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ABSTRACT 

The Mishmi takin (Budorcas taxicolor taxicolor) and the Bhutan takin (Budorcas taxicolor whitei) are endemic to 

the eastern Himalayas. They are the two least studied subspecies of the takin (Budorcas taxicolor) and listed 

as Vulnerable species by the IUCN Red List. Despite the fact that both subspecies are legally protected in 

their range, their population continues to decline due to poaching, habitat loss and fragmentation over the 

last few decades. In this study, I modelled current suitable habitats for both Mishmi takin and Bhutan 

takin in the Eastern Himalayas using ecological niche modelling, and identified the key environmental 

variables influencing their potential distribution. Furthermore, I tested the niche similarity between these 

two subspecies and also predicted the potential impact of future climate change on them. The results 

show that the current suitable habitat for Mishmi takin and Bhutan takin is 28,154 km2 and 15,314 km2, 

respectively. The key environmental variables determining the habitat suitability for the two subspecies are 

different. For Mishmi takin, precipitation seasonality and the standard deviation of NDVI are the two 

most important factors. In the case of Bhutan takin, the needleleaf forest and isothermality are the two 

major factors. The result also shows that the ecological niches of Mishmi takin and Bhutan takin are 

similar but not the same. The future climate change will have a significant negative impact on Mishmi 

takin and Bhutan takin in the Eastern Himalayas. The suitable habitat for the Bhutan takin is expected to 

disappear completely in the area, while the remaining suitable habitat for the Mishmi takin will also be very 

few. To the best of my knowledge, this is the first study that predicted the current and future suitable 

habitat for both Mishmi takin and Bhutan takin in the Eastern Himalayas. The findings of this study 

provide an important scientific basis for conservation planning of these two subspecies and its associated 

ecosystem in this region.  
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1. INTRODUCTION 

1.1. Background 

Global biodiversity is rapidly declining with an unprecedented extinction rate (IPBES, 2019). The current 

rate of extinction is greater than the anticipated rate from the fossil record (Barnosky et al., 2011). This 

rate of biodiversity decline is clearly indicated to trigger the sixth mass extinction that occurred only five 

times in about 540 million years. It is driven by increasing anthropogenic activities through poaching, 

exploitation of natural resources, fragmentation and degradation of suitable habitat, the introduction of 

non-native species, and climate change (Barnosky et al., 2011; Ceballos et al., 2015; Tollefson, 2019; 

Wilson, 1989). The loss of biodiversity alters the magnitude, pace, and temporal continuity of material and 

energy flow in an ecosystem, which threatens the ecosystem productivity and services, affecting human 

well-being (Cardinale et al., 2012; Díaz et al., 2006). Therefore, urgent action is needed to safeguard the 

biodiversity on planet Earth. An approach to conserve biodiversity is to identify the biodiversity hotspots 

for priority conservation and management (Myers et al., 2000).  

 

Globally, a total of 34 biodiversity hotspots are recognized, among which three fall in the Eastern 

Himalayas (Chhetri et al., 2010). The Eastern Himalayas is a mountain ecosystem that stretches across Kali 

Gandaki valley in central Nepal to northwest Yunnan in China, including Bhutan, northeast states and 

north Bengal hills in India, southeast Tibet in China, and northern Myanmar (Sharma et al., 2009). It 

covers an area of approximately 525,000 km². The Eastern Himalayan mountain has a complex 

topography due to the rapid change in altitude over small distances. As a result, the region supports 

diverse bioclimatic zones. This diversity in the bioclimatic zone enables many globally significant flora and 

fauna to inhabit the region due to which the Eastern Himalayas is acknowledged as an important global 

conservation priority area with high biodiversity and endemism (Basnet et al., 2019; Brooks et al., 2006; 

Chhetri et al., 2010). For instance, the Eastern Himalayas is home to some of the vulnerable species like 

takin (Budorcas taxicolor), endangered species like Bengal tiger (Panthera tigris), and critically endangered 

species like Namdapha flying squirrel (Biswamoyopterus biswasi) (IUCN, 2020). At the same time, the region 

is vulnerable due to its geographic location and fragile ecosystem (Chhetri et al., 2010; Sharma et al., 2009). 

The Eastern Himalayas is located in between the densely populated countries that exert massive demand 

for natural resources to fuel people’s livelihood and economic development (Chhetri et al., 2010). 

Mountains are one of the most fragile environments on Earth (Chettri et al., 2018). Many mountain 

ecosystems are greatly affected by land-use change and climate change, thereby experiencing a loss of 

biodiversity. The Eastern Himalayan mountain ecosystem is no exception. Therefore, the long-term 

viability of rich biodiversity in the Eastern Himalayas is in jeopardy due to poaching, land-use change, and 

climate change (Chhetri et al., 2010; Pandit et al., 2007; Sathyakumar & Bashir, 2010). 

 

Poaching is rampant in the Eastern Himalayas (Sathyakumar & Bashir, 2010). Wild animals are illegally 

hunted for meat, medicine, and mainly for economic gain. For example, a study conducted in the Eastern 

Himalayan region in India revealed that animals like goral, serow, and takin are hunted and killed by 

people, which has led to local extinction or a decrease in the local population density of these animals 

(Dasgupta et al., 2010; Rawat & Sathyakumar, 2002). Likewise, poaching has reduced the number of tigers 

from 20,000 to 3000 despite significant efforts by conservationists to protect the wildlife (Anil et al., 

2014).  Mountain products have been traded for thousand years by the people in the border areas of the 

Himalayas (Oli, 2003). Access to modern infrastructure and economic activities have further increased the 
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illegal trade of wild species and animal parts. The intruders are at an advantage because the law 

enforcement agencies are not based locally. Therefore, controlling the illegal hunting and trade of species 

at present is a difficult task.   

 

Within the last few decades, the land-use change in Eastern Himalayas from forest to other types of 

usages is noticeable (Chhetri et al., 2010). The expansion of agriculture brings socio-economic 

development but at the cost of biodiversity and ecosystem services (Penjor et al., 2020). For example, at 

the current rate of deforestation caused by agricultural expansion and human settlement in the Indian 

Himalayas, it is projected to have only about 10% of the land under dense forest cover (>40% canopy 

cover) by 2100, a scenario capable to wipe out almost a quarter of endemic species (Pandit et al., 2007). 

The fuelwood consumption for cooking and space heating activities is dominant in the Eastern Himalayas, 

apart from the slash and burn agriculture practice (Bhatt et al., 2016). The estimated forest growth is not 

able to accommodate fast fuelwood consumption. So, the forest is degraded and needs restoration to 

support the energy requirement and maintain the ecosystem balance.      

 

The impact of climate change is more pronounced in the Himalayas (Sharma et al., 2009). Over the last 

100 years, the Eastern Himalayas temperature increased more than the 0.74°C global average. There is a 

relatively more increase in temperature and precipitation with increasing elevation in the area (Manish et 

al., 2016; Sharma et al., 2009). Such variation in physical factors like temperature and precipitation causes 

an alteration in the hydrological cycle and vegetation community, leading to permanent shifts in biomes 

(Bellard et al., 2012; Xu et al., 2009). Consequently, species respond by shifting or shrinking their ranges 

and niches, physiological adaptation, or become extinct (Bellard et al., 2012; Telwala et al., 2013). For 

instance, future climate change is projected to bring more than 20 to 80 m per decade theoretical shift in 

altitudinal vegetation belts in the higher elevation of Eastern Himalayas considering the current estimated 

temperature rise of about 0.01°C to 0.04°C per year (Tse-ring et al., 2010). As a result, it is assumed that 

apart from some of the species that can adapt or shift, the ability of other species to keep pace with 

changing climate is minimal. 

 

Monitoring and conserving biodiversity under threat is challenging due to the limited resources. So, the 

alternative is chosen in the form of indicator, umbrella, and flagship species (Simberloff, 1998). Large 

mammals are considered as indicator species to inform the ecosystem health and diversity because of their 

large area requirement and essential ecological role (Ceballos & Ehrlich, 2002; Simberloff, 1998; Sinclair, 

2003). Recently, Dorji et al. (2018) evaluated 255 terrestrial mammals to assess the efficiency of existing 

protected areas in the Eastern Himalayas. The mammals were considered as the key indicators of 

anthropogenic impacts on the ecosystem. The assessment identified the 50 most threatened mammals in 

the Eastern Himalayas. Of these 50 threatened mammals, takin is the only mammal endemic to the 

Eastern Himalayas, has a wide range, and falls under the vulnerable category of the International Union 

for Conservation of Nature (IUCN) Red List of Threatened Species (Dorji et al., 2018; Song et al., 2008).  

 

Takin is an ungulate mountain mammal that is endemic to the Eastern Himalayas (Sharma et al., 2015). 

Taxonomically, takins are notable for being a species that is in between sheep and cattle (Zeng et al., 

2003). They are shy animals that live in remote areas away from human habitation. They have a large body 

with thick and strong legs, a greatly convex face with a heavy mouth and a very thick neck. Takin’s body is 

covered with a shaggy coat that varies in colour among the subspecies. They dwell in dense forests, mainly 

between 1,500 to 3,600 m in temperate and alpine forests. Takin is a herbivore and grazes on various 

plants and often gathers around the mineral lick sites (Schaller et al., 1986; Wangchuk et al., 2016). They 

exhibit seasonal migration which is influenced by plant phenology and temperature change (Guan et al., 

2013, 2015; Wang et al., 2010; Zeng et al., 2008). There are four subspecies of takin (Neas & Hoffmann, 
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1987), namely Golden takin (Budorcas taxicolor bedfordi), Sichuan takin (Budorcas taxicolor tibetana), Mishmi 

takin (Budorcas taxicolor taxicolor), and Bhutan takin (Budorcas taxicolor whitei). They are legally protected 

throughout their distribution range in China, India, Myanmar, and Bhutan. In China, the takin is listed as a 

Class I species of the National Wildlife Law (1988) that forbids people from hunting them (Guan et al., 

2013). In India, takin is protected as a Schedule I species of the Wildlife Protection Act of India, 1972 

(Dasgupta et al., 2010). Likewise, in Myanmar, takin is protected under the Completely Protected Species 

category in the Protection of Wildlife and Wild Plants and Conservation of Natural Areas Law, Myanmar 

2020 (Government of the Union of Myanmar, 1994). In Bhutan, takin is protected under the Schedule I 

category of the Forests and Nature Conservation Act of Bhutan 1995 (Royal Government of Bhutan, 

1995). Despite their legal protection status, studies have confirmed that the population of takin is 

declining throughout their distribution range due to poaching, deforestation, habitat fragmentation, and 

climate change (Dasgupta et al., 2010; NCD, 2019; Sangay et al., 2016; Sharma et al., 2015; Song et al., 

2008; Wei et al., 2017). Therefore, effective conservation measures are required to minimize further 

declines.   

 

The collection of information and identifying information gaps is a necessary step in planning for 

biodiversity conservation (Groves et al., 2002). Previous literatures have reported takin to be a poorly 

studied species, partially due to the poor access to their remote habitat in the forests (Adkin et al., 2012; 

Dhendup et al., 2016; Groves, 1992; Guan et al., 2013; Sangay et al., 2016; Song et al., 2008; Zeng et al., 

2008). Moreover, it is indicated that the focus was mainly on the two subspecies, namely Golden takin and 

Sichuan takin in China (Adkin et al., 2012; Guan et al., 2013, 2015; Hua et al., 2002; Schaller et al., 1986; 

Z.-G. Zeng et al., 2008, 2010). Mishmi takin and Bhutan takin are the least studied subspecies (NCD, 

2019; Pan et al., 2019; Sangay et al., 2016; Song et al., 2008; Wangchuk et al., 2016).  

 

Mishmi takin is distributed across southeast of Tibet and northwestern Yunnan in China, Kachin state in 

northern Myanmar, and Arunachal Pradesh in India (Song et al., 2008). It is estimated that there are 3,500 

Mishmi takins in Tibet. The estimated population for Mishmi takin in the rest of the distribution range is 

not yet available. A few prior studies on Mishmi takin provides the partial preference of their habitat and 

information on threats in their distribution range. For example, the report on Mishmi takin distribution in 

India by Dasgupta et al. (2010) concluded that Mishmi takin prefers dense forests. The poaching and 

hydropower plant development is negatively affecting the population of Mishmi takin in India. They are 

still present in Arunachal Pradesh although it is extinct in Sikkim. Yang et al. (2019) selected Mishmi takin 

as one of the five flagship species in their study to identify the priority conservation areas that fall in the 

transboundary biodiversity hotspot of China and Myanmar. The result revealed that 80% of the identified 

priority conservation areas for the five flagship species were outside the existing protected area boundary. 

The studies in Myanmar reported that Mishmi takin is one of the most hunted wild animals for meat and 

commercial gain (Rao et al., 2010, 2011). In addition to these threats from poaching and land-use change, 

China, Myanmar, and India are reported to be highly vulnerable to future climate change (Gao et al., 2001; 

Gopalakrishnan et al., 2011; Rao et al., 2013).  

 

Bhutan takin is an animal of national importance and cultural value in Bhutan (NCD, 2019). Bhutan takin 

was announced as the national animal of Bhutan in 1985 (Royal Government of Bhutan, 1995). Across its 

distribution range, Bhutan takin is mostly found in northern region of Bhutan (Sharma et al., 2015; NCD, 

2019). It was last reported to be seen in Sikkim, India in 1999 (Sharma et al., 2015). The distribution in 

Tibet, China is not clear. Their estimated population is 500 to 700 individuals (Sharma et al., 2015). The 

partial habitat preference and information on threats within Bhutan is available based on previous studies. 

For instance, Wangchuk et al. (2016) assessed the Bhutan takin’s habitat and diet during summer within 

Jigme Dorji National Park. They concluded that Bhutan takin prefers the area near mineral licks, and 
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grazes on 68 different species of plants. Another study captured (through camera trap) the presence of 

Bhutan takin at an elevation of 4864 m in Wangchuck Centennial National Park, which is beyond the 

highest reported upper limit of 4200 m within Bhutan (Dhendup et al., 2016). NCD (2019) predicted 

Jigme Dorji National Park and Wangchuck Centennial National Park as the suitable winter habitat for 

Bhutan takin. Further, they reported a positive relationship with conifer forest and roughness, and a 

strong negative relationship with slope and road. Similarly, negative influence from road, power 

transmission lines, food resource competition, and the risk of zoonotic disease transmission from the 

domestic livestock was reported based on a questionnaire survey (Sangay et al., 2016). Apart from the 

previously reported threats to Bhutan takin, the impact of climate change is prominently felt with 

changing seasonal pattern and climate-induced disasters in Bhutan (Chhogyel & Kumar, 2018). Further, 

the vulnerability analysis of mammals to the impacts of land-use change and climate change predicted a 

reduced occurrence of species in future in Bhutan (Penjor et al., 2020).      

 

The accurate identification of target species’ suitable habitat for protection is a crucial scientific 

intervention for well-organized conservation planning (Huang et al., 2020). The ecological niche model 

(ENM) or species distribution model (SDM) is a commonly used tool to predict the suitable habitat of a 

species (Elith & Leathwick, 2009; Rodríguez-Castañeda et al., 2012). ENMs are based on the concept that 

there is a close relation of a species to its environment (Grinnell, 1917). It is a numerical model that 

combines environmental variables with species’ occurrence data to estimate the species-environment 

relationship. The earliest computer-based species distribution modelling began in the mid-1970s (Guisan 

& Thuiller, 2005). Since then, the subject has rapidly developed due to its applicability in fields other than 

predicting suitable habitats for species (Elith et al., 2011; Guisan & Thuiller, 2005). For instance, ENMs 

are used to predict the spread of disease (Peterson et al., 2002), for phylogeographic studies (Alvarado-

Serrano & Knowles, 2014), for mapping the human ecological niche in the past glacial maximum in 

Europe (Banks et al., 2008), and to simulate the effects of frequent fire (Syphard et al., 2006). SDMs like 

the generalized linear model (GLM) has been in use since the early 1990s. It uses multiple-regression 

techniques to model complex ecological relationships. It is one of the stable models and uses presence-

absence data for modelling. However, the collection of absence data is complicated, sparse, and unreliable 

(Mackenzie, 2005). In contrast, presence-only data are widely available with the development of digital 

databases like herbarium records and museum databases (Graham et al., 2004). Therefore, modelling 

techniques to use presence-only data like the maximum entropy method (Maxent) and BIOCLIM 

modelling method were developed (Elith et al., 2011; Pearce & Boyce, 2006; Phillips et al., 2006). Maxent 

is a statistical machine learning method (Phillips et al., 2006). It has been widely used since its availability 

in 2004 (Elith et al., 2011). More than 1000 studies have applied the Maxent method for species 

distribution modelling (Merow et al., 2013). For example, study to assess the human impacts on 

endangered red pandas living in the Himalaya (Panthi et al., 2019), the predicted negative affect of climate 

change and land-use change on the distribution of Rhododendrons in China (Yu et al., 2019), the 

assessment of threats and conservation priorities for Asian slow lorises (Thorn et al., 2009), and to 

evaluate the ecological indicator of climate change (Kou et al., 2020).  

 

1.2. Problem Statement 

The conservation of Mishmi takin and Bhutan takin cannot be achieved without knowing where they are. 

Effective conservation of these two species requires various information, at the very least, on their suitable 

habitats. However, knowledge on their suitable habitats is incomplete or unclear. For instance, the suitable 

habitat for Mishmi takin covering their distribution range is not yet available. Also, the prior habitat 

suitability study for Bhutan takin is focused on winter habitat only. The geographic boundary between 

Mishmi takin and Bhutan takin is uncertain (Song et al., 2008). Consequently, it limits the protection of 
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their suitable habitat, thereby imposing a limit on drawing effective conservation, management, and 

monitoring plans.  

 

The difference between Mishmi takin and Bhutan takin is still not well established. There are 

contradictions in the description of their pelage colour patterns. A study that carried out sequencing and 

characterization of the complete mitochondrial genome of Mishmi takin reported that Mishmi takin show 

close relationship with Sichuan takin than Golden takin (Kumar et al., 2019). However, comparison was 

not made with Bhutan takin although there are cases when both subspecies are thought to be of same 

genetic form. Thus far, there are no previous studies comparing their ecological niches, although assessing 

the similarity of ecological niches may help to mitigate the confusion between these subspecies. 

 

The Himalayan mountain range is sensitive to climate change. There is strong evidence that the region is  

warming (Gautam et al., 2013). For example, for the period of 1901 to 2003, a 1°C rise in annual average 

maximum temperature was found in the whole of northeast India. Similarly, many studies report warmer 

trends for the eastern Himalayas in China. In the Himalayan regions of Bhutan, from 1985 to 2002 

average temperature increased by 0.5°C in the non-monsoon season. Further, the large threatened and 

endemic species are expected to be the most vulnerable animals under the projected climate change 

scenarios in the Eastern Himalayas (Sharma et al., 2009). Yet, the potential impact of future climate 

change on Mishmi takin and Bhutan takin has not been explored in previous studies.   

1.3. Research objectives 

The overall objective of this study is to predict the current and future suitable habitats for Mishmi takin 

and Bhutan takin in the Eastern Himalayas. The specific objectives of this study are as follows: 

1) To model the current suitable habitat for Mishmi takin and Bhutan takin in the Eastern Himalayas 

2) To identify the key environmental variables that determine the habitat suitability of Mishmi takin 

and Bhutan takin 

3) To test if the ecological niches of Mishmi takin and Bhutan takin are identical 

4) To predict the impacts of future climate change on the habitat suitability of Mishmi takin and 

Bhutan takin in the Eastern Himalayas  

1.4. Research questions 

1) What is the area of suitable habitat currently available for Mishmi takin and Bhutan takin in the 

Eastern Himalayas? 

2) What are the key environmental variables influencing the habitat suitability of Mishmi takin and 

Bhutan takin? 

3) Are the ecological niches of Mishmi takin and Bhutan takin identical? 

4) How will the suitable habitat for Mishmi takin and Bhutan takin change under future climate 

change? 

 

 

 

 

1.5. Research hypotheses 

Hypothesis 1 

H0: The key environmental variables affecting habitat suitability of Mishmi takin and Bhutan takin are the 

same 
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H1: The key environmental variables affecting habitat suitability of Mishmi takin and Bhutan takin are 

different 

 

Hypothesis 2 

H0: The ecological niches of Mishmi takin and Bhutan takin are identical 

H1: The ecological niches of Mishmi takin and Bhutan takin are not identical 

 

Hypothesis 3 

H0: Suitable habitats for Mishmi takin and Bhutan takin are expected to increase under the future climate 

change scenario 

H1: Suitable habitats for Mishmi takin and Bhutan takin are expected to decline under the future climate 

change scenario 
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2. MATERIALS AND METHODS 

2.1. Study area 

The study area lies in the Eastern Himalayas (27°13' to 28°46' N, 88°10' to 98°27' E). It covers an area of 

286,829 km2 composed of parts of southwest China, northeast India, northern Myanmar, and Bhutan 

(Figure 1). The area is regarded as the current distribution range for Mishmi takin and Bhutan takin (Song 

et al., 2008).  

 

The Eastern Himalayas is part of the youngest mountain range in the world. Apart from being the global 

biodiversity hotspot (Myers et al., 2000), the Eastern Himalayas is a glacier ice repository beyond the 

Poles. It is also called ‘Water tower’ or ‘Third pole’, a critical source of water for people living downstream 

(Sharma et al., 2009). The region’s extreme altitudinal gradients range below 300 m in tropical lowlands to 

more than 8000 m in high mountains (Chhetri et al., 2010); the world’s highest mountain peak, the Mount 

Everest stands there.  

 

The forest and vegetation in the region are diverse due to the different bioclimatic zones and complex 

topography (Chhetri et al., 2010). Broadly, six different vegetation types are identified, namely tropical, 

sub-tropical, warm temperate, cool temperate, sub-alpine and alpine.  

 

The climate in the region is characterized as tropical montane ecosystem type of climate, hot and humid in 

the foothills and cold and dry on higher elevations. It has about eight months of the active rainy season 

and hosts Cherrapunji, the wettest spot in the world (Shrestha & Devkota, 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Geographical location of the study area in the Eastern Himalayas 
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2.2. Species data 

The species occurrence data for Mishmi takin was shared by the Wildlife Trust of India, the Wildlife 

Conservation Society of Myanmar Program, and Yunnan Normal University in China. The data from 

India was collected from Sikkim and Arunachal Pradesh, northeastern states in India (Dasgupta et al., 

2010). The surveys were sporadically conducted between August 2008 and May 2009. Two types of 

surveys, namely secondary survey and primary survey were conducted. The secondary survey involved 

interviews and consultation with forest personnel, knowledgeable people, and historical records of 

distribution to identify areas with the local presence of takin. Among the identified areas, suitable sites for 

the survey were recognized by selecting the areas between 1500 m and 3600 m and had dense forest cover. 

Within the identified sites, smaller priority plots for the survey were chosen based on recent sightings and 

in consultations with local hunters and forest personnel. The primary ground-based survey was conducted 

in these smaller priority plots by walking through the habitats. Both direct and indirect sightings of species 

were recorded. Additionally, some occurrence points were compiled from the published report of the 

Wildlife Trust of India collected in the period 1990 to 2007. The data received through the Wildlife 

Conservation Society was collected from northern Myanmar. The occurrence points were recorded using 

camera traps and opportunistic sightings, direct and indirect both. The data was collected in the year 2001 

to 2005, 2014, and 2016. The data received from Yunnan Normal University was collected through field 

surveys, camera traps, and interviews with farmers in southwest China. The data was collected from 1992 

to 2020.  

 

The species occurrence data for Bhutan takin was provided by the Nature Conservation Division, 

Wangchuck Centennial National Park, and Jigme Dorji National Park, Royal Government of Bhutan. The 

data shared by Nature Conservation Division was collected during the takin national survey of Bhutan 

(NCD, 2019). The survey was conducted between February and March 2018 in the winter habitat of 

Bhutan takin. The study sites were selected based on the previous takin records. A grid of 5x5 km2 was 

created on the selected study sites based on the estimated home range of Bhutan takin. The field survey 

combined a transect walk and camera trap method in the study sites. The laying of transects and 

placement of camera traps was guided by these grids. For the transect walk survey, a transect of 5 km 

(maximum) was set in accessible grids. They were laid to cover all representative habitat in each grid. Both 

direct and indirect sightings were recorded at locations 500 m apart in each grid. At every 500th meter, a 

100 m circular buffer was virtually laid as the centre of the plot. The observers then searched for about 20 

minutes in each plot. Each transect was visited once more in two weeks (minimum of 1 visit and 

maximum of 3 visits). For the camera trap survey, grids that were representative of habitat type but further 

enough to minimize spatial autocorrelation were chosen for unpaired camera trap installation. The camera 

traps were let to operate for 45 days before closure. The additional data shared by Wangchuck Centennial 

National Park and Jigme Dorji National Park cover the summer habitat of Bhutan takin. The data shared 

by Wangchuck Centennial National Park were collected between May and July 2015 through a transect 

walk. The data from Jigme Dorji National Park were collected between May and August 2020 through 

forest patrolling. The direct and indirect sightings were recorded from both the parks. 

 

A total of 256 occurrence points for Mishmi takin was shared by data owners from India, Myanmar, and 

China. During the data exploration exercise, 58 duplicate points and 10 outliers were removed from the 

dataset. The outliers were determined based on the elevation extracted at each occurrence point in 

ArcGIS. Takins are generally known to dwell between 1500 m to 3000 m or above. Therefore, occurrence 

points with elevations lower than 1500 m were removed from the final set of data. The last set of data for 

Mishmi takin has 188 points (Figure 2). For Bhutan takin, 246 occurrence points were shared in total by 

data owners from Bhutan. 53 duplicate points were found and removed from the final set of data of 193 

data points (Figure 2). No outliers were detected in the occurrence set of Bhutan takin.  



 

9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Environmental variables 

Modelling with appropriate environmental variables is critical to the performance of the model and its 

application in predicting suitable habitat of species (Williams et al., 2012). The appropriate environmental 

variables are direct or indirect factors that control the growth, reproduction, morphology, and behaviour 

of a species. In this study, the potential environmental variables were collected based on the information 

gathered on characteristics of takin’s ecology through prior studies (Dasgupta et al., 2010; Dhendup et al., 

2016; Groves, 1992; Guan et al., 2013; Kumar et al., 2019; NCD, 2019; Neas & Hoffmann, 1987; Sangay 

et al., 2016; Schaller et al., 1986; Sharma et al., 2015; Song et al., 2008; Wangchuk et al., 2016; Zeng et al., 

2010) and in consultation with takin expert.  

 

In the event of non-availability of actual home range for Mishmi takin and Bhutan takin, the i) past papers, 

ii) the availability of spatial resolution for potential environmental variables, and iii) the complex 

topography of the study area was used as the guide to determine the appropriate spatial resolution for 

environmental variables to be used in this study. The distribution and status of takin in India used 30 m 

forest cover satellite images and 90 m elevation data to extract good potential habitat for takin (Dasgupta 

et al., 2010). A spatial resolution of 90 m was used to predict the winter habitat of Bhutan takin (NCD, 

2019), and 250 m vegetation data were analysed to examine the migration pattern of giant panda and 

golden takin (Wang et al., 2010). However, these studies did not use climatic variables. The climatic 

variables that influence takin migration are available at 1 km spatial resolution, the finest at present. Then, 

we could also use the estimated home range of Golden takin, which is 25 km2 (Yan et al., 2017),  but 

variations present in environmental conditions and surface features due to undulating terrain in the study 

region might not be captured. Therefore, the spatial resolution of 1 km was used to approximately balance 

all these aspects. Also, all the environmental variables were projected to Asia Lambert Conformal Conic 

Figure 2: The geographical distribution of Mishmi takin and Bhutan takin occurrence points used for the study 
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(EPSG: 102012) because it is one of the best for middle latitudes (ESRI, 2016) and is often recommended 

for studies in the Himalayan region. Finally, the potential environmental variables were downloaded from 

various sources (Table 1). They were grouped into five categories: bioclimatic variables, topographic 

variables, vegetation-related variables, land cover, and anthropogenic factors.  

2.3.1. Bioclimatic variables 

The search for optimum temperature condition is suggested as one of the drivers for seasonal migration in 

takin ( Wang et al., 2010). The bioclimatic variables are biologically meaningful variables for species 

distribution derived from monthly temperature and precipitation (WorldClim, 2020). A set of 19 

bioclimatic variables were downloaded from the WorldClim database (version 2.1) at a resolution of 1 km 

(Table 1). The database provides current (1970 - 2000) and projected climatic data for 2070 (2061 - 2080). 

The current data are averaged global climate layers over 30 years.  

 

For future data, Intergovernmental Panel on Climate Change (IPCC) adopted greenhouse gas 

concentration trajectory called Representative Concentration Pathway (RCP) scenarios called RCP 2.6, 

RCP 4.5, RCP 6.0, and RCP 8.5. The RCPs indicate the possible future climate scenarios depending on 

the volume of greenhouse gas in the future (IPCC, 2014). The RCP 2.6 is a stringent mitigation scenario, 

RCP 4.5 and RCP 6.0 are intermediate scenarios, and RCP 8.5 is a very high emission scenario. The RCP 

4.5 is desirable for future conservation. It is a stable scenario without exceeding the long-run radiative 

forcing target level. On the other hand, RCP 8.5 is the most outrageous scenario expected in future. It 

considers high greenhouse gas concentration levels with the increasing greenhouse gas emissions over 

time. Plus, they are often used scenarios for future climate change impact studies (Buras & Menzel, 2019; 

José et al., 2016; Rathore et al., 2019). Therefore, bioclimatic data of Community Climate System Model 

4.0 (CCSM4) was downloaded for RCP 4.5 and RCP 8.5 scenarios. CCSM4 is one of the general 

circulation models (GCMs) from Coupled Model Intercomparison Project Phase 5 (CMIP5). It has been 

used for assessing the impact of future climate change on species distribution (Borzée et al., 2019; Qin et 

al., 2017) . Climate models make predictions on seasonal to decadal time scales and make projections of 

future climate over the coming centuries (Flato et al., 2013).   

2.3.2. Topographic variables  

The topographic variables are critical habitat factors that influence the microclimate, soil properties and 

species distribution (Wang et al., 2009). Variables like elevation, slope and aspect have often been used for 

species distribution modelling of various species. Also, takins are often sighted at a particular range of 

altitude, making these topographic variables a potential set of variables that most likely might influence 

their habitat preference. Such surface parameters are derived from Digital Elevation Model (DEM). So, 90 

m DEM was downloaded to calculate the surface parameters using ArcGIS. The resulting slope, aspect, 

roughness, and elevation of 90 m were resampled to 1 km spatial resolution for further analysis. The 90 m  

resolution DEM was used for generating surface parameters because a test result concluded that we 

should calculate surface parameters from finer resolution DEM, and resample to coarser resolution 

(Grohmann, 2015). The reason being that the smoothing of topographical surface while resampling DEM 

from higher resolution to lower resolution will further affect the derived surface parameters. As a result, 

the calculated values of derivatives might be much smaller than real values.     

2.3.3. Vegetation-related variables 

Vegetation-related variables are essential in this study because takin is a herbivore by food habit. Also, 

plant phenology is one of the factors influencing seasonal migration of takin (Guan et al., 2013; Wang et 

al., 2010; Zeng et al., 2010). The normalized difference vegetation index (NDVI) is a commonly used 

vegetation index for monitoring vegetation phenology, animal migration, and modelling species 

distribution (Panthi et al., 2019; Pettorelli et al., 2005; Swanepoel et al., 2013; Wang et al., 2010). It is 
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calculated using reflected red and near-infrared (NIR) radiation as NDVI = (NIR - RED) / (NIR + 

RED). The time series NDVI images are helpful in showing the spatial and temporal developments in 

vegetation productivity and distribution. Thus, it is representative of vegetation dynamics. Therefore, 

NDVI variables were used as a surrogate of plant phenology and food resources in this study. Takins live 

in remote parts of the study area so the major changes in the forest cover was not expected. Therefore, 

the time series NDVI images were collected between 2001 to 2005, falling in between the range of species 

data collection year (Section 2.2: Species data). The atmospherically corrected 10-day composite NDVI 

images were downloaded from SPOT-Vegetation at 1 km spatial resolution. These images were 

smoothened using a Savitzky-Golay filter to reduce noise caused by clouds using ENVI classic 5.6 

software. The smoothened NDVI images were used for deriving NDVI statistical products (minimum, 

mean, maximum, and standard deviation) that were used as environmental variables for the study.  

2.3.4. Land-cover  

A dense forest cover was regarded as potential habitat for Mishmi takin in India (Dasgupta et al., 2010) 

and conifer forests was found to have a positive influence on habitat use by Bhutan takin (NCD, 2019). 

Therefore, forest canopy height and land cover variables were considered in this study. The global forest 

canopy height at 1 km spatial resolution was downloaded from the NASA/Earth data site. Global forest 

canopy height was collected using spaceborne light detection and ranging (lidar) for 2005 (Simard et al., 

2011). The global 1 km consensus land cover for nine classes (Table 1) was downloaded from the 

EarthEnv repository. The datasets were generated by integrating land-cover products acquired from 

several global remote sensors (Tuanmu & Jetz, 2014). It provides the prevalence information on the land-

cover classes.  

2.3.5. Anthropogenic factors 

Takin, a stout but shy mammal, is deemed to avoid proximity to human or human activities (Dasgupta et 

al., 2010; NCD, 2019). For instance, anthropogenic activities like construction of roads, use of grazing 

ground by domestic livestock, and human disturbances/settlements are seen to have a negative effect on 

the distribution of takin (Dasgupta et al., 2010; NCD, 2019; Sangay et al., 2016; Song et al., 2008). 

Therefore, anthropogenic factors like distance to road, distance to human settlement, human population 

density, and domestic animal density (cattle and sheep) were considered in this study. The road network 

was downloaded from Geofabrik, and human settlement points were downloaded from Humanitarian 

data exchange (HDX). The road networks and human settlement points were used to generate the 

distance to road and distance to settlement using the Euclidean distance tool in ArcGIS at 1 km 

resolution. The cattle and sheep density layers were acquired from the Livestock Geo-Wiki and human 

population density from the NASA Socioeconomic Data and Applications Center (SEDAC), both with 1 

km spatial resolution.  

 
Table 1: List of potential environmental variables for modelling the current suitable habitat of Mishmi takin and 
Bhutan takin 

Category Variables Abbreviation Unit 

Bioclimatic  

Annual mean temperature bio1 oC 

Mean diurnal range (mean of 
monthly (max temp - min 
temp)) 

bio2 oC 

Isothermality (bio2/bio7) bio3 Dimensionless 

Temperature seasonality 
(standard deviation) 

bio4 oC  
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Max temperature of warmest 
month 

bio5 oC  

Min temperature of coldest 
month 

bio6 oC  

Temperature annual range 
(bio5-bio6) 

bio7 oC  

Mean temperature of wettest 
quarter 

bio8 oC  

Mean temperature of driest 
quarter 

bio9 oC  

Mean temperature of warmest 
quarter 

bio10 oC  

Mean temperature of coldest 
quarter 

bio11 oC  

Annual precipitation bio12 mm 

Precipitation of wettest month bio13 mm 

Precipitation of driest month bio14 mm 

Precipitation seasonality 
(coefficient of variation) 

bio15 Dimensionless 

Precipitation of wettest quarter bio16 mm 

Precipitation of driest quarter bio17 mm 

Precipitation of warmest 
quarter 

bio18 mm 

Precipitation of coldest quarter bio19 mm 

Topographic 

Elevation elevation m 

Aspect aspect Degree 

Slope slope Degree 

Roughness roughness Dimensionless 

Vegetation-
related 

Annual minimum NDVI ndvi min Dimensionless 

Annual mean NDVI ndvi mean Dimensionless 

Annual maximum NDVI ndvi max Dimensionless 

Standard deviation NDVI ndvi std Dimensionless 

Land-cover 

Evergreen/Deciduous 
Needleleaf Trees 

needleleaf forest Dimensionless 

Evergreen Broadleaf Trees 
evergreen 
broadleaf forest 

Dimensionless 

Deciduous Broadleaf Trees 
deciduous 
broadleaf forest 

Dimensionless 

Mixed/Other Trees mixed forests Dimensionless 

Shrubs shrublands Dimensionless 

Herbaceous Vegetation herbaceous  Dimensionless 

Cultivated and Managed 
Vegetation 

croplands Dimensionless 

Snow/Ice snow and ice Dimensionless 

Barren barren Dimensionless 

Forest canopy height canopy height Dimensionless 
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Anthropogenic 

Road network distance to road km 

Human settlement points 
distance to 
settlement 

km 

Human population density 
human 
population 
density 

Population 
per square km 

Cattle density cattle density per square km 

Sheep density sheep density per square km 

 

2.4. Collinearity analysis 

Collinearity is the linear relationship between two or more environmental variables (Dormann et al., 2013). 

The most used statistical routines in ecology are sensitive to collinearity. It leads to unstable estimates of 

the parameter, inflated standard errors on coefficient estimates, and bias in the inference statistics. In 

species distribution models, collinearity among environmental variables was found to decrease the 

efficiency and increase the model uncertainty (De Marco & Nóbrega, 2018). Therefore, detection and 

removal of highly correlated environmental variables is a critical step prior to model building.  

 

The Pearson correlation coefficient and variance inflation factor (VIF) are commonly used collinearity 

indices (Dormann et al., 2013). The Pearson correlation coefficient tests the strength of correlation 

between a pair of variables. As a rule of thumb, very highly correlated variable pairs are the ones with 

|r|>0.7. The multicollinearity among the variables can be tested using VIF. Again, as a rule of thumb, 

variables with VIF>10 indicate very high multicollinearity. The detected variables with very high 

collinearity and less important for species’ ecology are removed.   

 

Initially, 42 variables were listed as potential variables for predicting the habitat suitability for Mishmi takin 

and Bhutan takin (Table 1). These variables were tested for pairwise correlation and multicollinearity using 

the statistical software package R. The Pearson correlation coefficient test revealed that most of the 

bioclimatic variables were highly correlated (|r|>0.7) to each other and to elevation. Thus, only four of 

the bioclimatic variables that were not highly correlated and ecologically meaningful were retained for 

further analysis. They are annual mean diurnal range (bio2), isothermality (bio3), precipitation of the driest 

month (bio14), and precipitation seasonality (bio15). Similarly, ndvi mean, ndvi minimum, and ndvi 

maximum was removed for being highly correlated to elevation. A total of 19 variables were removed 

through the Pairwise correlation coefficient test leaving 23 variables (Figure 3). VIF was calculated for the 

remaining 23 variables. The result shows that VIF for all the variables was less than 10 (Table 2). 

Therefore, all 23 variables were retained for modelling the current suitable habitat for Mishmi takin and 

Bhutan takin (Table 3). 
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Table 2: Multicollinearity analysis showing VIF < 10 for each variable   

Variables VIF  

elevation 8.663 

bio2 8.064 

herbaceous 7.671 

snow_and_ice 5.905 

canopy_height 3.773 

bio3 3.633 

bio14 3.215 

ndvi_std 2.665 

needleleaf_forest 2.469 

mixed_forests 2.379 

bio15 2.115 

croplands 1.908 

barren 1.703 

deciduous_broadleaf_forest 1.681 

distance_to_road 1.496 

distance_to_settlement 1.461 

shrublands 1.449 

cattle_density 1.433 

human_population_density 1.322 

slope 1.271 

sheep_density 1.245 

roughness 1.024 

aspect 1.015 

  

Figure 3: The correlation matrix 
of environmental variables after 
collinearity analysis. Red indicates 
negative correlation and blue 
indicates positive correlation. 
Darker the colour, stronger the 
relation and vice-versa. 
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Table 3: Environmental variables used for modelling the current suitable habitat for Mishmi takin and Bhutan takin 
in this study 

Category Variables Abbreviation Unit 

Bioclimatic 

Mean diurnal range (mean of 
monthly (max temp - min 
temp)) 

bio2 oC 

Isothermality (bio2/bio7) bio3 Dimensionless 

Precipitation of driest month bio14 mm 

Precipitation seasonality 
(coefficient of variation) 

bio15 Dimensionless 

Topographic 

Elevation elevation m 

Aspect aspect Degree 

Slope slope Degree 

Roughness roughness Dimensionless 

Vegetation-
related 

Standard deviation NDVI ndvi std Dimensionless 

Land-cover 

Evergreen/Deciduous 
Needleleaf Trees 

needleleaf forest Dimensionless 

Deciduous Broadleaf Trees 
deciduous 
broadleaf forest 

Dimensionless 

Mixed/Other Trees mixed forests Dimensionless 

Shrubs shrublands Dimensionless 

Herbaceous Vegetation herbaceous  Dimensionless 

Cultivated and Managed 
Vegetation 

croplands Dimensionless 

Snow/Ice snow and ice Dimensionless 

Barren barren Dimensionless 

Forest canopy height canopy height Dimensionless 

Anthropogenic 

Road network distance to road km 

Human settlement points 
distance to 
settlement 

km 

Human population density 
human 
population 
density 

Population 
per square km 

Cattle density cattle density per square km 

Sheep density sheep density per square km 

 

2.5. Ecological niche modelling 

2.5.1. Maximum entropy modelling (Maxent) 

In a comprehensive model comparison study, Multivariate adaptive regression-splines (MARS), Boosted 

regression tree (BRT), and Maxent were the best performing models among the 16 commonly used 

models (Elith et al., 2006). The models like MARS and BRT need both presence and absence data, while 

Maxent was designed to work with presence-only data. Since presence-only data was provided for both 

subspecies, Maxent method was used for this study. Maxent uses the principle of maximum entropy to 

estimate the relationship between environmental variables and species presence (Phillips et al., 2006). It 
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outputs an estimated probability of presence with logistic output format. Maxent can generate relatively 

higher predictive accuracy with small sample among other presence-only methods (Merow et al., 2013). In 

fact, it is considered as one of the best species distribution models for species with restricted range 

(Kramer-Schadt et al., 2013) as the target species of this study. It is also comparatively less demanding of 

the computational time when compared to the ensemble modelling method. Besides, a recent analysis of 

distribution maps produced by Maxent and ensemble methods concluded that Maxent results are 

comparable to the results from the ensemble method (Kaky et al., 2020). Maxent has been used for studies 

similar to this study (Aguilar et al., 2015; Du et al., 2021; Fuller et al., 2008; Gibson et al., 2010; Merow et 

al., 2013; Zhang et al., 2018). Furthermore, the method is easy to implement with a stand-alone Java 

application tool, Maxent 3.4.4 (latest at present), and has a user-friendly interface to change the settings 

when needed.  

 

The Maxent software has often been utilized with the default settings, but many scientists do not 

recommend the default set-up (Anderson & Gonzalez, 2011; Cao et al., 2013; Merow et al., 2013; Morales 

et al., 2017; Warren & Seifert, 2011). The default setting was found to either produce overfitting or 

underfitting models. The scientists have emphasized on the model settings and their importance while 

building a model through Maxent. Therefore, the default model setting is not necessarily the optimal 

configuration especially, when the sample size is small and when a single species is being modelled. Both 

conditions are valid in this study. Therefore, parameter tuning is deemed as a critical step before running 

the Maxent model. The three crucial model settings explored in this study are i) selecting appropriate 

number of background points for model building, ii) selecting appropriate number of model replicates, 

and iii) Selection of optimal feature types and regularization coefficient value.  

 

2.5.1.1. Selection of background points  

In Maxent, the occurrence points will be contrasted against the background points selected from the given 

background or study area (Merow et al., 2013). It assumes that each pixel in the background has an equal 

probability of being picked for modelling. It means that defining a bigger extent of background will 

accordingly include higher variation in values of environmental variables producing unimodal response 

curves, and a smaller extent of background might not capture all the environmental variability offered by 

the landscape producing monotonic response curves. Neither unimodal nor monotonic response curve is 

more correct than the other. However, background’s influence on the feature selected for modelling is 

apparent. Therefore, a careful selection of background that is ecologically justified is more appropriate.   

 

Accordingly, the background or the extent of the study area for this study was chosen with reference to 

prior studies conducted on takin, currently occupied areas, areas with the historical record of spotting a 

takin (Mishmi takin or Bhutan takin), potential distribution range, and in consultation with the takin 

expert. Proceeding further, models were built using 10000 and 15000 background points for both 

subspecies to conduct a simple comparative analysis of models based on Area under the receiver operating 

characteristic curve (AUC). The result shows a slightly lower AUC for models with 15000 background 

points than models with 10000 background points (Table 4). It implies that increasing background points 

from 10000 to 15000 will not necessarily improve the model’s predictive accuracy for the given set of data 

and background. Therefore, 10000 background points are considered appropriate for modelling current 

habitat suitability in this study.  
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Table 4: Comparative analysis of model performance based on AUC with different number of background points 

 Mishmi takin Bhutan takin 

10000 background points 0.929 (AUC) 0.979 (AUC) 

15000 background points 0.922 (AUC) 0.978 (AUC) 

 

2.5.1.2. Selection of model replications  

Since Maxent is a machine learning method, it is necessary to repeatedly run the model and evaluate model 

stability across sample models for a robust result (Sillero & Barbosa, 2021). Maxent offers functionality 

under the basic setting to run the model repeatedly called Replicates. It allows using the result that is 

averaged over the number of replicates specified by the user. Most often, users use 10 replicates (Abdelaal 

et al., 2019; Khanum et al., 2013; Wei et al., 2018), but it is to be noted that when specifying the number 

of replicates in Maxent, it also defines the number of k-folds when cross-validation is chosen as the data 

partitioning method for the training and testing datasets. Cross-validation method is selected for 

partitioning the dataset while building the models in this thesis. The cross-validation method is 

advantageous because all the data is used for validation without replacement, thereby making better use of 

a small dataset (Phillips, 2017). This method is also the recommended choice when using Maxent for 

modelling as it helps obtain a generalized model that does not overfit or underfit (Merow et al., 2013). 

Consequently, selecting the appropriate number of replicates is essential. To select the appropriate number 

of replicates, Maxent model was run with five and ten replicates consecutively. A simple comparative 

analysis of models based on AUC was conducted. The analysis outcome for both subspecies shows 

slightly lower AUC with a higher number of replicates (Table 5). It is concluded that increasing replicates 

will not necessarily increase the model’s predictive accuracy for the given data set. Also, the difference in 

between the AUCs is not abruptly changing indicating that the model is stable. Therefore, five model 

replicates are considered appropriate for modelling the current habitat suitability of Mishmi takin and 

Bhutan takin. 

 
Table 5: Comparative analysis of model performance based on AUC with different number of replicates 

 Mishmi takin Bhutan takin 

5 replicates 0.931 (AUC) 0.980 (AUC) 

10 replicates 0.929 (AUC) 0.978 (AUC) 

 

2.5.1.3. Selection of optimal feature types and regularization multiplier: 

Ecological niche models rely on the species’ response to the given predictors for model building (Elith et 

al., 2011). Since the response of the species tends to be complex, fitting a non-linear function is preferred. 

In machine learning programs like Maxent, it is achieved by applying a transformation to the predictors 

called features. Maxent offers five feature types, namely linear (L), quadratic (Q), hinge (H), product (P), 

and threshold (T). The default setting of Maxent allows usage of all features when the number of 

occurrence is higher than 80, thereby creating a complex model (Merow et al., 2013). A complex model 

can easily overfit the model to the training dataset, which reduces the generalization capacity of the model. 

Therefore, a subset of available features can be used to build a simplified model with similar performance. 

Regularization is used by Maxent to select useful features that contribute most to the model fit (Merow et 

al., 2013). It reduces model overfit by i) ensuring that the empirical constraints do not fit the data too 

precisely, and by ii) penalizing the model in relation to the magnitude of the coefficients. The default 

regularization multiplier value of one in Maxent often retains many correlated features, but it is more 

useful to obtain a simpler model when biological interpretation is essential (Merow et al., 2013). 
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Muscarella et al. (2014) developed an R package called ENMeval that can estimate the optimal set of 

feature types and regularization multiplier value for given set of occurrence data and predictors. A total of 

48 different model settings were explored using the ENMeval R package by combining eight different 

regularization values ranging from 0.5 to 4 (0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4) with L, LQ, H, LQH, LQHP, 

LQHPT feature set each. The output provides evaluation metrics for each model combination to 

characterize the model performance (Muscarella et al., 2014). A corrected Akaike information criteria 

(AICc) selected models were reported to perform better than other evaluation metrics especially when the 

sample size are small (Warren & Seifert, (2011). Therefore, AICc was used to select the optimal model 

combination. The model combination having lowest AICc value (Table 6) among the 48 models was 

selected for final model construction. 

 
Table 6: Feature type and regularization multiplier value for modelling the current suitable habitat of Mishmi takin 
and Bhutan takin in the study area 

 
Feature type Regularization multiplier AICc 

Mishmi takin LQH (Linear, Quadratic, Hinge) 4 3842 

Bhutan takin LQ (Linear, Quadratic) 4 3449 

 

2.6. Model performance assessment 

The assessment of the model’s predictive accuracy is an important indicator to understand the model 

performance (Allouche et al., 2006). The predictive accuracy of the model can be measured in two 

complementary ways, namely, discrimination and calibration (Pearce & Ferrier, 2000; Phillips & Elith, 

2010). Discrimination is the ability of the model to differentiate between occupied and unoccupied sites. 

Calibration is the extent of agreement between the predicted probability of occurrence and observed 

occurrence. In this study, both approaches are used to evaluate the accuracy of the models. The 

discrimination metrics such as AUC, true skill statistic (TSS), and a calibration metric, Continuous Boyce 

Index (CBI) are used. 

2.6.1. Area under the receiver operating characteristic curve (AUC) 

AUC is a threshold independent accuracy measure (Fielding & Bell, 1997). It is a popular measure to 

evaluate the model performance (Pecchi et al., 2019). AUC is the area under receiver operating 

characteristic (ROC) curve. ROC plots sensitivity (true positive) against 1-specificity (false positive). An 

AUC value of 0.5 represents a random model, AUC > 0.7 denotes a useful model, and 1 indicates the 

perfect model (Phillips & Dudík, 2008). The AUC reported in this study is Maxent generated average 

AUC for all model replicates.  

2.6.2. True Skill Statistic (TSS) 

The predicted habitat suitability or species distribution information are often used in identifying 

biodiversity hotspot, and delineating areas for conservation based on binary maps (Allouche et al., 2006). 

Hence, the selection of a threshold is inevitable. Liu et al. (2016) concluded that maximizing the sum of 

sensitivity and specificity (maxSSS) threshold selection method is not affected by the ratio of known 

presences to random points. It generates similar result with presence/absence and presence-only datasets. 

As such, the threshold determined by the maxSSS method will be used to create binary maps in this study.  

 

Consequently, a threshold dependent model evaluation measure like TSS is required. It is a threshold 

dependent and prevalence independent measure of accuracy for models (Allouche et al., 2006). TSS 

considers both omission and commission errors and success from random guessing. It is a recommended 

statistical accuracy measure that retains the advantages of kappa statistics but eliminates the drawback. The 
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value of TSS ranges from -1 to +1, where a value of 0 or less denotes a random model, TSS > 0.7 

represents a useful model and, 1 indicates a perfect model. The TSS for each model replicates were 

calculated using PresenceAbsence R package and the average TSS is reported in this study.      

2.6.3. Continuous Boyce Index (CBI) 

CBI is a reliable presence-only model evaluation measurement (Hirzel et al., 2006). It is a threshold 

independent evaluator and varies between -1 and +1. CBI values closer to 0 indicate a random model, 

positive CBI values represent a model that is consistent with the evaluation dataset, and negative CBI 

values denote counter predictions. The CBI value for each model replicates were calculated using Ecospat 

R package and the average CBI is reported in this study.  

 

2.7. Jackknife test  

Identifying which environmental conditions are most important for a species is one of the applications of 

environmental niche modelling (Harisena et al., 2021). The Jackknife test was used to assess the 

importance of different environmental variables for Mishmi takin and Bhutan takin. It is one of the key 

analyses that can be conducted using Maxent. It indicates which variables matter the most for the species 

being modelled (Phillips, 2017). The result of the Jackknife test is a bar chart showing the model’s 

information gain or loss in three different variable-use aspects. First, a model is built using all variables. 

Second, a model is created by using an individual variable in isolation. Third, a model that excludes one 

variable at a time while creating the model with the remaining variables. The models from the first and 

second aspects show the information gain from the variables being used, while the third aspect shows the 

information loss when a particular variable is excluded. As such, the result from the second type of 

modelling aspect is critical in explaining which variable by itself has the most useful information in 

predicting the habitat suitability of the species being modelled. The result of the third type of modelling 

aspect is crucial in identifying the variable that has the most information, which isn’t present in the rest of 

the variables used for modelling. Therefore, the most contributing variable from second and third type of 

modelling is reported as the two most important variables for each of the subspecies. Further, subspecies’ 

ecological response to these variables are presented through response curves built in Maxent. Response 

curves indicate a species’ respond to changes in environmental conditions (Harisena et al., 2021). It can 

also show conditions that are most preferred by a species along environmental gradients.    

2.8. Ecological niche similarity analysis 

The ecological niche similarity analysis is conducted in this study to assess the ecological niche distinction 

between Mishmi takin and Bhutan takin. The ecological niche similarity analysis is a comparative analysis 

of ecological niches of different species. It is widely being used for conservation planning, niche evolution, 

speciation and to understand the ecological diversity within clades (Aguirre-Gutiérrez et al., 2015; Warren 

et al., 2008, 2010). The basis of such comparative analyses is quantifying species’ environmental 

requirements and assessing the differences among them or how they change over time (Broennimann et 

al., 2012). The useful approaches for such analyses are ecological niche equivalency and niche similarity 

test. The niche equivalency test aims to analyse if the ecological niches are identical (Warren et al., 2010). 

While the niche similarity test determines if the ecological niches are more similar or divergent than 

expected by chance. However, both tests start by calculating the niche overlap between the niches of 

species being compared. The niche overlap is measured using Schoener’s D and Warren’s I statistics. The 

value for niche overlap ranges from 0 to 1 for both statistics. A value of 0 indicate no niche overlap at all, 

and a value of 1 represents the niches that completely overlap. In this study, both tests were executed 

using ENMTools. It is a software that facilitates quantitative comparisons of ecological niche generated 

using Maxent (Warren et al., 2021). ENMTools test hypothesis using nonparametric tests based on Monte 
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Carlo methods. Initially, the empirical niche overlap between the two ecological niches of species is 

measured using D and I. Then, for each hypothesis testing, null distribution is generated from simulations. 

The simulations are a bunch of replicate realizations of null hypothesis. Finally, the empirical observation 

is compared to observations from null distribution to either reject or accept the null hypothesis. 

 

The niche identity test or niche equivalency test conducted in ENMTools examine the hypothesis if the 

ecological niches of two subspecies are identical (Warren et al., 2010). The empirical D and I niche overlap 

between the ecological niche of Mishmi takin and Bhutan takin was calculated. Then, D and I value of 

niche overlap for null distribution is generated. To create the null distribution, the ENMTools randomizes 

the population identities of sample points that were pooled from the two subspecies. Then, a new 

population sample is extracted for each subspecies, which is further used to produce the ENM for each 

subspecies. This process was repeated 100 times, recommended, to get the distribution of D and I scores, 

assuming that the two subspecies can interchangeably use their niche spaces. Finally, the empirical 

observation is compared to the percentiles of null distribution in one-tailed test, critical observation, 

calculated at 95% confidence interval. If the empirical value is higher than critical value, then the 

ecological niches of Mishmi takin and Bhutan takin are concluded to be identical. On the contrary, if the 

empirical value is lower than critical value, then the ecological niches of two subspecies are not identical. 

 

The background test or ecological niche similarity test is conducted to test whether the ecological niches 

of target species are more different than expected given the underlying differences in environmental 

conditions between the areas in which they occur (Warren et al., 2008). The test is particularly important 

to analyse ecological niche similarity between allopatric populations (Warren et al., 2010). Since Mishmi 

takin and Bhutan takin are mostly sighted in different regions of the study area (Dasgupta et al., 2010; 

NCD, 2019; Sharma et al., 2015), the background test was included in this study. The empirical niche 

overlap value was already calculated before running ecological niche identity test, so it need not be 

calculated again. The background test generates a null distribution by placing occurrences of Mishmi takin 

within the range of Bhutan takin and vice versa. It was repeated 100 times, as recommended, in both 

directions: Mishmi takin occurrence within the range of Bhutan takin and Bhutan takin occurrence within 

the range of Mishmi takin. The range in this context is user-specified area including the areas of species 

occurrence. For this study, the predicted current suitable habitats (Section 2.5) for both subspecies were 

used as range. Finally, if the empirical scores fall outside of the 95% confidence limits of the null 

distribution, critical value, then the null hypothesis is rejected. Accordingly, if empirical values are lower or 

higher than the critical values, then the species being compared are more divergent or more similar than 

expected by chance respectively. 

2.9. Future climate change impact analysis 

2.9.1. Habitat suitability modelling under climate change projections 

The predicted future suitable habitat for Mishmi takin and Bhutan takin was modelled using Maxent. It is 

a frequently used tool for modelling the impact of future climate change on various species (Abdelaal et 

al., 2019; Lamsal et al., 2018; Qin et al., 2017; Xu et al., 2019). The environmental variables representing 

different aspect of takin’s ecology (Section 2.3) is desirable but not available for future climate change 

projections. Therefore, bioclimatic variables available for RCP 4.5 and RCP 8.5 scenarios (Section 2.3.1), 

and topographical variables that are not likely to change were listed as potential environmental variables. 

The data download, exploration, processing, modelling, and validation followed the procedures described 

in previous sections of this thesis (Section 2.3, 2.4, 2.5, 2.6).  

 



 

21 

A highly correlated but less important variables (r > 0.7 and VIF > 10) were removed before modelling 

(Figure 4). The final set of variables that were used for modelling the future suitable habitat of both 

subspeceis are annual mean temperature (bio1), annual mean diurnal range (bio2), isothermality (bio3), 

precipitation of driest month (bio14), precipitation seasonality (bio15), aspect, slope, and roughness.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Other parameters like number of background points, number of model replication, feature types and 

regularization coefficient values were tuned for both subspecies (procedure given in Section 2.5). So, 

specific model settings were used for modelling (Table 7).  

 
Table 7: Model settings estimated for modelling the current and future suitable habitats of Mishmi takin and Bhutan 
takin under the future climate change scenarios 

 Number of 

background points 

Number of 

replicates 

Feature types Regularization 

coefficient 

Mishmi takin 20000 5 LQHP 2 

Bhutan takin 10000 5 LQHPT 2.5 

 

One of the challenges of using Maxent is projecting future species distribution because it needs 

extrapolating models to novel environmental conditions (Merow et al., 2013). Predicting to novel 

environmental conditions of future bioclimatic variables are contentious applications because it usually 

requires predicting to conditions that was not sampled by the training data. Therefore, clamping and 

multivariate environmental similarity surface analysis (MESS) was implemented for extrapolation. The 

clamping handles the novel environmental conditions outside the training range as though they were at the 

limit of the training range (Phillips, 2017). MESS measures the similarity of any given point to a set of 

reference points based on chosen predictor variables (Elith et al., 2010). It indicates the closeness of a 

point to the distribution of reference points. 

2.9.2. Distribution changes analyses 

To quantify the distributional changes between two time periods (current and 2070), firstly, the 

distribution changes between current and future suitable habitat was calculated to output an area of no 

change, range contraction, and range expansion in km2. Secondly, the core distributional shift between 

Variables VIF 

bio2 4.946 

bio1 4.481 

bio3 3.013 

bio14 2.509 

bio15 1.777 

slope 1.196 

roughness 1.009 

aspect 1.001 

Figure 4: Result of collinearity analysis showing correlation matrix for variables used for modelling 
the future suitable habitat of Mishmi takin and Bhutan takin (left), and result of multicollinearity test 
showing VIF values for each of the variables (right) 



 

22 

current and future suitable habitat was calculated to show direction of change through time. This analysis 

considers the central point of species’ distribution to generate a vector, an arrow, showing the direction of 

change. The analyses were conducted in ArcGIS using SDMtoolbox 2.0. SDMtoolbox is a free python-

based geographic information system (GIS) toolkit (Brown, 2014). The toolkit works well with Maxent 

generated outputs. It simplifies GIS analyses required for environmental distribution modelling.   
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3. RESULTS 

3.1. Model performance and predicted current suitable habitat for Mishmi takin and Bhutan takin 

An area of 28,154 km2 is currently available as suitable habitat for Mishmi takin in the Eastern Himalayas 

(Figure 5). The suitable habitat was predicted with high-performing environmental niche model. The 

model’s predictive accuracy is 0.916, 0.729, and 0.912 for AUC, TSS, and CBI respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Map showing the current suitable and unsuitable habitat for Mishmi takin in the Eastern 
Himalayas 
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The current habitat suitability for Mishmi takin in the Eastern Himalayas is shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An area of 15,314 km2 is currently available as suitable habitat for Bhutan takin in the Eastern Himalayas 

(Figure 7). The suitable habitats were predicted with high-performing environmental niche model. The 

model has predictive accuracy of 0.970, 0.876, and 0.933 for AUC, TSS, and CBI respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Map showing the current habitat suitability for Mishmi takin in the Eastern Himalayas 
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Figure 7: Map showing the current suitable and unsuitable habitat for Bhutan takin in the 
Eastern Himalayas 
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The current habitat suitability for Bhutan takin in the Eastern Himalayas is shown in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Key environmental variables determining habitat suitability of Mishmi takin and Bhutan takin 

Bioclimatic and vegetation-related environmental variables play role in determining the habitat suitability 

of Mishmi takin. The importance of variables to predict the suitable habitat of Mishmi takin is shown in 

Figure 9. The precipitation seasonality (bio15) and standard deviation NDVI (ndvi std) are the two key 

environmental variables determining the habitat suitability of Mishmi takin. The precipitation seasonality 

generated the highest gain when modelled in isolation, indicating that it contains the most useful 

information for predicting the habitat suitability by itself. The withdrawal of NDVI standard deviation 

reduced the model gain the most, meaning, it holds important information which is not found in the rest 

of the variables.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Map showing the current habitat suitability for Bhutan takin in the Eastern Himalayas 
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The response curve is important in understanding the limiting environmental conditions of suitable 

habitat for Mishmi takin. The response curves for precipitation seasonality and NDVI standard deviation 

were obtained while building the ENM of Mishmi takin (Figure 10). It is observed that Mishmi takin’s 

habitat is suitable at lower range, ~ 59% to 64%, of precipitation variability. The habitat suitability for 

Mishmi takin is increasing with an increasing value of NDVI standard deviation. It reveals that higher 

vegetation is preferred by Mishmi takin.  

 

 

 

Figure 9: Importance of environmental variables in modelling the habitat suitability for Mishmi 
takin in Eastern Himalayas. The “With only variable” shows the result of model when a single 
variable is used in isolation. The “Without variable” shows the effect of removing a particular 
variable from the full model.  
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Figure 10: Response curves show the relationship between habitat suitability of Mishmi 
takin and an environmental variable. These curves show how the response changes for a 
particular variable used in isolation. 
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Bioclimatic and vegetation-related environmental variables play role in determining the habitat suitability 

of Bhutan takin. The importance of variables to predict the suitable habitat of Bhutan takin is shown in 

Figure 11. The needleleaf forest cover (needleleaf forest) and isothermality (bio3) are the two most 

important environmental variables for predicting the suitable habitat of Bhutan takin (Figure 11). The 

needleleaf forest cover produced highest gain when modelled in isolation and removal of isothermality 

from the set of variables brought the highest decrease in model gain.  

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The response curves for needleleaf forest cover and isothermality were obtained while building the ENM 

of Bhutan takin (Figure 12). Bhutan takin is responding to the changing needleleaf forest cover in 

unimodal fashion. The suitability of an area increases with increasing prevalence until ~ 60; beyond this 

the suitability gradually decreases with an increasing prevalence. An increase in isothermality increases the 

habitat suitability of an area for Bhutan takin.  

Figure 11: Importance of environmental variables in modelling the habitat suitability 
for Bhutan takin in Eastern Himalayas. The “With only variable” shows the result of 
model when a single variable is used in isolation. The “Without variable” shows the 
effect of removing a particular variable from the full model. 
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Figure 12: Response curves show the relationship between habitat suitability of Bhutan takin 
and an environmental variable. These curves show how the response changes for a particular 
variable used in isolation. 
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3.3. Ecological niche similarity between Mishmi takin and Bhutan takin  

 The ecological niches of Mishmi takin and Bhutan takin are similar, but not same. The empirical D and I 

values were higher than the critical D and I values obtained from background test, in both directions 

(Table 8). This shows that the ecological niches of Mishmi takin and Bhutan takin are more similar than 

merely expected by chance. It means that there is something common between these two subspecies in 

their use of ecological niche space. However, the empirical D and I values were lower compared to the 

critical D and I values obtained from identity test (Table 9). This indicates that their niches are not 

equivalent. Thus, Mishmi takin and Bhutan takin do not completely overlap in their use of ecological 

niche space.  

      
Table 8: The critical D and I niche overlap values obtained from the similarity score for ENMs built from known 
occurrences of two species, and empirical D and I niche overlap values obtained from similarity scores for ENMs 
constructed using points drawn at random from the region defined as background range for one of the species. 

 

 
 

Table 9: The critical D and I niche overlap values obtained from the similarity score for ENMs built from known 
occurrences of two species, and empirical D and I niche overlap values obtained from similarity scores between 
ENMs built from occurrences drawn randomly from the pooled occurrences for the two subspecies 

 

 

 

 

3.4. Impact of future climate change on habitat suitability of Mishmi takin and Bhutan takin 

To predict the suitable habitat for Mishmi takin and Bhutan takin in future, the species occurrence data 

and eight environmental variables, namely annual mean temperature (bio1), annual mean diurnal range 

(bio2), isothermality (bio3), precipitation of driest month (bio14), precipitation seasonality (bio15), aspect, 

slope, and roughness (Section 2.9.1), were used. The impact was assessed under RCP 4.5 and RCP 8.5 

scenarios (Section 2.3.1). The predicted impact of future climate change on suitable habitat of Mishmi 

takin and Bhutan takin is atrocious.  

 

The predicted current and future suitable habitat for Mishmi takin is shown in Figure 13. It is seen that 

there is drastic decrease in the availability of suitable habitat in future as compared to the current suitable 

habitat (48,129 km2). There is very less area (587 km2) available as suitable habitat for Mishmi takin under 

RCP 4.5 scenario. The availability of suitable habitat is least (150 km2) under the RCP 8.5 scenario. The 

ENM for current habitat suitability has good predictive accuracy of 0.926 for AUC, 0.699 for TSS, and 

0.939 for CBI.   

 

 

 

 Mishmi takin            Bhutan takin 

 

Bhutan takin             Mishmi 

takin 

D I D I 

Critical value 0.101 0.274 0.041 0.144 

Empirical value 0.119 0.310 0.119 0.310 

 D I 

Critical value 0.670 0.891 

Empirical value 0.119 0.310 
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Figure 13: Map showing the suitable and unsuitable habitat for Mishmi takin in the Eastern Himalayas 
for current and future (RCP 4.5, and RCP 8.5 in 2070) 
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The distribution range is predicted to contract by 47,009 km2 and expand by 544 km2 under RCP 4.5 

scenario. Similarly, the distribution range is predicted to contract by 47,023 km2 and expand by 148 km2.   

An area of 13 km2 remains unchanged under RCP 4.5 scenario but there is no area that remains 

unchanged under RCP 8.5 scenario. There is significant contraction in their distribution range as 

compared to the expansion (Figure 14). Therefore, Mishmi takin is likely to face extinction in future due 

to climate change in the Eastern Himalayas.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 14: Map showing the suitable and unsuitable habitat for Mishmi takin in the 
Eastern Himalayas for current, and showing the distribution range contraction, range 
expansion and area of no change under future climate change scenarios (RCP 4.5, and RCP 
8.5 in 2070) 
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The core range shift showed that there would be shift in north direction under RCP 4.5 and RCP 8.5 

scenarios (Figure 15). It is an indication of range shift in suitable habitat, regardless of the available size of 

the suitable habitat.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15: Map showing the core range shift for Mishmi takin in the Eastern Himalayas under 
future climate change scenarios (RCP 4.5, and RCP 8.5 in 2070) 
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The predicted current and future suitable habitat for Bhutan takin is shown in Figure 16. It is seen that 

there is no suitable habitat available in future for Bhutan takin under both RCP scenarios. The ENM for 

current habitat suitability has good predictive accuracy of 0.969, 0.858, and 0.938 for AUC, TSS, and CBI, 

respectively. The predicted impact of future climate change suggests that the entire population of Bhutan 

takin in the Eastern Himalayas can be wiped out due to none availability of suitable habitat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 16: Map showing the suitable and unsuitable habitat for Bhutan takin in the Eastern 
Himalayas for current and future (RCP 4.5, and RCP 8.5 in 2070) 
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4. DISCUSSION 

4.1. Currently available suitable habitat for Mishmi takin and Bhuntan takin 

To the best of my knowledge, a clear or complete suitable habitat map for Mishmi takin and Bhutan takin 

is not yet available. Therefore, this is the first study to produce the current suitable habitat map for 

Mishmi takin and Bhutan takin including i) their potential distribution range in the Eastern Himalayas, ii) 

covering both summer and winter habitat use, and iii) modelling the response of Mishmi takin and Bhutan 

takin to five different categories of variables. The result of this study shows that an area of 28,154 km2 is 

currently available as suitable habitat for Mishmi takin. The area is distributed across southeast Tibet and 

northwest Yunnan in southwest China, Kachin state in northern Myanmar, and northeast state of 

Arunachal Pradesh in India. The areas identified in this study are consistent with previous studies that 

indicate the presence of Mishmi takin in Cibagou Nature Reserve of southeast of Tibet (Pengju & Endi, 

2006) and Mt. Gaoligong in northwest Yunnan (Pan et al., 2019) in China, Hponkanrazi Wildlife 

Sanctuary and Hkakaborazi National Park in Kachin, northern Myanmar (Rao et al., 2010, 2011), and 

Arunachal Pradesh in India (Dasgupta et al., 2010). However, Dasgupta et al. (2010) reported Mishmi 

takin’s distribution across all districts of Arunachal Pradesh, which partly contradicts the result of this 

study. They modelled the distribution of takin using dense forest cover and altitudinal range of 1500 m to 

3600 m. Whereas, this study used bioclimatic variables, topographic variables, vegetation-related variables, 

land cover, and anthropogenic factors. This difference in predictor variables could have potentially 

influenced the difference in result of predicted suitable habitat for Mishmi takin. However, takin is 

sensitive to anthropogenic activities and exhibit migration in response to food and temperature optimality. 

Therefore, the result of this study is more robust to such affects. The predicted current suitable habitat for 

Bhutan takin is 15,314 km2. The area is distributed in northern Bhutan, northeast state of Sikkim and 

Arunachal Pradesh in India, and southeast Tibet in southwest China. The result is in coherence with 

Bhutan takin’s winter habitat identified by NCD (2019) within Bhutan. Although takins are currently 

reported to be extinct in Sikkim (Dasgupta et al., 2010), it is worth noting that suitable habitat has been 

identified in Sikkim and Tibet. Historically, people have reported sighting Bhutan takin in Sikkim (Sharma 

et al., 2015). For instance, Bhutan takin was seen in Sikkim in 1976, again in 1984, and the last record in 

1999 was seen and photographed by C. Lachungpa in Sikkim. Further, the distribution of Bhutan takin in 

Tibet is unclear but theory that takin moved through Tibet to Bhutan and Sikkim (Sharma et al., 2015) 

favours the finding of this study.  

  

An underlying assumption of Maxent is that the entire study area has been systematically sampled 

(Kramer-Schadt et al., 2013; Merow et al., 2013; Phillips et al., 2009). However, a systematic primary data 

collection was not feasible in this study mainly since the target species is distributed in four different 

countries, Bhutan, India, Myanmar, and China, which entail resource-intensive data collection exercises. 

Therefore, given the limited time and resources provided for the completion of this study, secondary data 

was collected from data owners of specific countries. Most of the data collected did not explicitly follow a 

sampling design rather, opportunistic sightings were recorded. Therefore, sampling bias is likely to occur. 

The most straightforward method to deal with sampling bias is to manipulate the presence data by 

removing the data from an over-sampled area using spatial filtering (Phillips et al., 2009). The occurrence 

records for target species of this study are already limited for deleting any valuable records from the set, 

but basic spatial filtering of keeping only one record per pixel was applied by enabling the “Remove 

duplicate presence record” option in the Maxent setting. The alternate suggested by Merow et al. (2013) 

when explicit information on survey effort is not known is based on Target Group Sampling (TGS). TGS 

uses the similarly collected occurrence points of taxonomically related species under the assumption that 

the surveyors would have documented the presence of focal species if it occurred there. It is incorporated 
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in Maxent by either creating a bias file with nonuniform weighing assigned to background points or a bias 

file that modifies the selection of background points within the study area. To acquire TGS for this study, 

Global Biodiversity Information Facility (GBIF) database (https://www.gbif.org/) was explored. A total 

of only 650 occurrence points were available for Mammalia taxa in the study area between 1990 to current 

year. These occurrence points were not covering the spatial extent of the study area and were not 

sufficient. Hence, this method of bias correction was not possible. Therefore, the results of this study 

could possibly be subjected to sampling bias. Nonetheless, given the facts, i) wildlife sighting locations are 

sensitive information that are not easily shared, ii) takins generally use remote area which limits both 

systematic or opportunistic data collection, and iii) Himalaya is a data deficient region, the data shared by 

respective data owners is the best available data to conduct this study. 

 

Most of the suitable habitat for both subspecies falls within the conservation areas in respective countries. 

However, their population is in decreasing trend according to IUCN assessment (Song et al., 2008). Many 

prior studies have shown images (Dasgupta et al., 2010) and statistics (Rao et al., 2011) of takins being 

hunted for various purpose throughout their distribution range. Therefore, existing efforts of conservation 

don’t seem rigorous enough in their defence. Hence, the suitable habitat maps produced in this study can 

further be used to device strict monitoring plans and identification of priority area for conservation of 

both subspecies. It is also recommended to establish transboundary collaboration since the suitable 

habitats are stretching across international boundaries.    

4.2. The key environmental variables affecting habitat suitability of Mishmi takin and Bhutan takin are 
different 

The result shows that the critical environmental variables which influence the habitat suitability of Mishmi 

takin are precipitation seasonality (bio15) and NDVI standard deviation. In the case of Bhutan takin, 

needleleaf forest and isothermality were found to be important. These variables are vegetation-related 

variables and bioclimatic variables. NDVI standard deviation and needleleaf forest cover are proxies for 

food resources that are available to both subspecies. The variation in rainfall fluctuates soil water content 

that considerably affects plant phenology, leaf and fruit development (Zeppel et al., 2013). Similarly, 

temperature fluctuations within a month relative to the year might have impacts on takin’s seasonal 

routine. It is a reasonable finding which is validated by the ecological behaviour of takins, that is, the 

movement of takin is attributed to seasonal temperature changes and plant phenology (Guan et al., 2013; 

Wang et al., 2010; Zeng et al., 2008, 2010).  

 

Apart from the given set of variables, the habitat suitability of both subspecies is also affected by other 

factors such as predations and competition for resources like food and water that are not considered in 

this study. However, the responses of species to environmental conditions are hardly a result of a single 

ecological process (Harisena et al., 2021). So, the inclusion of all potential factors is complicated in many 

aspects. Additionally, the computation of variable importance assumes no spatial autocorrelation exists in 

the sample data. Therefore, spatial filtering of one sample per pixel (1 km) was applied. However, detailed 

spatial autocorrelation analysis was not conducted in this study. Furthermore, these results are limited to 1 

km spatial resolution. 

4.3. The ecological niches of Mishmi takin and Bhutan takin are not identical 

The result of the identity test shows that the ecological niches of Mishmi takin and Bhutan takin are not 

identical. It is backed by the different set of key environmental variables that constrain their habitat 

suitability which was identified in objective 2 of this study. The finding tells that characterizing the niche 

of Mishmi takin based on Bhutan takin’s niche characteristics is not accurate and vice versa. Similar 

conclusions were drawn by researchers that conducted the similar test (Aguirre-Gutiérrez et al., 2015; 
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Zhao et al., 2019). Subsequently, the background test found the two subspecies to be more similar than 

expected. In other words, Mishmi takin and Bhutan takin share more characteristics of their 

environmental niches as compared to random expectation. In conclusion, the result of the identity test 

and background test highlights that although they are similar, they are not the same. Therefore, Mishmi 

takin and Bhutan takin are two distinct subspecies under takin species, but not two different species in 

themselves. Previous studies have supported the same based on their morphology (Neas & Hoffmann, 

1987; Sharma et al., 2015).  

 

According to Warren et al. (2010), bias in identity tests can be introduced due to bias in sampling effort, 

sampling bias, and differences in the habitat available to the focal species in their spatially separated 

habitat. Hence, the result of equivalency is subjected to sampling bias in this study. Similarly, the result of 

background test is sensitive to the background range (Section 2.8) from which the species is believed to be 

selecting habitat. However, the background range selected for the background test was modelled with the 

best available species occurrence data, various predictor variables (Section 2.3) and species-specific model 

setting (Section 2.5) in this study. Therefore, the background range selected for the background test in this 

study is expected to be ecologically meaningful.         

4.4. Impact of future climate change impact on Mishmi takin and Bhutan takin 

Our results show that Mishmi takin and Bhutan takin will be negatively affected by climate change in 

future. The results revealed that the suitable habitats for both subspecies are likely to disappear in the 

Eastern Himalayas due to climate change. The future climate change impact in Eastern Himalayas is 

expected to be challenging (Sharma et al., 2009; Tse-ring et al., 2010), which backs these findings that the 

threat posed by changing climate to vulnerable species like takin is strong. Also, given the already limited 

geographic distribution of these subspecies, the loss of all its suitable habitat is largely possible.  

 

However, the result is limited to eight variables and its uncertainties inherited from general circulation 

model (GCM). Uncertainty is a critical concern for all climate change assessment (Tang et al., 2018). 

Ignoring it can adversely affect the usefulness of climate change assessment outcomes for making 

conservation related decisions. Especially, such uncertainties are issues for evaluating future distribution of 

species given the multiple other sources of uncertainties in existence. Other sources of uncertainties are 

quality of species information/data, methodology used, predictor variables used, thresholds used for 

converting the continuous map to binary map, and model settings used. Therefore, the result of future 

prediction is likely to be associated these uncertainites. However, famous George Box, one of the great 

statistical minds of the 20th century said, “all models are wrong, but some are useful”. Likewise, although 

these variables alone are not adequate enough to precisely predict what will happen to takin’s habitat in 

future but, it can still make an important contribution especially when the current distribution of both 

subspecies are found to be constrained by bioclimatic factors like precipitation seasonality (bio15) and 

isothermality (bio3). Thus, the result of this impact analysis can help us understand the possibility of 

extremes entailed with future climate change.  

  

Montane species are moving their distributions upslope in search of optimal climate due to climate change 

(Freeman et al., 2018). This indicates that species inhabiting higher-elevation have no more areas left to 

shift upslope when species living at lower-elevation encroach their space. These mountaintop species 

gradually face extinction over time. Although takins are not on the topmost elevation of the Eastern 

Himalayan mountains, a new record of Bhutan takin was confirmed by a camera trap at 4864 m in Bhutan 

recently (Dhendup et al., 2016). This possibly suggests that upslope movement in takins might have 

already begun even though human observation is limited in their remote habitat. Hence, adopting climate 

change mitigation and adaptation strategies at a local and global level is important. More immediately, it is 
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urgent to maintain protected habitat corridors across elevation gradient to avoid limiting the species 

movement in the face of on-going climate change.    
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5. CONCLUSIONS  

This study predicted current suitable habitats for both Mishmi takin and Bhutan takin in the Eastern 

Himalayas, and identified the key environmental variables influencing their potential distribution using 

ecological niche modelling. In addition to it, this study tested the niche similarity between the subspecies. 

Furthermore, this study also predicted the impact of future climate change on Mishmi takin and Bhutan 

takin. Based on the results I conclude that: 

1. Approximately 28,154 km2 of suitable habitat is currently available for Mishmi takin, which is 

widely distributed across southeast Tibet and northwest Yunnan in southwest China, Kachin state 

in northern Myanmar, and northeast state of Arunachal Pradesh in India. While about 15,314 km2 

of suitable habitat is currently available for Bhutan takin, which is sparsely distributed across 

northern Bhutan, northeast state of Sikkim and Arunachal Pradesh in India, and southeast Tibet 

in China. 

2. The key environmental factors influencing the current habitat suitability of Mishmi takin are the 

precipitation seasonality and the standard deviation of NDVI. While the most important 

environmental factors influencing the current habitat suitability of Bhutan takin are the needleleaf 

forests and isothermality. Thus, the important environmental variables that determine the habitat 

suitability for both subspecies are different. 

3. The ecological niches of Mishmi takin and Bhutan takin are similar but not the same. Thus, 

Mishmi takin and Bhutan takin are two distinct subspecies under takin species, but not two 

different species in themselves from an ecological perspective. 

4. The future climate change will have a significant negative impact on the availability of suitable 

habitats for both Mishmi takin and Bhutan takin in the Eastern Himalayas. The suitable habitat 

for Bhutan takin is likely to be completely disappeared in this region under future climate change 

scenario. While only few suitable habitats are expected to remain due to future climate change.  

 

The predicted current suitable habitats from this study are critical for the long-term survival of Mishmi 

takin and Bhutan takin. The suitable habitat for Mishmi takin can be treated as the baseline in initiating a 

transboundary conservation strategy and management plan. Similarly, the predicted suitable habitat for 

Bhutan takin can be used in conjunction with the prior findings to strengthen the conservation activities. 

Further, the impacts of projected future climate change on both subspecies are found to be disastrous. 

Therefore, conservation priority should also be given to these two subspecies with other prioritized 

wildlife in the region.  
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