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ABSTRACT 

Forests play a significant role in global warming mitigation strategies. The Netherlands and other nations 

committed to reducing global warming must assess and monitor forest biomass/carbon. National forest 

carbon inventories are mostly based on the estimation of the aboveground biomass (AGB). Remote sensing 

methods, in addition to field-based approaches, are applied to assess forest AGB. UAV RGB Orthomosaic 

and ALOS-2 PALSAR-2 images are two of many remote sensing data to estimate forest AGB. UAV RGB 

images provide very-high-resolution images that are used to identify tree crowns. Related parameters such 

as DBH are modeled from those tree crowns, and finally, the AGB of the tree is estimated. However, the 

UAV RGB sensor is a passive sensor that cannot penetrate the surface of the canopy and does not include 

trees suppressed by taller trees. Conversely, ALOS-2 PALSAR-2 is an active remote sensing sensor (L-band 

SAR) that can penetrate the forest's canopy and sometimes reach the top of the soil layer. Therefore, 

PALSAR-2 backscatter contains information from the forest canopy, trunks and soil. The method to 

estimate AGB from PALSAR-2 backscatter is straightforward by developing a regression model between 

the AGB and backscatter coefficients. However, PALSAR-2 provides AGB information in low resolution, 

and the backscatter saturates with increasing AGB value. Both of the sensors have limitations in assessing 

area-based AGB of the forest; UAV does not include suppressed trees, and PALSAR-2 gives biomass 

information at low resolution and is limited by backscatter saturation. In this regard, this study aimed to 

compare the plot-based forest biomass estimated from UAV and ALOS-2 PALSAR-2 in a temperate forest 

and assess their accuracy. Forest parameters such as DBH and the height of 1584 trees have been collected 

from 94 sample plots. AGB of each individual tree was calculated from the parameters collected parameters 

by using species-specific allometric equations. Plot AGB was derived from the individual tree AGBs. This 

study used two standard methods of AGB estimation from UAV RGB and ALOS-2 PALSAR-2 images. In 

the case of UAV RGB images, we delineated the CPA of trees manually and then used the CPA-DBH 

relationship grouped into conifers and broadleaves to model DBH. Modeled DBH was used in species-

specific allometric equations to obtain UAV estimated individual tree AGB. Then the individual tree AGB 

modeled from UAV RGB images was transformed into plot AGB. On the other hand, HH and HV 

polarization backscatter coefficients of the PALSAR-2 image were extracted for each plot by setting a 9-

pixels (3x3) window and taking the average of the coefficients. Then a regression between field-measured 

AGB and backscatter coefficients was established to model AGB from the backscatter coefficients. The 

study found a positive correlation between CPA delineated from UAV RGB and DBH at a coefficient of 

determination of 0.89 for broadleaves and 0.92 for conifers with RMSE of 4.28 cm and 2.44 cm accordingly. 

Individual tree AGB estimated from UAV RGB images depicted a strong correlation with biometric AGB 

(R2 = 0.81). However, the plot-based AGB estimation resulted in a high amount of underestimation and 

overestimation in several plots. UAV RGB images modeled plot AGB had a poor correlation with biometric 

AGB (R2 = 0.35, RMSE= 57.18 tons/ha). In the case of PALSAR-2, HV backscatter had a better 

relationship with AGB. The logarithmic relationship between AGB and HV backscatter represented a high 

correlation at R2 = 0.85 with RMSE = 40.9 tons/ha. Moreover, this study also found that plot AGB is better 

estimated from both UAV RGB and ALOS-2 PALSAR-2 images in coniferous forest stand compared to 

broadleaves and mixed forest stands. Based on our analysis, we concluded that ALOS-2 PALSAR-2 is a 

better choice over UAV RGB to estimate the area-based AGB of a temperate forest with intermingling 

crowns and dense canopy. However, we also remarked that UAV RGB could be better in individual tree-

based assessment in a non-intermingling crown forest stands and assessing how PALSAR-2 backscatter 

estimates AGB of an open forest with non-intermingling crowns could lead to a comprehensive conclusion. 
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1 INTRODUCTION 

Climate change is one of the most frequently discussed and argued global challenges (European 

Environment Agency, 2019; Perkins et al., 2018; Urry, 2015). Deforestation is one of the significant 

anthropogenic reasons for climate change (Gibbs et al., 2007; IPCC, 2014). Forest is considered as a 

sink and source of carbon dioxide (IPCC, 2014). When forest land is degraded or altered, CO2 is 

released into the atmosphere (Gibbs et al., 2007). The state of forests has been altered in many places 

worldwide for resources to convert into other land-use, e.g., agriculture (IPCC, 2014). Consequently, 

carbon dioxide (CO2) emission from the forest has been happening continuously over a long period. 

According to Smith et al. (2015), the forest accounts for about one-third of global carbon dioxide 

emission caused by human interaction, such as deforestation, degradation, and land-use change, from 

1750 to 2011. 

 

The Forest sector plays a significant role in the mitigation strategies to reduce carbon dioxide 

emissions(Brown, 1997; Rizvi et al., 2015). Forests are the world’s largest terrestrial carbon pool (Gibbs 

et al., 2007). The significant carbon pools in the forest are the above-ground biomass (AGB), below-

ground biomass (BGB), understory, litter, and deadwood (FAO, 2020; Gibbs et al., 2007). Afforestation 

or reforestation leads to the sequestration of carbon, and when the forest grows young to the old state, 

it works as a carbon sink (Smith et al., 2015) because CO2 is stored through the photosynthesis process. 

Four main mitigation strategies have been formed for world forests; these strategies are: reducing 

emission from deforestation, reducing emission from forest degradation, enhance carbon sink, and 

product substitution (Rizvi et al., 2015). 

 

A global initiative was taken by the United Nations Framework Convention on Climate Change 

(UNFCCC) with its member nations to reduce carbon emissions from forests and to enhance the global 

carbon sink (UNEP, 2018a). The initiative is known as “Reducing Emissions from Deforestation and 

Forest Degradation” (REDD+). The REDD+ initiative encourages the developing countries to 

manage their forest sustainably in a conservative manner, reduce deforestation and degradation, and 

enhance carbon sink (Gibbs et al., 2007; UNEP, 2018b).  REDD+ developed the concept of carbon 

trading and the international carbon market, in which a country with reduced emission as compared to 

their baseline carbon emission can sell their carbon credits to other countries who failed to reduce 

emission from its baseline (Gibbs et al., 2007; UNEP, 2018a). 

 

As a prerequisite of participation in this REDD+ initiative for reduced emission and carbon trading, 

partner countries should develop a National Forest Monitoring System, in short, NFMS (UNEP, 

2018a). NFMS has two functions: 1) forest monitoring and 2) measurement, reporting, and verification 

(MRV) of forest resources (UNEP, 2018a). MRV is an essential and specifically relevant mechanism to 

REDD+, emphasizing transparency in carbon trading. The MRV mechanism of REDD+ measures 

the change in forest area, quality of the forest, and forest carbon stock using various field measurements 

and remote sensing techniques (UNEP, 2018a). In the case of carbon assessment, the most measured 

forest carbon is from AGB because it is a good indicator for the overall biomass of the tree (Lucas et 

al., 2015), and approximately 50% of forest AGB is above-ground carbon stock (Næsset et al., 2020).  

 

In April 2016, the Dutch ministry of environment signed the UN Climate Agreement to limit 

temperature rise below 2o C and make efforts for not more than 1.5o C global warming (Government 

of the Netherlands, 2021). As a part of this agreement, a yearly report, The Climate and Energy Report, 

is published, which requires an updated reference scenario every year (Klimaatakkoord, 2019). 

Moreover, the Dutch government must make a carbon and biomass inventory for every year’s carbon 

emission forecasting (Klimaatakkoord, 2019). The carbon accounting approach in the Netherlands is 
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based on wood stand stock calculated from the total yearly increase of wood volume/biomass and 

harvested wood that may not be accurate. It is expensive to conduct a full-scale survey in-field since it 

requires labor and time (Workie, 2011). 

 

Moreover, in December 2019, the European Commission came up with a new set of policy initiatives 

for the European Union (EU) nations named ‘A European Green Deal’ (European Commission, 2020). 

The main goal of this Green Deal is to make the EU carbon neutral by 2050. As a consequence of the 

initiative, in January 2020, the European Commission came up with an action plan named ‘New EU 

Forest Strategy’ (European Commission, 2020). The action plan aims to increase the potential of forests 

to absorb CO2, protect biodiversity and improve the bio-economy of the EU through effective 

afforestation, forest restoration and preservation. According to this Green Deal, EU nations increased 

their target to reduce carbon emission from 40% to 55% by 2030. It will be essential to measure and 

monitor forest carbon stock and carbon sequestration for the implementation of such an action plan. 

Remote sensing techniques may be used for cost-effective and accurate assessment of carbon stock, 

carbon emission, and carbon sequestration.  

 

There are a couple of ways to measure the AGB of a forest. The estimation of AGB can be done either 

using a destructive or a non-destructive method. Destructive methods involve cutting down of the 

trees to oven-dry them, which is quite the opposite of the motive of REDD+, Dutch Carbon 

Accounting, or the EU Green Deal. Besides, the destructive method of AGB estimation has many 

limitations regarding time, labor, expenses and sampling biases (Stovall et al., 2017). The field 

measurement-based non-destructive method using the allometric equation is typically used for AGB 

estimation on a national level (Næsset et al., 2020; Stovall et al., 2017). The field-based allometric 

equation method requires biophysical data of trees such as height, diameter at breast height (DBH), 

wood density (Djomo & Chimi, 2017; Næsset et al., 2020; Stovall et al., 2017). Remote sensing methods 

to estimate AGB are also non-destructive. UNFCCC recommends a combination of field measurement 

and remote sensing for forest carbon monitoring and MRV at the national and sub-national level 

(FFPRI, 2012; Lucas et al., 2015; UNEP, 2018a). 

 

For the monitoring of forest biomass and MRV, accurate, inexpensive, operational, and technically less 

complicated remote sensing methods are recommended (UNEP, 2018b). However, finding a universal 

method of remote sensing to estimate AGB is complicated since forests exist in different biomes and 

with different types of trees (Lucas et al., 2015). A couple of field based and remote sensing based 

techniques have been used to estimate forest AGB (Lu, 2006). The use of passive (e.g., optical) and 

active (e.g., RADAR, LiDAR) remote sensing has been observed in many AGB estimation studies 

(Cutler et al., 2012; Du et al., 2012; Hirata et al., 2014; Kaasalainen et al., 2015; Rahman et al., 2017). In 

the case of optical remote sensing, it was observed that medium and low-resolution optical imagery 

have higher uncertainty in estimating forest AGB (Boisvenue et al., 2016; Lu, 2006). High-resolution 

satellite imagery can estimate AGB with less uncertainty (Hirata et al., 2014). As a consequence, in the 

last 5-7 years, the use of the unmanned aerial vehicle (UAV) has appeared in AGB estimation literature 

(Berhe, 2018; Ota et al., 2015). 

 

UAV is considered inexpensive to collect data multiple times and obtain accurate Biomass/Carbon 

information (Lin et al., 2018) but challenging to use in a large area. The processing of UAV images to 

generate orthophoto mosaic is also complicated thus requires expert knowledge of photogrammetry. 

The larger the area, the higher the processing time; therefore, a powerful and expensive computer is 

required for faster processing. Moreover, flying UAVs is restricted in many places most relevant to 

military interest, which consequently resulted in a limitation in image acquisition. Even though the 

UAV is not affected by the cloud, the flight might be difficult in places with windy weather or rainy 
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days. Moreover, to estimate AGB/carbon stock from UAV, a couple of sources of the error must be 

considered, such as the error in estimating DBH from crown projection area (CPA), error in canopy 

height model (CHM) derived from the point cloud, and the error relevant to the allometric equation 

used to calculate AGB. 

 

Furthermore, the technique using UAV detects biomass of a single tree which is further generalized to 

the area typically tons per ha. RGB images taken by UAV cannot detect trees underneath the top 

canopy layer, which makes the AGB estimation inaccurate for forest stand with large predominant or 

suppressed trees. Figure 1 depicts trees that cannot be assessed using UAV RGB imagery.  Despite 

having those limitations, UAV images can estimate AGB more accurately than any other optical remote 

sensing technique (Lin et al., 2018; Ota et al., 2015). A study conducted by Poley & McDermid (2020) 

reviewed 46 peer-reviewed studies relevant to the estimation of AGB using UAV data. The study found 

that the standard approach of estimating AGB using UAV data is by delineating crown areas or 

individual trees. They also found that UAVs can be of moderate to excellent accuracy (50% – 99%) to 

estimate AGB. The approach of AGB estimation from UAV is mainly based on canopy structure such 

as crown diameter, crown projection area (Komárek, 2020; Poley & McDermid, 2020).  

 

 

Figure 1: Limitation of UAV on estimating AGB of trees in an interlocked forest area.  

 

On the other hand, Synthetic Aperture RADAR (SAR) data is available from various sensors, e.g., 

Sentinel-1, ALOS PALSAR, Radarsat, COSMO-Skymed, TerraSAR-X, ICEYE and Gofen-7. SAR is 

an active sensor that uses its own microwave radiation to map the surface of the earth. SAR is not 

significantly affected by the cloud, wind, or time of the day, making the SAR imagery operational during 

day and night in the all-weather situation (Parker, 2013). Therefore, it makes SAR a reasonable sensor 

for monitoring AGB in vast areas with clouds and rain, primarily tropical forests. 

 

AGB from SAR can be estimated in various ways. Many studies have estimated the AGB of forest 

from the backscatter coefficients of SAR (Golshani et al., 2019; Masolele et al., 2018; Nguyen, 2010; 

Odipo et al., 2016). The Simple Cloud Water Model is also used to model AGB from SAR images 

(Huang et al., 2018). Moreover, nowadays, machine learning techniques have been used in modeling 

AGB from SAR imagery (Santi et al., 2020, 2021; Stelmaszczuk-Górska et al., 2018). However, 

estimation of AGB from backscatter is a widely used approach (Hojo et al., 2020; Imhoff, 1995; 

Mitchard et al., 2009; Nesha et al., 2020; Ningthoujam et al., 2017).  AGB estimated from SAR has 

been found to be accurate (Liao et al., 2020; Lucas et al., 2015).  
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The estimation of biomass or carbon from SAR backscatter is straightforward; through a regression 

model with average backscatter of a set of pixels corresponding with the sample plot and the sample 

plot biomass (Nesha, 2019). The use of C-band, L-band, and P-band is increasing in estimating the 

AGB of forests (Beaudoin et al., 1994; Imhoff, 1995; Liao et al., 2020; Sandberg et al., 2011; 

Stelmaszczuk-Górska et al., 2018). C-band and L-band satellite SAR imagery is currently available and 

widely used across the world to estimate AGB (Nesha, 2019; Nguyen, 2010; Odipo et al., 2016). In 

addition, the L-band SAR microwave can penetrate through the crowns better compared to C-band 

due to its longer wavelength than the C-band microwave (Eineder et al., 2014). Figure 2 presents the 

penetration of C-band and L-band SAR microwave in forest vegetation. Therefore, the L-band of SAR 

is used to estimate forest AGB since it is relevant to the volume scattering of trees and canopy (Nesha, 

2019).  

 

Figure 2: The penetration of X-band, C-band, and L-band SAR in forest vegetation. (as adapted from Eineder et al., 
2014) 

Moreover, AGB detected from SAR has comparatively fewer sources of error than UAV images. 

Unlike UAV RGB images, L-band SAR backscatter can penetrate the canopy, which also includes 

suppressed trees under the dominant or top layer. However, the resolution of SAR images is much 

lower compared to UAV images. Moreover, many studies found that the backscatter of SAR images 

saturates at a certain amount of AGB, meaning AGB beyond that amount could not be assessed by 

SAR backscatter (Hamdan et al., 2014; Joshi et al., 2015; Schlund et al., 2018; Yu & Saatchi, 2016). 

Nevertheless, the L-band SAR image requires a cost to avail. Due to the cost, it can be challenging to 

acquire SAR images to assess or monitor forest AGB. However, considering the area covered by an L-

band SAR image, the cost is low if measured in price per area unit. 

 

SAR images have been used to assess AGB in various biomes: tropical, boreal, temperate, mangrove 

(Golshani et al., 2019; Imhoff, 1995; Lucas et al., 2015; Rodríguez-Veiga et al., 2019; Stelmaszczuk-

Górska et al., 2018; Watanabe et al., 2006). The use of UAV to estimate AGB has also been increasing 

nowadays in different biomes (d’Oliveira et al., 2020; Dash et al., 2018; Lee et al., 2020; Poley & 

McDermid, 2020). UAV has been used widely to estimate AGB in temperate forests (Brovkina et al., 

2018; Dandois et al., 2015; Grüner et al., 2020; Mtui et al., 2017; Torres Rodriguez, 2020). 

 

This study was conducted in a temperate forest. The temperate forest has unique characteristics and 

vegetation structure. It is the second-largest biome globally; temperate forests cover about 25% global 

forest area (Tyrrell et al., 2012). Temperate forests are distributed over some regions of North America, 

South America, Europe, Asia, and Oceania. Temperate forests are the world’s primary source of timber 

and forest produce (de Gouvenain & Silander, 2017). In a temperate forest, widespread tree species 

types are both coniferous and broadleaf. The canopy layer in a typical temperate forest is simple, mostly 

consisting single canopy layer compared to the tropical or mangrove forests where those forests have 

multiple canopy layers. In a temperate forest with a less complicated canopy structure, tree data from 

UAV Orthomosaic, e.g., CPA and height, could be assessed with fewer complications than a complex 

tropical or mangrove forest. The relationship between AGB and ALOS-2 PALSAR-2 backscatter is 

also straightforward in a temperate forest. 
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1.1 Research Problem 

According to the requirements of MRV, the remote sensing technique to estimate biomass over a forest 

area should be accurate, operational, reasonably less expensive, and technically less complicated 

(FFPRI, 2012; UNEP, 2018a, 2018b). Different sensors mounted on UAV can provide 2D and 3D 

information of the forest (González-Jaramillo et al., 2019; Mlambo et al., 2017b). However, UAVs also 

have several limitations. UAVs can be challenging to observe a large area due to their limited battery 

capacity (González-Jaramillo et al., 2019). Even though UAVs can be flown close to the forest, the 

effect of time of the day, sun angle, wind speed cannot be ignored. Moreover, UAV images require 

high computation power and expert training to process and obtain 3D information. Besides, the AGB 

estimation methods have a couple of potential errors due to different models (e.g., quality of point 

cloud, CPA-DBH relationship, CHM tree height accuracy). In addition, UAVs cannot assess trees 

intermingling with each other accurately. As mentioned before, trees that are suppressed and cannot 

be seen from UAV images are also missed in AGB estimation. 

 

On the other hand, PALSAR-2 is an L-band SAR that can penetrate through the forest’s canopy, 

containing backscatter information of suppressed trees that UAV cannot see. It is also operational in 

all weather conditions, independent of time of the day and sun angle. Moreover, the AGB estimation 

methodology from SAR backscatter coefficients is also much less complicated than UAVs. And it can 

estimate AGB with reasonable accuracy. However, the resolution of the image is much lower compared 

to UAVs. Besides, SAR backscatter saturates at a certain amount of AGB, which makes it 

underestimating AGB in some forests. Many studies to estimate AGB from SAR backscatter contains 

information on the saturation point (Brovkina et al., 2018; Grüner et al., 2020; Manakos & Lavender, 

2014; Nuthammachot et al., 2020; Schlund et al., 2018; Zhu et al., 2020). 

 

Both sensors, UAV RGB and L-band SAR, have their advantages and disadvantages.  UAV has the 

limitation for overall AGB estimation due to the exclusion of suppressed trees, while SAR has the 

disadvantage of its resolution. In this regard, we have studied the AGB estimation of a temperate forest 

on plot level to assess the AGB estimation gap from UAV and L-band SAR as compared to biometric 

data. 

 

The finding of this study may prove whether L-band SAR can make up for the uncertainty in AGB 

information from UAV-based assessment. Coniferous and broadleaf trees have different canopy and 

crown structures. Since the crown area is required to assess AGB from UAV images using the 

relationship between CPA and DBH, the CPA-DBH relationship from coniferous and broadleaf trees 

is different (Shimano, 1997). Moreover, volume backscatter from L-band SAR imagery is different for 

coniferous and broadleaf canopy structures, and thus information on cover types could help estimate 

AGB accurately (Joshi et al., 2015; Yu & Saatchi, 2016). Therefore, this study also investigated the AGB 

estimation from different forest stand types (coniferous, broadleaf, and mixed). 
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1.2 Research Objectives and Research Questions 

This study aims to compare the plot-based forest biomass estimated from UAV and ALOS-2 PALSAR-

2 in a temperate forest and assess their accuracy. This study also intends to assess AGB estimation of 

UAV and PALSAR-2 based on coniferous, broadleaves and mixed forest types. 

 

The specific objectives of the study with relevant research questions are: 

 

Objective 1: To estimate forest AGB using UAV RGB images. 

RQ 1: What is the relationship between crown projection area from UAV and field measured 

DBH? 

RQ 2: What is the modeled AGB from UAV RGB images? 

 

Objective 2: To estimate forest AGB using ALOS-2 PALSAR-2 co-polarized (HH) and cross-

polarized (HV) images. 

RQ 3: What is the relationship between ALOS-2 PALSAR-2 backscatter and field measured 

AGB? 

RQ 4: What is the saturation point of AGB estimation in relation to the ALOS-2 PALSAR-2 

backscatter coefficient? 

RQ 5: What is the modeled AGB from ALOS-2 PALSAR-2 image? 

 

Objective 3: To assess the accuracy of AGB estimation from UAV and ALOS-2 PALSAR-2 images. 

RQ 6: What is the accuracy of AGB estimation from UAV? 

RQ 7: What is the accuracy of AGB  estimation from ALOS-2 PALSAR-2? 

 

Objective 4: To compare the accuracies of ALOS-2 PALSAR-2 and UAV RGB images for AGB 

estimation. 

RQ 8: Is there a significant difference between estimated AGBs from backscatter images of 

ALOS-2 PALSAR-2 and UAV RGB images? 

RQ 9: What is the difference in the accuracy of estimated AGB from UAV and ALOS-2 

PALSAR-2 on coniferous, broadleaf, and mixed forest stand?   
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2 MATERIALS AND METHODS 

This chapter includes sections on the description of the study area, study design, sampling design, study 

materials, data collection, data processing and data analysis. 

2.1 Study Area 

For this study, a forest area named Haagse Bos, located near Losser and about 7 km away from the city 

Enschede of Overijssel province, has been chosen. Haagse Bos is a small forest with an area of about 

334 hectares (Workie, 2011). The forest area lies between 52.283° - 52.246°N and 6.938° - 6.975°E. A 

part of Haagse Bos is managed by The Dutch National Monuments Organisation (NMO) and the rest 

by a private company named Takkenkamp (Natuurmonumenten, 2021). The forest is a combination 

of semi-natural and production forests (Natuurmonumenten, 2021). The forest has both coniferous 

and broadleaf trees. It also has large trees under the canopy top layer in some places, making it suitable 

to explore the uncertainty of AGB estimation from UAV and PALSAR-2 images for more complex 

forest stands. Figure 3 presents the study area with UAV flight blocks and fieldwork sample plot 

locations. 

 

Common coniferous tree species of Haagse Bos are Scots Pine (Pinus sylvestris), Douglas Fir (Pseudotsuga 

menziesii), European larch (Larix decidua), and Norway Spruce (Picea abies). Furthermore, common 

broadleaf species are Oak (Quercus robur), European White Birch (Betula pendula), and European Beech 

(Fagus sylvatica). Broadleaf trees are dominant in the nature monument forest area, where coniferous 

trees are common in the production forest area. 

 

 

Figure 3: Study area with UAV flight blocks and sample plot locations. The green polygons indicate the flight blocks 
and the red points indicate the field data sample plot centers. Flight block number is indicated with the white number 
labels. (Source: Base map from ESRI, Netherlands Boundary from PDOK, 50 cm Superview image from Netherlands 
Space office taken on 08 May 2020.) 
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2.2 Study Design 

This study was designed to estimate AGB from backscatter of ALOS-2 PALSAR-2 image and UAV 

RGB images, and then compare the estimated AGB from both sensor types in Haagse Bos, Enschede, 

the Netherlands. The study has been conducted in several steps. The main steps of the research are 

briefly described below in Table 3. Moreover, the flowchart in Figure 4 also visualizes the methodological 

steps of the study involving data collection and data processing. 

 

Table 1: List of steps and involved activities for the research. 

Steps Activities 

Reconnaissance 1. Reconnaissance field visits, creating field interpretation and Google Images 

interpretation based maps with coniferous and broadleaf forest classes. 

 

UAV Flight Planning 1. Selecting forest patches for UAV flights and creating flight plans to collect 

UAV RGB images. 

 

Remote Sensing Data 

Collection 

1. Conducting UAV flights and collecting 2D RGB images. This step also 

included fieldwork relevant to collect GCPs for UAV images. 

 

2. Collecting or purchasing ALOS-2 PALSAR-2 images. 

 

Field Data Collection 1. Tree biometric data such as DBH, Tree Height, and Canopy Density from 

field sample plots have been collected. 

 

Processing UAV RGB 

Images 

1. Photogrammetric processing in creating a 3D dense point cloud from UAV 

RGB Images. 

 

2. DTM, DSM, and Orthomosaic have been created from the point cloud. 

 

3. CHM has been created from the DTM and DSM. 

 

 Estimating AGB from 

UAV RGB images 

1. Manual digitization of crown projection area (CPA) of trees from UAV RGB 

Orthomosaic. 

 

2. CPA-DBH relationship has been developed using digitized CPA and field-

measured DBH, and the DBH of all trees in UAV Orthomosaic has been 

modeled. This step answered research question 1. 

 

3. The total heights of trees have been identified from the CHM using delineated 

CPAs. 

 

4. AGBs of all trees have been estimated and mapped using allometric equations 

where tree height and DBH from UAV RGB Orthomosaic analysis have been 

used. This step answered research question 2. 

 

Processing of ALOS-2 

PALSAR-2 image 

1. Radiometric calibration of the HH and HV polarisation ALOS-2 PALSAR-2 

images has been done to retrieve HH and HV polarization backscatter. 

 

2. HH and HV polarization backscatter images have been georeferenced after 

applying Range-Doppler Terrain Correction using SRTM 30m DEM. 

 



 
A COMPARISON BETWEEN UAV-RGB AND ALOS-2 PALSAR-2 IMAGES FOR THE ASSESSMENT OF ABOVEGROUND BIOMASS IN A TEMPERATE FOREST 

9 

3. Extracting HH and HV backscatter coefficients from the image by overlaying 

field plots on the images. 

 
 

Estimating AGB from 

HV backscatter 

ALOS-2 PALSAR-2 

image. 

1. Regression models between HH and HV backscatter coefficients and field-

plot AGBs have been established and validated. This step answered research 

question 3. 

 

2. The saturation point of AGB estimation has been determined to answer 

research question 4. 

 

3. AGB of the coniferous, broadleaf, and mixed forest stand has been modeled 

by using the regression equation and the saturation point. This step answered 

research question 5. 

 

Accuracy Assessment 

of estimated AGB 

1. Accuracy assessment of AGB estimation from UAV RGB images as well as 

HH and HV backscatter ALOS-2 PALSAR-2 image. This step answered 

research questions 6 and 7. 

 

Comparing AGB 

estimated from UAV 

RGB and HV 

polarisation ALOS-2 

PALSAR-2 image. 

1. Estimated AGB from UAV RGB images and HV polarisation ALOS-2 

PALSAR-2 image have been compared to answer research question 8. 

 

2. AGB estimation accuracy from UAV RGB and HV polarisation ALOS-2 

PALSAR-2 images have been compared to answer research question 9. 
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Figure 4: Flowchart of the research methods. 
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2.3 Sampling Design 

Field data has been collected using sample plots. The sampling design should be in such a way that it 

is representative of coniferous and broadleaf tree species or stand in the study area. The selection of 

potential sample plot locations in the field is based on a stratified sampling approach. The study area 

was stratified into broadleaves, coniferous, and mixed stand based on visual interpretation from Google 

Earth. Then plots were generated randomly for each forest type. If a plot previously stratified as 

broadleaf had conifers in the plot or vice versa, the plot type was considered mixed during fieldwork 

depending on the number of broadleaf and coniferous trees in the plot. A total of 94 sample plots have 

been collected, of which 31 are coniferous, another 31 are broadleaf, and the remaining 32 are 

coniferous-broadleaf mixed forest stand. 

 

The plot shape and size depend on the purpose of the study. In the case of AGB estimation, a plot size 

of 500 m2 was preferred. It does not significantly improve the AGB estimation with a plot size of over 

500 m2 (Gobakken & Næsset, 2008; Ruiz et al., 2014). Therefore, the area of each sample plot was 

approximately 500 m2. The plot shape was circular, following standard forest inventory field manuals 

(Bonham, 2013). A circular plot of a 500 m2 area has a 12.62 m radius. Figure 5 below depicts a schematic 

representation of a circular plot established in the field. In fieldwork, circular plots with a 12.62 m 

radius were established by using meter tape. 

 

 

 

 

 

 

 

 

 

 

 
 

 

2.4 Study Materials 

For this study, two-stage fieldwork has been conducted, fieldwork for UAV flights and image collection 

and fieldwork for biometric data collection. Flight planning and flying zone selection were required to 

collect UAV images from the field. Seven flying blocks have been selected to represent the variety in 

the whole forest. Ground Control Points (GCPs) were recorded using a Differential Global Navigation 

Satellite System (DGNSS). Table 1 provides a list of all equipment with their purposes in UAV image 

collection fieldwork.  Orthomosaic for each flying block has been created and used to identify plot 

centers and trees during field data collection. 

 

 

 

Figure 5: Schematic representation of a circular plot of 500 m2 with a 12.62 m radius. 

Radius = 12.62 m 
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Table 2: List of equipment used for UAV image collection fieldwork. 

Equipment Purpose 

UAS Phantom 4 DJI UAS for flying and capturing 2D images. 

DJI RGB Camera Collect 2D image snapshots. 

Android or iOS Device Create flight-plan and conduct flights. 

GCP Markers/Board Place GCP marks in the fields. 

DGNSS Device Record geolocation of GCPs. 

 

The fieldwork for biometric data collection was conducted from 03 September to 10 October. Several 

types of equipment were used to collect various field data. The equipments and their purposes are 

described in Table 2. 

 

Table 3: List of field equipment used to collect tree/plot biometric data. 

Equipment Purpose 

Tree tag Tag the tree with a number 

Measuring tape (30 m) Delineate the boundary of Sample Plots 

Diameter Tape (5m or 3m) Measure the DBH of trees. 

Range Finder Measure the tree height and distance of trees from the plot center. 

Sunnto Compass  Measure the North bearing of trees from the center of the plot. 

Sunnto Clinometer Measure tree height. 

Datasheets and Pencil Record field-measured data. 

Tablet/Mobile Navigation and plot center identification. 

 

 

 

2.5 Data 

As mentioned earlier, the fieldwork for data collection took place in two stages: UAV image collection 

and tree biometric data collection. Moreover, ALOS-2 PALSAR-2 images have been acquired for this 

study. Acquisition of field data, UAV image, and ALOS-2 PALSAR-2 images have been described in 

the following. 

 

2.5.1 UAV Data Collection 

UAV RGB images were collected in September 2020. Flights were conducted over seven blocks on 

different days. However, the flights were conducted by following similar weather conditions to avoid 

clouds and at the same time each day to have a similar sun angle. Flight plans for each block were done. 

Figure 6 below represents a flight plan for one of the blocks covered in the study. Table 4 shows the 

overview of flight planning parameters and camera characteristics. 
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Figure 6: UAV double grid Flight plan with camera position and GCP marker locations. 

 

Table 4: Flight plan and aerial photo parameters for the UAV image collection. 

Parameters Conditions / Characteristics 

Sensor DJI FC330_3.6_4000x3000 (RGB) 
Flight Mission Double Grid (north-south, east-west) 
Flying speed slow 
Overlap 90% front overlap, 80% side overlap 
Camera angle Nadir-view (90o) 
Photo format JPEG 
Image Coordinate System WGS 84 (EGM 96 Geoid) 
CGPs 8-15 per block  
GCP Coordinate System Amersfoort / RD new (EGM 96 Geoid) 

 

 

2.5.2 Field Data Collection 

Fieldwork was conducted in September and October 2020. The plot center was identified and located 

using the Orthomosaic created from collected UAV images. ‘Avenza Map’ mobile application was used 

to determine the plot center on Orthomosaic. The application used mobile GNSS and the internet to 

find locations. Moreover, positions were verified using distance and north bearing from identifiable 

permanent objects such as trees, buildings, poles, and benches. Then the boundary of the plots was 

delineated using a measuring tape. Biometric data for all trees with 10 cm or above DBH was collected. 

Trees with less than 10 cm DBH were not measured because they are often not considered in the 

assessment of volume or biomass for global or commercial inventory measurements (Brown, 2002). 

Table 5 below contains the list of data collected from fieldwork. A sample of the field data collection 

sheet is provided in Appendix A. 
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Table 5: List of data collected from fieldwork and their purposes. 

Data Purpose 

Plot Center Location To identify plots and to calculate geolocation of each tree 

Tree species name To identify and use species-specific allometric equations 

DBH of Trees (DBH > 10 cm) To calculate AGB using allometric equation 

Tree Height (DBH > 10 cm) To calculate AGB using allometric equation 

Bearing of the tree from plot center To calculate tree geolocation (X and Y coordinates) 

Distance of tree from plot center To calculate tree geolocation (X and Y coordinates) 

 

 

2.5.3 ALOS-2 PALSAR-2 Data Acquisition 

ALOS-2 is a satellite launched by the Japan Aerospace Exploration Agency (JAXA). It carries a sensor 

called Phase Array L-band Synthetic Aperture Radar (PALSAR-2) on board. A dual-polarization (HH 

and HV) ALOS-2 PALSAR-2 image was acquired from JAXA through Geoserve B.V., a distributor of 

PALSAR-2 images in the Netherlands. The ITC Faculty of Geo-information Science and Earth 

Observation, University of Twente, acquired the image on 14 November 2020. Table 6 below contains 

the specifications of the acquired ALOS-2 PALSAR-2 image. 

 

Table 6: Detailed specification of ALOS-2 PALSAR-2 image. 

Specification of ALOS-2 PALSAR-2 Description 

Scene ID ALOS-2_PALSAR-2_ALOS2324081040-200523 

Scene Observation Date and Time 23 May 2020 at 23:13:14 (UTC), 
Local Amsterdam time 1:13 AM 

Product Type FBDR 1.1 

Product format CEOS 

Observation mode Strip map (SM3) 

Observation swath wide 70 km 

Process level 1.1 

Calibration factor – 83.0  

Off-nadir angle 32.9 

Range spacing 4.29 m 

Azimuth Spacing 3.96 m 

Wavelength 0.242425 m (24 cm) 

Polarization HH and HV 
Range looks x Azimuth looks 1.0 x 1.0 

Observation direction Right 

PASS Ascending 

Sample type Complex 

 

 

2.6 Data Processing 

After collecting biophysical data from the field and remote sensing data using UAV and ALOS-2 

PALSAR-2 images, the data were processed for analysis and estimating AGB. Data processing included 

field data processing, UAV image processing and ALOS-2 PALSAR-2 image processing steps. The 

description of each processing step is provided below. 
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2.6.1 Field Data Processing 

The forest tree biometric data have been transferred to an Excel sheet after field data collection. The 

locations of individual trees in a plot have been calculated in a separate Excel sheet using the bearing 

and distance from the center coordinate of the sample plot. Then the allometric equations have been 

used to calculate AGB using DBH, tree height data. Plot AGB as tons/ha has been calculated from 

individual tree AGB in Excel sheet as well. Further details on AGB calculation are provided in the 

following section. 

 

2.6.2 Plot AGB Calculation 

Calculation of AGB can be done using allometric equations. There are a plethora of allometric 

equations available for tree species based on their age, location, ecological zone. The allometric 

equations used in the analysis were selected based on their accuracy, age range, geolocation, and biome 

type, representing the study forest as closely as possible. Table 7 below depicts the allometric equations 

used for different species to calculate species-specific tree AGB. The most suitable species-specific 

allometric equations to represent the age and DBH range of the trees have been found to have DBH 

as the only variable except Beech (Fagus sylvatica). Besides, many literatures argued that DBH is 

sufficient to estimate AGB accurately (Brown, 1997a; Chave et al., 2005). On the other hand, the 

allometric equations for beech with DBH as the only variable do not represent the age class and field 

data DBH range. Therefore, we used the allometric equation of beech with DBH and height as the 

variable. 

 

Table 7: Allometric equations used to calculate above-ground biomass of species. 

Species AGB allometric equation R2 Reference 

Beech 
Fagus sylvatica, 
Netherlands 

AGB[kg] = 0.0306 * DBH[cm]
2.347 * H[m]

0.59 0.99 
(Zianis et al., 
2005) 

Birch 
Betula pendula, 
United Kingdom 

AGB[kg] = 0.2511 * DBH[cm]
2.29 0.99 

(Zianis et al., 
2005) 

Douglas-fir 
Pseudotsuga menziesii, 
Netherlands 

AGB[kg] = 0.111 * DBH[cm]
2.397 0.99 

(Zianis et al., 
2005) 

European Ash 
Fraxinus excelsior, 
United Kingdom 

ln(AGB[kg]) = -2.4598 + 2.4882 * ln(DBH[cm]) 0.99 
(Zianis et al., 
2005) 

Larch 
Larix decidua, 
Czech Republic 

Needles branches[kg] = 0.02794 * DBH[cm]
1.80041 

Dead branches[kg] = 0.11828 * DBH[cm]
1.4912 

Live Branches[kg] = 0.02796 * DBH[cm]
2.19824 

Stem wood[kg] = 0.05438 * DBH[cm]
2.420242 

Stem bark[kg] = 0.006588* DBH[cm]
2.42044 

  
AGB[kg] = (Needles + Dead branches + Live branches 
+ Stem wood + Stem bark) 

0.98 
0.85 
0.99 
0.99 

(Novák et al., 
2011) 

Norway Spruce 
Pieca abies, 
Germany 

AGB[kg] = -43.13 + (2.25*DBH) + (0.425*DBH[cm]
2) 0.99 

(Zianis et al., 
2005) 
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Oak 
Quercus robur, 
United Kingdom 

ln(AGB[kg]) = -2.3223 + 2.4029 * ln(DBH[cm]) 0.99 (Bunce, 1968) 

Scots Pine 
Pinus sylvestris,  
Czech Republic 

AGB[kg] = 0.1182 * DBH[cm]
2.3281 0.98 

(Cienciala et 
al., 2006) 

Norway Maple 
Acer platanoides,  
Canada 

AGB[kg] = 0.50183 * DBH[cm]
2.0444 0.97 

(Morrison, 
1991) 

 

After calculating AGB in kilogram for each tree from allometric equations, the AGB per plot was 

calculated and converted into tons/ha. In order to do that, we have summed the AGB of trees in a 

plot in kg then divided the sum with 1000 to convert the kg into tons. That gave us the AGB in ton 

for each plot (500 m2 area). Then we divided the AGB by 0.05 to retrieve AGB in tons per hectare. 

 

2.6.3 UAV Image Processing 

After collecting 2D UAV RGB images, they have been processed using a photogrammetry software 

Pix4Dmapper. A 3D dense point cloud was generated in Pix4Dmapper software from each flight block, 

and then DSM, DTM, and Orthomosaic were generated from that 3D point cloud. Pix4Dmapper used 

the technique Structure from Motion (SfM) to create a 3D point cloud from 2D images with front and 

side overlaps. Pix4Dmapper used all the overlapping images and identified key points for various 

objects. Then it matched the common key points from multiple photos of the same object feature 

(Brovkina et al., 2018; Mlambo et al., 2017b; Westoby et al., 2012). The 3D point cloud was 

georeferenced using GCPs. GCPs were imported and marked in images before starting the processing 

of point cloud generation. The generation of the 3D point cloud in Pix4Dmapper took two steps; the 

initial step where Pix4Dmapper computed matching key points. In the initial processing step, the 

software runs Automatic Aerial Triangulation (AAT) and the Bundle Block Adjustment (BBA) 

techniques to find matching key points. After completing initial processing and importing GCPs, the 

process for the densification of the 3D point cloud started. From the 3D Dense Point Cloud, DSM, 

DTM, and Orthomosaic were generated. The resolution and quality of DSM, DTM, and Orthomosaic 

depended on the quality of the 3D point cloud. 

 

2.6.3.1 UAV Image Processing Results 

Each flight block has been processed separately. Figure 7 below depicts the overview of processing 

steps in Pix4D software for block 5. All the spatial data products have been produced in the 

‘Amersfoort / RD_New’ projection system, local coordinate systems of the Netherlands. 

3D Ground Control Points (GCPs) and Check Points (CPs) were marked manually on the UAV images 

in the software. Minimum 5 to 15 GCPs were used to process the images. The number of GCPs 

depends on the size of the flight area. GCPs were located in different locations inside the flight block 

representing all areas. CPs were used to assess the geolocation and reprojection quality obtained by 

GCPs. High output quality was obtained for each block with minimum geolocation RMSE and 

reprojection error. 

Table 10 presents the overview of image processing quality from SfM. Detailed quality reports are 

presented in Appendix B. In all flight blocks, 100% of the images have been oriented correctly and used 

for SfM. The density of point cloud for all blocks ranged from 32.11 per m3 to 49.72 per m3. GCPs 
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have been used for each flight block, and the mean RMS ranged from 0.004m to 0.0161m. Moreover, 

the ground sampling distances also ranged from 4.3 cm to 5.24 cm. 

The quality of the point cloud depends on the image overlap and the processing options used in the 

software (Dash et al., 2018; Guerra-Hernández et al., 2016; Shen et al., 2019). The average density of 

point cloud ranged from 32.11 to 49.72 m-3, which represents a good quality allowing Orthomosaic 

with good detail (from 4.4 x 4.4 cm to 5.24 x 5.24 cm resolution). 

The resolution of DSM ranged from 4.3 cm (0.043 m) to 5.24 cm (0.0052 m). Similarly, DTM output 

resolution was from 22 cm (0.22m) to 25.7 cm (0.25m). The resolution of DTM affects the resolution 

of CHM. All the DSMs have been resampled to 25 cm (0.25 m) resolution to match the lowest DTM 

resolution prior to creating CHM. Therefore, the final resolution of CHM obtained from the UAV was 

25 cm (0.25m).  

 

 

Figure 7: Overview of UAV RGB image processing in Pix4D software. (a) images from the UAV camera and their 
positions with GCPs, (b) matching tie points obtained from initial processing, (c) 3D point cloud after densification, (d) 
3D triangulation process, (e) DSM obtained from the 3D point cloud, (f) DTM generated from the point cloud, and (g) 
Orthomosaic generated from the point cloud. 

 

Table 8: Summary of UAV image processing Quality from SfM. 

 Block 1 Block 2,3 Block 4 Block 5 Block 6 Block7 

Average GSD (cm) 5.24 4.49 4.4 4.46 4.41 4.61 

Total Area (ha) 99.73 57.54 32.24 26.44 27.44 52.05 

georeferencing mean RMS (m) 0.005 0.011 0.004 0.016 0.006 0.007 

Bundle Block Adjustment       

Mean reprojection error (pixels) 0.125 0.246 0.272 0.241 0.209 0.241 

Point Cloud densification       

Number of 3D densified points 97675305 78684624 20621494 22868055 28796000 22759113 
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Average point cloud density 33.48 49.72 32.11 32.84 43.59 37.64 

DSM, Orthomosaic, and DTM       

DSM and Orthomosaic resolution 5.24 4.49 4.4 4.46 4.41 4.61 

DTM resolution 25.7 22.45 22 22.3 22.05 23.05 

 

2.6.3.2 Canopy Height Model generation 

The canopy height model is used to identify tree height from UAV images. It was derived from the 

DSM and DTM generated from the 3D point cloud of UAV images. CHM was generated by 

subtracting DTM from DSM in the raster calculator. Figure 8 below shows the CHM of the study area 

calculated from a UAV point cloud generated DSM and DTM. 

 

 

Figure 8: Canopy height model obtained from UAV DSM and DTM. 

 

2.6.3.3 Crown Projection Area Digitization 

Accurate delineation of the crown projection area is crucial for the CPA-DBH relationship model. 

Previous studies proved that on-screen manual digitization provides the most accurate CPA of trees 

(Gaden, 2020; González-Jaramillo et al., 2019; Grznárová et al., 2019; Guerra-Hernández et al., 2016; 

Torres Rodriguez, 2020). For this reason, this study also used on-screen manually digitized CPA of 

trees visible from the UAV images to develop the CPA-DBH relationship model. 
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The UAV Orthomosaic was loaded on ArcMap software, and the CPA of individual trees was digitized 

on-screen manually. Polygon shapefile was created for the manually digitized CPAs, and the area of 

each polygon/CPA was calculated using the calculate geometry function in ArcMap. CPA area was 

calculated in m2 unit. To identify the trees and the shape of the tree, UAV images, plot photos, and 

tree information from field data were used.  

The accuracy of the crown projection area depends on the quality and detail of the UAV Orthomosaic. 

Since the UAV flights were conducted on different blocks on different days, the Orthomosaic were 

not uniform; there were some blurs or shift on the Orthomosaic of block 4, block 5, and block 7. 

Therefore, we did not include plots from those locations in the manual digitization and excluded these 

plots from UAV-based analysis. To ensure the accuracy in CPA delineation, the digitization was 

conducted with caution so that crowns of multiple trees are not delineated as one crown, and the 

branches of one tree are perceived as multiple crowns. Figure 9 present a plot with manually digitized 

CPAs of trees. Total 57 plots were digitized manually, and a total of 562 CPAs were delineated. 

 

 

Figure 9: Examples of tree crowns manually digitized on-screen from UAV Orthomosaic. 

 

2.6.3.4 Obtaining tree height from CHM 

Height information was used in the allometric equation of Beech (Fagus sylvatica) species. Therefore, 

the height of trees from UAV CHM was also derived. We use manually digitized CPAs to determine 

the maximum value of CHM inside the polygons as tree height. The accuracy of CHM tree height also 

depends on the quality of the 3D point cloud, DSM, and the DTM (Dandois et al., 2015). 

 

2.6.4 ALOS-2 PALSAR-2 Image Processing 

The ALOS-2 PALSAR-2 image was obtained as CEOS level 1.1 product. Pre-processing of the image 

was required to obtain HH and HV polarization backscatter coefficients. First, a radiometric calibration 

was performed to convert the DN values into HH and HV backscatter values. Then geometric 

correction and georeferencing were conducted.  
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2.6.4.1 Radiometric calibration to retrieve backscatter 

Radiometric calibration was applied to convert radar DN values into backscatter coefficients expressed 

in decibels (dB), also known as Normalized Radar Cross Section (NRCS). Equation 1 was used to 

retrieve backscatter coefficients, which was proposed by Shimada et al. (2009). The equation was 

applied using band math in SNAP software. Backscatter coefficients for co-polarization (HH) and 

cross-polarization (HV) images were obtained. The backscatter images obtained after conducting 

radiometric calibration are presented in Appendix C. The backscatter coefficients in the whole scene 

for HV polarization ranged from -8.5 dB to -43 dB, and for HH polarization, it ranged from -1.9 dB 

to -34.2 dB. 

 

Equation 1: Retrieval of PALSAR-2 backscatter coefficients 

 

𝝈𝟎𝟏.𝟏 𝒑𝒓𝒐𝒅𝒖𝒄𝒕 = 𝟏𝟎.𝒍𝒐𝒈𝟏𝟎(𝑰𝟐 + 𝑸𝟐) + 𝑪𝑭 – 𝑨 

 

Where, 

𝝈𝟎𝟏.𝟏 𝒑𝒓𝒐𝒅𝒖𝒄𝒕 = Normalized Radar Cross Section of level 1.1 product in (dB) 

I = Real part of Single Look Complex (SLC) level 1.1 product 

Q = Imaginary part of SLC level 1.1 product 

CF = Calibration Factor = -83.0 dB 

A= Constant, 32.0 

 

 

2.6.4.2 Geometric correction and georeferencing 

After obtaining NRCS using Equation 1, the geometric correction of the images was done using the 

Range-Doppler Terrain Correction method. Then the images were georeferenced. Range-Doppler 

Terrain Correction was used because it is one of the standard and precise techniques for geometric 

correction of radar images (Jiang et al., 2016). Range-Doppler Terrain Correction requires a Digital 

Elevation Model to shift the pixels to actual geolocation. In this study, we have used Shuttle Radar 

Topography Mission (SRTM) DEM of 30 m resolution. SRTM-1sec DEM (30m) can be downloaded 

in SNAP automatically while applying Range Doppler Terrain Correction. PALSAR-2 image was 

georeferenced to Amersfoort/ RD New projection system after terrain correction. After 

georeferencing and removing geometric distortions, the final backscatter image resolution was 7 m. 

Figure 10 depicts HV and HH backscatter images after terrain correction and applying georeferencing. 
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Figure 10: Geometric correction and georeferencing of PALSAR-2 backscatter images. 

 

2.6.4.3 Noise reduction and filtering 

Speckle noise is inherent in SAR images, and thus the speckle filtering has been applied after geometric 

correction and georeferencing. Speckle noise can affect the AGB estimation significantly from 

backscatter coefficients (Joshi et al., 2015; Schlund et al., 2018). In this study, a 3x3 pixels kernel Lee 

speckle filter was applied on HV and HH backscatter images to smooth the images and reduce speckle 

noise.  

 

2.6.4.4 Backscatter coefficient extraction 

The HH and HV backscatter coefficients were extracted for each plot in the study area to use in further 

analysis. Since the field plot is circular and has a 12.62 m radius, the diameter of the sample plot is 25.24 

m. Due to the 7 m resolution of the backscatter image, fitting the sample plot with approximately 25 

meters diameter was complicated. Therefore, an approach similar to Hamdan et al. (2014), Masolele et 

al. (2018), and Nesha et al. (2020) have been taken where a 3x3 pixel window was fitted approximately 

with the plots to extract the backscatter coefficients. Figure 11 below depicts how a 3x3 pixel window 

was established for each plot to extract backscatter coefficients. 
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Figure 11: Fitting 3x3 pixel window to extract backscatter coefficients per plot. 

 

2.7 Data Analysis 

Data analysis included AGB calculation, development of models to predict DBH from UAV, model 

development to estimate AGB from UAV image and ALOS-2 PALSAR-2 backscatter coefficients, and 

accuracy assessment of models and AGB estimations. 

 

2.7.1 DBH-Crown Relationship Analysis 

The relationship between tree DBH and crown parameters such as the crown projection area, the 

crown diameter has been proven in multiple studies (Abdollahnejad et al., 2018; Brown, 2002; Fu et al., 

2020; Gaden, 2020; Shashkov et al., 2019; Shimano, 1997; Torres Rodriguez, 2020; Yang et al., 2020; 

Yurtseven et al., 2019). The relationship between CPA and DBH has been found to be non-linear by 

the authors, such as Fu et al. (2020), Shimano (1997), and Yang et al. (2020). For a young open growth 

forest, the relationship between CPA and DBH is proportional. The growth of CPA becomes slower 

compared to DBH after the forest grows for a certain age due to the competition of canopy density 

(Chave et al., 2005; Shimano, 1997). 

Regression models between Crown Projection Area (CPA) of trees obtained from the UAV 

Orthomosaic and field measured DBH have been created to estimate DBH of broadleaf and conifer 

trees. Total 121 broadleaf and 134 coniferous trees were manually digitized to obtain the most accurate 

CPA. For model development and model validation, the data have been split into model development 

and model validation sets. 91 broadleaf and 94 coniferous trees have been used to develop the CPA-

DBH relationship model, 30 and 41 trees have been used accordingly to validate the models. Therefore, 

trees that were used for validation were independent of the model data. 

To determine the relationship between CPA-DBH, different regression functions, e.g., linear, 

logarithmic, exponential, polynomial, and power regression functions have been applied. The best fit 

model was chosen based on the regression output for model development and validation. Regression 

parameters such as correlation coefficient (r), coefficient of determination (R2), and Root Mean Square 

Error (RMSE) were used to determine the best fit model. 
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2.7.2 AGB Estimation from UAV Orthomosaic 

After the development of the CPA-DBH relationship model, the model was used to estimate the DBH 

of trees all trees (562 trees) from 57 manually digitized plots. Predicted DBH for each tree was used in 

species-specific allometric equations provided in Table 7. The height of Beech was also used in the 

allometric equation. Therefore, the height of each tree was extracted by using the zonal statistics tool 

in ArcMap software, where the maximum value inside each CPA polygon was identified from the CHM 

raster image. Thus, applying CPA-DBH modeled DBH and CHM estimated tree height in species-

specific allometric equations, individual tree AGB was calculated. Then the plot AGB was calculated 

by summing to AGB of all trees from the corresponding plot, and the total value was transformed into 

tons/ha unit. 

 

2.7.3 Regression Analysis and AGB Estimation from ALOS-2 PALSAR-2 

AGB estimation from SAR can be done using several methods (Becek, 2009; Joshi et al., 2015; Liao et 

al., 2020; Masolele et al., 2018; Nguyen, 2010; Schlund et al., 2018; Zhu et al., 2020). The L-band 

PALSAR-2 image was obtained with HH and HV polarization. Therefore, we used backscatter and 

biometric AGB regression analysis to model AGB from backscatter coefficients. Previous studies to 

model AGB from backscatter revealed that the relationship between backscatter and AGB was 

considered either linear or logarithmic (Hamdan et al., 2014; Joshi et al., 2015; Masolele et al., 2018; 

Nesha et al., 2020; Nguyen, 2010; Yu & Saatchi, 2016). In this study, the linear regression function 

provided in Equation 2 has been applied to estimate AGB from backscatter coefficients.  

 

Equation 2: Linear regression model between AGB and ALOS-2 PALSAR-2 Backscatter coefficients. 

 

𝐴𝐺𝐵 = 𝛽0 𝜎𝑜 + 𝛽1 

Where, 

AGB = the predicted AGB 

𝜎𝑜 = the HH or HV backscatter coefficient in (dB) 

𝛽0 = the model coefficient for 𝜎𝑠𝑙𝑐
°  

𝛽1 = the intercept of the regression model 

 

Moreover, the logarithmic function to model AGB from backscatter coefficients is frequently used 

(Imhoff, 1995; Schlund et al., 2018; Yu & Saatchi, 2016). In that case, a relationship between backscatter 

coefficients and log(AGB) is developed, which is often denoted as the forward model (Schlund et al., 

2018). Then a formula or backward model is used to calculate the AGB values from the forward model 

(Schlund et al., 2018). In our case, we used the formula in Equation 3 to develop a relationship between 

backscatter coefficients and log10(AGB). Then we transformed the log10(AGB) into AGB values by 

calculating the antilog. 

 

Equation 3: Linear regression model between log10(AGB) and ALOS-2 PALSAR-2 Backscatter coefficients. 

 

𝑙𝑜𝑔10(𝐴𝐺𝐵) = 𝛽0  𝜎𝑜 + 𝛽1 

Where, 

Log10(AGB) = Logarithmic value of the predicted AGB 

𝜎𝑜 = the HH or HV backscatter coefficient in (dB) 

𝛽0 = the model coefficient for 𝜎𝑠𝑙𝑐
°  

𝛽1 = the intercept of the regression model 
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The dataset was split into two sets: for model development and model validation. Fifty plots have been 

used in the regression model development. The rest of the plots were used for model validation. The 

models have been validated using field-measured AGB data. A similar regression model was developed 

for AGB and backscatter coefficients for plots grouped into coniferous, deciduous, and mixed forest 

stand. 

 

2.7.4 Accuracy Assessment and Comparison 

Accuracy assessments on estimated AGB from UAV and PALSAR-2 images have been conducted. 

For accuracy assessment, the same plots have been used for UAV and PALSAR-2 images. Predicted 

AGBs on the validation plots have been plotted against the observed AGBs from the field in a linear 

relationship. The accuracy has been evaluated by using statistical indicators from the relationship such 

as R2, RMSE. RMSE has been calculated by using the following formula (Equation 4). 

 

Equation 4: Equation for RMSE calculation. 

𝑅𝑀𝑆𝐸 =  √∑ (𝑌̂ − 𝑌)
2𝑛

𝑖=1

𝑛
 

Where, 
 RMSE = the Root Mean Square Error 
 Y = the observed AGB from field 

 𝑌̂ = the predicted AGB from UAV or ALOS-2 PALSAR-2 using the model 

 𝑛 = the number of validation plots 
 
Moreover, to assess and compare whether the AGBs estimated from the field, modeled from UAV and 
ALOS-2 PALSAR-2, are significantly different, a one-way ANOVA F-test among all measurements 
has been conducted. 

 

2.7.5 Determination of AGB Saturation point 

Previous studies found that in a backscatter-AGB regression model, backscatter coefficients saturate 

at a certain value of AGB. This value of AGB is recognized as the saturation point for the backscatter 

coefficients. Watanabe et al. (2006) determined saturation point for different polarization backscatter 

coefficients from L-band SAR by plotting AGB and backscatter coefficients in a logarithmic regression. 

Then the slope of the curve was calculated at different AGB values for corresponding backscatter 

coefficients. The saturation point was determined when the slope of backscatter coefficients and AGB 

regression converge at 0.01. The following equation (Equation 5) was used to calculate the slope of the 

curve, and the AGB value at slope = 0.01 was determined as the saturation point. 

 

Equation 5: Determination of slope of AGB-backscatter coefficients regression to determine AGB 

saturation point. 

Slope = ΔY/ΔX 

Where, 
ΔY = The change in backscatter values from the minimum backscatter value. 
ΔX = The change in AGB from the minimum AGB value. 
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3 RESULTS 

The following section describes the results from the field data collection. Then, it presents the results 

obtained from UAV image processing and analysis: DBH – CPA relationship model development and 

validation, and AGB estimation from modeled DBH and tree height. Moreover, this section also 

includes regression analysis between AGB and PALSAR-2 backscatter coefficients followed with AGB 

estimation model development and validation. Finally, the comparison results between AGB estimated 

from UAV and ALOS-2 PALSAR-2 are presented. 

 

3.1 Results from the Field Data Analysis 

Plot and tree biometric parameters have been collected from the fieldwork. Tree species have been 

identified on the plot. A total of 94 plots have been collected, of which 31 plots are conifer-dominated, 

31 plots are broadleaves-dominated, and 32 plots represent mixed forest stand. Details of the tree 

species and relevant field parameters are described in the following. 

 

3.1.1 Description of the Tree Species 

During the fieldwork, a total of 1584 trees have been recorded. Among them, 928 trees were coniferous, 

and 656 trees were broadleaf. From the sample plots, 470 individuals of Pseudotsuga menziesii, 189 

individuals of Pinus sylvestris, 177 individuals of Pieca abies, and 83 individuals of Larix decidua trees were 

recorded, which are coniferous species. Broadleaf species that were found are: 279 individuals of Fagus 

sylvatica, 229 individuals of Quercus robur, 118 individuals of Betula pendula, 20 individuals of Fraxinus 

excelsior, and 20 individuals of  Acer platanoides. Details of species and their distribution are depicted in 

Figure 12 below. 

 

Figure 12: Details of tree species recorded from the sample plots in the fieldwork. 
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3.1.2 Descriptive Statistics of the Field Data Parameters 

Diameter at breast height (DBH) and the total height of all trees with a minimum of 10 cm DBH have 

been recorded for each plot. The mean DBH of all trees recorded was 33.5; for broadleaves, the mean 

DBH was 36.7 and 31.2 for conifers. The largest tree recorded in the field was a broadleaf species with 

101.9 cm DBH. The maximum DBH observed for conifers was 85.6 cm. Table 9 presents the 

descriptive statistics of biometric DBH and total height for all trees and species represented as conifers 

and broadleaves. 

 

Table 9: Summary statistics of DBH and tree height from field measured data. 

 

All trees Broadleaves Conifers 

DBH (cm) Height (m) DBH (cm) Height (m) DBH (cm) Height (m) 

Number of trees 1584 1584 656 655 928 928 

Mean 33.5 19.3 36.7 19.1 31.2 19.4 

Standard Error 0.38 0.14 0.69 0.22 0.42 0.18 

Standard Deviation 15.32 5.51 17.7 5.58 12.91 5.47 

Minimum 10 3.4 10 3.4 10 4 

Maximum 101.9 35.2 101.9 30.9 85.6 35.2 

Sample Variance 234.57 30.4 313.04 31.11 166.63 29.88 

Range 91.9 31.8 91.9 27.5 75.60 31.2 

Kurtosis 0.51 -0.16 -0.2 -0.5 0.91 0.08 

Skewness 0.74 -0.36 0.47 -0.49 0.79 -0.26 

W statistics 0.958 0.985 0.962 0.971 0.96 0.989 

p-value 4.79e-21 1.06e-11 3.69e-12 2.87e-10 4.49e-15 2.78e- 6 

Normal Distribution False False False False False False 

 

The normal Q-Q plot of biometric DBH presented in Figure 13 shows that DBH of broadleaves and 

conifers are skewed to the left at both lower and higher values. The Shapiro-Wilk test (Shapiro & Wilk, 

1965) also resulted in a p-value lower than 0.05; therefore, the field measured  DBH for all trees and 

grouped into broadleaves, and coniferous was significantly different from the normal distribution. The 

DBH of trees resulted in a skewed distribution because trees with less than 10 cm DBH were not 

measured. The Shapiro-Wilk test W statistics and p-values are also presented in Table 9. 

 

 

Figure 13: Normal QQ plot of DBH of all trees measured from fieldwork. 
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Similarly, we have also tested the normality of biometric tree height. The normal Q-Q distribution plot 

in Figure 14 shows that tree heights are skewed to the right at higher values. The Shapiro-Wilk normality 

test also showed W statistics of 0.985, 0.971, and 0.989 respectively for all trees, broadleaves, and 

conifers with a p-value lower than 0.05 in all cases; p-values are presented in Table 9. Therefore, the 

biometric heights for all trees, broadleaves, and conifers were also statistically significantly different 

from the normal distribution. 

 

Figure 14: Normal QQ plot of the height of all trees measured from fieldwork. 

 

3.1.2.1 Biometric AGB 

AGB for individual trees from biometric data has been calculated using species-specific allometric 

equations. The unit of AGB for individual trees was in kilograms. Then, the biometric AGB per plot 

has been calculated by summing individual trees and converting the total value to tons per hectare unit. 

Table 10 below depicts the descriptive statistics of biometric AGB calculated on individual tree level 

and plot level.  

Table 10: Descriptive statistics of biometric AGB from individual trees and biometric AGB for plots. 

 

Tree AGB(kg/tree) Plot AGB (tons/ha) 

All Trees Broadleaves Conifers All Plots Broadleaves Conifers Mixed 

Count 1584 656 928 94 30 31 33 

Mean 747.19 1075.17 515.34 245.67 308.61 196.31 234.82 

Minimum 47.69 56.12 47.69 71.96 124.48 71.96 89.08 

Maximum 10610.42 10610.42 4758.42 640.71 621.29 640.71 528.03 

Standard Error 23.30 47.33 18.00 12.51 23.46 19.41 17.97 

Standard Deviation 927.44 1212.21 548.27 121.31 128.51 108.06 103.24 

Sample Variance 860136.55 1469450.03 300599.85 14715.33 16514.56 11677.33 10658.19 

Range 10562.73 10554.30 4711.73 568.75 496.81 568.75 438.95 

Kurtosis 16.56 9.46 13.75 1.41 -0.08 10.0 1.13 

Skewness 3.20 2.41 3.07 1.32 0.74 2.91 1.16 

W statistics 0.686 0.770 0.715 0.877 0.680 0.944 0.906 

p-value 2.85e-47 2.75e-29 2.75e-29 2.69e-07 6.02e-07 0.12 0.008 

Normal Distribution False False False False False True False 

 

The normality of biometric AGB has also been tested. Table 10 depicts the Shapiro-Wilk normality test 

result of the biometric AGB. The distribution of AGB has been visualized by using a histogram with a 
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density curve in Figure 15, along with a normal Q-Q plot for all plots. AGB density curve shows that 

biometric AGB is left-skewed. The normal Q-Q plot also reveals that plot AGB data is skewed to the 

left at lower values and higher values and right-skewed at middle values. From the Shapiro-Wilk 

normality test, AGB distribution for all plots, broadleaves dominated plots, and conifers dominated 

plots have been found to be significantly different from the normal distribution. However, AGB for 

mixed plots resulted in W statistics of 0.942 with a p-value of 0.099, which is higher than 0.05. 

Therefore, the AGB of mixed plots is normally distributed. 

 

 

Figure 15: Histogram of plot AGB with density curve and normal Q-Q plot. 

 

 

3.2 Results from UAV RGB Analysis 

UAV RGB images have been processed to generate Orthomosaic, DSM, DTM. The following sections 

describe the results obtained from the delineation of individual tree crown projection area from 

Orthomosaic and acquiring tree height from CHM (in section 3.2.1). Then, the results from the CPA-

DBH relationship model to estimate DBH and the validation of the model have been described in 

section 3.2.2. And finally, the AGB estimated from the parameters obtained from UAV processing 

results have been described in section 3.2.3. 

 

3.2.1 Crown Projection Area and Tree Height from UAV 

A total of 562 individual trees have digitized been manually from 54 plots. Table 11 below depicts the 

statistical description of CPAs obtained by manual digitization. CPA ranged from 4.95 m2 to 270.59 

m2. We have performed a normality test on the CPAs obtained from Orthomosaic. The Shapiro-Wilk 

test resulted in a W statistics of 0.805 at a p-value of 1.73e-25, which indicates that the CPA data are 

not normally distributed. The normal Q-Q plot of CPAs presented in Figure 16 shows that the data are 

skewed to the left at the lower and upper ends and right-skewed at the middle. Moreover, the CPAs 

have been used to extract the height of the corresponding tree from the CHM. The description of tree 

height obtained from CHM is also presented in Table 11. Tree heights from CHM were also not 

normally distributed. Shapiro-Wilk test performed with 0.974 W statistics at 2.13e-8 p-value. The 

normal Q-Q plot in Figure 16 shows that the CHM heights are right-skewed at the higher values and 

consistent with the distribution of height data measured in the field. 
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Table 11: Descriptive statistics of CPA from Orthomosaic and tree height from CHM. 

 
CPA CHM Height 

Count 562 562 

Mean 47.04 19.11 

Minimum 4.95 4.61 

Maximum 270.59 33.32 

Standard Error 1.73 0.24 

Standard Deviation 41.01 5.76 

Sample Variance 1681.53 33.19 

Kurtosis 4.94 -0.56 

Skewness 1.95 -0.33 

W Statistics 0.805 0.974 

p-value 1.73e-25 2.13e-8 

Normal Distribution False False 

 

 

Figure 16: Normal Q-Q plot of CPA from orthophoto and tree height from CHM. 

 

3.2.2 Crown Projection Area – DBH Relationship and Validation 

A relationship between CPA and DBH has been derived by performing regression analysis. From 562 

CPAs (193 broadleaves and 269 conifers) that have been digitized manually, 254 trees have been used 

for model development and validation. The model was developed separately for broadleaves and 

conifers. The dataset of broadleaves and conifers was split into two parts; 90 broadleaves and 94 

coniferous trees for model development and 30 broadleaves and 40 coniferous trees for model 

validation. Table 12 presents all the regression models applied to determine the CPA-DBH relationship 

from broadleaves and coniferous trees. In the case of broadleaves, the power regression model 

performed better than the rest of the models at an R2 of 0.89 with an RMSE of 4.28 cm. Binomial (2nd 

order polynomial) regression model performed better for the conifers at an R2 of 0.92 with an RMSE 

of 2.44 cm. Therefore, the power function has been used for broadleaves, and the binomial equation 

has been used to determine the CPA-DBH relationship of conifers. Figure 17 presents the scatterplot 

of the CPA-DBH relationship with the fitted regression function curve for broadleaves and conifers. 
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Table 12: Regression models applied to determine the CPA-DBH relationship of broadleaves and conifers. 

 Model Equation R2 

Broadleaves 

Linear y = 0.2378x + 34.569 0.88 

Logarithmic y = 18.819ln(x) - 25.305 0.86 

Exponential y = 37.194e0.0042x 0.83 

Binomial y = -0.0003x2 + 0.3129x + 31.432 0.86 

Power y = 11.446x0.3612 0.89 

Conifers 

Linear y = 0.4638x + 25.592 0.9 

Logarithmic y = 13.711ln(x) - 4.0136 0.84 

Exponential y = 27.688e0.0106x 0.81 

Binomial y = -0.002x2 + 0.6662x + 22.68 0.92 

Power y = 12.891x0.3436 0.91 

 

 

Figure 17: The regression model between CPA and DBH of broadleaves and conifers. 

 

Each CPA-DBH relationship model developed for broadleaves and conifers has been validated on a 

dataset independent of the model dataset. Figure 18 depicts the result of model validation. The 

validation models confirmed the correlation between biometric DBH and estimated DBH with an R2 

of 0.79 for broadleaves and 0.85 for the conifers with an RMSE of 4.76 cm and 2.06 cm accordingly. 

Figure 18 also shows how the biometric DBH and estimated DBH fit compared to a 1-1 line. The dotted 

line represents the 1-1 line of the graph. The red line represented the fitted line from the linear 

regression between biometric DBH and estimated DBH. We performed a t-test between the biometric 

DBH and model estimated DBH and found no statistically significant difference. The results of the t-

test are presented in Appendix E. 
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Figure 18: The regression between biometric DBH and model estimated DBH to validate the model. 

 

3.2.3 AGB Estimation Results from UAV Parameters 

DBH from the CPA-DBH relationship model and tree height from CHM has been applied to estimate 

AGB for individual trees. Both parameters have been used as input variables for the species-specific 

allometric equations provided in Table 7. Then the AGB of trees of each plot was summed, and the 

total AGB per plot was converted into tons/ha unit. Table 13 below presents the descriptive statistics 

of plot AGB calculated from UAV RGB. The plot AGB ranged from 84.04 tons/ha to 472.15 tons/ha, 

which is also consistent with the field-measured AGB. 

 

Table 13: Description of plot AGB estimated from UAV RGB images. 

 UAV AGB 

Count 57 

Mean 227.83 

Standard Error 10.13 

Standard Deviation 76.51 

Sample Variance 5853.08 

Minimum 84.04 

Maximum 472.15 

Kurtosis 1.45 

Skewness 0.77 

W statistics 0.95 

p-Value 0.2 

Normal Distribution True 
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3.2.4 Accuracy of AGB Estimated from UAV 

3.2.4.1 Accuracy of Individual tree AGB Estimated from UAV 

AGB of individual trees estimated from UAV RGB images using species-specific allometric equations 

has been plotted against the biometric AGB in Figure 19. The regression between estimated AGB and 

biometric AGB shows a positive correlation with an R2 of 0.81 with an RMSE of 304.2 kg. Therefore, 

it can be implied that the DBH modeled from UAV images and height obtained from UAV CHM can 

explain 81% variation on field-measured DBH. 

 

Figure 19: Linear regression between UAV estimated AGB and biometric AGB of individual trees. 

 

3.2.4.2 Accuracy of plot AGB Estimated from UAV 

On the other hand, the results of AGB estimation from accuracy assessment on plot level showed a 

different scenario compared to the accuracy on individual trees. A t-test between the UAV estimated  

AGB and the biometric AGB had been done at (α = 0.05), assuming unequal variance between both 

parameters. The test result showed a significant difference between the means of UAV AGB and 

biometric AGB. Details of the t-test are presented in Table 14. 

Table 14: Results of the T-test between UAV estimated AGB and biometric AGB assuming unequal variance. 

  UAV AGB Biometric AGB 

Mean 227.83 266.85 

Variance 5853.08 15864.44 

Observations 57 57 

Hypothesized Mean Difference 0  

df 92  

t Stat -1.999397675  

P(T<=t) one-tail 0.024257699 
 

t Critical one-tail 1.661585397 
 

P(T<=t) two-tail 0.048515398 
 

t Critical two-tail 1.986086317   

Estimated AGB = 0.969 (Biometric AGB) + 0.305
R² = 0.81 RMSE = 296.22 kg
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The AGB per plot measured from UAV parameters and biometric data have been visualized in Figure 

20. Some plots have similar AGB as compared to the biometric data. In contrast, some plots, such as 

plot 5, 6, 11, 13, 15, 17, 18, 19, 20, 24, 30, 49, 50 and 51 had lower estimated AGB compared to 

biometric AGB. This discrepancy in estimated AGB with biometric AGB can be attributed to the 

number of trees that could not be assessed with UAV images. Figure 21 also depicts the poor 

relationship between biometric plot AGB and UAV modeled plot AGB fitted on a 1-1 line. Regression 

between biometric AGB and estimated AGB resulted an R2 of 0.35 with RMSE = 57.18 tons/ha. 

The underestimation of AGB by UAV RGB images was further analyzed. It was found that UAV RGB 

images were able to estimate AGB of coniferous plots better than broadleaves and mixed. However, 

most of the underestimation was observed to be in mixed plots. The relationship between biometric 

AGB and UAV AGB was analyzed for coniferous, broadleaves and mixed plots. It was found that 

coniferous plot AGB had a higher correlation at R2 of 0.52. Broadleaves and mixed plots depicted very 

poor correlation at R2 of 0.18 and 0.02 accordingly. The regression graphs are presented in Appendix 

D. 

 

Figure 20: AGB per plot calculated from UAV parameters with a red tone and AGB estimated from biometric data 
with a green tone. 

 

Figure 21: Scatterplot of UAV estimated AGB and Biometric AGB on the plot. 
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3.3 Results from AGB and PALSAR-2 Backscatter Coefficients 

HH and HV backscatter coefficients from nine representative pixels from a 3x3 pixel window have 

been collected for each plot, and the mean of the coefficients has been calculated representing each 

plot. The output of regression models between HH backscatter coefficients and biometric AGB and 

between HV backscatter coefficients and biometric AGB has been described in the following. 

 

3.3.1 Regression between AGB and HH Backscatter Coefficients 

The linear regression analysis between HH backscatter coefficients and biometric AGB showed a weak 

relationship between both parameters with an R2 of 0.43 and an RMSE of 69.95 tons/ha at a p-value 

of 1.98e-11. The scatterplot of the linear regression between HH backscatter and biometric AGB is 

presented in Figure 22, and the summary statistics are presented in Appendix F. 

 

Figure 22: A linear regression to estimate AGB using HH backscatter coefficients from PALSAR-2. 

 

A linear regression analysis between log10(AGB) and HH backscatter has also been performed to 

estimate AGB. This regression was performed to complement the values of HH backscatter in dB 

obtained by applying a logarithmic formula. The regression analysis also showed a weak relationship 

between HH backscatter and log10(AGB) with an R2 of 0.47 at a p-value of 6.66e-13. The regression 

backscatter is presented in Figure 23, and the summary statistics in Appendix G. 

 

AGB = 36.739 (HH Backscatter) + 513.6
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Figure 23: A linear regression between HH Backscatter coefficients and log(AGB). 

 

3.3.2 Regression between AGB and HV Backscatter Coefficients 

The linear regression between HV backscatter coefficients and biometric AGB showed a better 

relationship than regression using HH backscatter coefficients. The regression has shown an R2 of 0.74 

with an RMSE of 47.39 ton/ha at a p-value of 3.09e-25. Figure 24 below presents the scatterplot of the 

linear regression between HV backscatter coefficients and biometric AGB. The summary statistics of 

the regression are depicted in Appendix H. 

 

 

Figure 24: A linear regression between PALSAR-2 HV backscatter coefficients and biometric AGB. 
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Similar to the HH backscatter, a linear regression between log10(AGB) and HV backscatter has also 

been performed. The linear regression showed a strong relationship between both parameters with an 

R2 of 0.84 at a p-value of 1.27e-33. The scatterplot or regression between HV backscatter coefficients 

and biometric AGB is presented in Figure 25. The summary statistics of the regression are also presented 

in Appendix I. 

 

 

Figure 25: A linear regression between PALSAR-2 HV backscatter coefficients and log(AGB). 

 

3.3.3 Model Development 

The regression analysis among HH and HV backscatter coefficients and biometric AGB showed that 

the linear regression between HV backscatter coefficients and log10(AGB) has the most robust 

relationship. Therefore, a simple linear regression model has been developed using the log10(AGB) and 

HV backscatter coefficients to estimate AGB using HV backscatter. The dataset has been split into 

two parts to develop the model and validate it; 50 observations for model development and 33 

observations for model validation. The regression model between logarithmic AGB and HV 

backscatter depicted a high accuracy with an R2 of 0.85, which implies that the model explains 85% of 

the variation in logarithmic AGB. The graphical representation of the model is depicted in Figure 26, 

and the summary statistics of the linear regression are shown in Table 15. 
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Figure 26: A linear regression between PALSAR-2 HV backscatter coefficients and log(AGB). 

 

Table 15: Summary statistics of regression between HV backscatter coefficients and log(AGB) for model development. 

 
 

 

3.3.4 Model Validation and Accuracy Assessment 

The regression model developed in section 3.3.3 has been used to estimate AGB on a logarithmic scale. 

The model has been applied on 33 plots separated for validation. The validation dataset was 

independent of data used in the model development, and the accuracy of the model has been assessed 

by estimating AGB on validation data using the regression equation. 

log(AGB) = 0.1108 (HV Backscatter) + 3.7559
R² = 0.85 RMSE = 40.9
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The results of regression between biometric (observed) AGB and model estimated AGB on validation 

dataset showed a positive relationship at an R2 of 0.86 at a p-value of 9.6-15 with an RMSE of 26.63 

tons/ha. Thus, it can be implied that the model developed to estimate AGB is consistent and can 

explain 86% variability in the validation dataset. The scatterplot of the regression analysis is shown in 

Figure 27, and the summary statistics of the model validation are shown in Appendix J. 

 

 

Figure 27: The regression model validation between biometric AGB and estimated AGB. 

 

3.3.5 Plot AGB estimate from ALOS-2 PALSAR-2 image 

AGB of plots has been modeled from HV polarization ALOS-2 PALSAR-2 backscatter coefficients. 

The AGB values were modeled in logarithmic form from the relationship model between HV 

backscatter coefficients and log10(AGB). The log10(AGB) values have been transformed into AGB in 

tons/ha unit. The PALSAR-2 images modeled plot AGB with an average of 205.67 tons/ha. The plot 

AGB ranged from 79.77 tons/ha to 453.37 tons/ha. Table 16 represents the summary of AGB modeled 

by the ALOS-2 PALSAR-2 image. 

Table 16: Summary of AGB modeled by ALOS-2 PALSAR-2 image on plots. 

ALOS-2 PALSAR-2 estimated AGB 

No of plots 83 

Mean 205.67 

Standard Error 8.027 

Standard Deviation 73.13 

Sample Variance 5347.60 

Minimum 79.77 

Maximum 453.37 

Kurtosis 0.99 

Skewness 0.97 

 

Estimated AGB = 0.7493 (Biometric AGB) + 52.8
R² = 0.86 RMSE = 26.63 tons/ha
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3.3.6 Estimation of Saturation Point 

A logarithmic regression between AGB and HV backscatter coefficients has been plotted in Figure 28. 

The logarithmic regression curve is presented in the purple curve in the graph. The slope of the 

logarithmic curve was calculated from changes in AGB with respect to changes in HV backscatter 

coefficients. At the AGB of 157.2 tons/ha, the slope of the curve converges at 0.02. However, with 

increasing AGB values, the slope decreases, and at 314.4 tons/ha AGB the slope of the logarithmic 

curve converges at 0.01, which can be seen with the vertical red line in Figure 28.  

 

Figure 28: Determination of AGB saturation point with respect to HV backscatter coefficients. 

 

3.3.7 Backscatter – AGB relationship  on Coniferous, Broadleaf, and Mixed Forest 

AGB modeled by HV backscatter coefficients for conifers, broadleaves, and mixed plots were plotted 

against biometric AGB of the same plot. AGB modeled on conifers showed the most robust 

relationship compared to broadleaves and mixed dominated plots. The linear regression models 

between modeled AGB and biometric AGB on broadleaves, conifers, and mixed forest plots resulted 

in R2 of 0.82, 0.90, and 0.81 correspondingly with RMSE of 38.44 tons/ha, 45.05 tons/ha, and 31.67 

tons/ha. The backscatter plot of the regression between modeled AGB and biometric AGB for 

broadleaves, conifers, and mixed plots are presented in Figure 29. 

The performance of HV backscatter coefficients to model AGB on broadleaves, conifers, and mixed 

are generally consistent with all plot types combined. Based on the linear regression results, it can be 

implied that conifers stand can be modeled more accurately compared to broadleaves or a mixed forest 

stand.  
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Figure 29: Relationship of HV backscatter modeled AGB and biometric AGB on broadleaves, conifers, and mixed 
plot. 

 

3.4 Comparing AGB Estimation from UAV and ALOS-2 PALSAR-2 

Forty-nine plots were common in the modeling and estimation of AGB from UAV and PALSAR-2 

images. A one-way ANOVA test among the biometric AGB, UAV estimate AGB, and PALSAR-2 

estimated AGB was conducted to determine whether there is any statistically significant difference 

between the means of AGB from these three sources of estimation methods. The result of the one-

way ANOVA F-test showed no statistically significant difference of mean AGB from the field, AGB 

estimated from UAV, and the AGB estimated from PALSAR-2  (F(2,144) = 0.02, p = 0.99). Table 17 

presents the result of the one-way ANOVA test. However, we cannot rely on the result of this statistical 

analysis. Plot AGB estimated from PALSAR-2 had high accuracy (R2 = 0.85), where plot AGB modeled 

from UAV showed very poor relationship (R2 = 0.35) with reality. Therefore, technically, AGB poorly 

modeled from UAV cannot be compared with more accurate AGB modeled from PALSAR-2. 
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Table 17: One-way ANOVA test of AGB from the field, UAV, and PALSAR-2. 

 

 

Even though the mean is not statistically significant, we have visualized AGB from each plot in Figure 

30 to understand the estimation of AGB from different plots. We have split the column chart according 

to forest structure: coniferous, broadleaves and mixed. The column chart showed that UAV 

underestimated AGB in many plots due to the exclusion of suppressed trees. However, UAV also 

overestimated some plots, resulting in a higher mean AGB value almost equivalent to the mean of 

biometric AGB and PALSAR-2 AGB. The column charts also showed that AGB estimated from 

PALSAR-2 is consistently close to the biometric AGB in each plot. 

In Figure 31, the columns represent the percentage of residuals of plot AGB estimated by UAV and 

PASLAR-2 images. The negative axis indicates the underestimation of AGB, and the positive axis 

indicates the overestimation of plot AGB. The overestimation or underestimation of AGB is higher in 

the UAV model than in the PALSAR-2 model.  

The visualization in Figure 30 and Figure 31 depicted that the overestimation or underestimation of AGB 

modeled by UAV RGB images is mostly in broadleaf and mixed plots. The highest underestimation 

was observed in plot 5, which was a mixed forest stand. Plot 67 and plot 94 depicted very high 

overestimation by UAV. Both of these plots are dominated by broadleaves. In most of the coniferous 

stands, UAV was able to identify all the trees in a plot; therefore, the plot AGB estimated from the 

UAV was similar to the biometric plot AGB. It was also depicted that PALSAR-2 underestimated AGB 

in plots with higher biometric AGB and overestimated AGB in most plots with lower AGB values.  
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Figure 30: Biometric AGB, UAV estimated AGB and PALSAR-2 estimated AGB for plots. 

 

Figure 31: Percentage of residuals of plot AGB estimated by UAV and PALSAR-2 images. 
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4 DISCUSSION 

Our study used two remote sensing methods to estimate AGB on an area basis (tons/ha). UAV RGB and 

PALSAR-2 images are depicted to estimate AGB in many studies (Berhe, 2018; Nguyen, 2010; Poley & 

McDermid, 2020; Stelmaszczuk-Górska et al., 2018). However, UAV RGB based AGB assessment is an 

individual tree based approach (Mlambo et al., 2017a; Poley & McDermid, 2020; Shashkov et al., 2019) 

where PALSAR-2 backscatter is based on the mean AGB of an area (Beaudoin et al., 1994; Joshi et al., 

2015; Watanabe et al., 2006). Nevertheless, the resolution of PALSAR-2 is much lower than the resolution 

from UAV. The limitations and advantages of both sensors have drawn us to compare the AGB estimated 

from both sensors.  

Accurate estimation of AGB from field data is crucial to develop the AGB estimation models and to validate 

the output of modeled AGB from UAV and PALSAR-2. This study used species-specific allometric 

equations to calculate the AGB of individual trees from field-measured data. The same allometric equations 

were used to estimate AGB from UAV RGB images. However, in the case of PALSAR-2, plot AGB has 

been used from field-measured individual tree AGBs. Most of the allometric equations were taken from 

Zianis et al. (2005). Allometric equations that were developed for the Netherlands were prioritized. 

Moreover, while selecting the allometric equations, we also focused on the range of DBH and tree height 

that was used by the studies. Tree species such as Fagus sylvatica and Pseudotsuga menziesii had allometric 

equations developed from the Netherlands. Allometric equations for the rest of the trees were developed 

on the forests of different countries. However, we have chosen the equations from a similar biome. It was 

challenging to find suitable allometric equations based on the range of DBH and height in our field data. 

Our field data has DBH ranged from 10 cm to 101 cm, where most of the allometric equations were 

developed from comparatively younger trees (Bunce, 1968; Cienciala et al., 2006; Djomo & Chimi, 2017; 

GlobAllomeTree, 2021; Hack & Goodlett, 1960; Novák et al., 2011; Zianis et al., 2005). Therefore, we 

selected the allometric equations that represent the similar forest biome with the range of DBH as close as 

possible with the range of our biometric measurements. Moreover, we have cross-checked our AGB 

estimations with the previous AGB estimation studies conducted in the same study area (Gaden, 2020; 

Torres Rodriguez, 2020). We found that our results were consistent with the previous studies. 

Our study used species-specific allometric equations with DBH as the only parameter to calculate the AGB 

of tree species except for Beech (Fagus sylvatica). Chave et al. (2005) argued that the AGB of trees in a 

temperate forest could be estimated using simple relationship models without using height information 

rather than complex models. Many studies have found that DBH is a highly related variable to AGB and 

can be used alone in AGB estimation (Brown, 1997a; Bunce, 1968; Chave et al., 2005; Djomo & Chimi, 

2017; Jucker et al., 2017; Zianis et al., 2005). Moreover, the estimation of tree height in the field can be 

challenging due to branches' canopy density and interference while trying to see the top. However, we have 

used DBH and height as variables to estimate AGB for one species: Beech. Most of the allometric equations 

for Beech were suitable for a smaller DBH range; therefore, we have decided to use DBH and height in the 

allometric equation for Beech. 

 

4.1 Estimation of AGB using UAV RGB images 

The first objective of our study was to model and estimate aboveground biomass using UAV RGB images. 

Several approaches could have been chosen to model AGB from UAV. Our approach was to model 

individual tree AGB based on the tree crown projection area. We have chosen this approach because it a 

standard method of estimating AGB from UAV images (Poley & McDermid, 2020). The output of the 

AGB estimation from UAV RGB depends on several processing steps and the quality of data. Therefore, 

we ensured high quality data by applying maximum overlap while collecting UAV images so that the point 

cloud with high quality can be achieved. 
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4.1.1 Estimating DBH from CPA-DBH Models 

In this study, non-linear functions showed a better relationship between CPA-DBH than the linear 

function. The power model provided a higher coefficient of determination (R2) of 0.89 with RMSE 4.28 

cm for broadleaves. Moreover, the quadratic function has resulted in being the model that best described 

the CPA-DBH relationship for conifers (R2 = 0.92, RMSE = 2.44 cm). Shimano (1997) argued that the 

linear relationship model between CPA-DBH might not be acceptable despite having a good fit in a closed 

canopy system. The forest of our study area is a closed canopy system which is why the non-linear CPA-

DBH relationship model depicted a better fit. 

The use of a polynomial function to fit the tree growth parameter such as the crown, DBH is often 

considered unrealistic to the situation (Chave et al., 2005; Shimano, 1997; Venus & Causton, 1979). Venus 

& Causton (1979) argued that low-degree polynomial functions such as binomial function seem to over-

simplify the situation to a linear function, and models fitted with high-degree polynomial functions are 

often biologically unfeasible. Our study used a second-order polynomial function to fit the model to 

estimate DBH from CPA for conifers. Besides, according to Shimano (1997), the second order polynomial 

model is more fitting due to the assumptions of the “unit-pipe system” described by (Shinozaki et al., 1964). 

The trees in our study area were densely planted. In a dense forest stand, the relationship between CPA-

DBH is proportional when the tree is young, and they compete for canopy area after growing at a certain 

age (Shimano, 1997). Thus, the canopy growth rate becomes slower. In a closed forest, the rule of “self-

thinning” (White, 1981) also applies, which influenced the CPA-DBH relationship. Moreover, Shimano 

(1997) concluded that the relationship between crown projection area and DBH could be described better 

using a power-sigmoid model. Our study has found that the power model described the CPA-DBH 

relationship in broadleaf trees. Other non-linear functions also depicted closer values of the coefficient of 

determination and RMSE to the selected models. The best fit models that have been used to estimate DBH 

from CPA were chosen based on the statistical performance of the models. Higher coefficient of 

determination and less root mean square error (RMSE) were considered to choose the model that can best 

describe the relationship between parameters. 

Previous studies on the study area have also found strong relationships between CPA and DBH of the 

trees. Torres Rodriguez (2020) found that a power function with an R2 of 0.87 and RMSE 4.55 cm can 

describe the CPA-DBH relationship in conifers, and a second-order polynomial function with an R2 of 0.85 

and RMSE 6.15 cm can describe the CPA-DBH relationship of broadleaf species. Our findings are also 

consistent with the findings of Torres Rodriguez (2020).  

 

4.1.2 AGB modeled from UAV 

DBH of trees from 57 plots was estimated from the CPA-DBH relationship, and the species-specific 

allometric equations used to calculate biometric AGB were used to estimate the AGB of trees. The 

regression between biometric AGB and UAV estimated AGB showed that UAV estimated AGB could 

explain 81% variation in biometric AGB. However, the result of the t-test between biometric AGB and 

UAV estimated AGB showed a statistically significant difference between the means of both AGB 

measurements; see Appendix K. The difference in AGB measurements can be attributed to the generalization 

of estimated DBH from the CPA-DBH relationship models. We used one general CPA-DBH relationship 

model for all conifers and one for broadleaves rather than using species-specific CPA-DBH relationships. 

From the comparison between biometric AGB and UAV estimated AGB on plots, it was observed that 

there is a discrepancy between both measurements, evident from Figure 20 and Figure 21. Therefore, we 

analyzed the estimated AGB further to explain the situation. We assessed the relationship between both 

measurements based on forest types: conifers, broadleaves, and mixed. The regression analysis between 

biometric AGB and UAV modeled AGB resulted in an R2 of 0.46 for conifers plots, 0.4 for broadleaves 

plots and 0.14 for mixed plots. Details of the regression are presented in Appendix L. During fieldwork, we 

have recorded trees with DBH of 10 cm or higher that were suppressed under a large tree. The trees that 
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were concealed from above by taller trees could explain the poor relationship between UAV modeled plot 

AGB and field-measured plot AGB. This phenomenon was observed mostly on mixed forest stands; large 

broadleaves concealed many conifers in the forest. We also noticed that in pure broadleaf plots, trees like 

Birch (Betula pendula), Beech (Fagus sylvatica) were concealed entirely or partially by more large Beech or Oak 

(Quercus petraea) trees. Similarly, large conifers also suppressed smaller trees, mostly in dense conifer stands. 

Plots at which the AGB was underestimated by UAV were 5, 6, 11, 13, 15, 17, 18, 19, 20, 24, 30, 49, 50 and 

51 (see Figure 20).  We checked their canopy density and forest species type. We have found that most of 

them are broadleaves and mixed; only “Plot 15” was coniferous. The overall canopy density of these plots 

ranged from 66-91%. We also cross-checked the number of trees recorded in-field for these plots with the 

number of trees measured by UAV. We found that at least two trees were excluded from modeling by UAV 

in those plots. Plot 5, 7, 18, and 49 showed high underestimation. For example, only two out of 18 trees 

were measured by UAV in plot 5 (Figure 32). In plots 17 and 18, large trees with 40-50 cm of DBH were 

not assessed by UAV and lead to high underestimation. 

 

Figure 32: Example of trees concealed by taller Beech or Oak trees in a plot. 

AGB was overestimated by UAV in some plots: 25, 28, 33, 37, 67, 69, 91, and 94. These plots also had a 

similar canopy density range as the plots underestimated by UAV. We also checked the number of trees 

assessed by UAV; most of the plots had trees not measured by UAV. However, the DBH of trees in those 

plots was overestimated by the CPA-DBH relationship, leading to the overestimation of AGB. It is worth 

mentioning that the study area is a combination of semi-natural forest and a production forest. We did not 

separate trees from the semi-natural and production area. The semi-natural forest mostly contained the 

mixed and broadleaves plots where the production forest is mostly coniferous stands. Besides, stem density 

in production forest is higher than the semi-natural forest, but the canopy density in the semi-natural forest 

are mostly higher than the coniferous stands. In our analysis, we did not consider the rule of self-thinning 

in the assumptions. Thus, we are unsure whether there is any difference in the CPA-DBH relationship for 

the semi-natural and production forest. 

To explain the overestimation, we further analyzed the species-specific AGB estimation by UAV. We have 

found that Beech was the broadleaf species that were overestimated by the allometric equation used from 

DBH and height estimated by UAV. Moreover, Beech was the most frequent species in plots that were 

Oak 

Beech 

Beech 



 
A COMPARISON BETWEEN UAV-RGB AND ALOS-2 PALSAR-2 IMAGES FOR THE ASSESSMENT OF ABOVEGROUND BIOMASS IN A TEMPERATE FOREST 

46 

overestimated by UAV. Torres Rodriguez (2020) also found similar properties of Beech overestimated by 

the CPA-DBH relationship in the same study area. The overestimation of Beech could be attributed to the 

misjudgment of the crown while delineating the CPA. In a Beech-dominated plot, it is difficult to identify 

the borders between two crowns. It could have happened that crowns of partially visible crowns were 

included in the CPA delineation due to the smooth surface of the Beech canopy on the Orthomosaic. The 

inclusion of the partial crown of Beech could lead to a higher modeled DBH value, resulting in an 

overestimated AGB. Douglas-fir (Pseudotsuga menziesii) was the coniferous species that overestimated AGB 

from UAV based model. UAV overestimated AGB on plot 33 and 37, which were pure Douglas-fir stand. 

In the field, Douglas-fir was the most frequent coniferous species in mixed forest stands where they 

compete for the crown area with broadleaves. In-field, many Douglas-fir trees with large DBH in mixed 

forest stands have a smaller crown diameter or area compared to similar trees in coniferous stands. The 

small crown area could be due to the occlusion by broadleaves. Trees with large DBH and small crown 

projection area in mixed plots could have led to the overestimation of AGB in the coniferous plots. 

 

4.2 Estimating AGB using PALSAR-2 image 

Literature often studied the relationship between backscatter and AGB using linear functions (Collins et 

al., 2009; Ji et al., 2020; Nesha et al., 2020) and logarithmic functions (Masolele et al., 2018; Schlund et al., 

2018; Stelmaszczuk-Górska et al., 2018). Therefore, we also used linear and logarithmic relationship models 

to estimate AGB from backscatter coefficients. The relationship between the biometric AGB and 

backscatter coefficients is further discussed in sub-section 4.2.1. The relationship model was also affected 

by the selection of plot representative pixels from the backscatter images. We had to make some 

assumptions while fitting a 3 x 3 window to extract backscatter coefficients. The assumptions and 

uncertainties of plot backscatter coefficients extraction are described in sub-section 4.2.2. 

 

4.2.1 Relation between Backscatter Coefficients and AGB 

Our findings depicted higher relationship between HV backscatter coefficient and AGB (R2 = 0.74) over 

HH backscatter coefficient with AGB (R2 = 0.43) using linear regression. On the other hand, log10(AGB) 

and backscatter coefficients revealed a better relationship with a higher coefficient of determination (R2 = 

0.86 for HV backscatter and R2 = 0.47 for HH backscatter) and low RMSE. Both linear and logarithmic 

regression depicted a significant relationship between AGB and HV backscatter coefficients. Many studies 

have reported a logarithmic relationship between backscatter coefficients and AGB (Dobson et al., 1992; 

Hamdan et al., 2014; Mitchard et al., 2009). The scatterplot between HV backscatter coefficients and AGB 

in Figure 28 clearly shows that the relationship between HV backscatter and biometric AGB is non-linear. 

Therefore, we applied a logarithmic relationship between HV backscatter and biometric AGB. Since we 

transformed the AGB into log10(AGB), the regression between backscatter coefficients and log10(AGB) 

was transformed to linear. 

The inherent properties of HV backscatter allowed estimating biomass more accurately; HV backscatter is 

less influenced by soil moisture, vegetation moisture, and topography (Beaudoin et al., 1994; Collins et al., 

2009; Mitchard et al., 2009; Sandberg et al., 2011; Van Zyl, 1993). In the HV polarization combination, the 

signal is transmitted horizontally and received vertically by the sensor. The signal transmit and receive 

method allowed to assess volume information of the forest, mainly canopy with branches. Ji et al. (2020) 

studied the sensitivity of L-band HV polarization backscatter in assessing forest structure. They found that 

the HV backscatter is sensitive to canopy density; mean canopy density from 40% or higher resulted in 

higher correlations with backscatter while canopy density below 40% showed moderate correlations. 

Our analysis revealed the relationship between HV backscatter and AGB for different forest stand 

structures, such as conifers, broadleaves, and mixed (see Figure 29). We have found a higher relationship 

with conifers (R2 = 0.9) than broadleaves (R2 = 0.82) or mixed (R2 = 0.81). Yu & Saatchi (2016) studied the 
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sensitivity of L-band SAR backscatter to the AGB estimation. They found that backscatter has enhanced 

sensitivity to the temperate conifers over other forest types. Hussin et al. (1991) were able to explain 97% 

of the variability in slash pine ABG in their study by using simultaneous linear equations. Our study also 

affirms a strong relationship between backscatter and AGB in the conifers using a logarithmic relationship. 

Golshani et al. (2019) studied the relationship of PALSAR-2 parameters with AGB of broadleaves forest. 

They concluded that the relationship of backscatter coefficients is affected by the forest structure, and 

different models are required to estimate AGB more reliably. Imhoff (1995) compared the response of 

backscatter for broadleaves, conifers, and combined forest structure. The results found by Imhoff (1995) 

showed a higher relationship between HV backscatter and conifers at R2 = 0.96 compared to broadleaves 

at R2 = 0.83 and combined at R2 = 0.73. However, Imhoff (1995) used the third-order polynomial 

regressions function to derive those relationships, where we used logarithmic relationships. Imhoff (1995) 

found that the crown layer of the forest dominated the backscatter at a higher biomass level. He also 

referred to the shape and structure of crowns; the soil surface is obscured in the backscatter for the dense 

crown. 

In the field, we have measured 94 plots representing conifers, broadleaves, and mixed stand. However, we 

have used only 83 plots in analysis using backscatter coefficients. The plots that were excluded from analysis 

were open forests with low canopy density and canopy gaps. These plots with sparse vegetation or canopy 

gaps reflected similar to or even more than the plots with high AGB (Beaudoin et al., 1994). Hamdan et al. 

(2014) and Masolele et al. (2018) also found a similar phenomenon. They depicted that the relationship 

between AGB and backscatter coefficients is explained better with continuous AGB instead of forests with 

sparse vegetation. Some of the excluded plots were dense yet not included due to inaccurate measurement 

of plot location; uncertainty due to the use of the ‘Avenza Map’. 

The AGB–backscatter relationship was developed based on a circular plot with a 12.62 m radius to have 

about 500 m2 area per plot. The resolution of the PALSAR-2 image was 7x7 m; thus, a 3x3 pixel square 

was used to obtain plot backscatter coefficients (more details in section 4.2.2). Similar plot size and shape 

were also used in studies to model AGB from L-band backscatter (Hamdan et al., 2014; Masolele et al., 

2018; Nesha et al., 2020). Moreover, the study area forest was comparatively homogeneous, mainly in the 

production forest area. In our field data, most plots consist of trees of only one or two species; almost every 

pure coniferous or broadleaves plot observed had the same situation. Besides, our goal is to compare the 

modeled AGB from PALSAR-2 with AGB modeled from UAV. Therefore, we did not consider taking a 

larger plot area than 500 m2. As a consequence, we are unsure whether increasing the plot area size would 

make any difference in AGB–backscatter relationship in our study. 

 

4.2.2 Plot Backscatter Extraction 

As mentioned earlier, the backscatter coefficients per plot were extracted by setting a 3x3 pixel window (see 

Figure 11). Thus, for each plot, backscatter coefficients of 9 pixels were collected, and the average was 

calculated to use in AGB estimation models. In this process, the 3x3 pixel square is adjusted on the plot 

and the center of the pixel shifts. Figure 33 showed the shift in plot center due to the establishment of the 

backscatter extraction window. 

The size of the pixel window depended on the field plot area and the final pixel size of the backscatter 

image after processing and geocoding. In our case, the final image pixel resolution was 7x7 m. A 3x3 pixel 

window represents the plot with a 25.24 m diameter and reduces the error due to smoothing the average 

backscatter values. A pixel window of 5x5 might increase the chance of taking backscatter information of 

trees on the plot boundary. However, it also increases the chance of taking unmeasured trees and 

smoothening the average backscatter plot (Hamdan et al., 2014; Nesha, 2019). The plots on the edges of 

the forest or plots near gaps might have been affected due to a larger pixel window. There are trees with 

significantly large biomass representing bright pixels on the backscatter image on the edges of the forests, 

while the fields and gaps nearby are without AGB representing dark pixels. Setting a 5x5 window increases 
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the possibility of taking those dark pixels in averaging backscatter values and generating a lower average 

backscatter value for higher AGB. 

 

 

Figure 33: Shifting of plot center to establish 3x3 pixel window for backscatter extraction. (As adopted from Nesha, 2019)  

 

4.2.3 AGB Saturation Point 

In the scatterplots of the linear regression between backscatter coefficients and AGB, it was observed that 

there is inconsistent variance in AGB with respect to the backscatter coefficients (see Figure 22, Figure 23, 

and Figure 24). The inconsistency in the AGB-backscatter relationship was observed to be higher in HH 

backscatter rather than HV backscatter relationships. Many studies have found that the backscatter values 

saturate at a certain AGB value (Imhoff, 1995; Joshi et al., 2015; Masolele et al., 2018; Nesha et al., 2020; 

Watanabe et al., 2006). We have found that for HV backscatter and log10(AGB), biomass saturates at 314.4 

tons/ha (Figure 29). Our saturation point was higher compared to the saturation point found by (Imhoff, 

1995; Masolele et al., 2018; Nesha et al., 2020). Biomass saturation is explained as the influence of soil 

moisture and canopy structure on the backscatter coefficients (Hamdan et al., 2015; Imhoff, 1995). Ji et al. 

(2020) studied the dependency of PALSAR-2 HV backscatter on the forest structure of a temperate forest. 

Their analysis results revealed that the HV backscatter coefficients are sensitive to the stand's mean canopy 

density and height. Yu & Saatchi (2016) also argued that the surface volume and soil moisture could 

significantly influence the backscatter in a temperate forest. In our model, the study area plots were mostly 

dense with a canopy density of 60% and higher; therefore, the saturation point was observed higher than 

in other studies (Golshani et al., 2019; Imhoff, 1995; Stelmaszczuk-Górska et al., 2018).  

 

 

 

 

 

(a) The original position of the plot center at 
the intersection of the four pixels (red point). 

 (b) Shifted position of the plot center (yellow point) and the 
establishment of 3 by 3 pixels window. 

 

 

 

 

(c) The original position of the plot center at 
the edge of two pixels (red point). 

 (d) Shifted position of the plot center (yellow point) and the 
establishment of 3 by 3 pixels window. 
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4.2.4 Accuracy of AGB estimation from HV backscatter 

The biomass estimated from the HV backscatter represented a positive correlation with biometric AGB. 

However, the scatterplot of biometric AGB and SAR estimated AGB plotted against a 1-1 line showed a 

bias in SAR estimated AGB (Figure 27). We also depicted that the HV backscatter model overestimated plot 

AGB when the model function is applied on the plots of the validation dataset. The distribution of field-

measured AGB could explain the overestimation of AGB. The distribution of our field measured data in 

Figure 14 showed that the plot AGB is skewed to the left on the density curve. That indicates a low number 

of plot samples with higher AGB. We have only four sample plots that represented the 400–640 tons/ha 

AGB range. Having less representative plots of higher AGB could have influenced the overestimation of 

AGB by PALSAR-2 backscatter, as there was insufficient data to reduce the influence of high AGB plots. 

 

4.3 Comparing the plot based AGB estimations from UAV and PALSAR-2 

We expected the underestimation of the UAV model on plot AGB estimation based on our field measured 

data. However, the overestimation in some plots is very high that indicates significant weakness of the UAV 

model. Figure 31 depicted that plot 5 and plot 51 was underestimated at a higher rate. Plot 5 had a total of 

18 species, of which 12 were conifers: Spruce and Douglas-fir. Those conifers were dominated by the 

broadleaves and obscured from the UAV Orthomosaic. Plot 51 was a broadleaf stand dominated by 

Fraxinus spp. UAV-based AGB estimation results on plot 51 depicted that underestimating Fraxinus spp. 

AGB led to underestimating overall plot AGB. Plot 67, dominated by Beech and Oak, depicted 130% 

overestimation. The overestimation of plot AGB was influenced by inaccurate CPA delineation that was 

already discussed earlier in section 4.1.2.  

The PALSAR-2 model also overestimated and underestimated AGB, even though the variation in AGB 

overestimation or underestimation is low. Moreover, it is worth mentioning that we have backscatter 

saturates at 314.4 tons/ha AGB. Therefore, plots with 314.4 tons/ha or above AGB would be assessed 

inaccurately. 

To compare plot AGB estimation from UAV RGB and PALSAR-2 images, the models should have 

comparable accuracy. In terms of the accuracy on area basis AGB estimation, UAV lacks far behind 

PALSAR-2. The output of this study leads to a conclusion that PALSAR-2 images are much better than 

UAV RGB images in an area-based AGB estimation. However, this should not necessarily be the final 

verdict. Based on our analysis, we have observed that UAV RGB images can accurately model individual 

tree AGB, and underestimation occurred when taller trees conceal smaller trees in high canopy density 

stand. An L-band SAR image is better than UAV RGB images for a forest with intermingling tree crowns. 

However, in an open or non-intermingling crown stand, UAV can estimate AGB accurately, which is also 

evident from our coniferous plots. Moreover, forest soil moisture could influence the backscatter 

coefficients in an open forest and introduce errors in AGB modeling from L-band SAR images. A 

comparative study on the open forest or forest stands with non-intermingling crowns could clarify whether 

SAR images would perform better than UAV RGB images on such forest stands. 

 

4.4 Limitations and Uncertainties of the Study 

As this study aimed to compare AGB estimated from UAV and PALSAR-2 images, we used the methods 

from both sensors that are standard and commonly used for AGB estimation. We used generalized models 

rather than using complex methods and multiple models for AGB estimation from both sensors. Using 

complex methods and models would require more analysis efforts. However, these simplifications of 

models in the analysis seemed to affect the AGB estimation accuracy that we have discussed above. 

Moreover, the study also had some uncertainties in the field data and image processing that have not been 
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discussed yet. In the following, we have discussed the uncertainties associated with field-measured data, 

AGB calculation from allometric equations, and image processing. 

 

4.4.1 Uncertainties in Field-Measured data 

We have used UAV RGB Orthomosaic loaded in a mobile application named Avenza Maps to record plot 

center location in the field data collection. UAV Orthomosaic that we used was processed in medium 

quality. We use caution while identifying the plot center location on the Orthomosaic by using distance and 

bearing from identifiable permanent objects or landmarks such as buildings, constructions, edge of the 

field, intersect of roads, or unique trees. Moreover, the Avenza Maps also relied on the mobile internet 

connection to give us a relatively accurate location. We were able to identify the plot center location 

precisely by visually interpreting the Orthomosaic and reestablishing the plot center on an orthorectified 

Orthomosaic processed with GCPs. Plot center location identification was comparatively easy when a tree 

is one the center of the plot. However, despite taking cautions, a few plots were difficult to identify the 

precise plot center location, mainly for plots with no tree on the center. In these plots, inaccurate plot center 

location resulted in inaccurate calculation of individual tree geolocation. We were able to fix some of these 

plot locations by cross-checking with the bearing and distance of individual trees, and some plots required 

revisit on the field. 

To locate individual trees in a plot, we have used the distance and bearing from the plot center. We 

measured the distance and bearing of the tree trunk from the plot center. However, in reality, it seemed 

that many trees were leaning from the trunk location, or the canopy did not have the trunk in center. This 

leaning of trees caused some difficulties in identifying trees. Also, the locations of trees that cannot be seen 

from UAV images were not possible to verify. The location of these trees was not crucial as they are not 

visible in the UAV image. Use Shunnto Compass to measure the bearing of the tree trunk from the plot 

center. Inaccurate bearing reading could lead to inaccurate calculation of tree geolocation. 

We use laser range finders to measure the height of trees. However, measuring tree heights was challenging 

on the field where the top of the tree was not visible, especially in dense forests. Therefore, multiple 

measurements were taken from different locations from which tree top can be seen to ensure the accuracy 

in tree height measurement. However, interference of the lower canopy could have caused inaccuracies in 

the measurement of tree heights. 

 

4.4.2 Uncertainties in AGB Calculation using Allometry and Converting into Plot AGB  

As we discussed earlier, the allometric equations to calculate AGB was selected to represent the age and 

DBH range of the trees. The allometric equations were also selected from areas of the same biome as the 

Haagse Bos. Allometric equations were not completely satisfactory for the DBH range of our study area. 

However, it seemed that these are the best we could use to estimate AGB unless we divide the trees into 

multiple DBH ranges and use multiple equations for each species based on the DBH range. It is worth 

mentioning that allometric equations have inherent uncertainties as they are the models developed base on 

sample data. Moreover, we used species-specific allometric equations to calculate AGB. It is sometimes 

very challenging to distinguish species from UAV RGB Orthomosaic. For example, distinguishing Spruce 

and Douglas-fir or Beech and Oak was very challenging from the UAV RGB Orthomosaic of our study 

area. If a tree was misidentified as a different species, the allometric equation applied for that tree would 

represent incorrect AGB. However, we managed to reduce the uncertainty of species misidentification by 

using the plot photos taken during the fieldwork. 

Moreover, we have estimated the AGB of individual trees of a plot and finally converted the AGB into 

tons/ha unit based on the plot AGB. The conversion of plot AGB into a unit higher than the plot area 

propagates some errors (Chave et al., 2004). The errors of tree measurement, error associated with 
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allometric equations, error in sampling and representativeness of the large forest area by a small plot could 

have accumulated on the uncertainties in AGB calculation of the study area. 

 

4.4.3 Uncertainties associated with UAV Images 

We have discussed most of the uncertainties with UAV images in sections 4.2.1 and 4.2.2. The UAV images 

were collected on different dates for different flight blocks. Even though a similar weather condition was 

followed, the amount of sunlight and cloud was not uniform on all days. Besides, images collected from 

different flight blocks did not have the same ground sampling distance (Table 8). The quality of the point 

cloud was affected by the ground sampling distance and the amount of sunlight or clouds in the sky. We 

also noticed that some of the forest areas in Orthomosaics were blurred. The blur was created by the 

shaking of the camera/UAV on flight primarily due to wind. Moreover, the GCPs used in the flight blocks 

were not uniform in all blocks. For some flight blocks, it was possible to attain higher geolocation accuracy 

where we had to settle with comparatively low geolocation accuracy in the rest of them. Since we omitted 

plots where the images were blurred, and the CPA was digitized manually, these uncertainties had minimal 

effect on the study outcomes. 

 

4.4.4 Uncertainties associated with PALSAR-2 Image 

The ALOS-2 PALSAR-2 image scanned the study area in May, while the UAV images and field data 

collection were conducted in September and October. This could introduce a temporal inconsistency 

between the PALSAR-2 image, UAV images and field data as the deciduous trees of the forest change a lot 

from May (Spring) to September (Fall). 

The geocoding of the PALSAR-2 image was done prior to plot backscatter coefficient extraction and used 

in the analysis. The geocoding and georeferencing of the PASLAR-2 image could introduce some errors 

due to the use of a 30 m resolution SRTM digital elevation model. The PALSAR-2 image obtained has a 

pixel spacing of 4.29 m. After terrain correction, the resolution of HH and HV backscatter images was 

reduced to 7 m due to the use of 30 m resolution DEM. 

In addition, the backscatter images had speckle noise that was reduced by applying a 3x3 Lee filter. Speckle 

filtering also smoothened the backscatter values by taking neighboring pixels’ backscatter values into 

account. As a consequence, the backscatter values used in modeling AGB from the PALSAR-2 image 

integrate the uncertainties associated with noise filtering in addition to the uncertainties associated with 

geocoding and georeferencing of the images. 

 

4.5 Implications of the Study for Future Use 

The study compared the AGB estimated from UAV and L-band SAR of a temperate forest. The outcome 

of this study can be used for the implementation of Carbon Accounting in the Netherlands, the EU Forest 

Strategy, or the REDD+ MRV. This study indicates that UAV could be effective for small study areas; 

however, to measure a vast area, the use of SAR could be a low-cost method. Further implications of the 

study are explained below. 

The UAV model depicted a high relationship between the CPA and DBH, thus leading to an accurate AGB 

estimation of the trees. However, the study also depicted that a large portion of forest biomass is not 

assessed by using UAV RGB images. The model's outcome depends on various factors during the fieldwork 

for UAV Image acquisition, such as flight planning, time of the day or sun angle, cloud condition, and wind.  

Moreover, the UAV images processed are required to be of high quality. Despite having a very high-

resolution Orthomosaic, the UAV image could be useless unless the quality is maintained. For example, we 

had images with very accurate geolocation due to the GCPs, yet the blur in some parts of the Orthomosaic 
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made those forests incompatible for assessment. It is worth mentioning that the processing of UAV images 

to acquire an orthorectified mosaic is quite burdensome and requires the understanding of 

photogrammetry; thus, replication of the process is not easy and fast. Considering the efforts it takes to 

acquire a good quality orthophoto, the use of UAV RGB for a large area would be highly challenging. 

Moreover, the method that we used to estimate required manual digitization of trees in each plot. In reality, 

it is time-consuming and impractical if we want to map the whole forest. Therefore, automatic segmentation 

approaches are taken in that case. However, it will be challenging to identify tree types if automatic 

segmentation is used, especially for a mixed forest like the study area. Thus, the error due to segmentation 

will integrate, and errors in the CPA-DBH relationship model could increase. 

On the other hand, the AGB estimation of the L-band SAR image depicted reasonably good accuracy, as 

we could explain 86% variation in biometric AGB based on our model. Furthermore, the implementation 

of the methods to develop the AGB–backscatter relationship was comparatively straightforward. 

Therefore, the development of the models can be replicated easily. However, we would recommend using 

more representative samples of higher AGB to improve the model. Considering the processing steps and 

ease of model establishment, we recommend SAR for a large area to estimate AGB. 
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5 CONCLUSION 

This study compared the plot-based forest AGB estimated from UAV RGB and ALOS-2 PALSAR-2 

images. First, we used UAV RGB images to build CPA-DBH relationship models to estimate DBH of trees 

grouped in conifers and broadleaves and obtained tree height from CHM. Then, we calculated AGB using 

species-specific allometric equations from the estimated DBH and height and transformed the individual 

tree AGBs into plot AGB. On the other hand, we have estimated AGB per plot from ALOS-2 PALSAR-

2 image using the backscatter–AGB regression model for HH and HV polarizations. HV polarization 

backscatter depicted a higher accuracy than HH polarization backscatter to estimate AGB. Further, we 

investigated the accuracy of AGB modeled from both images. Several research questions were established 

to compare AGB estimated from UAV RGB and ALOS-2 PALSAR-2 images. The conclusions of our 

research based on the research questions are in the following: 

RQ 1: What is the relationship between crown projection area from UAV and field measured DBH? 

Crown projection area of trees has been digitized on-screen from the UAV Orthomosaic. By applying 

different regression functions, it was found that the power regression function explained the CPA-DBH 

relationship to estimate DBH for broadleaves (R2 = 0.89, RMSE = 4.28 cm), and the binomial regression 

function explained the CPA-DBH relationship better in conifers (R2 = 0.92, RMSE = 2.44 cm). 

RQ 2: What is the modeled plot AGB from UAV RGB images? 

The plot AGB was obtained by summing up the individual tree AGBs per plot that was calculated from 

the DBH and height estimated from the UAV images. The AGB of 57 plots modeled by the UAV RGB 

images ranged from 84.04 tons/ha to 470.15 tons/ha, with an average of 227.83 tons/ha. 

RQ 3: What is the relationship between ALOS-2 PALSAR-2 backscatter and field measured AGB? 

The relationship between -2 HH and HV polarization PALSAR-2 backscatter coefficients with AGB and 

log10(AGB) was modeled using linear regression functions. This study found that the regression between 

HV polarization backscatter and log10(AGB) has the highest relationship at an R2 of 0.84 and RMSE = 

37.83 tons/ha. The linear regression between HV backscatter and AGB also depicted a higher accuracy (R2 

= 0.74, RMSE = 47.39). However, HH backscatter with AGB (R2 = 0.43) and with log10(AGB) at R2 = 

0.47 depicted poor relationships. The relationship between HV backscatter and log10(AGB) was used to 

model AGB. 

RQ 4: What is the saturation point of AGB estimation in relation to ALOS-2 PALSAR-2 backscatter 

coefficients? 

The study found that PALSAR-2 HV backscatter coefficients saturate to estimate AGB at 314.4 tons/ha. 

The saturation point indicates that the HV backscatter coefficients of the PALSAR-2 image have limitations 

in estimating AGB beyond 314.4 tons/ha. 

RQ 5: What is the modeled plot AGB from ALOS-2 PALSAR-2 image? 

HV backscatter and log10(AGB) relationship model was developed at R2 of 0.85 and RMSE = 40.9 tons/ha. 

The model estimated plot AGB with a mean AGB of 205 tons/ha for 83 plots, and the plot AGB ranged 

from 79.77 tons/ha to 453.37 tons/ha. 

RQ 6: What is the accuracy of AGB estimation from UAV? 

The AGB modeled from UAV images was validated. Validation results depicted that modeled AGB of 

individual trees can explain 81% of the variability at an RMSE of 304.2 kg. On plots, the overall accuracy 

of UAV images was poor at R2 of 0.35. These findings implied that UAV lacks in assessing plot AGB 

accurately. 
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RQ 7: What is the accuracy of AGB estimation from ALOS-2 PALSAR-2? 

The model validation results for the estimated AGB for HV backscatter and log10(AGB) model depicted 

that the HV backscatter coefficients could explain 86% of field AGB at an RMSE of 26.63 tons/ha. 

However, the results also depicted a bias in the relationship model that overestimated AGB in some plots. 

RQ 8: Is there a significant difference between estimated AGBs from backscatter images of 

ALOS-2 PALSAR-2 and UAV RGB images? 

A one-way ANOVA test among the AGB estimated from UAV, PALSAR-2 and biometric data were 

performed to assess any differences in the AGB estimation. The ANOVA test results depicted that there 

was statistically no significant difference in mean AGB from the biometric data, AGB estimated from UAV 

images, and AGB estimated from PALSAR-2 image (F(2,144) = 0.02, p = 0.99). However, further analysis 

revealed significant overestimation by UAV images, especially on broadleaves and mixed forest stand, 

contributing to a higher mean AGB. 

RQ 9: What is the difference in the accuracy of estimated AGB from UAV and ALOS-2 PALSAR-

2 on coniferous, broadleaf, and mixed forest stand? 

AGB modeled from UAV RGB and ALOS-2 PALSAR-2 images depicted overall higher accuracy on 

conifers than broadleaves and mixed forest stand. Even though UAV depicted poor accuracy in modeling 

plot AGB, the AGB estimation on coniferous plots depicted a comparatively better relationship at R2 = 

0.52 than broadleaves (R2 = 0.18) and mixed (R2 = 0.02). AGB modeled from the PALSAR-2 image 

depicted the highest correlation in conifers (R2 = 0.90) compared to broadleaves (R2 = 0.82) and mixed (R2 

= 0.81) forest stands. 

Before reaching a final verdict, it should be noted that AGB estimation from UAV RGB images was an 

individual tree-based assessment, where from SAR images, AGB estimation was on the area basis. It was 

evident from the results that UAV RGB images could estimate individual tree AGB accurately; however, it 

lacked behind in estimation on the plot basis due to the intermingling crowns and obscured crowns by taller 

trees. PALSAR-2 images, on the other hand, performed better on area-based AGB estimation despite 

having an AGB saturation by the backscatter coefficients. Therefore, it can be concluded that for a 

temperate forest with intermingling crowns and a dense canopy, the L-band SAR image could be a better 

approach to estimate area-based AGB over UAV RGB images. 
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APPENDICES 
 

Appendix A: Field data collection datasheet. 
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Appendix B: Quality report of UAV RGB image processing of Block 2 and Block 3. 
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Appendix C: HV and HH backscatter/NRCS retrieval in dB using Equation 1 in SNAP 

Software. 
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Appendix D: Relationship between UAV AGB and Biometric AGB on plot for Conifers, 

Broadleaves, and Mixed forest stand. 
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Appendix E: Summary of T-test between CPA-DBH modeled DBH and field-measured 

DBH. 

 

 
 

 

 

 

Appendix F: Summary statistics of regression between HH backscatter coefficients and 

field AGB. 
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Appendix G:   Summary statistics of regression between HH backscatter coefficients and 

log10(AGB). 

 

 
 

 

 

 

Appendix H: Summary statistics of regression between HV backscatter coefficients and 

field AGB. 
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Appendix I: Summary statistics of regression between HV backscatter coefficients and 

log10(AGB). 

 

 
 

 

 

 

 

Appendix J: Summary statistics of regression between HV backscatter modeled AGB 

and the field AGB. 

 

 
 



 
A COMPARISON BETWEEN UAV-RGB AND ALOS-2 PALSAR-2 IMAGES FOR THE ASSESSMENT OF ABOVEGROUND BIOMASS IN A TEMPERATE FOREST 

79 

 

Appendix K: Summary of T-test between UAV modeled AGB and field-measured AGB 

on plots. 

 

 
 

 

 

 

Appendix L: Summary statistics of regression analysis between UAV modeled plot AGB 

and field-measured plot AGB for coniferous, broadleaves, and mixed forest stand. 

 

(a)  Summary statistics of regression analysis between UAV modeled plot AGB and field-measured plot 

AGB on coniferous forest plots. 
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(b) Summary statistics of regression analysis between UAV modeled plot AGB and field-measured plot 

AGB on coniferous forest plots. 

 

 
 

 

 

(c) Summary statistics of regression analysis between UAV modeled plot AGB and field-measured plot 

AGB on coniferous forest plots. 

 

 


