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ABSTRACT

Opencast coal mining is the most economical and also the most intense mining practice that drasti-
cally alters the land use land cover (LULC) in and around the mining areas. Coal fires are found in
coal mines where combustion of coal is extrinsically affected by mining practices. Recent launches
of Earth Observation satellites have provided open access to their data thereby giving the oppor-
tunity to continuously map opencast coal mines, coal fires and their rapid changes using relatively
high spatial and temporal resolution images. This study focuses on using the computational re-
sources of Google Earth Engine (GEE) and its cloud platform for developing web-based applica-
tion to demonstrate the characteristics of opencast coal mining at Jharia coal field (JCF) in India.
Openly accessible multi-temporal data from Sentinel-2 and ECOsystem Spaceborne Thermal Ra-
diometer Experiment on Space Station (ECOSTRESS) were used to respectively characterize ac-
tive coal mining areas, areas affected by coal fires, and their changes between 2019 and 2020.
A Random Forest (RF) classification algorithm was used to classify coal mining areas and other
LULC classes with samples generated from random sampling approach, and applying non-heuristic
data balancing techniques to address class imbalance problem. The classification achieved overall
accuracy of 73.09% and 76.5% for 2019 and 2020 respectively. The change detection results found
that the coal mining activity decreased from 16.30 km2 in 2019 to 12.51 km2 in 2020.
Two dynamic threshold based methods were applied to detect areas affected by coal fires using
Land Surface Temperature (LST) images. First method used images with minimum cloud cover
and achieved 90% accuracy at detecting coal fires in 2019. A detection ratio was calculated to
measure how consistently the pixels were detected as coal fires. The first method achieved 70%
accuracy for a detection ratio above 0.5. The LST variability in day and night time images showed
that the diurnal images could be independently analysed. The second method used all images to
create a 95th percentile composite of day and night images, and achieved 75% accuracy at detecting
coal fires. Both methods showed an increase in the extent of the coal fires during the observation
period with new fires propagating around the active fires.
The results of this study show effective use of medium-high resolution Sentinel-2 imagery and
fine-scale ECOSTRESS LST images to provide consistent information regarding changes in coal
mining areas and coal fire areas. The ability to process high volume of data and perform anal-
yses in real-time shows a considerable advance in remote sensing technology towards adopting
cloud-based applications in mining operations. Integration of these mining characteristics in an
interactive, free and openly accessible application can facilitate stakeholders and policy makers
in informed decision making and planning mining operations. The application also provides a
framework to facilitate future research through sharing of scripts and ensuring reproducibility.
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Chapter 1

Introduction

Opencast coal mining is one of the most intensive forms of landscape change moderated by hu-
mans (Kuenzer, 2015). Mining significantly changes both natural and anthropogenic systems in
the mining and its surrounding areas. The communities living near or over the resources are af-
fected both directly and indirectly by mining operations (Ghosh, 1991; Hina, D., K., & Anupma,
2015). Therefore, it is important to monitor the mining areas which require time series analysis.
Currently a lot of satellite based observations are taking place but processing these time series data
with conventional approach is not only time consuming but also requires computational resources
(Tamiminia et al., 2020). Cloud based platforms are able to provide necessary tools to process such
data and can be customized for instance solution (Kumar & Mutanga, 2018). These customized
solutions can aid in the visualization, analysis and generation of quick reports from time series
satellite data. The derived outputs from such solutions can not only provide decision reference
data for the mining industry but also influence environmental protection policies (Amani et al.,
2020).

1.1 BACKGROUND

One version of the story of humanity is the story of extraction. Extraction of resources to make
tools; generate energy to make more tools; a continuous cycle.
Coal has been a source for energy consumption for a long time. Activities such as opencast mining
and underground mining are practiced to extract coal. The effects of the opencast mining such as
land cover-land use (LULC) change, coal fires and land subsidence are predominantly found on
the land surface. Land subsidence is lowering of the earth surface as a result of mining operations.
Distinguishing these effects in spatial and temporal dimensions is a task that is particularly suited to
remote sensing (RS) which has advantages of repeated data acquisition, its comprehensive view and
data processing. There are also multiple challenges associated with operationalizing remote sensing
applications for the mining industry. Remote sensing assessments require skills and knowledge to
interpret output of analysis, and derive meaningful results (McKenna, Lechner, Phinn, & Erskine,
2020). On the ground examples of how remote sensing has been integrated into operations are still
rare and the scientific literature is dominated by one-off research studies that are limited to a single
time.

1.2 MOTIVATION AND PROBLEM STATEMENT

Mining is a major contributor to economy and requires continuous information about attributes
such as area, change, reclamation, restoration, social and economic impacts (de Lucia Lobo, Souza-
Filho, de Moraes Novo, Carlos, & Barbosa, 2018). Accurate mapping of mining areas can provide
such missing information (Chen, Li, He, & Wang, 2017). This lack of information can also be
explained due to the scale of the mining activity. Significant changes in the mining activity occur
at smaller areas (≤10000m2) which can be detected by satellite images with resolution ≤20m (de
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Lucia Lobo et al., 2018). Coal fires in the mining areas can be described as extremely weak anoma-
lies when compared to forest fire detection in thermal remote sensing with thermal infrared (TIR)
images (Kuenzer, 2015). Coal fires can be characterized as surface and sub-surface fires (Kuenzer,
2015). These fires burn at different depths and at different intensities. Coal fires also occur at coal
dump and coal debris areas. Mining operations, fire mitigation measures, and distribution of coal
seams, affect temporal intensity and propagation of these fires (Mujawdiya, Chatterjee, & Kumar,
2020; Raju, Gupta, & Prakash, 2013). This has made detection of coal fires in thermal remote sens-
ing very difficult (Kuenzer, 2015; Prakash & Gupta, 1998; Zhang, 2004). Some of these fires have
spatial extent smaller than the pixel size of a TIR image and few sub-surface fires produce weak
anomaly on the surface which are difficult to detect (Biswal, Raval, & Gorai, 2019; Kuenzer, 2015).
Coal fire detection and monitoring with thermal remote sensing have emphasised the importance
of images with high temporal and spatial resolution (Chatterjee, 2006; Du et al., 2015; Huo et al.,
2015; F. Li, Yang, Liu, Sun, & Liu, 2018; Prakash & Gupta, 1998; Raju et al., 2013; Zhang, 2004).
Landsat provides spatial resolution (>30-m ) but at low temporal resolution (16 days). Visible
Infrared Imaging Radiometer Suite (VIIRS) and Moderate resolution Imaging Spectroradiometer
(MODIS) provide high temporal resolution (everyday) but low spatial resolution (≥375-m). Since
the quality of these images are affected by clouds, the number of images available for analysis is
further limited. Until recently, availability of images at both high spatial and temporal resolution
were limited. Sentinel-2 constellation of satellites, from 2017 onwards, provide higher spatial (≤20-
m), temporal (5 days) and spectral resolution data suitable for mapping mining areas (Chen et al.,
2017; de Lucia Lobo et al., 2018). The ECOsystem Spaceborne Thermal Radiometer Experiment
on Space Station (ECOSTRESS), launched in 2018 is a multispectral thermal infrared radiometer
instrument aboard the International Space Station (ISS). It has an irregular orbit, collects data at
different times a day, and with a revisit time less than 5 days. The data is made available at 70-m
resolution. This provides good spatial and temporal resolution along with diurnal cycle acquisi-
tion (Fisher et al., 2020). The primary objective of the mission is to measure evapotranspiration to
monitor the health of plants (Fisher et al., 2020). The retrieved data products such as Land Surface
Temperature (LST) have been used to monitor forest fires in California (NASA/JPL-Caltech, 2020)
and test its efficacy on thermal anomalies over Italian volcanic and geothermal areas (Silvestri et al.,
2020). However, there have been no studies using ECOSTRESS for coal fire detection. Thanks
to European Space Agency (ESA) and National Aeronautics and Space Administration (NASA),
the satellite data is publicly available for use in various studies and applications (Arévalo, Bullock,
Woodcock, & Olofsson, 2020; Kumar & Mutanga, 2018).
With increase in high resolution and multi-temporal data made available, many at global scale,
comes the challenge of implementing RS techniques (Sun & Scanlon, 2019). The challenges of pro-
cessing and analysing such a high volume of data requires high computational resources along with
an architecture to implement RS techniques in safe, reproducible and efficient ways. Cloud com-
puting platforms such as Google Earth Engine (GEE) , Amazon Web Services, Microsoft Azure
Cloud Services have been addressing this problem by providing architecture and tools to build cus-
tomised RS based studies and applications (Gomes, Queiroz, & Ferreira, 2020). GEE, launched
by Google in 2010 is more popular among the RS researchers with over 400 applications in vari-
ous domains such as agriculture, land cover, vegetation, hydrology, image processing, urban, and
pedosphere, published within a decade (Amani et al., 2020). One of the reasons for emergence
of such applications is largely due to availability of pre-built functions which can be easily under-
stood by the user, and can be used to build web-based applications to communicate research output
(Gorelick et al., 2017). Pericak et al. (2018) developed a similar application to map yearly extent
of surface coal mining over an 83,000 km2 Appalachia, using Landsat and GEE.
Jharia coalfield (JCF) as shown in Figure 3.1 is one of the major sources of coking coal in India with
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a history of mining for more than 100 years. The active mining area covers 2.96% of the 447 km2

area and over the years mining areas have increased by taking up new areas for opencast mining
by Bharat Coking Coal Limited (BCCL) (BCCL/CMPDI, 2020). JCF also has a history of coal
fires for over 100 years which has now affected around 70% of total coal mines (Pandey, Kumar,
Panigrahi, & Singh, 2017). Effects of mining such as land subsidence has also affected land surface
around the mining areas as well as human settlements around it (Chatterjee, 2006; Kuenzer, 2015).
The scientific literature has been inundated with studies at the Jharia coalfield (Biswal & Gorai,
2020; Gautam, Singh, Mittal, & Sajin, 2008; R K Mishra, Bahuguna, & Singh, 2011; Mujawdiya
et al., 2020; Mukherjee, Mukherjee, Chakravarty, & Aikat, 2019). All studies relate to individ-
ual characteristics of mining. Application of RS methods which can provide accurate tools has
increased the demand for timely information in near real time on the nature and extent of LULC
changes in mining areas and coal fire areas (Karan, Samadder, & Maiti, 2016).

1.3 RESEARCH IDENTIFICATION

Integrating different mining characteristics into an RS based application can provide a snapshot of
the effects related to mining. Satellite data from the Sentinel-2 and ECOSTRESS missions that are
available and openly accessible can be used to map LULC classes and coal fires, monitor change
in mining areas and coal fire areas. With the help of resources made available by cloud comput-
ing platforms such as GEE, the application can be used as tool by the mining industry and gov-
ernment organisations to monitor the effects of mining which would influence decision making
by the stakeholders for planning, mitigation, reclamation, restoration, rehabilitation and closure
measures. This would also enable sharing of scripts and data to ensure reproducibility.

1.3.1 Research Objectives

The main objective is to develop a tool to monitor opencast mining characteristics from time
series multi-temporal satellite data on GEE platform. This study also aims to attain the following
sub-objectives while pursuing the main objective.

1. To assess the change in the opencast(coal) mining area using Sentinel-2 time series multi-
temporal data

2. To assess the potential of ECOSTRESS data to identify locations affected by coal fires

1.3.2 Research Questions

1. How has the surface area of the mines changed in the study area?

2. Which ECOSTRESS images are more effective in identifying coal fires?

3. Is there any relationship between LST and the observed temperature at the coal fire loca-
tions?

1.3.3 Contribution to science and innovation

Developing the tool using openly accessible data that combines the analysis of opencast mining
characteristics on a cloud-based platform such as Google Earth Engine. Until now, no research
study has used ECOSTRESS data as a potential data to delineate coal fire locations.
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1.4 THESIS STRUCTURE

This document is structured as follows. A literature review and related work is provided in Chap-
ter 2. Chapter 3 describes the study area, and the satellite imagery used. This is followed by
Chapter 4 explaining methodology adopted in the study. Results of the LULC classification, coal
fire detection, validation, and change detection are shown in Chapter 5. Interpretation of results
and its context with previous studies are discussed in Chapter 6. Finally, Chapter 7 summarises
the study by answering research questions, and suggesting future recommendations.
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Chapter 2

Literature review

2.1 RELATED WORK

Various studies have used supervised and unsupervised methods for land cover-land use classifica-
tion with time series images (Hina et al., 2015; Müller, Rufin, Griffiths, Siqueira, & Hostert, 2015;
Petropoulos, Partsinevelos, & Mitraka, 2013). One of the limiting factors that affect choosing im-
ages is cloud cover. One method is using a temporal aggregation method, where mean and median
are derived from the time series images (Beckschäfer, 2017). Another method is using only cloud
free images to make time series data (de Lucia Lobo et al., 2018; Griffiths, van der Linden, Kuem-
merle, & Hostert, 2013). do Nascimento Bendini et al. (2019) proposed using a gaussian function
as kernel smoother to fill the data gaps in cloud covered pixels to create dense time series. These
methods have been used with Landsat, and Sentinel-2 satellite images. Belgiu and Stein (2019) re-
view methods such as spatiotemporal image fusion are used to blend fine spatial resolution images
with high temporal resolution images to fill data gaps due to presence of clouds.
Use of Machine Learning (ML) techniques has been effective in mapping coal mining areas and
LULC classification and monitoring (de Lucia Lobo et al., 2018; Demirel, Emil, & Duzgun, 2011;
Mukherjee et al., 2019). These studies have also emphasised the importance of using high spatial
resolution multispectral satellite images for identifying changes in the opencast coal mine areas.
Indices such as Normalized Difference Vegetation Index (NDVI) and Normalized Difference Wa-
ter Index (NDWI) have been proposed to discriminate land cover classes in mining areas using
spectral bands (Karan et al., 2016; Xianju Li, Chen, Cheng, & Wang, 2016; Nascimento et al.,
2020). These indices are effective in classifying vegetation areas and water bodies. Mukherjee et al.
(2019) proposed a Clay Alunite Index (CLAL), derived from normalized difference of two short
wave infrared bands of Landsat-8 to detect opencast coal mines and delineate coal quarry and coal
overburden dump regions with average accuracy of 86.24%. This index could be used for classifi-
cation and monitoring of opencast mining regions.
For LULC classification of mining areas, ML classifiers such as Support Vector Machine (SVM)
and Classification And Regression Trees (CART) have been used by de Lucia Lobo et al. (2018),
Demirel et al. (2011), and Petropoulos et al. (2013). Validation of classification results in these
studies were performed with selection of high resolution satellite images of QuickBird, RapidEye,
IKONOS, WorldView-2 and Google Earth. Xianju Li et al. (2016) made comparisons of ML algo-
rithms such as Random Forest (RF), SVM, and Artificial Neural Network (ANN) for classification
of opencast mining areas and agricultural landscapes. The study found that RF had greater accu-
racy followed by SVM and ANN. RF was also less sensitive to feature selection. However, SVM
was effective in classifying only opencast mining areas. The study suggested using spectral bands
in feature selection along with derived indices. The study also raises the issue of class imbalance
of training samples where samples that usually represent classes of interest are under-represented
compared to classes that dominate the landscape are over-represented. ML classifiers such as RF
and SVM are sensitive to such class imbalance and do not yield high accuracy (Waldner, Chen,
Lawes, & Hochman, 2019). Waldner et al. (2019) suggest optimal balancing methods after testing
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various undersampling and oversampling methods to balance training data for crop mapping, us-
ing RF and SVM algorithms.
Biswal et al. (2019) summarise various studies performed on detection and delineation of coal fires
using remote sensed data. One of the methods is to derive Land Surface Temperature (LST) using
thermal bands from satellite images such as Landsat, MODIS, VIIRS and ASTER. MODIS offers
LST products but they are at 1km resolution. Landsat images have been widely used and algo-
rithms proposed by Ermida, Soares, Mantas, Göttsche, and Trigo (2020) and Wang et al. (2020)
use GEE Landsat images to estimate LST. ECOSTRESS is a relatively new mission and offers de-
rived LST from 2018 at 70-m resolution and higher temporal resolution. Such high spatiotemporal
resolution data enabled G. Hulley, Shivers, Wetherley, and Cudd (2019) to identify communities
in Los Angeles city that were vulnerable to urban heat island effects. Silvestri et al. (2020) used
ECOSTRESS for studying thermal anomalies over volcanic and geothermal areas in Italy. The
study also compared LST estimations of ASTER and Landsat 8 with ECOSTRESS and found
them agreeable. M. C. Anderson et al. (2021) proposed data fusion algorithm to fuse ECOSTRESS,
Landsat and MODIS to generate high spatial and temporal resolution time series for mapping evap-
otranspiration.
Effective method to detect the presence of coal fires is by identifying anomalies in LST with the
surrounding areas. One approach is to use field data of coal fire location and temperatures to cal-
ibrate the model to delineate fire zones (Pandey et al., 2017) and monitor its trend (Mujawdiya
et al., 2020). Another is to use threshold technique to identify temperature range in LST of each
acquired image (Rakesh Kumar Mishra, Pandey, Pandey, Kumar, & Roy, 2020; Prakash & Gupta,
1999; Raju et al., 2013). This approach relies on distribution of LST values in the images. The
distribution of LST values can vary with seasonal differences, day and night time acquisition and
cloud cover (Du et al., 2015; Huo et al., 2015; F. Li et al., 2018; Rakesh Kumar Mishra et al., 2020).
Du et al. (2015) proposed a Self-Adaptive Gradient-Based Threshold method for coal fire detection
from LST derived from ASTER data. It also uses mathematical morphology thinning method to
create boundaries around the coal fire anomalies. This method has been used by F. Li et al. (2018)
to identify coal fire areas using night time images with 92% accuracy.

2.2 LULC CLASSIFICATION IN MINING AREAS

LULC classification is a process of assigning land cover classes to pixels in order to categorize
them. Extracting LULC data from remote sensing images requires good classification practises. It
involves complex processes and requires consideration of many factors such as suitable classifica-
tion system, choice of remote sensing data, sampling design, image processing, feature extraction,
selection of classifier and its parameters, post-processing and accuracy assessment (Lu, Mausel,
Brondízio, & Moran, 2004).
Detection of coal mining areas has various applications: LULC mapping, change detection in
mining areas, coal fire detection and monitoring, management of mining waste, reclamation and
restoration (Mukherjee et al., 2019). Mapping mining areas has been considered challenging in
various areas across the world (de Lucia Lobo et al., 2018; Demirel et al., 2011). Mining areas are
complex and continuously changing landscapes across different regions of the world. Some sur-
face mining regions are located near towns and cities (Hina et al., 2015; Mukherjee et al., 2019;
Prakash & Gupta, 1998). In certain regions, mining areas can be visually distinguished, but de-
tection through algorithms have challenges. Differentiating active, abandoned and closed mines
with multispectral data is difficult as they share similar spectral signatures. Numerous studies have
used classification techniques such as unsupervised, supervised, parametric, non-parametric, pixel-
based, object-based in mapping mining areas (Chen et al., 2017; de Lucia Lobo et al., 2018; Demirel
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et al., 2011; Xianju Li et al., 2016; Nascimento et al., 2020; Prakash & Gupta, 1998; Ranjan, Sa-
hoo, & Gorai, 2021). It is important to select an appropriate classification approach based on the
nature of the problem (Lu et al., 2004). Use of spectral signatures from multispectral images has
been emphasized to distinguish mining areas. Indices such as NDVI, Enhanced Vegetation Index
(EVI), NDWI, Normalized Difference Built-up Index (NDBI), and CLAL have been widely used
to distinguish vegetation, water bodies, artificial surfaces and mining regions (Mukherjee et al.,
2019). The values of these indices vary with seasons and different climatic conditions. The prop-
erties of these indices and spectral bands can be captured with multitemporal image composites
and in time series to aid supervised classification in applications of LULC mapping, crop monitor-
ing, crop classification and mapping urban areas (Abdi, 2019; Kollert, Bremer, Löw, & Rutzinger,
2021; Pu et al., 2020). Demirel et al. (2011) and Petropoulos et al. (2013) used SVM supervised
ML algorithms to map surface coal mines in Turkey and Greece respectively, using multitemporal
imagery, and quantified change in mining areas with post classification change analysis.

2.3 CLASS IMBALANCE

Most prediction based learning algorithms assume that the training data they receive for learning
is balanced. But in real world data there are always classes represented by a larger number of sam-
ples compared to other classes (Batista, Prati, & Monard, 2004). This is called a class imbalance
problem. The imbalances can be found in datasets with binary classes where ML classifiers are di-
agnosing diseases, filtering email spams, fault diagnosis and anomaly detection. This is also evident
in datasets for LULC classification with multiple classes (Waldner et al., 2019). Some classes in the
study area usually cover smaller regions while others cover larger regions, which makes it difficult
to obtain an equal number of samples for all classes, especially in a random sampling design. A
multiclass imbalanced dataset is characterized by majority classes that have large instances and mi-
nority classes with fewer ones. Most ML classifiers are implicitly or explicitly designed to decrease
overall error rate which guides them towards prediction of classes that are over represented in the
dataset (Naboureh, Ebrahimy, Azadbakht, Bian, & Amani, 2020).
There are different approaches to solving this problem such as ensemble techniques and algorithm-
based approaches, and data resampling (Sharififar, Sarmadian, & Minasny, 2019). Ensemble tech-
niques involve building an ensemble of classifiers rather than one classifier. Here the classifiers such
as AdaBoost, RUSBoost are trained to pre-process data before the training stage of the classifier
(López, Fernández, García, Palade, & Herrera, 2013). Algorithm-based approach involves modi-
fying existing classifiers by enhancing their discriminatory power to separate classes through meth-
ods of objective transformation method, kernel transformation method, clustering algorithm, and
task decomposition strategies (Haixiang et al., 2017). Data resampling approach is based on two
baseline non heuristic methods, Random undersampling and Random oversampling (Batista et al.,
2004). Data resampling is however an easier approach to apply (Waldner et al., 2019). Random
undersampling (RUS) balances class distribution by randomly removing samples from majority
classes. Random oversampling (ROS) balances class distribution by randomly replicating samples
with replacement, from minority classes. Although both methods increase accuracy of classifica-
tion, particularly for minority classes, there are drawbacks associated with them. RUS can discard
useful information from the removed classes and ROS can increase likelihood of overfitting with
replicated instances of the same sample (Batista et al., 2004). Several heuristic based approaches
have been developed to address this problem. Batista et al. (2004) evaluated performances of these
methods and one the results was that ROS was ranked above RUS. Data balancing methods are
known to increase overall accuracy of the classification and particularly increase producer’s accu-
racy of the minority classes (Waldner et al., 2019). Two metrics: Overall accuracy (Equation 4.3),
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which favors majority classes; Geometric mean of producer’s accuracy (Equation 4.6), which is
sensitive to minority classes, are proposed to evaluate performance of the classifier providing a
summary of accuracy of both majority and minority classes when compared to unbalanced classi-
fication (Waldner et al., 2019). The study used full balancing, static and partial balancing methods
to generate imbalance datasets to compare different balancing methods on RF and SVM classifiers.
The study found that heuristic based methods outperform non-heuristic methods but ROS and
RUS methods would still perform better than unbalanced dataset.

2.4 RANDOM FOREST CLASSIFIER

Machine learning (ML) classifiers can be broadly classified into parametric and non parametric.
Non- parametric classifiers such as Random Forests (RF), Support Vector Machines (SVM), CART
have been used in LULC classification with highly accurate results (Foody & Mathur, 2004; Xi-
anju Li et al., 2016; Petropoulos et al., 2013; Teluguntla et al., 2018).
RF has been a popular classifier due to its high performance and low sensitivity to noise, and is less
sensitive to feature selection. Random forests is one of the most popular ML classifiers used for
muti-temporal LULC classification (Talukdar et al., 2020). Xianju Li et al. (2016) made compar-
isons of Random Forests (RF), SVM, and Artificial Neural Network (ANN) ML algorithms for
classification of opencast mining areas and agricultural landscapes. The study found that RF had
greater accuracy followed by SVM and ANN. Similar findings were reported when comparing ML
algorithms for LULC classification (Talukdar et al., 2020). However, the performance is affected
when learning from extremely imbalanced datasets which favors prediction accuracy of majority
class over minority class (Douzas, Bacao, Fonseca, & Khudinyan, 2019).

2.5 CLASSIFICATION ON GEE

Several studies have emphasized the use of multi-temporal satellite images in remote sensing appli-
cations (Tamiminia et al., 2020). Multi-temporal images hosted on GEE have been used in 96% of
the published studies between 2011 and 2017, with LULC applications accounting for 10% of them
(Kumar & Mutanga, 2018). The classification approach is mostly pixel-based as GEE users do not
have access to object based analysis functionalities (Kumar & Mutanga, 2018). GEE provides non
parametric algorithms such as DT, CART, KNN, RF, non-linear SVM and ANN classifiers along
with integration of TensorFlow capabilities that have been used in various LULC based studies
(Gorelick et al., 2017).
One of the important steps in overall classification methodology is pre-processing images. Agen-
cies provide tools to automate the process so that multiple images could be processed in limited
time. Some platforms provide pre-processed data at various levels of readiness, also known as
Analysis Ready Data (ARD). However, the level of readiness varies depending on the user’s needs,
which would require additional tools and hardware in processing the images. GEE provides a
cloud-based platform where a wide array of such data sets, most at planetary scale, are made avail-
able with tools to process the images. The platform hosts remotely sensed data such as Landsat,
MODIS, Sentinel - 1, 2, 3, 5-P, ALOS and NOAA AVHRR, spanning over 40 years along with
ARD such as EVI, NDVI, LST, DEM at global scale (Gorelick et al., 2017). A number of studies
have studied LULC dynamics at different scales. Lee, Cardille, and Coe (2018) fused Landsat data
with GlobCover data to improve spatial resolution of data from 300-m to 30-m for Brazil. Hansen
et al. (2013), in a landmark study, used computational power of GEE to process 654,178 Landsat
images to identify global forest change from 2000 to 2012 at 30-m resolution. According to the
study, it took about 100 hours of computation on GEE to generate results. ML classifiers require
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high computational power and GEE provides unprecedented opportunities to use this platform
for analysis, visualization and applications.

2.6 LAND SURFACE TEMPERATURE

To feel if a surface is hot or cold to touch, we may sometimes only need to put our hand near the
surface of the object to feel rather than touching it. Land Surface Temperature (LST) is a simi-
lar variable that tells us about the Earth’s surface. It is different from the temperature of the air
recorded by a weather station on the surface. LST, for bare soil is temperature above its surface,
while for a tree, it is the temperature over the canopy (Glynn C Hulley et al., 2019). Radiative en-
ergy emitted by Earth’s surface can be captured in the thermal infrared (TIR) spectrum (8-12µm).
For space-borne instruments with different sensors in this spectrum, LST is calculated by estimat-
ing surface emitted radiance after accounting for atmospheric correction. The radiation emitted by
the surface is different for TIR wavelengths, and is a function of temperature and emissivity. There
are deterministic and non-deterministic approaches for LST calculation. F. Li et al. (2018) provide
a summary of satellite-derived LST retrieval algorithms. LST retrievals in the TIR have lower un-
certainties and higher spatial resolution compared to the Microwave spectrum (3-5µm), but are
sensitive to presence of clouds. Satellite LST products such as MOD11A1, VIIRS LST are accom-
panied with quality information, often as bit flags which indicate which LST pixels can be used
with sufficient confidence (Hulley and Ghent, 2019). LST has been used in various applications
such as crop stress monitoring, Urban Heat Island (UHI) effect, drought monitoring, tracking
vector borne diseases and volcanology. MODIS developed a global disturbance index using max-
imum LST values along with EVI to detect ecosystem differences such as occurrence of wildfires
in a forest (Glynn C Hulley et al., 2019). LST values on different land surfaces are affected by the
solar illumination. Different surfaces have heat absorption properties and stored heat is dissipated
at different rates (Chatterjee, 2006; Glynn C Hulley et al., 2019). So, LST values over the same sur-
face can record different temperatures in images acquired at different times within 24 hours. Image
acquisition time plays an important role in studies that characterize thermal anomalies, who pre-
fer images acquired at a particular time of day or night, at different temporal resolutions (Biswal
& Gorai, 2020; Chatterjee, 2006; Huo et al., 2014; Mujawdiya et al., 2020; Raju et al., 2013).
LST has also been used to detect coal fires in different regions of the world. Coal fires can be cat-
egorized into surface and subsurface fires (Prakash & Gupta, 1999). Coal fire anomaly detection
, especially of the subsurface fires, are considered difficult to be identified with thermal remote
sensing (Kuenzer, 2015). Several methods are employed to detect fires. Most studies used field
observations to characterise and delineate areas with coal fires (Gautam et al., 2008). Mujawdiya
et al. (2020) studied temporal variations of recorded coal fire and non coal fire locations from 2001
to 2017 using MODIS night time LST products. The intensity of fires varied on an annual basis
within and across the fire locations with a maximum annual increase of 0.97K change observed
in a growing fire. Methods such as threshold techniques are used to identify and delineate fires
(Biswal & Gorai, 2020; Rakesh Kumar Mishra et al., 2020; Prakash & Gupta, 1998). This involves
identifying the threshold of LST values in a cloud free image and pixels above the threshold are
delineated as coal fires. These studies used images with up to 1% cloud coverage which affects
availability of such images at required temporal resolutions.

2.7 CHANGE DETECTION

Change detection is a process of identifying changes in characteristics of a feature from observa-
tions recorded at various points in time (Singh, 1989). Timely information on changes occurring
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in the features provide important information in understanding the inherent drivers and also assist
in decision making. Availability of RS data at different spatial, temporal and spectral resolutions
can be attributed to its influence in change detection studies (Ban & Yousif, 2016). For change
detection with multi-temporal images, it is necessary for images to be preprocessed to ensure they
are spatially and radiometrically comparable (Lu et al., 2004). Preprocessing steps involve geo-
metric corrections such as image registration and orthorectification, and radiometric corrections
such as atmospheric corrections. One method of deriving change variables from multi-temporal
RS images is by comparing two images. A change image is generated to increase contrast between
two images representing changed and unchanged areas. A change map is then generated by thresh-
olding or by classifying the image with unsupervised or supervised techniques (Ban & Yousif,
2016). Lu et al. (2004) provides a comprehensive review of various change detection techniques
to compare multi-temporal optical RS images. Prakash and Gupta (1998) used image ratioing and
image difference methods to observe changes in coal mine areas in JCF between 1990 and 1994.
Image ratioing was found to reduce shadows but produced an overestimated change results. Im-
age differencing between two transformed NDVI images showed changed areas of vegetation and
mining areas, but produced random noise in the image. Validation of the change areas was done
using field data. Change detection using such thresholding techniques generally have difficulty in
identifying true changed areas from detected change areas (Lu et al., 2004). Since, there is incon-
sistency in availability of multi-temporal images for successive years, change detection based on
classification methods is recommended (Ban & Yousif, 2016; Hina et al., 2015; Lu et al., 2004). Of
various classification methods, a post-classification comparison logic has been a popular method
for change detection analysis (Olofsson, Foody, Stehman, & Woodcock, 2013). The supervised
change detection is carried out by classifying each multi-temporal image independently, using the
same classification scheme. A pixel-wise comparison of two images generates a transition matrix
(Sunar, 1998), also known as change matrix, from which magnitude (areal extent of change) and
nature of change (stable, unstable, no change) can be determined (Ban & Yousif, 2016; Hina et
al., 2015; Olofsson et al., 2013). Post-classification change detection has been used to character-
ize changes in coal mining surfaces (Garai & Narayana, 2018; Hina et al., 2015; Pei et al., 2017;
Petropoulos et al., 2013).
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Chapter 3

Study area and datasets

3.1 STUDY AREA

The study area, Jharia coalfield (JCF) is located in Dhanbad district of Jharkhand state in India
between 86.1° to 86.5° E longitude and 23.62° to 23.85° N latitude covering an area of 447 km2

(Figure 3.1). JCF is the largest producer of coking coal in India consisting of large underground
and opencast mines. Dhanbad is the nearest city which is also known as the “Coal capital of In-
dia”. Situated in the Damodar river basin, the study area has a history of over a century of diverse
opencast as well as underground mining activities. There are human settlements inside the study
area that are near and over the mining sites.
In 1971, as a part of nationalisation drive by the Indian government, Bharat Coking Coal Limited

.

Figure 3.1: False color composite map showing study area of Jharia coalfield, India. Data: Sentinel-
2 March, 2020 from https://earthexplorer.usgs.gov/. Map CRS: WGS84. India map source: Saini,
Gupta, and Arora (2016)
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(BCCL) was formed. BCCL inherited about 396 poorly operated collieries from previous private
ownership, many of which were affected by coal fire (BCCL, 2008). The coal fires in JCF have
been reported since 1916. The fires are characterised as surface and subsurface fires with depths
upto 40m (Prakash, Gens, Prasad, Raju, & Gupta, 2013). 67 sites have been affected by coal fires
(Figure 3.2), predominantly clustered in eastern part of JCF.
The fires and related land subsidence have resulted in fissure developments in the ground, build-
ings, roads, bridges and other structures. Field images in Stracher, Prakash, and Sokol (2013) and
BCCL (2008), illustrate the extent of damages and accounts of human casualty in JCF due to fire
and subsidence effects. Underground fire due to spontaneous combustion of coal has caused fur-
ther subsidence causing considerable loss to lives and property. Besides causing damage to the coal
reserves, the fire damages have extended towards lands, buildings and rail-road networks.

.

Figure 3.2: Collieries affected by coal fires in JCF. Image source: BCCL (2008)

3.2 DATASETS USED

3.2.1 Sentinel 2

Sentinel 2 is a part of the Earth observation mission from the Copernicus programme. It has
launched two satellites Sentinel 2A in 2015 and Sentinel 2B in 2017. The satellites with 5 day
revisit time, carry Multispectral Imager (MSI) sensor that deliver 13 spectral bands from 10m to
60m spatial resolution (Table 3.2). This data is openly accessible on ESA and also as public data
catalog on the GEE platform. The data is available in two levels: Level 1C for Top of Atmosphere
(TOA) and Level 2A for Bottom of Atmosphere (BOA) reflectance images. Unlike BOA images,
TOA images are not atmospherically corrected and the correction cannot be carried out on the
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GEE environment. So, BOA images (Table 3.1) which are available from January 2019 onwards
for the study area were considered in this study.

Table 3.1 Sentinel 2 and ECOSTRESS images available for the study area without cloud masking.

Year Sentinel 2 images on GEE Number of ECOSTRESS LST images
2019 146 42
2020 146 42

Table 3.2 Spectral bands of Sentinel 2 imagery

Name Wavelength (nm) Resolution (m) Spectral description
B2 496.6-492.1 10 Blue
B3 560-559 10 Green
B4 664.5-665 10 Red
B5 703.9-703.8 20 Red edge 1
B6 740.2-739.1 20 Red edge 2
B7 782.5-779.7 20 Red edge 3
B8 835.1-833 10 Near Infrared (NIR)
B8A 864.8-864 20 Red edge 4
B9 945-943.2 60 Water vapor
B10 1373.5-1376.9 60 Cirrus
B11 1613.7-1610.4 20 SWIR 1
B12 2202.4-2185.7 20 SWIR 2
QA60 - 60 Cloud mask

3.2.2 ECOSTRESS

ECOSTRESS mission, onboard ISS includes a TIR whiskbroom scanner with five spectral bands
from wavelengths 8 to 12.5µm and an additional band at 1.6µm for geolocation and cloud detec-
tion. The Level 2 product (ECO2LSTE) generated by ECOSTRESS has Land Surface Temperature
(LST), five emissivity bands, emissivity error bands and quality control mask. The pixels are ag-
gregated to ∼70m x 70m, which can be visualized as the size of a football field. The 8.29µm and
9.2µm bands are not available after May 15, 2019 due to an anomaly detected in the instrument,
and respective band values in ECO2LSTE are filled with dummy values (Glynn C. Hulley et al.,
2021).
LPDAAC distributes ECOSTRESS swath based data products archived in HD5 format. For ev-
ery ECO2LSTE data product (Hook & Hulley, 2019b), a corresponding ECO1BGEO (Hook,
Smyth, Logan, & Johnson, 2019) and ECO2CLD (Hook & Hulley, 2019a) product is necessary
for processing. A python script provided by LPDAAC (Krehbiel, 2021) uses the latitude and lon-
gitude arrays in ECO1BGEO to generate projected GeoTIFF images in a geographic coordinate
system (EPSG:4326). Each product generates 16 individual GeoTIFF files, which were stacked and
cropped to the extent of the study area to create one image for every acquisition. A combination
of python and R (R Core Team, 2021) scripts were used to enable batch processing of data. A total
of 84 images (Appendix A.1) were acquired over the study area during the period. All images were
uploaded into GEE asset as Image Collection.
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Table 3.3 8-bit encoding for cloud and water mask of ECOSTRESS L2 Cloud Mask Product
(ECO2CLD) SDS

Bit field Description Result

0 Cloud Mask Flag
0 = not determined
1 = determined

1 Cloud, if either one of bits 2, 3, or 4 set.
0 = no
1 = yes

2 Thermal Brightness test
0 = no
1 = yes

3 Thermal Difference test 1
0 = no
1 = yes

4 Thermal Difference test 2
0 = no
1 = yes

5 land/water mask
0 = land
1 = water

Indicators of quality of ECO2LSTE product are described in the quality control (QC) Scien-
tific Data Sets (SDS). Description of the 8-bit cloud product, ECO2CLD SDS is provided in Table
3.3. Setting bit 1, masks pixels that were found as clouds by any of the three individual cloud
detection tests (Thermal brightness test and two thermal difference tests). Bits 1 and 5 were set to
mask pixels detected as cloud and water respectively. Cloud masking was executed in GEE.
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Chapter 4

Methodology

The overall methodology (Figure 4.1) adopted to achieve research objectives is described in this
chapter. The overall process was executed in GEE. Individual processes adopted are described in
each section.

Figure 4.1: Overall methodology of the study

4.1 DATA PREPARATION

4.1.1 Sentinel 2

Sentinel 2 Surface reflectance image collection hosted on GEE platform was used for LULC clas-
sification. Images from 2019 and 2020 were filtered from the image collection and multi-temporal
images were integrated for the years. The composite dataset was further refined by masking pixels
affected by clouds and choosing only images with an overall cloud percentage of less than 15% (Ta-
ble 4.1). Spatial resolution of 10-m bands were resampled to 20-m before further processing. Seven
spectral bands Blue, Green, Red, Red edge-1,2,3 and SWIR 1 were considered. NDVI (Tucker,
1979), NDWI (Gao, 1996), and CLAL (Drury, 1987) indices were calculated (Equations 4.1a, 4.1b
and 4.1c) for all pixels and added as bands to the images. These indices have been used to distinguish
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vegetation, water bodies, and mining regions (Mukherjee et al., 2019).

NDVI = NIR−Red

NIR+Red
(4.1a)

NDWI = NIR− SWIR2
NIR+ SWIR2 (4.1b)

CLAL = SWIR1 − SWIR2
SWIR1 + SWIR2 (4.1c)

To further capture temporal variation in land use classes, quarterly median, mean and standard
deviation composites of all bands were considered. Every quarterly composite is a 3 month group
of images starting from January month of each year. Cloud free images could not be obtained
for the third quarterly composite for the year 2020, as there were pixels affected by clouds. This
resulted in 3 images for each year with each image having 30 bands. All three images were combined
into a single image with 90 bands.

4.1.2 ECOSTRESS

84 ECOSTESS LST products were available for the years 2019 and 2020 respectively. The indi-
vidual images, each with 16 bands were uploaded to GEE as Image collection asset with image
acquisition timestamp in UTC. Some acquisitions were separated by few minutes and partially
covered the study area. These images were mosaiced to create one image carrying timestamp of
the first acquired image, and only the mosaiced image was considered in the subsequent analyses.
Bands considered in this study were ’b1’ and ’b14’, which correspond to Cloud mask and LST (in
Kelvin). The cloud mask band, ’b1’ is an 8-bit unsigned bitmask where bits 1 and 5 indicate pixels
affected by cloud and water. Pixels masked as water were along the Damodar river within the
study area. Other water bodies such as streams, reservoirs, canals, ponds, and water filled quarry
were not masked. Masking pixels affected by cloud (Figure 4.2) reduced the number of images to
16 and 20 for 2019 and 2020 respectively (Table 4.1). The LST band ’b14’ was converted to Celsius
and added as a separate band ’lst’ in the image before further processing.

Table 4.1 Sentinel 2 and ECOSTRESS images used in the study after cloud masking

Year Sentinel 2 images on GEE Number of ECOSTRESS LST images
2019 65 16
2020 50 20

4.1.3 LULC classification scheme

Land use classification scheme developed by National Remote Sensing Centre (2012), which is
primarily based on J. R. Anderson (1976) was adopted to identify classes in the study area on the
basis of satellite image data. The major level-1 land cover classes identified in the study were built
up, agriculture, forest, barren land, and water bodies. Classes relating to mining activities such as
coal overburden dumps and coal mines were identified as separate classes. Water filled quarry are
associated with coal mine class. However, it was not possible to spectrally separate this class with
water bodies and were not included in the coal mining class. These seven classes were used for
subsequent processes such as generating reference data for training and validation, parameters for
classifiers, classification and accuracy assessment. Description of classification scheme is shown in
Appendix A.2.
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Figure 4.2: Effect of cloud masking on pixel availability of LST images

4.2 REFERENCE DATA

In the absence of reference maps, a simple random sampling design was adopted to generate refer-
ence data. Assuming unknown proportions of distribution of classes in the study area, Cohran’s
formula (J. & Cochran, 1978) for large populations

n = z2O(1 −O)
d2 (4.2)

determines a sample size (n) of 261 for each class for 60% overall accuracy (O = 0.6), 90% con-
fidence interval (z = 1.645) and with 5% margin of error (d = 0.05). With 7 identified classes
in the study area the total sample size was estimated to be 1827, each for two years. Also a mini-
mum of 50 samples were required for each class for training data (Lillesand, Kiefer, & Chipman,
2015). Considering the time and effort required to identify the reference data, 3000 samples were
randomly generated for each year in GEE for the study area.
To ensure reference data is of higher quality than map data, PlanetScope images at 4.7m spatial
resolution, a higher resolution than Sentinel 2 were used along with Google Earth Historical Im-
agery. PlanetScope images for each year were available in monthly and quarterly mosaic, as Web
Map Tile Service (WMTS) on QGIS application (QGIS Development Team, 2021). This mini-
mizes the geolocation variability between map and reference location (Olofsson et al., 2014). To
minimize interpreter bias in assigning reference class to the locations, a checklist of classes with its
description was referred to as a constant reminder (Appendix A.2).
2431 and 2414 samples were identified representing all the identified classes for 2019 and 2020 re-
spectively. Sample locations with difficulty in identifying class were not chosen. Several locations
bordering other classes that were difficult to interpret were also omitted. These locations were
mostly in the central eastern part of the study area and areas surrounding the mining areas. This
exercise turned out to be time consuming. Minimising interpreter bias is difficult and takes mon-
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umental motivation.
Accuracy assessment of classification requires validation data, ideally, ground-based observations
which are independent from the sampling design. However, in the absence of such observations,
reference data was split for validation and accuracy assessment. Reference data for each class was
randomly split into 70% training and 30% validation datasets before addressing class imbalance,
and classification. Tables 4.2 and 4.3 show summary of reference data used in this study. The
spectral profile of the samples are shown in Figure 4.3.

Table 4.2 Training and validation data used for 2019 classification

Total
samples

Validation Unbalanced
(Training)

RUS frac-
tion

RUS ROS

Barren land 596 164 432 0.5 216 465
Built up 370 101 269 0.7 188 465
Coal overburden 175 50 125 1 125 465
Coal mine 114 35 79 1 79 465
Agriculture 669 204 465 0.5 233 465
Forest 436 123 313 0.7 219 465
Water bodies 71 18 53 1 53 465
Total 2431 695 1736 1113 3255

Table 4.3 Training and validation data used for 2020 classification

Total
samples

Validation Unbalanced
(Training)

RUS frac-
tion

RUS ROS

Barren land 565 159 406 0.5 203 455
Built up 362 98 264 0.7 185 455
Coal overburden 197 48 149 1 149 455
Coal mine 91 21 70 1 70 455
Agriculture 664 209 455 0.5 228 455
Forest 460 142 318 0.7 223 455
Water bodies 75 21 54 1 54 455
Total 2414 698 1716 1112 3185

4.3 CLASS IMBALANCE

The problem of class imbalance occurs when there is no balanced ratio in the distribution of classes
in the samples which affects classification results. Data driven non-heuristic methods such as ROS
and RUS methods were applied to balance majority and minority classes and thus improve classi-
fication accuracy. Identifying majority and minority classes, an imbalance ratio can be calculated
when there are binary classes. However, it is inappropriate in a multi class scenario, and depends
on the sample data (Waldner et al., 2019). Several methods have been proposed to characterize
them (Naboureh et al., 2020; Waldner et al., 2019). Ratios from 1:2 to 1:5 were considered as inter-
mediate classes and ratios greater than 1:5 were identified as minority classes. Ratios with greater
than 1:10 were considered as extreme minority classes. However, these were not identified in the
current data. The classes were divided into three categories: 1. majority classes, which included
barren land and agriculture; 2. intermediate classes, including built up and forest, and 3. minority
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Figure 4.3: Variation in indices of samples of 2019 and 2020 along with temporal patterns: Q1
Jan-Mar, Q2 Apr-Jun, Q4 Oct-Dec

classes, including coal overburden, coal mine and water bodies. Naboureh et al. (2020) identified
50%, 70% and 100% as the fractions that would achieve the best balance for RUS for majority,
intermediate and minority classes. In RUS, the classes were randomly undersampled until they
reached the fraction of their count of classes. In full balancing ROS, the samples from classes were
resampled with replacement until they equalled the majority class with the most number of sam-
ples (Tables 4.2 and 4.3). The number of samples for ROS and RUS, calculated for each class were
given as sampling_strategy in randomOversampler and randomUndersampler functions of
the imblearn library, implemented in Python.

4.4 RF CLASSIFIER

Random Forest (RF) (Breiman, 2001) is an algorithm consisting of an ensemble of unpruned de-
cision trees. It uses bootstrap samples from the training data and random feature selection when
building trees and reduce correlation among the trees. Prediction of the algorithm for classifi-
cation is based on majority vote, and for regression is based on averaging. It is widely used as
classifier for LULC classification and is known for its robustness and accuracy. Number of trees
(ntree) and features at each split (mtry) are input parameters for RF. Increasing the number of trees
does not considerably increase the accuracy of the classification but increases the computational
effort. Belgiu and Drăguţ (2016) suggest using upto 500 trees and square root number of features

21



ANALYSIS OF OPENCAST MINING CHARACTERISTICS USING MULTI-TEMPORAL REMOTE SENSING IMAGES AND GOOGLE EARTH

ENGINE

as parameters for RF. For this study, ntree and mtry were specified as 200 and default (square
root of the number of features) in classifier.smileRandomforest, the RF classifier available
in GEE library.

4.5 ACCURACY ASSESSMENT AND AREA ESTIMATION

Classification does not hold value without assessing its accuracy (Congalton, 2001). Accuracy
assessment assists in evaluating the performance of the classifier, area estimates of the classes and
effect of sampling design. Accuracy assessment was carried out for classified maps of 2019 and 2020
using the ‘confusion matrix’ (Congalton, 1991), also known as ‘Error matrix’. Validation points
that were independent of the training data were considered for accuracy assessment. Amongst
various available metrics, the traditional metrics of overall accuracy (OA), user accuracy (UA) and
producer accuracy (PA) were used to evaluate accuracy assessment of classification. OA (Equation
4.3) provides interpretation of effectiveness in accuracy estimation while UA (Equation 4.4) and
PA (Equation 4.5) provide class level evaluation.

OA =
∑k

i=1Ri∑k
i=1Ni

(4.3) UAi = Ri

Ni
(4.4)

PAi = Ri

Mi
(4.5) GM =

(
k∏

i=1
PAi

)1/k

(4.6)

where k= number of classes, Ri = pixels correctly mapped in class i, Ni = pixels that are
mapped to be in class i, Mi = pixels in class i that are in reference data.

These metrics are available on GEE for the RF classifier. Area of mapped classes were calculated
by summing the area of each pixel associated with their respective class. Based on the classification
errors, areas of mapped classes were adjusted using a post-stratified error estimate (at 95% confi-
dence interval) approach described by Olofsson et al. (2013) with equations 4.7, 4.8,4.9,4.10.

p̂ij = Wi · nij

ni·
(4.7) Âj = Atotal ·

∑
i

p̂ij = Atotal · p̂·j (4.8)

S (p̂·j) =

√√√√√ k∑
i=1

W 2
i

nij

ni·

(
1 − nij

ni·

)
ni· − 1 (4.9) S

(
Âj

)
= S (p̂·j) ·Atotal (4.10)

where p̂ij = proportion of misclassified pixels in mapped class i,Wi = ratio of mapped area of
class i and area of all classes (Atotal), nij = number of misclassified pixels in reference class, ni· =
number of mapped pixels in each class, S (p̂·j) = standard error of estimated proportion, S

(
Âj

)
= standard error of error adjusted area, and at 95% confidence, the error adjusted area is calculated
as Âj ± 1.96 · S

(
Âj

)
.

Kappa coefficient, a common metric, was not used as it does not serve a useful role in accuracy
assessment or area estimation and is highly correlated to OA (Olofsson et al., 2014).

4.6 CHANGE DETECTION

Change detection here is the process of identifying the transition of LULC classes from multi tem-
poral LULC maps. Here, a post-classification change detection technique was used for analysing
changes. This technique implements pixel by pixel comparison of multi temporal classified maps,
and minimises impacts of atmospheric and sensor differences between them (Lu et al., 2004). It
also provides a transition matrix (Sunar, 1998) which presents important information about spatial
distribution of changes generated from classified maps of 2019 and 2020 to assess overall changes
in LULC classes.
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Changes in coal mine areas were quantified using coal mine classification of 2019 and 2020. Changes
were categorized into three states: continue, decrease and increase. Differences between the 2020
and 2019 map of coal mine class provided the conditions for categorizing these states: 1. Coal
mine pixels that did not change class were considered as ‘continue’, 2. mines that were present in
2019 and absent in 2020 were categorized as ‘decrease’, and 3. mines that were present in 2020 and
absent in 2019 were categorized as ‘increase’.

4.7 DETECTION AND CHANGE IN COAL FIRE AREAS

LST images were acquired over the study area at different periods and at different time of the day.
Distribution of LST values in an image vary according to the time of acquisition. Hour of the day
was calculated and assigned to each image. This would help in filtering out images acquired during
Day and Night. Images acquired from 0300 to 1200hrs UTC (0830 to 1730hrs IST) were classified
as Day images and others as Night time images (Glynn C Hulley et al., 2019). Image thresholding
technique was adopted to delineate pixels that could potentially be affected by coal fires. Pixels
in the image that are within the colliery boundary were considered for thresholding as coal fires
occur inside this boundary within the study area (Biswal & Gorai, 2020). Each acquired image
affected by clouds, would reduce the total number of pixels available for thresholding. A pixel
coverage ratio was calculated as ratio of number of pixels available for thresholding after cloud
masking and total number of 70-m pixels that cover the colliery boundary (56567 pixels). Images
with high pixel coverage were considered for thresholding. Mean and standard deviation of each
image was calculated and threshold values (Equation 4.11) were set for each image (Biswal & Gorai,
2020; Huo et al., 2014).

νLST = meanLST + 2σLST (4.11)

The LST pixel values in an image were used to determine the threshold value. Pixels above this
threshold (νLST ) were identified as coal fires in each image. To identify the potential of a coal fire
pixel to be a coal fire pixel in a year, a ratio (referred as detection ratio) of the number of coal fire
pixels and number of images considered for the year was calculated.
Coal fires are dynamic and propagate with time (Kuenzer, 2015; Mujawdiya et al., 2020). With
time, coal fires continue to burn while few become dormant, and new fires are propagated. To
identify these changes between years, we need pixels that have been consistently detected as coal
fires. Detection ratio can be considered as how often a pixel is detected as coal fire. Ratio above
0.5 indicate that pixels were detected in more than 50% of the images in the year. Pixels below
0.5 detection ratio will contribute to coal fires for the year and not for changes between years. To
identify changes two coal fire zone images from 2019 and 2020 were subtracted, and pixels were
categorized into ‘active’, ‘dormant’, ‘increasing’.

4.8 DETECTING COAL FIRES WITH PERCENTILE APPROACH

The Day and Night time images were considered for this method. For each year, 95th percentile
composite of LST values were generated separately for Day and Night time images to capture
the magnitude of change in temperature. So, each year would have one Day time and one Night
time composite. Threshold of LST values for each composite were calculated using Equation 4.11.
Pixels above the threshold value were selected from the composites. Two images were mosaiced to
create one image to generate coal fire pixels for the corresponding year. Changes in status of coal
mine areas between 2019 and 2020 were followed as explained in Section 4.7.
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Figure 4.4: Mockup of GEE application showing implementation and interactive elements

4.9 VALIDATION OF COAL FIRES

Accuracy of coal fire detection was validated with field data published by Biswal and Gorai (2020).
Validation data was available for 2019 and not available for 2020. There were 20 locations iden-
tified in the study area where temperature measurements were collected using thermal imaging
camera. The observations were recorded on April 2, 2019. Validation was performed in two steps:
1. Ground observations that were within the coal fire pixels, 2: Ground observations that were
within 70-m from the nearest coal fire pixels.
To identify the relationship between the observed temperature and ECOSTRESS product, LST
values were extracted from the images acquired on May 27, 2019 at 10:18 UTC and October 30,
2019 at 20:05 UTC, which were the nearest Day and Night time images available that were not
affected entirely by clouds.

4.10 APPLICATION ON GEE

”A picture can speak a thousand words”. But an interactive application can make pictures tell a
story. The web-based user interface provided by GEE allows building interactive web applica-
tion powered by cloud computing architecture. GEE provides client libraries, Javascript API, and
Python API for data storage, analysis, and building custom applications.
In this study the developed application is based on Javascript, a web-based interface which is pro-
vided at code.earthengine.google.com and the features can be used with a user signup. The platform
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offers data stored in repositories. Before being made available, the data is pre-processed to enable
efficient access and thereby addressing data management problems (Gorelick et al., 2017). GEE
allows limited user data storage as a private repository which can be used to integrate with the
data catalog on GEE datasets. GEE also allows free publishing and hosting of the applications on
their platform. The application can be accessed by user in a web-browser which requires client-
side user interface functions, also known as widgets. These widgets are made available through the
ui package. The ui package allows access to in-built functions to design graphical interface and
building an application. The application can have simple widgets such as buttons (ui.Button()),
labels (ui.Label()) and sliders (ui.Slider()), more complex ones such as charts (ui.Chart()),
maps (ui.Map()), panels (ui.Panel()) for application layout, and event handlers (onClick()
and onChange()) for user and widget interactions. Appropriate parameters need to be specified
while using the widgets. These parameters govern the behavior of widgets in the application.
Mockup of the application as shown in Figure 4.4 can provide the parameter specification. Split
panel is one of the user interfaces available on GEE that allow comparison of two images. The user
interface consists of left and right panels that overlay two images. Both panels are separated by a
divider, which when moved resizes the map area displayed in the panels. After selecting the ’start’
and the ’end’ year, the user can select two map layers simultaneously in the split panel. The legend
of the map layers are shown accordingly. Summary of the map layers are shown as bar charts in
the panel. The user is able to select location on the map to generate timeseries charts of features
such as NDVI, CLAL and LST.
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Chapter 5

Results

5.1 EFFECTS OF BALANCING METHODS

Training samples were generated for 2019 and 2020 based on balancing methods RUS and ROS.
Classification for 2019 and 2020 was performed using RF classifier and validated with indepen-
dent dataset. UA, PA, OA and GM were calculated for each classification. To evaluate the effect
of balancing methods in addressing class imbalance, differences in OA (∆OA) and GM (∆GM)
with unbalanced data were computed. Regarding different LULC classes, minority classes showed
stronger response to balancing methods by improvement in accuracy.
For 2019 (Table 5.1), OA and GM ranged between 72.66%-73.09% and 71.73%-74.47% respectively.
Between all the methods, RUS had the least OA and GM and ROS the highest. Compared to un-
balanced, RUS showed increased PA for minority class coal overburden and decreased PA for water
bodies. There were no significant changes in the UA and PA in other minority classes. ∆OA and
∆GM indicate negative gain in OA and GM. ROS showed increased PA for all minority classes
and increased UA for coal mine. However, there was a significant decrease in UA value (7.64%) for
coal overburden. There was no gain in OA (∆OA = 0), but positive gain in GM (∆GM = 1.69).
For 2020 (Table 5.2), OA and GM ranged between 72.9%-76.5% and 72.12%-77.16% respectively.

Table 5.1 Effects of increase and decrease in balancing methods on classification accuracies (in %)
for 2019

2019 Unbalanced RUS ROS
UA PA UA PA UA PA

Barren land 65.10 59.15 +2.35 +0.61 +2.73 0
Built up 77.65 65.35 0 0 +1.66 +2.97
Coal overburden 71.43 70.00 -0.57 -2.00 -7.64 +4.00
Coal mine 69.70 65.71 -1.27 +2.85 +0.89 +2.86
Agriculture 72.65 83.33 +0.62 0 +1.11 -3.43
Forest 78.91 82.11 -1.74 +0.81 -3.54 0
Water bodies 94.12 88.89 +0.37 +5.56 +0.32 +5.55
OA 73.09 72.66 73.09
GM 72.78 71.73 74.47
∆OA -0.43 0.00
∆GM -1.04 1.69

Minimum OA and GM were observed in ROS and unbalanced, while RUS had the highest. Com-
pared to unbalanced, RUS showed an increase in UA for all minority classes and significant increase
in PA value for coal overburden (8.33%) and coal mine (19.05%). There was no change in PA for
water bodies. RUS had positive gain in OA and GM with ∆OA = 5.04 and ∆GM= 2.00 respec-
tively.
The results indicate that ROS and RUS methods performed better at addressing class imbalance
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for 2019 and 2020 respectively.

Table 5.2 Effects of increase and decrease in balancing methods on classification accuracies (in %)
for 2020

2020 Unbalanced RUS ROS
UA PA UA PA UA PA

Barren land 63.52 63.52 +3.36 +1.26 -0.36 -3.14
Built up 76.92 71.43 +1.73 0 -0.78 -3.06
Coal overburden 70.00 72.92 +5.00 +8.33 -5.59 +6.25
Coal mine 73.33 52.38 +5.62 +19.05 +5.24 0
Agriculture 78.64 82.78 +1.08 0 0 -5.27
Forest 79.86 78.17 -0.55 +2.82 -5.18 +2.82
Water bodies 79.17 90.48 +7.19 0 +0.83 +4.76
OA 74.50 76.50 72.92
GM 72.12 77.16 72.21
∆OA 2.00 -1.58
∆GM 5.05 0.09

5.2 CLASSIFICATION RESULTS

5.2.1 LULC classification and accuracy assessment

A pixel-based classification was applied in the study area for 2019 and 2020 using training data that
addressed the class imbalance problem . The corresponding classified maps are shown in Figures
5.1a and 5.1b. Accuracy assessment of individual classified maps was performed using independent
validation data that was initially separated from the reference data (Tables 4.2 and 4.3). Accuracy
assessment results are summarised in Tables 5.3a and 5.3b.

The results indicate that classification accuracies were similar for both years. The OA level
of 73.09% and 76.5% was obtained for 2019 and 2020 respectively. The UA and PA were also
consistent within the individual classes for each year. In 2019, UA and PA ranged between 63.79%-
94.44% and 59.15%-94.44% respectively. In 2020, UA and PA ranged between 66.88%-86.36% and
64.78%-90.48% respectively. Water bodies class achieved the highest UA and PA for both years,
while coal overburden and barren land had the respective lowest UA and PA for 2019, and barren
land had the lowest UA and PA for 2020. Misclassification within the classes were observed in both
classified maps and error matrices. In 2019, Barren land had confusion with all of the classes but
mostly with agriculture, built up and forest which affected its UA and PA values. Few of the sandy
areas along the river bed, which belong to barren land class, were classified as built up. Agriculture
and forest had confusion within themselves which contributed to decrease in their respective UA
and PA and thus affecting OA. Coal overburden had confusion with barren land, built up and coal
mine classes that lowered its UA and PA. These patterns were observed in both 2019 and 2020. In
2019, coal mine class had confusion with barren land, built up and coal overburden that affected its
UA (70.59%) and PA (68.57%). In 2020, coal mine class had slight confusion with coal overburden,
forest and water bodies that affected its UA (78.95%) and PA (71.43%). The results show that the
coal mine class had confusion mostly with the coal overburden class.
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Figure 5.1: LULC classified map
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Table 5.3 Classification error matrix

Reference
1 2 3 4 5 6 7 UA(%) PA(%)

C
la

ss
ifi

ed

1. Barren land 97 14 2 3 18 9 0 67.83 59.15
2. Built up 9 69 4 0 3 1 1 79.31 68.32
3. Coal overburden 8 5 37 8 0 0 0 63.79 74
4. Coal mine 1 2 7 24 0 0 0 70.59 68.57
5. Agriculture 37 9 0 0 163 12 0 73.76 79.9
6. Forest 12 2 0 0 19 101 0 75.37 82.11
7. Water bodies 0 0 0 0 1 0 17 94.44 94.44

OA= 73.09%
(a) Year 2019

Reference
1 2 3 4 5 6 7 UA(%) PA(%)

C
la

ss
ifi

ed

1. Barren land 103 15 3 0 23 9 1 66.88 64.78
2. Built up 10 70 3 0 0 6 0 78.65 71.43
3. Coal overburden 4 4 39 5 0 0 0 75 81.25
4. Coal mine 0 0 2 15 0 1 1 78.95 71.43
5. Agriculture 31 2 0 0 173 11 0 79.72 82.78
6. Forest 8 7 1 1 13 115 0 79.31 80.99
7. Water bodies 3 0 0 0 0 0 19 86.36 90.48

OA= 76.5%
(b) Year 2020

5.2.2 Area estimation

Post classification, areas of the mapped classes were calculated by multiplying the number of pixels
per class with the area of each pixel. Accounting for magnitude of classification errors, areas of
mapped classes were estimated at 95% confidence level, using the approach described in Olofsson
et al. (2013). These post stratified error adjusted estimates for 2019 and 2020 are shown in Table
(5.4).
In 2019, mapped majority classes barren land and agriculture occupied 22.92% and 29.28% of the
study area, followed by intermediate classes built up and forest with 14.82% and 19.65%, and
minority classes coal overburden, coal mine and water bodies covering 7.33%, 3.64% and 2.37%
respectively. Similar values were observed in 2020 for the mapped classes barren land, agricul-
ture, built up, forest, coal overburden, coal mine and water bodies respectively occupying 24.09%,
28.3%, 14.6%, 20.4%, 7.01%, 3.08% and 2.54% of the study area.
In 2019, compared to mapped areas, error adjusted coal mine area was overestimated by 11.47%
from 16.3 to 18.37 km2. Overestimates were also observed in barren land by 8.45%, and in built
up by 10.18%. Coal overburden, agriculture and forest classes were underestimated by 12.29%,
4.68% and 8.32% respectively. Similar to 2019, in 2020 the coal mine area was overestimated by
9.99% from 12.51 to 13.76 km2, and built up by 10.88%. Barren land, coal overburden, agriculture
and forest were underestimated by 2.08%, 6.91%, 0.88% and 1.82% respectively. There was no sig-
nificant difference between mapped and adjusted areas for water bodies in 2019 and 2020 which
had achieved good classification accuracy.
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Table 5.4 Mapped areas (in km2) and post stratified error adjusted estimates (at 95% confidence
interval) of LULC classes for 2019 and 2020 classification

2019 2020
mapped error adjusted mapped error adjusted
Area Area SE(±) Area Area SE(±)

Barren land 102.54 111.21 12.24 110.05 107.76 11.79
Built up 66.29 73.04 8.93 58.88 65.29 8.45
Coal overburden 32.78 28.75 5.86 33.69 31.36 5.61
Coal mine 16.30 18.17 4.57 12.51 13.76 3.82
Agriculture 130.99 124.85 11.15 127.72 126.59 10.21
Forest 87.89 80.57 8.71 92.95 91.25 8.93
Water bodies 10.58 10.76 1.89 11.55 11.35 2.55

5.3 CHANGE DETECTION

5.3.1 Change detection matrix

After quantifying accuracy of classification, change detection analysis was carried out by post-
classification technique as described in Section 4.6. The results are summarised in a change detec-
tion matrix shown in Table 5.5.
Barren land saw a net increase of 7.5 km2 in 2020, mainly contributed by built up area (11.6 km2).
Similar extent of agriculture, coal overburden and forest transitioned and also contributed to the
barren land class. Built up saw a net decrease of 11.7%, when 17.5% of built up area was converted
to barren land. 2.5 km2 of built up area transformed into coal overburden in 2020. Built up also
had no significant transitions and conversions among other classes. Coal mine of 9.3 km2 was
retained between 2019 and 2020 and there was a net decrease of 3.8 km2 during the period. The
decrease can be attributed to 31.28% of coal mine area transitioning to coal overburden from 2019
to 2020, whereas 2.3 km2 (18.4%) of coal overburden added to coal mine area. Of 16.3 km2, coal
mine area saw transition of 4.9% to barren land, 3% to built up and water bodies, and 0.61% to for-
est. Agriculture, with the highest mapped area saw a less significant net decrease of 2.49%, where
12.9% and 9.5% were transformed to barren land and forest, respectively. Also barren land and
forest respectively added 13.5% and 6.9% to agriculture. Forest had an overall increase of 5.77%
mainly contributed by 12.5km2 of agriculture, which was converted to forest, while 8.9 km2 of
forest was lost to agriculture. With a little bit of surprise, 6 km2 of barren land was converted to
forest and equally 6.1 km2 of forest was lost to barren land. Water bodies of 8.7 km2 extent were
retained from 2019 to 2020, while the net increase of water bodies is mainly attributed to barren
land (1.4 km2). Transitions of water bodies to other classes were not significant.
The transition of changes among the LULC classes can be visualized with a chord diagram shown
in Figure 5.2. The net decrease and increase in extent of the changes are shown in the Figure 5.3.

5.3.2 Change in coal mining areas

The coverage of coal mining area was found to be 16.3 and 12.5 km2 for the years 2019 and 2020,
respectively. This indicated a net decrease in coal mining area by 23.2%. 9.26 km2 of coal mining
areas continued activity during 2019 and 2020. An extent of 3.25 km2 of coal mining areas were
added during 2020, whereas 7.03 km2 of coal mining areas decreased after 2019. The figure 5.4
shows the change in coal mining areas.
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Figure 5.2: Transition between LULC classes during 2019-2020

Figure 5.3: Net changes of LULC classes during 2019-2020
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Table 5.5 Change detection matrix of LULC classes from 2019 to 2020. Mapped areas in km2 for
the study area of 447.3 km2

2019
2020

2019 Total
1 2 3 4 5 6 7

1. Barren land 70.8 4.7 2.1 0.2 17.3 6.1 1.4 102.5
2. Built up 11.6 49.4 2.5 0.2 0.7 1.9 0 66.3
3. Coal overburden 3.2 3.2 23.7 2.3 0 0.1 0.2 32.8
4. Coal mine 0.8 0.5 5.1 9.3 0 0.1 0.5 16.3
5. Agriculture 17.0 0.6 0 0 100.7 12.5 0.2 131.0
6. Forest 6.3 0.4 0 0 8.9 71.8 0.5 87.9
7. Water bodies 0.4 0.1 0.3 0.6 0.1 0.5 8.7 10.6
2020 Total 110.0 58.9 33.7 12.5 127.7 92.9 11.5
Change (%) 7.32 -11.17 2.78 -23.20 -2.49 5.77 9.13

Continue
Decrease
Increase

Change	in	coal	mine	areas	2019-2020

Figure 5.4: Change in coal mining areas between 2019 and 2020

5.4 COAL FIRE DETECTION

5.4.1 Effect of clouds on LST images

To consider images that were least affected by clouds, pixel coverage was calculated for each image
and the Figure 5.5 shows the distribution of pixel coverage for every image acquired in 2019 and
2020. Out of 36 images, 9 images had pixel coverage above 0.95 in 2019 and 11 images in 2020.
These images were considered for thresholding. However, all 36 images were considered for the
percentile approach. Some pixels were detected as clouds by cloud detection tests in few of the
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night images over the coal mines where fires were recorded by ground observations, as shown at
one location in Figure 5.6-C.

Figure 5.5: Distribution of pixel coverage and number of LST images in 2019 and 2020. Pixel
coverage calculated as ratio of number of pixels available after cloud masking and total number of
pixels available within colliery boundary

5.4.2 Threshold of LST images and coal fire detection

Threshold of LST in each image with pixel coverage greater than 0.95 was calculated using Equa-
tion 4.11. The threshold values of 20 images for 2019-2020 are shown in Figure 5.7. Out of these
images, 8 images were acquired during ‘day’ time with an average threshold value of 36.23°C. Sim-
ilarly 12 images were acquired during ‘night’ time with an average threshold value of 23.6°C. To
detect pixels as coal fire pixels, all pixels in each image that were above the threshold were assigned
as coal fire pixels. Detection ratios calculated for pixels acquired during 2019 and 2020, are shown
in Figure 5.8.
A total of 4795 pixels (21.40 km2) and 7304 pixels (32.6 km2) were above threshold values and

were detected as coal fires. The detection ratio ranged between 0 and 1, and the ratios were binned
into 4 categories: 0-0.25, 0.25-0.5, 0.5-0.75, 0.75-1. In 2019, the area of coal fire pixels for these
categories were 8.47, 3.59, 3.25, 5.02 and 1.08 km2. Similarly, in 2020, the areas were 16.71, 5.54,
5.32, 4.53 and 0.51 km2. The areas affected by coal fires for both years are shown in Figures 5.9a
and 5.9b. The maps also show false positive fire areas, especially along the river that were detected
as coal fires.

5.4.3 Percentile approach

Out of 36 images available for analysis for both years, 2019 had 16 images, out of which 9 images
belonged to day time acquisition and 7 for night time acquisition. Similarly for the year 2020,
there were 20 images available, but there were only 3 day time images and 17 night time images.
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Figure 5.6: Diurnal spatial variability of LST at coal mine affected by coal fires in JCF and indicated
in top left corner of each image (A-C). The color scale in degree Celsius is enhanced for each image.
Figure C shows pixels identified as clouds over the coal fire areas. FCC image is acquired from
PlanetScope dated December, 2019

Threshold (Equation 4.11) was applied to 95 percentile composites of day and night LST images
before mosaicing them to create a coal fire map for each year. The extent of the delineated coal
fires were calculated at 13.04 km2 and 14.39 km2, for 2019 and 2020. The delineated coal fire maps
are shown in Figures 5.10a and 5.10b.

5.4.4 Validation

Validation of coal fire detection was carried out for the year 2019 with details listed in Table 5.6.
Out of 20 locations, 18 locations were within the detected coal fire pixel achieving an accuracy of
90%. Two locations ID: 9 and 11, which did not validate, were found to be within 70-m of the
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Figure 5.7: Threshold and associated pixel coverage of day and night time images in 2019 and 2020
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Figure 5.8: Number of pixels delineated as fire and their detection ratio for 2019 and 2020

nearest coal fire pixel. These nearest pixel to these locations had detection ratio of 0.11.
Similarly, validation was carried out for the percentile approach, which achieved an accuracy of
75% with 15 ground locations within coal fire pixels. Five locations ID: 1, 9 , 11, 17 and 20, which
did not validate, 1 and 9 were found to be within 70-m from the nearest coal fire pixel. Locations 9,
11, 17 and 20 had detection ratio of 0.11 and location 1 had detection ratio of 0.22. The validation
locations are shown in the Figures 5.9a and 5.10a.

5.4.5 Relationship between ground temperature and LST

The mean threshold values of day and night acquisitions were different. The ECOSTRESS LST
values for the 20 locations were extracted from the nearest available day and night acquisitions
to see if there was any relationship between the ground temperatures and LST (Table 5.6). The
Pearson’s correlation coefficient (R) between the ground temperature and LST were determined
as shown in Figure 5.11. It was observed that ground temperature was highly correlated with Day
time LST with R of 0.78, and night time was weakly correlated with R of 0.48.
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Figure 5.9: Coal fires detected with detection ratio of pixels above the LST threshold

5.5 CHANGE IN COAL FIRE AREAS

Coal fire pixels that had detection ratio above 0.5 were considered for analysing change in coal fire
areas for the years 2019 and 2020. However, this decreased the validation accuracy from 90% to
70%. The extent of the coal fire areas were 9.35 km2 and 10.35 km2, for the year 2019 and 2020, a
change of 10.69%. The changes in the status of coal fire areas between the years were identified as
‘active’, ‘dormant’ and ‘increasing’ (Figure 5.12a and 5.12b). In coal fire areas above detection ratio
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Figure 5.10: Coal fires detected by percentile approach

of 0.5, 7.99 km2 were found ‘active’, 1.35 km2 were ‘dormant’, and 2.35 km2 were ‘increasing’.
For the percentile approach, the extent of the coal fires were respectively 13.04 km2 and 14.39 km2

for 2019 and 2020, a change of 10.35%. The status of fires changed where 10.46 km2 were found

Table 5.6 Validation of detected coal fire pixels with recorded ground observations. Temperatures
are in °C. * Locations that were detected within a 70-m from the coal fire pixels and corresponding
detection ratio of the nearest pixel is shown. † Locations that did not validate with the percentile
approach

ID lat lon Name ground
°C

LST
day

LST
night

detection
ratio

1 23.806 86.335 Chandaur 39.02 46.81 19.35 0.22†
2 23.805 86.32 Ram

Kanali
45.9 54.07 27.51 0.89

3 23.786 86.304 Kumarjuri 50.33 55.75 27.25 1.00
4 23.78 86.393 Godhar 49.14 60.05 26.17 1.00
5 23.772 86.397 Keshka 46.05 51.11 28.81 0.78
6 23.767 86.394 Alkusha 44.13 54.57 26.01 0.89
7 23.783 86.391 Godhar 41.03 48.49 20.83 0.56
8 23.782 86.395 Godhar 44.33 52.45 21.05 1.00
9 23.805 86.332 Chandaur 40.55 49.09 21.87 0.11*†
10 23.75 86.419 Rajapur 43.78 49.17 30.13 0.56
11 23.791 86.274 Tentulia 42.04 48.49 19.61 0.11*†
12 23.783 86.391 Godhar 43.56 48.49 20.83 0.56
13 23.783 86.391 Godhar 43.97 48.49 20.83 0.56
14 23.782 86.394 Godhar 43.72 56.07 21.77 1.00
15 23.75 86.419 Rajapur 41.22 49.17 30.13 0.56
16 23.716 86.423 Tisra 42.16 46.57 20.57 0.22
17 23.715 86.424 Tisra 42.02 46.25 21.99 0.11†
18 23.782 86.395 Godhar 44.21 52.45 21.05 1.00
19 23.782 86.392 Godhar 43.96 50.53 23.21 0.89
20 23.726 86.421 Bhaghtdih 42.72 47.25 21.71 0.11†
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Figure 5.11: Scatter plot of correlation between ground temperature and LST values acquired dur-
ing day and night time acquisitions
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Figure 5.12: Change in coal fire areas between 2019 and 2020

‘active’, 2.58 km2 were ‘dormant’, and 3.92 km2 were ‘increasing’.

5.6 GEE APP

The application was developed around the initial design (Figure 4.4) and published on the GEE
platform which can be accessed at shankaraiah.users.earthengine.app/view/jharia. Features such as
split panel, opacity slider, summary tables, legend, color palettes, map selector, map style selector,
and chart generator were implemented to enable visualization, interactivity of the outputs of the
analyses. Dictionaries and lists were used to assimilate information into the workflow. The ap-
plication enables user to select one of the three basemaps. An animation allows user to visualize
distribution of LST values for different acquisitions in the study area. A user can select six map
layers for ‘start’ and ‘end’ year. For 2019, the layers are: 1. LULC map-2019, 2. Detected coal fire
zones-2019, 3. Coal fire zones-2019, 4. Sentinel-2 FCC-2019, 5. NDVI-2019, and 6. CLAL-2019.
Additional two layers, Change in mining areas and Change in fires, show the change detection
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Figure 5.13: Image of developed GEE application tool Jharia

results. The legends corresponding to the layers are displayed in a panel. A summary chart is
generated showing areas of LULC classes for both years. The user can choose location on the map
to generate two time series charts, one showing NDVI and CLAL indices, and other showing LST
values of the location. All of the charts are interactive and highlight information when hovered
over the chart areas. These charts can also be downloaded by user in both image and comma sep-
arated value formats.
The structure of the application has 3 javascripts; 1. landuse.js contains functions which per-
form classification for each year, 2. ecostress.js contains functions for coal fire detection, 3.
appScript.js which is a controller script to create layout, interaction, visualisation, chart gen-
eration, handle user inputs and interact with functions from ecostress.js and landuse.js
scripts for change detection. This structure was implemented to accommodate analysis for multi-
ple years. Outputs of detection ratio based approach for coal fire delineation were implemented
in the application. One way to improve the speed of the application is to use analysis outputs as
data assets instead of performing analysis such as classification and reprojection which are time
consuming. This was not implemented in this application in order to enable reproducibility and
to extend analysis in future. An image the published application is shown in Figure 5.13.
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Chapter 6

Discussion

6.1 EFFECT OF BALANCING METHODS

There was evidence of class imbalance among the LULC classes which was addressed by ROS and
RUS methods. In 2019, among the balancing methods, there was a gain of 2.00 in ∆GM without
any loss in OA for ROS. In 2020, RUS had gains in both∆GM and∆OA. In both 2019 and 2020,
ROS decreased the UA value of the coal overburden class by around 7%, even though there was
improvement in its PA. Barren land and built up classes, which had already affected UA of coal
overburden in unbalanced data contributed to its further decrease when oversampling replicated
more samples that misclassified barren land and built up as coal overburden. It was noted that
the randomness involved in non-heuristic approach could affect the accuracies when a different
random seed was used to resampling training data. Balancing methods with heuristic approaches
would definitely address this (Batista et al., 2004; Haixiang et al., 2017). Overall, the balancing
methods did not show significant gains but still performed better than unbalanced data, which
was also noted by Douzas et al. (2019) and Waldner et al. (2019). The results show effectiveness of
including balancing methods in the classification procedure to improve both overall classification
accuracy and the individual class accuracies, especially those of minority classes.

6.2 LULC CLASSIFICATION AND CHANGE DETECTION

Random sampling approach was adopted to generate samples which could be subject to intro-
ducing interpreter error, and the spectral profiles show some evidence of it. This affected the
classification accuracy. Coal mining areas are active mining areas whereas coal overburden are in-
active mining areas. So, changes in active mining areas cannot be correlated to changes in inactive
mining areas as they both have different operations and management. So, coal overburden, which
generally belongs to coal mining areas reported by Garai and Narayana (2018) and Ranjan et al.
(2021), was not part of the coal mine class in this study. BCCL, in their BCCL/CMPDI (2020)
reported active coal mine area of 11.64 km2 for 2019. This was an underestimate compared to
16.3 km2 mapped in this study. The road networks which are used to transport coal are mostly
covered with coal dust. These roads were classified as coal mine areas. This could contribute to the
difference in the coal mine areas. There were no studies to compare with 2020 mapped coal mine
area of 12.51 km2. CLAL index was chosen to differentiate coal mine from the coal overburden
class. The index was able to discriminate not only coal mine and coal overburden but also other
classes in all quarterly composites, proving a useful feature in distinguishing all the classes (Figure
4.3). Barren land, built up and coal overburden shared similar spectral signatures in visible spec-
trum, also mentioned by other studies (Isidro, McIntyre, Lechner, & Callow, 2017; Mukherjee
et al., 2019; Ranjan et al., 2021), while built up and forest shared overlapping signatures in SWIR1
spectrum. These problems could be addressed using microwave satellite data that can discriminate
features based on their dielectric property and backscattering intensities (Forkuor, Ullmann, &
Griesbeck, 2020).
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The change detection analysis was carried out using a post-classification method with the classified
maps. Overall, coal mine areas saw a decrease in activity during 2019-2020. Most of the coal mine
areas were converted to coal overburden dumps indicating continued coal mining activity. Coal
overburden contributed to coal mine areas in 2020 and there was no significant contribution from
other classes. The road networks and coal dump areas that were classified as coal mines in 2019
had reduced in 2020. This also shows a decrease in overall mining activity. This decrease could also
have been affected by the impact of lockdowns due to the pandemic (Jain, 2021). However, these
impacts specifically at JCF have not been quantified. Other noticeable results were the contribu-
tion of barren land to the forest in 2020. This could be because of most of the barren land shown as
forest in the map was indeed forest in the reference data. Extent of water bodies increased in 2020
which can be because of rains during the year. There was also conversion of barren lands along
the Damodar river into water bodies. An independent accuracy assessment is necessary to evaluate
the change detection map to assess if the changes did really happen or the misclassifications of the
mapped classes propagated into the changes (Olofsson et al., 2013). The accuracy of the change
detection map was not measured in this study. The users are recommended to independently per-
form the accuracy assessment of change detection map following practices mentioned in Olofsson
et al. (2014). These practices should include probability based sampling design; a response design
with temporally consistent reference data which is of higher quality than map data; Use unbiased
estimators of area and accuracies to report changes.

6.3 EFFECT OF CLOUDS

57% of the 84 images acquired over the study period could not be used as they were entirely affected
by clouds. The cloud masking further reduced the LST pixels in the remaining 36 images. These
were quantified using pixel coverage within the study area. Pixel coverage provided a metric to
choose images for coal fire detection. Clouds were also detected for LST pixels over coal fire areas
which were noticeable in night time acquisitions (Figure 5.6-C). The emissions from the burning
coal fires that contribute to atmospheric sulfate aerosols are known to affect cloud detection tests
and also LST retrieval algorithms by lowering solar radiance on the earth’s surface (Glynn C Hul-
ley et al., 2019; Stracher & Taylor, 2004). A thorough understanding of effects of aerosols and how
cloud detection tests and LST retrieval algorithms account for aerosols is necessary.

6.4 COAL FIRE DETECTION

55% of the 36 images had pixel coverage above 0.95 which were used for coal fire detection. This
shows the ability of ECOSTRESS to provide cloud-free data with high temporal resolution. The
pixel coverage would be high when the image covered the entire study area. So, images that par-
tially covered the study area were omitted. Threshold for each image was calculated for both day
and night images. Detection ratio was calculated as a measure to see how often the LST pixels
were detected above threshold. For 2019, validation of coal fire pixels with ground observations
achieved 90% accuracy. Ground observations that were within 70-m from nearest coal fire pixel
had detection ratio within 0-0.25, indicating possible weaker anomalies at these locations. There
is also a possibility that the spatial extent of these fires is less than the 70-m pixel size which would
produce weak anomalies.
Coal fires are known to burn for long periods of time. BCCL in 2008 reported an estimate of 17.32
km2 at JCF being affected by coal fires based on data collected from ground observations (BCCL,
2008). Studies at JCF by Gautam et al. (2008), Rakesh Kumar Mishra et al. (2020), Mujawdiya
et al. (2020), and Pandey et al. (2017) have characterised temporal changes in nature of coal fires
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since 1998. Spatial extent of fires have been reported to be between 8 and 12 km2 for various years.
Changes in spatial extent of fires have been between 4 to 5 year intervals with change not more
than 2 km2 between intervals. One way to interpret the area estimates of these studies is that they
used one image to determine the extent of coal fires representing the study interval. This could be
an underestimate of the actual extent of coal fires.
Coal fires increased by 11.2 km2 in 2020 from 21.4 km2 in 2019, which can be mainly attributed to
pixels within detection ratio 0-0.25, which was 51% of the coal fire area in 2020. This could be due
to LST variability in night time images (9 in 2020 compared to 3 in 2019) that contributed to it.
So, the change in extent of coal fires in 2020 when compared to 2019 may not be realistic. Pixels
detected as coal fires could be refined with field knowledge and land cover data to filter out false
positive pixels. Water bodies also contribute to false positive pixels because of their high thermal
inertia compared to land surfaces which takes them longer to lose heat. These are noticeable in
night time images. One approach to filter out false positive pixels was to choose fires that were con-
sistently above threshold value. So coal fires above detection ratio 0.5 were chosen to see change
in status of fires between the years. The extent of fires in 2020 increased from 2019. Although
not significant, spatial extent of the ‘increasing’ fires were higher than ‘dormant’ fires, indicating
spreading of fires. Similar pattern was also observed in the percentile approach. Comparing both
the approaches, there were some noticeable pixels, especially on the periphery of coal fire zones
which shared different fire status. These could be attributed to environmental factors such as wind
that can affect LST values, and also variations in LST of neighboring pixels. Validation of these
changes with in situ data can evaluate the accuracy of these changes. This also raises a point that
is one year a good window to see changes in coal fires status, given that these fires burn for longer
periods. Some fires that lay dormant due to fire mitigation measures can reignite. A one year
window might be able to capture success and failure of these measures.
Percentile approach on the other hand used all the images that were available to create composite
images with day and night images. It achieved higher accuracy of 75% when compared to coal
fires with detection ratio >0.5, showing a better approach to see change in the status of fires. De-
tection of coal fires by the percentile approach however did not look like it was affected by false
positive pixels but would need further investigation to confirm the results. The study would be
more interesting if there were day and night acquisitions for summer and winter periods since LST
values are also influenced by the seasons. Finally, the collocated LST values and ground observa-
tions showed high correlation for day images but lower for night images, which could be due to
sub-pixel variations in LST over the surface.
Thresholding is one of the approaches for delineating coal fires from LST images and equation
4.11 is not a universal equation. Much of information was discarded based on this approach where
spatial coverage was required for the entire study area. This could be optimised by using in situ
data and reducing the spatial extent from study area to individual collieries or coal fire affected
areas. Use of thresholds on LST images were able to identify coal fire areas with high accuracy,
indicating the ability of ECOSTRESS sensor to capture coal fires at 70-m spatial resolution. One
method to improve coal fire detection is to downscale spatial resolution from 70-m to 30-m, and
then spatially sharpened to 30-m Landsat SR bands using data mining approach as discussed in
M. C. Anderson et al. (2021) and Xue et al. (2020). This process enhances the sharpness of the LST
pixel boundaries. Another method is to use LST along with in situ data such as elevation, land use
and subsidence to differentiate coal fire pixels from non coal fire pixels (Liu et al., 2021).
The potential of ECOSTRESS spatial and temporal resolution have been evaluated by various
studies dedicated to identifying communities vulnerable to UHI (G. Hulley et al., 2019); evaluat-
ing spatiotemporal variation in water use in wildfire affected areas (Poulos, Barton, Koch, Kolb, &
Thode, 2021); increased monitoring of thermal anomalies in volcanoes and geothermal areas (Sil-
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vestri et al., 2020); predicting amount of carbon absorbed by plants over diurnal cycle (Xing Li,
Xiao, Fisher, & Baldocchi, 2021); generate daily evapotranspiration datacubes at 30-m resolution
(M. C. Anderson et al., 2021).

6.5 EVALUATION OF GEE APP

Following the requirement and intended use, the application was designed and developed utilizing
storage and analysis capabilities of GEE. The results of the LULC classification, coal fire detection,
change in mining areas, change in coal fire areas, and indices allows users to interact and visualize
map layers, charts and time series plots. There are however limitations with the application. Most
notably, the application is restricted to one interface. A tool can have multiple interfaces inte-
grated into the application and enable users a different perspective of the analysis results. Further,
the application is restricted to functions provided by GEE which inhibits creating user defined
functions for visualisation. This can be solved by developing the front end of the application in-
dependently while using storage and computing resources of GEE to run analysis. This however,
involves hosting application on a web server and deployment on application engine for computa-
tion, which requires additional resources that are not freely available. Additional functionalities
such as downloading the map layers from the application interface can enable users to use them
for independent validation.
The application is intended for stakeholders and organisations to facilitate decision making. It is
essential to evaluate if the application is serving the intended purpose. It is also important to assess
the usability of the application. Usability is also a key component in the design of any interactive
application. Feedback from testing, users and stakeholders help in evaluating and re-design of the
application to make it more ‘user friendly’. It also evaluates if the application serves the intended
use and requirement of the end-user. Due to time constraints, usability evaluation of the developed
application could not be carried out in this study.
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Chapter 7

Conclusion and recommendation

7.1 CONCLUSION

The main objective of the study was to build an application on the GEE platform to enable users
to access results of the analysis of opencast coal mining characteristics for the years 2019 and 2020.
Active coal mining areas were identified with pixel-based classification of LULC classes at JCF
using Sentinel-2 imagery. Random sampling technique was adopted to generate training samples
which produced unbalanced datasets under-representing coal mine as minority class. Balancing
methods of ROS and RUS addressed the class imbalance problem by improving the accuracy of
minority classes and overall accuracy of the classification. RF classifier was able to use a high di-
mensional dataset with 90 features and contributed to the accuracy of the LULC maps. However,
it is emphasized that the results of classification can only be good as the training data that is uti-
lized. CLAL proved to be an useful index in separating classes, particularly coal mine and coal
overburden, and capturing their temporal patterns. Post-classification change detection provided
insights into change in LULC classes and coal mine areas between the years.
Coal fires were detected with thresholding methods using LST images. ECOSTRESS was able to
provide multi-temporal cloud free images. Both day and night time images contributed to coal
fire detection with good accuracy. Pixel coverage and detection ratio, respectively, were able to
quantify the number of pixels available for analysis and potential of each pixel being a coal fire.
There was also the presence of false positive pixels that contributed to an increase in the extent of
detected coal fires. The percentile based approach used all of the LST images by analysing day and
night images to identify coal fires. This approach was able to remove false positive pixels and pro-
vide a reliable extent of coal fire areas. Changes in the status of coal fires could be assessed within
the coal fire areas. The ECOSTRESS LST images are highly recommended for characterizing coal
fires.
GEE proved to be extremely resourceful in performing the study, given the volume of data and
processing intensity. Implementation of results of LULC classification, change detection and coal
fire detection on an cloud-based interactive application has the potential to be integrated into min-
ing operations and decision making. The application is also capable of integrating results of sub-
sequent years. All scripts developed during the thesis are released in a public repository licensed
under CC by 4.0. Datasets can also be accessed from the repository links provided in the Appendix
A.3. This will ensure reproducibility and also encourage future research and development with
inter-comparable results.

Answers to research questions

• How has the surface area of mines changed in the study area?

Although overall coal mining activity reduced in 2020 when compared to 2019, coal mining
continued operations by acquiring coal overburden areas.
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• Which ECOSTRESS images are more effective in identifying coal fires?

Two approaches were used to detect coal fires. The first method used ECOSTRESS LST im-
ages with pixel coverage greater than 0.95 were able to identify coal fires with 90% accuracy,
while the second method used all images to detect fires with 75% accuracy. However, the
first method also detected false positive fire pixels. Presence of clouds played an important
role in the availability of pixels for analysis. Results of cloud detection tests over coal fires
areas also reduced pixel availability.

• Is there any relationship between LST and observed temperatures at the coal fire locations?

There was a high correlation between day time temperature and observed temperatures.
But the night time temperatures had low correlation indicating LST variability with the
background and within the pixels

7.2 FUTURE RECOMMENDATION

The following recommendations are suggested for future research

Analysis of coal mining characteristics

• Use of reference maps, in situ data, and adopting sampling techniques such as stratified sam-
pling for generating reference data.

• Implement heuristic-based balancing methods to address class imbalance issues.

• Explore methods such as boruta (Kursa & Rudnicki, 2010) and varSelRF (Díaz-Uriarte &
Alvarez de Andrés, 2006) for feature selection that can reduce computational intensity of
the classifier.

• Explore Object based approach to LULC classification which unlike pixel-based classifica-
tion, includes not only spectral properties but also spatial and texture characteristics of the
classes.

• Conduct thorough analysis of cloud detection tests in ECOSTRESS LST images.

• Assess potential of ECOSTRESS LST to distinguish surface and subsurface fires at both pixel
and sub-pixels levels.

• Study influence of coal mining activity with temporal variations of LST at coal fires loca-
tions.

GEE App

• Application can take input from the user such as field data to perform validation of classifi-
cation and change detection maps.

• Implementing balancing methods on the GEE platform.

• Integration of multiple tools under one framework to provide users with different perspec-
tives of the analysis.

• Develop application where user-interface is developed from scratch and uses GEE in the
back-end for processing, data storage and deployment.
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Appendix A

Table A.1: Time stamp and corresponding ECOSTRESS granule ID of ECO2LSTE, ECO1BGEO
and ECO2CLD data products for the study area. Filenames of the products and processed images
can be identified with the granule ID

Date Time UTC Granule ID
2019-01-26 10:25:10 03166_007_20190126T102510
2019-01-30 8:35:51 03227_006_20190130T083551
2019-02-02 7:38:40 03273_006_20190202T073840
2019-03-03 5:29:38 03722_007_20190303T052938
2019-03-10 2:45:52 03829_008_20190310T024552
2019-05-27 10:18:51 05046_003_20190527T101851
2019-06-07 6:05:00 05214_006_20190607T060500
2019-06-11 4:23:25 05275_006_20190611T042325
2019-06-15 2:42:25 05336_005_20190615T024225
2019-06-18 1:49:53 05382_005_20190618T014953
2019-07-02 19:53:54 05611_005_20190702T195354
2019-07-06 18:13:32 05672_005_20190706T181332
2019-07-10 16:33:25 05733_005_20190710T163325
2019-07-17 14:01:14 05840_005_20190717T140114
2019-07-25 10:40:36 05962_001_20190725T104036
2019-08-09 4:46:32 06191_004_20190809T044632
2019-08-12 3:55:22 06237_005_20190812T035522
2019-08-30 20:30:44 06527_005_20190830T203044
2019-09-03 18:52:48 06588_006_20190903T185248
2019-09-07 17:14:11 06649_006_20190907T171411
2019-09-09 2:14:24 06670_017_20190909T021424
2019-09-11 15:36:02 06710_005_20190911T153602
2019-09-15 13:57:15 06771_006_20190915T135715
2019-09-18 13:08:33 06817_006_20190918T130833
2019-09-22 11:31:36 06878_005_20190922T113136
2019-09-30 8:17:39 07000_003_20190930T081739
2019-10-08 5:02:44 07122_002_20191008T050244
2019-10-26 21:43:25 07412_006_20191026T214325
2019-10-29 20:54:10 07458_005_20191029T205410
2019-10-30 20:05:53 07473_005_20191030T200553
2019-11-01 5:05:53 07494_011_20191101T050553
2019-11-03 18:28:09 07534_006_20191103T182809
2019-11-06 17:38:46 07580_005_20191106T173846
2019-11-10 16:01:51 07641_005_20191110T160151
2019-11-12 1:02:54 07662_012_20191112T010254

Continued on next page
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Table A.1 – continued from previous page
Date Time UTC Granule ID

2019-11-18 12:48:28 07763_006_20191118T124828
2019-11-22 11:11:32 07824_006_20191122T111132
2019-11-26 9:34:20 07885_003_20191126T093420
2019-11-27 18:35:27 07906_009_20191127T183527
2019-12-01 16:58:31 07967_008_20191201T165831
2019-12-03 7:08:51 07992_005_20191203T070851
2019-12-22 23:03:04 08297_006_20191222T230304
2020-01-06 17:28:28 08526_005_20200106T172828
2020-01-09 1:41:59 08562_009_20200109T014159
2020-01-14 14:18:30 08648_005_20200114T141830
2020-01-16 22:32:11 08684_009_20200116T223211
2020-01-18 12:43:27 08709_006_20200118T124327
2020-01-22 11:08:16 08770_006_20200122T110816
2020-01-26 9:34:26 08831_006_20200126T093426
2020-02-11 3:20:14 09075_004_20200211T032014
2020-02-15 1:46:48 09136_006_20200215T014648
2020-02-22 22:39:35 09258_006_20200222T223935
2020-03-01 19:32:10 09380_006_20200301T193210
2020-03-05 17:57:49 09441_005_20200305T175749
2020-03-05 17:58:41 09441_006_20200305T175841
2020-03-17 13:16:44 09624_006_20200317T131644
2020-03-21 11:43:23 09685_006_20200321T114323
2020-03-23 19:58:08 09721_006_20200323T195808
2020-03-27 18:25:43 09782_006_20200327T182543
2020-04-29 20:16:27 10295_005_20200429T201627
2020-05-03 18:42:08 10356_005_20200503T184208
2020-05-11 15:33:36 10478_006_20200511T153336
2020-05-19 12:25:00 10600_006_20200519T122500
2020-05-21 20:38:22 10636_009_20200521T203822
2020-06-19 23:48:30 11088_002_20200619T234830
2020-06-30 19:52:09 11256_005_20200630T195209
2020-07-20 11:59:56 11561_005_20200720T115956
2020-08-05 5:42:57 11805_005_20200805T054257
2020-08-09 4:09:31 11866_006_20200809T040931
2020-08-13 2:35:20 11927_004_20200813T023520
2020-08-24 21:54:59 12110_006_20200824T215459
2020-08-28 20:21:28 12171_001_20200828T202128
2020-09-17 12:34:10 12476_006_20200917T123410
2020-09-21 11:01:14 12537_005_20200921T110114
2020-09-27 17:44:11 12634_011_20200927T174411
2020-09-29 7:57:05 12659_006_20200929T075705
2020-10-03 6:24:42 12720_006_20201003T062442
2020-10-26 21:01:21 13086_002_20201026T210121
2020-11-03 17:53:01 13208_004_20201103T175301
2020-11-07 16:18:12 13269_003_20201107T161812
2020-11-17 21:24:37 13427_004_20201117T212437
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Table A.1 – continued from previous page
Date Time UTC Granule ID

2020-11-23 10:04:11 13513_005_20201123T100411
2020-11-27 8:30:58 13574_006_20201127T083058
2020-12-13 2:16:55 13818_006_20201213T021655

Table A.2 Land cover mapping scheme used in this study

Level - 1 description
Barren land Barren rocky, sandy areas, scrub land
Built up Urban, rural and industrial
Coal overburden Barren overburden dumps
Coal mine Coal quarry, coal dump, advance quarry site
Agriculture Cropland, fallow land
Forest Deciduous forests, scrub forests
Water bodies River, ponds, streams, canals, reservoir, water filled quarry

Table A.3 Citation and references to scripts and datasets used in this study

Item no Description DOI
1 Reference samples, training and validation data 10.6084/m9.figshare.15181098
2 Classified and coal mine change maps 10.6084/m9.figshare.15181122
3 Study area shapefiles 10.6084/m9.figshare.15181143
4 Coal fire locations for validation 10.6084/m9.figshare.15181164
5 ECOSTRESS LST images 10.6084/m9.figshare.15181173
6 Coal fire and change maps 10.6084/m9.figshare.15181200
7 GEE scripts of app and analysis 10.6084/m9.figshare.16571268
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https://figshare.com/articles/dataset/Reference_Data_Training_and_Validation/15181098
https://figshare.com/articles/dataset/Classified_and_coal_mine_change_maps/15181122
https://figshare.com/articles/dataset/Study_area_shapefiles/15181143
https://figshare.com/articles/dataset/Coal_fire_locations_for_validation/15181164
https://figshare.com/articles/dataset/ECOSTRESS_LST_images/15181173
https://figshare.com/articles/dataset/Coal_fire_and_change_maps/15181200
https://figshare.com/articles/dataset/GEE_scripts_of_app_and_analysis/16571268
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