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ABSTRACT 

Building information is essential in multiple applications. The emerging of very high-resolution remote 

sensing imagery made the recognition of small-scale objects like buildings possible. However, manually 

extracting buildings from images is time-consuming. Therefore, different automatic or semi-automatic 

approaches have been developed for building extraction. With the rise of deep learning, Convolutional 

Neural Networks (CNNs) have outperformed traditional methods based on handcrafted features and 

become the dominant approach in image analysis. As the most popular CNN type for semantic 

segmentation, fully convolutional networks (FCNs) are widely used in building extraction.  

 

Most deep learning-based building extraction methods produce building masks in raster format, which 

cannot be directly integrated in geographic information systems (GIS) applications. Hence, some deep 

learning-based semantic segmentation models have been adapted for focusing on extracting building 

footprints as polygons directly. However, these models face the challenge of producing precise and regular 

building outlines. Recently, a building delineation method based on frame field learning was proposed by 

Girard et al., (2020) to extract regular building footprints as vector polygons directly from aerial RGB images. 

An FCN is trained to learn simultaneously the building mask, contours, and frame field followed by a 

polygonization method. 

 

Optical imagery has some limitations. The normalized digital surface model (nDSM) derived from Light 

Detection and Ranging (LiDAR) data can provide 3D information, which can serve as complementary 

information to help overcome these limitations. Hence, we introduce 3D information into the framework 

and explore the data fusion of different combinations of aerial images (RGB), Near-infrared (NIR) and 

nDSM to extract precise and regular building polygons. The results are evaluated at pixel-level, object-level 

and polygon-level, respectively. Moreover, we performed an analysis to assess the statistical deviations in 

the number of vertices per building extracted by the proposed methods compared with the reference 

polygons. The comparison of the number of vertices focuses on finding the output polygons easier to be 

edited by human analysts in operational applications. This analysis can serve as guidance to reduce the post-

processing workload for obtaining high accuracy building footprints.  

 

The experiments were conducted in Enschede, the Netherlands. The results demonstrate 3D information 

provided by the nDSM overcomes the aerial images’ limitations and contributes to distinguishing the 

buildings from the background more accurately. The method benefited from the data fusion and achieved 

better results using the composite images (RGB + nDSM) than those achieved using RGB and nDSM only, 

considering both quantitative and qualitative criteria. The height information could reduce the false positives 

and prevent missing the real buildings on the ground. In addition, the nDSM improves positional accuracy 

and shape similarity, resulting in better-aligned building polygons. The additional NIR information further 

improves the results. Compared with the alternative method, the method outperformed the PolyMapper in 

all coco metrics, which shows that the investigated model can predict more precise and regular polygons for 

the study area. 

 

 

Keywords: Building Outline Delineation, Convolutional Neural Networks, Regularized Polygonization, 

Frame Field 



ii 

ACKNOWLEDGEMENTS 

I express my gratitude to all of those who helped me along the way… 

…my parents are peasants who live most of their lives in a remote village. They insisted on supporting me 

to receive education while most of the teenagers are dropout of school. Their love and sacrifice change my 

destiny. 

 

…my sister plays the parents, sister, friend roles in my life. Whenever I need her, she is always there. I feel 

so lucky to have her as my sister. 

 

…my husband and my son. Quit our jobs and came to the Netherlands is a big decision for my family. My 

husband and I support each other to complete our master's degrees here while we live far away from my 

son. I hope I can be a role model for my son. The world is so big, go around to view more sceneries. 

 

…my supervisor Dr. C. Persello, with his extensive experience in machine learning, always has great insights 

into the thesis and patiently inspired and motivated me, hoping that I can continue to challenge myself and 

think deeper and be innovative. I realize my deficiencies in critical thinking and innovation. What I learned 

from him will be of great help to my future work and study.  

 

…my supervisor Dr. R V. Maretto, due to the pandemic, I have not met him in person, but he is very patient 

and always welcomes me to contact him online whenever I need help. In addition, he spent time analyzing 

specific technical details with me and give suggestions of solutions.  

 

 …now Ph.D. Wufan Zhao from the EOS department is a good advisor and provides a lot of technical 

assists. With his help, the data processing, which is the most time-consuming part, is largely shorted. It gives 

much more time to study the method itself. 

 

…my advisors Vera Liem, Vincent van Altena, Marieke Kuijer from Kadaster, Thanks for guidance about 

the data pre-processing and preparation. Thanks to Vera Liem for the technical guidance of the design of 

the experiments. Thanks to Kadaster for supporting this academic research. 

 

…my undergraduate teacher Mr. Jiejun Huang. He is always willing to help his students. Although I 

graduated for ten years, he still remembers me and wrote the recommendation letter for my application. He 

is a role model for me both in academic and normal life. 

 

…my Chinese colleagues, for their friendship, accompany and food. They make my life in Enschede more 

colorful. 

 

I am also grateful to the University of Twente for providing me with the ITC Excellence Scholarship to 

study this master course. 



iii 

TABLE OF CONTENTS 

 
List of figures ........................................................................................................................................................ iv 

List of tables ............................................................................................................................................................ i 

1. Introduction ................................................................................................................................................... 3 

1.1. Background and research problem...........................................................................................................................3 

1.2. Research objectives and questions ...........................................................................................................................5 

2. Literature review ............................................................................................................................................ 7 

2.1. Imagery-based building footprint extraction ..........................................................................................................7 

2.2. Fusion-based building footprint extraction ............................................................................................................7 

2.3. Building footprint delineation ...................................................................................................................................8 

3. Methods........................................................................................................................................................ 11 

3.1. Overall workflow  ..................................................................................................................................................... 11 

3.2. Boundary delineation with convolutional network ............................................................................................ 12 

3.3. Accuracy assessment ................................................................................................................................................ 17 

4. Experiments setup ....................................................................................................................................... 21 

4.1. Study area and data................................................................................................................................................... 21 

4.2. Data pre-processing ................................................................................................................................................. 23 

4.3. Implementation details ............................................................................................................................................ 26 

5. Results and Discussion................................................................................................................................ 27 

5.1. Quantitative analysis ................................................................................................................................................ 28 

5.2. Qualitative analysis ................................................................................................................................................... 29 

5.3. Vertices number analysis  ........................................................................................................................................ 32 

5.4. Comparison with an alternative method .............................................................................................................. 35 

6. Conclusion ................................................................................................................................................... 37 

6.1. Answer to research questions ................................................................................................................................. 38 

6.2. Suggestions for future works .................................................................................................................................. 40 

List of references.................................................................................................................................................. 41 

 



iv 

LIST OF FIGURES 

Figure. 1.  The general objective. ................................................................................................................. 5 

Figure. 2.  The overall workflow. ............................................................................................................... 11 

Figure. 3.  Training procedure of adapted U-Net (Source:  Girard et al., 2020) .................................... 12 

Figure. 4.  Post-processing polygonization algorithm (Source:  Girard et al., 2020) ............................. 13 

Figure. 5.  The workflow of the investigated frame-field method for building delineation fusing 

nDSM and RGB data. Adapted from Girard et al., (2020). ............................................................ 13 

Figure. 6.  The two branches produce segmentation and frame field. .................................................... 14 

Figure. 7.  Example predicted polygons(red) and the corresponding reference polygons(blue). ......... 18 

Figure. 8.  PoLiS distance p between extracted building A (orange) and reference building B (blue) 

marked with solid black lines (Source:  W. Zhao, Persello, & Stein, 2021). .................................. 19 

Figure. 9.  The municipality of Enschede, study area. The area in the red polygon is the Enschede. . 21 

Figure. 10.  Sample data of LiDAR point clouds(left) and the derived DSM with 0.5 meters of spatial 

resolution(right). ................................................................................................................................. 22 

Figure. 11.  Sample data of the reference data (left) and an aerial image of the represented area (right).

 .............................................................................................................................................................. 23 

Figure. 12.  Sample polygons of BAG dataset (left), sample polygons of BAG dataset after 

dissolve(right). ..................................................................................................................................... 24 

Figure. 13.  The entire study area is the whole image of the city of Enschede; the urban area is 

denoted by the red polygons (right). The right side shows the tile distribution for the urban area 

(upper right) and the entire study area (lower right). ....................................................................... 25 

Figure. 14.  Results obtained on two tiles of the test dataset for the urban area. The loss functions are 

cross-entropy and dice. The background is the aerial image and the corresponding nDSM. The 

predicted polygons are produced with 1 pixel for the tolerance parameter of the polygonization 

method.From left to right: (a) Reference building footprints, (b) Predicted polygons on aerial 

images (RGB), (c) Predicted polygons on nDSM, (d) Predicted polygons on composite images 

(RGB + nDSM), (e) Predicted polygons on composite images (RGB + NIR + nDSM) ............ 30 

Figure. 15.  Results obtained on the urban area dataset. The predicted polygons are produced with 1 

pixel for the tolerance parameter of the polygonization method. From left to right: (a) 

Reference building footprints, (b) Predicted polygon on aerial images (RGB), (c) Predicted 

polygon on nDSM, (d) Predicted polygon on composite images (RGB + nDSM), (e) Predicted 

polygon on composite images (RGB + NIR + nDSM) .................................................................. 31 

Figure. 16.  Results obtained on the urban area test dataset (RGB+NIR+nDSM). The predicted 

polygons are produced with 1 pixel for the tolerance parameter of the polygonization method. 

(a) Reference building footprints, (b) Predicted polygons with cross-entropy and Dice as loss 

function, (c) Predicted polygons with Tversky as loss function. .................................................... 32 

Figure. 17.  Example polygon obtained with different tolerance values using the composite images 

(RGB + nDSM): (a) Reference polygon, (b) Predicted polygon with tolerance 1 pixel, (c) 

Predicted polygon with tolerance 3 pixel, (d) Predicted polygon with tolerance 5 pixel, (e) 

Predicted polygon with tolerance 7 pixel, (f) and Predicted polygon with tolerance 9 pixel. ...... 34 

Figure. 18.  Results obtained using aerial images (RGB) for the urban area dataset. From left to right: 

(a) Reference building footprints, (b) Predicted polygons with 1 pixel for the tolerance 

parameter of the polygonization method by frame field learning method, (c) Predicted polygons 

by PolyMapper. ................................................................................................................................... 36 



i 

LIST OF TABLES 

Table 1. Matrix of MS COCO measures ................................................................................................... 18 

Table 2. Edit operation of the polygons of BAG. Building status is an attribute for each polygon in 

the BAG. ............................................................................................................................................. 23 

Table 3. Information of the training set, validation set, and test set for the urban area using BAG 

reference polygons. The size of each tile is 1024×1024 pixels ....................................................... 24 

Table 4. Extraction results for the urban area dataset. The mean IoU is calculated on the pixel level. 

Other metrics are calculated on the polygons with 1 pixel tolerance for polygonization. ........... 28 

Table 5. PoLiS results for the urban area dataset. The PoLiS are calculated on the polygons with 1 

pixel tolerance for polygonization. .................................................................................................... 29 

Table 6. Example polygon produced with 1 pixel for the tolerance parameter of the polygonization 

method. The columns a, b, c, d,e correspond to the polygons (a), (b), (c), (d),(e) in Figure 15. . 31 

Table 7. Polygon obtained with different tolerance using the composite images (nDSM) for urban 

area dataset. ......................................................................................................................................... 32 

Table 8. Polygon obtained with different tolerance using the composite images (RGB + nDSM) for 

urban area dataset ............................................................................................................................... 33 

Table 9. Polygon obtained with different tolerance using the composite images (RGB +NIR+ 

nDSM) for urban area dataset ........................................................................................................... 33 

Table 10. Example polygon with different tolerance and number of vertices. The columns a, b, c, d, 

e, f corresponding to the polygons (a), (b), (c), (d), (e), (f) in Figure 17. ....................................... 35 

Table 11. Extraction results using aerial images (RGB) for urban area dataset. The metrics are 

calculated on the polygons with 1 pixel tolerance for polygonization for the Frame field 

learning-based method. ...................................................................................................................... 35 





DEEP LEARNING-BASED BUILDING EXTRACTION USING AERIAL IMAGES AND DIGITAL SURFACE MODELS 

3 

1. INTRODUCTION 

1.1. Background and research problem 

Buildings are an essential element of cities and information about them is needed in multiple applications. 

With the fast speed of urbanization, an increasing number of people live in cities. 55% of the world's 

population is living in urban areas, and this proportion is expected to increase to 68% by 2050 (United 

Nations,2019). Buildings serve as a shelter for humans living and activities, making building information 

more and more critical. Hence, the information is needed for many applications, such as urban planning, 

risk, and damage assessment of natural hazards, 3D city modeling, and environmental sciences (Nahhas et 

al., 2018). Precisely extracting the building boundaries is of utmost importance for applications like urban 

management, reconstruction (Z. Zhao, Duan, Zhang, & Cao, 2016). Especially for 3D modeling, footprint 

and height are two basic elements to generate building models (K. Zhang, Yan, & Chen, 2006).  

 
Building extraction has been active for decades due to the availability of a large amount of high-quality 

remote sensing data and the need for buildings information in multiple applications. The emerging of Very 

High Resolution (VHR) remote sensing imagery made the recognition of small-scale objects like buildings 

possible, making object detection and object extraction become active fields to obtain building information. 

Object detection aims to extract the locations of objects in an image (Z. Q. Zhao, Zheng, Xu, & Wu, 2019). 

Object extraction, on the other hand, involves the detection of the object of interest and the extraction of 

its geometric boundary (Sohn & Dowman, 2007). Traditional building detection and extraction need human 

interpretation and manual annotation, which is highly labor-intensive and time-consuming, making the 

process expensive and inefficient (Sohn & Dowman, 2007). Therefore many researchers have been 

developing automatic or semi-automatic approaches for building detection and extraction in the last decades. 

Automated building detection and footprint extraction are essential instruments for map updating, 3D city 

modeling, and the identification of unregistered buildings. They speed up processing and reduce the costs 

of building detection and footprint extraction (Nex et al., 2013).   

 

With the rise of deep learning, CNN-based models have outperformed traditional methods and become the 

dominant approach in building extraction. The traditional machine learning classification methods are 

usually based on spectral, spatial and other handcrafted features. The creation and selection of features 

depend highly on the experts' experience of the area, which results in limited generalization ability (W. Zhao, 

Persello, & Stein, 2021). The CNNs can extract spatial features from images and demonstrate excellent 

pattern recognition capabilities, making it the new standard in the remote sensing community for semantic 

segmentation and classification tasks. As the most popular CNN type for semantic segmentation, FCNs are 

widely used in building extraction.  The pooling and convolution in FCN often result in the loss of the 

location information, making it difficult to extract buildings of different sizes, especially large buildings. Liu 

et al., (2019) propose a novel FCN to solve the problem. The convolution kernel size is enlarged and dilated 

convolution is used to capture more context information. They modified the ResNet-101 encoder to 

generate multi-level features and used a new proposed spatial residual inception module in the decoder to 

capture and aggregate these features. The network can extract buildings of different sizes. 

 

Most GIS applications need building information in vector format. The conventional deep segmentation 

results in a raster format could not be used directly in multiple applications, which still need further 
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processing to obtain the building in a polygon format before use. The output building masks are often 

produced with over-smoothed corners and irregular edges, mainly caused by shift and spatial invariant 

characteristics of a CNN architecture. The imbalance between building content and boundary label pixels 

also results in irregular edges (W. Zhao et al., 2021). The conventional deep segmentation is often not able 

to produce sharp corners, which results in undesired artifacts. These methods need expensive and 

complicated post-processing procedures to refine the results (Girard et al., 2020). Due to these problems,  

traditional semantic segmentation methods are not able to produce accurate and regular buildings.  In 

contrast, building delineation could obtain more regularized building outlines that are ready for most GIS 

applications.  

 

With the need to automatically delineate objects in polygons, Li, Wegner, & Lucchi (2019) proposed an end-

to-end deep learning architecture named PolyMapper, which skips the semantic segmentation step, takes 

aerial images as input and output polygons directly. The network is composed of a CNN to extract corners 

and an RNN to connect them to generate polygons. Manual interpretation and annotation to produce object 

boundaries in vector format are time-consuming and expensive. Their work makes the whole annotation 

process automatic. The PolyMapper could automatically delineate the building boundaries, but it performed 

worse on large buildings than Mask R-CNN (Li, Wegner, & Lucchi, 2019). Moreover, it could not deal with 

the polygons with holes (Girard, Smirnov, Solomon, & Tarabalka, 2020).  

 

Deep learning-based semantic segmentation models for building delineation such as PolyMapper face the 

challenge of producing precise and regular building outlines. Recently, Girard et al., (2020) proposed a 

building delineation method based on frame field learning to extract regular building footprints as vector 

polygons directly. An FCN is trained to learn simultaneously the building mask, contours and frame field 

followed by a polygonization method. The FCN is a multi-learning model, the corner sharpness and wall 

straightness of segmentation are increased by learning the related the frame field (Girard et al., 2020). With 

the direction information of the building contours stored in the frame field, the polygonization algorithm 

can detect the corners more accurately and preserve them in the simplification; the edges of the polygon 

can also be iteratively adjusted to be more aligned to the ground truth in the optimization. Hence the method 

can produce more precise and regular building contours. In addition, the method can predict polygons with 

holes. 

 

Despite the recent progress made in this research field, accurately extracting buildings from optical images 

is still challenging and LiDAR data or its derivatives could help overcome some problems. Two main reasons 

may be pointed out why the building extraction is difficult: (i) Buildings have varied sizes and spectral 

response across the bands. Trees or shadows often obscure them. (ii) The high intra-class and low inter-

class variation of building objects in high-resolution remote sensing images make it complex to extract the 

spectral and geometrical features of buildings (Huang, Zhang, Xin, Sun, & Zhang, 2019). Building objects 

can be extracted from many data sources like aerial imagery and airborne LiDAR scanning. Due to shadows 

and low contrast, using only optical imagery to extract buildings in densely built-up areas does not perform 

well. Therefore, LiDAR data can serve as complementary information to help overcome these problems 

(Awrangjeb & Fraser, 2014). The fusion of LiDAR point cloud and aerial images could improve the quality 

of building detection (Nahhas et al., 2018). 

 

Many studies have been done to detect or extract buildings from the fusion of images and point clouds. The 

information of point clouds could be transformed into images and used directly in the networks. Rizaldy, 

Persello, Gevaert, & Oude Elberink, (2018) converted the LiDAR point clouds data into a large image, then 

used an FCN to classify pixels into the ground and non-ground classes. To better differentiate ground pixels 

from non-ground, dilated convolutions were used to capture features of a large area in their network. Their 
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method is efficient and achieved good accuracy. In addition to point clouds, Digital Surface Model (DSM) 

and nDSM derived from LiDAR point clouds or stereo imagery are the most commonly used models that 

encapsulate 3D information. The DSM represents the elevation information of the terrain surfaces while 

the nDSM represents the height information of the objects on the terrain surfaces. Nahhas et al., (2018) 

combined LiDAR-derived DSM, DEM, nDSM; the number of returns and spectral bands from orthophoto. 

The spectral and texture geometry and shape features are extracted from them and then fed into a CNN. 

The results show that their work outperforms traditional machine learning methods based on Support 

Vector Machine (SVM) and achieved a higher accuracy.  

 

By integrated elevation from point clouds with the spectral information from images, fusion-based deep 

learning networks achieved good results. Bittner et al., (2018) proposed a Fused-FCN4s network that used 

three parallel branches to take the RGB, nDSM, and the panchromatic (PAN) band as input for each branch 

separately. The three networks are concatenated, and three convolutional layers are applied at the end. The 

network can extract buildings correctly, even the small ones. It was successfully applied to other cities, 

demonstrating a good generalization ability. Instead of using nDSM, Schuegraf & Bittner, (2019) take the 

low-resolution multispectral images and DSM as inputs directly. Compared with Fused-FCN4s, they found 

that the multispectral information only slightly increases the overall network parameters but led to more 

complete building footprints. Their Hybrid-PS-Unet can segment complex and tiny building structures 

accurately with fewer parameters and higher inference speed.  

 

The building delineation is a promising direction that produces building polygons ready for multiple GIS 

applications. However, the state-of-art delineation method (Girard et al., 2020) only takes the aerial images 

(RGB) as input. Therefore, its performance is affected by the problems derived from the optical imagery.  

Optical imagery has some limitations, and data fusion can integrate different information of 2D and 3D to 

overcome these limitations. We combined the data fusion with the frame field learning method to overcome 

the drawbacks of the optical imagery, taking advantage of the height information provided by LiDAR point 

clouds derivatives. By integrating the aerial images with the nDSM as a single dataset and feed it into the 

frame field learning method, we combined the method with data fusion to delineate the building boundaries. 

This study aims to further improve accuracy by learning multiple characters from the data fusion. 

1.2. Research objectives and questions 

1.2.1. General objectives 

This study aims to develop a deep learning strategy, which adapts the state-of-the-art method to take the 

additional 3D information to extract building contour in a vector format. Combining different features from 

both optical imagery and nDSM, we aim to improve the accuracy of building footprints. The general scheme 

of the adopted methodology is shown in Figure 1. 

Figure. 1.  The general objective. 
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1.2.2. Specific objectives 

Objective 1: Prepare the data for building boundary delineation. 

Objective 2: Develop a deep learning strategy that takes 2D and 3D data as input to generate building 

boundaries in polygon format. 

Objective 3: Evaluate the results by assessing both qualitative and quantitative criteria.  Compare the 

proposed methods with alternative strategies. 

 

1.2.3. Research questions 

Objective 1: 

a. How is the quality of the available reference polygon data?  

b. Are there any systematic or random shifts in building polygons from the corresponding boundaries? 

Objective 2: 

a. What relevant deep learning-based models exist, and what are their disadvantages and advantages? 

b. When the resolution of nDSM is different from imagery, how can we perform the data fusion? For 

example, to fuse the data directly or adapt the network to take multi-resolution data as input? 

Objective 3: 

a. What are the advantages and disadvantages of the proposed model? 

b. Does 3D information help to improve the results? Is the improvement significant?  
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2. LITERATURE REVIEW 

2.1. Imagery-based building footprint extraction 

In recent years, deep learning methods have become widespread in object extraction. The CNNs can extract 

spatial features from images and demonstrate excellent pattern recognition capabilities. Convolutional layers 

can extract high-level features like building boundaries (Wang, Yan, Mu, & Huang, 2020). Due to their ability 

to learn high-level features, CNNs are widely used in image classification and object segmentation. Using 

information from the neighborhood rather than considering the pixel in isolation enables it to learn 

contextual features, which is essential in the segmentation of buildings. The CNNs' ability to learn specific 

spatial and contextual features makes it suitable for detecting buildings (Griffiths & Boehm, 2019). 

Traditional CNNs consist of three types of layers: convolutional layer, pooling layer, and fully connected 

layer. The convolutional layer is where filters are applied to extract features from the input. The pooling 

layer applies a filter to downsample the input, increasing the receptive field of the next layer and reducing 

the dimensionality, reducing consequently the computational cost. It can also improve the robustness of the 

network to the exact location of the features.  The fully connected layers are layers in which all neurons are 

connected to all neurons in the previous layer. 

 

Shelhamer, Long, & Darrell, (2015) proposed FCN for semantic segmentation by replacing the fully 

connected layer of the CNNs with a 1x1 convolutional layer, enabling the network to accept arbitrary size 

input and produce a pixel-wise prediction. This feature makes it become the most popular CNN structure. 

FCN is widely used in semantic segmentation, including applications in building footprints extraction. To 

solve the incomplete and inaccurate problems when extracting buildings from VHR remotely sensed images, 

Shao et al., (2020) proposed an FCN named Building Residual Refine Network (BRRNet), which comprises 

the prediction module and the residual refinement module. To include more context information, they used 

atrous convolution in the prediction module. By adding zero paddings into the normal convolution kernel, 

the atrous convolution expands the kernel size to include more context information. The prediction module 

take images as input and output preliminary result. The residual refinement module takes the preliminary 

result as input. By comparing it with the ground truth and learned from the residual, the method can output 

more accurate results.  

 

Mask R-CNN uses a small FCN as the mask branch and achieved good performance in instance 

segmentation. It detects the object by generating the bounding box of the individual objects and produces 

segmentation masks for the objects precisely (He, Gkioxari, Dollár, & Girshick, 2017). By removing the 

branch for category detection, L. Zhang, Wu, Fan, Gao, & Shao, (2020) adapted Mask R-CNN to building 

extraction. To solve the poor edge recognition and incomplete extraction of CNN, they refined the results 

by the Sobel edge detection algorithm. Although Mask R-CNN performed well in building segmentation, 

Wei et al., (2020)  found that the details of the building were lost when small feature maps were up-sampled 

to the same size of the input, Hence when compared with FCN, the boundary of Mask R-CNN is over-

smooth and less accurate. To thoroughly use the multiscale information, Wei et al., (2020)  choose the 

feature pyramid network(FPN) as their backbone. Combining feature maps of different scales to extract 

buildings makes the method more robust and compact than other FCN-based methods. 

2.2. Fusion-based building footprint extraction 

Building objects can be extracted from many different data sources. With the rapid increase in the availability 

of multisource data, a lot of work has been done to explore the data fusion of multisource data. The optical 

sensors have some limitations, such as sensitivity to clouds and illumination, which influence the image 

quality. Buildings are also obscured by shadows or trees in imagery. In contrast to optical sensors, LiDAR 
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sensors have a different imaging mechanism that can penetrate clouds and sparse vegetation. Hence it could 

help to alleviate the performance degradation caused by the optical sensor (Hong et al., 2020). The 

information of point clouds could be transformed into images and used directly in the networks(Aldino 

Rizaldy, Persello, Gevaert, Oude Elberink, & Vosselman, 2018). In addition to point clouds, DSM and 

nDSM are two popular options that are widely used in data fusion to extract buildings. 

 

Many studies have been done to detect or extract buildings by fusing spectral information of optical images 

with 3D information from point clouds derivatives. Different data combinations are tested on a variety of 

CNNs variants to extract building footprints. Since the information in this channel is strongly correlated 

with the red and green channels, containing many redundancies Griffiths & Boehm, (2019) used the 3D 

information to replace the blue channel in the RGB image. They feed the fused data into RetinaNet and 

Mask-RCNN. The result shows that RetinaNet is better than Mask R-CNN. The dataset has the issue of 

large class imbalance between the foreground and easy to detect background. The focal loss function used 

by RetinaNet could make the model focus on the hard example. Huang, Zhang, Xin, Sun, & Zhang, (2019) 

feed four channels (NIR, Red, Green, nDSM) into their GRRNet. They introduced a new gated feature 

labelling unit to solve the issues related to feature selection and feature transmission in the encoder-decoder 

network architecture. Compared with alternative approaches, they achieved a competitive performance in 

building extraction when tested in public datasets. 

 

In addition to proposing fusion network architecture and testing different integrations of multisource data, 

some studies also focus on finding optimized deep learning fusion strategies. Audebert, Le Saux, & Lefèvre, 

(2018) investigated early and late fusion of LiDAR and multispectral imagery and found that late fusion 

could recover errors from the ambiguous data. Early fusion can better perform joint feature learning but is 

sensitive to missing data. Hong et al., (2020) systematically discussed issues about the fusion of multimodal 

data, like when to fuse data and how to fuse data. They tested different fusion modules and found that 

middle fusion and late fusion tend to yield better classification results, especially middle fusion. For fusion 

strategies, they found compactness-based fusion networks (including encoder-decoder fusion strategy and 

newly proposed cross fusion) show their superiority in blending multimodal features than others. Compared 

with other fusion strategies, cross fusion can transfer the information across modalities more effectively. 

2.3. Building footprint delineation 

Even though building polygons are ready for most GIS applications, manual interpretation and annotation 

are time-consuming and expensive. One kind of approach to extract building contour is based on the active 

contour models (ACM), also known as the snakes(Kass & Witkin, 1988). Mayunga, S. D., Zhang, Y., & 

Coleman, (2005) proposed a semi-automatic method that uses a radial casting algorithm and snakes to 

extract building outlines. However, The model has many parameters that need to be set experimentally, 

making it unsuitable for the large area (Nguyen, Daniel, Gueriot, Sintes, & Caillec, 2020). Nguyen, Daniel, 

Gueriot, Sintes, & Caillec, (2020) proposed an automatic method based on the ACM. They solved the 

problem by learning some important parameters by CNNs and achieved a high accuracy result. But their 

model needs complicated data pre-processing to extract preliminary building boundaries from LiDAR and 

create high-resolution LiDAR-based elevation images. 

 
Other methods rely on deep learning-based methods to obtain building boundaries. There are different deep 

learning-based strategies to obtain building footprints in vector polygons. Most widely used pixel-based 

segmentation methods that output building masks, which need multiple steps to obtain polygons. First, a 

binary segmentation map is produced by the deep-learning method, then a boundary extraction and a 

polygonization are applied on the map to get building footprint delineation (Wei et al., 2020). The 

conventional deep segmentation often could not produce sharp corners, which results in undesired artifacts. 
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These methods need expensive and complicated processing procedures to refine the results (Girard et al., 

2020). Wei et al., (2020) proposed a multiscale aggregation FCN to extract building pixels. The building 

segmentation results are further refined and then converted to vector form to get polygons of buildings. 

 
Instead of predicting segmentation for each pixel, deep learning-based delineation methods are trying to 
predict polygons directly. To facilitate the manual annotation process and provide a faster annotation tool, 
Castrejón, Kundu, Urtasun, & Fidler, (2017) proposed Polygon RNN, which integrating a CNN and a 
Recurrent Neural Network (RNN) enables semi-automatic annotation. The RNN can make predictions that 
not only relying on the current input but also using the information of previous outputs. As the vertices of 
a polygon are related to each other, the RNN is used to predict the vertices of the polygon. The CNN is 
used to extract features of the object. Then Acuna, Ling, Kar, & Fidler, (2018) further improved their work 
and proposed a network named Polygon RNN++. It is a semi-automatic segmentation method that allows 
delineating an object boundary within a manmade bounding box iteratively. They provided an interactive 
segmentation method that produces the polygon vertices and connects them to outline the object. The semi-
automatic way needs to draw a bounding box of the target object manually. It also allows the annotator to 
supervise and correct the vertices (e.g., drag) during the delineation process. Their work speeds up the 
annotation process and achieves a good performance compared with manual annotation. Although the 
method could output buildings in polygons, the process still requires a human inference to provide the 
approximate spatial extent of the interest object and refine the boundary. 

 

Despite the excellent performance achieved by Polygon RNN++, it still requires human intervention. Li, 

Wegner, & Lucchi, (2019) proposed a deep learning architecture named PolyMapper which makes the whole 

process automatically. Instead of providing the bounding box by manual annotation, the method could 

derive the bounding box of object instance by FPN. Hence it makes the whole annotation process automatic 

without human intervention. The model relies on a CNN to take aerial imagery as input to find the vertices 

of the building and connected them by RNN to generate polygons. While most existing deep learning 

research focusing on building detection output the result of building segmentation in raster map, their end-

to-end architecture skips the semantic segmentation step and outputs the building object in vector format 

directly (Li, Wegner, & Lucchi, 2019).  

 

Zhao, Persello, & Stein (2021) upgrade the feature extractor and detection module of PolyMapper and 

improve its performance. Finding suitable features is extremely important for neural networks. They 

introduced two improvements to the feature extractor. One improvement is introducing a boundary 

refinement block to amplify the distinction of features, which helps differentiate buildings from their 

complex background in VHR remotely sensed images. Another improvement is introducing a global context 

block. The block can include the long-distance pixels in filters to effectively use global information. In 

addition, a stacked conv-GRU is introduced to the RNN to replace the conv-LSTM to simplify the RNN 

and improve the performance. It can preserve the geometric relationship of the previous prediction but with 

fewer gates. Their method outperformed PolyMapper in all mAP and mAR metrics, demonstrating that it 

can predict more buildings correctly. Furthermore, their method performed better for medium and small 

buildings. 

 

Despite the advantages of automation, these deep segmentation methods suffer from several disadvantages. 

They are difficult to train, and their output topology is restricted to simple polygons without holes. These 

methods also cannot deal with buildings with shared walls (Girard et al., 2020). To solve these problems 

and produce regular building polygons, Girard et al., (2020) trained an FCN to learn pixel-wise segmentation 

and a frame field aligned with the object tangents. The FCN is a multi-learning model, the corner sharpness 

and wall straightness of segmentation are increased by learning the related the frame field (Girard et al., 

2020). The outputs of the model are inputs to a followed polygonization algorithm to obtain the building 

boundaries in polygons. The frame field is the key element in this method, and at least one field direction is 
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aligned to the tangent direction of the contour when it locates along the building edges. Therefore it stores 

the direction information of the tangent of the building outlines. The frame field is learned at every pixel of 

the image and used in the polygonization algorithm later. With the direction of the building contour, the 

edges of polygons are iteratively adjusted to be more aligned to the ground truth in the ACM. With the 

frame field, the corner can be detected and preserved during the simplification process. In this way, the 

method can produce regular and precise building outlines, especially for complex buildings with slanted 

walls. 
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3. METHODS 

3.1. Overall workflow  

The whole study process and experiment design are shown in Figure 2. We feed the network with fused 

aerial images and nDSM to improve the segmentation and frame field produced by the network. The process 

involves a series of procedures to train and optimize the network. 

 

Figure. 2.  The overall workflow. 
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The frame field learning method originally introduced in Girard et al. (2020) takes only the aerial images as 

input. However, the optical imagery has limitations, and the elevation data can help to overcome them. This 

thesis introduces the fusion of aerial images and 3D information (nDSM) into the framework to optimize 

the extraction of building polygons. We expect the data fusion can improve the accuracy and the geometrical 

regularity of the extracted building outlines. Figure 2 shows that two baselines are created for comparison 

to examine the difference caused by data fusion. One baseline takes as input the nDSM only; another one 

only analyses the aerial images. To be a fair comparison, all tiles of the different datasets are obtained with 

the same size and location; the setting of the networks are also kept the same. By comparing the results 

obtained from data fusion with the two baselines, we can evaluate the improvements due to the data fusion, 

especially the role of 3D information.  

 

For the accuracy assessment, we evaluate our results at the pixel-level, object-level, and polygon-level, 

respectively. Furthermore, we analyzed the deviations in the number of vertices per building extracted by 

the proposed methods compared with the reference polygons. This is an additional accuracy metric 

capturing the quality of the extracted polygons that is not considered in standard metrics. It allows us to 

estimate the additional cost in human editing, which is generally still required for operational applications 

(e.g., cadastral mapping or the generation of official national geo data sets).  

3.2. Boundary delineation with convolutional network 

To better regularize the complex building, such as buildings with holes, Girard et al., (2020) trained an FCN 

to learn the interior map, edge map, and frame fields aligned with the building outline tangents. Then the 

frame field and interior map are used in the following polygonization algorithm. The architecture of the 

model is shown in Figure 3. The outputs of the model are the input of the polygonization algorithm shown 

in Figure 4. The polygonization algorithm is composed of several phases to delineate the building boundary. 

It can produce low-complex polygons almost without missing the corner vertices with the direction 

information from the frame field.  

 
Figure. 3.  Training procedure of adapted U-Net (Source:  Girard et al., 2020) 
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Figure. 4.  Post-processing polygonization algorithm (Source:  Girard et al., 2020) 

 

Figure 5 shows the extended network, which takes images and nDSM as input data. We expected the 

additional height information could improve the intermediate frame field and building segmentation 

produced by the network. Because frame field is used to detect corners and optimize the polygon edges, 

and the segmentation is used to extract boundaries. We anticipated the predicted polygons would be 

improved too. 

 

Figure. 5.  The workflow of the investigated frame-field method for building delineation fusing nDSM and RGB data. Adapted 

from Girard et al., (2020). 

 

3.2.1. Frame field learning 

A frame field is comprised of two pairs of vectors with π symmetry each (Vaxman et al., 2016).  It is a 4-

PolyVector fields comprising two coupled 2-RoSy fields (Diamanti et al., 2014). "N-RoSy fields" are 

Rotationally-Symmetric fields, which are special vector sets comprising N unit-length vectors related by a 

rotation of an integer multiple of 2𝜋/N. An N-RoSy is the root set of the polynomials of the form 𝑧𝑛 −

𝑢𝑛(Diamanti et al., 2014). If we denoted the two coupled 2-RoSy fields as 𝑢, 𝑣 and the frame field as a 

(𝑢, 𝑣) pair where 𝑢, 𝑣 ∈ 𝐶, it has an order-invariant representative, which is the coefficients 𝐶0, 𝐶2 of the 

polynomial function in the equation 1 (Girard et al., 2020). 
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𝑓(𝑧) = (𝑧2 − 𝑢2)(𝑧2 − 𝑣2) = 𝑧4 + 𝑐2𝑧2 + 𝑐0 (1) 

  

Where 𝐶0, 𝐶2 ∈ 𝐶. The frame field is the key element in this method, and at least one field direction is 

aligned to the tangent direction of the polygon when it locates along the building edges. Therefore it stores 

the direction information of the tangent of the building outlines. Instead of learning a (𝑢, 𝑣) pair, a (𝐶0 , 𝐶2) 

pair was learned per pixel because it has no sign or ordering ambiguity. 

 

A multitask learning model is designed to learn the frame fields and segmentation masks of buildings. These 

related tasks help the model to focus on the important and representative features of the input data. U-

Net16 is used as the backbone. It is a U-Net backbone with 16 starting hidden features (Girard et al., (2020). 

The input layer of the backbone is extended to support taking input images with four or five channels. Then 

the output features of the backbone are fed into two branches with a shallow structure. The specific structure 

is shown in Figure 6. The edge mask and interior mask are produced by one branch as two channels of an 

image. The frame field is produced by another branch that takes the concatenation of the segmentation 

output and the output features of the backbone as input and outputs an image of four channels. The output 

frame field of the model is an image with four channels.  

 

The model is trained in a supervised way. In the pre-processing part of the algorithm, the reference polygons 

are rasterized to generate reference edge masks and interior masks. For a frame field, the reference is an 

angle of the tangent vector calculated from an edge of a reference polygon. Then the angle is normalized to 

a range of [0,255] and stored as the value of the pixel where the edge of the reference polygon locates. For 

other pixels where there is no edge, the value is zero. The reference data for the frame field is an image with 

the same extent as the original input image. 

 

 
Figure. 6.  The two branches produce segmentation and frame field. 
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3.2.2. Polygonization algorithm 

The polygonization algorithm is composed of several steps. It takes the interior map and frame field of 

the neural network as inputs and output polygons corresponding to the buildings.  First, an initial contour 

is extracted from the interior map by marching squares (Lorensen and Cline, 1987). Second, the initial 

contour is optimized by an ACM to make the edges more aligned to the frame field. Third, a simplification 

procedure is applied to the polygons to produce a more regular shape. Finally, polygons are generated 

from the collection of polylines from the simplification, and the polygons with low probabilities are 

removed. 

 

ACM is a framework used for delineating an object outline from an image. A snake is a deformable spline 

influenced by external constraints that put the snake near the desired local minimum and image forces 

that pull it towards object contours and internal forces that resist deformation(Kass & Witkin, 1988). The 

image forces are related to features of the image like intensity and edge, use to adjust the contour to 

conform with the object in the image. The internal energy of the snake is related to the contour itself, use 

to control the continuity and smoothness. By energy minimization, snakes match a deformable model to 

features of interest in an image. The frame field and the interior map reflect different aspects of the 

building. In our method, the initial contour is produced by the marching square method from the interior 

map. The energy function is designed to constrain the snakes to stay close to the initial contour and 

aligned with the direction information stored in the frame field. Iteratively minimizing the energy function 

forces the initial contour to adjust its shape until it reaches the lowest energy. 

 

The simplification is comprised of two steps. First, the corners are found with the direction information 

of the frame field. Each vertex of the contour corresponds to a frame field comprised of two 2-RoSy 

fields and two connected edges. If two edges are aligned with different of 2-RoSy fields, the vertex is 

considered as a corner. Then the contour is split at corners into polylines. The Douglas-Peucker algorithm 

further simplifies the polylines to produce a more regular shape. All vertices of the new polylines are 

within the tolerance distance of the original polylines. Hence the hyperparameter tolerance could be used 

to control the complexity of the polygons. 

3.2.3. Loss function 

The total loss function combines multiple loss functions for the different learning tasks: 1) segmentation, 2) 

frame field, and 3) coupling losses. H and W are the height and width of the input image, respectively. 

Different loss functions are applied to the segmentation. Besides combining cross-entropy loss (BCE) and 

Dice loss (Dice), Tversky loss is also tested for edge mask and interior mask. Tversky loss is proposed to 

mitigate the issue of data imbalance and achieve a better trade-off between precision and recall (Hashemi et 

al., 2018). 

 

The BCE is given by equation 2. 
 

𝐿𝐵𝐶𝐸 (�̂�, 𝑦) =
1

𝐻𝑊
∑ �̂�(𝑥) ⋅ log(𝑦(𝑥)) + (1 − �̂�(𝑥))

𝑥∈𝐼

⋅ 𝑙𝑜𝑔(1 − 𝑦(𝑥)) (2) 

  

where 𝐿𝐵𝐶𝐸   is the cross-entropy loss, which applied to the interior and the edge output of the model, 

respectively.  
 

The Dice loss is given by equation 3. 
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𝐿𝐷𝑖𝑐𝑒(�̂�, 𝑦) = 1 − 2 ⋅
|�̂� ⋅ 𝑦| + 1

|�̂� + 𝑦| + 1
 (3) 

  

 

𝐿𝑖𝑛𝑡 = 𝑎 ⋅ 𝐿𝐵𝐶𝐸 (�̂�𝑖𝑛𝑡 , 𝑦𝑖𝑛𝑡) + (1 − 𝑎) ⋅ 𝐿𝐷𝑖𝑐𝑒(�̂�𝑖𝑛𝑡 , 𝑦𝑖𝑛𝑡) (4) 

 

𝐿𝑒𝑑𝑔𝑒 = 𝑎 ⋅ 𝐿𝐵𝐶𝐸 (�̂�𝑒𝑑𝑔𝑒 , 𝑦𝑒𝑑𝑔𝑒) + (1 − 𝑎) ⋅ 𝐿𝐷𝑖𝑐𝑒 (�̂�𝑒𝑑𝑔𝑒 , 𝑦𝑒𝑑𝑔𝑒) (5) 

 

Where  𝐿𝐷𝑖𝑐𝑒 is the Dice loss, combined with the cross-entropy loss applied to the interior and the edge 

output of the model, respectively shown in equation 4 and 5. The 𝑎 is the hyperparameter and was set to 

0.25. 

 

The Tversky loss is given by the equation 6 and 7. 

𝑇(𝛼, 𝛽) =
∑ 𝑝0𝑖𝑔0𝑖

𝑁
𝑖=1

∑ 𝑝0𝑖𝑔0𝑖
𝑁
𝑖=1 + 𝛼 ∑ 𝑝0𝑖𝑔1𝑖

𝑁
𝑖=1 + 𝛽 ∑ 𝑝1𝑖𝑔0𝑖

𝑁
𝑖=1

 (6) 

  

𝐿𝑇𝑣𝑒𝑟𝑠𝑘𝑦 = 1 − 𝑇(𝛼, 𝛽) 

 

(7) 

Where 𝑝0𝑖  is the probability of pixel 𝑖 be a building (edge or interior), 𝑝1𝑖 is the probability of pixel 𝑖 is 

non-building.  𝑔0𝑖 is the ground truth training label that 1 for pixel be a building and 0 for a non-building 

pixel, and vice versa for the 𝑔1𝑖 . 

 

A vector in a two-dimensional tangent space can be represented using Cartesian coordinates or equivalently 

as complex numbers. It is related to the angle-based representation via trigonometric functions or the 

complex exponential in equation 8 (Vaxman et al., 2016). 

 

𝜈 = (
cos(𝜙)

sin(𝜙)
) = ⅇ 𝑖𝜙 

 

(8) 

The output frame field contains four channels, each two for the two complex coefficients  𝐶0 , 𝐶2 ∈ ∁ 

They define an equivalence class corresponding to a frame field. The reference is an angle 𝜃𝜏 ∈ [0, 𝜋) of 

the tangent vector of the building contour. The following losses are used to train the frame field. 

  

𝐿𝑎𝑙𝑖𝑔𝑛 =  
1

𝐻𝑊
∑ �̂�𝑒𝑑𝑔𝑒(𝑥)𝑓 (ⅇⅈ𝜃𝜏; 𝐶0(𝑥), 𝐶2(𝑥))

2

𝑥∈𝐼

 (9) 

 𝐿𝑎𝑙𝑖𝑔𝑛90 =  
1

𝐻𝑊
∑ �̂�𝑒𝑑𝑔𝑒(𝑥)𝑓 (ⅇⅈ𝜃𝜏⊥; 𝐶0(𝑥), 𝐶2(𝑥))

2

𝑥∈𝐼

 (10) 

𝐿𝑠𝑚𝑜𝑜𝑡ℎ =
1

𝐻𝑊
∑(‖∇𝐶0(𝑥)‖2 + ‖∇𝐶2(𝑥)‖2

𝑥∈𝐼

) (11) 

  

From equation 8, we know that ⅇ𝑖𝜙 is a vector tangent. In equation 9 and 10, the  ⅇⅈ𝜃𝜏  represents a 

vector tangent to the building contour. 𝜃𝜏  is the direction of vector 𝜏,  and 𝜏⊥ = 𝜏 −
𝜋

2
 .The 𝐿𝑎𝑙𝑖𝑔𝑛 
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makes the frame field more aligned with the tangent of the line segment of a polygon.  𝐿𝑎𝑙𝑖𝑔𝑛 is small 

when the polynomial 𝑓(∙; 𝐶0 , 𝐶2) has a root near ⅇⅈ𝜃𝜏 , meaning that one field direction is aligned with 

the direction of tangent 𝜏. 𝐿𝑎𝑙𝑖𝑔𝑛90 prevents the frame field from collapsing into a line field. 𝐿𝑠𝑚𝑜𝑜𝑡ℎ 

produces a smooth frame field. Because these outputs are closely related and represent different 

information of the building footprints, there are the following functions, depicted in equations 12, 13 

and 14, to make them compatible with each other. 

  

𝐿𝑖𝑛𝑡 𝑎𝑙𝑖𝑔𝑛 =  
1

𝐻𝑊
∑ 𝑓(∇𝑦𝑖𝑛𝑡(𝑥); 𝐶0(𝑥), 𝐶2(𝑥))

2

𝑥∈𝐼

 (12) 

 𝐿𝑒𝑑𝑔𝑒 𝑎𝑙𝑖𝑔𝑛 =
1

𝐻𝑊
∑ 𝑓 (∇𝑦𝑒𝑑𝑔𝑒(𝑥); 𝐶0(𝑥), 𝐶2(𝑥))

2

𝑥∈𝐼

 (13) 

𝐿𝑖𝑛𝑡 𝑒𝑑𝑔𝑒 =
1

𝐻𝑊
∑ 𝑚𝑎𝑥(1 − 𝑦𝑖𝑛𝑡(𝑥), ‖∇𝑦𝑖𝑛𝑡(𝑥)‖2)𝑥∈𝐼 ⋅ |‖∇𝑦𝑖𝑛𝑡(𝑥)‖2 − 𝑦𝑒𝑑𝑔𝑒 (𝑥)|  (14) 

 

Where 𝐿𝑖𝑛𝑡 𝑎𝑙𝑖𝑔𝑛 and 𝐿𝑒𝑑𝑔𝑒 𝑎𝑙𝑖𝑔𝑛 constrain interior mask 𝑦𝑖𝑛𝑡  and edge mask 𝑦𝑒𝑑𝑔𝑒  aligned with the 

frame field. The 𝐿𝑖𝑛𝑡 𝑒𝑑𝑔𝑒 is to make the interior and edge mask compatible with each other. 

3.3. Accuracy assessment 

Pixel-level metrics. For evaluating the results, we used the mean Intersection over Union (IoU). IoU 

is computed by dividing the intersection area by the union area of a predicted segmentation (𝑝) and a 

ground-truth (𝑔) at the pixel level.     

 

𝐼𝑜𝑈 =  
𝑎𝑟ⅇ𝑎(𝑝 ∩  𝑔)

𝑎𝑟ⅇ𝑎(𝑝 ∪  𝑔)
 (15) 

 

Object-level metrics. Building delineation is closely related to object segmentation, Average Precision 

(AP), Average Recall (AR) in MS COCO measures are introduced to evaluate our results. AP and AR 

are calculated based on multiple Intersection over Union (IoU) values. IoU is the intersection of the 

predicted polygon with the ground truth polygon divided by the union of the two polygons. There are 

10 IoU thresholds range from 0.50 to 0.95 with 0.05 steps. As illustrated in Table 1, for each threshold, 

only the predicted results with IoU above the threshold will be count as true positives(tp). The rest will 

be denoted as false positives(fp). The ground truth with an IoU smaller than the threshold is a false 

negative(fn)(Girard et al., 2020). Then we could use equations 16 and 17 to calculate corresponding 

precision and recall. AP and AR are the average value of all precisions and recalls calculated over 10 IoU 

categories and can be denoted as mAP and mAR. AP and AR could also be further calculated based on 

the size of the objects: small (area < 322), medium (322 < area < 962), and large (area > 962). The area is 

measured as the number of pixels in the segmentation mask. They can be denoted as APS APM APL for 

the precision and ARS ARM ARL for the recall. We followed the same metric standards but applied them 

to building polygons directly. To be specific, the IoU calculation is based on polygons. For the alternative 

method PolyMapper, as the input data is in COCO format, the evaluation is based on segmentation in 

raster format. 

 

𝑝𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 (16) 
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𝑟ⅇ𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

(17) 

 

 

  Reference 

  Building Non-building 

P
re

d
ic

te
d
 

Building 
IoU threshold True Positive 

False Positive 
IoU threshold False Negative 

Non-building False Negative True Negative 

Table 1. Matrix of MS COCO measures 

 

With the average precision and average recall calculated based on COCO metrics standards, the F1 score 

that is the weighted average of Precision and Recall can also be calculated by equation 18. 

 

 

𝐹1 =  
2 ×  𝑅ⅇ𝑐𝑎𝑙𝑙 ×  𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛

𝑅ⅇ𝑐𝑎𝑙𝑙 + 𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛
 (18) 

 

 

For the polygons shown in Figure 7, when the threshold is 0.5, the left predicted polygon is almost fully 

overlapping with its reference, and the IoU is bigger than the threshold. Therefore, it is a true positive. 

For the polygon next to it, apparently, the predicted polygon is much smaller than its reference, and the 

IoU is smaller than 0.5. Therefore, the reference polygon will not be considered to be found and 

extracted. Hence, it is a false negative, the reference polygon in blue that does not intersect with any 

predicted polygon, demonstrating it is not found, which means it is considered non-building by the 

method. It is another false negative. The predicted polygon in red that does not intersect with any other 

reference polygon is a false positive. Hence the precision and recall for the examples in Figure 7 are 50% 

and 33%, respectively. The F1 score calculated based on them is 0.4. 

 
Figure. 7.  Example predicted polygons(red) and the corresponding reference polygons(blue).  

 

Polygon-level metrics. Besides the COCO metrics, polygons and line segments measurement (PoLiS) 

is introduced to evaluate the similarity of the predicted polygons with corresponding reference polygons. 

It accounts for positional and shapes differences by considering polygons as a sequence of connected 

edges instead of only point sets (Avbelj, Muller, & Bamler, 2015). We used this metric to evaluate the 

quality of the predicted polygon. We filter the polygons with IoU ≥ 0.5 to find the prediction polygons 

and the corresponding reference polygons. The metric is computed as depicted in equation 19. 
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𝑝(𝐴, 𝐵) =
1

2𝑞
∑ min

𝑏∈𝜕𝐵
‖𝑎𝑗 − 𝑏‖

𝑎𝑗∈𝐴

+
1

2𝑟
∑ min

𝑎∈𝜕𝐴
‖𝑏𝑘 − 𝑎‖

𝑏𝑘∈𝐵

 (19) 

 

where 𝑝(𝐴, 𝐵) is defined as the average of the distances between each vertex 𝑎𝑗 ∈ 𝐴,j = 1,…,q, of A and 

its closest point 𝑏 ∈ 𝜕𝐵 on polygon B, plus the average of distances between each vertex 𝑏𝑘 ∈ 𝐵, k = 

1,…,r, of B and its closest point 𝑎 ∈ 𝜕𝐴 on polygon A. The closest point is not necessarily a vertex, and it 

can be a point on edge. (1/2q) and (1/2r) are normalization factors to quantify the overall average 

dissimilarity per point.  

 

Figure 8 shows the PoLiS distance between A and B.  A black line indicates the distance from the vertices 

of a polygon to another polygon, and its arrow shows the direction. The distance between a vertex and 

polygon could be a distance from a vertex to another vertex or a point on the edge of another polygon. The 

dotted light-blue lines demonstrate one alternative way to connect point set B into a polygon. Even though 

it has the same vertices as the polygon connected by solid blue lines, the distance for the upper right corner 

of polygon A to polygon B is different. The shortest distance now points to another edge of polygon B, 

demonstrating polygon shape changes influence the distance calculation. 

 

Figure. 8.  PoLiS distance p between extracted building A (orange) and reference building B (blue) marked with solid black lines 

(Source:  W. Zhao, Persello, & Stein, 2021). 

 

To analyze the correlation between the number of vertices in the predicted polygon and their reference, 

we introduce the average ratio of vertices number and the average difference of vertices number. We first filter the 

polygons with IoU ≥ 0.5 to find the prediction polygons and the corresponding reference polygons. The 

average ratio of vertices number is computed by dividing the number of vertices of the predicted ones by that 

of their reference, then calculating the average value for all polygons as shown in equation 20. The average 

difference of vertices number is calculated by subtracting the number of vertices of the predicted ones by their 

references, then calculated the average value for all polygons shown in equation 21. Root Mean Square 

Error (RMSE) is also calculated by using the number of vertices of predicted polygons and their reference 

ones for all polygons, as shown in equation 22. 

 

𝐴𝑣ⅇ𝑟𝑎𝑔ⅇ 𝑟𝑎𝑡𝑖𝑜 =
1

𝑛
∑

�̂�𝑖

𝑦𝑖

𝑛

𝑖=1

 (20) 
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𝐴𝑣ⅇ𝑟𝑎𝑔ⅇ 𝑑𝑖𝑓𝑓ⅇ𝑟ⅇ𝑛𝑐ⅇ =
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)

𝑛

𝑖=1

 
(21) 

  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (22) 

 
 

Where �̂�𝑖  is the number of the vertices for the predicted polygon and 𝑦𝑖 is the number of the vertices 

for the corresponding reference polygon. 
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4. EXPERIMENTS SETUP 

4.1. Study area and data 

In this study, the municipality of Enschede was selected as the study area. It covers an area of 142.7 

square kilometers and has 160,000 permanent residents. Specifically, it belongs to the province of 

Overijssel, right at the border between the Netherlands and Germany. A general view of the study area 

showed in Figure 9. The area in the red polygon is the Enschede. 

 

 

Figure. 9.  The municipality of Enschede, study area. The area in the red polygon is the Enschede. 

 

This research only includes collecting secondary data such as the available aerial images, DSM, and Digital 

Terrain Models (DTM). The aerial images are provided by Kadaster1. The 3D data are published on PDOK2. 

The PDOK is a portal website for obtaining open datasets from the government with current geo-

information. 

1) Aerial images 

Aerial images should provide a clear interpretation of visible building boundaries as much as 

possible. Hence, we choose VHR true orthophotos with 0.25 meter spatial resolution. The image 

of the study area is part of the nationwide summer flight in 2019. The sample data is shown in 

Figure 11. 

2) Near-infrared (NIR) image 

The NIR image is an orthophoto, which was also acquired in the same nationwide summer flight 

in 2019 with a 0.25 meter spatial resolution. 

3) nDSM 

 
1 Kadaster (The Netherlands' Cadastre, Land Registry and Mapping Agency) 
2 PDOK (the Public Services On the Map), https://www.pdok.nl/ 



DEEP LEARNING-BASED BUILDING EXTRACTION USING AERIAL IMAGES AND DIGITAL SURFACE MODELS 

22 

An nDSM is obtained by subtracting the digital terrain model (DTM) from the DSM, then 

resampled to the same resolution as the images. The Current Elevation File Netherlands (AHN3) 

is the digital elevation map for the Netherlands. AHN3 dataset was acquired in the 3rd 

acquisition period (2014-2019). The mean point density of AHN3 is 8-10 points/m2. The DTM 

and DSM are derived from AHN3 based on the Squared IDW method with 0.5 m spatial 

resolution. The LiDAR point clouds and DSM are shown in Figure 10. 
 

Figure. 10.  Sample data of LiDAR point clouds(left) and the derived DSM with 0.5 meters of spatial resolution(right). 

 

4) Building footprints 

Building footprints are from the BAG4 dataset, which is part of the government system of key 

registers. It is captured by a municipality and subcontractors, and data qualities may vary for 

different areas.  The conclusions obtained for Enschede are not necessarily applicable to BAG 

data from another region. Example images and the corresponding building footprints are shown  

in Figure 11.  

 

 

 

 

 

 

 

 

 

 
3 AHN ((Het Actueel Hoogtebestand Nederland) 
4 BAG (Basisregistratie Adressen en Gebouwen) 
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Figure. 11.  Sample data of the reference data (left) and an aerial image of the represented area (right). 

4.2. Data pre-processing 

4.2.1. Building footprints 

To check the accuracy of the BAG, we first used the polygons of OpenStreetMap as a reference. 

Through the spatial analysis in ArcMap, 826 polygons are found that do not exist in OpenStreetMap. 

Then these polygons were compared with the aerial images. The polygons that were different from the 

ground truth were manually edited. The details are shown in Table 2. The buildings which do not exist 

were removed. From the building status shown in Table 2, human activities cause these discrepancies, 

such as buildings not being constructed or demolished. The buildings with a shared wall are difficult to 

be distinguished by the network. The "dissolve" operation in QGIS was applied to BAG's original 

polygons to merge them into one. The dissolve results are shown in Figure 12. 

 

Building status 
Number of polygons 

before edit 

Number of polygons 

after edit 
Operation 

Attributes in 

Dutch 

Construction 

started 
331 109 

Remove the building where is 

a tree, grassland, or bare soil 
Bouw gestart 

Property out of 

order 
1 1 Keep it 

Pand buiten 

gebruik 

Building in use 450 450 

most of them exist in the 

aerial images. Keep all of 

them 

Pand in gebruik 

Building in use 

(not measured) 
11 8 

Remove the building where is 

a tree, grassland, or bare soil 

Pand in gebruik 

(niet ingemeten) 

Demolition 

permit granted 
33 2 

Remove the building that 

already demolition 

Sloopvergunning 

verleend 

Table 2. Edit operation of the polygons of BAG. Building status is an attribute for each polygon in the BAG. 

 

Projected Coordinate System:	RD_New0 50 10025 Meters Projected Coordinate System:	RD_New0 50 10025 Meters
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Figure. 12.  Sample polygons of BAG dataset (left), sample polygons of BAG dataset after dissolve(right). 

 

4.2.2. nDSM 

The nDSM is produced by subtracting DTM from DSM. The DTM and DSM tiles were downloaded 

from PDOK and merged by the "Mosaic To New Raster" tool in ArcMap.  Then they were resampled 

to the same resolution as the aerial images. Since there are no data values in built-up areas in DTM. They 

were filled by using the QGIS' fill nodata' tool with a maximum distance of 1000 pixels.  

4.2.3. Datasets for deep learning 

Table 3 shows the dataset produced based on BAG. The extent and distribution of tiles are the urban 

areas shown in Figure 13. Tiles are extracted from the aerial image (RGB), composite image (RGB + 

nDSM) and composite image (RGB+NIR+nDSM) with the same location and size. The composite 

image (RGB + nDSM) was produced by stacking the nDSM with the original aerial image as the 4th 

band. The composite image (RGB+NIR+nDSM) was produced by stacking the NIR as the 4th band 

and nDSM as the 5th band with the original aerial image. 

 

Dataset Number of tiles Number of buildings Ratio 

training 579 29194 0.7 

validation 82 4253 0.1 

test 165 8531 0.2 

Table 3. Information of the training set, validation set, and test set for the urban area using BAG reference polygons. The size of each tile 

is 1024×1024 pixels  
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Figure. 13.  The entire study area is the whole image of the city of Enschede; the urban area is denoted by the red polygons (right). 

The right side shows the tile distribution for the urban area (upper right) and the entire study area (lower right). 
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4.3. Implementation details 

The model was trained with the following settings: Adam optimizer with a batch size b = 4 and an initial 

learning rate of 0.001. It applies exponential decay to the learning rate with a decay rate of 0.99. The max 

epoch is set to 200. The network is implemented using PyTorch 1.4. The training and testing are 

performed on a single NVIDIA Tesla P100 GPU. We set several values (1,3,5,7,9) for the tolerance 

parameter in the polygonization method. For each tile in the test set, the method produces polygons 

with a certain tolerance value. As we set multiple tolerance values, multiple polygons with different 

tolerance will be produced for each tile in the test set. 
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5. RESULTS AND DISCUSSION 

This section will introduce the results achieved on the urban area dataset and discussion. Besides the results 

presented here, we also performed other experiments. However, the quality of the results obtained was 

considerably below those present in the thesis. Because of that, these experiments will not be detailed in the 

scope of this thesis. These experiments include: 

 

1. Building footprints are obtained using publicly available geodata combining small buildings from the 

BAG with larger ones from BRT5. The BRT is a collection of digital topographical data on different 

scales. Buildings from the TOP10NL product were used in this experiment, which is topographical data 

suitable for the scales 1:5000-1:25000. We created two study areas: one is the urban area, and the other 

is the whole municipality (including the urban and rural areas), as shown in Figure 13. The results on 

the urban area are considerably better than that those achieved on the whole municipality. Girard et al., 

(2020) used the Inria dataset, which covers a larger extent and has all tiles extracted from urban 

settlements such as cities and towns(Maggiori, Tarabalka, Charpiat, & Alliez, 2017). Based on the 

difference between our dataset and the Inria dataset, we may hypothesize that the model needs a higher 

density of polygons in the training set to better learn the buildings' characteristics and perform well 

outside the city centers. The results achieved in the urban areas are considerably better but still worse 

than the results achieved using BAG as the reference building footprints only. 

 

2. Take the ResNet-101 as the backbone for the FCN.  It can achieve comparable results as Unet16, but 

Unet16 is more light-weighted. Therefore, the experiments present in this thesis all use the Unet16 as 

the backbone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
5 BRT (Basisregistratie Topografie) 
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5.1. Quantitative analysis  

Table 4 shows the quantitative results obtained using the composite images (RGB + nDSM), the single 

aerial images (RGB) and nDSM. The mean IoU achieved on the composite image is the highest, 

demonstrating that the method benefited from the data fusion and performed best on the fused data 

than the individual data source. The mean IoU achieved on the composite image (RGB + nDSM) test 

set was 80%, against 57% achieved for the test set of RGB image. The addition of the nDSM led to an 

improvement of 23% on the mean IoU. Compared with the results obtained only using nDSM, the mean 

IoU achieved on the composite image (RGB + nDSM) is 3% higher, which shows that the addition of 

spectral information only led to a slight improvement of the mean IoU. Hence we deduced that nDSM 

contributes more than aerial images in the building extraction. Moreover, the results obtained only with 

nDSM achieved a comparable accuracy, which is close to best the results obtained using the composite 

images (RGB+NIR+nDSM). 

 

The same trend could also be found from the mAP and mAR of the composite image and two baselines. 

The mAP and mAR achieved on the composite images are considerably higher than those achieved on 

aerial images(RGB) only and slightly higher than those achieved on nDSM. Hence height information 

contributes more than spectral information in the building extraction. The higher average precision 

shows that height information help to reduce false positives, and higher average recall shows it helps 

prevent missing the real buildings on the ground. The composite image achieved higher precision and 

recall for all building sizes, demonstrating that it outperformed the individual source in all sizes of the 

buildings. In terms of size, buildings with medium size have the highest precision and recall. The small 

buildings have the lowest precision and recall, which means the model performs best for the medium 

building and worst for the small building. Fewer small buildings are correctly extracted, and more false 

positives are polygons of small size.  

 

Comparing the results obtained on two composite images, the mean IOUs obtained with the BCE and 

Dice loss were almost the same, but the average precision and recall achieved on composite images 

(RGB + NIR + nDSM) were slightly higher, which means the NIR information helps to reduce false 

positives and prevent missing the real buildings on the ground. Tversky loss achieved the highest mean 

IOU (81.4%) and the highest average precision (43%) on the composite image (RGB+NIR+nDSM) 

among all the experiments. High precision means among the prediction polygons, most of them 

corresponding to real buildings on the ground. High recall means among the reference buildings, most 

of them are find and delineated correctly. The F1-score achieved on the same dataset with BCE and 

Dice loss is the highest. The F1 conveys the balance between precision and recall. The higher F1 value 

means the BCE and Dice loss can predict buildings more correctly and avoid missing the real buildings. 

It achieved a better balance between precision and recall. 

 

Bands 
Loss 

function 

Mean 

IoU 
mAP mAR F1 APS ARS APM ARM APL ARL 

RGB, 

NIR, 

nDSM 

BCE+Dice 0.805 0.425 0.499 0.447 0.262 0.200 0.591 0.609 0.543 0.478 

Tversky 0.814 0.430 0.413 0.412 0.218 0.244 0.457 0.507 0.502 0.376 

RGB, 

nDSM 

BCE+Dice 0.800 0.410 0.488 0.433 0.255 0.198 0.576 0.593 0.534 0.465 

Tversky 0.776 0.371 0.399 0.373 0.204 0.197 0.441 0.482 0.464 0.650 

RGB BCE+Dice 0.568 0.067 0.253 0.102 0.139 0.024 0.285 0.261 0.248 0.232 

nDSM BCE+Dice 0.767 0.313 0.436 0.347 0.197 0.129 0.532 0.553 0.525 0.420 

Table 4. Extraction results for the urban area dataset. The mean IoU is calculated on the pixel level. Other metrics are calculated on the 

polygons with 1 pixel tolerance for polygonization. 
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In terms of the similarity of the polygons, Table 5 shows that the PoLiS distance achieved on the 

composite image (RGB + nDSM) is 0.54, considerably smaller than 0.87 for the RGB image and slightly 

smaller than 0.62 for the nDSM. The PoLiS distance achieved on the composite image (RGB + nDSM) 

is the smallest among all. The smaller PoLiS distance means the smaller dissimilarity, showing that the 

data fusion achieved the best similarity than the individual data source. The PoLiS distance obtained on 

nDSM is smaller than that obtained on aerial images, which means the nDSM contributes more than 

aerial images in improving the similarity for results obtained on the composite images. The PoLiS 

distance achieved on the composite image (RGB + NIR + nDSM) is 0.52, which is smaller than 0.54 

achieved on the composite image (RGB+nDSM), demonstrating that the additional NIR information 

further improves the similarity. Furthermore, for the same composite images, the PoLiS distance of the 

model with the BCE and Dice loss is smaller than that with Tversky loss, which means the polygons 

produced by the combination of BCE and Dice loss are more similar to their reference. 

 

Bands Loss PoLiS 

RGB, 

NIR, 

nDSM 

BCE+ Dice 0.52 

Tversky 0.62 

RGB, 

nDSM 

BCE+ Dice 0.54 

Tversky 0.62 

RGB BCE+ Dice 0.87 

nDSM BCE+ Dice 0.62 

Table 5. PoLiS results for the urban area dataset. The PoLiS are calculated on the polygons with 1 pixel tolerance for polygonization. 

5.2. Qualitative analysis 

Figure 14 compares the predicted polygons obtained on tiles in the test set with different bands and the 

corresponding reference. The polygons obtained using the composite images are more aligned with the 

reference data and with fewer false positives than those obtained from RGB images or nDSM only. The 

performance gain is particularly visible for big buildings with complex structures and the building with 

holes. Fewer false positives are observed for small buildings in the results obtained using composite 

images. Compared with the polygons obtained from RGB images, the polygons obtained from the 

nDSM have fewer false positives and are more aligned with ground truth. In addition, the polygons of 

large buildings are more regular than the small ones in dense urban areas. There are more false positives 

for small buildings in dense urban areas than in sparse areas. By observation, some of them are storage 

sheds or garden houses, which are not included in the reference footprints. Their similar spectral 

character and height make it difficult to differentiate them from residential buildings. In summary, the 

nDSM improved building outlines' accuracy, resulting in better-aligned building polygons and preventing 

false positives. The polygons obtained from different composite images are very similar to each other. 
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(a) (b) (c) (d) (e) 

Figure. 14.  Results obtained on two tiles of the test dataset for the urban area. The loss functions are cross-entropy and dice. The 

background is the aerial image and the corresponding nDSM. The predicted polygons are produced with 1 pixel for the tolerance 

parameter of the polygonization method.From left to right: (a) Reference building footprints, (b) Predicted polygons on aerial images 

(RGB), (c) Predicted polygons on nDSM, (d) Predicted polygons on composite images (RGB + nDSM), (e) Predicted polygons on 

composite images (RGB + NIR + nDSM) 

 

Figure 15 shows the predicted polygon on different datasets. Compare the polygon obtained on the 

aerial image (RGB) with that on the composite image (RGB+nDSM), showing that the model cannot 

differentiate nearby buildings only with spectral information, which results in the predicted polygon on 

the aerial image (RGB) corresponding to several individual buildings. In addition, part of the road on 

the left side of the building is considered to be a building. Compare the polygon obtained on nDSM 

with that on the composite image (RGB+nDSM), showing that the model cannot differentiate closed 

buildings only with height information, which results in the upper right building is considered as part of 

the predicted building. Compares the predicted polygons on the composite image (RGB+nDSM) with 

that on the composite image (RGB+NIR+nDSM), the general shape is very similar to each other, the 

number of the vertex are almost the same, but the distributions are different. During the simplification 

in the polygonization process, the corners are kept while the other vertices are further simplified. Hence 

the corners are different too. The additional NIR affects the corner detection. 

 

Table 6 shows the PoLiS distance of the example polygon. The polygon obtained on the composite 

image (RGB+NIR+nDSM) has the smallest distance, which is 0.39 against 0.47 for that on the 
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composite image (RGB+nDSM). Hence the additional NIR information help to improve the similarity 

between the predicted polygon with the reference polygon. The PoLiS distance achieved on nDSM is 

0.81, which is considerably smaller than 5.32 obtained on aerial images only, demonstrating that the 

nDSM increased the similarity significantly. 

 

 
(a) (b) (c) (d) (e) 

Figure. 15.  Results obtained on the urban area dataset. The predicted polygons are produced with 1 pixel for the tolerance parameter 

of the polygonization method. From left to right: (a) Reference building footprints, (b) Predicted polygon on aerial images (RGB), (c) 

Predicted polygon on nDSM, (d) Predicted polygon on composite images (RGB + nDSM), (e) Predicted polygon on composite images 

(RGB + NIR + nDSM) 

 

Polygon a b c d e 

Data set reference RGB nDSM RGB + nDSM RGB + NIR + nDSM 

PoLiS  5.32 0.81 0.47 0.39 

Vertices 74 612 44 112 111 

Table 6. Example polygon produced with 1 pixel for the tolerance parameter of the polygonization method. The columns a, b, c, d,e 

correspond to the polygons (a), (b), (c), (d),(e) in Figure 15.  

 

Figure 16 shows that the predicted polygons obtained on composited images (RGB+NIR+nDSM) with 

different losses. Compared with the reference polygons, the polygons obtained with Tversky loss 

function are much bigger, which means the non-building area close to the building is also be recognized 

as a building. Compared with polygons obtained with BCE and Dice loss, some buildings are connected 

to each other, which means it is hard to separate buildings close to each other with Tversky loss. The 

same problems also exist in the results with different losses obtained on composited images (RGB+ 

nDSM). It could be deduced that the combination of BCE and Dice loss help produce polygons that 

are more aligned with ground truth. 
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(a) (b) (c) 

Figure. 16.  Results obtained on the urban area test dataset (RGB+NIR+nDSM). The predicted polygons are produced with 1 

pixel for the tolerance parameter of the polygonization method. (a) Reference building footprints, (b) Predicted polygons with cross-

entropy and Dice as loss function, (c) Predicted polygons with Tversky as loss function. 

5.3. Vertices number analysis  

The last phase of the polygonization method is a simplification that produces more generalized polygons. 

Tolerance of simplification is an important parameter to balance the complexity and fidelity of polygons. 

We perform an analysis of the number of vertices per polygon by changing the tolerance value. We first 

filter the polygons with IoU ≥ 0.5 to find the predicted polygons and the corresponding reference 

polygons. Besides the RMSE, we introduced the average ratio of vertices number and average difference of vertices 

number to analyze the similarity of the vertices numbers. For the ratio, the best value is 1, which means 

the average vertices number is the same as its reference. The closer the ratio is to 1, the higher the 

similarity of the number of vertices. The best value is zero for the difference, which means the average 

vertices number of the predicted polygons is the same as their reference. The closer the difference value 

is to zero, the higher similarity of the vertices numbers. The negative difference value means the average 

vertices number of predicted polygons is smaller than that of their reference. 

 

Table 7 shows vertices number analysis of results obtained on nDSM with BCE and Dice as the loss. 

Even though tolerance 1 has the smallest RMSE and PoLiS, the average vertices ratio and difference 

value are the biggest. The PoLiS distance represents polygon dissimilarity, and a smaller distance means 

a higher similarity. The polygons obtained with tolerance 1 have the most similar shape as their reference 

but contain more vertices than the reference. The ratios of tolerance 3,5,7,9 are close to each other, but 

tolerance 3 results in the difference most close to zero. Even though tolerance 9 has the smallest ratio, 

it results in the largest PoLiS value. The distance increases as the tolerance increases and tolerance 3 

results in a second smallest PoLiS value. We may deduce that tolerance 3 is the best-generalized polygons 

that contain a similar number of vertices as the reference without losing too much positional and shape 

accuracy. 

Tolerance PoLiS RMSE 
Average ratio of 

vertices number 

Average difference of 

vertices number  

1 0.615 63.836 1.634 6.176 

3 0.651 64.275 1.112 -1.768 

5 0.670 64.849 1.039 -3.014 

7 0.678 65.246 1.018 -3.422 

9 0.684 65.501 1.010 -3.578  

Table 7. Polygon obtained with different tolerance using the composite images (nDSM) for urban area dataset. 
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Table 8 shows vertices number analysis of results obtained on composited images (RGB + nDSM) with 

BCE and Dice as the loss. Even though the tolerance one has the smallest PoLiS, but the ratio is the biggest 

among all the results. The PoLiS distance represents polygon dissimilarity, and a smaller distance means a 

higher similarity. The polygons obtained with tolerance 1 have the most similar shape as their reference but 

contain more vertices than the reference. The ratios of tolerance 3,5,7,9 are close to each other, but tolerance 

3 results in the difference most close to zero and the ratio most closest to one, demonstrating the number 

of vertices is most close to their reference. The distance increases as the tolerance increases and tolerance 3 

results in a second smallest PoLiS value. Therefore, we may deduce that tolerance 3 is the generalized 

polygons that contain a similar number of vertices as the reference without losing too much positional and 

shape accuracy. 

 

Tolerance PoLiS RMSE 
Average ratio of 

vertices number 

Average difference of 

vertices number 

1 0.536 80.40 1.621 5.327 

3 0.567 81.44 1.026 -3.588 

5 0.588 83.07 0.935 -5.236 

7 0.611 71.50 0.899 -5.426 

9 0.636 72.96 0.872 -6.138 

Table 8. Polygon obtained with different tolerance using the composite images (RGB + nDSM) for urban area dataset  

 

Table 9 shows vertices number analysis of results obtained on composite images (RGB + NIR+nDSM) 

with BCE and Dice as the loss. Even though tolerance 1 has the smallest PoLiS value, the ratio is the biggest 

among all the results. The PoLiS distance represents polygon dissimilarity, and a smaller distance means 

higher similarity. The polygons obtained with tolerance 1 have the most similar shape as their reference but 

contain more vertices than the reference. Tolerance 3 results in a ratio of 0.969, which is most close to 1. It 

also results in the second most close to zero difference, which also proves that. The distance increases as 

the tolerance increases and tolerance 3 results in a second smallest PoLiS value. Therefore, we may deduce 

that tolerance 3 is the generalized polygons that contain similar vertex as the reference without losing too 

much positional and shape accuracy. 

 

Tolerance PoLiS RMSE 
Average ratio of 

vertices number 

Average difference 

of vertices number 

1 0.522 80.398 1.484 3.201 

3 0.550 80.688 0.969 -4.427 

5 0.571 82.563 0.902 -5.722 

7 0.593 85.129 0.876 -6.513 

9 0.618 87.477 0.859 -7.161 

Table 9. Polygon obtained with different tolerance using the composite images (RGB +NIR+ nDSM) for urban area dataset  

 

Tables 7, 8 and 9 show that as the tolerance increases, the ratio decrease and the PoLiS increase, 

demonstrating that while the polygons are simplified, the similarity between the predicted polygons and 

reference polygons decreases. To be specific, the positional accuracy and shape similarity decrease. The 

results obtained on two composite images shows tolerance 3 results in a ratio closest to one, which means 

the vertices number is most close to their reference. The vertices difference of polygons predicted with 

tolerance 3 also proved that. It usually has the closest or second most close to zero vertices difference. 
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Therefore, we deduced that 3 is an appropriate tolerance to obtain the best-generalized polygons without 

losing too much similarity for our dataset. 

 

Figure 17 compares the predicted polygon with different tolerance levels. For sample building, the increase 

of tolerance results in the decrease of the number of vertices. Table 10 shows the PoLiS value increases as 

the tolerance increase, which means the dissimilarity of the predicted polygon and reference polygon 

increases. Compared to the polygon predicted with tolerance 1, changes happen to the shape of the polygons 

with bigger tolerance, such as the edge in the upper part of the polygons deviates from the ground truth. 

 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure. 17.  Example polygon obtained with different tolerance values using the composite images (RGB + nDSM): (a) Reference 

polygon, (b) Predicted polygon with tolerance 1 pixel, (c) Predicted polygon with tolerance 3 pixel, (d) Predicted polygon with tolerance 

5 pixel, (e) Predicted polygon with tolerance 7 pixel, (f) and Predicted polygon with tolerance 9 pixel. 
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Polygon a b c d e f 

Tolerance  1 3 5 7 9 

PoLiS  0.472 0.537 0.628 0.697 0.763 

Vertices 74 112 52 35 29 26 

Ratio  1.514 0.703 0.473 0.392 0.351 

Table 10. Example polygon with different tolerance and number of vertices. The columns a, b, c, d, e, f corresponding to the polygons (a), 

(b), (c), (d), (e), (f) in Figure 17.  

 

For the applications that require high accuracy of the polygons, the predicted polygons still need post-

processing to check the quality and increase accuracy. The predicted polygons with fewer vertices and 

comparable accuracy will facilitate this process and reduce the manual work.  For the predicted polygons 

with 1 pixel tolerance, even though it has high positional accuracy, it contains the biggest number of vertices. 

Furthermore, most vertices are so close to each other that some of them are superfluous. If manually 

simplified the polygon, compared to the reference, a lot of vertices need to be removed, which increased 

the processing time and waste of human labor. For polygon predicted with bigger tolerance, outlines have 

a similar shape but fewer vertices. Thus, fewer editing operations need to be performed to move or delete 

vertices, which may simplify the post-processing procedure. 

5.4. Comparison with an alternative method 

We compared the frame field learning-based method to an end-to-end polygon delineation method 

PolyMapper. The experiments are performed on the original aerial images (RGB). The default setting of 

the PolyMapper method is adopted with the max iteration is 1600000 and the backbone is ResNet-101. 

Table 11 shows a quantitative comparison of two methods reported in COCO metrics. Frame field 

learning-based method achieves 6.7% mAP and 25.3% mAR, which outperforms PolyMapper in mAP 

and mAR metrics. It demonstrates that a higher proportion of buildings extracted by the frame field 

approach. In addition, the method works significantly better in delineating medium and large buildings 

and achieves higher precision at all scale levels.  

 

Method mAP mAR APS ARS APM ARM APL ARL 

PolyMapper 0.009 0.017 0.001 0.001 0.004 0.028 0.014 0.065 

Frame field 0.067 0.253 0.139 0.024 0.285 0.261 0.248 0.232 

Table 11. Extraction results using aerial images (RGB) for urban area dataset. The metrics are calculated on the polygons with 1 pixel 

tolerance for polygonization for the Frame field learning-based method. 

 

Figure 18 shows the results obtained on two tiles by different methods. PolyMapper only extracts part of 

the big building, and it cannot delineate the hole inside the building. The results obtained for the dense 

urban area by the PolyMapper cannot differentiate individual buildings from the surrounding road and trees. 

The method missed a lot of the real buildings on the ground. The low AR in Table 11 also proves that. The 

results predicted by the frame field learning method are much better, with more buildings be corrected 

extracted and more regular and aligned predicted polygons. But many false positives exist in the results 

obtained by the frame field method compared with the reference data. Some individual buildings in the 

densely urban areas are also connected, demonstrating it cannot differentiate buildings that close to each 

other only with the spectral information. 
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(a) (b) (c) 

Figure. 18.  Results obtained using aerial images (RGB) for the urban area dataset. From left to right: (a) Reference building 

footprints, (b) Predicted polygons with 1 pixel for the tolerance parameter of the polygonization method by frame field learning 

method, (c) Predicted polygons by PolyMapper. 
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6. CONCLUSION 

In this thesis, we explored a building delineation method based on frame field learning. The overall 

framework of our method is based on an FCN architecture, which serves as an extractor of image 

segmentation and direction information of the building contour, followed by a polygonization method 

which takes the outputs of the model as inputs to generate the polygons. By learning the frame field, 

segmentation performance is increased. With the direction information stored in the frame field, the edges 

could be iteratively adjusted to be more aligned with ground truth in ACM, and corners can also be detected 

and further preserved during the simplification. Hence, it can produce more regular buildings and reduce 

the missing corners. The comparison with PolyMapper also indicates that, since PolyMapper missed a lot 

of corners and cannot delineate the buildings correctly. These regular building outlines in polygons can be 

directly used in most operational GIS applications. In contrast, buildings masks in a raster format still require 

complex and expensive post-processing to obtain building outlines in polygons. For public institutions like 

Kadaster, which are responsible for maintaining national cartography, building information needs to be 

updated regularly. Our approach can help these institutions to generate building footprints more effectively. 

Furthermore, the building polygons can also be used in other products like cadastral maps or building 

models.  

 

The original method only takes aerial images (RGB) as input. We introduced the 3D information into the 

framework to overcome the limitations of the aerial image. To better evaluate the quality of buildings’ 

polygons, we followed the same standards of COCO metrics and applied them directly to the output 

polygons. Moreover, the PoLiS distance metric was introduced to evaluate positional accuracy and shape 

differences between the predicted polygons and their reference ones. We also performed an analysis of the 

number of vertices and introduced the average ratio of vertices number and the average difference of vertices number to 

evaluate the agreement between the predicted polygon and their reference. By analyzing these two statistical 

metrics in combination with PoLiS distance for the polygons produced with different tolerances, we found 

out the best parameters for our model to produce simpler polygons while keeping high accuracy. The main 

advantage of producing simpler polygons is the need for fewer editing operations for adjusting the polygons 

in operational applications. They can serve as a reference for polygon generalization and guidance to reduce 

the workload of post-processing tasks for obtaining operational maps of building footprints. 

  

Our method combined the original framework with data fusion by extending the model to take two different 

composite images (RGB+ nDSM and RGB+NIR+nDSM) as input. Compared with the results obtained 

on the two baselines, the polygons obtained on composite images were largely improved considering both 

quantitative and qualitative criteria. The method benefited from the additional nDSM and the height 

information contributes more than spectral information in building extraction. The 3D information 

provided by the nDSM overcame the aerial images' limitations and contributed to distinguish the buildings 

from the background more accurately. The nDSM also improved the accuracy of the building outlines, 

resulting in better-aligned building polygons and preventing false positives. A qualitative analysis of the 

results shows that our method can predict precise and regular polygons for large and complex structures. 
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6.1. Answer to research questions 

For the three specific objectives of this study, research questions related to them are listed before. This 

section will present the answers to these research questions. 

 

Research objective 1 

 

a. How is the quality of the available reference polygon data?  

 

We checked the data quality and found out that some reference polygons are different from the ground 

truth showing in the aerial images and manually edited them. We also found out that the reference polygons 

are not perfect. Some polygons are not aligned with the ground truth, and some do not exist on the ground. 

We managed to edit some of them, but there was not enough time to check every single polygon and make 

sure they are all precisely aligned with the ground truth showing in the aerial images. The results show that 

our method is invariant to this problem since it performed better than the reference data in some regions. 

 

b. Are there any systematic or random shifts in building polygons from the corresponding boundaries? 

 

There are no systematic shifts or random shifts. To be specific, the polygons do not shift as a whole from 

the ground truth, but some edges of polygons may not be totally aligned with the building boundaries. 

 

Research objective 2 

 

a. What relevant deep learning-based models exist, and what are their disadvantages and advantages?  

 

The most relevant deep learning-based models are Mask R-CNN and PolyMapper. The advantage of Mask 

R-CNN is that it detects the object by generating the bounding boxes of the individual objects and produces 

segmentation masks for the objects precisely. One disadvantage is the predicted results of Mask R-CNN is 

a binary mask in a raster format that could not be used in multiple GIS applications directly, needing 

complex polygonization post-processing steps. Moreover, convert the raster format to vector are expensive 

and complicated and may also introduce errors in the conversion. Another disadvantage is that the details 

of buildings are lost when small feature maps are up-sampled to the same size as the input. Hence, when 

compared with the FCN, the boundaries of Mask R-CNN output are over-smooth and less accurate. The 

main advantage of PolyMapper is that it is an end-to-end network that takes the aerial image as input and 

directly outputs polygons. The disadvantage of PolyMapper is that it is hard to train and cannot properly 

delineate the buildings with holes. We found out that the PolyMapper performed worse than the frame field 

learning method considering both quantitative and qualitative criteria with the same dataset for our study 

area. 

 

b. When the resolution of nDSM is different from imagery, how can we perform the data fusion? For 

example, to fuse the data directly or adapt the network to take multi-resolution data as input? 

 

We resampled the nDSM to the same resolution as the aerial image and created two composite images. 

The composite image (RGB + nDSM) is produced by stacking the nDSM with the original aerial image 

(RGB) as the 4th band. The composite image ( RGB+NIR+nDSM) is produced by stacking the NIR as 

the 4th band and nDSM as the 5th band with the original aerial image. Then the composite image was 

feed into the network as a whole. The frame field learning network was adapted to take these fused 

datasets as inputs.  
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Research objective 3 

 

a. What are the advantages and disadvantages of the proposed model? 

 

One advantage is the 3D information provided by the nDSM overcomes the limitations of the optical 

imagery and largely improved the accuracy of the predicted polygons. Another advantage is that, unlike the 

state-of-the-art method PolyMapper, this model has a light-weighted structure and is easier to train. 

Moreover, it could predict buildings with more complex structures and with holes. 

Multiple disadvantages still need to be improved. The first disadvantage is that it performs worse for small 

buildings compared with medium and large buildings. There are more false positives for small buildings, 

especially in dense urban areas. The second disadvantage is that the regularity of the predicted polygons still 

needs to be improved. The predicted polygons usually contain more curves than their reference. The third 

disadvantage is that the method does not perform well for the building with an arc structure. 

 

b. Does 3D information help to improve the results? Is the improvement significant?  

 

Yes, the 3D information improved the results considering both quantitative and qualitative criteria. The 

height information largely improves the accuracy of the results. It also reduces the false positives and 

prevents missing the buildings on the ground. Furthermore, it improves the similarity between the predicted 

polygons and the corresponding reference polygons. The improvement was significant. The mean IoU 

achieved on the composite image (RGB + nDSM) test set was 80%, against 57% achieved for the test set 

of RGB image. The addition of the nDSM led to an improvement of 23% on the mean IoU. The mAP and 

mAR achieved on the composite images (RGB + nDSM) are 41% and 48.8% against 6.7% and 25.3% 

achieved on aerial images only. The addition of the nDSM led to 34.3% and 23.5% improvement on average 

precision and average recall, respectively. PoLiS distance achieved on the composite image (RGB + nDSM) 

is 0.54, considerably smaller than 0.87 for the RGB image showing nDSM improves the similarity. The 

improvement could also be seen in the qualitative analysis, which shows that the nDSM reduced the false 

positives and produced better-aligned polygons. 
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6.2. Suggestions for future works 

For future work, we plan to improve the framework in the following directions:  

 

• Use different branches to takes different data as input (multi-modal network), where one branch will 

take the nDSM as input, and another branch will take the aerial image (RGB) as input. Thus, it will 

perform the fusion in the feature level instead of in the image level, fusing the features from two data 

types in the network. Different fusion strategies could be applied, such as middle fusion or late fusion. 

 

• Simplify the current model or design a new model. The model can reach high accuracy only with the 

height information of nDSM. The nDSM contains more straightforward and less complicated 

information than aerial images. We hypothesize that a lightweight model could extract buildings with 

comparable accuracy. Hence, simplify the current model or design a new model with a shallower 

structure could be a possible direction. 

 

• Fine-tuning the method. The method is comprised of two parts: an FCN and a polygonization algorithm. 

The training strategy for the FCN could be refined. For polygonization, the energy function is critical 

for the ACM to optimizing the building contour. The default coefficients for energy items in the energy 

function are adopted. As our dataset is different from the open public datasets used by the original 

method, tuning these coefficients may result in better results. 

 

• Test the generalization and transferability of the model in other cities. 
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