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ABSTRACT 

Forests play a vital role in the sequestration of carbon dioxide from the atmosphere, this in turn mitigates 

climate change. The carbon stored in forests can be found in different pools. Aboveground biomass 

(AGB) is one of the main pools that is most commonly monitored. As anthropogenic pressure on these 

ecosystems increases in the form of deforestation and forest degradation, reliable methods for the 

quantification of AGB over extensive areas have to be developed. Allometric equations can be used to 

estimate AGB by using biometric tree data. In large areas, this is time consuming and non-practical. 

Therefore, the UNFCCC has promoted the use of remote sensing technology to achieve this task. 

Unmanned Aerial Vehicles (UAVs) and satellite constellations are earth observation technologies that 

have been used extensively in forestry applications. UAVs are known to be highly customizable and easily 

operatable whilst providing very high spatial resolution data over small areas. Satellite constellations are 

exploring the boundaries of big geodata by providing high spatial resolution data in shorter revisit times, 

but have the disadvantage of providing small spectral resolutions. Previous research has used these remote 

sensing technologies in combination to map AGB. Linear regressions have been widely used to relate 

AGB and an explanatory feature derived from the sensor in order to map AGB. But linear regressions 

have been established to relate both sensors resulting in high errors at very high spatial resolutions. The 

addition of UAV data and machine learning algorithms may solve previous shortcomings. This study aims 

at estimating AGB through the use of a combination of UAV data, high spatial resolution satellite imagery 

and machine learning algorithms in a mixed temperate forest, Haagse Bos, Netherlands. 

A model calibration approach is proposed for this study in which the satellite AGB model is based on the 

output of a UAV AGB model. To achieve this, an object-based image analysis was implemented to 

segment coniferous and broadleaf tree species to obtain explanatory features from UAV data. The 

accuracy of the watershed segmentation was evaluated by using three performance metrics: over 

segmentation, under segmentation and total segmentation error. A total of 42 explanatory features were 

obtained based on multispectral layers, vegetation indices, canopy height model and gray-level co-

occurrence matrices. Random Forest (RF) and Support Vector Machine (SVM) regression algorithms were 

used to predict AGB based on the explanatory features. Based on the UAV AGB estimations, explanatory 

features were extracted from the satellite image at a pixel level. The RF and SVM algorithms were again 

assessed by the performance metrics calculated from a 10-fold cross validation and a test set. 

The study’s analysis showed that the estimations of AGB performed better when generating two separate 

models for coniferous and broadleaf tree species in both the UAV and satellite stage.  For the estimation 

of AGB with the UAV data, the information provided by the canopy height model gave the most 

predictive power to both models. Following this explanatory feature, the coniferous regression model 

preferred the texture layers while the broadleaf model gained more information with the red band layer 

and the crown projected area of each canopy. Both tree types recorded their best performance in the SVM 

regression algorithm. With only the 15 most important explanatory features, the coniferous model 

obtained the highest R2 of 73.7%. The broadleaf model obtained its highest R2 of 62.6% with the tops 

nine features. In the satellite data, the inclusion of elevation data was necessary to improve the results of 

the regression models. The canopy height model was the most important feature for both predictive 

models. In both cases, the Random Forest algorithm outperformed the performance metrics of the SVM 

algorithm. The highest R2 recorded for the coniferous tree species was of 54.0% by using the top 13 

explanatory features. The broadleaf model recorded a lower performance in comparison. Using the 20 

most important features, an R2 of 43.6% was obtained. The moderate performances of the VHR model 

can be attributed to the error propagation provided by the location of the measured trees, individual tree 

segmentation, and overestimation and underestimation of the UAV regression models.  

 

Keywords: AGB, Machine Learning, UAV, Tree Segmentation, Feature Importance, Explanatory 

Features, Remote Sensing Synergy 
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1. INTRODUCTION 

1.1. Background Information 

According to the Global Forest Resources Assessment 2020 (FRA 2020), forests cover accounts for 

30.8% of global land cover (FAO & UNEP, 2020). Forests play a vital and recognized role in the 

sequestration of carbon from the atmosphere. They are known to sequester and store more carbon than 

any other ecosystem on the planet  and have the potential to sequester about one-tenth of global carbon 

emissions by 2050 (Gibbs, Brown, Niles, & Foley, 2007). Once a forest has been altered (i.e., degraded or 

deforested), the carbon stored in the trees is released, reducing the area of carbon sinks on the planet and 

adding more CO2 to the atmosphere. From 2000 to 2009, deforestation accounted for 12% of global CO2 

emissions (IPCC, 2014). In Europe, about 42% of the  land area is covered with forests which translates 

to the absorption of 417 million tons of CO2 equivalent in 2017 (Eurostat, 2018). 

Thus, it is of high relevance to not only increase the carbon sinks in our planet but also to maintain the 

ecosystems that we currently have. Furthermore, there is a need to continuously measure the amount of 

carbon that forests have in order to detect changes over time or determine the health of forests. These 

measurements enable both private and public stakeholders to implement appropriate strategies and 

policies for forest conservation. This led the United Nations Framework Convention on Climate Change 

(UNFCCC) to establish a program that mitigates climate change through forest management, also known 

as Reducing Emissions from Deforestation and Forest Degradation (REDD+). The REDD+ framework 

has its own method for measuring, reporting, and verifying (MRV) the carbon stocks in forests in 

developing countries (USAID & FCMC, 2013). This has led the way for organizations such as Verified 

Carbon Standard (VCS), Climate, Community, and Biodiversity Alliance (CCBA), Plan Vivo, and The 

American Carbon Registry (ACR) Standard to also develop their own methods for quantifying carbon 

stocks in forests. 

Aboveground tree biomass refers to the weight of the portion of a tree found above the ground surface 

that had all of if water content removed to reach a constant weight (Sar & Further, 2020). The most direct 

way of estimating aboveground biomass in a forest is the destructive method, also known as the harvest 

method (Vashum & Jayakumar, 2012). This destructive sampling method is extremely tedious and not 

always practical; this process requires trees as samples, which in turn removes parts of the carbon sinks. 

Thus, the use of allometric equations is practical. Allometric equations describe the relationship between 

one, easily measurable parameter of a tree to another non-measurable one (i.e. the trunk diameter of a tree 

correlated to the trunk weight) (Sar & Further, 2020). Several biometric parameters can be used to 

determine the biomass of a tree, such as diameter at breast height (DBH), the height of the tree, and wood 

density (Basuki, van Laake, Skidmore, & Hussin, 2009). DBH is essential in assessing biomass because it is 

highly effective at explaining more than 95% of the variation of aboveground biomass (Brown, 2002). 

Carbon stocks are typically derived with the assumption that 50% of aboveground biomass is made out of 

carbon (Schlesinger & Bernhardt, 2013). The process of measuring biometric parameters as input in 

allometric equations over a large area is, again, unwieldy and impractical. Measurements on the field are 

difficult to obtain over large areas, time-consuming, and require effort  from multiple trained personnel 

(Hickey, Callow, Phinn, Lovelock, & Duarte, 2018; Nordh & Verwijst, 2004). 

To ease the process of biomass estimation inventories at a national and sub-national level, the UNFCCC 

has recommended the use of remote sensing methodologies as a non-destructive alternative (SBSTA, 

2009). These techniques can provide large-scale and accurate biometric information for the estimation of 

biomass in forests. Several authors have proven a direct correlation between biometric data captured in 
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the field and quantifiable parameters captured in remote sensing techniques (Anderson, Kupfer, Wilson, & 

Cooper, 2000; Hirata, Tsubota, & Sakai, 2009; Shimano, 1997). 

Previous remote sensing methods of estimating biomass used multispectral broadband sensors to relate 

existing vegetation indices to vegetation biometric parameters (Clark et al., 2001). Examples of these are 

low spatial resolution satellites like MODIS (Nguyen, Jones, Soto-Berelov, Haywood, & Hislop, 2020; 

Xue, Ge, & Ren, 2017). Satellites with medium spatial resolution (10 to 30 meter/pixel) such as GeoEye 

and QuickBird (Jachowski et al., 2013; Kross, McNairn, Lapen, Sunohara, & Champagne, 2015) have been 

used to estimate AGB with remote sensing. Other studies have integrated the use of textural layers from 

satellite images and proved that the accuracy Improves when using spectral and texture layers in 

combination (Dang et al., 2019; Xie, Chen, Lu, Li, & Chen, 2019). Common drawbacks of using these 

types of multispectral broadband sensors include cloud coverage, low spatial resolution, and the non-

suitability of revisit times of the sensors (Koh & Wich, 2012).  

Satellite images with high to very high spatial resolution (30 centimetre to 5 meter/pixel) have the ability 

to identify singular objects; depending on the satellite, canopy structure can be identified. Studies using 

very high spatial resolution images with multispectral capabilities obtained good performance on model 

fitness for estimating aboveground biomass in coastal wetlands by using vegetation indices derived from 

the four spectral bands (Miller, Morris, & Wang, 2019).Drawbacks of this type of data is the high cost of 

some providers. Another disadvantage of high spatial resolution satellites is the low spectral resolution 

offered by these satellites, often only offering the visible range (red, green and blue) and possible the near 

infrared bands (red edge and NIR). This type of technology is becoming more available to national 

governments and institutions through several partnerships.  

Hyperspectral remote sensing data is capable of capturing a great number of narrow bands which enables 

the generation of multiple spectral metrics and highly detailed spectral profiles. Studies have used 

hyperspectral data and laser scanning technology as tool to derive forest structure features or classes for 

biomass estimation (Kattenborn, Lopatin, Förster, Braun, & Fassnacht, 2019; Lu et al., 2020; McClelland, 

van Aardt, & Hale, 2019; Zou et al., 2019). Hyperspectral information could better differentiate species 

which would serve as an important feature to train regression models at a UAV level. The main limitations 

of this type of data is the availability and the cost, but new promising satellite missions are expected to 

surpass these limitations (Galidaki et al., 2017). 

An alternative active sensor that can be used in biomass assessment is LiDAR (Light Detection and 

Ranging). LiDAR technology generates a set of points that model terrain and surface, also knows as a 

digital terrain model (DTM) and digital surface model (DSM) (i.e., the forest floor and the canopy of the 

trees). A canopy height model (CHM) can be calculated from the difference between these two models 

(Phua et al., 2016). Other metrics can be derived from each individual tree, such as the percentile of 

heights, the percentile of intensity, or the amount of returns (Roussel et al., 2020). The output describes 

the height of trees, which is another biometric parameter that is significantly correlated to AGB. When 

combined with other biometric data such as DBH, the allometric model becomes more accurate (Chave et 

al., 2014; Drake et al., 2003; Mtui, 2017). Laser scanning sensors can greatly aid in the segmentation of 

individual trees and would also produce more accurate canopy height models. However, the acquisition of 

this type of data is costly and, similarly to the multispectral broadband sensor, the reduced frequency of 

data acquisition renders accurate forest monitoring impossible (Beland et al., 2019). 

Synthetic Aperture Radar (SAR) data has been widely used as another alternative for the estimation of 

biomass. This type of data can surpass most of the common problems found with optical sensors like 

cloud cover and penetration of forest canopy layers. SAR’s C and L bands with HH and HV polarization 

have been found to be the best combination for the estimation of broadleaf and coniferous forests (Sinha, 

Jeganathan, Sharma, & Nathawat, 2015). Limitations in SAR data are also varied and complex. For now, 

the acquisition of radar data is costly when compared to freely available optical data and there is a limited 

amount of satellite constellations that acquire this data. Another main limitation for SAR data is its 



UPSCALING ABOVEGROUND BIOMASS WITH MACHINE LEARNING ALGORITHMS BY INTEGRATING HIGH SPATIAL RESOLUTION DATA 

3 

common saturation problems in dense vegetation shown in the C, L and P bands (Joshi et al., 2017; 

Nuthammachot, Askar, & Stratoulias, 2020).  

Unmanned Aerial Vehicles (UAVs) are remotely piloted aircrafts that are easy to operate and can acquire 

high-resolution images at a low cost (Akturk & Altunel, 2019). UAVs can also acquire images with large 

overlap between them, which allows the calculation of a 3D point cloud from which surface and terrain 

models can be derived using Structure from Motion (SfM). The SfM process utilizes matching points 

identified in the overlapping images to generate a 3D reconstruction of the surface through a dense point 

cloud of spatially referenced points (Dempewolf, Nagol, Hein, Thiel, & Zimmermann, 2017). The 

generation of a CHM with the use of this technology can be done accurately and with high spatial 

resolution (centimetre-wide pixels). UAVs have enough spatial resolution to perform proper tree 

segmentation by identifying the Crown Projected Area (CPA) (Lin, Meng, Qiu, Zhang, & Wu, 2017; 

Modica, Messina, De Luca, Fiozzo, & Praticò, 2020). Previous studies have proven that the relationship 

between CPA and DBH can be used as input in allometric equations and hence to estimate AGB, thus 

being able to delineate and use the canopy area of each individual tree provides useful information to 

predictive models (Shimano, 1997). 

Although UAVs have many advantages, the spatial coverage for most types of UAVs (e.g., small multi-

rotor drone) is a limitation. The main limitation to these types of UAV’s is the battery capacity which does 

not only dictate the flight time (approximately 20 minutes for the DJI Phantom 4), but also provides the 

necessary energy to operate any external sensor mounted to it (e.g., multispectral sensor). This has lead to 

the fact that UAVs are mostly used as a sampling tool or as a means for getting intermediate data in 

sampling patches of a large forest area (Wang et al., 2020). Since forest inventories are required at a 

national to sub-national level or for large areas, the use of UAVs might seem impractical. However, UAV 

and satellite constellations can complement each other to overcome their shortcomings. The relationship 

between UAV and satellite constellations was defined by Emilien (2021) as multiscale explanation and 

model calibration. Multiscale explanation studies the same object at different spatial scales: the data 

extracted at a finer scale from a small site is used to explain information from a larger extent with coarser 

resolution. Model calibration refers to the use of one data source to calibrate a model based on the other 

data source.  

For the synergy between sensors to be successful in predicting aboveground biomass at different scales, 

there has to be a relationship between field data and UAV data, and subsequently, a correlation with the 

satellite imagery. Once biomass has been calculated from field observations, a biomass prediction model 

can be generated from the relationship between an explanatory feature (i.e., reflectance, vegetation index, 

height) derived from remote sensing data and the estimated biomass (i.e., target variable). Another 

approach of extrapolating forest biomass sample into a map is the use of nonparametric algorithms such 

as Random Forest (RF) and Support Vector Regression (SVR). Machine learning algorithms (MLA) have 

gained popularity in the field of ecology due to their ability to classify or predict a target variable based on 

multiple explanatory features (Mascaro et al., 2014). 

The spectral response of optical data, height metrics derived from UAV point cloud data, and image 

textures can be used as explanatory features from which MLA acquire information to recognize patterns, 

and make predictions on to what those features represent (Sar & Further, 2020). The high spatial 

resolution provided by UAV data makes it possible to extract explanatory features from individual trees. 

Such features may include the mean, maximum, and minimum reflectance values for each tree as well as 

derived vegetation indices derived from the available spectral bands. The vertical data provided by the 

UAV makes tree height available that can also be included as an explanatory feature; although height in 

dense vegetation has been proven to have errors (Alonzo, Andersen, Morton, & Cook, 2018; Jayathunga, 

Owari, & Tsuyuki, 2018; A. Navarro et al., 2020). The high spatial resolution of satellite images like the 

ones provided by the PlanetScope constellation of satellites makes it possible to extract features at a pixel 

level which resembles individual trees. Satellite imagery also provides spectral values that can be used to 
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find a relationship with the biomass predicted with the use of UAV data. Recent literature has also 

calculated and used texture metrics in the form of Gray-Level Co-Occurrence Matrices (GLCM) (Dang et 

al., 2019). 

The RF algorithm learns to identify complex patterns through a set of explanatory variables that describe 

the desired the target variable (i.e., forest features teach the model to predict biomass). RF generates a 

conglomerate of decision trees (hence the name) to either solve classification or regression problems. 

Simple or complex regressions can be generated with minor parameter tunning. More trees do not always 

translate into a better model. It does increase the computational time for the algorithm to generate the 

defined number of trees. A process of iteration between these two parameters needs to be developed to 

ensure the best prediction accuracy (Breiman, 2001). 

Another advantage of using RF is the capability of learning which features are more important at 

describing biomass. Pandit et al. (2018) found that the features extracted from individual bands were less 

important in describing biomass when compared to vegetation indices and forest structure features. 

Feature importance is relevant because it allows the algorithm to focus more on variables that are more 

pertinent, while omitting variables that are irrelevant or highly correlated to other variables. Less variables 

also means that the model is less prone to overfitting, a common problem found in MLA. 

The SVR algorithm is based on the same principles of the support vector machine (SVM) which has been 

widely used for classification of highly non-linear data (Chih-Wei Hsu, Chang, & Lin, 2008). The objective 

of the algorithm is to generate a hyperplane that best resembles the input target variable by learning from 

the explanatory features. Both SVM and SVR utilize kernels that project the data to a higher dimensional 

feature space which makes the classification or prediction a linearly solvable problem.  

As of April 2020, several authors have studied the feasibility of using UAV imagery to upscale biomass to 

broader areas using satellite images. Similar methods found through literature review reveal that attempts 

to upscale biomass for boreal forests have yet to be thoroughly explored. Mangroves, on the other hand, 

have been subject to several studies in which field plots, UAV derived biomass and satellite data are 

integrated for wall-to-wall estimation of biomass. Navarro (2019) utilized multispectral imagery captured 

with UAV in order to derive features to generate plot-based aboveground biomass estimations to later 

train a SVR algorithm using features  derived from Sentinel-1 and Sentinel-2. A plantation of mangroves 

was used as a study area. The performance of the generated output ranged from an R2 of 71% to 90% at 

the satellite scale. The range of biomass values found for this study were low compared to the expected 

values for a boreal forest. Wang (2020) collected biometric data for several species of mangrove and 

related them to biometric parameters derived from UAV-LiDAR data by using a RF algorithm. The 

resulting biomass predictions were later used as a base to predict biomass at a pixel level with the use of 

vegetation indices derived from Sentinel-2 images. The study found that using UAV-LiDAR data as an 

intermediate step to estimating aboveground biomass yielded a better result than a traditional ground-to-

satellite approach (R2 of 62% and 52% respectively and RMSE of 50.36 versus 56.63 ton/ha). Zhu (2020) 

utilized UAV multispectral data and optical and SAR satellite data (Gaofen-2 and Gaofen-3) to estimate 

aboveground biomass in an artificial plantation of mangroves by using a RF algorithm. Several models 

were generated by combining the features extracted from each data source. The coefficient of 

determination of the various models ranged from values as low as 12% to a maximum of 61%; this value 

was achieved by integrating height values, which was also proven to be the most important feature. Iizuka 

(2020) used SAR data, UAV imagery and TLS information to predict tree volume in a conifer plantation 

by using RF and SVR algorithms. At the satellite level, the RF and SVR models yielded an R2 of 66.5% 

and 51.9% respectively, proving that the integration of field data and several remote sensing data can 

reasonably predict biomass. 
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1.2. Problem Statement 

The high spatial resolution and multispectral data of UAV imagery allow derivation of forest structure 

features. (Kachamba, Ørka, Gobakken, Eid, & Mwase, 2016; Miller et al., 2019; Ota, Ogawa, Mizoue, 

Fukumoto, & Yoshida, 2017). These have been used to map AGB by creating simple linear regressions 

with field data (e.g., the relationship between DBH measured on-field and canopy projected area derived 

from UAV imagery). Prior studies have shown that the implementation of MLA, in specific RF and SVR, 

provide better accuracies among other empirical models when trying to predict biomass (Lu et al., 2020; 

Nguyen et al., 2020).  

One of the limitations of small to mini multi-rotor UAVs is the spatial coverage in which they can operate. 

Although UAVs can be deployed with ease over several areas, covering extensive forest landscapes is 

inefficient due to the limited flight times that this type of technology offer. Also, the very high resolution 

of UAV data requires large storage space and entails longer processing times if used for very large areas. 

To overcome this issue, high spatial resolution satellite images can use information derived from UAV 

data as samples to create a wall-to-wall image of a much larger area (Emilien et al., 2021; Li et al., 2019; 

Riihimäki, Luoto, & Heiskanen, 2019; Wang et al., 2020). A two-step model calibration can be 

accomplished by establishing a relationship between (1) AGB calculated from field observations and UAV 

derived features, and (2) between AGB estimated from UAV derived features and satellite imagery 

features. Both processes can be done through the use of MLA, as shown in previous works (da Conceição 

Bispo et al., 2020; Lu et al., 2020; Miller et al., 2019; Zhang, Ma, Liang, Li, & Li, 2020). 

Thus, this study aims to generate a method that uses aboveground biomass derived from UAV imagery to 

estimate biomass using satellite data, ensuring high accuracy carbon estimation of a large-scale carbon 

stock map. Furthermore, we set out to assess the role of features derived in both UAV and satellite data. 

1.3. Research Objectives 

The main objective of this research is to develop a MLA based method to predict aboveground tree 

biomass by using UAV and satellite data in two stages. The output generated by the UAV-based model 

will serve to calibrate the model using the satellite data. 

1.3.1. Specific Objectives 

1. To define feature importance of explanatory variables derived from UAV to be used in MLA in order 

to predict AGB; 

2. To identify feature importance of explanatory variables derived from satellite imagery to be used in 

MLA in order to predict AGB; 

3. To evaluate the change in performance metrics of the MLA with feature reduction based on 

importance; 

4. To assess the accuracy of the AGB predictions done with UAV data in the different surveyed areas of 

Haagse Bos; 

5. To assess the accuracy of the AGB predictions done with a combination of UAV data and satellite 

imagery for the entirety of Haagse Bos; 

1.3.2. Research Questions 

1. Which set of features derived from UAV data and satellite imagery can be used to estimate AGB using 

MLA? 

2. Which set of features derived from UAV data are more important at predicting AGB? 

3. How are the performance metrics impacted by different MLA and feature reduction in the UAV 

model? 
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Figure 1. Conceptual Diagram 

4. How accurate is the machine learning algorithm in classifying aboveground biomass content using 

features derived from UAV data? 

5. Which set of features derived from satellite data are more important at predicting AGB? 

6. How are the performance metrics impacted by different MLA and feature reduction in the satellite 

model? 

7. How accurate is the machine learning algorithm in classifying aboveground biomass content using 

features derived from satellite imagery? 

1.4. Conceptual Diagram 

The conceptual diagram shown in Figure 1 shows the synergy between earth observation sensors and the 

structure of the study area. Haagse Bos contains coniferous and broadleaf trees scattered in the forested 

area. Some areas are mixed forest, while other areas are kept to only one tree species. The trees serve as a 

carbon pool, storing aboveground biomass which can be estimated with allometric equations and features 

derived from remote sensing technology. 

The other essential systems in this study are the earth observation sensors and platforms like UAVs and 

satellite constellation. These sensors are used to collect multispectral data at different spatial resolutions 

and covering different spatial areas in order to estimate AGB from the trees inside Haagse Bos. UAVs can 

only cover multiple small patches of land. Thus, the estimated AGB from UAV data can serve as the 

target variable to generate a regression model using explanatory features derived from satellite imagery.  
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2. MATERIALS & METHOD 

2.1. Study Area 

The justification of the selection of the study area is partly due to the COVID-19 pandemic experienced 

throughout the year 2020 and 2021. The study area had to be a forest nearby the city of Enschede in order 

to facilitate transportation for the fieldwork team. The Haagse Bos lies near the city of Enschede. It is 

comprised of small patches of coniferous, broadleaf, and mixed forests. The Haagse Bos is a nature 

monument, which are considered a protected area with legal status under the Dutch Nature Conservation 

Act of 1998 (Mohren & Vodde, 2006). Previously, the Haagse Bos was used solely as a production forest, 

but has then been changed to conservation for its aesthetic values. Economic income for the protection of 

the forest is provided by some areas that are still used for wood production, but mostly it is the 

agricultural land that provides most of the revenue. 

The forest had previously been used as a production forest, but in 1969, a part of it was bought by 

Natuurmonumenten and changed its status as a naturally managed forest (Damhof, 2020). Individual 

private owners assign Bureau Takkenkamp BV as a forest manager, thus this land is managed differently 

depending on the requests of the owners. Some land is used for the harvesting of timber to provide a 

steady income to the original holders of the land; other parts of the land do not allow the altering of the 

landscape as requested by the proprietors. 

2.1.1. Geographical Location 

Haagse Bos forest (Figure 2) is located between 6° 56’ 25.728” E – 6° 58’ 20.856” E and 52° 14’ 57.192” 

N – 52° 16’ 41.340” N. The study area is located in the province of Overijssel and lies between the 

boundary of the municipalities of Enschede and Losser. The area of Haagse Bos is around 300 hectares, 

this is including the patches of land scattered across the forest that are pasture. 

  

Figure 2. Study Area, Haagse Bos as seen by PlanetScope on 5th of August of 2020. 



UPSCALING ABOVEGROUND BIOMASS WITH MACHINE LEARNING ALGORITHMS BY INTEGRATING HIGH SPATIAL RESOLUTION DATA 

8 

2.1.2. Climate & Topography 

July is the hottest month of the year in the region with a recorded daily mean temperature of 22.8 °C. The 

coldest month is January with a daily mean temperature of 2.3 °C. Average precipitation over a year is 

around 785mm, with the months of July and August having 20% of the annual precipitation (KNMI, 

2010). 

2.1.3. Vegetation 

The forest consists of young and mature broadleaf and coniferous species. A representative of Bureau 

Takkenkamp BV states that they have recorded twenty different species inside Haagse Bos. Since the 

study area used to be a production forest, the arrangement of the majority of the trees are in rows. From 

fieldwork done through the months of August through October of 2020, the most common trees 

encountered in the surveyed 90s are displayed in Table 1 

Table 1. Common encountered species in Haagse Bos 

Common name Scientific name 

Douglas Fir Pdseudotsuga menziesii 

Common Ash Fraxinus excelsior 

European Beech Fagus sylvatica 

European Larch Larix decidua 

European White Birch Betula pendula 

Norway Spruce Picea abies  

Pedunculate Oak Quercus rubra 

Scotch Pine  Pinus sylvestris  

2.2. Materials 

This section includes a brief description of the field equipment and software used to collect and process 

data for this study.  

2.2.1. Field Equipment 

The tools and equipment mentioned in Table 2 were used in the measurements of the trees during 

fieldwork data collection as well as capturing multispectral data of the forest.  

Table 2. List of field equipment, brand and its uses. 

Equipment/Tools Brand Use 

UAV Drone DJI Phantom 4 Image capture 

Measuring tape (20m) N/A Delineation of boundary plots 

Diametric tape (2m) N/A DBH measurement 

Laser measurer Leica DISTO D5 Height measurement 

GPS Garmin eTrex 20x Navigation 

Clinometer Santo Slope measurement 

Form and pen N/A Data recording 

DGPS Leica GS14 DGPS Recording of GCPs and plot location 

2.2.2. Data Processing Software 

The list of software used for processing and analysing the data from the study area are presented in Table 

3.  

Table 3. List of software and uses. 

Equipment/Tools Use 
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ArcMap 10.6.1 Geographic data processing and visualization 

Pix4D Mapper UAV data processing and visualization 

ERDAS Imagine Enhancement of UAV and satellite images 

Microsoft Word Thesis writing and preliminary reports 

Microsoft Excel Data analysis 

R Studio Statistical analysis 

Agisoft Metashape UAV data processing and correction 

eCognition Developer Individual tree crown extraction 

2.2.3. Data 

The UAV data used for this study was obtained through the use of a Parrot Sequoia camera mounted on a 

DJI Phantom 4. The satellite data was acquired by a PlanetScope satellite and additional height 

information from  

Table 4. List of data used in this study 

Data Source Acquisition Date 

UAV Multispectral Images Parrot Sequoia September to October of 2020 

Elevation data DJI Phantom 4 September to October of 2020 

Tree biometric data Field work September to December of 2020 

LiDAR elevation data Actueel Hoogtebestand Netherlands Between the years 2014 to 2019 

Satellite Image Planet Labs Inc. September 5th of 2020 

Ground Control Points Leica GS14 DGPS September to October of 2020 

 

2.3. Research Methods 

The research method of this study was comprised of three general steps: 

1. The first step involved the collection of field data through ground plots and the use of a small 

multi rotor UAV for the collection of UAV multispectral data. The acquisition of the satellite 

image was also accomplished in this step by requesting it to the corresponding company. Field 

data acquisition compiled individual tree parameter data (e.g., DBH, height, CPA, species), 

coordinates of the plot, plot characteristics, individual tree bearings, and GCPs coordinates. The 

data collection steps are surrounded by the red box in Figure 3. 

2. The second step involved the processing of the collected information. Aboveground biomass was 

calculated from tree parameters measured on ground. These measurements were collected as 

ground truth data to be used as accuracy assessment and as a base for the upscaling of AGB 

estimation with UAV data and satellite imagery. With the use of Pix4Dmapper, UAV images were 

processed to generate orthophoto with reflectance values, 3D point clouds, DSM and DTM; the 

GCPs collected were used to georeference the UAV data. ERDAS Imagine was used to enhance 

the satellite image from September 2020 for feature extraction at a later stage. A set of 

explanatory features were extracted from the UAV orthophotos and the satellite image. A 

combination of reflectance values, height, and texture features were derived. The previous steps 

are delineated by the blue box in Figure 3. 

3. The last step (data analysis) estimated AGB at both UAV and satellite scales. The RF algorithm 

and the SVR were used generate models trained with the derived explanatory features from both 

platforms. The RF algorithm also provides the importance of each feature in predicting AGB, 

which was used to remove redundant features. A 10-fold cross-validation, coefficient of 

determination, root-mean-square error, and relative root-mean-square error were calculated to 

assess the performance of the models generated and to quantify the impact of removing 

redundant features. The data analysis steps are marked in green in Figure 3. 
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Figure 3 shows the methodological steps of this research: 

 
Figure 3. Flowchart of research method 
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2.4. Data Collection 

2.4.1. Sample Plot Design 

A plot design, plot shape, and plot size were established on an early stage of this research. A circular plot 

of 12.62m was chosen due to its simple correlation in representing 1 20⁄ th of a hectare. It also minimizes 

the perimeter of the plot and makes the boundary easy to establish and be recognized by fieldworkers 

(Van Laar & Akça, 2005). 

A stratified random sampling method for the ground plots was established based on canopy density. 

Vegetation distribution maps of the Haagse Bos were gathered to obtain a mixture of species in the 

sampling. Based on UAV flight areas, a fishnet was generated over the study areas according to plot size. 

A total of 1,823 potential plots (Figure 4) were generated, from which an equal number of plots were 

randomly selected and measured according to type of forest (i.e., coniferous and broadleaf forest). A total 

of 91 plots were measured during fieldwork. Due to cloud coverage on one of the acquired multispectral 

images, a total of 21 plots were omitted from further analysis. This resulted in 70 plots being used in the 

data analysis. Data was acquired between the months of August and October of 2020. 

 
Figure 4. Potential Centre Plots inside Flight Zones 

The list of materials presented in Table 2 was used during fieldwork. Upon arrival at a plot, the fieldwork 

team would identify the circular boundary, identify the trees inside the plot with tags. The height and 

DBH of the trees with a DBH higher than 10 centimetres were recorded. This method was generated to 

ensure that the capturing of field data was consistent throughout time and to guarantee the correct use of 

the spreadsheet to be filled in manually. The collection of data was accomplished by using a manual entry 

form (see Annex 1). 

2.4.2. UAV Flight Planning 

Trial surveys were done before the scheduled date for UAV data collection. The most noticeable error 

found was the absence of imagery in certain regions inside the flight area; this was due to the fact that 

during the day of the flight it was partially cloudy which made the Sun sensor to malfunction and cause 

and error as to how to register the metadata of the photographs.  

The proposed solutions to evade this error from happening again were: (1) ensure that the day of UAV 

data collection is an entirely sunny or cloudy day to avoid Sun sensor confusion and homogeneity in the 
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reflectance values, (2) run the UAV flight plan in parallel with the trajectory of the sun to reduce the 

variance in the reflectance values, and (3) if the past solutions still manifest absence of imagery, then 

utilize the Agisoft Metashape Software to correct the registration error manually. 

2.4.3. UAV Data Acquisition 

The designed flight plans were programmed in Pix4Dcapture in order to comply with the solutions 

proposed above (i.e., a parallel flight with the Sun's trajectory). Flight parameters were established before 

data collection, namely camera settings, ground sampling distance, overlap, flight height, area coverage and 

global navigation satellite system. A total of eight areas with an area between 13 to 16 hectares each were 

captured. The UAV drone carried cameras capable of capturing green, red, red-edge and near infrared 

(NIR) reflectance values. Table 5 summarizes the parameters used for the data acquisition. 

Table 5. UAV flight plan parameters 

Parameters Information 

Flight height 100m 

Flight mission Double grid 

Flight speed Moderate 

Forward overlap 80% 

Side overlap 60% 

Image resolution 4000 x 4000 pixel 

Captured area ~110 ha 

Sensor RGB & NIR 

 

A total of 45 ground control points (GCPs) were collected by the fieldwork team using a GNSS. The 

number of GCP points determined the overall accuracy of the georeferencing of the image. A set of 

crosses printed on paper were placed in open spaces to obtain an image of the control point that were 

later used in the georeferencing process. Figure 5 exemplifies the distribution of GCPs during data 

acquisition. 

  
Figure 5. Distribution of GCP (blue cross) and acquired images (red dots)  

in Block 4 (left) and Block 123 (right) 
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2.4.4. Satellite Imagery Acquisition 

A satellite image from PlanetScope was acquired through the Education and Research Program from 

Planet Labs, Inc. The image was obtained on August 19th of 2020, but the image was captured on August 

8th of 2020. Table 6 summarizes the characteristics of the PlanetScope constellation of satellites and band 

specifications. 

Table 6. Characteristics of Planet Scope satellite and sensor 

Characteristics PlanetScope 

Owner/Distributor Planet Labs Inc. 

Ground Sample Distance (m) 3.7 

Strip width 16 

B1 - Blue (nm) 464 – 517 

B2 - Green (nm) 547 – 585 

B3 - Red (nm) 650 – 682 

B4 - NIR (nm) 846 – 888 

2.5. Data Processing 

In order to generate regression models for AGB with MLA, we need to obtain explanatory features from 

both the UAV data and the satellite imagery. The first step is to calculate the AGB from field 

measurements to serve as a target variable. By using the UAV data, individual tree segmentation was 

achieved and feature extraction was done for individual trees to serve as explanatory variables to train the 

MLA. After obtaining AGB estimated from UAV data, feature extraction was done at a pixel level using 

the PlanetScope satellite imagery. The values from each individual pixel throughout the different layers 

served as the explanatory variables and the AGB estimated at the UAV stage was used as the target 

variable. 

2.5.1. Biometric Data Processing 

The field data for each plot was recorded in Excel. DBH and tree height measured in the field were used 

to calculate aboveground biomass and carbon stock for each tree using allometric equations and 

conversion factors as reviewed in the literature. Table 7 summarizes the sources used to obtain the 

allometric equations. The allometric equations were chosen according to their R2 value and the operable 

ranges of DBH and height. All works used were based in Europe, but preference was given to equations 

that were developed inside the Netherlands or closest to in geographical position. The aboveground 

biomass was calculated for each tree, and an average is calculated per type of specie.  

Table 7. Allometric equations of common tree species found in Haagse Bos. 

Tree Equation R2 Ranges of 

variables 

Reference 

Douglas Fir 

Pseudotsuga menziesii 

Netherlands 

ln(AGB[Kg]) = −1.620

+ 2.410 ln(DBH) 

0.995 5 to 50 cm (Bartelink, 1996) 

Common Ash 

Fraxinus excelsior 

United Kingdom 

AGB[Kg] = −2.4718

+ 2.5466 ln (DBH) 

0.985 2.9 to 33 cm (Zianis, 

Muukkonen, 

Mäkipää, & 

Mencuccini, 2005) 

European Beech 

Fagus sylvatica 

Netherlands 

AGB[Kg] = 0.0798 DBH2.601 0.988 10.7 to 61.8 

cm 

(Zianis et al., 

2005) 

European Larch AGB[Kg] = 0.1081 DBH1.53 H0.9482 0.984 4 to 34 cm (Zianis et al., 
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Tree Equation R2 Ranges of 

variables 

Reference 

Larix sibirica 

Iceland 

4 to 16 m 2005) 

European White 

Birch 

Betula pendula 

Sweden 

AGB[Kg] = 0.00087 DBH2.28546 0.985 1.8 to 13.7 cm (Zianis et al., 

2005) 

Norway Spruce 

Picea abies 

Germany 

AGB[Kg] = −43.13 + 2.25 DBH

+ 0.425 DBH2 

0.995 10 to 39 cm (Zianis et al., 

2005) 

Pedunculate Oak 

Quercus robur 

Germany 
 

AGB[Kg] = 0.0722 DBH2.5135 0.970 4.5 to 46 cm (Suchomel, 2012) 

Scots Pine 

Pinus sylvestris 

Czech Republic 

AGB[Kg] = 0.1182 DBH2.3281 0.980 2 to 16 cm (Zianis et al., 

2005) 

 

2.5.2. UAV Image Processing 

The images for each of the eight flight blocks were processed in Pix4DMapper in order to generate an 

orthophoto, DTM and a DSM. The 3D models were constructed from a series of overlapping 2D images 

captured by the UAV. By matching common points or objects in the image series (also known as key 

points), a reconstruction of a scene can be built. This is more commonly known as structure from motion 

(SfM) (Westoby, Brasington, Glasser, Hambrey, & Reynolds, 2012). By using this photogrammetric 

method, the Pix4D software creates a 3D reconstruction of the study area by matching key points 

observed in several images. This calculation of points from various camera position leads to the generation 

of a point cloud. Using GCPs, bundle block adjustment can be accomplished in order to georeference the 

3D point cloud to coordinates from camera centres. For further processes, the distinction between ground 

points and vegetation points is made during this step. This classification is then used to create DTM and 

DSM layers. Since UAV imagery is not capable of penetrating the canopy structure, dense canopy areas 

tend to have a low point density. This leads to overgeneralized DTMs which affect the resulting CHM 

layers. After the generation of the initial outputs, the GCPs were loaded into the software for 

georeferencing. The GCPs served as a reference in various pictures to increase the precision of the 

georeferencing process. Once a dense 3D point cloud is generated, the generation of a DSM and a DTM 

can be done.  

The height of trees is a basic property that indicates the structure of a forest. Known relationships have 

been proven to occur between DBH and height. This study calculated aboveground biomass with 

allometric equations which had DBH as an explanatory variable, thus obtaining the height variable from 

individual trees is highly relevant in providing information regarding biomass content. Although height 

was measured in the field, several authors suggest that field measured height tends to overestimate stature 

considerably (Jurjević, Liang, Gašparović, & Balenović, 2020; Y. Wang et al., 2019). UAV derived tree 

heights have been proven to serve as a good measure for tree heights, especially in open canopy areas 

(Krause, Sanders, Mund, & Greve, 2019). Thus, for this study, UAV derived heights were used as 

explanatory variables in the MLA, as opposed to field measured heights. To obtain this feature for later 

use in the regression models, a CHM was generated by subtracting the DTM from the DSM. 

 𝐶𝐻𝑀 = 𝐷𝑆𝑀 − 𝐷𝑇𝑀 (1) 

Equation 1. Canopy Height Model estimation 
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Previous studies have proven the strong correlation between aboveground biomass and vegetation indices 

derived from RGB and NIR reflectance values. They are highly relevant and have been widely used for the 

estimation of biomass content in agriculture and forestry applications (Poley & McDermid, 2020). The 

derived vegetation indices were in accordance to previous studies which used the Parrot Sequoia sensor 

(or similar sensor capturing red-edge and NIR data) in forestry applications. The generation of vegetation 

indices (see Annex 3) was executed in the Pix4D software. Individual bands were used to produce four 

vegetation indices (see Table 8) that were used in several studies to estimate aboveground biomass (Dang 

et al., 2019; Jin, Li, Feng, Ren, & Li, 2020; Wang et al., 2020; Zhang et al., 2020).  

A total of four spectral bands and four vegetation indices, one DTM and one DSM were derived from 

each block that was covered by the UAV block. All of the layers corresponding to an individual flight 

block were compiled into a single tiff file. Previous works done in the Haagse Bos area had resampled the 

UAV images to 20 centimetres in order to reduce computational time of other tasks; it also reduced the 

amount of detail which was adding noise to the data.  To resample the original spatial resolution to a 

standardized resolution of 0.2 meters between all flight blocks, a bilinear interpolation was used to obtain 

the average of the nearest cells and maintain the continuity of the data. Annex 2 summarizes the quality 

reports generated for each UAV flight block.  

2.5.3. Satellite Image Processing 

The obtained satellite image is a level 3A product from the PlanetScope constellation of satellites. This 

means that radiometric and sensor correction have been applied to the data, thus obtaining surface 

reflectance values. Plus, the image was orthorectified and projected to a UTM projection (Planet Labs Inc., 

2016). The ERDAS Imagine software was used to reproject the satellite image in accordance to the UAV 

acquired data, which were projected to the RD New coordinate system (EPSG: 28992) in the Amersfoort 

datum. Since the satellite image covered an extensive area, an area of interest was generated creating 

subsets of the original images; this ensured that processing time was reduced.  

2.5.4. Feature Extraction – UAV 

During fieldwork, direction bearings from the plot centre to each individual tree were taken with a mobile 

application called Avenza Map. Orthophotos generated by the UAV images serve as a reference during 

fieldwork. Plot centre locations were later extracted to the ArcMap software to generate a point location 

layer. The extraction of features from UAV data was accomplished by the delineation of individual trees. 

At a satellite image level, feature extraction was accomplished at a pixel level.  

 

Individual Tree Segmentation 

The delineation of tree canopies was accomplished using eCognition Developer.  Segmentation can either 

be done by a top-down or a bottom-up approach. Top-down means that larger objects in the image will 

be further segmented until a desired object is met; eCognition Developer offers chessboard segmentation, 

quadtree-based segmentation and multi-threshold segmentation algorithms. On the other hand, bottom-

up segmentation merges smaller objects until a bigger and desired object is met by the user’s criteria. The 

most commonly used segmentation algorithms are the multiresolution segmentation (MRS) and watershed 

segmentation (WS) (Benz, Hofmann, Willhauck, Lingenfelder, & Heynen, 2004). Dainelli (2021) reviewed 

227 peer-reviewed scientific papers in recent literature involving the use of UAS in forestry applications 

and found that 46% of those studies used a form of WS to segment individual tree canopies. Said works 

were carried out with a variety of tree species including birch, spruce, scots pine, firs, larch, and 

mangroves.  This segmentation algorithm requires a small amount of parameter tunning and, in this study, 

proved to be more efficient as segmenting canopies in comparison to MRS. 
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The WS creates objects by identifying the local maxima (or minima) based on brightness values or height 

values. The algorithm expands a regional object until it touches a neighbouring object. This algorithm is 

designed to work best with elevation data, thus the CHM generated by the UAV served as input for this 

algorithm. 

A set of rules was established using the WS. Segmented objects were later refined by classifying objects 

that had a height lower or equal to 10 meters. These objects were removed because they were small trees 

which were difficult to segment properly and they do not contribute as much to the overall AGB content 

of the forest. Objects with an average reflectance value of 0.26 in the NIR band were classified as shadow 

and were also removed from the final output. Additionally, areas with an area equal or lower to 2.5 meters 

were omitted to further remove young trees, pasture fields and bare soil from being included to the 

segmented trees. All remaining objects were classified as trees and were subject to visual inspection and 

correction, as the WS is dependent of the quality of the CHM. Objects classified as tree with an area 

smaller than 10 pixels were joined with their closest and biggest neighbour, as they were deemed not 

feasible to be considered as individual trees through visual interpretation (see Annex 4). Young forests 

under the specified height threshold were removed due to the inability of the segmentation ruleset to 

perform a proper partition of young trees. The final objects were then exported with their respective 

features. Remaining isolated objects that were smaller than 5 m2 were removed because they did not 

represent a meaningful canopy structure. Objects generated at the edge of all UAV orthophotos were also 

removed due to the visible distortions they presented. The ruleset can be referred in Annex 4. 

 

Segmentation Accuracy Assessment 

Image segmentation dictates the structure of the data to be used in any regression technique; thus, if low 

accuracy is present on the segmentation result, the error will propagate into the regression output 

(Hossain & Chen, 2019). According to Clinton et al., (2010), segmentation accuracy can be assessed 

through the over segmentation, under segmentation and total detection error of a specific object. A total 

of 175 clearly visible trees of different sizes were manually digitized for the accuracy assessment of the tree 

segmentation: 82 were coniferous trees and 94 were broadleaf trees. The area the segmented object and 

the digitized polygon were calculated through ArcGIS; the overlapping areas between the polygons as well 

as the remains of the polygons were calculated. Although the UAV images have normalized values, the 

total detection error was measured per block because of differences in lighting when the flight was 

accomplished.  The ideal value for these assessments is 0, which means that the reference polygon and the 

segmented object are identical (or near identical).  

 
𝑂𝑣𝑒𝑟 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 (𝑋) = 1 − (

𝐴𝑆𝑊 ∩ 𝐴𝑀𝐷

𝐴𝑆𝑊
) (2) 

Equation 2. Over Segmentation Measure 

 
𝑈𝑛𝑑𝑒𝑟 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 (𝑌) = 1 −  (

𝐴𝑆𝑊 ∩ 𝐴𝑀𝐷

𝐴𝑀𝐷
) (3) 

Equation 3. Under Segmentation Measure 

 

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 =  √
𝑋2 + 𝑌2

2
 (4) 

Equation 4. Total Detection Error 

Where ASW stands for area of the segmented object by WS algorithm, AMD stands for area of the 

reference polygon which is manually digitized in ArcGIS and the symbol “∩” represented the area of the 

segmented object that correctly lies inside the reference polygon.  
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Features from UAV Data 

Four sets of features were derived from UAV data (see Table 8), using eCognition Developer. The first set 

of features was comprised of reflectance metrics, which correspond to the average and standard deviation 

of the pixel values found inside a segmented object. The second set of features include the derived 

vegetation indices from the spectral bands offered by the mounted UAV sensor. These vegetation indices 

were chosen after literature review which used the Parrot Sequoia sensor for forestry applications (Dainelli 

et al., 2021; Kopačková-Strnadová, Koucká, Jelének, Lhotáková, & Oulehle, 2021). Other vegetation 

indices were considered, but were omitted from the final dataset because they were meant for agricultural 

applications (e.g., wheat or rice biomass content) or used different spectral bands that are not available 

through the sensor used in this study (e.g., infrared wavelengths). The equations used for the generation of 

the vegetation indices can be found in Annex 3. The third set of features was comprised of height metrics 

given by the CHM layer. The set of height metrics included the average and standard deviation values 

found at individual tree object. The last set of metrics was comprised of Gray-Level Co-occurrence 

Matrices, which describe the texture of each individual layer. These set of features answers research 

question #1. 

Table 8. Features derived from UAV data. 

Metric Explanatory Features 

Spectral 

Brightness 

Mean Green 

Mean Red 

Mean REG 

Mean NIR 

Standard Deviation Green 

Standard Deviation Red 

Standard Deviation REG 

Standard Deviation NIR 

Vegetation Indices 

Mean NDVI 

Mean WDVI 

Mean DVI 

Mean NDRE 

Standard Deviation NDVI 

Standard Deviation WDVI 

Standard Deviation DVI 

Standard Deviation NDRE 

Biometric 

Mean CHM 

Standard Deviation CHM 

Area 

GLCM 

Correlation 

Entropy 

Homogeneity 

Mean 

0° 

45° 

90° 

135° 

All directions 

 

The features from 14,480 segmented trees were extracted across all UAV flight blocks. The trees used for 

the training of the model were assigned their respective AGB values through spatial location. This process 

ensured a one-to-one relationship between AGB value and segmented tree. A total of 965 trees contained 

the biomass calculated from field data based on the trees measured during fieldwork and seen from the 

UAV orthophotos. The calculated AGB and the extracted features from each individual tree were used to 

train MLA in order to obtain a predictive model. The rest of the trees were assigned their AGB value by 

using the trained model based on the features extracted from each tree segmentation. Feature extraction 

resulted in a total of 40 explanatory variables 
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Figure 6. Segmented trees with spatial location of trees of plot 70 (yellow triangle) 

2.5.5. Feature Extraction – Satellite 

Generation of Additional Layers 

The satellite imagery from PlanetScope provides four multispectral bands: blue, green, red and NIR. The 

red edge band is not available for the satellite image; thus, other vegetation indices were derived. The 

generated vegetation indices were chosen in accordance to previous published papers which used 

PlanetScope imagery to estimate biomass and displayed good correlations (R2 > 60%). A total of six 

vegetation indices (NDVI, GNDVI, DVI, EVI, SAVI and SR) were generated for the whole study area of 

Haagse Bos (see Annex 3). A total of eight GLCM layers were generated through the glcm statistical 

package in RStudio by using the NIR band as a reference. The window (kernel) shift applied to the texture 

layers was specified to be a matrix of 3x3 in order to maintain the majority of the spatial extent. The 

statistics that were requested from the GLCM were correlation, entropy, homogeneity and mean. The 

contrast texture layer was eliminated from further tests due to the nature of the layer of having no values 

in large areas, thus reducing the amount of training and testing data. Since the layer depends on the 

intensity of contrast in a local window, homogeneous landscapes will generate an output of no values (i.e., 

NA). 

A canopy height model was generated by using the DTM and DSM created from the LiDAR point cloud 

from Actueel Hoogtebestand Nederland (AHN). The original resolution of the AHN data is provided at 

50 cm resolution, but this includes voids in the canopy. The spatial resolution of the generated CHM layer 

was resampled and aligned to match the resolution and grid placement of the PlanetScope image. The 

voids that were present in the canopy structures were filled by the bilinear interpolation resampling 

method.  

 

Pure Pixels 

In order to train a satellite model, values stored in individual pixels of the satellite image were used. For 

the extraction of pixel values in the satellite image, objects segmented in the UAV stage were used as a 

reference. In this stage, pixel values with varying intersection levels with a UAV-segmented object (0 – 

100% of overlap) were extracted. This was done in order to investigate the role of “pixel purity” in the 

prediction of biomass values. In this context, “pixel purity” was defined as the percentage of overlap with 

the UAV-segmented object, meaning that a pixel with 100% overlap (i.e., fully covered by a UAV-

segmented object) was considered a pure pixel. In turn, this concept was closely related to a measure of 

quality of the data and quality of the georeferencing between the images, since lower overlap 

corresponded to a mix of tree and non-tree parts of the pixel. 
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Small fractions of a tree segment can be part of a pixel; therefore, a fishnet was generated on top of the 

study area to be able to quantify the amount of area that is present in a pixel covered by a tree object. The 

bigger the area covering a pixel, the higher the “pixel purity” is at representing the object. Once the tree 

objects were intersected by the fishnet, the area was calculated and the biomass represented by that pixel 

was added to the new polygons (see Figure 7). A point was generated for each new polygon generated by 

the intersection of the fishnet and the segmented tree objects; said point lied inside the polygon and was 

not allocated at the centroid of the polygon. The X and Y coordinates were extracted for each point, as 

well as the biomass, the type of specie the object represents and the unique identification of the polygon it 

is a part of. 

 
a) 

 
b) 

 
c) 

Figure 7. Generation of pure pixels 

Coniferous trees are, in average, smaller in canopy area than a broadleaf, thus an entire pixel of 9m2 

covering a young conifer would be highly improbable. Likewise, small objects that were inside a pixel 

without covering it in its majority was highly present after intersecting the fishnet with the tree segments. 

To go around these issues, the area intersected by the fishnet and the UAV segmented object was taken 

into account in the creation of the dataset. 

Various models were generated to test the performance of the MLA with the admittance of pixels with a 

varying degree of purity. All models were generated by using all pixels in a 10-fold cross-validation SVR to 

assess the overall performance of the model and reporting the result given by the test set. All models were 

built by using a dataset containing both types of trees (broadleaf and coniferous). First, only pixels which 

were fully covered were taken into account (e.g., polygons with an area of 9m2 in the case of the 

PlanetScope satellite image). Afterwards, the threshold was lowered by 5% each iteration. 

 

Influence of Pixel Purity of MLAs Performance Metrics 

The biomass values predicted in the UAV stage for each tree were transferred to the corresponding pixels. 

The biomass was then calculated to be represented as ton per hectare. The raster package in RStudio was 

used for the extraction of pixel values using the coordinates for each point and the multiple raster layers 

generated beforehand. Once the extraction process was accomplished, points with no values in any of the 

features were eliminated from the dataset. These objects fall out of bounds of the satellite image and 

account for <1% of the total amount of pixels. 

Using pixels which have a “pixel purity” of a 100% recorded a R2 of 37.5% with an RMSE and MAE of 

58.5 and 45.4 tons per hectare respectively. By including pixels which are covered up to 60%, the accuracy 

of the model recorded a coefficient of determination of 46.7% and an RMSE and MAE of 66.9 and 51.2 

tons per hectare. The total amount of objects used for the dataset at this threshold was of 11,270 objects 

Figure 8 shows the variations between the performance metrics with the fluctuating pixel coverage.  
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Figure 8. Change in Performance Metrics with Varying Pixel Coverage 

Features from Satellite Imagery 

For satellite imagery, a set of metrics comprised of spectral band values, vegetation indices and GLCM 

layers was generated. Table 9 answers the research question #1. The vegetation indices were calculated 

from the individual spectral bands, creating an individual raster file for each new vegetation index. The 

equations used for the vegetation indices can be found in  

Annex 3. For the creation of GLCM layers, the glcm statistical package was used in RStudio. The NIR 

band served as input for the function to create GLCM layers in all directions, thus creating eight layers as 

an output.  

Table 9. Features derived from satellite imagery. 

Metric Explanatory Feature 

Spectral 
Green 

Blue 

Red 

NIR 

Vegetation Indices 

NDVI 

GNDVI 

SR 

EVI 

DVI 

SAVI 

GLCM 

Mean 

Variance 

Homogeneity 

Contrast 

Dissimilarity 

Entropy 

Second Moment 

Correlation 

Biometric Canopy Height 

 

The values for mean and standard deviation of all explanatory features were calculated per polygon (i.e., 

segmented trees) which were composed of different pixels. These values were used to assess the variability 

of each explanatory feature per individual tree. The mean and standard deviation were obtained to for 

each layer in order to generate a total of 38 features for each segmented tree object. The trees found in the 

six areas captured by UAV have been segmented and their AGB estimated. These values are now used as 

the target variable while new features are generated from the satellite image. Feature extraction was done 

at a pixel level by using the segmented objects from the UAV images as a reference and a fishnet matching 
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the spatial resolution of the image. The intersection between the fishnet and the previously segmented 

objects allowed an area threshold to be established. 

2.6. Data Analysis 

2.6.1. Aboveground Biomass Estimation 

Estimation of forest AGB was done with MLA`, using features (i.e., explanatory variables) derived from 

UAV data and satellite images (da Conceição Bispo et al., 2020; J. Lin, Wang, Ma, & Lin, 2018; Navarro et 

al., 2019; Zhang et al., 2020; Zhu et al., 2020). In this study, two different MLA were applied: Random 

Forest and Support Vector Regression. These were chosen due to their ease of use and to their 

effectiveness at predicting AGB (Ali, Greifeneder, Stamenkovic, Neumann, & Notarnicola, 2015; Dang et 

al., 2019; Zhang et al., 2020).  

For the correct implementation of machine learning regressors, the data was split into a training and a test 

set. The first provided information that allows the model to adjust its parameters, effectively learning to 

perform the task at hand (in this case, AGB estimation). The latter was used to evaluate the performance 

of the trained model. For this study, a 70/30 split was used for training and testing the data. 

 

Random Forest 

Random Forest, by default, generates decision trees using a random selection of two thirds of the 

individual trees as training data with bootstrapping (resampling of the data with replacement). The rest of 

the data is called OOB data (out-of-bag), which is not used to train the model, but instead to estimate the 

error and determine variable importance (Breiman, 2001). 

The most important parameters in RF are mtry, which represents the number of explanatory features 

available for splitting at each node of the decision tree and ntree, which is the number of trees necessary to 

achieve an AGB prediction. For this study, a ntree of 500 was used throughout all of the models. The 

performance of the models was assessed with several iterations of ntree (100, 250, 500, 1,000 and 1,500), 

but no further improvements were noticed past 500 trees and the computational time was increased 

considerably past this threshold. The parameter mtry was left in its default value, that being the number of 

total explanatory features divided by three (Breiman, 2001). These parameters can be tuned during the 

training process, aiming to improve the fit of the model to the training data. This algorithm is able to 

provide information regarding the importance of each of the features used in training. With this 

knowledge, it is possible to exclude less relevant or redundant features, decreasing computational time 

without compromising performance (Belgiu & Dra, 2016). Furthermore, this information contributes to 

model interpretability and eases debugging. 

 
Figure 9. Basic structure of Random Forest for Regression 
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Figure 9 depicts the basic structure of a random forest in which each tree makes a prediction on AGB 

based on the features from the training data. Each decision made in a single tree (orange circles) are taken 

considering the option with the lowest error. After each tree has made a prediction, the results are then 

averaged to output a final prediction.  

 
Support Vector Regression 

Support Vector Machine is a machine learning algorithm commonly used for classification challenges. 

However, it can easily be adapted for regression. This algorithm finds a hyperplane in an n-dimensional 

space (n being the number of explanatory features) that best fits the target data. To do this, it uses support 

vectors, which are data points that lie closest to the line that is required to fit the data, also called the 

hyperplane boundary. The most relevant parameter in the case of an SVR is the kernel type, which are a 

set of mathematical functions which take the explanatory features as input and transforms them into a 

higher dimensional space in which the hyperplane is built. The most used kernel types are linear, 

sigmoidal, polynomial and radial. The radial basis function is typically used because it is relatively easy to 

tune and is better at generalizing big datasets like the ones used in this study.  

When using the radial basis function, two more parameters should be taken into account. These are the 

cost of constraint (C) and gamma (g). The cost parameter adds a penalty for each data point that does not 

fall inside the decision boundary. From a regression perspective, these points are harder to predict, thus 

increasing the error and are penalized more. A low C value usually leads to a poorly fitted model, while a 

high C value may lead to overfitting. The gamma parameter controls the distance of influence of a training 

point, thus low values of gamma mean a more generalized hyperplane, whilst high gamma values lead to a 

detailed hyperplane (Bruzzone & Persello, 2010).  Figure 10 shows the structure of a one-dimensional 

support vector regression, meaning that the regression is built on one explanatory feature (x) which 

explains the target variable (y). The black line represents the regression output (hyperplane), while the red 

dotted line represents the boundary line and the support vector are represented as a white circle with a 

cross. 

 
Figure 10. Basic Structure of Support Vector Regression 

Several models were generated to test the output and compare the performance. Three general models 

were tested, all of the trees combined (coniferous and broadleaf), and then two models in which the trees 
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were segmented between tree types. The same process was followed using the explanatory features derived 

from the satellite data. 

 

Feature Reduction 

A feature reduction process was implemented once the optimal machine learning algorithm was identified. 

Similar features were intended to be used as input (e.g., NDVI and GNDVI), thus feature reduction 

allows the model to perform more efficiently whilst not compromising performance by taking the most 

relevant features in the regression model. Although RF is commonly used as a classifier and as a regression 

algorithm, it has also been known to be used as a feature selection algorithm (Reif, Motsinger, McKinney, 

Crowe, & Moore, 2006). In regression problems, RF measures node impurity with the residual sum of 

squares before and after the split on each individual explanatory variable averaged over all of the decision 

trees (James, Witten, Hastie, & Tibshirani, 2014). The higher the node purity given by that variable, the 

more important it is at providing information to the model in estimating the target variable. 

Since RF builds decision trees in a randomized fashion, an iteration process for splitting the dataset was 

developed to gather node impurity information during each iteration. The original dataset is first split into 

training and testing set, but the testing set is ignored for this process. The training set was split into ten 

equal size folds. A fold would then be further split into ten equal subsamples in order to use nine 

subsamples to build a model and then testing the model with the remaining subsample. This process was 

repeated ten times, to complete one iteration. Once an iteration was complete, the original dataset would 

then be split again into training and testing to then repeat the process two more times.  

The node impurity would be accumulated, ensuring that the importance of the feature was representative 

by gaining the information over thirty models. Once the features were ranked per order of importance, the 

least important features were removed one by one until the performance of the model generated reached 

its highest with the least number of variables.  

2.6.2. Accuracy Assessment 

Both MLA were validated through 10-fold cross validation. In k-fold cross validation, the training set is 

subdivided into k equal size subsamples called folds; k-1 folds are used to train a model while the 

remaining fold is used to validate said model. K-fold cross-validation is used to ensure that randomness is 

implicit throughout different splits of the data, increasing robustness and preventing overfitting. If this is 

achieved, performance across validation folds should be similar (i.e., low standard deviation). Figure 11 is 

a general scheme of how a 10-fold cross validation is performed as explained previously. 

 
Figure 11. Schematic of a 10-Fold Cross-Validation. 
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Several performance metrics were calculated for each validation fold, as well as for the test set: coefficient 

of determination (R2), root-mean-square error (RMSE) and mean absolute error (MAE) between predicted 

AGB and observed AGB. The formulas for these metrics are presented below. 

 
𝑅2 = 1 −

∑ (𝑦𝑖 − 𝑦�̂�)
2

𝑖

∑ (𝑦𝑖 − 𝑦�̅�)
2

𝑖
 

Equation 5. Coefficient of determination 

(4) 

Where 𝑦𝑖 is the actual observed AGB, 𝑦�̂� is the predicted value of AGB, and 𝑦�̅� is the mean AGB value 

from field measurements, and: 

 

𝑅𝑀𝑆𝐸 = √∑
(𝑦�̂� − 𝑦𝑖)2

𝑛

𝑛

𝑖=0

 

Equation 6. Root-Mean-Square Error 

(5) 

where 𝑖 represents each of the predictor features used in the model, and:  

 
𝑀𝐴𝐸 =  

1

𝑛
∑|𝑦𝑖 − �̂�|

𝑛

𝑖=1

 

Equation 7. Relative Root-Mean-Square Error 

(6) 
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3. RESULTS 

3.1. Field Data Collection 

3.1.1. Descriptive Analysis of Field Measurements 

A total of 1,238 trees were measured across 70 plots. After removing trees that were covered by higher 

canopy trees (i.e., unseen trees by the UAV orthophoto), a total of 965 trees remained. The conifer type 

trees account for 67.8% of the total trees while the broadleaf accounted for the remaining 32.2% of the 

trees. The most common tree on the field was Douglas Fir, corresponding to 27.7% of the total count of 

trees; the least common tree was the Common Ash, accounting for 2.24% of the total number of trees. 

Figure 12 summarizes the distribution of trees per species in the final dataset used to train the MLA. 

 
Figure 12. Count of Species in Dataset. 

The average DBH for broadleaf trees was of 35.5 centimetres with a standard deviation of 11.6 

centimetres. For coniferous trees species the average DBH was of 34.2 centimetres with a standard 

deviation of 9.4 centimetres. Having the greatest number of observations, Douglas Fir had an average 

DBH of 36.3 centimetres and a standard deviation of 9.7 centimetres. The least encountered tree, 

Common Ash, had an average DBH of 28.5 centimetres and a standard deviation of 19.2 centimetres. 

Figure 13 shows the average and quartiles for each tree species.  
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Figure 13. DBH distribution per Tree Species 

The average height measured on field for broadleaf trees was of 20.2 meters with a standard deviation of 

4.0 meters. Coniferous trees were recorded to have an average height of 21.5 meters and a standard 

deviation of 3.2 meters. Figure 14 shows the distribution of averages and percentiles per tree species. 

 
Figure 14. Height distribution per Tree Species 

The exponential relationship described by R2 between DBH and UAV CHM height is highest in Norway 

Spruce and Douglas Fir species. The same can be said for Common Ash, but then again, the number of 

encountered trees of this species was the lowest on the field, favouring a better relationship between the 

variables. Oak shows a low exponential relationship at a mere 4.9%. Figure 15 shows the exponential 

relationship between the two variables; coniferous trees species have, on average, a better correlation 

between DBH and height. 
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Figure 15. DBH – Height Relationship per Tree Species. 

CPA is widely used as a proxy for the estimation of AGB. From the segmentation process of individual 

trees, the relationship between CPA and DBH is poor across all species. Oak obtained the lowest 

correlation between these two variables at a mere 0.5%. Figure 16 shows the exponential relationship 

between the two variables. In this case, broadleaves have a better correlation between DBH and CPA 

except for Oak. The relationships between CPA and height with DBH is important to note as it will play a 

role in the feature importance in the MLA. 

 
Figure 16. DBH – CPA Relationship per Tree Species. 

After calculating the biomass with the allometric equations (see Table 7), the average biomass of broadleaf 

trees was of 895.6 kilograms per tree with a standard deviation of 614.6 kilograms. On the other hand, the 

average biomass of coniferous tree species was of 536.6 kilograms per tree with a standard deviation of 

324.4 kilograms. The average aboveground biomass for all trees was 716 kilograms per tree with a 
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standard deviation of 470 kilograms. Table 10 summarizes the statistics for aboveground biomass per tree 

species.   

Table 10. Descriptive statistics for Aboveground Biomass 

 

Higher variation can be seen for broadleaf trees, while coniferous trees have lower standard deviation in 

AGB values. Figure 17 illustrates the mean aboveground biomass value and percentiles per tree species. 

 

  
Figure 17. Aboveground Biomass distribution per Tree Specie 

 

3.2. Remote Sensing Data Processing 

3.2.1. Individual Tree Segmentation – UAV 

The individual tree segmentation resulted in 14,480 trees across all UAV blocks. A fraction of the 

segmentation output is exemplified in Figure 18. 

Species 
Mean Biomass 

(kg) 

St. Dev. Biomass 

(kg) 

Max Biomass 

(kg) 

Min Biomass 

(kg) 

Trees 

(unit) 

Beech 1,263.6 586.4 2,175.2 23.5 127 

Birch 645.3 465.6 1,974.0 185.7 33 

Common Ash 632.9 892.8 2,177.5 27.6 22 

Douglas Fir 684.6 443.0 2,238.9 62.0 267 

Larch 485.3 295.6 1,444.1 38.8 74 

Norway Spruce 483.1 231.9 1,100.7 48.8 164 

Oak 1,040.5 513.5 2,218.0 132.8 129 

Scots Pine 493.5 327.0 1,458.8 44.7 149 
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Figure 18. Objects generated to achieve tree segmentation in dense broadleaf canopy. 

Objects with a low height are marked in white while shadow is marked in black. The resulting segmented 

tree objects are left in colour green. Figure 19 better displays the quality of the segmentation of coniferous 

and broadleaf tree species.  

 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 19. Segmentation of coniferous trees (a & b), and broadleaf trees (c & d). 
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The total detection error in the tree segmentation between UAV blocks varies from a minimum of 7.7% 

to a maximum of 12.8% for coniferous species, and from a minimum of 8.4% to a maximum of 13.6% for 

broadleaf species. The average total detection error per type of tree for each block is described in   

Table 11:  

Table 11. Total Detection Error of Species per UAV Block 

Tree Type 
UAV Block 

Block 4 Block 5 Block 8 Block 9 Block 10 Block 123 

Broadleaf 8.9% 10.9% 13.6% 8.3% 8.4% 8.4% 

Conifer 11.8% 10.0% 12.8% 10.0% 8.8% 7.7% 

3.3. Data Analysis 

3.3.1. Biomass Estimation with UAV Data 

Table 12 shows the different models and performance metrics obtained in the validation set, across the 

ten folds of cross-validation, as well as on the external test set. The SVR returned a coefficient of 

determination of 71.1% and 60.6% for coniferous and broadleaf respectively. On the other hand, the RF 

regression model reported a coefficient of determination of 60.0% and 53.7% for coniferous and 

broadleaf respectively. 

Table 12. Combination of models and performance metrics for biomass estimation. 

Machine Learning Algorithm Combination 

Validation Set Testing Set 

RMSE 

(kg/tree) 

MAE 

(kg/tree) 
R2 (%) 

RMSE 

(kg/tree) 

MAE 

(kg/tree) 
R2 (%) 

Support Vector Regression 

Combined 669.1 572.6 63.0 521.0 293.9 53.0 

Conifer 298.5 159.9 72.2 250.8 178.5 71.1 

Broadleaf 485.6 373.6 63.9 439.7 364.1 60.6 

Random Forest 

Combined 405.7 263.7 60.4 523.0 309.5 51.1 

Conifer 264.5 190.2 65.8 338.3 203.3 60.0 

Broadleaf 488.4 401.2 66.9 639.8 499.3 53.7 

. 

For the coniferous tree species, the most important explanatory feature was the average height captured 

by the CHM, followed by the standard deviation of the CHM inside the object. The textural features 

provided by Entropy in all directions, 45-degree shift and 90-degree shift also contributed to the 

prediction, but it is overshadowed by the contribution of the height (see Figure 20). By using all of the 

features in the coniferous tree species, the coefficient of determination was 69.4%. Through several 

iterations in which least important features were removed first, the highest accuracy metrics on the test set 

were reached by using 15 explanatory features (R2 of 73.7%). By using 14 or 16 features, the model’s 

performance maintained its accuracy in the same range. The model’s performance was also higher by using 

the top 8 features at 72%, but results with 9 or 7 features differed from this value (see Annex 5). 

For the broadleaf tree species, the canopy height was once again the most important feature, but the 

spectral values in the red band played an important role in the model. Area of the segmented trees was 

another biometric parameter with accumulated importance. Out of the top 5 most important features, the 

coniferous model obtained information from three textural features. In comparison, the broadleaf model 

only includes two textural features in the top 10 most important features, thus accentuating the 

importance of reflectance values from spectral bands and vegetation indices. This answers the research 

question #2. 
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To answer research question #3, feature reduction was accomplished through an iterative process of 

taking out the least important features and measuring the accuracy metrics in the test data set. By using 40 

explanatory variables, the model’s accuracy was of 59%. The best performance was obtained by using the 

top 9 features, which improved the output of the model to 62.6% (see Annex 6).  

 

 
Figure 20. Feature Importance for Coniferous trees at the UAV level. 

 
Figure 21. Feature Importance for Deciduous trees at the UAV level. 
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Once the features were selected, the training set of data was submitted to a 10-fold cross-validation to 

assess the performance of the model with reduced features. The C and g hyperparameters were tuned 

during each fold by using a grid search; the best values for cost and gamma are selected from the model 

with the lowest mean squared error. A cost of 1 and gamma 0.11 were used for the model because they 

obtained the lowest recorded error. For the coniferous tree species model, an average coefficient of 

determination of 71.4% was achieved on the validation set with a standard deviation of 4.7%. The lowest 

score on the cross validation was of 63.0% whilst the highest score was of 80.4%. Similarly, the test set 

performed within the range of the cross-validation results with an R2 of 73.7%.  

Table 13. Results of 10-Fold Cross Validation and Test Set for UAV-based Model 

for Coniferous (left) and Broadleaf (right) Tree Species 

Coniferous Broadleaf 
 

Fold 
R² 

(%) 

RMSE 

(kg/tree) 

MAE 

(kg/tree) 

1 74.3 263.6 187.5 

2 63.0 268.2 194.8 

3 68.8 458.3 241.8 

4 72.5 447.2 236.7 

5 69.6 313.8 213.8 

6 80.4 211.9 155.2 

7 70.0 324.7 206.5 

8 68.3 441.4 238.1 

9 77.4 203.2 146.3 

10 69.3 231.5 161.3 

Average 71.4 316.4 198.2 

St. Dev. 4.72 94.3 33.64 

Minimum 63.0 458.3 241.8 

Maximum 80.4 203.2 146.3 

 

 

Fold R² 

(%) 

RMSE 

(kg/tree) 

MAE 

(kg/tree) 

1 55.9 587.6 477.4 

2 50.7 723.9 568.6 

3 53.7 534.7 463.3 

4 62.7 500.9 409.2 

5 56.3 590.8 468.4 

6 51.7 611.6 492.5 

7 54.0 474.7 370.5 

8 68.3 488.1 403.6 

9 65.3 651.9 498.6 

10 57.3 556.6 441.3 

Average 57.6 572.1 459.4 

St. Dev. 5.61 74.0 53.7 

Minimum 50.7 474.7 370.5 

Maximum 68.3 723.9 568.6 

TEST SET 

R²  
(%) 

RMSE  
(kg/tree) 

MAE  
(kg/tree) 

73.7 215.0 156.6 
 

TEST SET 

R² 
(%) 

RMSE 
(kg/tree) 

MAE 
(kg/tree) 

62.6 439.7 364.1 
 

 

For broadleaf tree species, an average R2 of 57.6% was achieved in the cross-validation, and a standard 

deviation of 5.6% was calculated from the 10 outputs. The test set reported an R2 of 62.6%, well within 

the range of values seen in the cross-validation. The values for RMSE and MAE for the broadleaf tree 

species are, on average, 572.1 and 459.4 kilograms respectively. This is due to the aboveground biomass 

distribution present in broadleaf and conifers. For this model, the optimal C and g were of 1 and 0.08 

respectively. Table 13 summarizes the results found at every fold and on the test test; this answers 

research question #4.  In both models, trees with higher biomass were being underestimated and trees 

with low biomass were being overestimated. Trees closer to the average AGB values were better predicted 

in both models (i.e., closer to the 1:1-line, higher coefficient of determination) (see Annex 7 and Annex 8) 

The average predicted values of AGB for coniferous and broadleaf was of 579.5 and 1,103.7 kg/tree 

respectively. The standard deviation of broadleaf is 502.0 kg per tree, while the coniferous trees have a 

slightly lower standard deviation at 324.6 kg per tree.  
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Figure 22. Output of coniferous model in UAV flight over Block 8. 

 

 
Figure 23. Output of deciduous model in UAV flight over Block 123. 
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Table 14 summarizes the regression results for both trees. These values are in accordance with the values 

estimated from the field (see Table 10). Two exemplifications of the generated output can be seen in 

Error! Reference source not found. and Error! Reference source not found. 

 

Table 14. Distribution of AGB values (kg/tree) across tree types - UAV 

Type Count 
Minimum 

(kg/tree) 

Maximum 

(kg/tree) 

Mean 

(kg/tree) 

Standard 

Deviation 

(kg/tree) 

Sample 

Size 

(Training) 

Sample 

Size 

(Test) 

Conifer 654 168.5 2,075.3 579.5 324.6 458 196 

Broadleaf 311 205.4 3,856.5 1,103.7 502.0 218 93 

3.3.2. Biomass Estimation with Satellite Data 

RF and SVR were once again used to generate different models using different set of explanatory 

variables. The dataset was used combining both tree types, and were later divided to generate an individual 

model for coniferous and broadleaf trees. All models were subject to a 10-fold cross-validation as well as 

reporting the performance on an unseen dataset. Table 15 summarizes the results found for the initial 

models which did not consider CHM as an explanatory feature and were built on individual bands, 

vegetation indices and texture metrics. 

Table 15. Summary of generated models without CHM layer. 

Without CHM 

Validation Set Test Set 

RMSE 

(ton/ha) 

MAE 

(ton/ha) 
R2 

RMSE 

(ton/ha) 

MAE 

(ton/ha) 
R2 

Support Vector Regression 

Combined 74.5 57.0 34.1 74.5 57.3 34.4 

Broadleaf 90.5 70.0 32.3 88.7 68.5 32.8 

Conifer 61.0 48.0 39.1 60.9 47.0 39.7 

Random Forest 

Combined 69.9 51.6 41.9 73.7 58.3 36.0 

Broadleaf 81.9 60.5 44.4 86.4 68.2 35.1 

Conifer 56.5 41.5 47.6 61.0 47.9 39.2 

 

Coniferous aboveground biomass recorded an R2 at 39.7% and a RMSE and MAE of 60.9 and 47.0 

kilograms in the test set. For the broadleaf’s aboveground biomass predictions recorded a coefficient of 

determination of 35.1%; in this case, RF outperformed the SVR model. The difference between the 

training set and the test set is more pronounced in the RF models than in the SVR models. The difference 

in R2 values does not go beyond 10%, thus neither of the MLA are overfitting the output. 

The highest performance obtained by only using spectral data, vegetation indices and textural features was 

poor in the context of aboveground biomass estimations (39.7% and 35.1% for coniferous and broadleaf 

respectively). Since aboveground biomass estimations were initially calculated from allometric equations 

using DBH, height information is highly important to the generation of regression models, as exponential 

relations exist between these two variables (see Figure 15). To add height data into the regression models, 

the AHN was used to generate a CHM. This layer was used as supplementary data to generate models 

with RF and SVR. Table 16 summarizes the results obtained with the different models which included 

CHM related features. 

Table 16. Summary of generated models with CHM layer. 

With CHM 

Validation Set Test Set 

RMSE 

(ton/ha) 

MAE 

(ton/ha) 
R2 

RMSE 

(ton/ha) 

MAE 

(ton/ha) 
R2 
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With CHM 

Validation Set Test Set 

RMSE 

(ton/ha) 

MAE 

(ton/ha) 
R2 

RMSE 

(ton/ha) 

MAE 

(ton/ha) 
R2 

Support Vector Regression 

Combined 68.5 52.0 45.1 68.9 52.9 46.8 

Broadleaf 83.7 64.1 42.6 86.3 66.9 39.3 

Conifer 52.2 40.8 55.2 53.8 41.8 52.4 

Random Forest 

Combined 63.0 46.0 54.3 67.2 52.8 45.9 

Broadleaf 56.7 77.1 51.7 82.6 65.4 42.5 

Conifer 47.9 35.2 62.6 53.0 41.7 52.5 

 

The RF models for coniferous and broadleaf tree species obtained an R2 in the test set of 54.0% and 

43.9% respectively. The SVR recorded a coefficient of determination in the test set of 52.4% and 39.3% 

for the coniferous and broadleaf tree species. 

The most important feature for the coniferous model was the average CHM feature. The importance of 

this feature is more than double of that of the second and third most important features, standard 

deviation of DVI and standard deviation of GNDVI. Texture layers such as mean and variance also 

contributed in the model’s performance; other textural layers such as homogeneity, dissimilarity and 

entropy did not give significant information about the biomass predicted at the pixel level (see Figure 24). 

The average and standard deviation of the CHM were the most important features for the broadleaf 

model, but did not play a role as big as in the coniferous model. Textural features from contrast and 

homogeneity followed in importance. The average value of vegetation indices like SAVI, NDVI and SR 

did not provide useful information to the model and displayed low importance. Figures 24 and 25 show 

the ranked importance of features utilized in the satellite model, thus answering the research question #5. 

 

 
Figure 24. Feature Importance for Coniferous trees at the satellite level 
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Figure 25. Feature Importance for Broadleaf Trees at the Satellite Level 

To answer the research question #6, several models were trained for both the coniferous and broadleaf 

species in order to assess the impact of feature reduction. When the coniferous tree species model was 

trained using all of the 40 features extracted, it recorded a coefficient of determination of 53.2%. When 

the model was tested with 13 features the R2 went up to 54.5% (see Annex 10). When testing a broadleaf 

model’s performance metrics using 40 features the coefficient of determination was recorded at 42.6%. By 

using the 25 most important features, this performance metric was recorded at being 43.5% (see Annex 

11). 

Once the most important features were identified, more robust models were generated by only using the 

most important features identified through the feature selection process. The CHM layer was included in 

the assessment of performance metrics. All models were subjected to a 10-fold cross-validation and the 

model’s performance metrics were also evaluated through the use of the test set.  

For coniferous tree species, the average coefficient of determination found across all folds was of 62.2% 

with an RMSE of 47.9 kilograms and a MAE of 35.2 kilograms. The standard deviation across all folds for 

the R2 was of 2.9% and 1.9 and 1.2 kilograms for RMSE and MAE correspondingly. The test set 

performance recorded an R2 54.0% and 53.0 and 41.7 kilograms for the RMSE and MAE respectively. 

The parameters used for the model was a cost of 1 and a gamma of 0.027. Table 17 summarizes the 

findings of the validation set and the test set.  

The model generated for the deciduous tree species recorded an average coefficient of determination of 

51.7% across all folds. The average RMSE value was 77.1 kilograms per tree and the MAE was of 56.7 

kilograms per tree. The test set recorded an R2 of 43.6% with an RMSE of 82.6 kilograms per tree and a 

MAE of 65.4 kilograms per tree. The cost and gamma used for the elaboration of this model was of 1 and 
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0.045 respectively. The answer to research question #7, a summary of the results found in the validation 

set and the test set can be best reviewed in Table 17.  

Table 17. Results of 10-Fold Cross Validation and Test Set for  

Coniferous (left) and Broadleaf (right) Tree Species Satellite-based Model 

Coniferous Broadleaf 

     

Fold 
R² 

(%) 

RMSE 

(ton/ha) 

MAE 

(ton/ha) 

1 57.2 50.4 37.0 

2 62.1 48.9 35.6 

3 66.3 46.3 34.0 

4 60.7 49.8 36.9 

5 58.6 50.6 36.5 

6 65.3 47.5 34.9 

7 65.9 44.5 33.3 

8 64.1 47.0 34.6 

9 62.3 48.6 34.1 

10 63.0 46.0 34.4 

Average 62.6 47.9 35.2 

St. Dev. 2.9 1.9 1.2 

Minimum 57.2 46.0 33.3 

Maximum 66.3 50.6 37.0 

 

Fold 
R² 

(%) 

RMSE 

(ton/ha) 

MAE 

(ton/ha) 

1 51.2 76.3 56.8 

2 54.3 74.2 53.6 

3 52.2 76.3 55.8 

4 52.7 76.7 56.6 

5 53.9 76.1 55.7 

6 48.0 76.4 57.3 

7 49.9 79.8 57.7 

8 54.9 76.7 57.3 

9 50.0 80.6 59.5 

10 50.4 78.0 57.3 

Average 51.7 77.1 56.7 

St. Dev. 2.1 1.8 1.5 

Minimum 48.0 74.2 53.6 

Maximum 54.3 80.6 59.5 

TEST SET 

R² RMSE  
(ton/ha) 

MAE  
(ton/ha) 

54.0 53.0 41.7 
 

TEST SET 

R² RMSE  
(ton/ha) 

MAE  
(ton/ha) 

43.6 82.6 65.4 
 

 

In both models, the fitted line between observed and predicted values does not follow the 1:1 line (i.e., R2 

= 1), this means that at lower biomass predictions were being overestimated and at high biomass 

predictions were being underestimated. Since the coniferous model recorded a lower RMSE and MAE, 

the slope of the fitted line is not as low as in the case of broadleaf. Larger differences between observed 

and predicted values for the broadleaf model were perceived. This difference was more pronounced at 

higher biomass values (AGB > 300 ton/ha). Annex 12 and Annex 13 visualizes the relationship between 

observed and predicted values for the AGB estimations for both the coniferous and broadleaf model. The 

fitted line showcases the over and under estimation of biomass across the range of possible values.  

Table 18. Distribution of AGB values (ton/ha) across tree types - Satellite 

Type Count 
Minimum 

(ton/ha) 

Maximum 

(ton/ha) 

Mean 

(ton/ha) 

Standard 

Deviation 

(ton/ha) 

Sample 

Size 

(Training) 

Sample 

Size 

(Test) 

Conifer 5,493 23.8 483.6 245.8 86.4 3,845 1,648 

Broadleaf 5,881 25.4 565.3 237.1 122.2 4,116 1,765 
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The average AGB value predicted for the broadleaf is 237.1 ton/ha, while the average for conifers is 245.8 

ton/ha. The standard deviation for the predicted values of AGB in the broadleaf trees is of 122.2 ton/ha, 

and 86.4 ton/ha for the coniferous trees. Both trees were equally distributed in the resulting dataset. The 

resulting values for AGB across tree types is summarized in Table 18. Figure 26 displays the output from 

both the coniferous and broadleaf regression models at a satellite level with an overall accuracy of 54.0% 

and 43.6% respectively. 

 
Figure 26. Output from both the Coniferous and Broadleaf Satellite-Based Models. 
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4. DISCUSSION 

4.1. Data Collection 

In this section, discussion regarding the measurements taken during the field collection process, the 

acquirement of UAV images and the limitations presented during this phase of the study are discussed. 

4.1.1. Field Data Acquisition 

Both the DBH for the coniferous and broadleaf tree species were right-skewed, meaning that the mean 

tends to be on the lower values (see Figure 13). This is attributed to a restraint in data collection in which 

only trees with an equal or higher DBH of 10 centimetres were captured in the resulting database as they 

do not contribute any significant AGB (Brown, 1997). A normal distribution in the majority of the tree 

species (exception of the Common Ash and Norway Spruce) were attributed to this restraint. For height 

data acquisition, a handheld laser scanner was used which would use trigonometric equations to calculate 

the height of trees. The most common limitation encountered was the overlap of trees which occluded the 

top of trees from line of sight. When compared to the heights obtained with UAV SfM, the recorded R2 

reaches 38%, which denotes a large difference between both values. When compared to height values 

extracted from the AHN dataset, the R2 reaches 31%, which provides even further evidence that height 

values captured during fieldwork are unreliable. Wang (2019) compared aerial and terrestrial laser scanners 

to field measured heights and found that field measurements tend to overestimate the height of all trees. 

When comparing heights obtained from the UAV SfM and the AHN CHM, the relationship is far better 

with an R2 of 73%. Figure 27 shows the relationship between both heights derived from the UAV and 

AHN layers, but a clear bias is visible. On average, UAV SfM derived heights tend to be 3.5 meters (bias 

of 18.9%) higher than that of AHN CHM heights. This explains how the line of equality and the trendline 

are parallel to each other. This may be attributed to the low point density areas produced by the UAV SfM 

which produce generalized DSMs that do not capture the complexity of canopy structure, but instead 

creating a smoother surface. Jayathunga (2019) tested the effects of image downscaling on a CHM derived 

from LiDAR data in a mixed conifer-broadleaf forest in Japan. The study found that the process would 

smooth the canopy structure creating less defined tree crowns and overestimating height values. 

 
Figure 27. Relationship between UAV SfM Heights and AHN CHM Heights for Segmented Trees. 

Trendline is marked in red and 1 to 1 line is marked in black. 
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When calculating the location of trees in GIS software through bearings and distances, some trees 

appeared to be misplaced. This is attributed to the unavailability of a DGPS in order to precisely obtain 

the coordinates of the centre plots. The answer to this was the use of Avenza Map mobile application 

which allows the user to use georeferenced orthomosaics as a reference on the field. The main drawback 

of this is that the user is subject to any spatial location errors that the images might have. Another 

consequence was the loss of mobile GPS signal inside the forest, therefore the team had to rely on the 

canopy structure seen from the orthophoto in order to obtain a location. Often times, trees that were 

clearly identifiably in the orthophoto were selected as plot centres, but this did not guarantee an exact 

location due to trees growing at an angle or similar trees standing close to each other. By using plot 

photos, identification and correction of tree locations was possible in order to counter the loss of GPS 

signal during the field.  

4.1.2. UAV Data Acquisition 

For this study, two regression models were established by using field data, UAV imagery and satellite 

images. For this to be possible, all three datasets were acquired in a parallel time frame to ensure similar 

explanatory features across all data. One of the main advantages of the use of UAVs for this study was the 

minimal time and labour that was required to cover extensive areas inside the study area. Areas which had 

noticeable errors (e.g., missing images or blurry output) due to gusts of wind during acquisition were 

corrected in Pix4D or eliminated in order to avoid the introduction of error. The UAV was equipped with 

a Parrot Sequoia which was able to capture red edge and near infrared reflectance with its multispectral 

sensor. By having only four bands available, only a limited amount of vegetation indices were generated. 

4.1.3. DBH and Features Derived from UAV Data 

The relationship between DBH and height is widely used to characterise forest stands and is often used to 

predict biomass (Mugasha, Bollandsås, & Eid, 2013). Since the aboveground biomass was calculated from 

field measured DBH, the variability on these recordings reflected on the output. Higher standard deviation 

was recorded in the values of AGB for broadleaf species, while coniferous species were more consistent 

and obtained AGB values closer to the mean in comparison. Figure 15 shows that the average exponential 

relationship between UAV CHM height and DBH in conifers is higher in coniferous species than in 

broadleaf trees. The poor relationships described between these two variables is mainly due to the poor 

quality of the CHM produced by both the DSM and DTM. A great limitation to elevation information 

derived from UAV SfM is the inability to acquire ground observations in highly dense areas, as well as 

only being able to detect the emergent layer of the forest vertical structure (Anderson & Gaston, 2013; 

Dainelli et al., 2021). Previous research has proven that heights derived from UAV SfM tends to be 

underestimated mainly due to the low point density required to properly detect tree tops (Dempewolf et 

al., 2017; Krause et al., 2019). Poorer R2 values are present when relating DBH with field measured 

heights. This is mainly due to the limitation previously discussed in which tree tops were blocked by 

overlapping trees which led to false readings. An alternative to this would have been to use the AHN layer 

which has a vertical accuracy of 20 cm and a standard deviation of 5 cm. The temporal difference between 

data captures posed a limitation in the use of this dataset (see Figure 29). 

While the average height recorded from the UAV SfM and the AHN elevation data differ from the height 

recorded on field, the relationship between height and DBH are still better in the conifers than in the 

broadleaf trees. This difference persisted when using heights derived from the CHM generated from 

UAV-SfM and from the AHN height information. When evaluating the standard deviation of the 

regression output (AGB values) for either the UAV or satellite-based models, the broadleaf recorded 

higher deviation, while the coniferous tree species displayed more consistent results. 
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Another biometric feature derived from UAV imagery was the CPA obtained through the segmentation of 

individual trees. As other studies have shown, a relationship between CPA and DBH can be established in 

order to use CPA as a proxy for the estimation of AGB (Hussin et al., 2014; Qazi et al., 2017). The CPAs 

obtained in this study displayed poor relationship with the DBH measured on field. The quality of the 

CPA relies heavily on the individual tree segmentation. The poor quality of the DSM generated a CHM 

layer which was then used to delineate trees with a WS segmentation algorithm. Still, relationships between 

these two variables are, on average, higher in broadleaf trees when compared to coniferous. 

Both height and CPA are highly relevant explanatory features for the estimation of AGB as it was proven 

during the evaluation of feature importance in both the coniferous and broadleaf models. Although both 

tree types preferred the information provided by the CHM layer, the broadleaf regression model obtained 

more predictive power from the CPA explanatory feature. Meanwhile the coniferous model barely 

considered this same feature in the final model. 

4.2. Data Processing 

In this section, the method for individual tree crown segmentation in the UAV phase is discussed. The 

“pixel purity” approach for building the dataset to estimate biomass is discussed as being a contributor in 

the performance of the regression models.  

4.2.1. Tree Crown Delineation from UAV Images 

A poor CHM layer can lead to a poor segmentation process, which in turn can affect the accuracy of 

biomass estimation. After attempting to segment various UAV images, the most consistent results 

throughout the various orthomosaic were product of the use of the WS algorithm by using the CHM 

generated by the SfM. Since the WS utilizes the local maxima and minima to delineate objects, the needle 

type structure of coniferous tree species was favourable in comparison to the overlapping branches found 

commonly in broadleaf forests. In dense canopy areas, the WS had trouble distinguishing between one 

tree and the other. In some cases, two broadleaf trees would be delineated as a single tree due to the 

overlapping nature found in these forests. Navarro (2020) found a similar trend in mangroves, which tend 

to absorb the canopies of other trees which cannot be detected as individual trees due to the overlap of 

the branches. Another reason for the poor segmentation in dense broadleaf forest areas is attributed to the 

poor quality of the CHM due to low point densities. A low point density cloud would generalize the 

surface of canopies often merging, what would be clearly, two separate trees. Also, trees that were partially 

or totally covered by taller trees were ignored in the segmentation process due to the absence of height 

data provided by the UAV imagery. The structure of the top canopy layer of Haagse Bos in broadleaf 

forests is formed by trees with the same height. This affects the creation of a detailed DTM since ground 

points are scarce. These findings are consistent with previous studies in which coniferous and broadleaf 

trees are segmented (Hussin et al., 2014; Tiede, 2006; Yang, He, Caspersen, & Jones, 2017).  

 

Effect of Canopy Density on Individual Tree Segmentation 

Dense areas of conifer tree species obtained better segmentation results as displayed in Block five, nine 

and ten. Similar results were found by Fujimoto (2019), in which individual coniferous tree species in 

Japan were successfully identified with an accuracy between 86.0% and 92.3%. This segmentation 

performance was mainly attributed to the tree distribution between conifer trees which do not overlap. 

These areas showed a high contrast in reflectance values between shadow and top parts of the trees. In 

areas where there was a low presence of trees, the WS performed poorly. The resulting objects from this 

area tend to be slightly larger compared to the more precise manually digitized objects (see Figure 28). 

This might be attributed to the high reflectance values below the tree corresponding to bare soil. Block 8 
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of the UAV flight had large areas of bare soil due to recent felling activities taken place in late 2019 due to 

a harsh infestation of bark beetle; the WS for this block showed the weakest performance in comparison 

to the rest with an error of 13.6% for broadleaf and 12.8% for coniferous trees Block 8 was also the latest 

of the areas to be captured by the programmed UAV flights, thus a difference in spectral reflectance in the 

foliage was expected. Another factor to take into account is the quality of the CHM generated by the 

DTM and DSM derived from the UAV. The DSM generated in Pix4D does not clearly delineate canopy 

trees in medium to dense canopies, instead it smoothens edges due to the lack of points generated in the 

initial point cloud. A common example of this smoothing effect in the CHM is its inability to properly 

identify branches which stand out. Also, the DTM had a much larger ground sampling distance in 

comparison to the DSM across all blocks. This is due to the lack of ground returns found in most blocks, 

meaning that large areas had and averaged value of height that does not accurately represent reality. 

 
Figure 28. Common errors found in tree segmentation with bright background 

Effect of Segmentation Algorithm 

To measure the influence of the segmentation algorithm over the performance of the machine learning 

output, a new segmentation process was used. Flight block 8 was used as a subset area due to the high 

number of conifers present. A MRS was first applied to the RGB orthophoto which created large 

segmented objects based on the change on reflectance values. To further segment these objects into 

meaningful canopies, a WS was applied by using the CHM generated by the SfM. The trees segmented by 

MRS recorded a total detection error of 18.6%. The regression obtained with this segmentation algorithm 

recorded an RMSE and a MAE of 416.6 and 293.8 kg per tree respectively; the model with the lowest 

error recorded was using the SVR algorithm, similar to what was shown previously in the results section. 

The original trees segmented by the WS recorded a total detection error of 12.8%. The regression model 

results using these segmented trees displayed lower values of RMSE and MAE of 286.6 and 208.5 kg per 

tree respectively. The results found through the generation of these models prove that the segmentation 

process plays a crucial role in the formation of a dataset. Similar findings were demonstrated by Hussin 

(2014) who compared the influence of different segmentation algorithms on AGB predictions; less 

accurate tree crown delineation resulted in higher variation of AGB predictions.  

 

Segmentation Performance Across Blocks 

The errors recorded in the training set made by the SVR algorithm were evaluated per UAV flight block to 

assess any relationship with the segmentation process or any difference in the reflectance values between 
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orthophotos. The coniferous model displayed a consistent performance throughout the UAV flight 

blocks; the R2 throughout flight blocks was, on average, 73.7% and recorded a standard deviation of 4.3%. 

RMSE and MAE values for the different flight blocks were similar, this revealed that coniferous tree 

species across the forest had similar values of AGB. Higher variation in AGB values among flight blocks 

was present for broadleaf trees. An average R2 of 53.2% and a standard deviation of 27% were recorded 

across flight blocks. The higher standard deviation when compared to the coniferous trees was due to 

Block 9 having a low R2 of 3.5%. This was caused by the low number of trees (9 trees in total) for which 

the AGB predictions were poor. Despite the low performance in this block, the overall average of the 

model for the broadleaf trees was not significantly affected since the trees present only represent 4.1% of 

the training data. 

The AHN layer was initially an option for the generation of a more precise CHM layer from which to 

segment trees. The main limitation that halted this option the temporal inconsistencies found between the 

UAV orthomosaics and the AHN layer. As of writing this thesis, the latest available AHN layers were 

generated with laser scan data captured between the years 2014 and 2019. This time difference between 

data captures clearly shows up in areas of the forest which suffered felling activity due to bark beetle 

infestation between the years 2019 and 2020. Thus, the segmentation relied solely on the CHM produced 

by the SfM of the UAV imagery.  

 
UAV CHM 

 
AHN CHM 

Figure 29. Comparison of CHM layers in Block 9. 
Felling of trees with bark beetle infection are clearly identified. 

4.2.2. Pure Pixels 

The “pixel purity” was evaluated through an iterative process of modifying the threshold of the objects 

that were included in the dataset. The number of objects included in the dataset, the coefficient of 

determination, RMSE and MAE were measured during each iteration to assess the changes in 

performance of each model. Whilst the coefficient of determination increases up to a maximum of 46.7% 

when the threshold is lowered to 60% of coverage, it does so at a cost of including more variability in the 

biomass values. Including more variability into the biomass values in turn increases the RMSE and MAE. 

What was opted for in this study was to obtain the highest performance with the lowest amount of error. 

The increase in objects used for training does not always mean that the quality of the dataset will improve, 

a trade-off between quantity and quality of data is shown in the multiple graphs in Figure 8. The more data 

that was fed to the model, the more noise that was introduced which in turn increased the error and 

lowered the coefficient of determination. The overall R2 value reaches a maximum at 60% of the coverage 
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of pure pixels and begins to degrade when we continue to reduce the threshold; the other performance 

metrics increase as the threshold reduces. In other words, the RMSE and MAE constantly increase due to 

the increasing error provided from the variation allowed in the target variable. All further models 

generated considered pixels which were covered by a segmented object by 60% up until pixels that were 

completely covered. 

4.3. Data Analysis 

In this section, the predictive models of aboveground biomass from the UAV and satellite data are 

discussed. Limitations caused by the structure of the data and the capabilities of the MLA are compared to 

the results found in recent available literature.  

4.3.1. Aboveground Biomass Estimation – UAV 

The first approach into training the model was to combine both types of trees (coniferous and broadleaf). 

The benefits of doing this was to avoid classifying the trees, which in itself is another issue prone to error. 

Another benefit of combining both tree types was the size of the dataset, resulting in more training 

samples which tend to improve machine learning regression output. By combining both tree types, the 

coefficient of determination for the test set results was poor at around 53.0% by using the SVR and 51.1% 

in the RF. This models also showed larger performance difference (i.e., overfitting) in comparison to the 

models that took into account the species type. For this model the MAE tells us that the predictions were 

off by an average of nearly 300 kilograms per tree. Feature reduction was troublesome for this model 

because the accumulated feature importance between runs would be different. Only the mean CHM value 

maintained itself as the most important feature, but this was also giving away information on how the 

regression was interpreting the explanatory features. Upon further review, the splitting of the data played a 

role in the selection of feature importance. Training trees with a dataset containing a higher number of 

coniferous trees preferred textural features, while a training set with more broadleaf trees favoured 

spectral features. Consequently, a stratified random sampling with tree species in order to obtain 

consistent results throughout different models. With this consideration taken into account, no major 

improvements were noticed in the performance metrics, but the feature importance did not vary between 

models. 

When separating the dataset into coniferous and broadleaf tree types, considerable improvements were 

noticed across the validations and test set. This can be attributed to the difference in average reflectance 

values as well as average height values. When combining both tree species into a single dataset, the model 

was not able to discriminate between tree types, let alone tree species. By splitting the data, the explanatory 

features became more consistent and more predictable. Further splitting of the dataset was attempted to 

generate regression models based on tree species, but due to insufficient training data for some species 

(e.g., Common Ash) and low accuracies, the opted approach was to maintain the dataset per tree type. 

Similar feature importance was found when generating tree type specific models. Coniferous trees gained 

better predictive power with textural features. Alonzo (2018) reported greater errors when modelling AGB 

for individual tree species, but gained better performance when grouping trees by type in a boreal forest 

located in Alaska. 

The best performance perceived for the deciduous model was produced by using the SVR algorithm, the 

coefficient of determination recorded on the test set was of 60.3% with an RMSE of 439.7 kilograms per 

tree and a MAE of 364.1 kilograms per tree. As for the coniferous regression model, the best performance 

recorded was also produced by the SVR algorithm with an R2 of 70.7%, well above the broadleaf and 

combined model. The RMSE and the MAE for the coniferous predicted output was of 215.0 and 156.6 

kilograms per tree respectively. When both datasets only contained the most important features, further 
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improvements to the output were recorded. For the broadleaf model, a 2% gain in performance was 

noted, whereas coniferous tree species a gained a 3% increase in performance. This is expected as we are 

avoiding the introduction of noise in the dataset by omitting those features which do not explain the 

variance in the target variable. Both the coniferous and the broadleaf model overestimated low AGB 

values and underestimated high AGB values. This can be attributed to the distribution of the training data 

which revolved more around the average value of AGB (see Annex 7 and Annex 8). Wang’s (2020) work 

with mangroves in China suffered a similar effect in which low values of AGB were overestimated, while 

high values of AGB were being underestimated. Values which were similar to the average AGB value were 

closer to the line of equality. 

These findings are similar to those found by Luo (2021), in which the dataset which had been divided by 

tree type (coniferous and broadleaf) yielded better results in comparison to a model which combined all 

trees. The study also found that elevation data and texture features have a high correlation with the AGB 

predictions, similar to what was found for coniferous species in this study. The difference with this study 

is that the model for broadleaf tree species had a similar performance to that of the coniferous species (R2 

> 70%). Other studies that estimated AGB for mangroves also found that the features which provided the 

most amount of information was the height derived from the CHM (Lu et al., 2020; Wang et al., 2019).  

 

Importance of Height and CPA as Explanatory Features 

A systematic review of features influencing aboveground biomass estimation found that the inclusion of 

textural features in combination with multispectral data and structural variables gave better predictions. 

The added value of including textural metrics to regression models is that it includes information relevant 

to the surrounding environment due to the kernel used for calculating such metrics. Regression models 

which opted for individual sets of explanatory features (e.g., structural variables, reflectance values, 

vegetation indices) displayed poorer performance overall (Poley & McDermid, 2020). In this study, 

proxies for DBH such as height and/or CPA displayed poor relationships. Instead, training regression 

models with a variety of explanatory features displayed better results.  

The difference in performance can be attributed to the relationship between DBH and the average height 

of the CHM layer for each tree species. The most important feature for both models is the average CHM 

value, which we’ve acknowledge to have accuracy problems. The difference between the models is that the 

coniferous model gains almost double the information from the same feature as compared to the 

deciduous model. On average, there is a better relationship between DBH and height for the coniferous 

trees (see Figure 15). Consequently, aboveground biomass estimations were heavily impacted by the 

strength of the relationship between DBH and height. Since DBH values were used in allometric 

equations to calculate AGB values, trees with better DBH-height relationship presented less difference 

between observed and predicted values in the regression output. Another explanation of the difference in 

performance of the models is that the variability in DBH measurements recorded on the field was much 

higher in the broadleaf trees. Then again, broadleaf tree species found more predictive power by using 

CPA as an explanatory feature, which coincides with better relationships between DBH – CPA found in 

Figure 16. These findings coincide with the work of Fang (2016), in which weaker logarithmic 

relationships between DBH and LiDAR measured height of trees lowered the R2 and increased the RMSE 

of AGB estimations. The variability in DBH values was transferred into the aboveground biomass 

calculations, which were later used to train the MLA. Thus, the predictions were susceptible to contain 

higher variability. Finally, the number of trees used to train both models differed. This was primarily due 

to the forest structure of coniferous areas in Haagse Bos which had a higher tree density when compared 

to broadleaf areas. Around two thirds of the trees recorded were coniferous species, giving more training 

data for the model to obtain more predictive power for this tree type. 
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Comparing these findings to the work of Alonzo (2018), AGB estimations for boreal forest were done by 

obtaining features from WS obtained an accuracy of 85% on the validation set. The data used to segment 

the trees and the feature which was most important in the prediction of biomass was the CHM layer 

generated from LiDAR data. Other forest structure variables were derived from the LiDAR data such as 

percentile heights of the canopy crown and the crown base height. Li (2019) estimated aboveground 

biomass for mangroves by extracting the features of segmented trees with multi-resolution segmentation; 

the author used RF, SVR and artificial neural networks (ANN) as prediction algorithms. By using spectral 

metrics, vegetation indices, height metrics and textural features derived from UAV imagery, the author 

obtained an R2 of 81% with RF, 80% with SVR and 75% with ANN. It is important to note that the 

author did not state the performance metrics of the test set, thus validation results tend to be over-

optimistic. 

4.3.2. Aboveground Biomass Estimation – Satellite 

RF and SVR models did not differ in performance when only using spectral data, vegetation indices and 

textural features using the UAV derived biomass as the target variable. When omitting elevation data, the 

maximum coefficient of determination was obtained by the SVR model for coniferous tree species 

(39.7%). Broadleaf trees were slightly better predicted in the RF algorithm by recording an R2 of 35.1%. By 

not discriminating the type of tree, the regression model’s performance was found to be an average of the 

tree specific models. The better performance of one model over the other is attributed to the structure of 

the data; coniferous tree species had lower standard deviation in AGB values (86.4 ton/ha), while 

broadleaf species had higher standard deviation (122.2 ton/ha). Higher variation, especially in the higher 

end of the AGB range, contributes to higher error in the models. This higher variation stems from the 

past errors encountered in the UAV regression model, in which, yet again the broadleaf species obtained a 

higher RMSE. The propagation of error was to be expected because the base of the satellite regression 

model was the output generated by the UAV regression model. 

As with the UAV regression model, the satellite-based model also suffered from overestimation of low 

AGB values and underestimation of high AGB values (see Annex 12 and Annex 13). For medium AGB 

values which were inside the main range of expected AGB values (150 to 330 ton/ha for conifers and 115 

to 350 ton/ha for broadleaf), the MLA were able to gain more predictive power by having more training 

pixels. Values in the mid-range were better predicted, thus displaying less errors. Su (2020) used satellite 

radar imagery and machine learning algorithms in order to predict AGB in Chinese tropical forests. The 

RF algorithm was also subject to overestimation and underestimation in low and high values of AGB. It 

was mainly attributed to a saturation of the radar imagery, a common problem found when attempting to 

estimate biomass with this sensor. Zhang (2020) reported a similar range of AGB values being that were 

being better predicted (from 120 to 210 ton/ha); outside of these ranges forest AGB was again being 

overestimated and underestimated. This study used eight machine learning algorithms, from which the RF 

and SVR produced serious overestimations and underestimations of AGB. 

Feature importance varied between the coniferous and the broadleaf regression models. When omitting 

height data, coniferous tree species gained more information through the mean values of vegetation 

indices, while the broadleaf model gained information through textural features. When adding tree 

elevation data, the models predictive power improved considerably (∆R2 = 12.8% for coniferous and ∆R2 

= 7.4% for broadleaf). These results are within the values found in literature review which used features 

derived from satellites and UAV based biomass (Iizuka et al., 2020; Navarro et al., 2019; Zhu et al., 2020). 

In both cases, the most important feature was the average value from the CHM layer. The standard 

deviation of the CHM layer provided more information to the deciduous model. The coniferous model 
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relied its predictive power more on vegetation indices, on the other hand, the textural features provided 

more information to the prediction of broadleaf biomass. 

By removing the least important features from the training of the models, the performance of the models 

improved. The best performance for the coniferous model was reached by using the top 13 features (R2 = 

54.5%); similar performance was recorded by using the top 12 features. For the broadleaf model, the 

performance also improved and was able to gain better predictive power. The top 25 features recorded the 

best performance with a coefficient of determination of 43.6%. It is important to note that the RMSE and 

MAE for both models decreased in accordance to the coefficient of determination.  These findings are in 

line with other research papers which have trimmed the number of features used in the models for 

regression problems (Luo et al., 2021; Zhang et al., 2020). The reduction of features makes the model 

more interpretable by avoiding the introduction of noise of other variables and focusing on those 

explanatory features which explain the most variance in the target variable. 

Spatial location features, such as the geographic location of the pixel and the standard deviation of the 

location of the pixels inside the segmented objects, were removed from the initial features. Several models 

were generated including these explanatory features and the performance metrics were overoptimistic (R2 

> 75%). Since the AGB in the UAV stage had been calculated per tree, the AGB had to be represented 

per a unit of area (ton/ha). By providing the spatial location of each individual pixel, the MLA could 

obtain the spatial extent of the individual trees in the form of standard deviation of spatial location. After 

examination of the relationship between each individual explanatory feature and the estimated AGB, it 

was found that there was a linear trend between standard deviation of spatial location and AGB values. 

This made these features the most important, even more important than the CHM layers. The predictions 

displayed clear delineations of biomass which did not match with the UAV predictions or with mature 

forest stands. These features were then omitted and the results were more in line to those found in the 

literature (Meyer, Reudenbach, Wöllauer, & Nauss, 2019). 

4.3.3. Sources of Error and its Propagation 

The moderate performance of the regression models can be attributed to several factors. The first induced 

error comes at the early stage of finding a tree with no precise GPS measurement. Although this was 

verified with on-ground photographs and centre plot locations, there is still uncertainty on the location of 

the trees. The second source of error would be due to the individual tree segmentation, most prominently 

in the broadleaf tree species. As stated before, dense canopy areas did not register ground points in order 

to generate a detailed DTM, and the overlapping structure of the trees did not allow for a proper 

delineation of individual trees. The errors for segmentation of individual trees range from a minimum of 

7.7% toa maximum of 13.6%. The third source of error would be provided by the overlap between the 

segmented tree objects and the pixels from the satellite image. Going from an object-based to a pixel-

based regression model induced errors by the uncertainty of the georeferencing between both layers and 

by the formation of the dataset based on pixel purity. The highest recorded R2 was reached by allowing 

objects that covered up to 60% of the pixel; this was at the expense of higher RMSE and MAE in the 

AGB predictions. The fourth source of error comes from the overestimations and underestimation of tree 

AGB calculated from the UAV regression models. The UAV estimated AGB were used as the target 

variable for the satellite-based regression models (R2 of 73.7% for coniferous trees and 62.6% for 

broadleaf trees). The aforementioned errors contribute to the overall performance of the final output 

provided by the satellite-based AGB model. 

For both the UAV and the satellite regression models, performances varied between MLA. For 

classification and regression problems, there is no direct go-to solution as MLAs performance are highly 

dependent on the structure of the dataset. Authors which compared AGB predictions by using different 
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MLAs often obtained mixed results between them (Iizuka et al., 2020; Li et al., 2019; Zhang et al., 2020). 

While some MLA performed better in mangrove ecosystems, other algorithms performed best in 

temperate forests. The selection of explanatory features also varied as well as the spatial resolution that 

each study used. Even studies on the same type of ecosystem have presented different results using 

comparable MLA (Jachowski et al., 2013; Wang et al., 2019). 
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5. CONCLUSIONS & RECOMMENDATIONS 

5.1. Conclusion 

In this study, we used the results from a predictive AGB model built on UAV data to calibrate another 

AGB regression model using satellite imagery in Haagse Bos, The Netherlands. Random Forest and 

Support Vector Regressor were used as MLA in order to predict AGB values in both the UAV and 

satellite stages. For this purpose, several UAV flights captured small footprints of a much larger forest. 

Individual tree segmentation was done on each UAV flight block through WS in order retrieve 

explanatory features. AGB estimations on the segmented trees were calculated based on ground truth 

measurements. The segmented trees obtained from the UAV images were later used to extract pixel values 

from the satellite image in order to obtain AGB estimation at a pixel level. The coefficient of 

determination (R2), the root-mean-square error (RMSE) and mean absolute error (MAE) were calculated 

for each model using a 10-fold cross validation and a test set. This study also focused on the importance 

of explanatory features derived from multispectral UAV and satellite imagery; the availability of vertical 

forest structure information was crucial in getting meaningful output in both regression models. Finally, 

the resulting dataset from the satellite image was also assessed through the pureness of pixels. 

The original intention of this research was to solely use Random Forest, but SVR obtained better 

predictive power through the original dataset due to having more parameters to tune. At coarser 

resolutions, Random Forest has been shown to work better due to aggregation of values providing a 

better separability between a range of values (Sheykhmousa et al., 2020). Future research projects which 

aim to estimating AGB with MLAs should be encouraged to explore multiple algorithms in order to 

obtain better flexibility in hyperparameter tunning as well as better fits between prediction and 

observation. The following conclusions can be made from each research question: 

 

1. Which set of features derived from UAV data and satellite imagery can be used to estimate AGB 

using MLA? 

The features that were most commonly used in the prediction of AGB with UAV and satellite imagery 

were consulted in the literature review. Reflectance values, vegetation indices, biometric information and 

grey-level co-occurrence matrices were found to be used along several published scientific papers. For 

satellite images, reflectance values and grey-level co-occurrence matrices were extracted from individual 

pixels. Vegetation indices differed from the ones obtained through the UAV imagery due to the absence 

of a red-edge band in the PlanetScope sensor. Since the satellite image lacked vertical information, the 

AHN data was added to overcome this limitation. The average and standard deviation of each feature 

were also used. 

 

2. Which set of features derived from UAV data are more important at predicting AGB? 

For both tree type models generated with UAV data, there was a significant relationship between ground 

measured AGB and height values provided by the CHM layer. The coniferous regression model gained 

better predictive power by using the texture layers. The two features with highest importance were related 

to the CHM layer, followed by three features belonging to GLCM Entropy in various directions. The 

broadleaf regression model also displayed a strong relationship to the values obtained through CHM layer, 

but it gained less predictive power as compared to the coniferous model. The following features with 

higher importance were related to the red band and the area of the canopy. 
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3. How are the performance metrics impacted by different MLA and feature reduction in the UAV 

model? 

Both tree types recorded their best performance in the SVR algorithm. By using all 40 explanatory 

features, the coefficient of determination for the coniferous and broadleaf models were of 71.1% and 

60.6% respectively. When removing the least important features, the coniferous model increased its 

performance to an R2 of 73.7%, which in turn reduced the RMSE and MAE. This peak in performance 

was obtained by using the top 15 explanatory features. The broadleaf model also increased its performance 

up to an R2 of 62.6%; this performance was reached by using the top 9 features.  

 

4. How accurate is the machine learning algorithm in classifying aboveground biomass content using 

features derived from UAV data? 

After selecting the best performing machine learning algorithm and removing the least important features 

from the dataset, a 10-fold cross-validation and a test set were used to assess the performance of the 

models. The coniferous model recorded an R2 of 73.7%, with an RMSE and a MAE of 215.0 and 156.6 

kilograms per tree respectively. The average predicted AGB value for a coniferous tree was 579.5 

kilograms with a standard deviation of 324.6 kilograms. The broadleaf model recorded a slightly poorer R2 

of 62.6%. Because of this, the RMSE and MAE for this model were of 439.7 and 364.1 kilogram per tree 

respectively. The average predicted AGB value for a broadleaf tree was higher when compared to the 

coniferous trees at around 1,103.7 kilograms per tree and a standard deviation of 502.0 kilograms. Both 

models overestimated low AGB values and underestimated high AGB values. The average and standard 

deviation of AGB values used to train the SVR algorithm were higher for the broadleaf trees than that of 

the coniferous trees, thus  

 

5. Which set of features derived from satellite data are more important at predicting AGB? 

The inclusion of vertical information by the addition of the AHN elevation layer improved both models’ 

performance overall. In a similar fashion to what was experienced in the UAV stage, the coniferous and 

broadleaf regression models perceived the CHM layer as the most important explanatory feature; both 

models obtained most of their predictive power through the use of the CHM layer. By adding the CHM 

layer, the coefficient of determination increased from 39.7% to 52.5% for the coniferous model and from 

35.1% to 42.5% for the broadleaf model. The reflectance values in the NIR band and vegetation indices 

gave the coniferous model more information about AGB, while texture and spectral information were 

preferred by the broadleaf model. 

 

6. How are the performance metrics impacted by different MLA and feature reduction in the 

satellite model? 

The dataset for both tree types performed slightly better by using the RF algorithm and when using the 

added elevation layer. The highest R2 recorded on the test set for the coniferous regression model was of 

52.5%; when reducing the models explanatory features to the top 13, the models performance increased to 

54.0%. The broadleaf model recorded a lower performance in comparison. The coefficient of 

determination when using all of the explanatory was of 42.5%. By using the top 20 features, the model’s 

performance improved to an R2 of 43.6%.  

 

7. How accurate is the machine learning algorithm in classifying aboveground biomass content using 

features derived from satellite imagery? 



UPSCALING ABOVEGROUND BIOMASS WITH MACHINE LEARNING ALGORITHMS BY INTEGRATING HIGH SPATIAL RESOLUTION DATA 

51 

Once the best machine learning algorithm was identified and the least important features were removed, 

the best results for the coniferous model obtained an R2 of 54%, which had an RMSE and a MAE of 53 

and 41.7 tons per hectare respectively. The average predicted AGB value for coniferous species is 245.8 

tons per hectare with a standard deviation of 86.4 tons per hectare. The best performance recorded for the 

broadleaf trees was an R2 of 43.6% and a RMSE and a MAE of 82.6 and 65.4 tons per hectare 

respectively. For the broadleaf species, the average predicted AGB value was of 237.1 tons per hectare 

with a recorder standard deviation of 122.2 tons per hectare. Once again, the AGB values for the 

broadleaf trees used to train the MLA were, on average, higher than those AGB values for the coniferous 

tree species. Thus, higher values of RMSE and MAE were expected when compared to those found in the 

coniferous model. As in the UAV models, low AGB values were overestimated while the high AGB 

values were being underestimated, thus values closer to the average were less prone to higher errors. 

5.2. Recommendations 

➢ This study used UAV images to locate trees inside a plot, making the measurements prone to error 

due to the lack of GPS signal inside the forest. Even by recording the bearings and distance to the 

center of the plot, some trees were difficult or not possible to pinpoint in the UAV image. The use 

of a Differential Global Positioning System (DGPS) is recommended during fieldwork as it would 

provide precise measurement of location of trees. 

 

➢ The method for data collection during fieldwork had to accommodate several other studies in the 

area. This, in turn, influenced how the feature selection was done in order to calibrate the satellite 

AGB regression. It is recommended to design the data collection taking into account the spatial 

resolution of the satellite image, making the plots align with the cell size of the satellite image (plot 

of 6X6 pixels which is around 500 m2). This would make the generation of wall-to-wall satellite 

AGB estimations much simpler and avoid the complexities attached to pixel purity. 

 

➢ The output elevation data generated per UAV block were poor in comparison to available LiDAR 

data. The DTM and DSM that were generated from the point cloud were not dense enough in 

some areas to generate meaningful output, thus certain UAV flight blocks had to be excluded (e.g., 

east side of block 123). Allowing the Pix4D software to calculate a greater number of matching 

points would increase the quality of the point cloud and thus, the generated elevation data. This, of 

course, entails greater computational expenses such as time and higher processing power. A higher 

quality CHM would lead to better tree segmentation in the UAV stage. If possible, the use of 

LiDAR is preferred by literature and it is becoming more available. 

 

➢ The use of different satellite products would be encouraged, especially if the satellite images contain 

a higher variety of multispectral bands to generate additional vegetation indices. The availability of a 

higher number of spectral bands commonly comes at the cost of coarser spatial resolution (e.g., 

Sentinel-2 vs. PlanetScope). This is also encouraged because the effect of spatial resolution was 

briefly tested during this study. 

 

➢ Although this research project utilized two of the most recognized MLAs used in remote sensing 

applications, it is highly encouraged to explore more and/or optimized MLA. Examples of other 

algorithms are gradient-boosted regression tree (GBRT), artificial neural networks (ANNs), 

multivariate adaptive regression splines (MARS), and k-nearest neighbors (kNN). Some of these 

MLAs would require the fieldwork to have been implemented in a different fashion as they work 

best by obtaining features from pixels rather than objects (i.e., individual tree segments). Embedded 

to the aforementioned algorithms is a higher grade of difficulty due to the number of parameters 

that need to be tuned. Nevertheless, these can provide a better fit for the regression model. 
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6. ANNEX 

Annex 1. Manual Data Entry Format 

 

 

Annex 2. Summary of Quality Reports for each UAV flight block. 

Block 

Ground 

Sampling 

Distance (cm) 

Total 

Area (ha) 

Calibrated 

Images 

Georeferencing 

RMSE 

(m) 

GCPS 

Average 

Density 

(per m3) 

123 11.0 58.8 6,336 (99%) 0.059 5 3.45 

4 11.2 32.1 4,400 (100%) 0.085 10 3.45 

5 11.4 35.5 3,468 (99%) 0.070 6 2.33 

8 11.5 33.4 4,500 (100%) 0.046 9 3.45 

9 11.7 38.9 4,750 (100%) 0.012 6 3.45 

10 10.8 54.2 7,092 (98%) 0.090 5 1.45 

 

Annex 3. Vegetation Indices calculated from UAV and Satellite bands 

Metric Equation 
Usage 

UAV      Satellite 
Reference 

NDVI 𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 X X 

(Bannari, Morin, Bonn, & 

Huete, 1995) 

Date: Plot #:

Forest density: Low

Distance from 

centre point (m)

Compass bearing 

(degrees)

Plot dominant species:Plot radius:

Tree position Comment

High Medium

General comment:

Tree # Species DBH 

(m)

Height 

(m)

CPA 

(sq.m)

Data sheet for forest tree parameters in Haagse bos

Latitude (Y):

Observer name:

Logitude (X):Central point
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Metric Equation 
Usage 

UAV      Satellite 
Reference 

GNDVI 𝐺𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
  X 

(Buschmann & Nagel, 

1993) 

DVI 𝐷𝑉𝐼 =  𝑁𝐼𝑅 − 𝑅𝑒𝑑 X X (Bannari et al., 1995) 

NDRE 𝑁𝐷𝑅𝐸 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒
 X  

(Clarke, Moran, Barnes, 

Pinter, & Qi, 2001) 

WDRVI1 𝑊𝐷𝑅𝑉𝐼 =  
(∝ 𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(∝ 𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 X  (Gitelson, 2004) 

EVI 𝐸𝑉𝐼 =  
2.5(𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒)

(𝑁𝐼𝑅 + 6 ∗ 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒 − 7.5 ∗ 𝐵𝑙𝑢𝑒 + 1)
  X (Huete et al., 2002) 

SR 𝑆𝑅 =  
𝑁𝐼𝑅

𝑅𝑒𝑑
  X 

(Major, Baret, & Guyot, 

1990) 

SAVI2 𝑆𝐴𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿
(1 + 𝐿)  X (Bannari et al., 1995) 

 

Annex 4. eCognition Ruleset for Tree Segmentation 

Classes: 
    Remove1 (Shadow/Dark objects in NIR Band (Layer 4)) 
    Remove2 (Low height objects in CHM Layer (Layer 6)) 
    Trees 
 
Process: Main: 
    Watershed Segmentation 
         watershed segmentation: watershed segmentation on -Layer 6 creating New Level 
         Refinement 
              pixel-based object resizing: loop: at  New Level: shrink using Remove2 where Layer 4<=0.26 
              pixel-based object resizing: loop: at  New Level: shrink using Remove1 where Layer 6<=2.5 
              remove objects: with Area <= 10 Pxl at  New Level: remove objects (merge by shape) 
              Extract assign class: unclassified at  New Level: Trees export vector layer: Trees at  New Level: 
export object shapes to D:\... 

 
1 The value of ∝ was set to 0.1 
2 The value of L was set to 0.5 
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Annex 5. Feature reduction vs performance metrics of Coniferous UAV model 
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Annex 6. Feature reduction vs performance metrics of Broadleaf UAV model 

Annex 7. Scatter plot diagram for coniferous regression model – UAV 

 

 

 

 

 

 

 

 
Annex 8. Scatter plot diagram for broadleaf regression model – UAV 
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Annex 9. Feature Importance for Combined tree type at the satellite level. 

 
Annex 10. Feature reduction vs performance metrics of Coniferous satellite model 
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Annex 11. Feature reduction vs performance metrics of Broadleaf satellite model 

 

 

 

 

 

 

 

Annex 12. Scatter plot diagram for broadleaf regression model – Satellite 
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Code segment for SVM model based on UAV explanatory features in RStudio 

# Don’t be afraid of coding. I was, but it is rather easy to catch up. # 

set.seed(1337) #For those who know# 

 

## Load Libraries ## 

library(randomForest) 

library(ggplot2) 

library(xlsx) 

library(e1071) 

library(ggstatsplot) 

library(mlbench) 

library(caret) 

library(dplyr) 

library(rminer) 

 

## Set working directory for the file containing the features ## 

setwd("C:/Users/luisf/Documents/ITC/Thesis/RF") 

full <- read.csv(file.choose(), header = TRUE, sep = ",") 

TrainSet <- read.csv(file.choose(), header = TRUE, sep = ",") 

TestSet <- read.csv(file.choose(), header = TRUE, sep = ",") 

data <- full 

 

 

## Split into Train and Validation sets ## 

data <- subset(full, Species %in% c("Douglas Fir","Norway Spruce","Scots Pine", "Larch")) 

data <- subset(full, Species %in% c("Oak", "Birch", "Beech", "Common Ash")) 

Annex 13. Scatter plot diagram for broadleaf regression model – Satellite 
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data <- drop(full[,8:48]) 

 

train <- createDataPartition(data$Species, p = 0.8, list = FALSE) 

TrainSet <- data[train,] 

TrainSet <- drop(TrainSet[,2:36]) 

TestSet <- data[-train,] 

TestSet <- drop(TestSet[,2:36]) 

 

## Run SVM model ## 

svm.mdl <- svm(TotalBiomass~., data = TrainSet, kernel = "radial") 

svm.mdl 

RMSE(svm.mdl$fitted,TrainSet$TotalBiomass) 

MAE(svm.mdl$fitted,TrainSet$TotalBiomass) 

R2(svm.mdl$fitted,TrainSet$TotalBiomass)*100 

plot(svm.mdl$fitted,TrainSet$TotalBiomass) 

 

## Predicting on Test Set ## 

test <- predict(svm.mdl, TestSet) 

RMSE(test,TestSet$TotalBiomass) 

MAE(test,TestSet$TotalBiomass) 

R2(test,TestSet$TotalBiomass)*100 

plot(test,TestSet$TotalBiomass) 

 

## 10-Fold Cross Validation ## 

folds <- createFolds(TrainSet$TotalBiomass, k = 10) 

#creating list and arry for storring the resuls for all folds. 

cv_svm_result <- list() 

cv_svm_cg <- list() 

cv_svm_total_result <- array() 

for (i in 1:10){ 

  train <- TrainSet[(-folds[[i]]),] 

  valid <- TrainSet[(folds[[i]]),] 

  svm.mdl <- svm(TotalBiomass~., data = train, kernel = "radial") 

  tunesvm <- tune.svm(TotalBiomass~., data = train, 

                      gamma = seq(0.01,0.03,0.01), cost = 2^(seq(2,6,0.5))) 

  bestgamma <- tunesvm$best.parameters$gamma 

  bestcost <- tunesvm$best.parameters$cost 

  cv_svm_cg[[i]] <- cbind(bestgamma, bestcost) 

  svm.mdl <- svm(TotalBiomass~., data = train, 

                 gamma = bestgamma, 

                 cost = bestcost) 

  pred <- predict(svm.mdl, valid) 

  cv_svm_result[[i]] <- mmetric(valid$TotalBiomass, pred, c("MAE", "RMSE", "R2")) 

  print(cv_svm_result[[i]]) 

  print(cv_svm_cg[[i]]) 

  cv_svm_total_result <- cbind(cv_svm_total_result, cv_svm_result[[i]]) 

} 

rowMeans(cv_svm_total_result[1:3,-1]) 
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write.csv(cv_svm_total_result, "10 fold CV Decid.csv", row.names = FALSE) 

 

## Tuning SVR model ## 

tunesvm <- tune.svm(TotalBiomass~., data = TrainSet,  

                    gamma = seq(0.01,0.05,0.005), cost = 2^(seq(2,6,0.5))) 

tunesvm 

plot(tunesvm) 

bestgamma <- tunesvm$best.parameters$gamma 

bestcost <- tunesvm$best.parameters$cost 

 

##  SVM with best parameters ## 

svm.mdl <- svm(TotalBiomass~., data = TrainSet, gamma = bestgamma, cost = bestcost, cross = 10) 

svm.mdl 

RMSE(svm.mdl$fitted,TrainSet$TotalBiomass) 

MAE(svm.mdl$fitted,TrainSet$TotalBiomass) 

R2(svm.mdl$fitted,TrainSet$TotalBiomass)*100 

plot(svm.mdl$fitted,TrainSet$TotalBiomass) 

 

test <- predict(svm.mdl, TestSet) 

RMSE(test,TestSet$TotalBiomass) 

MAE(test,TestSet$TotalBiomass) 

R2(test,TestSet$TotalBiomass)*100 

plot(test, TestSet$TotalBiomass) 

 

 

Code segment for SVM model based on satellite explanatory features in RStudio 

set.seed(1337) 

library(sp) 

library(raster) 

library(randomForest) 

library(rgdal) 

library(ggplot2) 

library(e1071) 

library(dplyr) 

library(tidyr) 

library(mlr) 

library(ggcorrplot) 

library(mlbench) 

library(caret) 

library(rminer) 

 

 

## Upload tiff layer ## 

setwd("D:/ITC Big Downloads/Thesis/PlanetScope/") 

infile <- stack('PlanetScopeErase.tif') 

infile <- dropLayer(infile, 18) 

names(infile) <- c("Blue", "Green", "Red", "NIR", "NDVI", "GNDVI", "SR", "SAVI",  
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                   "EVI", "DVI", "GLCM_Mean", "GLCM_Variance", "GLCM_Homogeneity",  

                   "GLCM_Contrast", "GLCM_Dissimilarity", "GLCM_Entropy",  

                   "GLCM_2ndMoment", "CHM") 

plot(infile) 

## Read Pure Pixels ## 

AllPts <- read.csv("Pure Pixels/PPAll.csv", header = TRUE, sep = ",") 

AllPts <- filter(AllPts, Area >= 8.97*0.60) ## Max area of pixel (not a perfect 3x3 pixel) ## 

coordinates(AllPts)<- ~ POINT_X + POINT_Y 

 

## Extract Values from raster ## 

rasValue <- raster::extract(infile, AllPts) 

 

## Generate and clean data ## 

full <- data.frame(cbind(AllPts,rasValue)) 

full$BiomPixel <- (full$BiomPixel/9)*10 

full <- tidyr::drop_na(full) 

full <- full %>% mutate(Type = ifelse(as.character(Type) == "Coniferous", 1, 0)) ## == Coniferous ## 

full <- full %>% group_by(FID) %>% summarise(across(everything(), list(mean=mean,sd=sd, 

sum=sum), 

                                                    .names = "{.col}_{.fn}")) 

full <- full %>% select(c(2,5,11:63)) %>% select(-contains("sum")) %>% replace(is.na(.), 0) 

full <- full %>% filter(Type_mean == 0) %>% select(-c(2)) 

data <- full 

summary(data) 

data %>% summarise(across(BiomPixel_mean,sd)) 

 

train <- sample(nrow(data),0.7*nrow(data), replace = FALSE) 

# train <- createDataPartition(data$Type_mean, p = 0.8, list = FALSE) 

TrainSet <- data[train,] 

TestSet <- data[-train,] 

# summary(TrainSet) 

# summary(TestSet) 

 

## Train and Test SVM model ## 

svm.mdl <- svm(BiomPixel_mean~., data = TrainSet, kernel = "radial") 

svm.mdl 

RMSE(svm.mdl$fitted,TrainSet$BiomPixel_mean) 

MAE(svm.mdl$fitted,TrainSet$BiomPixel_mean) 

R2(svm.mdl$fitted,TrainSet$BiomPixel_mean)*100 

plot(svm.mdl$fitted,TrainSet$BiomPixel_mean, abline(a = 0, b = 1)) + grid() 

 

test <- predict(svm.mdl, TestSet) 

RMSE(test,TestSet$BiomPixel_mean) 

MAE(test,TestSet$BiomPixel_mean) 

R2(test,TestSet$BiomPixel_mean)*100 

plot(test,TestSet$BiomPixel_mean, abline(a = 0, b = 1)) + grid() 

 

test <- tibble(test) 
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results <- cbind(svm.mdl$fitted,TrainSet) 

results$diff <- results$BiomPixel_mean - results$test 

summary(results) 

write.csv(results, "ResultsDecid.csv", row.names = FALSE) 

 

## 10-Fold Cross Validation ## 

folds <- createFolds(TrainSet$BiomPixel_mean, k = 10) 

#creating list and arry for storring the resuls for all folds. 

cv_svm_result <- list() 

cv_svm_cg <- list() 

cv_svm_total_result <- array() 

for (i in 1:10){ 

  train <- TrainSet[(-folds[[i]]),] 

  valid <- TrainSet[(folds[[i]]),] 

  svm.mdl <- svm(BiomPixel_mean~., data = train, kernel = "radial") 

  pred <- predict(svm.mdl, valid) 

  cv_svm_result[[i]] <- mmetric(valid$BiomPixel_mean, pred, c("MAE", "RMSE", "R2")) 

  print(cv_svm_result[[i]]) 

  cv_svm_total_result <- cbind(cv_svm_total_result, cv_svm_result[[i]]) 

} 

rowMeans(cv_svm_total_result[1:3,-1]) 

 

write.csv(cv_svm_total_result, "10 fold CV SVM All CHM.csv", row.names = FALSE)
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