6     0.033 

November      735.3     0.028 

December      794     0.018 

 

4.4.4. Iterative selection of informative samples, labelling and prediction considering both the spectral and 
spatial domain 

The AL algorithm was run to select informative samples that fulfil both the spectral and spatial criteria. 

After iterating through the pool of 310 samples(excluding 40 samples that were initially used to train the 

model), a total of 57 samples qualified to fulfil both the spatial and spectral criteria. For every iteration, the 

learner queried an informative sample spectrally from the pool U, then checked the Euclidean distance 

between this queried sample and all points in the training set L. If any of the Euclidean distances between 

the chosen point and the labelled points in the training set was below the range, the point did not qualify 

to be informative, but if it was above the range (417.6 m), the point was considered informative. These 57 

samples were exported together with the initial 40 samples used to train the model and stored to be used 

for crop type mapping. Using a RF classifier, classification was performed on the composite NDVI image. 

The code for the above processes is displayed in GitHub (https://github.com/beatrice327/Active-

Learning-thesis). 

4.4.5. Assessment of the classification outputs and evaluation of the AL algorithms 

As elaborated in section 4.1, a RF classification was run on the NDVI image composite before the AL 

task was done. The outputs from this classification were used as a reference to evaluate the performance 

of the AL algorithm that excludes the spatial component and the one that includes the spatial component. 

Comparisons were made using the confusion matrices for all approaches. We considered the Kappa 

coefficient, overall accuracy, user’s accuracy and producer’s accuracy for assessing the classification results. 

The overall accuracy describes the proportion of the reference samples that were classified correctly. 

Producer’s accuracy, also known as sensitivity, is calculated by the number of correct positive predictions 

divided by the total number of positives. It depicts how often real features in the area of interest are 

correctly shown on the classification map. User’s accuracy, sometimes referred to as precision, shows how 

often the classes predicted on the map are really present on the ground. It is calculated by taking the total 

number of correct classifications for a particular class and dividing it by the row total. The Kappa 

coefficient uses the overall model accuracy and per class accuracies considering both the predictive and 

reference aspects to correct for agreement between the classes (Cohen, 1960). It compares an observed 

accuracy with an expected accuracy obtained from a random choice of samples. It ranges from 0 to 

1.Values that are close to 1 reflect the agreement between the observed and expected accuracy values. 

https://github.com/beatrice327/Active-Learning-thesis
https://github.com/beatrice327/Active-Learning-thesis
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Figure 5-1 Assessment of the sample classification results obtained by using the entire dataset of training samples. 
UA – User’s Accuracy, PA – Producer’s Accuracy, OA – Overall Accuracy 

 

5. RESULTS 

This chapter presents the results of the workflow described in the previous chapter. Section 5.1 presents 

the output of RF classification of all samples before AL. The RF outputs of samples generated by the AL 

that only considers the spectral domain are shown in Section 5.2. The findings of RF classification from 

AL samples generated considering the spectral and spatial domains are presented in Section 5.3. Section 

5.4 describes the performance of the developed AL method and assesses its effectiveness in crop type 

mapping for satellite image time series. 

5.1. Classification using the entire dataset of training samples 

After classification using all 450 training samples, the prediction accuracy was assessed using 180 

validation samples. Figure 5-1 illustrates the confusion matrix and other statistical metrics of the 

classification considering all training samples. Figure 5-2 shows the crop type map generated from this 

classification task. 

 

5.1.1. Overall accuracy of the classification performed using all available training samples 

The final overall accuracy obtained after running 50 iterations of classification was 84%. The final overall 

accuracy was obtained by taking the mean of the overall accuracies obtained at each iteration. The range of 

the overall accuracies was from 82% to 86%.  

5.1.2. Producer’s Accuracy(Sensitivity) of the classification performed using all available training samples 

The Producer’s Accuracy was calculated for each class, as seen in Figure 5-1. All values were close to 

100%, indicating good model prediction performance. The water class had all its samples correctly 

classified (100%), followed by alfalfa (95%), orchard (90%), potatoes (85%), cereals (85%), other  (80%), 

beets (75%), onions (75%) and lastly the maize class (70%). The maize class being the least predicted 

efficiently makes sense, as seen in Figure 4-3, since it is spread out in the feature space and has high 

spectral overlap with other classes like potatoes, beets and cereals, confusing the classification process. 
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Figure 5-2 Crop type map generated from classification using all training samples (350 samples) 

5.1.3. User's accuracy (Positive predicted values) of the classification performed using all available training 

samples 

Figure 5-1 above shows that the classes water and alfalfa had the highest user’s accuracy, namely 100%. 

This means all areas classified as water and alfalfa on the map were actually water and alfalfa on the 

ground, respectively.93.75% of the samples classified as onions were actually onions on the ground for the 

onions class. A maize sample(1) was classified wrongly as onions class. For the maize class,93.33% of the 

samples classified as maize were actually maize on the ground, and a potatoes sample(1) was wrongly 

classified as maize. Considering the within-class variation of the maize class discussed previously, the 

classifier performed well. 89.47% of samples classified as cereals were actually cereals on the ground. A 

potato sample(1) and an onion sample(1) were misclassified as cereals. 77.27% of samples classified as 

potatoes were actually potatoes on the ground. Beets samples(4) and cereals (1) were misclassified as 

potatoes. For the beets class,75% of the samples classified as beets were actually beets on the ground. 

Potatoes class(1 sample), maize samples (3) and  ‘other’ class sample(1) were wrongly classified as beets. 

The orchard class also had the same user's accuracy as beets. A beets sample(1), maize samples(2) and  

‘other ‘class sample(3) were wrongly classified as orchard. The ‘other’ class had the least user's accuracy. 

This could be because the samples places had a mixture of other classes like built-up areas and vegetation 

mixture. 

5.1.4. Kappa statistic of the classification performed using all available training samples 

The classification using all the samples had a kappa value of 82%, as per the results displayed in figure 5-1. 

 

 

 

 

 



DEVELOPMENT OF A SPATIALLY EXPLICIT ACTIVE LEARNING METHOD FOR CROP TYPE MAPPING FROM SATELLITE IMAGE TIME SERIES 

29 

 

Figure 5-4 Committee predictions by initial 40 training samples.  

 

Figure 5-3  Initial predictions per individual learner. Y and X axis stand for principal component analysis 

components 2 and 1 respectively as created as a result of reducing the spectral features to two dimensions 

 

5.2. Classification using training samples generated from spectral-domain AL 

5.2.1. Initial committee predictions before AL 

Figures 5-3 and 5-4 illustrate the prediction of each learner independently and as a committee, 

respectively. Both learners used the same number of training samples (20 samples ), summing up to 40 

samples. Their predictions are similar, as seen in Figure 5-3. The initial committee prediction accuracy was 

69.1%. 
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Figure 5-6 committee prediction accuracy after 129 queries. Y axis is the increment in classification accuracy and X 
axis displays the number of iterations performed whereby in each iteration, one informative sample is chosen. The 
number of query iterations=the number of queried  samples. 

Figure 5-5 Prediction accuracy with an increment of training samples. Y axis is the increment is classification 
accuracy and X axis displays the number of iterations performed whereby in each iteration, one informative sample is 
chosen. The number of query iterations=the number of queried  samples. 

 

5.2.2. Selection of informative samples considering the spectral domain only 

The model's performance (accuracy) improved at an unsatisfactory rate after 129 queries, as evidenced by 

the curve flattening, with a committee prediction accuracy of 99.43 % (figure 5-6). This was the stopping 

criterion. Figure 5-5 depicts the increase in prediction accuracy when informative samples queried from 

the pool are added to the training set.  
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Figure 5-8 Crop sample distribution after AL in the spectral domain. Redundancy reduction shown by the colored oval 
shapes potatoes(purple oval), cereals(green oval), alfalfa and beets(dark blue oval), potatoes and onions(red oval) and 
the spectral mixture of potatoes, beets, and maize(yellow oval).        

Figure 5-7 Crop sample distribution before AL .Redundancy is illustrated  by the colored oval shapes 
potatoes(purple oval), cereals(green oval), alfalfa and beets(dark blue oval), potatoes and onions(red oval) and the 
spectral mixture of potatoes, beets, and maize(yellow oval). 

The 129 samples plus the initial 40 samples used to train the model give a total of 169 samples. This is 

48% of all the samples used for classification initially, excluding water and other classes that are not crop 

classes (350 samples). Table 5-1 shows the class distribution before AL(350) and after selecting 

informative samples using AL that considers only the spectral domain(169). The classes are not well 

balanced, with the potato class having the largest number of samples(41). It could be because of difficulty 

in the classification due to its within-class variation, as seen in Figure 4-3. Figure 5-7 and 5-8 show the 

distribution of the samples in the feature space before(350 samples) and after the AL algorithm (169 

samples), respectively. The distributions are different in the sense that the redundancy of samples has been 

eliminated as shown by the colored oval shapes potatoes(purple oval), cereals(green oval), alfalfa and 

beets(dark blue oval), potatoes and onions(red oval) and the spectral mixture of potatoes, beets, and 

maize(yellow oval).             
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Figure 5-9 Assessment of the sample classification results obtained by applying the AL that considers the spectral 
domain only. UA – User’s Accuracy, PA – Producer’s Accuracy, OA – Overall Accuracy 

Table 5-1 Training sample class distribution before AL and after AL considering the spectral domain only 

 

 

 

 

 

 

 

 

 

5.2.3. Classification using samples obtained from the algorithm that considers the spectral domain only 

 

The NDVI image composite was classified using the 169 samples described in the previous section plus 

the water and ‘other’ class samples. The prediction accuracy was assessed using the 180 validation samples 

mentioned in section 5.1. The confusion matrix and the Kappa statistic were used for assessment. Figure 

5-9 illustrates the confusion matrix and other statistical metrics of the classification run. Figure 5-10 shows 

the crop type map generated from this classification task. 

 

 

 

 

Crop type Training sample number before AL Training sample number after AL 

Alfalfa                        50                          22 

Beets                        50                          28 

Cereals                        50                          15 

Maize                        50                          25 

Onions                        50                          23 

Orchard                        50                          15 

Potatoes                        50                          41 

Total                        350                         169 
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Figure 5-10 Crop type map generated from training samples selected using the AL algorithm that considers the spectral 
domain only 

 

5.2.4. Overall accuracy from samples resulting from AL in the spectral domain 

The final overall accuracy obtained after running 50 iterations of classification was 82%. The final overall 

accuracy was obtained by taking the mean of the overall accuracies obtained at each iteration. The range of 

the overall accuracies was from 81% to 85%. The previous accuracy attained using all training samples was 

84%. This means that fewer samples could be used to attain similar accuracy as many samples when 

carefully chosen, hence fulfilling the purpose of AL which is to operate with a low number of training 

samples to achieve high accuracy. 

5.2.5. Producer’s Accuracy from samples resulting from AL in the spectral domain 

The producer’s accuracy was calculated for each class, as seen in Figure 5-9. All values are close to 100%, 

which shows good model prediction performance. The water class had all its samples correctly classified 

as in the previous classification, followed by orchard(95%) and cereals(95%), whose producer accuracy is 

higher than the previous producer accuracies for the orchard (90%) and cereals (85%), respectively. The 

same producer’s accuracies were observed in the beets, maize, and onions classes as in the prior 

classification that used all samples. However, the producer’s accuracy dropped from 95% to 85% for the 

alfalfa class, from 85% to 75% for the potatoes class and from 80% to 65% for the ‘other’ class.  

5.2.6. User's accuracy from samples resulting from AL in the spectral domain 

The user's accuracy per class is shown in Figure 5-9 by the row that shows the positive predicted values. 

The classes water, alfalfa and onions had the highest user accuracy, namely 100%. The onions had 

misclassifications in the previous classification using all training samples. Therefore, an improvement was 
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Figure 5-11 Prediction accuracy with an increment of training samples obtained from AL algorithm with the 
spatial component. Y- axis is the increment in classification accuracy and X- axis displays the number of 
iterations performed whereby in each iteration, one informative sample is chosen. The number of query 
iterations=the number of queried  samples. 

observed in the classification of onions. For all the three classes, all samples classified as water, alfalfa and 

onions on the map were, therefore, water, alfalfa, and onions on the ground, respectively. The user's 

accuracy also increased for the others class from 64% in the previous classification to 76%. The maize 

class maintained the same user's accuracy as in the previous classification. 93 % of the samples classified as 

maize were actually maize on the ground, and a potatoes sample(1) was wrongly classified as maize as in 

the previous task. The user's accuracy decreased for the beets class 75% to 65%, cereals 89% to 79%, 

orchard 75% to 70% and potatoes 77% to 68%. 

5.2.7. Kappa statistic of spectral domain-based classification 

The AL samples' classification (169) yielded a kappa value of 79%, as per the results displayed in figure 5-

9. This is close to the Kappa value in the previous classification involving all the 350 training samples 

(82%). 

5.3. Classification using the AL algorithm with the spatial component 

5.3.1. Selection of informative samples in the spectral and spatial domain 

After 57 queries, the classification performance of the model increased at a non-satisfactory rate with a 

committee prediction accuracy of 90.90% (figure 5-12). This is less than the prediction accuracy of the 

previous task using the AL algorithm that excludes the spatial component(99.43%). Figure 5-11 shows the 

increment in prediction accuracy with the addition of informative samples queried from the pool to the 

training set. It is observed that after 57 queries, the curve flattens.  
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Figure 5-12  Committee prediction accuracy after 129 queries considering the spectral and spatial domain. Y- axis is 
the increment is classification accuracy and X- axis displays the number of iterations performed whereby in each 
iteration, one informative sample is chosen. The number of query iterations=the number of queried  samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 57 samples, together with the 40 initial samples used to train the model, give a total of 97 informative 

samples. This is 57.39% of the samples used for AL considering the spectral domain and 27.71% of the 

entire training sample dataset (350 samples). Table 5-2 shows the class distribution after selecting 

informative samples using the new AL algorithm that considers both the spatial and spectral domain. 

Classes with high interclass variation were given preference in the selection, the potato class having the 

largest number of samples(24) as in the previous task. Figures 5-13 and 5-14 show the spatial distribution 

of the samples before(350 samples) and after the AL algorithm with the spatial component (97samples), 

respectively. The distributions are different in the sense that the redundancy of samples has been 

eliminated, as shown by the colored oval shapes orchard(red oval), alfalfa(dark blue oval), maize(light 

green oval), cereals(yellow oval) and potatoes(purple oval).      

 
Table 5-2 Training sample class distribution before AL and after AL considering the spectral and spatial domain  

Crop type Training sample number AL with a spatial component 

Alfalfa                         11 

Beets                         16 

Cereals                          8 

Maize                         15 

Onions                         16 

Orchard                          7 

Potatoes                         24 

Total                          97 
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Figure 5-13 Crop sample spatial distribution before AL. Redundancy illustrated by the colored oval shapes orchard 
(red oval), alfalfa(dark blue oval), maize(light green oval), cereals(yellow oval) and potatoes(purple oval).             

 

Figure 5-14 Crop sample distribution after AL in the spectral and spatial domain. Redundancy reduction is shown by 
the colored oval shapes orchard(red oval), alfalfa(dark blue oval), maize(light green oval), cereals(yellow oval) and 
potatoes(purple oval).             
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Figure 5-15 Assessment of the sample classification results obtained by applying the AL that considers the spectral 
and spatial domain. UA – User’s Accuracy, PA – Producer’s Accuracy, OA – Overall Accuracy 

 

Figure 5-16 Crop type map generated from training samples selected using the AL algorithm that considers the 
spectral and spatial domain 

5.3.2. Classification using samples obtained from the AL with a spatial component 

Figure 5-15 illustrates the confusion matrix and other statistical metrics of the classification run using the 

97 samples plus the water and ‘other’ class samples, described in section 5.3.1. Figure 5-16 shows the crop 

type map generated from this classification task. 
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5.3.3. Overall accuracy for the AL algorithm with the spatial component 

The final overall accuracy obtained after running 50 iterations of classification was 80%. The overall 

accuracy range was from 78% to 82%, hence fulfilling the purpose of AL, which is to operate with a low 

number of training samples to attain high accuracy.  

5.3.4. Producer’s Accuracy for the AL algorithm with the spatial component 

All the Producer’s Accuracy values except the ‘other’ class are close to 100%, which shows good model 

prediction performance. The classes alfalfa(95%), beets (75%) and water(100%) maintained the same 

producer’s accuracy as the one achieved when using the entire dataset of training samples. An increment 

in producer accuracy was observed in the classes cereals (85% to 95%), maize (70% to 75%), onions (75% 

to 80%) and orchard (90% to 95%). A decline in producer accuracy was observed in the potatoes 

class(85% to 75%) and the ‘other’ class(80% to 30%). The producer’s accuracy improved for most classes, 

and a big decline is observed in the ‘other’ class. 

5.3.5. User's accuracy for the AL algorithm with the spatial component 

The user's accuracy per class is shown in Figure 5-15. The class water had the highest user accuracy, which 

was 100%. The maize class showed improvement in the classification compared to the classification that 

uses all training samples, 93% to 94%. All samples classified as maize were actually maize on the ground 

except for one potato sample, misclassified as maize. The class cereals also showed an improvement in 

classification from 89% to 91%.The user's accuracy decreased for all the remaining classes ;beets class 

75% to 71% ,onions 94% to 84%,orchard 75% to 66%, potatoes 77% to 71% and others class 64% to 

54%. 

5.3.6. Kappa statistic for the AL algorithm with the spatial component 

The classification using all the AL samples (97) yielded a kappa value of 78%, as per the iteration displayed 

in figure 5-15. This is close to the Kappa value in the previous classification involving all 129 training 

samples (79%). 

5.4. Comparison of the AL algorithms 

The AL algorithm that considers the spectral domain only and excludes the spatial component was 

compared to the AL that includes the spatial component. The comparison was made by looking at the 

overall classification accuracy of the two methods, Kappa statistic, number of samples used, user’s 

accuracy, and misclassified samples' quantity. The outputs from the classification using all samples were 

used as a reference to compare the two AL algorithms.  

5.4.1.  Kappa statistic comparison of the two AL algorithms 

Table 5-3 shows that the Kappa values for all the two AL approaches are close to the reference Kappa 

value, which is the Kappa value calculated from the entire data set of training samples. The difference in 

Kappa values between the reference classification, which uses the whole training sample dataset, and the 

AL classifications, which excludes the spatial component, is 3%(82%-79%)  and 4%(82%-78%) for the 

AL, including the spatial element, which is a small difference. The difference in Kappa values for the two 

AL algorithms is 1%(79%-78%), even lesser, making them similar. In addition, the Kappa value varies for 

all the 50 iterations, so there may be cases when there is an insignificant difference in the Kappa values. 

Basing on this fact, the new AL that includes the spatial component can be relied on despite using few 

samples for classification. 
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5.4.2. Overall accuracy comparison of the two AL algorithms 

Table 5-3 also shows the overall accuracies attained after classification using samples selected using the AL 

algorithms with and without the spatial component. The overall accuracy variations with iterations that 

were run were similar to some extent, from 82% to 86% when all samples were considered,81% to 

85%)when excluding the spatial component and 78% to 82% when the spatial component was included. 

From the above outcomes, the three approaches achieve similar accuracies. Despite having fewer samples, 

the AL algorithm with the spatial component attained a difference of 4% and, the AL algorithm without 

the spatial component achieved a difference of 2% when compared to the classification accuracy attained 

using the whole training sample dataset. A difference of 2% was observed between the overall accuracies 

of the two AL algorithms, which is small. The algorithm that includes the spatial component has a greater 

advantage since it attained almost similar overall accuracy despite using 57 % of the samples used for AL 

considering the spectral domain only and 28% of the entire training dataset (350 samples). 

 
Table 5-3 Overall accuracies and Kappa statistics for the classification run using all training samples, samples from 
the AL method that excludes the spatial component and samples from the AL method that includes the spatial 
component.                          

Scenario Sample 

number 

Kappa statistic Overall 

accuracy(%) 

Classification using all samples(used as reference data) 350 0.82 84 

Classification using AL samples excluding spatial component 169 0.79 82 

Classification using AL samples including spatial component 97 0.78 80 

 

5.4.3. User’s accuracy comparison of the two AL algorithms 

Table 5-4 shows the user’s accuracies attained per class after classification for all the three scenarios in 

tabular format, and figure 5-17 shows them visually. The difference in the user’s accuracy values is small 

for both AL algorithms compared to the user’s accuracy attained using all samples(reference). In the 

Alfalfa class, the AL excluding the spatial component performs better than the new algorithm that 

includes the spatial component by having the same user’s accuracy as the reference approach. It also 

performs better for the onions and orchard classes. However, the AL with spatial component performs 

better in classifying the classes beets, cereals, maize, and potatoes. This means the new AL algorithm that 

considers the spatial component performs well compared to the AL excluding the spatial component since 

it correctly classifies the majority of the classes. Generally, there is not much difference between the two 

AL algorithms in terms of proper classification of classes despite having different training sample number. 

 
Table 5-4 Comparison of the user’s accuracies for the three scenarios per crop type class. 

Landcover 

class 

All 350 

samples(%) 

AL without a spatial component 

169 samples (%) 

AL with a spatial component 

97 samples(%) 

Alfalfa 100% 100 86 

Beets 75% 65 71 

Cereals 89 79 90 

Maize 93 93 94 

Onions 94 100 84 

Orchard 75 70 66 

Potatoes 77 68 71 
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Figure 5-17 Comparison of the user’s accuracies for the AL algorithm with the spatial 
component(gray), AL algorithm without the spatial component (orange) to the 
reference accuracy obtained using the entire dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.4. Comparison in the quantity of misclassification of samples 

 The misclassified samples per class were also analyzed for both algorithms to evaluate both techniques. 

The overall number of misclassified samples in the classification results obtained by the AL algorithm with 

the spatial component was lower than in the classification results obtained by the AL algorithm without 

the spatial component, as illustrated by Table 5-5. Regarding the number of misclassifications, the AL 

algorithm with the spatial component performs similarly to the classification using all samples. Figure 5-18 

shows a visual assessment of the misclassification. The ground truth label, classified label by the AL 

algorithm that excludes the spatial component, and classified label by the AL method that includes the 

spatial component are shown by columns 1,2 and 3, respectively. The first row shows a cereals plot(red) 

misclassification by the AL algorithm that includes the spatial component. The second row illustrates 

orchard class misclassification(green) by the AL algorithm that excludes the spatial component. The third 

row illustrates misclassification of the alfalfa class (orange) by both AL algorithms. The AL with the spatial 

component was mainly affected by the ‘other’ class since it is a mixed class. 

 
Table 5-5 Comparison of the misclassified samples for the AL method that excludes the spatial component (169) and 
samples from the AL that includes the spatial component (97)       

 

Landcover 

class 

Misclassified samples 

from approach that 

uses all training data 

Misclassified samples from 

AL algorithm with no 

spatial component 

Misclassified samples from 

AL algorithm with a spatial 

component 

Alfalfa 0 0 0 

Beets 4 7 5 

Cereals 2 5 2 

Maize 1 1 1 

Onions 1 0 1 

Orchard 3 2 2 

Potatoes 5 7 6 

Total 16 22 17 
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Figure 5-18 Misclassification of cereals class by the AL algorithm that includes the spatial component (first row), 
orchard class by AL algorithm that excludes the spatial component (second row) and a misclassification by both  AL 
algorithms(third row). 

 

 

 

 

5.4.5. Comparison of the sample number and distribution of the two AL algorithms 

The number of samples per class generated from the AL with the spatial component was almost half the 

number of samples from the AL algorithm that excludes the spatial component; however, a similarity in 

the pattern of class number distribution was observed in both methods. From table 5-6, it is seen that for 

AL generated training samples, the number of samples per class was not the same as the case that uses all 

training samples for classification (50 samples per class). Preference was given to the classes with a high 

interclass spectral variation.  

 
Table 5-6  Variation of the number of samples used for classification for the AL with spatial component and the AL 
algorithm that excludes the spatial component 

 

Crop type All training 

samples 

Training sample number (spatial 

component included) 

         Training sample number     

(spatial component excluded) 

Alfalfa 50 11 22 

Beets 50 16 28 

Cereals 50 8 15 

Maize 50 15 25 

Onions 50 16 23 

Orchard 50 7 15 

Potatoes 50 24 41 

Total 50 97 169 
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6. DISCUSSION 

This chapter contains a discussion of the research findings. The performance of the developed AL 

algorithm that includes the spatial component is compared to the performance of the AL algorithm that 

excludes the spatial component. The findings are summarized in section 6.1, followed by sections 6.2, 6.3, 

6.4, and 6.5, which analyze the created AL method's strengths, weaknesses, opportunities, and threats. 

6.1. Summary of findings 

This research assessed the performance of the AL method that incorporates the spatial component in the 

selection of informative samples for crop type mapping using Sentinel-2 NDVI time series. This method 

was applied in a study area called Noord Beveland in the southwest Netherlands. The samples' 

performance using this method was compared to the performance of the informative samples selected 

using the AL algorithm that excludes the spatial component. The number of samples used, overall 

classification accuracy, Kappa statistic, user’s accuracy, and misclassification rate were all considered in the 

performance evaluation. The original training sample dataset and its outputs served as the benchmark 

against which both AL techniques were compared. The method with the spectral and spatial components 

reached an accuracy of 80% using 97 samples, while the method using only the spectral characteristics 

attained an overall accuracy of 82% using 169 samples against a baseline of 84% accuracy when using the 

entire training dataset of 350 samples. The method that used both spectral and spatial components had a 

Kappa statistic of 78%, while the method that just used spectral characteristics had a Kappa statistic of 

79%, compared to a Kappa statistic of 82% when the whole training dataset was used. Compared to the 

AL technique without the spatial component, the AL technique with the spatial component showed a 

higher user accuracy for most of the crop classes and also scored well in classifying classes with within-

class variation in spectral features such as maize, beets and potatoes. 

6.2. Strengths of the developed algorithm 

This research showed that by including both the spectral and the spatial component in sample selection, 

almost the same overall accuracy and Kappa statistic can be achieved using only a quarter of the entire 

training dataset. Including only the spectral component in sample selection needed only half the samples, 

compared to an approach without considering spectral or spatial diversity in sample selection. This implies 

that similar overall accuracies and Kappa statistics were attained with a smaller number of training 

samples, lowering the amount of manual work required for sample labeling and the computational time 

required to train the classifier. Redundancy in terms of selecting similar samples was also omitted. In this 

aspect, the AL algorithm with the spatial component performs well compared to the AL that excludes the 

spatial component in the sense of using a small number of training samples to attain similar classification 

accuracies and Kappa statistics. The aspect of having fewer samples when the spatial component is 

involved in AL is similar to research by Pasolli et al.(2011), albeit in their study, integrating the spatial 

component resulted in higher overall accuracy than the AL method using only spectral information. User’s 

accuracy per class was computed in this study, as shown in Table 5-4. Compared to AL without the spatial 

component, AL with the spatial component resulted in higher user’s accuracy for most of the classes. This 

was observed in the classes beets, cereals, maize and potatoes. For the classes, alfalfa, orchard, and onions, 

including the spatial component, did not increase accuracy. For the case of producers’ accuracy, including 

the spatial component in the AL algorithm gave an improvement in the classes alfalfa, maize, and onions. 

The rest of the classes maintained the same producers’ accuracy in both AL methods. Despite using 27% 

of the entire training dataset for classification, the developed AL algorithm achieved good classification 
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results in terms of the overall accuracy, Kappa coefficient, the user’s accuracy and producer’s accuracy are 

considered.  

 

Several classes in our study showed inter-class similarities, as illustrated in Figure 5-7. The beets, maize, 

and potatoes exhibited a lot of spectral overlap. Similarly, onions overlapped with the potatoes class, and 

alfalfa overlapped with cereals, beets, and orchard classes. In such cases, classification is difficult and may 

have an impact on the information derived from the samples since one class may be mistakenly assigned 

to the other due to a close resemblance (Gebbinck, 1998). High spectral overlap between classes can lead 

to sample misclassification; limiting the sample size makes it much more difficult to distinguish spectrally 

similar classes. Despite using 27% of the total training sample dataset, the developed AL method favoured 

high-uncertainty classes when selecting informative samples, as they may improve classification accuracy. 

Improving classification accuracy for these classes required a high number of samples due to their 

uncertainty; therefore, the algorithm favoured classes with inter-class similarity in our scenario. Table 5-6, 

which shows the number of samples per class chosen by the method, verifies this. Classes like potatoes, 

beets, onions, maize, and alfalfa which have high spectral overlap, were given more weight in the selection 

of informative samples, while the orchard and cereals classes whose spectral distribution is satisfactory 

were given less weight. In terms of user’s and producer’s accuracy of the classes, the proposed AL 

methodology yielded promising results for classes with a high interclass similarity such as maize (user’s 

accuracy, UA, of 94% and producer’s accuracy, PA, of 75%), onions (UA of 84% and PA of 80%), 

potatoes (UA of 71% and PA of 75%), beets (UA of 71% and PA of 75%) and alfalfa (UA of 86% and 

PA of 95%). Results from other studies illustrated that classes with high interclass similarity like maize and 

potatoes have proved to be a challenge in the classification process and hence cause poor classification 

performance (Belgiu, Bijker, Csillik, & Stein, 2021). The same challenge was reported in research about 

mapping complex farming areas (Gella, Bijker, & Belgiu, 2021). Therefore, the developed AL method 

demonstrates good results in classifying classes with high interclass similarity. Classes with a small 

interclass spectral similarity such as cereals performed well too (UA of 90% and PA of 95%) except for 

the orchard class (UA of 66% and PA of 95%), which due to confusion induced by the ‘other’ class which 

was not included in the AL process. The confusion between these two classes was because they were 

mixed classes. The ‘other’ class consisted of all other classes except the seven crop classes used for this 

research and the water class. This caused confusion with the orchard class, which had the pears and apple 

trees. Usually, the trees are planted in rows with grass between them, and the ‘other’ class also contains 

grass, so this may also increase confusion. In general, the algorithm with the spatial component performs 

good classification even with crop classes that have high spectral overlap. 

6.3. Weaknesses of the  algorithm 

The developed AL algorithm is sensitive to the choice of range. Sample point pairs whose in-between 

distance is greater than the range value are not spatially correlated. Poor variogram estimation means a 

poor description of the spatial dependency of the area, hence affecting the choice of informative samples. 

When the range is too low, there is a possibility of the algorithm selecting samples that are redundant in 

terms of informativeness, with reference to Tobler’s law of Geography that says near things are most likely 

similar. On the other hand, ranges that are too high may also cause the algorithm to leave out some 

informative samples and yield a sample structure that may be less informative. Therefore, a careful choice 

of the variogram that yields an optimal sample design must be made. A solution to this could be 

optimizing variogram estimation using Spatial Simulated Annealing (SSA) (Groenigen & Stein, 1998). 

6.4. Opportunities 

The developed spatially explicit AL method will impact future applications when a low number of training 

samples is available. It generates a lower number of samples that can still achieve good classification 
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results. This reduces the computational cost and saves time. One of the drawbacks highlighted by the 

existing supervised classification methods is insufficient training samples for effective classification 

(Stumpf et al., 2014; Ball et al., 2018). However, similar to Tuia et al.(2009),  our study revealed that we 

should not focus solely on the number of samples but also on the representativeness of the samples. The 

developed algorithm performs well in this aspect by selecting a low number of informative samples that 

are highly representative of the crop classes. This means the developed spatially explicit AL method 

addresses the problem of training sample insufficiency in the Machine Learning field by achieving good 

classification results using few informative samples at a low computational cost and using less time. 

6.5. Threat  

Challenges might be faced when applying the developed spatially explicit AL method to crop areas with 

different spatial patterns. Having an area with varying spatial patterns means creating many variograms to 

capture the spatial variability, which is practically challenging. Having many variograms means having 

various ranges. This makes it difficult to make a choice of a suitable range that is suitable for selecting 

informative samples spatially.  
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7. CONCLUSION AND RECOMMENDATIONS 

This chapter concludes this research by stating the findings in relation to the main goal, specific objectives, 

and research questions. Limitations of the study and recommendations based on this research are also 

made. 

7.1. Conclusion 

The main goal of the research topic was to develop a spatially explicit AL method for crop type mapping 

using satellite image time series. The data acquired and used for this research was  Sentinel-2 image time 

series and crop parcel data for the year 2019 in the study area called Noord  Beveland in the Netherlands. 

This research managed to come up with an AL method that incorporates the spatial component in the 

selection of informative samples which were used for crop mapping. This goal was met by addressing the 

specific objectives of the research through answering the related research questions as explained in the 

following sections:  

7.1.1. Addressing the research questions  

Objective 1: To systematically investigate different spatial metrics that can be used to improve state-of-

the-art AL methods. 

Research question 1.1: What metrics can be used to assess spatial autocorrelation between the 

labels in the spatial domain?  

Several spatial autocorrelation metrics can be used to assess spatial autocorrelation as described in 

(Amgalan, Mujica-Parodi, & Skiena, 2020). As elaborated in section 2.6, Global spatial autocorrelation 

measures like Moran’s I, Geary’s C ratio, Joint count statistics, among others, are used to quantify the level 

of clustering across an area of interest. However, they yield only one single statistic that describes the 

spatial autocorrelation of the entire region without identifying where the similarity (or dissimilarity) occurs. 

The global spatial autocorrelation measures determine whether there is clustering or not but not where the 

clusters are. To locate where the clusters are, Local Indicator of Spatial Association (LISA), local Moran’s 

I, among others, are used as metrics. They locate the clusters and determine the association between them. 

They also give a single statistic to quantify the spatial autocorrelation of the clusters. Another metric is a 

variogram, which is a geostatistical approach. It is one of the geostatistical tools used to show spatial 

correlation by plotting the variance of point pairs with increasing distance between them (Curran, 1988). It 

is used to visualize and model spatial variation. 

 

Research question 1.2. : What criteria should be considered in choosing the best metrics for 

assessing the spatial autocorrelation between the labels in the spatial domain? 

One of the criteria considered was the sample distribution pattern. In this research, it was vital to 

understand where the similarity in sample distribution occurs in order to select informative samples. The 

Global measures of spatial autocorrelation were not suitable for this research since they only show 

whether there is clustering(similarity) and not where the clusters occur. They just give a single statistic to 

quantify the similarity(or dissimilarity). Local Indicator of Spatial Association (LISA)  can identify where 

the similarity(clusters) and dissimilarity occur and also give a single statistic to describe the spatial 

association between these clusters. In addition, both the Local Indicators of Spatial Association and 

Global measures of spatial autocorrelation are area-based methods of spatial association (Guo, Du, 

Haining, & Zhang, 2012); however, this research uses point samples. Therefore, a point-based spatial 

autocorrelation metric was to be used to determine the point-to-point relation in terms of the spatial 

distribution. Since a variogram quantifies the spatial autocorrelation and shows how spatial variation 

changes as a function of the distance between point location pairs, it was considered appropriate for this 
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research. The range parameter of a variogram was used as a value to select informative samples that were 

used for crop mapping. Section 4.4 explains how the range was used in the selection of informative 

samples in the AL process.  

 

Another factor to look at was the diversity and representativeness of points. Caution was taken when 

choosing the range value among the range values obtained from the 12 NDVI images. This is because 

choosing a high range could cause the algorithm to leave out some informative samples and yield a sample 

structure that may be less informative, and when the range is too low, there is a possibility of the 

algorithm selecting samples that are redundant in terms of informativeness.  

 

Objective 2: To test the performance of the developed AL method and assessing its effectiveness in crop 

type mapping for satellite image time series. 

Research question 2.1:  How does the developed AL method perform in comparison to the AL 

algorithm that excludes the spatial component? 

The developed AL method performed well in the study area despite using half the number of informative 

samples as the AL algorithm that excludes the spatial component and almost a quarter of the entire dataset 

of training samples. It yielded an overall classification accuracy of 80%, which is lower by 2% from the AL 

algorithm that excludes the spatial component, a Kappa statistic of 78%, which is lower by 1%, and its 

user’s accuracy was higher for the majority of the crop classes. 

7.2. Limitations 

The following limitations affected the study: 

• The lack of ground truth data for the ‘other’ class affected the classification results. This class 

represented all of the remaining landcover classes with the exception of the water class and the 

seven crop classes employed in this study. 

• Using time-series satellite images to account for crop development across the growing seasons 

was constrained by high cloud coverage. As a result, one NDVI image was acquired per month. 

7.3. Recommendations 

• Other ways in which the variogram could be used for the purpose of sample design, such as 

Simulated Annealing (Srivastava, Stein, Rossiter, Garg, & Garg, 2016; Shetty, Gupta, Belgiu, & 

Srivastav, 2021), could be used as an intermediate step in the selection of samples with respect to 

the spatial distribution of each class. 

• Future research could be done in applying the variogram in the sample design for areas with 

different spatial variations. 

 

Therefore, the developed AL method demonstrates that integrating spatial information in AL is a useful 

strategy in crop mapping since it allows for efficient crop mapping with a low number of informative 

training samples at a cheap annotation and computing cost. Furthermore, this approach could be extended 

to other forms of landcover mapping besides crop mapping for future research. 
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APPENDIX A         

Data Management Plan 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Title of the thesis 

topic 

Development of a spatially explicit Active Learning (AL) method for crop areas 

mapping from satellite image time series. 

Date of the plan 11/11/2020 

Brief description 

of the topic. 

This topic seeks to develop an AL algorithm that will include the spatial domain 

precisely that will be used to perform mapping of crop areas using satellite images 

taken at different times 

Name of 

researcher 

Beatrice Anthony Kaijage 

Sources of data • Nationaal Georegister   -    Ground truth data (Crop data) 

https://www.nationaalgeoregister.nl/geonetwork/srv/dut/catalog.search#/metadata/

dd8e0fb8-0f09-40ba-a884-7e23c0680ae2 

• Sentinel 2A images- European Space Agency (ESA)-

https://scihub.copernicus.eu/dhus/#/home 

• IGISMAP(Netherlands boundary shapefile) 

-https://map.igismap.com/share-map/export-

layer/Netherlandshapefile30/f718499c1c8cef6730f9fd03c8125cab 

Organizations that 

own the data to be 

used 

Nationaal Georegister Netherlands (NGR) 

European Space Agency (ESA) 

IGISMAP 

Basisregistratie Parcelen (BRP) of the Netherlands Enterprise Agency 

How the data is to 

be used 

For implementing the proposed AL thesis topic. 

https://www.nationaalgeoregister.nl/geonetwork/srv/dut/catalog.search#/metadata/dd8e0fb8-0f09-40ba-a884-7e23c0680ae2
https://www.nationaalgeoregister.nl/geonetwork/srv/dut/catalog.search#/metadata/dd8e0fb8-0f09-40ba-a884-7e23c0680ae2
https://scihub.copernicus.eu/dhus/#/home
https://map.igismap.com/share-map/export-layer/Netherlandshapefile30/f718499c1c8cef6730f9fd03c8125cab
https://map.igismap.com/share-map/export-layer/Netherlandshapefile30/f718499c1c8cef6730f9fd03c8125cab
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APPENDIX B         

Variograms of the monthly NDVI images 
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