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ABSTRACT 
Artisanal Small Scale Gold Mines (hereafter ASGM) is one the major disturbances in the Amazon 

Forest, which lately has received scientific attention owing to the environmental impact in water 

sources because of the use of mercury in the amalgamation process, the deforestation trend in the 

mine settlements, the association with insurgent groups, and direct linkage with 8 out 17 United 

Nations SDGs. UN Environment Program under the Minamata Convention on Mercury and the 

planetGOLD program has provided some guidelines to foster the National Action Plans (NAP) to 

incorporate formalization, mitigation, and adaptation processes of the ASGM activities, which 

leads to the reduction of mercury usage, decreasing the environmental impact and improving the 

socio-economic conditions of the population-related with the ASGM. The NAP encourages the 

local government – among others- the implementation and development of a monitoring system 

program dedicated to delimitating and identify the ASGM and assess the environmental impact 

that allows the land title and formalization of areas dedicated to. Current methods of monitoring 

ASGM activities are time-consuming, resource-intensive, and unable to cover extended areas such 

as military campaigns and aerial reconnaissance by aircraft. However, some different approaches 

in remote sensing have been used to face the NAP requirements and improve the monitoring of 

the ASGM using spectral land characteristics, concluding that mixed label classes are not separable 

by just the use of spectral information. Therefore, this research proposes an innovative remote 

sensing approach that combines multifeatured spectral and textural analysis with Landsat time 

series to map and detect the ASGM in the Tapajós River Basin (Brazil) from 2000 to 2019.   

LandTrendr is the time series algorithm employed that uses Landsat images to perform temporal 

segmentation of pixel value trajectories over time to detect forest disturbances. Every pixel is fitted 

with a linear regression model represented by a set of vertex and segments rendering the land cover 

changes in a 2D profile, allowing to incorporate the spectral and temporal attributes to classify 

forest loss because of ASGM activities.   

The entire set of predictors (86) were prone to assess feature relevance/importance through 

Variable Selection Using Random Forest (VSURF), which uses a stepwise regression in an 

ensemble model to efficacy remove noise considering the OOB error and the mean decrease error 

to select the most important features in ASGM detection. After performing feature importance and 

feature reduction, a final set of 33 features (26 textures, 5 spectral indices, and 2 topographic data) 

were used for binary (Mine – No Mine) using Random Forest Classifier. For the tuning parameter, 

500 ntrees (number of trees) and 6 mtry (number of drawn candidate variables in each split) with 

50 iterations were used for classification purposes, achieving an overall accuracy of 90.8%. 

Additionally, a probabilistic classification (probability of ASGM presence) was also performed 

considering that the threshold between classes is not clearly defined in the landscape and the 

transition areas from one class to another are fuzzy. An average vote counting of the threes in the 

Random Forest model was used to calculate the probability of ASGM occurrence at pixels level. 

The results show that the proposed method is reliable and robust to detect the forest disturbances 

produced by ASGM activities and arise as an alternative to achieve the NAP.    

Keywords: ASGM, LandTrendr, Texture-features, VSURF, Random Forest, Landsat 
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1. INTRODUCTION 
 

1.1 Background  
 

Artisanal and small-scale gold mining (hereafter ASGM) is a low-tech, labor-intensive mineral 

processing and extraction method conducted by a small group of local miners or small 

enterprises with limited capital investment and rudimentary techniques (UNEP, 2013). The 

legal status, defining criteria, and detailed definition of ASGM vary from country to country. 

Each country is responsible for defining ASGM in its national law and policy(UNITAR & 

UNEP, 2018). The debate on the definition of ASGM has continued for more than two decades 

without a clear resolution and a general agreement (Hinton, 2006). Nevertheless, for the scope 

of the current research, the definition used previously is attained with the Minamata Convention 

on Mercury (UNEP, 2013), declared by the United Nations Environment Program in 2013. 

The ASGM sector produces about 12% to 15% of the world’s gold extraction, and the activities 

have increased notably in the last years, attributed to the rise of gold prices in the international 

market (Swenson et al., 2011). Since the global economic crisis in 2008, the gold price has 

soared by 100%. Consequently, the gold exploitation in the Amazon countries has grown and 

expanded, triggering migration to mining areas, and increasing the environmental degradation 

issues associated with (Alvarez Berrios & Mitchell Aide, 2015).  

ASGM is the largest source of mercury contamination and global emissions (UNEP, 2013). The 

activity is responsible for more than 37.7% of the global anthropogenic mercury emissions, 

with more than 800 tons/year (Veiga, Maxson, & Hylander, 2006). Particularly in the Amazon 

countries, releases to air, water, and land are approximate18% of the global annual mercury 

emission due to ASGM activities (AMAP/UN Environment, 2018). Also, according to The 

Carnegie Amazon Mercury Project, artisanal small-scale gold mines have dropped more than 

150 tons of Mercury in the rivers since 2001 (CAMEP, 2013).   

Mercury is a global pollutant that poses threats to human health (Veiga et al., 2006). Some 

harmful effects on the nervous and digestive system, lungs, kidneys, and immune system are 

highly associated with mercury exposure (World Health Organization, 2019). Some forms of 

Mercury have caused increases in several types of tumors that directly affect the heart and 

circulatory system (Ofosu et al., 2020). Some studies have found associations between mercury 

wastes in the human body with the probability to develop a reduction in motor function, poor 

leg coordination, visual contrast sensitivity, and manual dexterity (World Health Organization, 

2019) 

During the ASGM's process, excavators and dredgers dig up the riverbeds, and the mined 

material is processed at the same site to separate gold from sediments. Small mining ponds are 

excavated mechanically adjacently to the riverbed. On these ponds, the Mercury and cyanide 

are combined with the mined material to wash the ore. The resulting mixture of Mercury and 

gold, known as amalgam, is heated to vaporize the toxic mercury and leave the gold behind. 

Then the mercury waste is released from the ponds into the water streams, polluting the 

freshwater sources (Obeng et al., 2019). The Mercury is converted to methylmercury (MeHg) 
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in the aquatic ecosystems, which is easily bioaccumulated and spreads through the food net, 

toxic for humans and wildlife (Martín et al., 2020).  

 

1.1.1 Socio-Economical and Environmental problems related to ASGM 

 

ASGM activities are one of the most significant causes of land and environmental degradation 

(Obeng et al., 2019). Environmental impacts such as deforestation, landscape degradation, 

alteration of stream and river morphology, widespread environmental pollution, siltation of 

water bodies, biodiversity loss, among others, are the most significant adverse impacts of 

mineral exploitation.   In the Brazilian Amazon, deforestation primarily from these sources was 

estimated to be 574 100 km2 in 1998 (Peterson & Heemskerk, 2001); in the Peruvian Amazon, 

the pace is by around 2000 ha/year from 2006-2009, particularly at the "Madre de Dios Region" 

(Swenson et al., 2011). More than 80 natural reservations and buffer zones in the Amazon rain 

forest have presented substantial evidence of ASGM in their boundaries, and some 55 of them 

are located in indigenous communities (Ipenza & Valencia, 2014).  

Although ASGM is a source of income for many people, its activities have brought multiples 

socio-economic impacts. According to the (ILO) International Labour Organization (2018), 

more than 2 million miners are involved in the ASGM activity in the Amazon. More than a 

million displaced peasants from areas with ore exploitations, and around 500 thousand children 

and women work in ASGM’s without safety or healthy labor conditions.  It is expected that by 

2022 the number increase to 115 thousand and up to five million, respectively (Alvarez Berrios 

& Mitchell Aide, 2015). Besides, under the ILO convention No.182, work performed by 

children in ASGM is considered the “worst form of child labor”  (International Labour 

Organization, 2018). 

 

1.1.2  ASGM Formalization Approach 

 

According to Hilson & Maconachie (2020), the regulation and control of ASGM must be seen 

as a new opportunity to minimize negative environmental and social impacts. The ASGM 

activities are significantly vital since they sometimes are unique livelihood sources for millions 

of people, particularly in developing countries (Hilson, 2002). The ASGM activities have been 

practiced for more than five centuries in more than 70 countries, and it represents a third of the 

total gold production annually. The estimated value of the gold production from ASMG is up 

to 25 billion USD per year (Rogers, 2005). Therefore, the formalization and regularization of 

the sector are needed, considering the magnitude of the official numbers, the socio-economic 

problems related with, the detrimental effects in the environment and human health, the 

business proficiency, and the direct relation with multiples SDG. 

The ASGM sector is directly linked to 8 out of the 17 United Nations SDGs (Sustainable 

Development Goals) (Hilson & Maconachie, 2020). Remarkably, The SDG-1 (No Poverty), 

SDG-2 (Zero Hunger), SDG-3 (Good health and well-being), SDG-6 (Clean Water and 

Sanitation). SDG-7 Affordable and Clean Energy, SDG-8 (Decent work and economic growth), 



Detecting Artisanal Small-Scale Gold mines with LandTrendr multispectral and textural features at the Tapajós river basin, Brazil  

 

8  
 

SDG-11 Sustainable cities and communities, SDG- 12(Sustainable Consumption and 

Production), SDG-14 (Life Below Water), SDG-15 (Life on Land).  

Reduce mercury emissions and used within the ASGM activities is an essential task to reduce 

environmental issues, decrease the human health consequences and control the labor conditions 

associated with it. A multi-disciplinary approach is needed to address the social, economic, and 

environmental issues to achieve global goals and foster sustainable development. Therefore, 

the formalization process and integration into the formal economy for a regulatory system are 

critical to addressing ASGM management.  

Some formalization process such as the Sustainable Artisanal Mining Project (SAM) in 

Mongolia funded by the Swiss Agency for development and cooperation (SDC) (Swiss 

Cooperation Office, 2013), and the formalization approach based on experiences executed in 

Tanzania (UNEP, 2012) and Uganda (Hinton, 2006) have proven the benefits of the 

development of responsible artisanal mining adopting a human-rights based approach and 

environmental lesser impact—eliminating the use and distribution of mercury completely, and 

developing an ASGM miners committee for local organization and sustainable effectiveness 

(UNITAR & UNEP, 2018). The formalization also goes hand-in-hand with the agreement of 

the Minamata Convention on Mercury. Mainly and essentially Article 7. Which declares that 

countries with ASGM activities in their territories must develop a National Action Plan (NAP) 

outlining steps that will be taken to reduce and eliminate mercury use in the ASGM sector 

(UNEP, 2013). Moreover, the United nations environment, through the sustainable 

development goals and global environment facility, have developed the planetGOLD program 

with a guideline and plan for adaptation and mitigation of environmental impacts due to ASGM, 

where feasible constant monitoring and formalization or the ASGMs are declared indispensable 

requirements to eliminate the worst practices (PlanetGOLD, 2020) 

These requirements urge formulating policies and increasing the provision of services among 

various agencies and institutions (e.g., education, environmental, labor, and health). The 

Natural Resources Defense Council and a team of experts in mining and policy development 

provide some recommendations for supporting countries’ commitments under the Minamata 

Convention on Mercury and the fight against the spread of ASGM, which was provided to the 

United Nations Environment Program and present at the intergovernmental Negotiating 

Committee on Mercury (UNEP, 2013). The resulting guidance document sights the relevant 

and essential requirement of incorporating a suitable ASGM monitoring program as a 

mechanism of control that every country must adapt to the National Action Plans (NAP). The 

monitoring must assess and present the current state of the ASGM, addressing not only the 

mercury supply chain and the mercury trade at borders, but also in the environmental impact 

assessment, the ASGM camps, and the regulation and protection of the natural 

resources(UNITAR & UNEP, 2018). 

 

1.1.3 Monitoring ASGM activities 

 

The National Action Plan implies expanding the roles of the local or provincial government in 

monitoring the ASGMs and the activities related to them (UNITAR & UNEP, 2018). 

Nevertheless, the adaptation and implementation of the NAP in monitoring ASGM’s face a set 

http://www.mercuryconvention.org/
http://www.mercuryconvention.org/
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the inconveniences that are even more problematic in the Amazon Rainforest context. Firstly, 

national government mining and environmental institutions often lack the capacity to monitor 

and enforce the ASGM sector regulations (UNEP, 2012). Secondly, the absence of state 

regulation at remote sites and the volatile nature of the ASGM operations tend to result in 

conflicts between miners and regional authorities (Salman & de Theije, 2017). The lack of 

enough technological instruments to fully incorporate a monitor system in the forest to assess 

the different types of forest disturbances, and finally, the complex nature of mining activities 

(Corbett, 2017), which is characterized by a diversity of scales, temporalities, processes, and 

techniques in the exploitation process. Such variability causes different impacts and footprints 

in the ecosystem and different sorts of evidence on the surface. 

Given the environmental importance of the Amazon Rainforest and its relevant role in a climate 

change context, and following the guidelines from the UN Environment Program in the 

formalization approach of ASGM, and the increasing of the ASGM activities, a monitor system 

appears to be all the more needed.  In that sense, remote sensing plays an invaluable role in 

assessing ecosystems' conditions and welfare, consistently capturing continuous information 

regarding the spectral, spatial, and temporal features. Additionally, it allows us to assess and 

monitor forest degradation and spatial distribution of the environmental impacts of 

anthropogenic activities (Nagendra et al., 2013). Additionally, given the global and temporal 

coverage and non-destructive characterization of the surface, its usability has been well 

recognized in the academic literature as a notable tool to identify geometric, spectral, spatial, 

and textural features of the land surface, enabling the analysis of ecosystem conditions (Obeng 

et al., 2019). On the other hand, the free accessibility to data and processing remote sensing 

tools raise as a suitable alternative for local or provincial governments or no profitable 

organizations for monitoring ASGM with low cost and high proficiency  (Spiegel & Veiga, 

2010). 

1.1.4 Methods in Remote Sensing for identifying the ASGM 

 

Remote sensing studies have used a variety of optical sensors and techniques for identifying 

and monitoring ASGM in the forest with different results (Asner & Tupayachi, 2017), and 

(Ngom et al., 2020) combined field surveys with airborne mapping and satellite imaging to 

assess road-and river-based gold mining districts in Peru and Senegal, respectively. In both 

situations, an extra validation with field survey was required to assess the final thematic map, 

given the challenges of access and interpretation of surrounding vegetation conditions. (Isidro 

et al., 2017) used satellite images with high spatial resolution such as Pleiades and SPOT 

imagery and object-based support vector machine classifier in the Philippines. The author 

considers that the proposed method cannot distinguish ASGM from other LULC classes as 

small-scale mining arose from the spatial, spectral, and textural similarities of various forms of 

bare soil. In contrast, the usability of topographical features provide more reliability for 

classifying the large-scale mine (Ibrahim et al., 2020) incorporate a Principal Component 

Analysis (PCA) using sentinel-2 images for ASGM detection in Colombia, getting a 

considerable performance in small areas but with similar results as (Isidro et al., 2017) regarding 

spectral similitude with other land covers in the final classification. Moreover, a qualitative 

inspection of the thematic maps produced by the high-resolution images also indicated that it 

might be possible to estimate the type of small-scale mine by the spatial and temporal context.  
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Using a spatial approach, particularly a semantic segmentation using the convolutional neural 

network method, was proposed by (Gallwey et al., 2020) in Ghana, with noticeable 

improvement and 90% overall accuracy compares to other traditional machine learning 

methods. However, the model requires to be assessed in different climatologic conditions, 

particularly in tropical forests where the availability of cloud-free images even in the dry season 

is lower and the forest density higher, the mining sector is notoriously informal (therefore no 

official records of the settlements) and processes such as deforestation is also related with. A 

multitemporal approach has been conducted by (F. L. Lobo, Costa, & Novo, 2015), (F. de L. 

Lobo et al. (2018),  using a Landsat surface reflectance time series to assess changes in water 

quality and consequences to the aquatic environment due to ASGM activities at the 

Tapajós River. The author provides an alternative for water quality monitoring a recognizes the 

seasonality effect in the ASGM detection (dry and rainy period). Besides, the approach based 

on water quality parameters allows to detect big ASGM hot spots given that the water siltation 

effects are similar to the high-tech mining techniques, but the small ASGM patches are not 

easily detected using the approach. Additionally, the author incorporates a low time-consuming 

and high detection accuracy method using Google Earth Engine (GEE) for mapping mining 

areas within 13 regions of the Brazilian Amazon using Sentinel-2 images. Nevertheless, the 

mapping is generalized to industrial mining and based on the official mining dataset for training 

and validation purposes. 

Additionally, LULC mapping methods also have been used to identify ASGM based on 

temporal forest changes (Almeida-Filho & Shimabukuro, 2002) with a post-classification 

approach and image segmentation. Nonetheless, the outcome was influenced by non-mining 

disturbances such as clear-cutting or dry grass and bank sands. The post-classification error was 

sensitive to the initial classification accuracy, requiring independent and additional verification. 

 

1.1.5 Challenges in Monitoring ASGM with Remote Sensing 

  

It is essential to consider some limitations and challenges that remote sensing faced in 

monitoring ASGM according to previous studies. (i) the absence of official information for 

training and validation purposes given the informality characteristic of the ASGM and the 

incapability to access ground truth efficiently (Güiza Suárez & Aristizabal, 2013). (ii) the 

specialized activity, characterized by a set of different techniques in scale and exploitation 

processes that produce different effects inland (F. de L. Lobo et al., 2018).  (iii) the high intra-

class spectral variability, related to the previous challenge, since the diversity of techniques and 

exploitation scales causes different impacts and evidences, such as bare soil, topsoil clearance, 

mining ponds, land pits, and logging patches (Isidro et al., 2017), this condition also leads to 

misclassification problems with other land covers such as dry soil, deforested patches, recently 

burned forest, and sandbanks along the water streams (Asner et al., 2013).   (iv) the ASGM size 

and locations, according to (F. Lobo et al., 2016), a considerable amount of ASGM occurs 

within forest lands in small patches only detectable by images with high and medium spatial 

resolution. Additionally, the size is highly related to the specialized activity, and they can vary 

from half to hundreds of hectares. (v) Context absence in final land cover classification,  some 

land uses such as roads and ports are part of the ASGM which must be considered in the 

monitoring process and included in consideration (F. Lobo et al., 2016a). 
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Considering the studies mentioned above and the challenges of using remote sensing for 

monitoring ASGM, it is clear that the traditional spectral class separability approach often 

causes misclassifications issues given the similar spectral features with other classes. Moreover, 

fuzzy boundaries and multiple different changes and impacts in the land cover induce 

addressing these challenges considering the spatial relations and pattern approach rather than 

spectral capabilities solely. Additionally, the seasonality effect (F. L. Lobo et al., 2015) leads 

us to consider the changes in the dry season, where the cloud-free images are more likely to 

capture land features, and the ASGM are more common. Finally, the incorporation of 

topographic or ancillary data might provide extra information regarding infrastructures 

associated with the ASGM such as roads or ports for classification and identification purposes. 

Considering all these factors, it is likely that multisource and multitemporal analysis be feasible 

to identify and monitor the ASGM, given the challenges and nature of the problem presented 

above. On the one hand, the multifeatured approach includes spectral information from 

multispectral imaging collections, allowing to discriminate objects based on the spectral 

response at different wavelengths. It is complemented with information that describes the 

spatial relations and pattern identification by estimating texture features, which is a distinctive 

feature of every LULC class and thus valuable for compared classes that exhibit spectral 

similarities (Kupidura, 2019).  Additionally, multisource image features are used in addition to 

multispectral image data to increase the thematic mapping accuracy (Marshall et al., 2017). As 

an alternative to confirming the quality of the outcomes  and the proper interpretation of the 

data, context analysis must be considered to assess the observed changes and detect omission and 

commission errors in a thematic mapping (Lersch, Haertel, & Shimabukuro, 2007). 

On the other hand, the multitemporal approach by the inclusion of time series provides a 

sequence of measurements of the same variable collected over time, allowing to monitor the 

changes, the temporal transitions, and capturing the complexities of the landscape changing 

surface (Gómez, White, & Wulder, 2016). Besides, time series in remote sensing has proved 

capacity for environmental issues characterization while describes trends and seasonal 

behavior, and thus allows to detect of temporal patterns by continuous monitoring (Gillanders 

et al., 2008), identifying the precise timing and magnitude of the change (R. E. Kennedy, Yang, 

& Cohen, 2010). Furthermore, a set of data in the timeline reduces adverse effects from the 

inherent process of capturing information in remote sensing, such as natural circumstances like 

cloud cover, illumination, atmospheric effects, and sensor deficiencies like radiometric gaps 

(Jensen, 2015). 

 

1.1.6 LandTrendr Time Series Algorithm 

 

The LandTrendr (i.e., The Landsat based detection of Trends in Disturbance and Recovery) is 

a pixel-based algorithm that uses temporal segmentation and fitting trajectory regression vertex-

to-vertex to identify spectral trajectories from annual time series (Kennedy et al., 2010). The 

algorithm decomposes spectral information as a function of time (e.g., spectral bands or 

vegetation indices) using a set of parameters that assures that the fitting regression represents 

the temporal changes. The temporal segmentation is characterized by segments (vertex, points, 

breakpoints) representing the spectral trajectory's behavior in a period.  The algorithm has been 

used for monitoring forest disturbances, particularly for industrial mining disturbance and 
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restoration in South Africa (Dlamini & Xulu, 2019a) and detecting vegetation recovery by coal 

mining in Inner Mongolia's Coalfield (W. Xiao, Deng, He, & Chen, 2020),  also for assessing 

historical forest cover change in the lower Amazon floodplains (Fragal, Silva, & Novo, 2016). 

The temporal segmentation analysis of the time-domain provides meaningful information to 

capture diverse land cover dynamics, and the use of regression-based trajectory allows to detect 

abrupt changes and more prolonged forest disturbances such as ASGM activities (Kennedy et 

al., 2010). Moreover, because a temporal trajectory pattern is allowable, the characterization of 

the magnitude of change and the timing of change is extracted and used as a predictor in the 

ASGM monitoring.  

 

1.1.7 Spatial Relations Analysis by Texture image extraction 

 

The texture is an essential spatial feature of an image for pattern recognition, spatial analysis 

among land classes, and visual interpretation (Kupidura, 2019). Remote sensing literature has 

proven the usability of these characteristics to retrieve visually similar patterns and establish 

spatial relations in a specific window of analysis (Clausi & Zhao, 2002). Texture in image 

analysis is a distinctive feature for every object that assesses the spatial relationships of the 

object in a geographic space with its surroundings. Besides, texture analysis features are often 

used as complementary information, particularly in applications where similar land classes are 

not separable using just the spectral information (Ramola, Shakya, & Van Pham, 2020). What 

is more, the use of texture for detecting specific targets and mapping LULC change can be 

extended to (Conners, Trivedi, & Harlow, 1984), (N. Li et al., 2014)(Horch et al., 2019). 

Image texture can be retrieved from a gray-level Co-Occurrence matrix (GLCM), a metric used 

to characterize LULC classes and category-identification of objects regions of particular 

interest on an image, proposed by Haralick et al. (1973). A total of 14 different texture features 

based on grey-level or single image-based spatial dependencies of pixels were proposed to 

identifying objects or regions of interest in an image. Additionally, some other texture features 

have been used as input in the segmentation process of differentiated uniform regions from the 

boundary and unspecified regions, such as the proposed by Conners et al. (1984). This research 

used the GLCM, which has been widely accepted for vegetation modeling and classification 

purposes (Jin et al., 2018) 

 

1.1.8 Incorporating Ancillary Data for Problem Context 

 

According to F. de L. Lobo et al. (2018), some infrastructures such as ports, airstrips, and access 

roads should be considered in LULC classification since directly associated with ASGM 

activities. Ancillary data such as topographic data derived from digital elevation models, LULC 

maps, or infrastructure information is incorporated into multifeatured remote sensing analysis 

since spectral-radiometric data cannot always discriminate land-cover classes in their entirety 

(Rogan et al., 2003). It also helps contextualize the phenomenon by increasing detailed thematic 

levels of land-cover change (Wasige et al., 2012). Additionally, remote sensing analysis must 

undergo processing that incorporates other data sources for interpretation and final 
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consideration in differentiating significant from non-significant change (Corcoran, Knight, & 

Gallant, 2013a).  

Ancillary topographic and soil data derivatives are the most significant input variables for 

mapping wetlands and classifying vegetation wetland types (Corcoran et al., 2013a). 

Topographic characteristics such as a slope, aspect, or altitude determine the spatial distribution 

of the LULC and complement the description of the target with meaningful context (Lersch et 

al., 2007), (Szantoi et al., 2013) demonstrated the significance of using digital elevation model 

and land use map as ancillary data for classifying riparian vegetation in the forest.  

 

1.1.9 Random Forest in the Classification Process 

 

Random Forest  (hereafter RF) is a machine learning supervised classification technique that is 

based on the aggregation of a large number of independent and unrelated decision trees 

(Corcoran et al., 2013) under the premise that the combination of many trees is often more 

accurate than to depend on just one tree. Compared with other traditional automatic 

classification algorithms such as MLC (e.g. maximum likelihood classification) and SVM (e.g. 

support vector machine), the information dimension of RF processing can be increasingly 

complex in terms of size, structure, and type (Hu & Hu, 2020).  It is usually trained with the 

"Bootstrapping" method, a sampling technique in which the algorithm randomly draws samples 

with replacement about two-thirds of the data set (i.e., in-bag samples) for training purposes. 

The remaining third part (i.e., out-of-the-bag) is used for performance assessment of the model, 

simulating the concept of k-fold cross-validation in the set of multiple trees with replacement. 

This training method implies that the same sample can be selected several times, while others 

might not be selected at all. The estimation Error is called OOB-Error is the average error for 

each prediction from the trees that were not contained in the bootstrapping sample; it is also an 

indicator of the model performance. The final classification decision is made by taking the most 

popular voted class from all the tree predictors in the forest (Belgiu & Drăgu, 2016). The RF 

has been widely used in remote sensing for both regression and classification purposes. The 

model's architecture based on multiple trees and random sampling creates high variance and 

low correlation, representing a notable advantage to avoid overfitting issues (Touw et al., 2013).  

The RF is a versatile algorithm with high prediction accuracy and provides meaningful 

information about variable importance, allowing assess variable interaction and relationships 

(Touw et al., 2013). Variable importance helps interpret the relevance of variables for the data 

set under study, showing a direct link between predictors and samples and optimizing prediction 

accuracy (Belgiu & Drăgu, 2016). The main reason for choosing RF as a machine learning 

method for classification purposes compared with other classifiers is that RF is intrinsically 

suited for multiclass and multitype type data problems, allowing assessment features with 

different scales (Corcoran et al., 2013). 
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1.1.10 Problem Statement 

 

Through the Intergovernmental Negotiating Committee on Mercury (UNEP, 2014), United 

Nations Environment Program emphasized the need for a cost-efficient monitoring technology 

for ASGM and reducing mercury emissions in a forest management context (UNEP, 2014). 

Moreover, it is a priority research problem unanimously identified by the local governments, 

land managers, and social scientists from the Amazon countries to assess the state of the ASGM 

(Hinton, 2006). Current methods of identifying ASGM are resource-intensive (Eduful et al., 

2020) (surveys and military campaigns) and the remote sensing methods employed failed in 

separating the ASGM above similar spectral classes, omitting the spatial context and relations 

in detecting the dynamic process of the ASGM (F. Lobo et al., 2016a), (Isidro et al., 2017). 

Additionally, ASGM detection approaches by (Elmes et al., 2014) recognizes inaccurate 

boundary delimitation by exploiting the spectral features derived from satellite images. 

 As Kupidura (2019) shows, texture refers to the visual effect caused by the spatial variations 

in tonal quantity in a specific area, providing information regarding pattern and local variations 

(Shaban & Dikshit, 2001) assures that statistical textural information results useful for 

classifying heterogeneous classes with similar spectral properties and boundaries delimitation. 

Additionally, (Champion et al., 2008), (Feng, Liu, & Gong, 2015), (Small, 2001)  have found 

that using textural information in multispectral images for classification, apart from spectral 

data, can significantly increase the accuracy of classification.   

On the other hand, time series by spectral segmentation provides the ability to determine the 

drivers of the land cover change and estimate the magnitude and year of detection (Cohen et 

al., 2018), using vegetation indices as an efficient way to provide a direct connection to 

vegetation’s physical characteristics and the land cover change (Dash et al., 2007). Moreover, 

approaches that incorporate spatial, spectral, and temporal data of the classes of interest are 

prone to comprehend the phenomenon better and, therefore, better detect the ASGM (Gómez 

et al., 2016). 

Consequently, to the knowledge of this research, incorporating a multifeatured (textural, 

spectral, and ancillary) and multitemporal analysis (LandTrendr time series) for ASGM 

detection is the core of the current scope. The study focuses on characterizing the magnitude of 

changes of spectral and texture features by using the LandTrendr algorithm adding ancillary 

data for ASGM detection. Since temporal segmentation enables describing the temporal 

changes in a time series, texture represents patterns in pixels and spatial variations that spectral 

values cannot describe (Feng et al., 2015); this study, therefore, aims to address the research 

gap by characterization the textural with spectral features through temporal segmentation using 

the LandTrendr algorithm, combining with ancillary data, to assess the textural and spectral 

changes through time to identify ASGM in the Amazon Rainforest. 
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1.2 Research Objectives  
 

The current research aims to detect and monitor ASGM in the Amazon Rainforest by 

incorporating multisource features and multitemporal image time series analysis in the period 

cover by 2000-2019.  

Based on the above discussion and reasoning, the main research aim of the proposed study is: 

• To detect ASGM through LandTrendr for temporal segmentation on time series using 

multispectral and textual features on the Random Forest classifier. 

To achieve this primary aim, the specific objectives of the study are as follow: 

 

1.2.1 Specific Objectives  

 

1. To perform temporal segmentation of texture features and spectral indices using the 

LandTrendr algorithm to assess the magnitude of the change and add ancillary data for 

ASGM detection.  

 

2. To perform data mining to assess the most relevant and least redundant features in the 

ASGM detection and classification process.  

 

3. To develop an accurate and efficient classification method (probabilistic) using the 

relevant spectral characteristics and textural features derived from temporal 

segmentation and ancillary data. 

 

1.2.2 Research Question  

 

Several research questions were formulated to address the objectives: 

1. Does the LandTrendr, through temporal segmentation of multispectral and textural 

features in a time series, detect abrupt changes related to ASGM activities? 

 

2. What is the most relevant set of textural, spectral, and ancillary features retrieved for 

data mining for classification purposes? 

 

3. Is the ASGM detectable by exploiting the temporal segmentation of textural and spectral 

features? 
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2. STUDY AREA AND DATA USED 
 

2.1 Study Area 

 

The Tapajós River Basin is one of the largest tributaries of the Amazon river (Ngom et al., 

2020). It is 2.080 km long and covers 492.000 km2 approximately (Ngom et al., 2020). The area 

has a monomodal flood-pulse, with a high-water period from February to May and a low-water 

period from August to November (Domingues et al., 2019). More than 95 percent of the Tapajós 

Basin is divided between Mato Grosso and Pará states, with the states of Amazonas and 

Rondônia skirting the western drainage. The area is well known for creating the Gold Mining 

district in 1983, and the area has been intensively mining since then (F. L. Lobo et al., 2015). 

The area of study spans 370km2. It is located in the south of Pará state and the downstream part 

of the Tapajós River (figure 1). The area of interest is delimited by the spatial coverage of a 

Landsat scene located in the row and path 228- 64. 

Figure 1 Shows the area of interest (AoI)1, the official land cover map for the whole Tapajós 

river basin considering the Forest/No Forest classes retrieved from the mapbiomas platform 

which belongs to the project: Brazil annual mapping of land use and land cover project 

(Mapbiomas, 2015). The other inputs were obtained from Insituto Brasileiro de Geologia e 

Estadistica (IBGE, Brazil) and the Agência Nacional de Águas e Saneamento Básico (ANA).  

According to F.L Lobo et al. (2015), gold mining in the area is traditionally performed by 

removing topsoil layers or dragging out the sediments from the bottom of the rivers using suction 

and separating the gold by gravity. Both techniques discharge a high concentration  of sediments, 

composed chiefly of fine organic particles that carry out a significant concentration of Mercury 

used in the amalgamation process (Telmer & Stapper, 2007).  The Tapajós river basin was 

intensively explored during the gold rush in late 1980. Since then,  it has been exploited for the 

last 30 years (Roulet et al., 2001), releasing significant amounts of Mercury into its water 

tributaries, notably the Peixoto de Azevedo, Teles Pires, Juruena, Tropas, and Crepuri (Malm 

et al., 1995).  

 

 

 

 

 

 
1 Given that the aim of this research is to assess the accuracy and performance of a potential method for detecting 

ASGM. Therefore just a small area from the Tapajós river basin was selected. 

 

https://www.gov.br/ana/en
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Figure 1 Area of Interest. (a) Top Left:  Brazilian Federate States and Tapajós Basin Location. (b) Bottom Left: Area of 

Interest at the Tapajós River Basin. (c) Forest / No-Forest map of the Area of Interest 

2.2 Dataset used. 

 

This section describes the data used in this research. Table 1 shows a summary of every set of 

data. A detailed description of every feature can be found below. 

Table 1. Dataset Used 

DATASET SOURCE FORMAT DATA PROVIDER 
ASGM Data RAISG  .shp (RAISG, 2020) 

Landsat 7 ETM+ Google Earth Engine .GeoTiff (Department of the Interior 
U.S. Geological Survey, 2011) 

Landsat 8 OLI Google Earth Engine .GeoTiff (Department of the Interior 
U.S. Geological Survey, 2016) 

NASA SRTM Digital Elevation 30m 
 

Google Earth Engine . GeoTiff (Farr et al., 2007) 

Water Bodies and Roads IBGE (Instituto Brasileiro de 
Geografia e Estadistica) 

 

.shp (IBGE, 2020) 

VHR Images Google Earth Cloud 
Computed 

Base 

(Google, 2019) 
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2.3 ASGM Dataset 

 

The ASGM dataset is second-hand data formed as a compendium of multiple considerable types 

of research, methodologies, institutes, and sources. It ranges from anthropological studies, 

hydrological research, remote sensing findings, military campaigns, journal, and research 

articles, where the location and identification of the ASGM mines were settled by in field. The 

compendium is part of the agreement by multiple institutions and organizations and their efforts 

for sharing and broadcast information regarding environmental and social issues in the Amazon 

Forest. It is compiled by RAISG (e.g., Rede Amazônica de Informação Socioambiental / 

Socioenvironmental Information Amazon Network), which is a consortium of civil society 

organizations in the Amazon countries. It is supported by international partners such as Rain 

Forest, USAID (United States Agency for International Development), NICFI (Norway's 

International Climate and Forest Initiative) concerned with the socio-environmental 

sustainability of Amazon. The organization produces and disseminates knowledge, statistical 

data, and geospatial socio-environmental information on Amazon developed through protocols 

common to all the region's countries (RAISG, 2020). 

The dataset is a compilation of more than a decade of research above the Amazon Forest. The 

following institutions and programs were responsible for capturing information with regards to 

the Area of Interest. 

- Data bank Protected Areas Monitoring Program / ISA, 2016 

- Database of the Binational Brazil Venezuela map, referring to the Brazilian part. 

- DETER / INPE (Instituto Nacional de Pesquisas Espaciais): Mapeamento de áreas de 

garimpo 2017 (Mapping of mining Areas) 

- Data base of the Xingu (Observatório do Xingu) / ISA Program, 2013. 

In table 2, there is a description of the RAISG's data set used. Given that data acquisition 

depends on the type of the study, source, and data owner, there are two sorts of data in the area 

of interest:  Punctual location and Area delimitation. Additionally, from the whole set, only 

gold mines (mineral substance) were considered in further analysis, and the data field was 

measured after the year 2000 since it is the first year of the time series.  
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Table 2. RAISG's Ground Truth data description 

DATA ATTRIBUTES ELEMENTS FORMAT GEOMETRY 
 
 
Punctual 
ASGM 

Location (X, Y) Coordinates 
Spatial Reference 
Country 
Mineral (Substance) 
Date (detection) 
Source of the Information 
Condition (Active / Inactive) 
Institute Involve 

516 .shp Point 

 
 
Set of 
ASGM's 

Location (X, Y) Coordinates 
Spatial Reference 
Country 
Mineral (Substance) 
Date (detection) 
Source of the Information 
Condition (Active/Inactive) 
Institute Involve 
Area 

182 .shp Polygon 

 

2.4 Landsat Satellite Images Landsat 7 ETM + and Landsat 8 OLI 

 

The Landsat satellite missions provide multispectral imagery with 30m spatial resolution since 

April 1972 and onwards (P. Li, Jiang, & Feng, 2013). The constellations Landsat-7 ETM+ y 

Landsat-8 OLI were used in the time series to cover the twenty years. Both satellite 

constellations orbit the Earth in a sun-synchronous, near-polar orbit altitude of 705 km with 

circles around the Earth every 99 minutes.  The satellites have a 16-day repeat cycle and are 

freely accessible from different sites such as the USGS website and Google Earth Engine 

Platform. Given the extended period of analysis and the need for an automated process in the 

ASGM detection, all the images were processed using a Google Earth engine script. In total, 

820 images from Landsat-7 ETM + and Landsat-8 OLI were used for the set of images to cover 

the period. 

Some Landsat specifications of both sensors are given as follows: 

Table 3 Landsat sensor characteristics 

  Satellite                     
 

LANDSAT-7 ETM+  
Wavelength (µm) 

LANDSAT-8 OLI 
Wavelength (µm) 

Band 1  0.45 – 0.52  0.43 – 0.45  

Band 2  0.52 – 0.60  0.45 – 0.51  

Band 3  0.63 – 0.69  0.53 – 0.59  

Band 4  0.77 – 0.90  0.64 – 0.67  

Band 5  1.55 – 1.75  0.85 – 0.88  

Band 6  10.40 – 12.50 1.57 – 1.65 

Band 7  2.08 – 2.35  2.11 – 2.29 

Band 8  0.52 – 0.90  0.50 – 0.68 

Band 9  ---------------- 1.36 – 1.38 

Ground Sampling  
Interval (Pixel Size) 

30m reflective  
 60m Thermal  

30m reflective  
15 m Panchromatic 

Product delivered as  8-bits with 256 gray levels 12-bits with 4096 gray levels 

https://www.amazoniasocioambiental.org/en/
https://www.amazoniasocioambiental.org/en/
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2.5 NASA SRTM Digital Elevation  

 

The Shuttle Radar Topography Mission digital elevation data (SRTM) is an international 

research effort that obtained digital elevation models on a near-global scale. NASA JPL 

provides this SRTM V3 product (SRTM Plus).  It used dual radar antennas to acquire 

interferometric radar data, processed to digital topographic data at one arcsec resolution, 

approximately 30m of spatial resolution to the year 2000. SRTM uses two synthetic aperture 

radars, a C band system (5.6 cm, C radar) and an X band system (3.1 cm, X radar) (Farr et al., 

2007). These swaths offered nearly continuous coverage at higher latitude. The DEM-based 

elevation data has been further used for derived topographic image features such as aspect, 

slope, elevation, and topographic wetness index. 

 

2.6 Roads and Water Bodies 

 

In order to provide context and association with some infrastructures related to ASGM 

activities, some ancillary data were calculated, such as Euclidean distance to roads and water 

bodies, using the data set of roads and water bodies in the AOI. The data set was downloaded 

from the Brazilian National Institute of Statistics and Geography (O Instituto Brasileiro de 

Geografia e Estadistica). Given the conditions of the landscape and the forest density, the roads 

are the type of tertiary beams and rural roadbuilding. The water bodies include all the river 

streams of the Tapajós river basin. 
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3 METHODOLOGY 
 

This chapter describes the overall flow and the further steps to achieve the research objectives 

and provide findings to the research question. The figure at the bottom represents the 

methodology flowchart of the whole process in the research.  

 

Figure 2. Methodology Flowchart 
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The research is composed of the third mains stages, as shown in the previous flowchart. Firstly, a 

pre-processing stage called Data Preparation where ASGM data compendium is organized a 

filtered by area of interest, year of identification (2000 -2019), and type of mine (ASGM). A 

photo interpretation process is employed for ASGM delimitation. From the ASGM polygons, 

a set of points were randomly selected and used for classification purposes (75% for training 

and 25% for validation). An unbalanced data limitation was overcome using an over-sampling 

on the ASGM polygons and an under-sampling process out of the ASGM areas. Moreover, 

Landsat images - L2C product atmospherically corrected - are filtered by date and cloudiness 

conditions and composited. A set of texture features and spectral indices (table 5, 6) were 

calculated from the image composition and prepared as inputs of the time series analysis from 

the image collection. Besides, the ancillary data is generated in this step.  

The second stage is Running LandTrendr, where the time-series algorithm is run using the 

texture features and the spectral indices to identify and retrieve the temporal breakpoints, the 

magnitude of change (MAG), year of change (YOD) as raster outputs from forest disturbances. 

A total of 80 variables were used for temporal segmentation,72 texture features (table 5), and 8 

spectral indices. Ancillary data, given their nature, was not included in the segmentation, and 

was directly used in the following phase. 

Thirdly, the Classification stage was conducted in two steps: feature reduction by variable 

importance assessment using the package VSURF, and a binary and probabilistic classification 

using Random Forest Classifier. The assessment of the variable importance was performed to 

reduce the set of predictors in classification and identify what features are important in ASGM 

classification. A final prediction model was resultant after VSURF with 33 features (table 11 

Additionally, a set of partial dependence plots was generated to analyze the features' influence 

on ASGM classification individually.  

The following subsections explain in detail the process carried on for every step. 

 

3.1 Data Preparation 
 

The ASGM second-hand dataset comprises different types of sampling, methods, period, and 

accuracy. Therefore, an additional adjustment of the dataset was needed. Initially, it was filtered 

by mineral and year in the area of interest. Subsequently, the polygons were digitized based on 

the location, and the definition of the boundaries was delineated considering the routinely 

essential elements of image interpretation and aerial photos image analysis (e.g., location, size, 

shape, shadow, tone/color, texture, pattern, site/situation/association). The digitization was 

carried on using different very high spatial resolution images in Google Earth considering the 

period of analysis and data collection date (2000-2019). Those polygons were used for sampling 

the validation and training samples. The third quarter of the sampling was used for training, and 

the remaining part for validation. In the following section, there is a description in detail and 

explanation of the sampling process and the limitations of the size sampling and land classes' 

nature. Figure 3 shows an ASGM digitized and the location in the area of interest. 
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Figure 3. Area of Interest and ASGM digitized example date: 12-2001, image: Landsat / Copernicus Google Earth  Pro 

 

3.1.1 Unbalanced Data 

 

Unbalanced data refers to the classification problem where the classes are not represented 

equally, posing a problem for the suitable performance of the machine learning algorithms, 

particularly with unbalance predictor classes (Riddell et al., 2020). The unbalanced data 

restriction is expected under the conditions and characteristics of this environmental problem, 

the target class size, the informality related to this activity, the spread pattern by small clusters, 

the restrictions presented for field work, and the extension of this activity in the rainforest. 

According to  (Millard & Richardson, 2015), an adequately alternative to deal with the 

unbalance data is using a combination of under-sampling and over-sampling of the major and 

lesser classes, respectively. For under-sampling, a subset of samples was selected randomly 

from the class with more instances (i.e., forest and water bodies). On the latter, there is an 

additional and intense sampling of the minor class to increase the number of samples and thus  

mitigate the difference among the classes. 

Nevertheless, it is essential to consider some drawbacks that the combination of both methods 

might arise. On the one hand, the main disadvantage of under-sampling is likely to lose valuable 

and relevant information from the left-out samples. On the other hand, over-sampling may lead 

to overfitting the model and make the classification prone to get the same samples in the test 

and training data, leading to overestimating the model and its poor generalization.  

The random sampling of the mine class was carried over the ASGM polygons generated in the 

digitization step “Data Preparation” section. The Non-mine class was also randomly sampled 

but over the rest of the land covers present in the study area (i.e., forest, crops, roads, and rivers). 

Finally, three-quarters of the entire set of samples were used for model validation; the remaining 

samples were used for training purposes—figure 3 shows the whole sampling dataset and 

distribution. 
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Figure 4. Sampling Schema for Mine and Non-Mine Classes 
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3.1.2 Image Pre-Processing and Harmonization 

 

The selection of the satellite images and the posterior processing and ran into LandTrendr was 

carried on the Google Earth Engine platform. The Landsat 7 ETM+ and Landsat 8 OLI images were 

selected based on the Landsat row-path (228-64), a cloudiness factor lower than 20%, and over the 

dates in the dry period (June to September (F. L. Lobo et al., 2015)). Nevertheless, given the 

extended period of analysis (twenty years) it is needed to combine and relate spectral 

information of both sensors to assure the spectral continuity of the time series through the period 

(2000-2019), generate near-date intra-annual images composition, reduce the effect of missing 

observations either the sensor ETM+ SLC-off or clouds and shadows and increase the 

observation frequency (Vogeler et al., 2018). Making comparable sensor bands and spectral 

values from one sensor to another and ensuring the Landsat images’ continuity in the time series 

is called harmonization. According to Roy et al. (2016), harmonized ETM / ETM+ / OLI can 

minimize and link the differences between the sensors regarding the spectral wavelength and 

wideband, time of acquisition, and atmospheric state. The harmonization used in this research 

is a pixel basis method presented by Roy et al. (2016),  using a linear transformation of the 

Landsat 7 ETM+ spectral space to link with the Landsat 8 OLI spectral space. Table 3 shows 

the coefficients and slope proposed in the method and the regression used for harmonization 

from ETM+ to OLI, the wideband of the resultant band, and the name assigned to each one. 

Figure 5 illustrates the images available in the time series for each sensor using the NDVI as an 

example for representation. Additionally, a single-pixel spectral response time series chart 

using the same vegetation index composite by median to represent the Landsat ETM+ 

harmonization to OLI by a linear transformation (figure 6). 

The transformation functions were developed using ordinary least squares (OLS) regression. 

The different models had good fits for every band (r2 values > 0.7, p-values < 0.0001), 

indicating that spectral transformations can be applied to broadly normalize the reflectance of 

one sensor with the other (Roy et al., 2016). Table 4 shows the transformation functions applied 

to every band and the band's name resultant after the harmonization process. 

 

Table 4. Harmonization Surface Reflectance Sensor Transformation Functions based 

Band 
(Name) 

OLI (µm) ETM+ 
(µm) 

Linear 
Transformation Function 

Wavelength After 
transformation 

(µm) 

Band Name  
After 

Transformation 

Blue 0.45 – 0.51 0.45 – 0.52 OLI = -0.0095 +0.9785 ETM+ ~0.48 B1 

Green 0.53 – 0.59 0.52 – 0.60 OLI = -0.0016 +0.9542 ETM+ ~0.56 B2 

Red 0.64 – 0.67 0.63 – 0.69 OLI = -0.0022 +0.9825 ETM+ ~0.66 B3 

NIR 0.85 – 0.88 0.77 – 0.90 OLI = -0.0021 +1.0073 ETM+ ~0.85 B4 

SWIR 1 1.57 – 1.65 1.55 – 1.75 OLI = -0.0030 +1.0171 ETM+ ~1.61 B5 

SWIR 2 2.11 – 2.29 2.09 – 2.35 OLI = 0.0029 +0.9949 ETM+ ~2.21 B7 

 

https://developers.google.com/earth-engine/tutorials/community/landsat-etm-to-oli-harmonization#references
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Figure 5. Time Series Image Collection using harmonization and NDVI.

 

Figure 6. NDVI Median Composite time-series images harmonized to Landsat 8 OLI. 

 

Figure 7. Harmonization and Image composite using medoid and NDVI as an example. 
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The image collection set formed after the Harmonization process and composited by medoid is 

hereafter called "Sensor Collection" for simplicity and clarity with the terms. Remarkably, this 

collection has only six bands due to the harmonization process from ETM+ to OLI. The wideband 

resultant is the arithmetical average of the wavelength inputs and the band's name as render in the 

previous table (table 4). 

 

3.1.3 Cloud Masking and Mosaic Composition 

 

Identification of clouds, cloud shadows, and snow in optical images is often necessary to reduce 

noise that can effect the trend analysis and thus the outcome (Jensen, 1996).   The sensor 

collection has been atmospherically corrected and includes a cloud, shadow, water, and snow 

mask produced by the CFMASK function available in Google Earth Engine. This function was 

used considering that the harmonization process was employed to adjust the spectral values 

from Landsat 7 ETM+ over Landsat 8 OLI, which means that the spectral information for 

further analysis is related to the second sensor. The new version of the mask function for use 

with Landsat-8 OLI takes advantage of the cirrus band and is especially helpful for detecting 

high altitude clouds, returning the count of unmasked pixels per year available for compositing. 

Additionally, the quality assessment band (QA) provides cirrus confidence information in the 

mask processing (Zhu & Woodcock, 2014). 

The sensor collection must include only one image per year to be accepted by the temporal 

segmentation algorithm (Cohen et al., 2018). However, because clouds are often present in the 

tropical forest, it is safe to retrieve multiple images along the dry season, mask the clouds out, 

cloud shadows from each of them, and posteriorly perform a composite collection (Kennedy et 

al., 2010). In this sense, it is possible to have an annual spatial coverage free-cloud pixel, and 

thus the spectral information will not be altered because of non-interested elements. Moreover, 

according to Lobo et al. (2016), the ASGM activities are prone to be settled in the dry season 

(June – September), and thus the image collection was performed into this period. 

There are multiples options to perform an image composite of satellite images, based on the 

median (Fauvel et al., 2012), nearest to a target day of the year (Griffiths et al.,2013), maximum 

NDVI composite or medoid (Jensen, 2015). In order to keep the spectral trajectory along the 

time with the fewer alterations or modifications in the pre-processing as much as possible, and 

also, to produce an image collection representing the period (figure 7), the medoid technique 

was conducted in the research based on Flood (2013).  

The medoid is a multi-dimensional analog of the median composition, robust against extreme 

values (Flood, 2013). For each pixel, the medoid is always selected from the available set of 

images. The medoid is the value in the whole data set, which minimizes the median distances 

from all other points. It is selected from the input set of images, assuring that the final pixel 

value will lie roughly in the midpoint of the cluster, in contrast to average or median values 

where the output is not necessarily a real pixel value in the data set but calculated (Flood, 2013). 

Therefore, the result is always a real observation; compare to the median or the average, where 

the pixel value resultant is estimated. A formal definition of the calculation of medoid is 

presented in the following equation. 
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(𝑋𝑖) = 𝑇𝑎𝑟𝑔𝑒𝑡 𝑝𝑖𝑥𝑒𝑙 
𝑅𝑛   =   𝐼𝑚𝑎𝑔𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝐵𝑎𝑛𝑑𝑠) 

 

The ║   ║ represents the Euclidean distance, and the arg min operator selects the element of X  

(𝑋𝑖) That minimizes the expression (Flood, 2013). 

The sensor collection has been transformed into an Image composition collection.  Every pixel 

has been atmospherically corrected (dataset is atmospherically corrected -surface reflectance - 

from the source of origin), masked by the CFMASK function to reduce the noise from clouds 

and shadows, harmonized using Roy’s linear regression and transformation relating the spectral 

feature space from ETM+ to OLI with six resultant spectral bands and composited by the 

medoid method. This image composite collection (hereafter Image Collection) comprises 

twenty images per year from 2000 to 2019. The Image Collection is the set of images prone to 

the calculation of texture features and spectral indices, and it is the primary input to run the 

LandTrendr algorithm and estimate the temporal segmentation. Figure 7 represents the structure 

of the image collection for the time series analysis. 

 

 

Figure 8 Image Annual-Composition Collection Structure (TrimbleInc, 2015) 
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Table 5. Inputs Predictors used for Classification. 

PREDICTORS QUANTITY DETAIL 

 
 
 
 
 

MAG TEXTURE 
FEATURES 

 
 

72 Features 
 

Each of these textures was calculated over 
each spectral band. 

 
12 texture x 6 spectral Bands  

 
 

Angular Second Moment 
Contrast 

Correlation 
Variance 

Inverse Difference Moment 
Entropy 

Difference Variance 
Difference Entropy 
Cluster Prominence 

Dissimilarity 
Inertia 
Shade 

 
 
 

MAG SPECTRAL 
INDICES 

 
 
 

8 Features 

EVI 
LSWI 

MNDWI 
NBR 

NDMI 
NDPI 
NDVI 
NDWI 

 
 

ANCILLARY FEATURES 

 
 

6 Features 

Aspect 
Slope 

Elevation 
Distance Roads 
Distance Rivers 

TWI 

 

3.1.4 Texture Feature Extraction  

 

GLCM (i.e., Gray Level of Co-occurrence Matrix) method extracts second-order statistical 

texture features. A GLCM is a matrix where the number of rows and columns is equal to the 

number of gray levels in the image (Ramola et al., 2020). The GLCM measures the probability 

of two grey levels separated by a given distance in a given direction. According to Mohanaiah 

et al. ( 2013), “the matrix element P (i, j | ∆x, ∆y) is the relative frequency with which two 

pixels, separated by a pixel distance (∆x, ∆y), occur within a given neighborhood, one with 

intensity 'i' and the other with intensity 'j.' The matrix element P (i, j | d, ө) contains the second-

order statistical probability values for changes between gray levels 'i' and 'j' at a particular 

displacement distanced and at a particular angle (ө)." Using the texture features in terms of gray 

intensity levels implies using spatial-temporal relations in the data set, high accurate 

discrimination in pattern recognition with low computation capacity. 

The GLCM texture features extraction was calculated from the Image Collection. A set of nine 

GLCM metrics proposed by Haralick et al. (1973) and three metrics considering Connerset al. 

(1984) were generated for each band, year after year, along with the period cover by the time 

series. The outputs consist of twelve images of texture features per band input (72 bands in 

total), using a directional averaging kernel of 3 x 3 size. The kernel’s size was established 
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considering the smaller ASGM at the RAISG data set (1Ha) and the spatial resolution of the 

Landsat Images (30m). Table 3 shows the Gray Level Co-occurrence Matrix and Conners' 

metrics features and a brief description of each one. The texture features were estimated using 

the function glcmTexture (size, kernel, average) in Google Earth Engine. 

 

Table 6. Texture Feature Description 

TEXTURE DESCRIPTION 

Angular Second Moment Measures the number of repeated pairs 
Contrast Measures the local contrast of an image 

Correlation Measures the linear dependency between pixels pairs 
Variance Measures the spread of gray-level in an image is in an image 

Inverse Difference Moment Measures the homogeneity of an image 
Entropy Measures the randomness distribution of a gray-level in an image 

Difference Variance Measures the variance of the gray-level distribution in an image 
Difference Entropy Measures the difference in the randomness of the gray-level  
Cluster Prominence Measure cluster by the gray-level occurrence 

Dissimilarity Measures the variation between pixels pairs 
Inertia Measures the intensity between a pixel and its neighborhood 
Shade Measures the cluster shade of gray-level distribution 

 

The texture is the pattern of intensity variations in an image used for improving land cover 

classification. It provides information from neighboring pixels that are allowed to characterize 

and identify target objects in the scene. Each texture models different properties of the statistical 

relationships calculated from a moving kernel in a defined direction. Variance texture measures 

a pixel's heterogeneity with its neighbors, increasing when the gray-level values differ from 

their means. It has no spatial frequency; nevertheless, it is an indicator of high contrast values 

from a set of pixels. Cluster prominence (here called PROM) is an asymmetry measurer. The 

higher the PROM, the higher the asymmetric is the image; in contrast, low values in the cluster 

prominence indicate a peak in the mean in the GLCM matrix, thus asymmetric and low 

grayscale variation image. Cluster shade (here called SHADE) measures the skewness and the 

uniformity of the grayscale matrix. According to Yang et al. ( 2012), in the calculation process, 

a new image is created with a new range of intensities and updated based on its nearby pixel 

position; high values of shade are related to image asymmetry and, therefore, variation in the 

gray-level co-occurrence matrix (Ramola et al., 2020). Contrast measures the local variations, 

showing the difference between the highest and the lowest values of a continuous set of pixels. 

The higher the image's variation, the higher the contrast value. Inertia is also a local indicator, 

measuring the contrast between a pixel and its neighbors in terms of pixel intensity in the 

original image. Correlation indicates the gray-level linear dependency of a pixel with a point in 

the image; similar gray-level regions register high correlation values. ASGM or angular second 

moment indicates the textural uniformity of the gray levels; if the matrix contains few gray 

levels, the ASGM will have high values (X. Yang et al., 2012). 
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3.1.5 Spectral Indices 

 

Spectral Indices are designed to normalize spectral reflectance for different atmospheric 

conditions, topography and soil background, which tends to accentuate certain surface 

properties (Jensen, 1996).  They are relatively  simple to calculate and are commonly used to 

monitor vegetation cover, health, state, vigor, and growth dynamics, among others. (Xue & Su, 

2017).  Moreover, they show better sensitivity than individual raw spectral bands for different 

applications related to vegetation conditions and constitute a notable method for detecting the 

LULC changes (Asrar et al.,1985). Additionally, Jovanović et al. (2015) and  (1993) have 

proven that the usability of vegetation indices improves the classifications in thematic mapping 

considerably, given that each spectral indices are designed to accentuate a particular vegetation 

o water body's property.  

A set of 8 spectral indices were calculated from the Image Collection considering the resultant 

bands after the harmonization process, the indices in table 4 were adapted accordingly to the 

features of the resultant bands.  

 

Table 7. Spectral Indices used for Spectral Segmentation. 

SPECTRAL INDEX FORMULA AUTHOR 

Enhanced Vegetation Index 
𝐸𝑉𝐼 = 2.5 ∗  

(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 6 ∗ 𝑅𝐸𝐷 − 7.5 ∗ 𝐵𝐿𝑈𝐸 + 1)
 

(Huete et al., 2002) 

Land Surface Water Index 
𝐿𝑆𝑊𝐼 =  

(𝑆𝑊𝐼𝑅 1 − 𝑁𝐼𝑅) 

(𝑆𝑊𝐼𝑅 1 + 𝑁𝐼𝑅)
 

(X. Xiao et al., 2002) 

Modified Normalized 
Difference Water Index 

𝑀𝑁𝐷𝑊𝐼 =  
(𝐺𝑅𝐸𝐸𝑁 − 𝑆𝑊𝐼𝑅) 

(𝐺𝑅𝐸𝐸𝑁 + 𝑆𝑊𝐼𝑅)
 

(Lira, 2006) 

Normalized Burn Ratio 
𝑁𝐵𝑅 =  

(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅 2) 

(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅 2)
 

(Key et al., 2006) 

Normalized Difference 
Moisture Index 

𝑁𝐷𝑀𝐼 =  
(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅) 

(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅)
 

(Wilson et al., 2002) 

Normalized Difference Pond 
Index 

𝑁𝐷𝑃𝐼 =  
(𝑆𝑊𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁) 

(𝑆𝑊𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁)
 

(Wang et al., 2017) 

Normalized Difference 
Vegetation Index 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅𝐸𝐷) 

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 

(Rouse et al.,1974) 

Normalized Difference 
Water Index 

𝑁𝐷𝑊𝐼 =  
(𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅) 

(𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅)
 

(Gao, 1996) 

 

The spectral indices and the texture features extracted from the Image Collection were stacked 

in a multilayer image that went through the LandTrendr temporal segmentation algorithm to 

identify the temporal changes and estimate the year of change and the highest magnitude of the 

change per input feature (band). 
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3.2  Temporal segmentation using LandTrendr. 
 

The LandTrendr is a spectral trajectory-based algorithm used on time-series analysis to identify 

and detect vegetation loss or gain changes (Kennedy et al., 2010).  It is capable of detecting 

abrupt and smooth changes and trends from the annual time series. LandTrendr is ported on the 

Google Earth Engine platform, simplifying the data management and timely processing of the 

algorithm and taking advantage of the cloud-based processing for less time-consuming and 

effective monitoring of forest disturbances. 

The LandTrendr is a pixel-basis algorithm that enables to characterize a temporal trajectory of 

a pixel value using a sequence of connected straight segments bounded by break-points or 

vertices, representing a pixel's yearly behavior in a time series (Kennedy et al., 2018). The 

temporal segmentation is carried on in two main steps. Initially, some vertices are identified as 

candidates through iterative anomaly detection to detect break-points (vertices) separating 

periods of durable change and stability in the spectral trajectory along the time. Once the 

vertices are detected, a set of straight segments are connected and fitted to the observed spectral 

values using linear regression to assure that the segment is anchored between two vertices. The 

best-fitting segment is calculated iteratively to find successively the suitable representation of 

the time series using a linear regression vertex-to-vertex to identify the best fitting straight line 

trajectory across the vertices (Cohen et al., 2018).  In every iteration, a goodness of fit statistic 

is estimated to adjust the vertices and segments to the spectral values, and this way, rendering 

the spectral segmentation. The result of this procedure for each pixel is a fitted trajectory with 

a set of vertices and segments that provide information about distinct spectral epochs (Kennedy 

et al., 2010).  

The temporal segmentation process is performed considering a set of user-defined parameters 

that control the number of segments, the best fitting model, and the minimum of the 

observations needed to perform the output fitting. Table 4 shows the meaning of each 

parameter, and table 5 the values used for different spectral indices. Moreover, from the 

temporal segmentation, a set of metrics can be retrieved. Particularly, the duration of change, 

year of change, and the magnitude of disturbance. Figure 8 renders a temporal segmentation 

using the LandTrendr for an ASGM pixel in the AoI.  
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Figure 9. LandTrendr Temporal Segmentation 

Figure 8 renders a conceptual model of LandTrendr fitting spectral index using NDVI values 

to spectral-temporal segments for the Spatio-temporal dynamics using NDVI values. The pixel 

characterization underwent a forest disturbance, a recovery process, and some stability over the 

twenty years. The fitted temporal segments (lines) are linked by fitted vertices (points) and 

sequentially represent the temporal segmentation. From the fitted linear regression is possible 

to retrieve the magnitude of change (MAG) for forest disturbance and forest recovery, the year 

of detection (YOD), and the fitted value (RFIT). The magnitude of disturbance is calculated 

considering the difference among the fitted regression's highest and lowest spectral values and 

multiplied by (-1), which relates the negative slope as loss of vegetation. 

Running the LandTrendr requires three main phases. Firstly, the construction of an annual 

image collection stacked and composite, atmospherically corrected, and free of noise. Secondly, 

the tuning of the user-defined parameters model to perform the spectral segmentation and 

posterior linear regression. It uses the RMSE (Root Mean Square Error) to assess parameters' 

sensitivity. Finally, extraction of meaningful outputs (e.g., Year of Detection, Magnitude of 

Change). 

 

3.2.1 Setting Parameter Model and Temporal Segmentation 

 

Temporal segmentation is the milestone concept of the LandTrendr algorithm. Every potential 

analysis depends on the proper estimation of the parameters and the fitting regression controlled 

by the RMSE. The LandTrendr requires eight control parameters to perform the spectral, 

temporal segmentation, and further detection analysis. In the light of achieving a better result, 

a combination of the algorithm’s parameters was used, considering the best fitting with the 

RMSE value. For parameter estimation, each one's value was modified by one step length every 

time, while the rest remain constant. The procedure was iterative, parameter by parameter until 

the RMSE of the fit regression reached the lower value. The linear regression determined the 

sensitivity of those parameters per spectral input (texture features and spectral indices). The 
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RMSE indicator assesses the fitness between the temporal segmentation and the spectral 

trajectory. The lower the RMSE, the higher the linear regression fit and, therefore, the temporal 

segmentation. Figure 9 shows the temporal segmentation for spectral vegetation indices and the 

values used in table 5. For the texture parameters used in the LandTrendr see appendix 1. 

 

Table 8. LandTrendr segmentation Parameters ( Kennedy et al., 2010). 

PARAMETER TYPE DETAIL 

Max Segments Integer Maximum number of segments to be fitted  

Spike Threshold Float The threshold for dampening the spikes (1.0 means no 
dampening) 

Vertex Count 
Oversershoot 

Integer The initial model can overshoot the max segments + 1 vertices by 
this  

Prevent One-Year 
Recovery 

Boolean Prevent segments that represent one-year recoveries 

Recovery Threshold Float If a segment has a recovery rate faster than 1/recoveryThreshold 
(in years), then the segment is disallowed. 

p-value Threshold Float If the p-value of the fitted model exceeds this threshold, then the 
current model is discarded and another one is fitted 

Best Model Proportion Float Takes the model with most vertices that have a p-value that is at 
most this proportion away from the model with the lowest p-value 

Min Observations 
Needed 

Integer Min observations needed to perform output fitting 

 

 

Table 9. Setting Parameters for LandTrendr using Spectral Indices as Input 

PARAMETER NDVI NBR NDMI EVI NDWI LSWI MNDWI NDPI 

Max Segments 9 10 9 9 8 8 9 9 

Spike Threshold 0.9 0.6 0.8 0.7 0.9 0.9 0.4 0.1 
Vertex Count Overshoot 3 3 3 3 3 3 3 3 

Prevent One Year Recovery True True True True True True True True 

Recover Threshold 0.5 0.5 0.25 0.25 0.95 0.95 0.65 0.25 

Pval. Threshold 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Best Model Proportion 0.75 0.8 0.75 0.75 0.75 0.75 0.75 0.75 

Min Observations Needed 7 8 7 7 6 6 7 7 
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Figure 10. Temporal Segmentation of Spectral Indices 

 

3.2.2 LandTrendr Outputs  

 

The results of GEE-LT are not immediately ready for analysis or used as maps of change 

detection based on a fitted time series. The LandTrendr’s output is conformed by three bands 

(fig 10). The first band, the LandTrendr band, represents the segmentation process. A pixel 

array of 4 bands per number of years in the time series requires geometric operations to extract 

meaningful information. The second band is a raster image with scalar values on a pixel basis 

that describes the linear regression's adjustment to the spectral trajectory by the RMSE value. 

The last band explains the fitted annual spectral data by the “fit-to-vertex image data” index. 

The index has two primary purposes: to fill in data from missing observations in the time series 

because of cloud masking, cloud shadow, or detector failure. And, to keep consistency in 

predictive mapping through time, avoiding minor spectral differences from atmosphere  or 

shadows (Kennedy et al., 2018)   
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Figure 11. LandTrendr outputs configuration (Cohen et al., 2018) 

The LandTrendr band is an array that possesses the primary information of the temporal 

segmentation process. From this array is possible to retrieve meaningful information related to 

changes by simple arithmetic and geometric operations. Figure 10 schematizes the array of the 

LandTrendr band. The values are from the same pixel used in the LandTrendr temporal 

segmentation (figure 11). 

 

 

 

Figure 12. LandTrendr Array output using NDVI values. 

  

The first array’s column contains information about the year of observation, the second row the 

original spectral value corresponding to the year, the third row is the value fitted to the line 

using the temporal parameters and the linear regression. The last row identifies if an observation 

is a vertex or not. Following the methodology and the operations proposed by Cohen et al. 

(2018) & Kennedy et al. (2009) for retrieving information and outputs management, it is 

possible to extract such as year of change, the magnitude of change, disturbance, or recovery 

values.  

Below, you can find some maps representing the magnitude of change and the year of detection. 
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Figure 13. NDVI LandTrendr Output (MAG - YOD) 

 

 

Figure 14. B7_Variance LandTrendr Output (MAG - YOD) 
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Figure 15. B5_Constrast LandTrendr Output (MAG - YOD) 

 

 

Figure 16.  NBR LandTrendr Output (MAG - YOD) 
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3.2.3 Ancillary Data 

 

Multisource image features are used in addition to multispectral image data to increase the 

thematic map's accuracy (Mcnairn & Protz, 1993). As an alternative to confirming the quality 

of the outcomes and the proper interpretation of the data, context analysis must be considered 

in a data-integration approach for LULC modeling (Lersch et al., 2007). The contextual inputs 

used in the current scope are:  distance to rivers, distance to roads, Aspect, Elevation, Slope, 

and Topographic wetness index. These latest features were retrieved from a digital elevation 

model using an SRTM image collected by The Shuttle Radar Topography Mission (SRTM) 

(Farr et al., 2007). The SRTM image is a V3 product (SRTM Plus). It is provided by NASA 

JPL at a resolution of 1 arc-second (approximately 30m), downloaded, and wholly processed 

on the Google Earth Engine Platform. 

The distance to roads data was calculated over the last image of the time series image collection 

(i.e., 2019). The water bodies and the roads dataset were downloaded from the Brazilian geo-

web service at the Institute of geography and statistics to monitor the land use land cover of the 

Brazilian territory (e.g., IGBE, Monitoramento da Cobertura e Uso da Terra do Brasil). The 

distance is referred to as Euclidean distance, which measures the closest orthogonal distance 

from every ASGM to road or streams. 

 

 

Figure 17. Ancillary Data: Aspect (AoI) 
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Figure 18. Ancillary Data: TWI (AoI) 

 

Figure 19. Ancillary Data: Elevation (AoI) 
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Figure 20. Ancillary Data: Slope (AoI) 

 

Figure 21. Ancillary Data: Euclidean Distance to Roads (AoI) 
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3.3 CLASSIFICATION 
 

3.3.1 Random Forest 

 

According to Belgiu & Drăgu. (2016), Random Forest (RF) is the most machine learning 

algorithm used in the remote sensing field given that it is a non-parametric model, relatively 

robust to outliers, and fast to train with few parameters. RF uses a bagging approach where a 

subset of the training samples randomly creates trees through replacement, indicating that some 

samples might be selected many times while others may not be selected (Breiman, 2001). The 

model splits the sample data set into training data (75%) and validation data (25%). The former 

is called in-bag-samples, and the latter out-of-bag (OOB), which is used for cross-validation 

through the classification process for the model’s performance and error assessment. Moreover, 

the RF can handle extensive features datasets and noise (Breiman, 2001), being robust towards 

over-fitting compared to other machine learning algorithms because of the bootstrapping of 

weak learners and bagging characteristics (Breiman, 2001). Another reason for using the 

random forest in the current research is identifying important and relevant features in the high-

dimensional dataset with efficient feature selection for subsequent feature reduction (Zhu & 

Woodcock, 2014). The feature selection is based on the model's performance during the 

learning process as an embedded feature selection method. 

The most frequent variable importance measures in RF are the mean decrease which is based 

on prediction accuracy after permutation averaged over all trees in the forest, and the Gini 

impurity index that is calculated as the sum of the impurity decrease of every node that each 

variable was used for splitting in the forest (Touw et al., 2013).  

The implementation of the Random Forest algorithm in this research has been adapted from 

Millard & Richardson. (2015) over an R programing language that provides complete support 

to perform various image classification processes. A set of 86 features were prone to feature 

important using mean decrease accuracy and mean decrease Gini metrics in the RF package 

(figure 22 and 23). Feature reduction using VSURF for model building with the best set of most 

important features, and subsequently classification using RF classifier for binary and 

probability of occurrence classification. The whole set of predictors is conformed by as shown 

in table 6. “MAG TEXTURE FEATURES” refers to the predictor calculated from raw spectral 

bands (image collection), which textures were calculated using the GLCM metrics and temporal 

segmented by the LandTrendr algorithm. Retrieving the Magnitude of Change for every textural 

feature used. Similarly, “MAG SPECTRAL INDICES” are the spectral indices calculated from 

the raw spectral bands in the image collection and temporal segmented, retrieving a singular 

raster of Magnitude of Change (MAG) per spectral index. 
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For mean decrease accuracy, the prediction accuracy is calculated on the OOB sample. The 

prediction is randomly selected in the OOB error, keeping the remaining variables constant, 

and the decrease prediction accuracy is calculated over the randomly selected data. Therefore, 

the metric indicates how much removing a variable the OOB decreases and how much including 

randomly a variable the OOB increases (Han, Guo, & Yu, 2016). 

For mean decrease accuracy using the GINI index, the assessment is done on the variable at the 

tree splitting, which means that the calculations are performed during the training phase. 

Variables that result in nodes with higher purity have a higher decrease in the Gini index, and 

therefore the “pureness” is an indicator of feature relevance (Han et al., 2016). 

 

Figure 22. Variable Importance using Mean Decrease Gini 

Figures 22 and 23 show the variable importance by both metrics. Nevertheless, both methods 

may overstate the importance of correlated predictors, the redundancy is not eliminated, and 

unreliable variables keep impairing the performance of the outcome. Additionally, the 

predictors and the relevant variables' selection are not established by a clear threshold. 

Therefore, for variable selection, feature reduction, and optimal outcome prediction, the 

package VSURF was employed using the function “Variable Importance” (hereafter VI). 
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Figure 23Variable Importance using Mean Decrease Accuracy 

 

3.3.2 Variable Selection Using Random Forest (VSURF) 

 

The efficacy of selection and feature reduction by different machine learning methods has been 

developed for classification and regression purposes. According to Sanchez-Pinto et al. (2018), 

tree-based methods such as VSURF perform the best feature selection and parsimony in larger 

and multicenter datasets instead of the classic-based stepwise selection based on the p-value. 

VSURF is an R language package that performs feature selection based on the Random Forest 

for regression and classification purposes (Genuer, Poggi, & Tuleau-Malot, 2015). It is 

implemented to reduce the outcome variability that RF as an ensemble technique might present 

and set a threshold for feature reduction based on VI measure standard deviation (a variable not 

included in the true underlying model has null importance). 

VSURF is a wrapper-based algorithm that uses RF as the base classifier (Genuer et al., 2015) 

and works in three steps: Firstly, the whole set of features are ranked considering their mean 
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VI, and removing all the irrelevant features that have a low contribution to outcome in the 

classification. Secondly, the remaining set of features are tested in a descendent way of using 

nested RF models. The most accurate model is preserved, setting a cutoff based on the increase 

in model performance versus input by importance. Afterward, an ascending stepwise regression 

(model with n variables and the following one with n+1 variable consecutively) is executed for 

redundancy elimination of features. The variable is selected if the OOB error decreases more 

than the average variation resulting from the threshold set in the previous step (Genuer et al., 

2015). In other words, a feature is rejected just if the OOB error does not decrease or decrease 

slightly based on the threshold calculated for minimizing the OOB error (Genuer et al., 2015). 

As a result, two models are resultant at the final step of the procedure: An interpretation model, 

formed in the second step based on the cutoff of the variable importance. Furthermore, a 

prediction model was obtained in the third step with the essential features. Features selected 

during the prediction steps are considered for further analysis.  

Figures from 24 to 27 show the feature reduction process performed with VSURF. Figure 24 

shows all variables sorted in declined order considering their mean VI.  Figure 24 shows the 

nested RF models performed using the remaining features to estimate the lower OOB error and 

the threshold (red line) established by using a CART (Classification And Regression Tree) 

model based on the standard deviation of the variable importance (Genuer et al., 2015). Features 

with a mean and standard deviation of the VI greater than the threshold are selected. Figure 25 

shows the added step-by-step fashion features that decrease error by a small margin larger than 

a threshold (Virdi et al., 2019). Besides, figure 26 renders the prediction model with the best 

set of features and the OOB error. Finally, figure 27 shows the final output with the prediction 

model. 

 

 

Figure 24. Features sorted by decreasing mean Variable Importance 
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Figure 25 Nested RF model for model’s definition with the lower OOB 

 

Figure 26.  Step-by-step added in regression  for feature reduction 

 

Figure 27. Prediction Model based on OOB Error 
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3.3.3 Partial Dependence Plots (PDP) 

 

Finding the most relevant variables is essential for feature reduction, reduce data processing 

and improve computer time processing. Nevertheless, the most significant variables do not 

provide complete information about the relationship between the input and the predicted 

outcome, neither how changes influence the predictions in the input variables.  An alternative 

to analyze the feature’s incidence over the outcome and how variations influence the result and 

performance is using a Partial Dependence Plot (PDP).  

According to Friedman, (2001), a partial dependence plot explains the marginal effect that one 

or two features have on the predicted outcome of a machine learning model. The PDP shows 

the relationship between the target response and a set of input features of interest, marginalizing 

over the whole set of predictors' values. The plots mainly explain the relationship between the 

response and a specific input variable by a function that renders the expected target response 

while accounting for the other predictors' average effect in the model.  

The partial dependence plot is particularly convenient to understand the assumptions and hidden 

relations present in the prediction outcome and model performance. Figure 32 and 33 shows 

the PDP for the most important features of the prediction model. 

 

3.3.4 RF Model Building 

 

The prediction model was used for RF model Building considering the variable selection and 

feature reduction results. The main input parameters of the Random Forest classifier are the 

number of trees and the number of variables at a split. Table 7 shows the input parameters, and 

figure 29 displays the OOB error vs. the number of variables at the split. Figure 30 the OOB 

error vs. the number of trees, generated for the Random Forest model calibration. The values 

coincides with Belgiu & Drăgu. (2016), where the optimal number of trees is around 500, and 

the number of a variable at the split is estimated based on the square root of the number of 

predictors. 

 

Table 10. The  Random Forest  Input Parameters. 

PARAMETER VALUE 

NUMBER OF TREES (ntrees) 500 
NUMBER OF VARIABLES AT THE NODE-SPLIT(mntry) 6 

ITERATIONS 50 
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Figure 28. RF mntry tuning Parameter 

 

Figure 29. RF ntree Tuning Parameter 
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4. RESULTS 
 

This chapter is divided into four main parts. The feature selection and reduction resulting after 

using the VSURF package, showing the established thresholds for feature reduction and model 

performance. The second, is a quantitative accuracy comparison of three sets of features to 

assess the relationship between model accuracy and the number of features. Afterward, PDPs 

were extracted for the most important variables for extending comprehension of each feature 

over the ASGM detection. Finally, a binary classification (Mine / No Mine) and probabilistic 

classification (probability of mine occurrence) were performed. A total of 500 ntree and seven 

mntry using 50 iterations were used for model parameters and model error estimation, 

respectively. The average OOB error was 0.0382, and the average mean independent error was 

3.79, with an average accuracy of 89.27%.   

 

4.1 Variable Selection and Feature Reduction Results 
 

A total of 49 features had been selected for the interpretation model. For model prediction, the 

final selection has been reduced to 33 features. Figure 30 shows the thresholds of the two 

models considering the mean square error, and table (11) details the set of 33 variables. From 

the prediction model, a total of 26 predictors corresponds to texture features, five spectral 

indices, and two ancillary data. The most important texture predictors are retrieved from the 

harmonized bands 5 and 7 (SWIR-1 and SWIR-2, respectively), where healthy vegetation 

shows the lowest reflectance values in the spectral signature. Figure 31 renders the final 

predictor variables vs. the OOB error.  NDVI has been found the most important variable, 

followed by the B7 variance texture, B5 prom, B5 shade, and B7 shade as the top five features.  

 

Figure 30. The threshold for Prediction Model and Interpretation model based on MSE 
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Figure 31. OOB Error delta mean square error per predictor variable 

Table 11. Ranking most important variables for Prediction Model  

 No. FEATURE No. FEATURE No. FEATURE 

1 NDVI 12 NDPI 23 B2_var 

2 B7_var 13 B5_dvar 24 B3_corr 

3 B5_prom 14 B7_dvar 25 B5_contrast 

4 B5_shade 15 Elevation 26 B3_ent 

5 B7_shade 16 B3_shade 27 B4_prom 

6 B7_contrast 17 B5_inertia 28 NDMI 

7 NBR 18 Distance 29 B3_contrast 

8 B7_inertia 19 EVI 30 B2_corr 

9 B7_diss 20 B1_corr 31 B7_dent 

10 B7_prom 21 B3_prom 32 B1_prom 

11 B5_var 22 B3_inertia 33 B2_contrast 

 

Table 12. Prediction model by type of features 

FEATURE TYPE NUMBER OF FEATURES 

Texture Prom, Contrast, Var, Shade, 
Inertia, Corr, Dvar, Diss, Ent, 

Dent 

26 

Vegetation NDVI, NBR, NDPI, EVI, NDMI 5 
Ancillary Data Elevation, Distance 2 
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Table 13. Ranking Variable Importance with Mean Decrease Accuracy and VI standard deviation 

 

 
No 

FEATURES VI 
Sta.Dev 

VI 
MeanDecrease 

No. FEATURES VI  
Sta.Dev 

VI  
MeanDecrease 

1 NDVI 0.000768011 0.086136214 26 B3_ent 5.69E-05 0.004601793 
2 B7_var 0.001214494 0.065801011 27 B4_prom 6.43E-05 0.004125678 

3 B5_prom 0.001363601 0.062143871 28 NDMI 0.000189417 0.00399991 
4 B5_shade 0.001187905 0.059787028 29 B3_contrast 0.000160357 0.003955951 
5 B7_shade 0.001104322 0.052050002 30 B2_corr 6.45E-05 0.00368263 
6 B7_contrast 0.001218029 0.044299986 31 B7_dent 5.20E-05 0.003644859 
7 NBR 0.000641549 0.044133753 32 B1_prom 0.000239543 0.003637752 

8 B7_inertia 0.000895801 0.031510645 33 B2_contrast 0.00023743 0.00353344 
9 B7_diss 0.000644374 0.029756789 34 B1_dvar 0.00010211 0.003239557 

10 B7_prom 0.001369874 0.029286184 35 B3_dvar 0.000120067 0.003056289 
11 B5_var 0.000901177 0.026644781 36 B3_asm 4.57E-05 0.002960275 

12 NDPI 0.000376579 0.022220074 37 B2_inertia 8.86E-05 0.002883857 
13 B5_dvar 0.00077405 0.01843628 38 B2_dvar 0.00013064 0.002853011 
14 B7_dvar 0.000839501 0.017564857 39 B4_corr 3.62E-05 0.002410043 
15 Elevation 0.000108594 0.015360494 40 B2_asm 4.83E-05 0.002363509 
16 B3_shade 0.000268223 0.01249159 41 B1_inertia 8.84E-05 0.002273973 

17 B5_inertia 0.000460993 0.010048809 42 B7_asm 5.38E-05 0.00218526 
18 Distance 6.68E-05 0.008326515 43 B1_dvar 8.44E-05 0.002081691 
19 EVI 0.000125837 0.007364225 44 B4_var 4.59E-05 0.001929984 
20 B1_corr 8.84E-05 0.007225522 45 NDWI 3.70E-05 0.001767823 
21 B3_prom 0.000251745 0.006644481 46 B2_ent 4.32E-05 0.001716429 

22 B3_inertia 0.000401314 0.006593314 47 B2_idm 4.13E-05 0.001665071 
23 B2_var 0.000429015 0.006112326 48 B3_diss 8.89E-05 0.001587885 
24 B3_corr 6.89E-05 0.005998248 49 B1_shade 0.000144978 0.001483771 
25 B5_contrast 0.000472913 0.004796879     
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4.2 Partial Dependence Plots Prediction Model 
 

Understanding the relationship of the input features for estimating ASGM probabilities 

(presence) can be described briefly using the PDPs, as shown in figure 31. The chart depicts 

the six most important variables of the prediction model (see appendix 2 for complete PDPs for 

prediction model). The units in the Y-label correspond to probability [0,1], where 1 is the 

presence of ASGM, X-label renders the magnitude of change of each feature multiplied by one 

thousand in the temporal segmentation.  

 

Figure 32. Partial Dependence Plot per Feature. Top: NDVI. Medium: B7_Var. Bottom: B5_Shade 
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Figure 33. Partial Dependence Plot per Feature. Top: B5_Prom. Medium: B5_Shade. Bottom: B7_Shade 

The plots explain the relationship of changes in probabilities of ASGM presence with the 

change in classification by features in the prediction model.  From the chart, it can be inferred 

that low values in B7_shade and B5_shade have the highest ASGM’s presence probabilities 

among all sets of texture features. This can be partly explained since Cluster Shade is a 

skewness indicator; lower values are more related to high asymmetry in the pixel; in contrast, 

higher values result from an image with high uniformity. In comparison, when Cluster 

Prominence (B5_prom) value is high indicates a peak in the mean values at the GCLM matrix 

showing a high variation in the grayscale levels. Therefore, the combination of both types of 

textures complements the spatial relations information, hence the probabilities of ASGM 

prediction.  



Detecting Artisanal Small-Scale Gold mines with LandTrendr multispectral and textural features at the Tapajós river basin, Brazil  

 

54  
 

The ASGMs are forest disturbances that change the homogenous symmetry of the tropical 

forest by small clusters or patches where the settlements take place, particularly close to the 

water bodies. Those alterations in the landscape break the uniformity of the forest independently 

of the land cover modified. This can also be seen from the vegetation indices, particularly NDVI 

and NBR, where the dense forest land cover is replaced; values around 400 (interval: [-1,1] * 

1000) have more probabilities in ASGM prediction. High NDVI and NBR values generally 

indicate healthy vegetation, while low values represent the bare ground, deforested patches, or 

recently burned areas. 

It is important to note that the partial dependence plot represents the effect of the predictor after 

accounting the average effect of the other predictors, which analogically can be seen as a 

singular linear regression, where the “y” coefficient on each “x” separate feature, measure the 

effect obtained dismissing the other predictors' effect. The previous charts show that values 

around 200 for variance (texture) have a higher marginal effect on the detection of the ASGM, 

depicting. 

 

4.3 Prediction Model Error Assessment  
 

The prediction models were subjected to comparison and assessment on the average OOB error, 

the average independent error, and the average mean overall accuracy with the prediction model 

and the whole set the features. In order to assess the feature reduction and its influence on the 

accuracy of the final classification, some calculations were performed running 50 iterations, 

and the average for all iterations was considered a model performance indicator (Table 13). The 

number of trees for every model and iteration remains constant, according to chart 29. The 

number of variables for splitting was set considering the root square of the number of.  The 

results can be found in table 13, and the values reached per iteration in figure 31. 

Table 14. Model Comparison Assessment 

 WHOLE SET OF 
FEATURES 

INTERPRETATION 
MODEL 

PREDICTION 
MODEL 

Average Mean OOB Error 3.82% 3.76% 3.79% 
Average Mean Independent. Error 3.79% 3.71% 3.82% 

Average Mean Overall Accuracy 89.27% 92.6% 90.8% 
Number of Variables 86 49 33 

Ntree 500 500 500 
Mtry 10 7 6 

    

 

The OOB error is computed as the number of correctly predicted values from the out-of-the-

bag sample, being an indicator of RF model validation and prediction error assessment while 

being trained. The independent error is used to assess the stability of predicted classes and thus 

evaluate the classification quality. The comparison assessment table shows no spatial 

autocorrelation among the predictors on the three models; according to Millard & Richardson, 

(2015), when the spatial autocorrelation between the training samples is low, the OOB error 

tends to be similar to the independent error. On the other hand, the OOB error curves and the 
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independent error do not show any trend along with the number of iterations; the values 

fluctuate between 3.7% and 3.9%, showing consistency in the classification in the prediction.  

Despite the difference in the number of features of the three models, the overall accuracy 

reached, particularly, the prediction is a bit more than 90%, which is very acceptable for model 

performance. 

Moreover, in terms of accuracy and error difference between the prediction and interpretation 

model is slightly modest despite the difference in features. Sixteen additional variables increase 

the accuracy by 1.8%.  

 

Figure 34. OOB error and independent error for Top: the whole set of features. Medium: Interpretation Model 

 Bottom: Prediction model 
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4.4  Binary Classification  
 

Although ASGM is not considered a land cover in the scope of this research (assumption), the 

binary classification was used for preliminary and qualitative assessment of the feature’s 

performance. Additionally, considering the assessment of the model and the mean overall 

accuracy, a binary classification with (Mine/ No Mine) was performed (figure 35). 

Some remarkable findings from the binary classification and the predictors' performance were 

found in the thematic map. For instance, the model could discriminate water bodies and roads 

where the ASGM activities are absent despite the similar spectral reflectance; in turn, sandbanks 

and sediments lengthwise the rivers were also labeled as not mines. Since predictors mainly 

represent the magnitude of change, fundamentally for significant changes in the time series and 

not only for the spectral reflectance of the land cover. Moreover, there is an evident clustering 

occurrence in the mine class distribution close to the roads and rivers whereby the mining ponds 

are located for mineral extraction, and some informal settlements are incorporated for later 

transportation. Water is an indispensable resource for mining needed for the extraction of 

minerals that may be in the form of solids such as sand or gravel, and therefore the presence of 

the mines is outstandingly close for water bodies, as shown in figure 35. 

Nevertheless, the classification was not able to distinguish deforested areas from ASGM 

completely. Despite that, logging activities are highly correlated with the ASGM settling. 

Deforested patches are not necessarily ASGM. However, in the ASGM settling, a deforestation 

process is nurtured for mineral extraction into the mining ponds along the shoreline and the 

incorporation of machinery inland. Therefore, the relationship between deforestation and 

ASGM settlements is unidirectional, where the ladder implies mostly the former but not 

necessarily deforested patches means ASGM activities. 

Table 14 depicts the confusion matrix for the binary classification. Class 1 represents the areas 

classified as Mine. 

 

Table 15. Confusion Matrix for Binary Classification 

 

CLASS 1 2 Class. Error 

1 7329 195 0.02591 

2 490 9861 0.04733 

Overall accuracy: 0.9082742 
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Figure 35. Binary Classification using Random Forest Classifier 

 

4.5  Probabilistic Random Forest Classification  
 

Random Forests is a practical machine learning ensemble approach that provides accurate 

predictions for classification and regression (DeFries & Chan, 2000). Nevertheless, since the 

targe output is predicted probabilities of ASGM rather than membership of one belongs group 

or class, a probability class estimation was performed. It is relevant to estimate the probability 

of belonging to each class when the threshold between classes is not clearly defined in the 

landscape and when transition areas from one class to another are fuzzy (DeFries & Chan, 

2000). This might also be interesting to know the sampling's class membership probability, 

which is an important fact for stakeholders and the implementation of further strategies. In that 

sense, the preference to have the probability of ASGM presence rather than the simple 

knowledge that class belonging seems more suitable for decision making.  Logistic regression 

models, vote counting, and probability machines are the most traditional methods for 

probability estimation in the RF (Corcoran et al., 2013b). According to Boström, (2007), 

average vote performs better for two-class problems (K=2) than logistic regression or relative 



Detecting Artisanal Small-Scale Gold mines with LandTrendr multispectral and textural features at the Tapajós river basin, Brazil  

 

58  
 

class frequency. Therefore, it was the method selected for estimating probabilities of ASGM 

occurrence.  

The counting votes of the trees define the class probability in the ensemble by averaging the 

unweighted class votes by the ensemble members (Boström, 2007). Each member vote for a 

single class, and the fraction of trees that vote for a particular class is calculated, choosing the 

most probable class. Figure 36 shows the final classification using the RF classifier with 

probability output. It is a pixel basis classifier; therefore, for every pixel in the AoI, an ASGM 

presence probability was estimated in percentage terms.  Subsequently, six probability intervals 

were defined for smoothing purposes and further comprehension for potential stakeholders. 

The probability of belonging to a particular class (Mine / no Mine) is calculated in the RF 

machine learning algorithm considering the relative class frequency votes in the ensemble for 

the two classes. RF does majority voting among all its trees to predict the class of any sample, 

telling about the fraction of the total number of trees which votes for the specific class, selecting 

any data point which is greater than 0.5 used as a cutoff. If the sample is greater than the cutoff, 

it is assigned to ASGM with a certain probability (Breiman, 2001). Figure 37 shows the 

probability occurrence for the ASGM class in the study area. Figure 38 depicts a reclassification 

of the probabilities for better understanding and representation. 
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Figure 36. ASGM Occurrence Probability in percentage (%) 
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Figure 37. ASGM Occurrence Probability Multiclass Percentage 

 



Detecting Artisanal Small-Scale Gold mines with LandTrendr multispectral and textural features at the Tapajós river basin, Brazil  

 

61  
 

 

 

4.6  Change Detection 
 

The LandTrendr algorithm allows the detection of forest disturbances using temporal 

segmentation. After estimating the magnitude of change at pixel basis using the spectral 

signature, the year of change is calculated considering the vertex of the magnitude of the change 

vector. Figure 38 renders the year of change using the RGB triangle representation. Pixels with 

red color are pixels whose change was in 2010. The green color represents changes in 2010 and 

the blue color in 2019. The RGB representation allows calculating the year and epoch of the 

land cover change and forest disturbance. Yellow color represents changes from 2000 to 2010, 

pixels colored in cyan renders changes because of ASGM from 2010 and 2019. 

 

 

Figure 38. Year of Detection using RGB representation (R:2000, G: 2010, B: 2019) 
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4. DISCUSSION 
 

The current research describes a process for mapping and detecting ASGM settlements in the 

Amazon Forest using Landsat time series with ancillary information as data input. In this 

research, the Random Forest was used as a classifier and the LandTrendr algorithm to 

investigate the spectral trends of the multispectral and textural features. This research represents 

the first attempt to map and monitor the ASGM activities using multifeatured analysis with 

temporal segmentation of dense Landsat time series on the GEE platform. The cloud computing 

environment allows handling multidimensional datasets, multifunctional data processing, and 

straightforward statistics extraction. Moreover, a variable importance selection was carried on 

using the VSURF package for feature reduction and variable importance assessment, cutting 

down the final model free of redundancy and noise, and achieving notable results and 

acceptable accuracy (above 90%) with almost one-third of the initial set of variables. 

 The LandTrendr algorithm has previously proven to be effective for the detection of forest 

disturbances and recovery (Zhu et al., 2019), (Fragal et al., 2016), (Hislop et al., 2019), but its 

usability to detect particularly disturbances associated with ASGM has not been used to the 

knowledge of this study. Therefore, this research seems to be the first attempt to monitor this 

particular forest disturbance using the LandTrendr for temporal segmentation. Showing a 

notable performance through a semi-automated approach to recognize the multiple variations, 

environmental impact evidence, and breakpoints detection in long-term trends, reducing the 

noise significantly, differences in illumination and atmospheric conditions, phenological 

changes, and geometric registration (R. Kennedy et al., 2018).  

This analysis finds clear evidence that LandTrendr throughout temporal segmentation of 

multifeatured for ASGM detections is a reliable method for monitoring this type of forest 

disturbances that is worth considering as follows. (i) it can be applied over any remote sensing 

image as input with limited support of validation data, assuring broad applicability, especially 

for places not easily accessible or limited ground-truth such as the Amazon Forest (Y. Yang et 

al., 2018). (ii) the temporal segmentation process allows to detect land cover changes year by 

year by the spectral trajectory in a temporal profile, which could also inform about the 

magnitude of the change and the year of detection, in contrast with traditional multitemporal 

remote sensing classification approaches. (iii) The LandTrendr outputs can be used for spatial 

extent, pattern, and degree assessment of the land-cover-change-recovery process, allowing to 

understand the dynamics of the ecosystem in a spatially explicit form (Y. Yang et al., 2018). 

(iv) given that forest disturbances are related to subtle or gradual land cover changes that can 

easily be confused with phenological or natural fluctuations, the magnitude of change for  

abrupt change detection because of ASGM allows to identify and discriminate the changes 

related to anthropogenic activities. (v) The approach conducted incorporating RF with multiple 

spectral time series trajectories enables to enhance the classification by harnessing differential 

sensitivities captured by different temporal segmentations simultaneously. Combining a suite 

of single data features retrieved from the use of multiple spectral and textural features temporal 

segmented. (vi) The RMSE and fit-to-vertex metrics ensure that multiple linear regression used 

for segmentation are faithful representations of changes because of forest disturbance, in this 
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case, ASGM activities. Maintaining consistency in predictive mapping through time and, 

consequently, the classification, omitting minor subtle changes that might affect overall 

accuracy. Finally, the temporal representation through the temporal segmentation and use over 

any remote sensing image ensures extended monitoring by appending new satellite images in 

the future, which meant that the disturbance and recovery process of the ASGM is detectable 

continuously, for futures reports of ASGM regulation and formalization process as it is required 

in and sustainable management context. Consequently, a monitoring system can be directly 

implemented and sequentially extended to assess ASGM progress in NAP (National Action 

Plan – Minamata Convention) incorporation. 

Some previously published studies (Xu et al., 2019), (Y. Yang et al., 2018) and (Dlamini & 

Xulu, 2019) that have implemented the LandTrendr for mining activities had separately relied 

on evaluating single spectral information for change detection analysis, a bit of motivated 

because the LandTrendr only allows using one spectral feature per run. Obtaining different 

results that cannot depict the forest disturbance completely and separate similar spectral classes. 

Since the use of a single spectral index might induce gaps, biased and discontinuity, and affect 

the interannual land cover changes assessment by spectral trajectories through the time series 

(Mugiraneza et al., 2020). Moreover, mining activities such as ASGM are evident in several 

different biophysical factors that need to be analyzed holistically and cannot entirely depict 

using a singular spectral variable. In contrast, the use and combination of multispectral and 

textural features in characterizing the land cover changes seems reasonably reliable as this 

approach attempted. Since the proposed method considers the different surface characteristics 

and heterogeneity impacts analyzed from different spectral approaches and includes spatial 

information (Cohen et al., 2017). Moreover, the usability and combination of different spectral 

indices have been considered as a better indicator for land cover changes than a single spectral 

index because they can reduce the topography and atmospheric influence on the surface 

reflectance and can amplifier some particular, specific, and desired effects of interest for ASGM 

detection,  (Liu et al., 2017). Multiple Spectral indices allow retrieving and assessing 

information regarding the vegetation greenness, soil moisture, vegetation moisture, vegetation 

liquid water content, or water flow, providing complementary, interrelated, and independent 

insights about the forest disturbance because of ASGM activities (Deng et al., 2007). The 

singular spectral assessment by vegetation indices or spectral bands might induce 

misclassifications and detection issues since the class spectral heterogeneity reduces the 

probability of proper identification given the variability of spectral responses and mix of land 

covers presented traditionally in the ASGM settlements. The spectral similarity with other land 

covers provides another restriction for the sole use of spectral information; since the class 

threshold is not recognizable in a feature space directly, the overlapping in multiple spectral 

spaces causes mislabeling of the features, and therefore a false detection. 

The study has shown that NDVI was the most important variable in the feature reduction using 

RF for variable selection. This finding is in line with previous researches (Jin et al., 2018), 

where NDVI has been used to detect land degradation activities – among other things- such as 

deforestation (Asner, 2009), soil erosion (del Río-Mena et al., 2020),  droughts (Liu et al., 

2017), and vegetation burning (Key & Benson, 2006).  Changes due to deforestation or 

sedimentation are directly related to decreasing values of NDVI through the time series; the 

higher the impact, the lower the value of the index, and therefore, the higher the magnitude 

value in the temporal segmentation in LandTrendr. Therefore, the analysis of NDVI values for 
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areas mined at different periods indicates disturbed areas in a timeframe, as it was depicted in 

the PDP plot (figure 33).  Similarly, NBR was another important spectral index selected in the 

feature reduction. The index has been used in capturing the spatial complexity of severity within 

wildfires boundaries (Hislop et al., 2019).The process by which land is historically cleaned has 

been used in illegal mining hotspots (Salman & de Theije, 2017). High values are linked with 

changes in the amount of live green vegetation, moisture content, and soil conditions that may 

occur after ASGM settling. Another important spectral index selected was NDMI, which 

provided a complementary metric for effects related to land surface temperature quantitively 

over forest areas with high impact due to mining disturbances and accelerated sediment 

accumulation processes. 

This research has used the variable importance mean decrease error (value) as threshold metric 

on the whole set of features; then, on the relevant subset of features, it has applied a wrapper 

considering variable importance standard deviation and the DMSE (value) for prediction model 

with the final set of best predictors (table 13). Seven out of the top ten predictors are features 

related to texture features, which explains that the ASGM detection better exploits the spatial 

complexity of mixed classes than a solely spectral analysis. Since the temporal segmentation of 

texture features provides unique insights about the changes of the spatial relationships and for 

distinguishing land cover classes with similar spectral characteristics but with different spatial 

configurations. Moreover, the temporal segmentation of the texture features contributes to 

assessing the spatial-temporal changes that occur in small patches with multiple land covers 

(the main characteristic of ASGM) whose classification by spectral feature space is quite 

limited considering the wideband of the spectral bands and the spatial resolution of the images 

(Ramola et al., 2020).  The texture features retrieved by the GLCM matrix complement the 

spectral variables derived from the spectral indices in the classification and detection process 

of forest units with high spectral heterogeneity and different vegetation densities (Ruiz et al., 

2004).   

Cluster Prominence texture (Prom) was the most representative feature among all the most 

important features. B5_Prom (B5 = Swir 1), B7_Prom (B7 = Swir 2) are in the top ten of most 

important predictors, while B4 _prom (B4 = Nir), B2_prom (B2 = Green) are in the twelve and 

fourteen positions respectively (figure 31, table 13). It can be explained since cluster 

prominence is an asymmetry indicator. The higher the cluster prominence value, the more 

asymmetric the image is, the higher the spatial heterogeneity and the higher the spectral 

variability in the analysis window (X. Yang et al., 2012). This can also be shown by the partial 

dependence plot (figure 33) where the marginal probability of the B5_prom predictor is high if 

the prom’s value is also high, showing a monotonic function where the probability of ASGM 

occurs is directly proportional to the value of the cluster prominence. 

Consequently, if the value is low, there is a low probability and a peak around the mean values 

in the GLCM matrix and, therefore, a slight variation in gray-scale values. This asymmetry 

indicator is particularly handy for distinguishing different land covers represented by gray-scale 

levels in small analysis patches. Moreover, the temporal segmentation provides additional 

information about the temporal change of those multiple land covers (gray-scale levels 

asymmetry) in small patches along the time. Allowing to related the spatial (texture) and 

temporal (segmentation) changes in an area with multiple land covers and, therefore, different 

spectral responses produced by ASGM activities. 
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Among the twelve textural features, Cluster Prominence, Cluster Shade, Variance and Contrast 

seemed to be most promising features for ASGM detection due their relative large separation, 

small standard deviation (X. Yang et al., 2012), variable importance metrics, and performance 

in the binary classification. Cluster shade is a skewness indicator of the matrix,  measuring the 

uniformity of the image and its intrinsically linked to the Cluster Prominence; the higher the 

shade values, the lower the uniformity, the lower the skewness  (Unser, 1986). The metric was 

proposed by Conners et al. (1984) to relate it directly with the Cluster Prominence texture. 

Indicating that high values of both metrics are clear evidence of multiple land cover in small 

local spaces with high spectral heterogeneity and high image asymmetry. It also can be seen 

through the PDPs plots (figure 33), where the relation of the Cluster Shade concerning the 

marginal probability of ASGM occurrence is high for elevated shade values.  

The variance and contrast textures are linked directly and provide information about the image 

variability. High variance values seemed to suggest a high contrast while the opposite 

relationship does not apply; both are related to local and global variability, respectively. A high 

variance value indicates high heterogeneity of the gray-scale values – differ from their mean- 

and the contrast measures the local variations presented in the image. The contrast texture is a 

also a representation of the difference between the lowest and the highest values over a 

continuous local area formed by a window (kernel) of analysis.  

These results suggest that the study area possesses complex texture and large variations, while 

the cluster prominence and cluster shade indicate constant asymmetry and high spectral 

variability. Figure 37 (panel (iii)) shows the spectral variability and the high asymmetry at the 

nearby areas of the ASGM settlements. The multiple different impacts of the land cover in small 

areas produced multiples spectral and therefore spatial relations are mainly detected by using 

these four spectral features. 

Texture information derived from the SWIR bands worked better since they have yielded the 

most exemplary characteristics about the spatial relationships of neighboring pixels which 

attributed to changes in the land cover, since SWIR bands have contrast in their imagery that 

make objects easily recognizable, discriminating moisture content of soil and vegetation and 

less sensitive to atmospheric influence. The window size selected for texture calculation (3x3) 

might introduce some noise, considering that the bigger the kernel, the smoother the texture 

image (Chen et al., 2020). However, the kernel size was selected considering the smallest size 

of the ASGM (no higher than 1ha) and the constantly spatial variation in small patches produced 

by different land cover impacts than a higher kernel might smooth, reducing the sharpening 

with a spatial feature is identified. The main drawback of introducing texture features in the 

analysis is the border effect, given that the calculation of every metric independently presents 

significant errors in transition areas and the appropriate delimitation of the kernel size for 

texture extraction. Nonetheless, the achieved results reveal that the highest the contrast is, the 

more information is obtained from the texture analysis, which notably enhances the 

discrimination ability and identification of the ASGM by the temporal segmentation of texture 

features and the capture of spatial complexity of mixed classes.  

Severe changes in land cover due to deforestation or excavation of the topsoil layer are best 

detected in bands 5 (Swir 1) and 7 (Swir 2) of Landsat. These bands observer the reflectance of 

solar radiation between 1.60µm and 2.19 - 2.22 µm. In this range, the spectral signature of 

vegetation is considerably different from that of bare soil or cleared and logging patches 
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because of deforestation. This difference is beneficial for identification and discrimination from 

land covers with vegetation and those without, and this spectral zone is susceptible to forest 

structure, moisture, shadowing, and vegetation density. This application of the SWIR bands is 

well supported by (Mitchell et al., 2017), (Asner, 2009), (Gerard et al., 2003) that rely on SWIR 

bands for forest disturbance detection because they are not affected by haze or other noises as 

the RGB bands,  and because SWIR bands in remote sensing occur in the atmospheric windows, 

offering unique opportunities for sensitive information regarding leaf moisture content, mineral 

chemistry and perform analysis that is not possible with visible and near-infrared alone. 

Elevation and distance to roads were the only important features included in the final model 

built by the variable importance and feature reduction method with VSURF. A remarkable 

consideration explains the relevance of these two features: Firstly, most of the 75 % of the 

Amazon ASGM are alluvial mines located close to the shorelines and rarely in the middle of 

the forest (Elmes et al., 2014). Secondly, the rudimentary roads interconnect the ASGM 

locations for mineral transportation and mining supplies (Güiza, 2013), which are built to foster 

the ASGM activities (Roulet et al., 2001). Consequently, the relevance of ancillary data as an 

essential input in the ASGM detection cannot be argued in the light of the results achieved, 

given the spatial correlation of the water bodies and the roads in the ASGM distribution. 

Nevertheless, the fact that topography and vegetation relationships are influenced by other 

environmental factors – out of this scope-  feature relevance and feature selection indicates that 

the connection needs to be understood in a broader context (Deng et al., 2007). Previous studies 

have pointed out the influence of topographic features and the spatial scale effects of detecting 

forest disturbances (Deng et al., 2007), (Qi & Wu, 1996) (Aman et al., 1992). The main issue 

concerns the spatial scale (30m). Given that the spatial resolution of the data derived from the 

SRTM and used in the analysis might not represent the scale at which the ASGM correlates 

with topography features, and that the spatial patterns observed might not inform about the 

contextual ASGM activities that involve the characterization in large areas used in this research. 

Analyzing a more continuous surface and higher-order or spatial resolution provides better 

sights of the landscape structure between topographic attribute and vegetation variables and, 

therefore, correlation with forest disturbances. 

The Random Forest algorithm generally performs well with a high dimensional classification 

framework allowing nonlinear relationships among predictors (Mellor et al.,2015). 

Nevertheless, the input predictors present high correlation (spectral indices), collinearity, and 

spatial correlation (texture features derived from the GLCM matrix) required to be mitigated. 

Therefore, identified the strong predictors that do not decrease the overall accuracy of the 

ASGM detection, but also diminished the correlation and collinearity among some predictors.  

When using the VSURF, the dimensionality, variable correlation of the dataset is well reduced 

by selecting only the most important features while the classification accuracies slightly change; 

89.2% by 86 variables, 92.6% by 49 features, and 90.8% by 33 variables, (table 14) suggesting 

that feature reduction did not impact predictive ability, but feature redundancy and noise (figure 

34). The stepwise procedure and wrapper method includes statistical measures such as the 

variable importance standard deviation, variable importance mean decrease error and the 

coefficient of variation for feature reduction and selection the most important predictors and 

reducing the correlation among the predictors. Although these variables are not especially 

predictors, their usability to establish a threshold and assess the relationships with other 

variables seems fundamental for feature reduction and selection, since it constructs several 
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models for training purposes, implying that the selection is made in a way that captures the 

whole variability of the predictors considering for modeling removing biased selection in favor 

of particular predictors (Iguyon et al., 2003).  The multicollinearity and spatial autocorrelation 

was overlooked given that RF uses the bootstrap sampling and feature sampling, selecting 

different set of features for different ensembles in the forest (Corcoran et al., 2013). 

Two classifications (binary and probabilistic) were carried on using the Random Forest 

classifier. The binary Mine / No Mine classification performs an overall accuracy of 90.8% 

using 50 iterations with the most important predictors selected after using VSURF. The 

qualitative assessment shows that land covers with similar surface reflectance responses were -

partially- separated. For instance, adjacent areas to rivers with sediments or sandbank, 

spectrally similar to topsoil, overburden, and mining pit c were classified correctly as No-mine 

(figure 35), which presumes and notable advance in ASGM mapping compares to (Isidro et al., 

2017) and the limitations founded by (F. de L. Lobo et al., 2018), where the spectral analysis 

was not allowed to separate this classes. This remarkable result is given for the incorporation 

of texture features as predictors in the RF classification process. Moreover, the binary 

classification. However, this binary classification fails in the discrimination of the deforested 

patches and the ASGM settlements. This is induced for the complexity of separate areas mining 

areas from logging patches, which could be or not directly linked with ASGM activities. 

Moreover, it is important to recognize that the ASGM are abstract objects with fuzzy boundaries 

and multiple land covers, which as a whole constituted the concept of ASGM creating large 

footprints of bare soil and mining ponds. In contrast to other forest disturbances such as like 

cattle ranching or cropping, where the spectral variability and the spatial context could be 

defined by some boundaries. In that sense, the probability approach seems reasonable to the 

spatial display of the occurrence probability of the ASGM class and a visualization tool of the 

dynamic change and further hypothesis formulation. 

The probability map (figure 36, 37) shows the spatial distribution of the ASGM occurrence. 

Qualitatively, it is possible to see that the highest probabilities are associated with water bodies, 

as expected. Considering the most of the mines in the sampling data set are alluvial mines 

(RAISG, 2020). Moreover, the location of mining ponds and the neediness of water for mineral 

extraction foster the location of ASGM along the rivers. It is important to remark that the model, 

in some areas, can separate mineral deposits from ASGM settlements along the rivers (figure 

37 brown square) despite the high concentration of sediments of the Tapajos tributes rivers (F. 

L. Lobo et al., 2015), which can be classified as ASGM given their spectral characteristics. 

Besides, the time of analysis (middle June - middle October) also defines the probability of 

ASGM occurrence, where most of the tributary rivers at the Tapajos basin experience a change 

of water siltation through the time frame of this analysis (dry season), coupled with low water 

flow and an increase of total suspended solids (F. L. Lobo et al., 2015); and considering to 

Ipenza et al. (2014) where at the end of the rainy season (early/middle June) mining activities 

are intensified. 

Another important feature of this approach is the recognition of the deforested patches (regular 

squares and pattern distribution through the roads (light yellow) figure 36) with a low-medium 

probability that, given their characteristics of shape and association are easily recognizable as 

No Mine areas, but high forest disturbed spots that cannot be directly linked with ASGM 

activities. 
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4.1 LIMITATIONS 
 

Given the nature of the problem, the informality related to and scattering pattern of distribution 

of the ASGM settlements, this pilot study has found some limitations describes as follows. Data 

acquisition for training and validation purposes is the main limitation in model building for 

mapping and monitoring this type of forest disturbances (Wagner, 2016). Moreover, the relation 

of ASGM activities with organized delinquency bands (Ipenza et al., 2014) limited the process 

of an intensive and more specific sampling for model validation. Furthermore, the boundaries 

delimitation of the ASGM in the digitization process is subjective, inconsistent, and labor-

intensive by the photo interpreter even if the process is rigorously carried on following the 

techniques proposed by (Avery, 1969), (Stone, 1964). Therefore, a potential alternative to 

improve the quality of the sampling for training and validation purposes is to implement an 

automated process (segmentation) to delineate homogeneous stands of ASGMs (Thompson et 

al., 2008), which have the potential to aid in the rapid utilization of extensive historical records 

with several caveats for future consideration (Morgan et al., 2013). On the other hand, the final 

set of the features reached for the prediction model after variable reduction and selection is 

slightly high (33 features), which means that most features explain the minimal variance, as 

shown in figure 31. Therefore, an extra assessment of model performance with fewer features 

could be incorporated to evaluate a potential reduction in the final number of predictors, using 

a different metric rather than delta mean square error per variable used in the current scope. 

Considering the volume of features to process and images required for the temporal 

segmentation in the time series and subsequent classification using RF, the bulk of information 

requires an automatized process with tailormade controls that guarantee the optimal outcome. 

Additionally, it is essential to consider detectors failure at the Landsat-7 ETM+, which provides 

noise and errors in the predictor’s outcome for yearly composite, and even despite that 

LandTrendr algorithm incorporates an interpolation process for temporal segmentation, the 

influence of the failure detector is particularly remarkable in the extraction and calculation of 

the texture features. In light of the results and considering the qualitative characteristics of the 

images resultant from temporal segmentation, it seems that the interpolation process has not 

been pretty successful. The gaps because of SLC-off are evident in most of the images and 

inputs used in the RF classification, which biased the final classification. However, given the 

adaptability of the LandTrendr and usability with any remote sensing image, the incorporation 

of the satellite images Landsat 5 and Landsat 7 (open source) in the first decade of the new 

millennium provides an alternative to overcome the gap. Finally, the model requires an 

additional and independent validation for the probabilistic classification, which was out of the 

aims and scope of the current research.  

 

 

 

4.2 IMPLEMENTATION 
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The approach proposed in this work proves an efficient and direct method for ASGM detection. 

The use of the GEE allows multifunctional data processing eliminating the onerous data 

acquisition, management, and preprocessing steps in a cloud computing environment, allowing 

to manipulate big geospatial data and access to real-time satellite data in a high-end 

computational process, independently of the hardware capacity. LandTrendr is perfectly 

functional in the GEE environment (LT-GEE), and it counts with a user-friendly API for 

statistics extraction and interactive visualization (R. Kennedy et al., 2018). The LT-GEE   

environment has been used for land cover reconstruction and monitoring in forest disturbances, 

and it raised as a potential option for monitoring and detecting ASGM in the whole rain forest. 

The transferability over other areas is a topic for further research and is highly suggested to 

assess its performance in other areas with different environmental and climatological 

conditions. Nevertheless, the workflow, methodology, and results achieved in this research 

arise as a real potential option for forest management, and monitoring of the ASGM activities 

in the Amazon Forest over an open-source platform with freely accessible data and an 

automatized process in a cloud environment are advantages and benefits that is reasonable to 

assume that could be successfully implemented for making decisions. 
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5. CONCLUSIONS 
 

This research presents an efficient and quick ASGM mapping and monitoring method using the 

LandTrendr for temporal segmentation analysis, VSURF for feature reduction and variable 

importance, and machine learning Random Forest for probabilistic ASGM occurrence Tapajos 

river basin. Considering the approach and method to detect mining activities in the Brazilian 

Amazon currently available on visual interpretation of aerial photographs (F. de L. Lobo et al., 

2018), the initial contribution of this research is the development of freely accessible data 

processed in an open-source platform with an automatized method to derive features and 

variable predictors and subsequently classification with notable accuracy. Moreover, it reduces 

image processing time with a cost-effective method. Furthermore, it demonstrates the 

usefulness of the ensemble approach using the Random Forest machine learning algorithm for 

multifeatured and different sorts of predictors, which enables to assess the classification 

precision. 

The proposed method's major novelty lies in identifying ASGM using time series with temporal 

segmentation of multifeatured spectral and textural features. It appears to be a feasible and 

robust approach to detect the forest disturbances produced by ASGM activities, using a linear 

regression-based-trajectory-fitting that allows recognizing long processes of land change cover 

and long-term land monitoring system. The temporal segmentation of texture features mainly 

provides unique insights about the changes of the spatial relationships and the importance of 

textural analysis for distinguishing land cover classes with similar spectral characteristics but 

with different spatial configurations, patterns, and local pixel associations with neighbors.  The 

analysis performed of variable importance and feature reduction shows the preponderance of 

the texture features via temporal segmentation and magnitude of change parameter from the 

GLCM matrix variables to identify disturbances due to ASGM, which addressed an important 

gap in the current forest disturbances literature. 

Another notable contribution of this study was the ability to assess the importance and marginal 

effect of different variables have on the ASGM prediction and select the features that combined 

over a tree ensemble model allows predicting the occurrence (presence) of ASGM in 

probabilistic terms, providing a promising alternative to the current labeling and static land 

cover class approach employed in complex spatial areas with fuzzy boundaries, and multi-type 

of land cover interacting together in small patches of the forest. Therefore, the probabilistic 

approach presented as the final result tries to solve the problem related to the fact that ASGM 

activities are not a singular land cover class. It is an abstract phenomenon recognizable in the 

space by associating an amalgamation of different land covers with a set of dynamic and 

temporal processes. Labeling the phenomenon in a single land cover class minimizes and cuts 

down the spectral variability in the analysis and what the problem represents. 
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7.  APPENDIXES 
 

7.1 LandTrendr Parameters for Texture 
 

 

 

 



Detecting Artisanal Small-Scale Gold mines with LandTrendr multispectral and textural features at the Tapajós river basin, Brazil  

 

83  
 

7.2 Partial Dependence Plots 
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