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ABSTRACT 

Forests play an essential role for human society by providing provisioning, regulating and cultural services. 

Drought is one of the most damaging natural disasters that can cause huge losses to the forest ecosystem and 

society. Satellite imagery has been used in many countries in boreal and Mediterranean areas for assessing 

drought impact on forests, but so far not in oceanic climates. In this study, Landsat 8 and Sentinel-2 time series 

are used for deriving various vegetation indices to evaluate their ability in measuring impacts of droughts on 

forests in the Netherlands. Six vegetation indices (NDVI, EVI, RVI, DVI, NDMI, and SAVI) were compared on 

their correlation with droughts (Standardized Precipitation Index) using 170 forest points categorised by three 

forest types (broadleaved, coniferous, and mixed). NDMI and NVDI were found to be the vegetation indices 

that correlate strongest to periods of drought.  

An analysis of the full dataset showed an overall decrease in NDMI and NDVI during the summer of drought-

year 2018, but on a yearly scale this difference is not visible. An analysis of the variation between the forest types 

was inconclusive: while the forest types were found to have different yearly cycles, neither of the forest types had 

significantly different NDMI or NDVI values than the other forest types in 2018. Similarly, the analysis of the 

variation between soil types was also inconclusive, partly as a consequence of lack of available data to do an 

unbiased analysis to separate the forest type and soil type factor.  

This study shows that remotely sensed vegetation index analysis is currently not a feasible method for assessing 

drought impact on forests in the Netherlands, as the results are inconclusive and do not confirm the ground-

based findings. Future research will require larger time series or will need to combine datasets to create a dataset 

of sufficient temporal and spatial resolution to understand how Dutch forest respond to periods of drought, 

which are predicted to increase in the coming decade as a result of climate change. 
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SAMENVATTING 

Bossen spelen een essentiële rol binnen de samenleving door het verstrekken van producerende, regulerende, 

ondersteunende en culturele diensten, zoals houtoogst en ruimte voor biodiversiteit en recreatie. Droogte is een 

van de meest schadelijke natuurrampen dat enorme schade kan veroorzaken aan bossen en daarmee aan de 

samenleving. Satellietbeelden zijn in veel landen in boreale en mediterrane gebieden gebruikt om de gevolgen van 

droogte voor bossen vanuit de lucht op grote schaal te beoordelen, maar tot nu toe niet in oceanische klimaten. 

In deze studie worden Landsat 8 en Sentinel-2-tijdreeksen gebruikt voor het afleiden van verschillende vegetatie-

indexen om hun vermogen te evalueren om de effecten van droogte op bossen in Nederland te meten. Zes 

vegetatie-indexen (NDVI, EVI, RVI, DVI, NDMI en SAVI) werden vergeleken op hun correlatie met droogte 

(Standardized Precipitation Index) met behulp van 170 bospunten, gecategoriseerd door drie bostypes (loofbos, 

naaldbos en gemengd). NDMI en NVDI bleken de vegetatie-indexen te zijn die het sterkst correleren met 

perioden van droogte. 

Een analyse van de volledige dataset toonde een gering lagere NDMI en NDVI tijdens de zomermaanden (juni, 

juli en augustus) van het droogtejaar 2018 dan in andere jaren. Echter, op jaarschaal is dit verschil niet zichtbaar. 

Een analyse van de variatie tussen de bostypen gaf geen uitsluitsel: hoewel de bostypen wel significant 

verschillende jaarcycli bleken te hebben, had geen van de bostypen significant grotere afwijking in NDMI- of 

NDVI-waarden dan de andere bostypen in 2018. De analyse van de variatie tussen bodemtypes gaf ook geen 

duidelijk resultaat, deels als gevolg van een gebrek aan beschikbare data om een objectieve analyse uit te voeren 

om de factor bostype en bodemtype te scheiden. 

Deze studie laat zien dat remote-sensing vegetatie-indexanalyse momenteel geen geschikte methode is om de 

impact van droogte op bossen in Nederland te beoordelen, omdat de huidige hoeveelheden van droogte schade 

aan bossen te klein is om met de huidige beschikbare data op te vangen en ze dus de bevindingen op de grond 

niet kunnen bevestigen. Toekomstig onderzoek zal langere tijdreeksen vereisen of zal datasets moeten 

combineren om een dataset met voldoende temporele en ruimtelijke resolutie te creëren om te begrijpen hoe 

Nederlandse bossen reageren op perioden van droogte, die naar verwachting in het komende decennium zullen 

toenemen als gevolg van klimaatverandering. Met de groei van beschikbare hogere resolutie data en de 

verwachting van meer extreme droogtes in de toekomst is het aannemelijk dat deze methode in de toekomst wel 

op de Nederlandse bossen kan worden toegepast om de droogte-impact te monitoren. 
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1. INTRODUCTION 

This study focuses on the detection of drought impact in forests in the Netherlands using vegetation indices 

derived from satellite imagery time series. 

1.1. Importance of Forests 

Forests play an important part in society, as they provide various services. Forests contribute to the welfare of 

people in three ways: (1) they produce wood resources; (2) they provide regulating services such as facilitating 

biodiversity and mitigating climate change; and (3) they provide recreation and health benefits.  

As for the wood resources (1), forests produce timber, paper, fuel, and other purposes. The sales of wood is a 

major source of income for forest management organizations such as Staatsbosbeheer, and therefore necessary 

to retrieve the financial resources to maintain and revitalize forests(Staatsbosbeheer, 2020). The forest and wood 

industry makes an important contribution to our economy by producing and providing a circular resource 

(Thomassen et al., 2020). Therefore, it is essential to ensure the sustainability of forests in the future. Besides the 

production of wood, forests have a natural function of filtering water, and play a significant role in clean drinking 

water supply. This way, forests also produce filtered water as a service that is used by society. 

Secondly, forests provide many maintenance and regulating services, such as biodiversity and climate mitigation. 

The 227 million hectares of forests in Europe absorb 155 million tonnes of carbon each year, which is 10% of 

the greenhouse gas emissions of Europe each year and therefore these forests play a significant role in the fight 

against climate change (FOREST EUROPE, 2020). Forests provide a habitat for a wide range of organisms, who 

in itself are able to provide ecosystem services such as: more efficient use of nutrients and water, sometimes 

higher productivity (and CO2 sequestration), pollination and greater resilience to storm, fire, invasive exotic 

species (e.g. black cherry), and pests (e.g. oak processionary caterpillar) (Thomassen et al., 2020). In addition, 

forests provide other regulating services such as carbon sequestration, particulates filtering, water purification, 

water purification, and erosion prevention. 

Lastly, forests and their biodiversity provide important cultural ecosystems such as aesthetics and health benefits. 

Forests contribute to “well-being and public health, a pleasant living environment, a welcome place for rest and 

recreation” (Thomassen et al., 2020). Dutch forests are visited 150 million times per year for recreational 

purposes (Staatsbosbeheer, 2019). Forests also contribute to the health of people, they provide spiritual meaning, 

contribute to the quality of the landscape and increase living enjoyment (Thomassen et al., 2020). This cultural 

value of forests leads to additional economic value through the sales of park tickets and overnight stays. 

1.2. Vulnerability of Forests to Droughts 

As forests are of great importance to our society and wellbeing through various services as stated above, it is 

important to ensure the future sustainability of the forests. Forests depend on water availability and certain 

climatic conditions to be able to grow and survive. What these specific water and climatic needs are, differs per 

tree species and therefore, species are climate dependent.  

Changing climate can have an immense impact on forests as it causes an increase in weather extremes such as 

extremely wet and dry periods (droughts). According to the fifth assessment report of the IPCC (2014), climate 

changes put a lot of stress on forests globally and they expect that it will lead to changes in the structure and 

composition of forests, as models are showing significant increases in forest dieback. Forest dieback is the 

phenomenon of forests dying or losing health without an direct cause (Allen, 2009). Losing health may include 
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falling of discoloration of leaves of needles, thinning of tree crowns, or damage to the roots of the trees. This 

forest dieback can be caused by pathogens, parasites or conditions like acid rain and periods of drought, which 

are expected to happen more frequent as a result of climate change (Allen, 2009). The IPCC states that fast 

adaptation is important as a response to this (Sohngen et al., 2016).  

An example of an extreme weather event (in this case an unusually sunny spring and dry summer) that impacted 

forests are the meteorological droughts of 2018 in Europe (Bastos et al., 2020). A meteorological drought is a 

prolonged period of time with less than average rainfall and great evaporation (influenced by high temperatures), 

as defined by the KNMI (KNMI, 2021a). In 2018, the Netherlands experienced extremely high temperatures and 

little rain, calling 2018 “the record breaking drought of 2018 in Europe” (Buitink et al., 2020). The year 2018 was 

with a rainfall deficit of 309 mm (average = 90 mm) the fifth severest meteorological drought ever measured in 

the Netherlands since the beginning of the measurements in 1901 (KNMI, 2021a). On average, the Netherlands 

has about 2-5 tropical days per year (days of 30 °C or higher), whereas 2018 had 8 tropical days (KNMI, 2021b). 

In 2019, another extreme weather event occurred. That year was only slightly drier than average, but with record 

breaking temperatures reaching well over 40 °C (KNMI, 2020), the increased evaporation resulted in a 

precipitation deficit of 160 mm. There were in total 11 tropical days in 2019, which it the most tropical days ever 

recorded in one summer in the Netherlands (KNMI, 2021b). The KNMI defines the top 5% of droughts as 

extreme drought, for which the benchmark is 260 mm of rainfall deficit at the end of September. 

These droughts (caused by lack of rainfall or increased evaporation) have an impact on the forests. Even though 

there has not been large-scale research on this, this impact is observed by local foresters: for example, forester 

Laurens Jansen discusses how the combination of drought and the bark beetle pests makes larches and Norway 

spruces the true drought victims (Koopman, 2020), and forest ecologist Bart Nyssen calls the drought damage in 

the forests a silent disaster (Reijman and Prooijen, 2020). Researchers from Wageningen used field measurement 

of tree rings to determine the impact of droughts on the tree species in the Netherlands (Thomassen et al., 2020). 

They compared the growth of sixteen trees between 2015-2017 with 2018 and concluded that pine trees and 

Douglas firs were more affected by the drought than oak and beech trees. Other examples of drought impact of 

forests in various European countries are found in literature (Buras et al., 2020; Khoury and Coomes, 2020; 

Pichler and Oberhuber, 2007; Vicente-Serrano, 2007). Due to global warming, these extreme droughts are only 

expected to become more severe and more frequent (Diermanse et al., 2018). 

1.3. Monitoring Forests from Space  

As mentioned, ground observations have been used to monitor damage to forests after droughts. However, a 

more large-scale method using objective data is the use of remotely sensed indices.  

Various researchers have studied the effects of droughts on forest by means of often freely accessible satellite 

imagery using vegetation indices to derive the state of forests. For instance, Buras et al. (2020) compared the 

2003 and 2018 across Europe, Vicente-Serrano (2007) studied droughts in the Iberian peninsula, and Assal et al. 

(2016) compared the effectivity of different vegetation indices in the detection of drought impact on forests. All 

these studies found satellite-derived vegetation index analysis to be an effective method of studying drought 

impact, and they found that long periods of drought have a negative effect on forests on forests, although the 

size of the impact varies per study. The spatial resolution that is used varies from 30x30 m up to 1x1 km, and 

time comparison varies from comparing one drought year with several non-drought years to comparing every 

year over several decades. Most studies have taken place on a large scale (such as entire Europe or south of 

Europe) and in more southern or Mediterranean climates. However, the method of satellite-derived vegetation 

index analysis has not yet been used on the forests in Central West Europe in low forest density areas like the 

Netherlands, the United Kingdom and Ireland, that have generally high forest fragmentation. Therefore, it is 

unknown if countries of a Central West Europe (oceanic) climate are affected differently than countries with a 

Mediterranean climate. As dry summers are less common in oceanic climates than in Mediterranean or 
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continental climates, it is plausible that forests in Central West Europe are less adapted to dry conditions than 

forests in Southern and Eastern Europe. In these countries with a lot of forest fragmentation, high resolution 

imagery is needed to assess and monitor the forests and their changes.  

1.4. Forest Management and Planning For The Future 

The responsibility for the management and planning of forests is at the owners of forests. In the Netherlands, 

48% of the forests are owned by the government, 19% by private conservation organisations, and 32% by other 

private owners (Probos, 2019). In order to sustain forests for the future climatic conditions, forest management 

organisations need to account for the changing climate in their planting of new forests trees, as well as in 

rejuvenation of existing forests; to ensure sufficient forest coverage in the coming decades. However, this is a 

complex process, in which the forest management organisations face a variety of knowledge and social 

challenges that impact the strategies they adopt. In this section, the knowledge challenges and social challenges 

are discussed to demonstrate the wickedness of forest management. 

1.4.1. Knowledge Challenges 

As for the knowledge challenges, it is important to know which types of forests are least impacted by drought in 

the Central West European climate. In July 2020, the Unie van Bosgroepen published in collaboration with 

Staatsbosbeheer and Stichting Probos a report on revitalizing the Dutch forests (Thomassen et al., 2020). This 

report proposes a set of recommended actions for revitalizing the Dutch forests. One of the actions the writers 

recommend is research into climate resilient tree species and the planting of these species, as they found that 

there is currently a lack of knowledge about this. According to Forest Europe (2020), about 67% of the 

European forests is mixed forests and 33% of the forests contains one singe tree species (either monocultures or 

naturally homogenous). They found that forests composed of mixed forest types (broadleaved and coniferous) 

are often more resilient and richer in biodiversity. However, no direct link is discussed on the connection 

between forest types and drought resilience. 

Similarly, there are studies that suggest that a soils type on which a forest is located can play a role in the amount 

of drought impact on the forest. For example, a study of Jiang et al. (2020) suggests that Chinese forests on 

sandy soil are more drought resilient than forests on clay soil, and Agaba et al. (2010) found similar results in 

their experiment with sandy and clay soils. However, there is paucity of research around conducting such studies 

for the context of the Netherlands.  

1.4.2. Social Challenges 

Forest management organisations deal with legislation as well as opinion of the public. An example is 

Staatsbosbeheer, the Dutch public forest management organisation, which owns 26% of the forests in the 

Netherlands. They state that their strategy towards more climate resilient forests is to plant and develop forests 

with a wide variety of species together (Hekhuis, n.d.). In the process of managing their forests, besides 

maintaining the forests, they are aiming for nature and biodiversity restoration (as agreed upon in the Natura 

2000 Habitats Directive) and forestation (UN, 2015). These two international agreements are sometimes 

conflicting, as nature restoration in some cases requires a forest landscape to be returned into another type of 

habitat to increase biodiversity. An example of such a landscape is the sand drifts in the nature reserve the 

Veluwe, that were reintroduced in the landscape by removing the (planted) forests in designated areas of the 

park. Sand drifts are a European protected habitat type and serve as habitat for specific species of interest, 

however, the active removal of trees required for this type of landscape conflicts with the goal of increasing 

forest area. 

Forest management policy has been regularly a topic of conflict, and forest owners such as Staatsbosbeheer and 

Natuurmonumenten have been heavily criticized by the public for their actions. Regularly citizens protest against 
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the cutting of trees. In 2019, this even led to Natuurmonumenten temporarily stopping with the clearing of any 

trees after a wave of criticism of their members (NOS, 2019a), and Staatsbosbeheer calling for a better forest 

management strategy of the ministry (NOS, 2019b) after more protests and even punctured tires of some of the 

foresters (NOS, 2018). Not only the forest management organisations receive such criticism, also the 

government is targeted and criticised to not have their priorities right. For example, currently there are protests 

against the cutting of forests in Amelisweerd to make room for broadening the highway (NOS, 2021). This 

highway has been the cause for protests in the past, because between 1978 and 1982 there were protests against 

the initial construction of the highway, leading to strong conflicts between the protesters and the police, also 

known as “The Battle of Amelisweerd” (NOS, 2021).  

Besides the various forest management organisations, the government, and citizens, there are more parties that 

have conflicting opinions and stakes in the policies surrounding forests and nature conservation, such as water 

boards and farmers. For instance, farmers typically prefer a lower groundwater level to protect their crops. There 

can be many other similar conflicting opinions surrounding the field of forest and nature management policy and 

practice. In 2019, the German government invested 800 million euros into generating drought resilient forests, 

which puts pressure on the Netherlands to take action as well (Stroo, 2019). 

1.4.3. Decision Making 

As the previous paragraphs demonstrate, the decision-making process for forest management and planning is 

complex, and the forest owners have to take into account a variety of perspectives and uncertainties. Large scale 

objective data about how drought (and therefore the expected future climatic conditions) impact forests would 

help with making decisions for future planning of climate resilient forests. For example, if the independent data 

from remote sensing could show the need to switch to more drought resilient forests, that would give a certain 

amount of justification for such actions. 

1.5. Research Gap 

To ensure future sustainability of forests, there is a dire need to have forests that are resilient to future climatic 

conditions. To do this, knowledge is required to identify the climate resilient forest types in order to plant or 

maintain these types of forests and design a suitable management strategy. As the climate becomes more 

extreme, we need such foresight in order to have forests live on years from now, since it takes time for seedlings 

to grow into forests. Required to start this process is the knowledge which current forest types are most sensitive 

to the future climatic conditions that includes droughts and high temperatures, and which forest types are least 

sensitive to those conditions. 

This research aims to fill this gap by studying the drought impacts of the 2018 and 2019 droughts on the various 

types of forest in the Netherlands using a remote sensing approach. Satellite imagery is widely available and has 

been used in many countries in boreal and Mediterranean areas for this purpose, but so far not in oceanic 

climates. Using this technique in the Netherlands would give new insights in the drought resilience of the Dutch 

forest and identify forests and forest locations that are more vulnerable to extreme droughts, which ultimately 

contributes towards planning future forests that are more climate resilient. 

1.6. Research Objectives and Research Questions 

Based on the identified research gap, this research aims to fill this gap by reaching the following research 

objective: 

• To evaluate with satellite data what impact the meteorological droughts of 2018 and 2019 had on the 

forests in the Netherlands. 
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The remotely sensed drought impact is measured using vegetation indices derived from spectral bands as 

measured by an instrument on a satellite platform. These bands can be combined to construct a variety of 

vegetation indices that highlight various properties of vegetation and its changes. Periods of drought are 

quantified using the rainfall deficit, and drought impact is any significant change that can be observed using 

satellite images and their derived vegetation indices. This can be greenness, early loss of leaves, reduced moisture 

content, or something similar. 

In order to reach the research objective, the vegetation index or indices that are most suitable to detect drought 

impact need to be found. Therefore, the first research question is: 

1. Which satellite-derived vegetation indices respond best to drought impact on forests? 

The objective of this first research question is to find out to which vegetation index or indices respond strongest 

to drought impact, and to what extent the drought impact on forests in the Netherlands can be observed using 

these satellite indices. 

2. Does drought impact, as detected with remote sensing, vary among forest types in the Netherlands? 

The objective of this research question is to find patterns in the measured drought impact based on forest type. 

The forest drought impact is already established in research question 1, and this research question builds up on 

that splitting the results into three categories of forest types and analysing the difference between them. Based on 

observations of foresters (Hekhuis, n.d.) and studies from other countries in Europe (Khoury and Coomes, 

2020), the expected outcome is to observe the biggest drought impact on pine trees and the least effect on 

deciduous and mixed forests. 

3. Does drought impact on forests vary between soil types on which a particular forest is located? 

The report of Revitalizing Dutch Forests (Thomassen et al., 2020) indicated that forests on sand were stronger 

affected by the drought than forests on other soil types, like clay. Therefore, the expected outcome is to observe 

the biggest drought impact on that are located on sandy soils. 

 
Figure 1 shows an overview of the research questions and the steps that were taken during this research. 

 

 
Figure 1: Overview of the research questions. 
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2. THEORETICAL BACKGROUND 

This section gives the theoretical background on which this research is based. The first part describes previous 

studies that have been done that have similarities to this research, and the main outcomes and differences with 

this research are described. In the second section, there is a summary and a description of vegetation indices that 

have been used in the previous studies for the purpose of drought impact detection on forests. 

2.1. Previous Studies in Other Climates 

Various researchers have studied the effects of droughts on forest by means of remote sensing. To start with a 

prominent one, Lobo et al. (2010) used satellite imagery to investigate the impact of heatwaves and droughts on 

forests in South-West Europe (mainly Spain). They used temperature, precipitation, and potential 

evapotranspiration data of June, July, and August 2003 to calculate rainfall deficit and correlate this to the NDVI 

from satellite data from drought year 2003 and 1960 as reference years. Whilst they do differentiate between 

herbaceous vegetation and deciduous forests, their study does not make any differentiation between different 

tree species. They conclude that the drought of 2003 had a strong impact on the vegetation on South-West 

Europe, although the herbaceous vegetation had a stronger decrease in NDVI than the deciduous forests. Along 

similar lines, Vicente-Serrano's work (2007) assesses the relation between drought and seasons (in which season a 

drought has the biggest impact), as well as between drought and land-cover types on the Iberian Peninsula. This 

work also uses NDVI and the drought index Standardised Precipitation Index (SPI) to determine what counts as 

a drought. The project concludes that more arid regions (with low annual rainfall, about 320 mm per year) are 

more affected by drought than humid regions (600 mm per year). They also found that coniferous forests have a 

stronger negative response to long droughts (12 months) than broadleaved forests.  

Yoshida et al. (2015) also looked at the impact of a drought in 2010 on vegetation in Russia. They also utilized 

NDVI, besides solar-induced chlorophyll fluorescence (SIF). Their results pointed towards NDVI being more 

effective than the SIF measurements for forests if detecting drought damage, unlike cropland and grassland 

areas. A similar but more recent study is the one of Buras et al. (2020), using climate data, land use data, and 

satellite imagery to do a statistical analysis on the 2018 drought compared to the 2003 drought. They used 

MODIS vegetation indices NDVI and Enhanced Vegetation Index (EVI) for large, forested areas in the whole 

of Europe, with a spatial resolution of 231x231 m; concluding that the 2018 drought is a yet unpreceded event 

impacting pastures, arable land, and forests. They found that the results of EVI generally confirmed the results 

of NDVI and showed that coniferous forests were generally more affected than mixed forests and broadleaved 

forests. They found that 130.000 km2 of coniferous forests and 30.000 km2 of deciduous trees had an extremely 

low NDVI in 2018 due to the drought throughout Europe, which was for the deciduous trees likely related to 

early leaf shedding. In this study, no specific results were found for the Netherlands, as the spatial resolution was 

too coarse to capture significant amounts of forests in the Netherlands. 

All aforementioned studies used one vegetation index to determine drought impact. However, Assal et al. (2016) 

compared for their forest drought impact research in western North America four different vegetation indices: 

NDVI, EVI, NDMI (Normalized Difference Moisture Index), and SAVI (Soil Adjusted Vegetation Index). They 

used vegetation indices derived from Landsat data from 1985 to 2012 to find the most appropriate index for 

temporal trend analysis. They found that NDMI was the most accurate index as it had the strongest correlation 

with the field measures, closely followed by NDVI, and that coniferous forest more often had a decline in 

NDMI than deciduous forests. Choubin et al. (2019) also compared four MODIS-derived vegetation indices 

(NDVI, EVI, DVI (difference vegetation index), and RVI (ratio vegetation index)) for vegetative cover in general 

and compared them to two different drought indices, in which they discovered that NDVI and SPI had the 
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strongest correlation. Gu et al. (2008) also compared the indices NDVI and NDMI, for vegetation drought 

monitoring, and they concluded that, even though NDVI is more commonly used, it was found to have no 

additional benefit over NDMI. 

By making differentiation between types of forest vegetation in the NDVI data, properties such as drought 

resilience can be established that can lead to knowledge about climate change resilience. There is a study that 

combines species specific analysis with the remote sensing approach that is mentioned previously. The research 

of Khoury and Coomes (2020) investigates how drought resilience varies amongst ten different forest types of 

the Spanish forests. They used eighteen years of MODIS multispectral reflectance data from the NASA database 

to extract monthly NDVI estimates that represent the greenness of the forests. Besides NDVI to study the 

greenness of the forests, they also studied the impact of canopy density using leaf area index (LAI) that was also 

calculated from the MODIS imagery. They found that dense canopies are most sensitive to droughts and that 

chestnut trees are quite resilient to droughts, while pines were relatively sensitive.  

Some studies have also looked at the role soil plays in the impact of a drought on forests. Jiang et al. (2020) 

studied the responses of vegetation growth to droughts under different soil textures in pastoral areas of China. 

They found that soil types play an important role in a plant’s water uptake, and therefore affect the response of 

vegetation to drought. Their results showed that vegetation located on soil with a high sand percentage had 

relatively small deviation during drought, as opposed to clay soil, which had the opposite effect. Agaba et al. 

(2010) found similar results in their experiment in which they simulated drought conditions with hydrogel to 

study the effect of different soils of the survival of trees under drought conditions. In their experiment, the 

survival rate of trees was highest on sandy soil, and significantly lower on (loamy and clay) soils under drought 

conditions.  

All these studies show, firstly, that the use of remotely sensed vegetation indices is an effective method of 

capturing this impact in data; and, secondly, that there is a need for and viable possibilities for assessing the 

impact of droughts on vegetation. This shows that it is possible to combine the (vegetation)species specific 

analysis with the accuracy and scalability of remotely sensed data, and this method needs to be brought to the 

Netherlands to learn more about the state of the Dutch forests and identify which types of forests are more 

drought resilient. Earlier this year, foresters sounded the alarm (Koopman, 2020) after another year of drought 

and they stated to be eagerly looking for trees that will thrive in the "new reality". As Khoury and Coomes (2020) 

stated: “Understanding differences in the resilience of forest types is key to improving resilience to drought”. 

The method proposed in this document can provide the needed answers and contribute towards a strategy for 

more drought resilient forests.  

2.2. Vegetation Indices 

To assess forest health using remote sensing, vegetation indices (VI’s) are often used to indicate levels of leaf 

pigments, carbon, or water concentration (Qi et al., 2017). A vegetation index is composed of two or more 

spectral bands reflectance values. The sections below describe the characteristics of the vegetation indices that 

are used in the aforementioned studies. Table 1 provides an overview of the indices. 
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Vegetation Index General description 

Normalized difference vegetation index 

(NDVI) 

(NearInfraRed–Red) /  

(NearInfraRed+Red) 

Enhanced vegetation index (EVI) G((NearInfraRed–Red) / (L+ NearInfraRed +C1*Red–C2*Blue)) 

Ratio vegetation index (RVI) NearInfraRed / Red 

Difference vegetation index (DVI) NearInfraRed–Red 

Normalized difference moisture index 

(NDMI/NDWI) 

(NearInfraRed–ShortWaveInfraRed) /  

(NearInfraRed +ShortWaveInfraRed) 

Soil adjusted vegetation index (SAVI) (1+L)( NearInfraRed–Red) / (NearInfraRed +Red+L) 

Table 1: Overview of vegetation indices evaluated in this study. 

2.2.1. Normalized Difference Vegetation Index 

The Normalized difference vegetation index (NDVI) is one of the most well known and used vegetation indices, 

which uses the red spectral band and the near-infrared spectral band reflectance. It is one of the oldest widely 

used vegetation indices, as it was proposed in 1974 by Rouse and his team (Rouse et al., 1974; Xue and Su, 2017). 

It is used for monitoring vegetation on local scales and on global scales (Vrieling et al., 2013). NDVI is calculated 

as:  

NDVI = (NearInfraRed–Red)/(NearInfraRed+Red).  

The value of NDVI ranges between -1 and 1, in which the higher values generally mean a higher greenness of 

vegetation, and values below 0 are no vegetation, such as water, ice, snow, bare earth, or clouds (Choubin et al., 

2019).  

NDVI is a successful index to compare seasonal and interannual changes in vegetation growth and activity. Since 

NDVI is a ratio, many forms of multiplicative noise that are present in multiple bands (such as cloud shadows, 

illumination differences, atmospheric attenuation) are reduced (Huete et al., 2002). NDVI is often used for 

regional and global vegetation assessment and relates to canopy photosynthesis and Leaf area Index (LAI)(Xue 

and Su, 2017). However, there are also certain disadvantages tied to a ratio-based index such as NDVI, such as 

the inherent nonlinearity and the influence of additive ground noise effects (Huete, 1988). NDVI also had the 

problem of saturation over high biomass conditions (e.g. mature forests) and responds strongly to canopy 

background variations, such as soil changes (Huete, 1988). According to Buras et al. (2020), NDVI is often used 

for drought monitoring and assessing impact of drought on ecosystems on large scales. 

2.2.2. Enhanced Vegetation Index 

Enhanced vegetation index (EVI) is similar to the NDVI, with the addition of some coefficients and the blue 

band. Just like NDVI, the values for EVI range between -1 and 1, with the values for vegetation usually between 

0.2 and 0.8 (Choubin et al., 2019). The formula for EVI is:  

EVI = G((NearInfraRed–Red)/(L+NearInfraRed+C1*Red–C2*Blue)) 

The values that are used for the coefficients in this research are the standard values that are found back in the 

literature (Choubin et al., 2019; Huete et al., 2002): Canopy background adjustment (L) is 1, the gain factor (G) is 

equal to 2.5, the coefficients of aerosol resistance (C1 and C2) are equal to 6 and 6.5 respectively. 

EVI was developed to simultaneously reduce atmospheric noise and canopy background noise, as in most 

previously adopted indices a decrease in one of these effects resulted in an increase in the other due to the 

interaction of the soils and atmosphere (Xue and Su, 2017). The main difference between NDVI and EVI is that 

EVI is more sensitive to structural variations of the canopy, while NDVI is more sensitive to chlorophyll (Huete 

et al., 2002). Therefore, EVI is more likely to reflect leaf shedding, while NDVI better reflects changes in leaf 

coloration (which can be a result of early aging due to drought) (Buras et al., 2020). In addition, EVI does not 

saturate as fast as NDVI in dense forests with a high LAI (Huete et al., 2002). 
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2.2.3. Ratio Vegetation Index 

The Ratio vegetation index (RVI) was one of the first vegetation indices introduced in 1969 by Carl Jordan as a 

ratio to derive Leaf Area Index (Jordan, 1969). RVI is calculated as the Near Infrared band divided by the Red 

band: 

RVI = NearInfraRed/Red 

RVI is based on the principle that leaves absorb more red light than infrared light (Xue and Su, 2017). RVI uses 

the same two bands as NDVI, however, the RVI can range from 0 to infinity (Huete et al., 2002). RVI is widely 

used for green biomass estimation for dense forests or vegetation types, but with low density vegetation (less 

than 50%), the RVI is affected too much by atmospheric noise to give a reliable representation (Xue and Su, 

2017). Choubin et al. used RVI as one of the indices to detect drought impact on forests in their research in 

2019. 

2.2.4. Difference Vegetation Index  

Difference vegetation index (DVI) was proposed several years later in 1977 by Richardson and Weigand and is 

one of the simplest vegetation indices (Richardson and Wiegand, 1977). DVI is calculated as  

DVI = NearInfrared–Red 

The DVI is a small number close to zero. DVI distinguishes well between soil and vegetation, where soil, water, 

and rock are small numbers close to zero, and green vegetation are relatively high numbers (Choubin et al., 

2019). However, it does not deal with atmospheric effects like NDVI and EVI (Xue and Su, 2017) and is 

therefore more suited for comparisons within one satellite scene than for satellite time series. Choubin et al. used 

DVI as one of the indices to detect drought impact on forests in their research in 2019, although it showed a 

smaller correlation to drought than NDVI, EVI, and RVI. 

2.2.5. Normalized Difference Moisture Index  

Normalized Difference Moisture Index (NDMI) is the only index in this research that does not use the Red 

band, but instead the Short-Wave InfraRed band. The NDMI is computed using: 

NDMI = (NearInfraRed– ShortWaveInfraRed) / (NIR+ShortWaveInfraRed) 

NDMI is also sometimes called NDWI (Normalized Difference Water Index), however, NDWI is in other 

instances defined by different band combinations. The NDMI was proposed by Gao in 1995 to detect moisture 

in vegetation and changes in this. In 1983, Hardisky et al. already used the same band combinations as NDMI 

for an index they called the Normalized Difference Infrared Index (NDII) (Assal et al., 2016).  

As NDMI is computed using the SWIR, is sensitive to changes in liquid water content of vegetation canopies. 

NDMI is less sensitive to the greenness of vegetation, as the chlorophyll content that the Red band response is 

not included in this index (Gao, 1996). According to Gao (1996), the canopy background effects is similar to 

NDVI, however, the NDMI is less sensitive to atmospheric effects, as there is little aerosol scattering in the 

bands NIR and SWIR. Assal et al. (2016) compared NDVI, NDMI, EVI, and SAVI with field measured drought 

effects in a heterogeneous semi-arid area, and found that NDMI had the strongest relation to the field measured 

drought impact (Gu et al., 2008) found that NDVI and NDMI respond similarly to vegetation drought 

conditions.  

2.2.6. Soil Adjusted Vegetation Index 

The Soil Adjusted Vegetation Index (SAVI) was developed to overcome the sensitivity of NDVI on canopy 

background effects by including a canopy background adjustment constant (L) (Huete, 1988). The NDMI is 

computed using: 

 SAVI = (1+L)( NearInfraRed–Red) / (NearInfraRed+Red+L) 

The canopy background adjustment constant L is a value between 0 and 1, with a value close to 1 for high 

background vegetation coverage and a low LAI of the canopy (Xue and Su, 2017). When the value for L is 0, the 
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value SAVI is equal to NDVI. Therefore, in this research, the highest possible value for L is used. This value is 1 

and is chosen to maximize the contrast between NDVI and SAVI. This enables clear comparison between the 

different vegetation indices.  
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3. STUDY AREA 

In this study, the Netherlands is used as study area. The Netherlands has 373.480 ha of forests, which is about 

11.1% of the surface area of the Netherlands (CBS, 2014; Probos, 2019). With this percentage, the Netherlands 

is one of the least forested countries of Europe, according to Forest Europe (2020), with an average forest cover 

of 32% over the whole continent. The rest of this section will go into detail about the history and composition of 

Dutch forests, and will compare them to European forests in general. 

3.1. A Short History 

For many centuries the influence of man on land and forest has been great, and is still decisive today in 

determining where and how forests grow (van Goor, 1993). The cause of the low percentage of forests in the 

Netherlands is that in the past centuries, forests have been cut down for various purposes benefitting the Dutch 

economy. A strong driver has been the high population density the Netherlands has had over the centuries, 

which created a need for land for agriculture, houses, and industry. Forests were also cut down to use as product, 

such as fuel, furniture, and construction material for ships. Around 1750 the Dutch forests were at an all time 

low, reaching only 100,000 ha (3%) of forest land in the whole country (Boosten, 2016). Throughout the 19th 

century, the interest and perceived value of forests slowly increased and new forests were planted. However, 

around 1870 the last ancient forest of the Netherlands was again cut down to make room for agricultural 

practices (Boosten, 2016). Nevertheless, there are also many forests planted, for production and for reforesting 

heath and sandy areas. Mainly oak and European red pine are popular, but after WOII larch, Douglas fir, and the 

Norway spruce were planted in large quantities.  

3.2. Composition of Dutch Forests 

With the economy as a driver for much of the deforestation and reforestation in the Netherlands, the current 

forests are mostly planted and a carefully chosen species composition. In 2013, 51% of the trees in the 

Netherlands were coniferous trees, and 49% broadleaf trees. In 2015 this ratio was 54% over 46%, which shows 

that the share of broadleaf trees is decreasing (Oldenburger, 2019). Scots pine (36%), native oak (17%) and 

Douglas fir (11%) are the three tree species with the largest area shares within the Dutch forest. Figure 2 shows 

that 51% is mixed coniferous forest and broadleaf forest, while 46% is only coniferous forest (26%) or broadleaf 

forest (20%). This is a large increase in mixed forests, as in 1983 23% was mixed, 47% was coniferous forest, and 

23% was broadleaf forest (Oldenburger, 2019). 

 
Figure 2: Composition of the Dutch forests. (source: Forest Europe, 2020) 

3.3. Comparison to Other Countries in Central-West Europe 

The percentage of forest cover in central-West Europe is 27.9% (FOREST EUROPE, 2020). The Netherlands 

has one of the lowest percentages of forest area of these countries, particularly lower than Austria (50%), 
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Luxembourg (36%), Germany (33%), Switzerland (33%), France (31%), and Belgium (23%). Ireland (11%) and 

the United Kingdom (10%) have about the same percentage of forested area. 

3.4. Comparison of Central-West Europe to Rest of Europe 

Previous studies already have used remote sensing methods to monitor drought impact on forests in the South 

of Europe and have a Mediterranean climate. Central-West-European countries have an oceanic climate (Cfb in 

the Köppen classification) and therefore it is possible that the impact of drought is also different. 

Many characteristics make Central-West European forests different from the forests in the rest of Europe. For 

instance, a recent study of by Forest Europe (2020) shows that Central-West European forests are smaller and 

more fragmented throughout the land, have small percentages of coniferous forests and high percentages of 

mixed forests, and have a higher percentages of planted forests than in other parts of Europe.  

Regarding European forests, Central-West Europe is the least densely covered area (27.9%) together with 

Central-East Europe (27.3%). The North of Europe is most densely forested with 53.8% of the land area 

covered with forest. Central-West Europe has the largest share of their forests available for wood supply with 

91.9%. South-East Europe on the other hand has the least of their forests available for wood supply (53.2%) 

(FOREST EUROPE, 2020).  
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4. DATA 

4.1. Forest Data 

The data of the forests was retrieved from the Sixth Dutch Forest Inventory (Nederlandse Bosinventarisatie - 

NBI6). This inventory was executed by Alterra Wageningen UR in 2012 and 2013, with the results published in 

2014 (Schelhaas et al., 2014). The inventory was commissioned by the Ministry of Economic Affairs in the 

context of the policy-supporting research theme "Nature and Regional Biodiversity terrestrial". In the NBI6, 

measurements were carried out at 3190 forest sample points (see figure 3). Out of these, 1235 points were a re-

recording of measurements of the previous forest inventory in 2005.  

In this study, a subset of the NBI6 is used with a mixture of broadleaved, coniferous, and mixed forests. Forests 

are defined as areas with trees larger than 0.5 hectare. Broadleaved forests are forests with at least 80% of 

broadleaved tree species, while coniferous forests are forests with at least 80% of coniferous tree species. Mixed 

forests have at least 20% of both broadleaved and coniferous tree species. These definitions are based on the 

definitions of the Dutch Forest Inventory (Schelhaas et al., 2014), as that is where the data comes from. 

 

 
Figure 3: Overview of the 3190 forest sample points of the NBI6. 

4.2. Satellite Time series 

The vegetation indices are calculated from satellite time series data from both Sentinel-2 and Landsat 8 imagery 

as described in this section. Both time series datasets were analysed separately to look for a drought related 

pattern.  

Sentinel-2 imagery is suitable for this research as it has a high spatial resolution of 20x20 m, and therefore is able 

to sense small or narrow forests patches with minimal noise of surrounding land covers. Sentinel-2 also has a 

high revisit time of on average 5 days (ESA, n.d.), so that there are few gaps in time series after removing cloud 

covered pixels. However, the disadvantage of this dataset is the lack of historical data, as the atmospherically 

corrected data is only available from March 2017 onwards. This might lead to a lack of data to establish a 

meaningful pre-drought baseline (Wolf, 2020). 
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Landsat 8 does not have this problem of a lack of historical data, as the available surface reflectance data starts in 

July 2013. However, the spatial resolution is lower (30x30 m), which can lead to more noise from surrounding 

land covers. The temporal resolution is also significantly lower with a revisit time of 16 days, which can lead to 

gaps in the time series as a result of applying a could cover filter (Saleem and Awange, 2019).  

The Sentinel-2 and Landsat 8 imagery surface reflectance time series were retrieved from Google Earth Engine 

(GEE). As the clouded imagery does not accurately reflect the surface reflectance values, these images are 

filtered out using a cloud filter in the algorithm. As the number of cloudy images differs per year, the total 

amount of useful data per year differs as well as demonstrated by the example in figure 4, which demonstrated 

the total number of recordings per year in the Sentinel-2 time series dataset for all locations. 

 

 
Figure 4: Total number of recordings per year in the Sentinel-2 time series dataset for all forest locations. 

4.3. Method Validation Data 

Points with ground truth point information were obtained to validate the method. A dataset was used containing 

12 locations of dead spruce forests plots and 5 locations with healthy forests plots at the recorded date of 

sampling. This dataset of locations is based on dieback that occurs as a result of bark beetle outbreaks in spruce 

forests. Every one of these samples contained relevant information about the location coordinates, percentage of 

living trees, and date of sampling among other details. 

The data was provided by researcher Harold Hauzeur from Wageningen University and the full dataset is 

provided in appendix A.  

4.4. Reproducibility 

This study is fully reproducible, as all the data is online openly available, and the methods are fully discussed the 

method section. When the methods and data retrieval are repeated exactly as stated, this should lead to the same 

results. Data extraction codes from Google Earth Engine and data processing codes performed in Python are 

provided in appendix B. 
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5. METHODS 

In this section, several steps are described to reach the research objective and answer the research questions. 

First, a selection of forest locations is selected and the satellite time series data of these locations is retrieved. 

This data is cleaned to decrease the chance of extreme outliers. 

As for the vegetation index selection, six indices were selected from literature and calculated for the time series 

dataset. The standard precipitation index was calculated for the Netherlands, and this was correlated to the 

vegetation indices to find the vegetation index that most strongly corresponds with drought impact. After that, 

method validation was done on a sample set with known ground truth values in order to test the performance of 

the method. Finally, the selected vegetation indices are used for exploratory and statistical analysis of drought 

impact on all forests. 

 

 
Figure 5: Main steps of this research. 

5.1.  Data Selection and Retrieval  

This section consists of two main parts: the selection of locations from the NBI6 database and the retrieval of 

time series data for these locations.  

The forests of the NBI6 were sorted by size and forest density. From the largest and densest forests of the 

database, the ones were selected with forest types of >80% coniferous trees, >80% broadleaf trees, and 40%-

60% of each tree type. Forests with other compositions of tree types were discarded, in order to make a clear 

distinction between the forest types. Of this selection, a selection was made of ten largest forests of each 

different soil type (poor sand, rich sand, limeless clay, calcareous clay, loess, peat, calcareous sand) from all three 

different forest types (broadleaf, coniferous, mixed). This came down to 84 plots, as not every forest type had 

five forests on every soil type. After iterating through the process, 114 plot locations were added based on the 

same criteria to increase the total to 198 points, as the subset of 84 points showed to be a rather small sample set 

(see figure 6).  

After selecting the locations, the time series of the 198 points was retrieved using Google Earth Engine. For each 

of the 198 points, the spectral band values were downloaded of the Sentinel-2 Surface Reflectance from April 

2017 till September 2020, which is the entirety of the data that is available on Google Earth Engine for Sentinel-

2 Surface Reflectance. In addition, the spectral band values of Landsat 8 Surface Reflectance were downloaded 

from July 2013 till September 2020, which is all the data that is available on Google Earth Engine for Landsat 8 

Surface Reflectance. 

The code used to retrieve the satellite time series data from Google Earth Engine is provided is Appendix B.  
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Figure 6: overview of all the 198 samples of the subset of the NBI6 used in this research. Red is broadleaved, blue is 

coniferous, and green is mixed forest. 

5.2. Data Pre-processing  

All 198 points were manually verified for correctness (whether they are located in a forest) using Sentinel-2 real-

colour images of September 2020. This was done because the source that was used (the Dutch Forest Inventory) 

is seven years old, and it is possible that some forests have been cut down in the last seven years. In total 28 

points were taken out, as they were not located on a place that is currently covered by forest or they were located 

close (<20m) to the edge of a forest.  

Of the remaining 170, individual recordings that had an NDVI below 0 or above 1 were removed, as these are 

impossible values for forest NDVI, and this indicates a faulty recording. In addition, extreme outliers were 

manually checked by looking at the satellite image and checking for clouds on the specific date and location, and 

these measurements were also removed.  

5.3.  Vegetation Indices Selection 

To answer which satellite-derived vegetation indices respond best to drought impact on forests, six indices 

(derived from literature) were compared with the Standardised Precipitation Index (SPI) of July of different 

years. The indices with the strongest correlation to SPI were selected as vegetation indices that most clearly 

represent drought impact on forests. This method using SPI to compare various vegetation indices was inspired 

by the paper of Choubin et al. (2019). First the SPI needs to be calculated based on rainfall data before it is 

correlated to the vegetation indices. All the vegetation indices used in this research are found through their 

previous application for similar studies in literature, and therefore the selection of the vegetation indices is next 

to the Landsat 8 time series supported by literature.  

5.3.1. Calculating Drought Index 

Standardised Precipitation Index (SPI) is a commonly used drought index to quantify the severity of droughts. In 

essence, SPI is a standardized measure for precipitation deficit, calculated using only rainfall data (Huang et al., 

2020). SPI values are calculated using the equation (Bak and Labedzki, 2002):  
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SPI = ( f(P) -  ) /  

where: f(P) = transformed sum of precipitation,  = mean value of the normalised precipitation sequence, and  

= standard deviation of the normalised precipitation sequence. 

The flexibility and simplicity of the index make it so popular, as it can be used for any time scale, and it only 

needs precipitation as input. SPI can be calculated over various timespans. For example, the SPI3 is the 

precipitation deficit over a timespan of three months. According to (Santos et al., 2013), the general agreement is 

that times scales up to 6 months are associated with meteorological and agricultural droughts, while time scales 

between 9 and 12 months are used for the assessment of hydrological droughts that impact streams and water 

reservoirs. Time scales longer than that are used for long term droughts that impact the more resilient aquifers. 

As this research is investigating the impact of a meteorological drought on forests, SPI values of 6 months and 

lower are used. In this research, national rainfall data is used and therefore their spatial variety is not taken into 

account in the process of vegetation indices selection. 

The SPI of 1, 2, 3, and 6 month were calculated using monthly precipitation data from the (KNMI, 2021c). The 

SPI values were calculated using R (for code see appendix B.3). The month with the lowest SPI value was 

selected and used for the vegetation index selection.  

5.3.2. Compare Drought Index to Vegetation Index 

Six vegetation indices that are used for drought impact assessment were selected from the literature and they 

were calculated for all recordings of the Sentinel-2 and Landsat 8 time series dataset. The bands that were used to 

calculate the indices are found in table 2. 

VI General description Sentinel-2 Landsat 8 Parameters used 

NDVI (NIR-Red) /  

(NIR+Red) 

(B08 – B04) / 

(B08 + B04) 

(B05 – B04) / 

(B05 + B04) 

 

EVI G((NIR-Red) / 

(L+NIR+C1Red-

C2Blue)) 

G(B08 – B04) / 

(L+B08 + 

C1B04-C2B02) 

G(B05 – B04) / 

(L+B05 + 

C1B04-C2B02) 

L = 1, G = 2.5, 

C1 = 6, C2 = 6.5  

RVI NIR / Red B08 / B04 B05 / B04  

DVI NIR-Red B08 – B04 B05 – B04  

NDMI 

(NDWI) 

(NIR-SWIR) / 

(NIR+SWIR) 

 (B08 - B11) / 

(B08 + B11) 

(B05 – B06) / 

(B05 + B06) 

 

SAVI (1+L)(NIR-Red) / 

(NIR+Red+L) 

(B08 – B04) / 

(B08 + B04) 

(B05 – B04) / 

(B05 + B04) 

L = 1 

 

Table 2: Vegetation indices and their bands and parameters for Sentinel-2 and Landsat 8. 

 

Correlation analysis was done between the vegetation indices series (average per month) and the SPI1, SPI2, 

SPI3, and SPI6 for the month of July (of each year), as this month showed the strongest indication of drought in 

the SPI values and therefore is expected to display the strongest results. The vegetation index with the best 

correlation with the SPI was selected for further analysis. For the correlation analysis, only the time series of 

Landsat 8 were used, as Sentinel-2 does only have 4 years of data. Four years means four times the month of 

July, which is not enough for correlation analysis. Landsat 8 is with eight times the month of July a significantly 

larger sample set, and therefore Landsat 8 was used for the correlation analysis.  

5.4. Method Validation 

Method validation was done on a small dataset of which there are ground measurements. This is a dataset of 

which through ground measurements and aerial photos it is known that these forests have died as a result of 
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bark beetle infestations. Therefore, using the method on this dataset can verify whether the method can detect 

the difference between dead and living trees (regardless of the cause of death). Drought impact may be a much 

smaller effect than the differences in this dataset, however, validating this method can help identifying whether a 

potential lack of significant drought impact findings is caused by shortcomings of the method or if there is 

actually no drought impact.  

The vegetation indices were calculated for the locations using the same method as described in the previous 

section. There are 12 plots with confirmed dead forest plots (although it is not known when they died), and 5 

alive forest plots. For the dead forests, it is not known what year the forests died, but it is known that they were 

dead in 2020 during the sampling date. One plot was excluded from the analysis as it showed a strong 

broadleaved vegetation pattern, which suggests that the background noise was significantly stronger than the 

forest signal, as spruces are coniferous trees and should not give a broadleaf vegetation signal (a year pattern with 

strong seasonal differences). 

5.5. Data Analysis  

To answer the three research questions and establish if there is a measurable difference in the vegetation indices 

values between drought years and non-drought years, an analysis was done to compare the indices per year. As 

this is a new case study, in an area that has not yet been studied with these techniques, broader exploratory 

questions need to be answered before deeper models can be constructed. Hence, most of the data analysis is of 

exploratory nature. 

For each of the research questions, an exploratory data analysis and a confirmatory statistical analysis was done. 

Exploratory data analysis is a type of analysis that revolves around the substantive understanding of data and is 

characterized by data visualisations (Behrens, 1997). The goal of this exploratory data analysis is to find patterns 

in the data and to discover the “story” of the data, rather than only the statistical significance of data (Behrens, 

1997). Exploratory data analysis focuses on questions like which data features should be focused on, what kind 

of outliers exist, or what the general “shape” of the dataset is.  

These are exploratory questions that address the early and messy stages of data analysis that statistical data 

analysis does not capture (Behrens, 1997). Data visualisations are able to capture all relevant information, while 

avoiding large parts of non-relevant information (Larkin and Simon, 1987). In addition, data visualizations can 

show details (such as patterns) that other analysis techniques do not reveal (such as summary descriptive 

statistics) (Cleveland, 1994). Moreover, a similar study from Buras et al. (2020) also used data visualizations as an 

analysis technique to compare vegetation index values of drought years. 

After the exploratory data analysis, a statistical analysis was done to see whether there was a clear difference in 

the vegetation index values between drought and non-drought years. For this, a mixed model ANOVA was 

done. To do this, the monthly average per point was taken for each year, in order to have consistent repeated 

measures. As vegetation indices have a seasonal pattern, the average vegetation index values vary greatly per 

month. This means that different months cannot be compared to each other. Therefore, the difference in 

vegetation indices between the drought years 2018 and 2019 and preceding years for the months in which the 

highest rainfall deficit as expressed by the SPI was observed were tested.  

These two types of analyses were done for all the research questions. For the first research question, the whole 

dataset was used and studied whether there were significant differences between the drought years and the non-

drought years. For the second research question, the data was separated into forest types, to use the two analysis 

methods to see if there is a difference in drought impact between the forest types. Finally, for the third research 

question, the soil types are categorized in four main texture types, and a visual and statistical analyses are done to 

see if there is a significant difference between the soil types of how much drought impact there is. 

  



REMOTE SENSING ASSESSMENT OF THE IMPACT OF THE 2018 AND 2019 DROUGHTS ON THE FORESTS IN THE NETHERLANDS 

 

20 

6. RESULTS 

6.1. Vegetation Indices Selection 

The calculated SPI values show that the month July has the largest precipitation deficit in the growing season of 

the drought year 2018, and therefore the largest meteorological drought (see table 3). As 2018 is the year with the 

strongest drought within the timespan of available data, this means that July is the month with the largest range 

of SPI values. Therefore, this month appears to be a suitable candidate for the vegetation indices selection, as a 

larger range of SPI values can enable a more meaningful regression.  

 

Year Month SPI1 SPI2 SPI3 SPI6 

2018 May -0.56872 0.60232 0.56442 1.05207 

2018 June -1.89615 -2.02078 -0.65133 -1.1274 

2018 July -3.24728 -3.36606 -3.1036 -2.38648 

2018 August -0.27915 -1.85469 -2.70543 -1.88167 

2018 September -0.60447 -0.87472 -1.91174 -2.17845 

Table 3: Calculated SPI values during the drought summer of 2018. 

 

Linear regression was done of vegetation indices versus SPI with both the Sentinel-2 time series dataset and the 

Landsat 8 time series dataset. However, as Sentinel-2 only has 3.5 years of surface reflectance available (covering 

four times the month of July), this time is too short for a pre-drought baseline. Therefore, this analysis was not 

used for the selection of vegetation indices. For completeness, the Sentinel-2 drought and vegetation index 

analysis can be found in appendix C. Landsat 8 has measurements for 8 months of July. This is, although it is a 

small dataset, the only available high spatial resolution satellite data with acceptable revisit time.  

Pearson correlation was done to identify the vegetation index or indices that respond strongest to drought 

(quantified in the drought index SPI). Pearson correlation analysis shows that all the correlations between natural 

vegetation reflectance indices and precipitation deficit are positive. As outlined in figure 7, the best correlation 

occurred between NDMI and SPI1 (r=0.64) and between NDMI and SPI2 (r=0.59) for all forests from the 

Landsat 8 time series. The vegetation index that has the second-best correlation with SPI is NDVI, correlating 

strongest to SPI2 (r=0.46) and SPI6 (r=0.45). EVI, RVI, DVI, and SAVI have significantly weaker correlations 

(with range of r of 0.095-0.38, 0.092-0.37, 0.073-0.32, and 0.12-0.32 respectively). For the different timespans of 

the SPI, the SPI2 shows the strongest correlation to the vegetation indices (average R2 = 0.1493). Out of the 

vegetation indices, NDMI and NDVI were selected for further analysis, as they showed the best correlation with 

the drought index.  

 
Figure 7: Pearson correlation coefficients of the regression analysis of the vegetation indices and the SPI values. 
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In figure 8, examples are given for the Pearson correlation analysis that is done for all vegetation indices with 

SPI1, SPI2, SPI3, and SPI6. The graphs show NDMI and EVI values of July of each year, which are an example 

of a vegetation index with a strong correlation to the SPI values and one with a weak correlation. An overview 

with visualizations of all correlations and the determination coefficients (R2) is found in appendix C. 

 

  SPI1 SPI2  

 

NDMI 

  a b  

 

 

EVI 

 

 

 

c 

 

d 

 
Figure 8a-d: Four examples of the correlation analysis. Precipitation deficits in the month July (2013-2020) are correlated to 

the various vegetation indices of that month. (a) and (b) are examples of strong correlations and (c) and (d) are examples of 

weak correlations. 

6.2. Method Validation 

In the validation dataset of spruce forests, a decrease in NDMI and NDVI was found for all plots marked as 

dead. The difference between dying spruce forests and healthy spruce forests is demonstrated in figure 9. For the 

dead spruce plots, an average decrease in NDMI of 0.323 was found between 2017 (0.352) and 2020 (0.029), 

while for the healthy spruce forest a decrease of only 0.097 was found over the same time period (0.385 and 

0.288 respectively) (see figure 9a). Similarly, an average decrease in NDVI of 0.208 was found between 2017 

(0.747) and 2020 (0.539) for the dead spruce forest plots, while for the healthy spruce forest a decrease of only 

0.077 in NDVI was found over the same time period (0.823 and 0.756 respectively) (see figure 9b). 
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Figure 9: NDMI and NDVI values of the spruce forests. The graphs show a gradual decrease in NDMI and NDVI in the 

dying forests, while the healthy forests show relatively stable VI values. 

 

Figure 10 is a demonstrative example of the NDMI values of one of the plots marked as dead trees and one of 

the plots as marked with healthy trees. Figure 10a clearly shows a gradual decrease in NDMI over the 4 years of 

data of a spruce forest that is dying, while the forest plot that is healthy (figure 10b) shows a rather stable NDMI. 

 

  
Figure 10: Two examples of monthly NDVI values of the spruce forests. Point 3 (left) is an example of a dying spruce forest 

and point 14 (right) is an example of a healthy spruce forest. The graph demonstrates well how the NDVI decreases each 

year while the forest is dying. 

6.3. Data Analysis 

This section describes the results of the assessment of the vegetation index responses to the drought year indices, 

and therefore answering the three research questions. This section consists of three parts: (1) All forests, related 

to the application of research question 1 (“Which satellite-derived vegetation indices respond best to drought impact on 

forests?”); (2) forest types, related to research question 2 (“Does drought impact, as detected with remote sensing, vary among 

forest types in the Netherlands?”); and (3) soil types, related to research question 3 (“Does drought impact on forests vary 

between soil type s on which a particular forest is located?”).  

This section focusses on the results that provide the clearest information to answer the research questions. 

Additional analyses and visualizations that were less informative are included in appendix D. 

6.3.1. All Forests 

This section contains the results that are related to research question 1 (“Which satellite-derived vegetation indices 

respond best to drought impact on forests?”). 
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6.3.1.1. Descriptive Statistics 

For the overall dataset, a total of 21,450 time series measurements were retrieved from Sentinel-2 after the pre-

processing of the 170 forest locations over the period of three years and seven months. The Landsat 8 time 

series dataset contains 9,226 measurements for the period of seven years and seven months. Detailed descriptive 

statistics for the datasets can be found in appendix E.  

The statistical analysis is done for the overall (all year) dataset and for the summer months only (June, July, and 

August) to study the drought impact specifically in the period of greatest drought. For the summer months in the 

Sentinel-2 dataset, a total of 5754 measurements were retrieved, ranging between 320 in 2017 and 2233 in 2018. 

It should be taken into account that 2017 has significantly less measurements than the other years, and therefore 

show a different statistical distribution. For the Landsat 8 time series, there is a total of 2369 measurements of 

the summer, ranging from 197 in 2017 to 473 in 2018.  

6.3.1.2. Exploratory Analysis 

The NDMI and NDVI results for both Sentinel-2 and Landsat 8 have a distinct annual cycle as can be seen in 

figure 11. Both curves show a dip around March for each year and a peak between May and October for NDMI 

as well as for NDVI with both sensors. As 2018 and 2019 are the drought and heat years, the hypothesis is to 

have lower values for these two years have for NDMI and NDVI than the other years. In the graphs of the 

Sentinel-2 vegetation indices, however, the years 2018 (yellow line) and 2019 (green line) do not stand out from 

the other years. As for the Landsat, the NDVI values between June and September of 2018 are lower than in 

other years, which is in line with the hypothesis. However, the values of 2018 are well within the margins of the 

standard deviation of the other years, which means that the difference between 2018 and the other years might 

be negligible. The NDMI and NDVI values of Landsat 8 for 2019 do not visually appear to stand out. 

 

  

  
Figure 11a-d: Monthly NDMI and NDVI values for all types of forests in the Sentinel-2 dataset and the Landsat 8 dataset. 

The shading in the figure is the standard deviation. 
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6.3.1.3. Statistical Analysis 

Pairwise comparison was done for the complete dataset of the Sentinel-2 data. The NDMI and NDVI values of 

each year (2017-2020) were significantly different (p<0.05) from each other, with the exception of the NDVI 

values for 2017 and 2018, which are not significantly different (see also figure 12). This means that there is not a 

significant difference between the NDVI and NDMI values of the drought years (2018 and 2019) and the non-

drought years (2017 and 2020) in the Sentinel-2 dataset. 

In the Landsat 8 dataset, the results of analysis of the yearly average VI values of the 170 locations varied. There 

is not a significant difference found between the NDVI values of the drought years (2018 and 2019) and the 

non-drought years (2013-2017 and 2020) in the Landsat 8 dataset. For NDMI, four out of six non-drought years 

are statistically not different from each other (p<0.05), however, this is also the case for a drought year and a 

non-drought year. Therefore, NDMI also does not give conclusive results of a significant difference between 

drought and non-drought years.  

 

  
Figure 12a-b: Yearly NDMI and NDVI averages for all forests. 

 

The same analysis was done for the summer months (June, July, August) only. In the analysis of these NDMI 

and NDVI values, there was some variation in the results (see also figure 13).  

For the Sentinel-2 dataset, the NDMI values are statistically significantly lower in the years 2018 (0.343) and 2019 

(0.348) than in the years 2017 (0.377) and 2020 (0.357) (p<0.005). The drought years (2018 and 2019) do not 

significantly differ from each other, and the non-drought years also do not significantly differ from each other. 

As for the NDVI values, they show a similar pattern with 2018 and 2019 relatively low (0.827 and 0.818) and 

2020 significantly higher (0.854) ) (p<0.005) , however, with the exception that 2017 is relatively lower (0.831), 

similar to the value of 2018.  

The analysis of the Landsat 8 dataset of the summer months shows a similar pattern that is extended in the years 

before (see figure 13). The NDMI values for this dataset are statistically significantly lower in 2018 (0.360) than 

in all the other years (with values between 0.399 and 0.411). The other years are not significantly different from 

each other. The only exception in this is 2016, in which the NDMI was 0.399, which is not significantly different 

from 2018 (p=0.057). The NDVI values of the same data show a similar pattern, although there is more 

variation in the non-drought years. With an NDVI value of 0.825, 2018 is significantly lower than all the other 

years except for 2014 (0.848, p=0.092). The years 2020, 2016 and 2013 have relatively high NDVI values (0.860, 

0.861 and 0.870 respectively), although 2013 and 2016 are not significantly higher than 2015, 2017 and 2019 

(0.849, 0.842, and 0.847).  
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Figure 13a-b: Average NDMI and NDVI values for the summer months (June, July, August) of each year for all forests. 

6.3.2. Per Forest Type 

This section contains the results that are related to research question 2 (“Does drought impact, as detected with remote 

sensing, vary among forest types in the Netherlands?”). 

6.3.2.1. Descriptive Statistics 

The time series of the 170 forest locations consist of 74 broadleaved forest, 45 coniferous forests, and 51 mixed 

forests. Of 21,450 time series measurements that were retrieved from Sentinel-2 (after the pre-processing), 7,955 

measurements were from broadleaved forests, 6,342 were from coniferous forests, and 7.150 were from mixed 

forests. The Landsat 8 time series dataset contains 9,226 measurements, of which 4,353 from broadleaved 

forests, 2,314 from coniferous forests, and 2,560 from mixed forests. Detailed descriptive statistics for the 

datasets are found in appendix E.  

6.3.2.2. Exploratory Analysis 

Just as for the previous section, a distinctive yearly pattern is seen in all tree types (as shown in figure 11). All 

curves show a dip in the curve around March for each year and a peak between May and October for NDMI as 

well as for NDVI with both sensors. This pattern is stronger present for broadleaves than conifers (see figure 14 

and 15) as a consequence of broadleaved trees are deciduous and therefore lose their leaves in the winter as 

opposed to conifers, which are generally evergreen. As the hypothesis is that coniferous forests are more affected 

by drought, the NDMI and NDVI of coniferous forests is expected to have a larger deviation in the drought 

years than the values of broadleaved and mixed forests. However, this is not apparent in the visual analysis of the 

Sentinel-2 dataset (see figure 14) in which there do not appear to be large differences between the NDMI and 

NDVI values of the different years for any of the forest types.  

The visualisations of the Landsat 8 time series (figure 15) reveal that the coniferous forests vary a lot over the 

years, while broadleaved and mixed forests are relatively constant. The standard deviation margins also appear to 

be larger for the coniferous forests. For all forest types, the NDMI values between June and September of 2018 

(blue line) are lower than in other years. The difference in NDMI between 2018 and the other years is largest for 

the coniferous forests, which is in line with the hypothesis. 

As for NDVI, the values between July and September of 2018 are also lower than in other years, however, the 

timeframe of this decrease is shorter, and the difference is smaller than that of the NDMI. Mixed forests do not 

show this trend at all, as the NDVI values of multiple other years are lower than the values of 2018. The NDMI 

and NDVI values of Landsat 8 for 2019 do not visually appear to stand out for any of the tree types.  
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Broadleaved forest: Coniferous forests:  Mixed Forests:  

   

   
Figure 14a-f: Monthly NDMI (a-c) and NDVI (d-f) values for the various forest types in the Sentinel-2 dataset. 

 

Broadleaved forest:  Coniferous forests:  Mixed Forests:  

   

   
Figure 15a-f: Monthly NDMI (a-c) and NDVI (d-f) values for the various forest types in the Landsat 8 dataset. 

6.3.2.3. Statistical Analysis 

An ANOVA statistical analysis was done for both the Sentinel-2 and the Landsat 8 datasets on year-level.  

As for Sentinel-2, the statistical analysis shows that there are significant differences between the NDMI values of 

the different forest types within the dataset (see also figure 16). Coniferous forests and broadleaved forests are 

significantly different from each other (p<0.001), as are mixed forests and coniferous forests (p=0.024). 

Broadleaved forests and mixed forests do not meet the benchmark of p>0.05 for this, but are very close 

(p=0.056). In contrast, the NDVI values of this dataset do not have significant differences between the forest 

types (p>0.05) as seen in figure 16.  

This does not mean, however, that the trends over time (over the years) are significantly different from each 

other between the forest types. A Mauchly’s test of sphericity showed that the variances between all different 

years are not equal, and hence we are not meeting a key assumption for repeated measures ANOVA. Therefore, 
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the Huynh-Feldt test is used for the test of within-subjects effects, because the Huynh-Feldt test corrects for this 

lack of sphericity (Girden, 1992). This test showed that the forest types do not have a significantly different trend 

over time (“year*foresttype”) both for NDMI (F=0.581, p=0.680) and for NDVI (F=0.738, p=0.552) within the 

Sentinel-2 dataset. This means that there is no significant difference in the changes in NDMI and NDVI over the 

years between the forest types.  

 

  
Figure 16a-b: Yearly NDMI and NDVI averages for the different forest types for Sentinel-2. 

 

The statistical analysis of the Landsat 8 dataset shows results similar to the NDMI of the Sentinel dataset. It 

shows that there are significant differences between the NDMI values of the different forest types. Coniferous 

forests and broadleaved forests are significantly different from each other (p<0.001), as are mixed forests and 

coniferous forests (p=0.013). Broadleaved forests and mixed forests do not meet the benchmark of 0.05 for this, 

but are close (p=0.081). Similarly, the NDVI patterns differ significantly between coniferous and broadleaved 

forests (p<0.001) and mixed and coniferous forests, but not between broadleaved and mixed forests (0.216). 

This means that the NDMI and NDVI patterns differ greatly between most forest types.  

In contrast to the results of the Sentinel dataset, there is a statistically significant difference in the trend over the 

years (2013-2020) between the forest types (for both NDMI and NDVI) for the Landsat dataset (F=3.642, 

p<0.01 and F=4.983, p<0.01 respectively in the Huynh-Feldt test) as can be seen in figure 17. 

  
Figure 17a-b: Yearly NDMI and NDVI averages for the different forest types for Sentinel-2. 

 

An ANOVA statistical analysis was also done for both the Sentinel-2 and the Landsat 8 datasets on a summer 

level, containing only the months June, July, and August.  

As for Sentinel-2, the statistical analysis shows that there are no significant differences between the NDMI values 

or between the NDVI values of the different forest types within the dataset (p>0.05) (see also figure 18a and 

18c). The Huynh-Feldt test showed that the forest types do not have a significantly different trend over time 
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(“year*foresttype”) both for NDMI (F=0.616, p=0.632) and for NDVI (F=0.530, p=0.764) within the Sentinel-2 

dataset. This means that there is no significant difference in the changes in NDMI and NDVI over the years 

between the forest types.  

The statistical analysis of the Landsat 8 dataset shows results similar to the Sentinel-2 dataset. It shows that there 

are significant differences between the NDMI values of the different forest types (see also figure 18b and 18d). 

None of the forest types are significantly different from each other in both NDMI and NDVI values in the 

pairwise comparisons (p>0.05 for all pairs). There is also no significant difference in the changes in NDMI and 

NDVI over the years between the forest types (Huynh-Feldt test: F=0.721, p=0.727 and F=0.237, p=0.992 

respectively). 

 

  

  
Figure 18a-d: Average NDMI and NDVI values for the summer months (June, July, August) of each year for the different 

forest types (Sentinel-2 and Landsat 8). 

6.3.3. Per Soil Type 

This section contains the results that are related to research question 3 (“Does drought impact on forests vary between 

soil types on which a particular forest is located?”). To answer this research question, the soil types of the forests from 

the NBI6 data subset are categorized into three main texture types: sand, clay, peat, and loess. 

6.3.3.1. Descriptive Statistics 

Out of the 170 forests studied in this research, 97 forests are located on sandy soil, 33 on clay soil, 31 on peat, 

and 9 on loess according to data of the NBI6. Out of the forests on sandy soil, 31 are broadleaved forests, 30 are 

coniferous forests, and 36 are mixed forests. For more detailed descriptive statistics, see appendix E. As 

demonstrated in figure 19, the percentages of forest types for each soil type vary strongly, which means there is a 

bias that should not be overlooked. Therefore, an analysis was done for VI differences between soil types in 

broadleaved forests only, to avoid this bias. Note that the total numbers of forests get small by taking subsets of 
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soil types. Therefore, the data was analysed at yearly level (instead of monthly level), as otherwise the sample size 

at individual months would be too small. 

 

 
Figure 19: The distribution of different forest types on each soil types within the dataset of this study. 

6.3.3.2. Exploratory Analysis 

The graphs below show (figure 20) the trend over time of NDMI and NDVI for all forests together. Noticeably, 

the year 2019 is visibly lower than the other years for almost all soil types. The NDVI values of the Landsat 

dataset are also lower than the 2018 values for all soil types, however, this is not the case in the Sentinel dataset. 

Clay for Landsat 8 also stands out, as it is the only one that has a lower NDMI in 2018 than in 2019, and it has 

an outstanding dip in 2017 for NDVI. However, as the descriptive statistics show, about 90% of the forests plots 

on clay soil are broadleaved forests, which is a lot more than for the other soil types. This strong relationship 

between forest types and soil types may influence the results.  
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Figure 20a-b: NDMI and NDMI values of the forests per soil type: sandy soil (98 forests), clay (33 forests), peat soil (31 

forests), and loess soil (9 forests). Note that 2020 and 2013 of Landsat 8 and 2017 of Sentinel-2 are inaccurate, as they do 

not contain the whole year. 

 

To reduce the forest type influence on the exploratory analysis of the influence of soil types, the subset of 

broadleaved forest was used for further analysis (as shown in figure 21). This analysis was done on broadleaved 

forests as broadleaved is the largest forest type and has the best spread across different (soil types as seen in the 

descriptive statistics). Figure 21 shows that even within one forest type, there is still variation between the soil 

types in NDMI and NDVI values. The NDVI and NDMI values of forests on clay soil are relatively high in 

comparison to other soil types in 2018 and 2019, and unlike other soil types, the Landsat 8 dataset does not have 

a downward trend between 2018 and 2019.  
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Figure 21a-b: NDMI and NDMI values of the broadleaved forests per soil type: sandy soil (31 forests), clay (30 forests), 

peat soil (8 forests), and loess soil (5 forests). Note that 2020 and 2013 of Landsat 8 and 2017 of Sentinel-2 are inaccurate, as 

they do not contain the whole year. 

6.3.3.3. Statistical Analysis 

An ANOVA statistical analysis was done for both the Sentinel-2 and the Landsat 8 datasets on year-level to 

assess the impact of different soil types (see also figure 22). 

The Huynh-Feldt test for within-subject factors showed that the soil types have a significantly different trend 

over time both (year*soil type) for NDMI (F=3.231, p<0.01) and for NDVI (F=3.028, p<0.01) in the Landsat 8 

dataset. However, this same test on the Sentinel-2 dataset does not detect a significantly different trend over time 

between the soil types for both NDMI (F=1.649, p=0.143) and for NDVI (F=0.675, p=0.661). However, when 

comparing the trends over time of the different types of forests for different soil types (year*forest type*soil 

type), this test indicates no significant differences for NDMI or NDVI for both the Landsat 8 and Sentinel-2 

datasets (p=0.520-0.889). The pairwise comparisons also do not show significant differences between soil types.  
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Figure 22a-d: Yearly NDMI and NDVI averages for the different soil types for all forests (Sentinel-2 and Landsat 8). 

 

To account for the forest type – soil type bias, an additional ANOVA was done for the broadleaved forests only 

(shown in figure 23). The results of this analysis were inconclusive, as they vary strongly per dataset. As for the 

Landsat and Sentinel NDVI datasets, no significant differences were bound between the soil types in the 

pairwise comparisons or the within-subjects’ effects (Huynh-Feldt) test (p>0.05). Landsat and Sentinel NDMI 

datasets showed more differences, however minimal. See Appendix F for the full results of the ANOVA. 

Therefore, the data was analysed at yearly level (instead of monthly level), as otherwise the sample size at 

individual months would be too small. 
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Figure 23a-d: Yearly NDMI and NDVI averages for the different soil types for broadleaved forests (Sentinel-2 and Landsat 

8). 
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7. DISCUSSION 

7.1. Detecting Drought Impact on Forests 

The results of the analysis vary strongly between the vegetation indices, sensor datasets, and timescales. While 

there was no significant difference in the VI values of the overall dataset for Sentinel-2, in the Landsat 8 dataset 

the summer months, 2018 and 2019 were found to be significantly lower than the other years for both NDVI 

and NDMI. Exceptions for this are 2016 for the NDMI dataset and 2014 for the NDVI set, which were both in 

their respective datasets statistically similar to 2018 and 2019. These results align with previous research as 

discussed in chapter 2, including vegetation index analyses of Europe (Buitink et al., 2020; Buras et al., 2020), 

reports form Dutch foresters (Koopman, 2020; Reijman and Prooijen, 2020), and ground measurements by 

Wageningen Environmental Research in the Netherlands (Lerink et al., 2019).  

Likewise, the results of the forest type differences are also inconclusive. Exploratory analysis revealed some 

differences in standard deviation, which can be a result of a different in drought impact, but it is also possible 

that it is caused by the difference in sample size. While the ANOVA shows that NDMI and NDVI values of the 

forest types are significantly different from each other in the Landsat 8 dataset, for the Sentinel-2 dataset this 

difference is only found in NDMI. However, neither of the datasets contained a significantly different trend over 

the years between the forest types. Based on previous research as discussed in chapter 2, coniferous forests were 

expected to be more affected than broadleaved or mixed forests, as this was the case in all previous studies 

discussed in chapter 2 where different forest types were compared (Assal et al., 2016; Buras et al., 2020; Vicente-

Serrano, 2007). This was supported by the ground measurements in the Netherlands (Lerink et al., 2019). 

However, this research does not confirm this hypothesis as the results are inconclusive.  

As for the influence of the soil types on the forests, no significant difference could be determined between 

NDVI and NDMI values of forests on different soil types, neither for any differences in their trend over time. 

However, as the distribution of forest types is strongly linked to the soil types, these two factors were hard to 

separate. The ANOVA on only the broadleaved forest also shows inconclusive results: while there is some 

variation between the soil types in NDMI values, the NDVI values do not differ significantly between the soil 

types. Both Sentinel-2 and Landsat 8 show a significant trend over time, however, these trends differ strongly 

between NDVI and NDMI especially in 2017 and 2019. No conclusion can be drawn from this. As discussed in 

chapter 2, literature suggests that forests on sandy soil have the smallest short-term drought impact (Agaba et al., 

2010; Jiang et al., 2020), however, this cannot be confirmed in this research.  

7.2. Critical Reflection on Inconclusive Results 

There could be two possible explanations for the overall inconclusive results: limited drought impact and 

limitations of the method. To elaborate on the first one: It is possible that there is no or very limited drought 

damage. Some foresters have stated to observe drought impact from the 2018 and 2019 drought on their forests, 

so it is unlikely that there is no drought damage at all. The study of tree diameters by the Wageningen 

Environmental Research showed that particularly the growth of the Douglas fir and the Scots pine stagnated in 

2018 as a consequence of the drought (Lerink et al., 2019). However, it is possible that the change in greenness 

and drought damage is too minimal to detect with this method using large scale objective remotely sensed data. 

Vicente-Serrano (2007) was using a similar method on multiple areas, and he found that humid areas (600 

mm/year) are less affected than arid areas (320 mm/year). As the Netherlands (790 mm/year) is even more 

humid than the areas Vicente-Serrano used for his study, is plausible that the Netherlands has too little drought 

impact to be detectable with this method. 
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The other explanation for the results is that the method is not suitable for drought impact detection in the 

Netherlands. The tests with the validation dataset showed that the method is able to detect large changes in 

forest that are dying, but more subtle changes such as drought impact requires more accuracy. The approach of 

drought impact detection with satellite VI has a number of limitations, as for a thorough analysis of fluctuations, 

time series of significant length and temporal resolution are required. First of all, the available data has a clear 

trade-off between spatial resolution and temporal resolution (length of time series). For a region like the 

Netherlands with a lot of fragmentation of the forests, a high spatial resolution is required to capture the forests 

without any surrounding landscape. Therefore, imagery of the relatively young Sentinel-2 satellite was used with 

the highest available resolution of 20mx20m. However, the downside of such a young satellite is that the time 

series only go back 3.5 years. Satellites that were launched earlier (such as Landsat 8) have longer time series, but 

have a smaller spatial and temporal resolution that are not as accurate in sensing small or fragmented forests and 

have significant gaps in the time series due to cloud filters and the lower temporal resolution. That explains why 

the previous studies as described in chapter 2 only use large, forested study areas, such that lower spatial 

resolution can be used and time series over many years, to deal with the described temporal-spatial resolution 

trade-off.  

7.3. Selecting the Appropriate Satellite 

Besides the age and the resolution of the satellite, the sensor properties also impact the results. Overall, the 

Sentinel-2 values were lower for all the measurements, which might be a result of the difference in range of the 

wavelengths of the spectral bands. The range of the bands (in nanometres) is slightly different, which can cause 

them to define the vegetation indices slightly differently and therefore also the vegetation properties. A study of 

Arekhi et al. (2019) compared vegetation indices for Landsat 8 and Sentinel-2 and found Pearson’s coefficients 

of 0.92 and 0.89 for NDVI and NDMI respectively, which they consider similar enough to use the data of the 

two satellites in combination for larger datasets for forestry monitoring.  

Overall, the Landsat 8 time series dataset captures the drought impact better than the Sentinel-2 time series 

dataset, as there are more significant differences or patterns found in the data. The main reason for this is that 

the dataset is longer, as the Sentinel-2 dataset has insufficient data to set a baseline for non-drought years, which 

appears to be a stronger weighing factor than the higher spatial resolution. However, the low temporal resolution 

of Landsat 8 resulted in rather large gaps in the time series, and this limited the analysis that could be done on 

month-level. 

7.4. Selecting the Appropriate Vegetation Indices 

Another limitation of this method is that it is very limited in what it can measure. In the vegetation index 

selection process, NDVI and NDMI were found to respond strongest to droughts, as they measure the 

wavelengths that represent greenness and moisture content. However, other impacts from droughts, such as 

smaller increase in diameter, cannot be reflected in these vegetation indices. NDVI is also known to have 

saturation problems (particularly in dense forests), which decreases the degree to which it can show drought 

impact. So, while using VI from satellite imagery has the advantage of using large scale objective data, these are 

some significant drawbacks.  

It is noteworthy that the two vegetation indices used in this research, NDMI and NDVI varied slightly in results. 

This difference between NDMI and NDVI became especially clear in the pairwise comparisons of the soil 

analysis of coniferous forests. The NDVI datasets did not contain any significant differences between the NDVI 

values of the different soil types, while for the NDMI dataset, some of them did have significant differences.  

Even though NDVI is one of the most used VI for this type of research in current literature, NDMI showed 

more often a significant effect between the drought-years and the non-drought years. A potential explanation 
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that NDMI and NDVI differ is that one includes a short wavelength infrared band that responds to moisture 

content while the other one includes the red band. Therefore, NDMI represents moisture content levels, while 

NDVI represents the greenness of vegetation. It is possible that moisture content changes quicker than 

greenness during times of drought and therefore the NDMI shows a stronger relation to short-term drought 

impact. A study of Gu et al. (2008) concluded also that NDMI was more sensitive to drought conditions than 

NDVI, and that this was most likely because NDMI is influenced by both desiccation and wilting (while NDVI 

is not as much affected by desiccation, as it measures greenness). 

7.5. Further Limitations of the Approach 

Another limitation that was found during the data preparation was the filtering of the data for cloudy pixels. A 

filter was used within the Google Earth Engine code to ensure to only extract time series with non-cloudy 

moments of the locations, but this filter that detects clouds is not entirely accurate. This is not a large problem 

for arid areas where it is only clouded a small part of the year, but in more humid areas like the Netherlands, the 

overall number of clouds that are not filtered out will increase and pollute the time series. Cloudiness is in 

general a larger problem in time series of humid climates, as there will be fewer good measurements and the time 

series dataset is left with significant gaps due to cloudy months. Months or years with more clouds, which are 

generally the more wet years (such as 2017), are underrepresented in the datasets relative to the dry years (such as 

2018). Such underrepresentation of non-drought years can lead to an artificially high sampling of drought years 

within filtered data, which could give the impression of more drought impact in the forests than there actually is. 

Similarly, an inconsistency was found in the sample sizes of the different forest types: coniferous forests have 

about half as many recordings in the time series data than broadleaved forests. This might explain the difference 

in standard deviation and can lead to a stronger deviation caused by extreme outliers. 

Not only consistency in the time series in a challenge, also imbalances in the distribution of forests of different 

types on the different soil types is an issue when analysing the effect of soil types. As the forest types are 

unequally distributed over the soil types, an additional analysis was done with only the broadleaved forests 

dataset. However, this raises other issues of limited data, as only a third of the dataset can be used that way.  

When comparing the three forest types (as done in section 6.3.2), the influence of soil types is not considered for 

two reasons: the sample size would be too small if the forests within only one soil type were analysed; and all 

discussed literature that studied differences between forest types did not account for soil type differences, and 

therefore it was assumed the impact would be small. 

This research is focussed on short term drought effects. Long-term effects of droughts are not analysed, as this is 

complex and requires more advanced research methods. As the year-average NDMI and NDMI values were 

lower for 2019 than 2018, while 2018 was the year with the severest drought, there is most likely a long-term 

effect or an effect of having multiple drought years in a row. However, this effect was not studied, as this does 

not fit in the scope of this research, and the satellite time series available are too short for such an analysis. 

7.6. Future Outlook 

Forest adaptation for climate change is a wicked problem. By increasing the knowledge about local drought 

impact and vulnerability of forest types and species, we can work towards finding solutions for planning vital and 

sustainable forests in the future. These possible solutions can go various directions, such as water management, 

selective species planting, or letting forests naturally adapt to droughts through natural selection. 

This research has demonstrated that this method has potential to be used for drought impact analysis of the 

Dutch forests. However, to harness the full potential, more data is needed for a detailed and accurate drought 

impact analysis of the Dutch forests in which forest types and soil types can accurately be compared. As the 

currently available high-resolution data is of too short time timespan for such an analysis, additional data can be 
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achieved over time as the time series datasets grow. As these datasets are growing and predictions of foresters 

and studies in other countries (as discussed in chapter 1) are that extreme droughts will occur more frequently in 

the future, it is likely that in several years this method will be effective. This means that as the problem becomes 

more severe and acute, the available high quality data increases and this approach will be a valuable standard to 

compare to. Other methods of expanding the data can also be further explored, such as triangulation of multiple 

datasets including airborne and ground measurements, or combining multiple satellite imagery datasets. There 

are recent studies such as (Arekhi et al., 2019) that combine Landsat 8 and Sentinel-2 datasets for time series 

analysis. This however will raise new challenges, such as dealing with differences in sensitivity to atmospheric 

effects (Arekhi et al., 2019) before these methods can be applied.  
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8. CONCLUSION 

This study focused on the suitability of spaceborne vegetation indices for drought impact assessment in the 

Dutch forests. NDMI and NDVI have been found to be the most suitable vegetation indices for this assessment, 

as they responded strongest to drought. The NDMI and NDVI datasets from Sentinel-2 and Landsat 8 indicate 

some drought impact in the year 2018, however, no significant differences of drought impact are found between 

different forest types or different soil types on which forests are located. 

This research has shown that currently there is not enough high spatial and temporal resolution satellite data 

available for a detailed drought impact analysis on forests in areas with highly fragmented forests and low forest 

density such as the Netherlands. The results illustrate the importance of the length of time series for the drought 

impact analysis, as the time series dataset of Landsat 8 of eight years captures the drought impact of 2018 on the 

forests more than the Sentinel-2 time series dataset of four years. The results also demonstrated that NDMI is 

better at capturing drought impact than NDVI. However, both indices are sensitive to ground noise, and further 

research is required to establish their differences in accuracy on this front.  

This study contributes to the forest monitoring research and the development of forest management strategies in 

low forest density areas. Future research can include the combining of data sources to create a large dataset of 

high resolution time series, such as combinations of Landsat 8 and Sentinel-2 data or ground measurements. 
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APPENDIX A: VALIDATION DATA SPRUCE FORESTS 

This is the method validation data as discussed in section 4.3 and 5.4, and 6.2. 

 

Plot 

number 

% of live 

trees 

Sampling 

date 

Aerial 

image date 

Zone Easting Northing 

1 Close to 0% / May-20 32U 325477.86 m E 5846107.97 m N 

2 Close to 0% / May-20 32U 325294.05 m E 5845998.11 m N 

3 Close to 0% / May-20 32U 324845.47 m E 5847352.04 m N 

4 Close to 0% / April-20 31U 665565.63 m E 5689279.97 m N 

5 Close to 0% / April-20 31U 652835.58 m E 5784082.61 m N 

6 Close to 0% / March-20 31U 671253.39 m E 5765589.14 m N 

7 Close to 0% / March-20 31U 671655.81 m E 5766089.61 m N 

8 Close to 0% / April-20 31U 697074.16 m E 5784684.43 m N 

9 Close to 0% February-21 July-19 31U 702071.35 m E 5684278.69 m N 

10 Close to 0% / July-19 31U 702574.20 m E 5684840.47 m N 

50122 14.29% July-20 April-20 31U 665585.69 m E 5689343.83 m N 

90019 2.56% September-19 July-19 31U 705324.39 m E 5685791.74 m N 

 

 

Plot 

number 

% of live 

trees 

Sampling 

date 

Aerial 

image date 

Zone Easting Northing 

34006 80.77% September-19 April-19 31U 611881.01 m E 5822040.41 m N 

43986 64.52% May-18 August-18 31U 645732.70 m E 5727757.50 m N 

45284 69.56% October-17 May-16 31U 649345.82 m E 5726030.38 m N 

45988 84.61% October-19 August-19 31U 649964.65 m E 5779632.17 m N 

46639 100.00% October-18 August-18 31U 651933.48 m E 5781344.13 m N 
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APPENDIX B.1: CODES FOR DATA RETRIEVAL FROM GEE 

This is the code used for the time series data retrieval from Google Earth Engine as discussed in section 4.4. 

 

Sentinel-2 
// cloud masking 
function maskS2clouds(image) { 
 var qa = image.select('QA60'); 
  
// Bits 10 and 11 are clouds and cirrus, respectively. 
 var cloudBitMask = 1 << 10; 
 var cirrusBitMask = 1 << 11; 
// Both flags should be set to zero, indicating clear conditions. 
 var mask = qa.bitwiseAnd(cloudBitMask).eq(0) 
   .and(qa.bitwiseAnd(cirrusBitMask).eq(0)); 
 return image.updateMask(mask); 
} 
 
var addNDVI = function(image) { 
 var ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI'); 
 return image 
   .addBands(ndvi); 
} 
 
var divideBands = function(image) { 
 return image.select('B.*').multiply(0.0001); 
} 
 
//choose a location 
//var point = ee.Geometry.Point([4.61395, 52.34041])// eerste coordinaat 
 
//all 114 points 
var points_list = [ee.Geometry.Point([4.61395, 52.34041]), ee.Geometry.Point([5.79381, 52.02879]), ee.Geometry.Point([5.79522, 52.02469]), ee.Geometry.Point([5.80385, 52.28531]), 
ee.Geometry.Point([5.86515, 52.17844]), ee.Geometry.Point([4.69705, 52.44832]), ee.Geometry.Point([4.97238, 52.47084]), ee.Geometry.Point([5.94128, 51.27739]), 
ee.Geometry.Point([5.95525, 51.21725]), ee.Geometry.Point([5.68496, 51.30292]), ee.Geometry.Point([4.737042446, 53.05529504]), ee.Geometry.Point([5.154530615, 52.36642171]), 
ee.Geometry.Point([5.6700879, 52.66399851]), ee.Geometry.Point([4.91549998, 52.79416797]), ee.Geometry.Point([6.259848299, 53.36989025]), ee.Geometry.Point([5.299433382, 
52.32367807]), ee.Geometry.Point([5.42455355, 52.46626589]), ee.Geometry.Point([5.450348756, 52.33571616]), ee.Geometry.Point([5.495178578, 52.32897934]), 
ee.Geometry.Point([5.698668635, 51.49812562]), ee.Geometry.Point([5.76303179, 50.87566393]), ee.Geometry.Point([6.542762701, 52.45915659]), ee.Geometry.Point([6.745480845, 
53.17364396]), ee.Geometry.Point([5.448647512, 51.3290279]), ee.Geometry.Point([6.918579397, 52.66469083]), ee.Geometry.Point([4.216886716, 52.05070844]), 
ee.Geometry.Point([4.361276316, 51.5297889]), ee.Geometry.Point([4.412946197, 52.1348073]), ee.Geometry.Point([4.70014728, 51.58412239]), ee.Geometry.Point([4.694506692, 
52.6640021]), ee.Geometry.Point([5.454212908, 51.50879859]), ee.Geometry.Point([6.631250351, 52.76037562]), ee.Geometry.Point([6.132657225, 53.06743373]), 
ee.Geometry.Point([5.905884935, 51.4292485]), ee.Geometry.Point([6.437809291, 52.99488651]), ee.Geometry.Point([5.133665287, 51.42620712]), ee.Geometry.Point([5.6157736, 
51.2647014]), ee.Geometry.Point([5.681225318, 51.7253989]), ee.Geometry.Point([5.709096659, 52.09333874]), ee.Geometry.Point([5.819877105, 52.07766102]), 
ee.Geometry.Point([5.802210972, 52.57291835]), ee.Geometry.Point([5.816953031, 52.57199772]), ee.Geometry.Point([5.536710348, 52.00210801]), ee.Geometry.Point([5.433785778, 
52.45374918]), ee.Geometry.Point([5.508482477, 52.50453629]), ee.Geometry.Point([6.984380211, 52.83576524]), ee.Geometry.Point([5.369185297, 51.37242086]), 
ee.Geometry.Point([6.056184566, 52.03444665]), ee.Geometry.Point([6.985135429, 52.38389763]), ee.Geometry.Point([6.029138234, 51.30448293]), ee.Geometry.Point([6.746577818, 
52.25726366]), ee.Geometry.Point([5.245860723, 51.31998121]), ee.Geometry.Point([6.376432209, 53.02975209]), ee.Geometry.Point([6.647585829, 52.90658495]), 
ee.Geometry.Point([6.650505359, 52.69889091]), ee.Geometry.Point([6.395294968, 52.98362564]), ee.Geometry.Point([5.16570352, 52.19567584]), ee.Geometry.Point([5.809268991, 
52.26731586]), ee.Geometry.Point([6.434070373, 52.32908373]), ee.Geometry.Point([5.753052948, 51.47037816]), ee.Geometry.Point([5.371237711, 52.03756679]), 
ee.Geometry.Point([5.932603291, 51.80224011]), ee.Geometry.Point([5.791461099, 52.80172664]), ee.Geometry.Point([6.993332207, 52.37018761]), ee.Geometry.Point([5.307122981, 
51.60462994]), ee.Geometry.Point([5.812224015, 52.78857197]), ee.Geometry.Point([6.20690623, 52.01102078]), ee.Geometry.Point([3.691235331, 51.54762769]), 
ee.Geometry.Point([5.888137365, 50.78286992]), ee.Geometry.Point([6.131481468, 52.28972686]), ee.Geometry.Point([6.56181046, 52.7016163]), ee.Geometry.Point([6.499538255, 
52.98389109]), ee.Geometry.Point([6.745822208, 52.82800388]), ee.Geometry.Point([6.01369286, 52.01908625]), ee.Geometry.Point([6.644289337, 52.77180685]), 
ee.Geometry.Point([5.919596967, 51.54604126]), ee.Geometry.Point([6.811004218, 52.85580685]), ee.Geometry.Point([6.391312027, 53.02859293]), ee.Geometry.Point([6.640057178, 
52.92463886]), ee.Geometry.Point([6.721034586, 51.91144791]), ee.Geometry.Point([6.237734571, 53.0746036]), ee.Geometry.Point([6.310165455, 52.34730628]), 
ee.Geometry.Point([6.766088554, 52.12401273]), ee.Geometry.Point([6.69217566, 52.85434203]), ee.Geometry.Point([5.134956543, 52.24414954]), ee.Geometry.Point([5.662750923, 
52.26363843]), ee.Geometry.Point([5.69934573, 51.30936005]), ee.Geometry.Point([5.840589976, 52.22213973]), ee.Geometry.Point([5.908845274, 51.20451303]), 
ee.Geometry.Point([6.82581048, 52.85452575]), ee.Geometry.Point([5.093496081, 51.47291532]), ee.Geometry.Point([5.201125373, 52.17078186]), ee.Geometry.Point([5.867018284, 
52.24135287]), ee.Geometry.Point([5.868024852, 51.98894012]), ee.Geometry.Point([5.983349028, 51.66104668]), ee.Geometry.Point([5.225217212, 51.90998405]), 
ee.Geometry.Point([6.126791949, 52.14594583]), ee.Geometry.Point([5.619138251, 52.39722205]), ee.Geometry.Point([5.174570936, 51.63386239]), ee.Geometry.Point([4.768146098, 
51.73977624]), ee.Geometry.Point([6.1429168, 51.50463655]), ee.Geometry.Point([5.700636695, 51.86665089]), ee.Geometry.Point([6.050355504, 51.5940373]), 
ee.Geometry.Point([6.086253406, 52.5415025]), ee.Geometry.Point([3.494319186, 51.29505864]), ee.Geometry.Point([4.237345784, 51.40368671]), ee.Geometry.Point([4.319302794, 
51.75771326]), ee.Geometry.Point([4.319839909, 51.76670724]), ee.Geometry.Point([4.541983923, 51.70369054]), ee.Geometry.Point([4.586374915, 51.8883334]), 
ee.Geometry.Point([4.31529139, 51.92846794]), ee.Geometry.Point([4.409571895, 52.02605797]), ee.Geometry.Point([4.575468655, 51.65746262]), ee.Geometry.Point([5.465024707, 
52.33797704]), ee.Geometry.Point([5.479707696, 52.34289176]), ee.Geometry.Point([5.703031571, 52.41491198]), ee.Geometry.Point([5.45116606, 52.32672808]), 
ee.Geometry.Point([5.237136835, 52.39732056]), ee.Geometry.Point([5.399083704, 52.2664942]), ee.Geometry.Point([5.509861599, 52.33377268]), ee.Geometry.Point([4.82545796, 
52.3045841]), ee.Geometry.Point([5.562658397, 52.43880746]), ee.Geometry.Point([4.691416941, 52.4289791]), ee.Geometry.Point([6.927675107, 52.7634446]), 
ee.Geometry.Point([6.491483497, 52.93004372]), ee.Geometry.Point([5.811129259, 51.58332835]), ee.Geometry.Point([6.047360025, 52.04348483]), ee.Geometry.Point([6.849142525, 
52.40225603]), ee.Geometry.Point([6.488579584, 52.52563056]), ee.Geometry.Point([6.359260403, 51.95135194]), ee.Geometry.Point([6.07198551, 52.0202823]), 
ee.Geometry.Point([6.07643227, 52.03823312]), ee.Geometry.Point([6.901732875, 52.93980536]), ee.Geometry.Point([6.935525178, 52.23112457]), ee.Geometry.Point([5.803068675, 
50.78335053]), ee.Geometry.Point([6.759332834, 53.03009475]), ee.Geometry.Point([5.979826639, 52.97878474]), ee.Geometry.Point([6.64440307, 53.21858129]), 
ee.Geometry.Point([5.105704729, 52.23910433]), ee.Geometry.Point([5.571863069, 51.28547393]), ee.Geometry.Point([6.83391571, 52.29643675]), ee.Geometry.Point([6.383595204, 
53.10158528]), ee.Geometry.Point([6.422768365, 52.98874324]), ee.Geometry.Point([6.041173324, 52.7155754]), ee.Geometry.Point([5.38854973, 51.37665132]), 
ee.Geometry.Point([5.896298063, 52.24114129]), ee.Geometry.Point([6.032393454, 51.31345391]), ee.Geometry.Point([6.555606154, 52.55787144]), ee.Geometry.Point([6.717524901, 
52.88991353]), ee.Geometry.Point([6.778875114, 52.81315101]), ee.Geometry.Point([6.374023147, 52.53547167]), ee.Geometry.Point([5.257716916, 51.40988221]), 
ee.Geometry.Point([5.587773212, 51.31655086]), ee.Geometry.Point([5.893093325, 52.1512749]), ee.Geometry.Point([5.292376079, 51.43987274]), ee.Geometry.Point([6.236992038, 
53.06235869]), ee.Geometry.Point([6.790236604, 52.82483282]), ee.Geometry.Point([5.637982128, 51.58170158]), ee.Geometry.Point([6.469615266, 52.54524749]), 
ee.Geometry.Point([5.603947283, 51.43551024]), ee.Geometry.Point([5.262374953, 51.48548119]), ee.Geometry.Point([6.42070798, 52.17715039]), ee.Geometry.Point([5.951596075, 
50.76781982]), ee.Geometry.Point([6.107399644, 52.16885419]), ee.Geometry.Point([6.712433185, 52.8809824]), ee.Geometry.Point([6.732270214, 52.88620338]), 
ee.Geometry.Point([5.776689651, 52.80808597]), ee.Geometry.Point([6.714452131, 52.92589734]), ee.Geometry.Point([6.601615729, 52.99352698]), ee.Geometry.Point([6.12414631, 
53.05850012]), ee.Geometry.Point([6.744385802, 53.19162991]), ee.Geometry.Point([7.072907343, 53.06181025]), ee.Geometry.Point([6.522903287, 52.59728674]), 
ee.Geometry.Point([6.271043491, 53.09054519]), ee.Geometry.Point([6.714721561, 53.03374171]), ee.Geometry.Point([6.704194827, 52.94886113]), ee.Geometry.Point([6.705291477, 
52.89492454]), ee.Geometry.Point([5.767433095, 51.46891313]), ee.Geometry.Point([5.747450216, 52.20858188]), ee.Geometry.Point([5.959702437, 52.43681446]), 
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ee.Geometry.Point([5.823076287, 52.23943384]), ee.Geometry.Point([5.873519051, 52.16868112]), ee.Geometry.Point([5.980327707, 52.0767471]), ee.Geometry.Point([5.83075751, 
52.25812873]), ee.Geometry.Point([6.207821202, 53.07090047]), ee.Geometry.Point([5.416952476, 51.72026498]), ee.Geometry.Point([7.095852322, 52.96112958]), 
ee.Geometry.Point([6.229395885, 51.92424043]), ee.Geometry.Point([5.761059259, 51.55125121]), ee.Geometry.Point([6.980443429, 52.29406945]), ee.Geometry.Point([5.141931194, 
51.6319177]), ee.Geometry.Point([5.083969937, 51.64367536]), ee.Geometry.Point([5.827789041, 51.97950894]), ee.Geometry.Point([6.748988144, 52.95379364]), 
ee.Geometry.Point([6.745909513, 52.84597826]), ee.Geometry.Point([6.393930024, 52.96566347]), ee.Geometry.Point([6.721857573, 52.85391462]), ee.Geometry.Point([6.567799762, 
52.69256927])] 
 
var i; 
for (i=0; i<points_list.length; i++) { 
 var curr_point = points_list[i] 
 var dataset = ee.ImageCollection('COPERNICUS/S2_SR') 
                .filterDate('2017-01-01', '2020-11-01') 
                .filterBounds(curr_point) // don't forget the other lines with cloud mask 
                 // Pre-filter to get less cloudy granules. 
                .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE',20)) 
                .map(maskS2clouds) 
                .map(divideBands)  
                .map(addNDVI) 
                .map( 
                 function(image){ 
                  return image.reduceRegions(curr_point, 'first'); // selecting pixel per point (lon, lat) 
                 }) 
                .flatten() 
                .filterMetadata('B1', 'not_equals', null) // removing masked (clouded) pixels 
                 
 //Export the time series to drive 
 Export.table.toDrive({ 
   collection: dataset, // feature collection that we got 
//   description: (i+85).toString(), // filename that will be used: point_ts.csv 
//   folder: 'RTM_course_114_NDVI_points', // folder in your google drive that will be created 
   description: (i+12).toString(), // filename that will be used: point_ts.csv 
   folder: '12_Spruce_points', // folder in your google drive that will be created 
   fileFormat: 'CSV' 
 }); 
} 

 

 

Landsat 8 
// cloud filter: 
function maskL8sr(image) { 
 // Bits 3 and 5 are cloud shadow and cloud, respectively. 
 var cloudShadowBitMask = (1 << 3); 
 var cloudsBitMask = (1 << 5); 
 // Get the pixel QA band. 
 var qa = image.select('pixel_qa'); 
 // Both flags should be set to zero, indicating clear conditions. 
 var mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0) 
         .and(qa.bitwiseAnd(cloudsBitMask).eq(0)); 
 return image.updateMask(mask); 
} 
 
var addNDVI = function(image) { 
 var ndvi = image.normalizedDifference(['B5', 'B4']).rename('NDVI'); 
 return image 
   .addBands(ndvi); 
} 
 
var divideBands = function(image) { 
 return image.select('B.*').multiply(0.0001); 
} 
 
//choose a location(s) 
//var point = ee.Geometry.Point([4.61395, 52.34041])// eerste coordinaat 
 
//all 114 points 
var points_list = [ee.Geometry.Point([4.61395, 52.34041]), ee.Geometry.Point([5.79381, 52.02879]), ee.Geometry.Point([5.79522, 52.02469]), ee.Geometry.Point([5.80385, 52.28531]), 
ee.Geometry.Point([5.86515, 52.17844]), ee.Geometry.Point([4.69705, 52.44832]), ee.Geometry.Point([4.97238, 52.47084]), ee.Geometry.Point([5.94128, 51.27739]), 
ee.Geometry.Point([5.95525, 51.21725]), ee.Geometry.Point([5.68496, 51.30292]), ee.Geometry.Point([4.737042446, 53.05529504]), ee.Geometry.Point([5.154530615, 52.36642171]), 
ee.Geometry.Point([5.6700879, 52.66399851]), ee.Geometry.Point([4.91549998, 52.79416797]), ee.Geometry.Point([6.259848299, 53.36989025]), ee.Geometry.Point([5.299433382, 
52.32367807]), ee.Geometry.Point([5.42455355, 52.46626589]), ee.Geometry.Point([5.450348756, 52.33571616]), ee.Geometry.Point([5.495178578, 52.32897934]), 
ee.Geometry.Point([5.698668635, 51.49812562]), ee.Geometry.Point([5.76303179, 50.87566393]), ee.Geometry.Point([6.542762701, 52.45915659]), ee.Geometry.Point([6.745480845, 
53.17364396]), ee.Geometry.Point([5.448647512, 51.3290279]), ee.Geometry.Point([6.918579397, 52.66469083]), ee.Geometry.Point([4.216886716, 52.05070844]), 
ee.Geometry.Point([4.361276316, 51.5297889]), ee.Geometry.Point([4.412946197, 52.1348073]), ee.Geometry.Point([4.70014728, 51.58412239]), ee.Geometry.Point([4.694506692, 
52.6640021]), ee.Geometry.Point([5.454212908, 51.50879859]), ee.Geometry.Point([6.631250351, 52.76037562]), ee.Geometry.Point([6.132657225, 53.06743373]), 
ee.Geometry.Point([5.905884935, 51.4292485]), ee.Geometry.Point([6.437809291, 52.99488651]), ee.Geometry.Point([5.133665287, 51.42620712]), ee.Geometry.Point([5.6157736, 
51.2647014]), ee.Geometry.Point([5.681225318, 51.7253989]), ee.Geometry.Point([5.709096659, 52.09333874]), ee.Geometry.Point([5.819877105, 52.07766102]), 
ee.Geometry.Point([5.802210972, 52.57291835]), ee.Geometry.Point([5.816953031, 52.57199772]), ee.Geometry.Point([5.536710348, 52.00210801]), ee.Geometry.Point([5.433785778, 
52.45374918]), ee.Geometry.Point([5.508482477, 52.50453629]), ee.Geometry.Point([6.984380211, 52.83576524]), ee.Geometry.Point([5.369185297, 51.37242086]), 
ee.Geometry.Point([6.056184566, 52.03444665]), ee.Geometry.Point([6.985135429, 52.38389763]), ee.Geometry.Point([6.029138234, 51.30448293]), ee.Geometry.Point([6.746577818, 
52.25726366]), ee.Geometry.Point([5.245860723, 51.31998121]), ee.Geometry.Point([6.376432209, 53.02975209]), ee.Geometry.Point([6.647585829, 52.90658495]), 
ee.Geometry.Point([6.650505359, 52.69889091]), ee.Geometry.Point([6.395294968, 52.98362564]), ee.Geometry.Point([5.16570352, 52.19567584]), ee.Geometry.Point([5.809268991, 
52.26731586]), ee.Geometry.Point([6.434070373, 52.32908373]), ee.Geometry.Point([5.753052948, 51.47037816]), ee.Geometry.Point([5.371237711, 52.03756679]), 
ee.Geometry.Point([5.932603291, 51.80224011]), ee.Geometry.Point([5.791461099, 52.80172664]), ee.Geometry.Point([6.993332207, 52.37018761]), ee.Geometry.Point([5.307122981, 
51.60462994]), ee.Geometry.Point([5.812224015, 52.78857197]), ee.Geometry.Point([6.20690623, 52.01102078]), ee.Geometry.Point([3.691235331, 51.54762769]), 
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ee.Geometry.Point([5.888137365, 50.78286992]), ee.Geometry.Point([6.131481468, 52.28972686]), ee.Geometry.Point([6.56181046, 52.7016163]), ee.Geometry.Point([6.499538255, 
52.98389109]), ee.Geometry.Point([6.745822208, 52.82800388]), ee.Geometry.Point([6.01369286, 52.01908625]), ee.Geometry.Point([6.644289337, 52.77180685]), 
ee.Geometry.Point([5.919596967, 51.54604126]), ee.Geometry.Point([6.811004218, 52.85580685]), ee.Geometry.Point([6.391312027, 53.02859293]), ee.Geometry.Point([6.640057178, 
52.92463886]), ee.Geometry.Point([6.721034586, 51.91144791]), ee.Geometry.Point([6.237734571, 53.0746036]), ee.Geometry.Point([6.310165455, 52.34730628]), 
ee.Geometry.Point([6.766088554, 52.12401273]), ee.Geometry.Point([6.69217566, 52.85434203]), ee.Geometry.Point([5.134956543, 52.24414954]), ee.Geometry.Point([5.662750923, 
52.26363843]), ee.Geometry.Point([5.69934573, 51.30936005]), ee.Geometry.Point([5.840589976, 52.22213973]), ee.Geometry.Point([5.908845274, 51.20451303]), 
ee.Geometry.Point([6.82581048, 52.85452575]), ee.Geometry.Point([5.093496081, 51.47291532]), ee.Geometry.Point([5.201125373, 52.17078186]), ee.Geometry.Point([5.867018284, 
52.24135287]), ee.Geometry.Point([5.868024852, 51.98894012]), ee.Geometry.Point([5.983349028, 51.66104668]), ee.Geometry.Point([5.225217212, 51.90998405]), 
ee.Geometry.Point([6.126791949, 52.14594583]), ee.Geometry.Point([5.619138251, 52.39722205]), ee.Geometry.Point([5.174570936, 51.63386239]), ee.Geometry.Point([4.768146098, 
51.73977624]), ee.Geometry.Point([6.1429168, 51.50463655]), ee.Geometry.Point([5.700636695, 51.86665089]), ee.Geometry.Point([6.050355504, 51.5940373]), 
ee.Geometry.Point([6.086253406, 52.5415025]), ee.Geometry.Point([3.494319186, 51.29505864]), ee.Geometry.Point([4.237345784, 51.40368671]), ee.Geometry.Point([4.319302794, 
51.75771326]), ee.Geometry.Point([4.319839909, 51.76670724]), ee.Geometry.Point([4.541983923, 51.70369054]), ee.Geometry.Point([4.586374915, 51.8883334]), 
ee.Geometry.Point([4.31529139, 51.92846794]), ee.Geometry.Point([4.409571895, 52.02605797]), ee.Geometry.Point([4.575468655, 51.65746262]), ee.Geometry.Point([5.465024707, 
52.33797704]), ee.Geometry.Point([5.479707696, 52.34289176]), ee.Geometry.Point([5.703031571, 52.41491198]), ee.Geometry.Point([5.45116606, 52.32672808]), 
ee.Geometry.Point([5.237136835, 52.39732056]), ee.Geometry.Point([5.399083704, 52.2664942]), ee.Geometry.Point([5.509861599, 52.33377268]), ee.Geometry.Point([4.82545796, 
52.3045841]), ee.Geometry.Point([5.562658397, 52.43880746]), ee.Geometry.Point([4.691416941, 52.4289791]), ee.Geometry.Point([6.927675107, 52.7634446]), 
ee.Geometry.Point([6.491483497, 52.93004372]), ee.Geometry.Point([5.811129259, 51.58332835]), ee.Geometry.Point([6.047360025, 52.04348483]), ee.Geometry.Point([6.849142525, 
52.40225603]), ee.Geometry.Point([6.488579584, 52.52563056]), ee.Geometry.Point([6.359260403, 51.95135194]), ee.Geometry.Point([6.07198551, 52.0202823]), 
ee.Geometry.Point([6.07643227, 52.03823312]), ee.Geometry.Point([6.901732875, 52.93980536]), ee.Geometry.Point([6.935525178, 52.23112457]), ee.Geometry.Point([5.803068675, 
50.78335053]), ee.Geometry.Point([6.759332834, 53.03009475]), ee.Geometry.Point([5.979826639, 52.97878474]), ee.Geometry.Point([6.64440307, 53.21858129]), 
ee.Geometry.Point([5.105704729, 52.23910433]), ee.Geometry.Point([5.571863069, 51.28547393]), ee.Geometry.Point([6.83391571, 52.29643675]), ee.Geometry.Point([6.383595204, 
53.10158528]), ee.Geometry.Point([6.422768365, 52.98874324]), ee.Geometry.Point([6.041173324, 52.7155754]), ee.Geometry.Point([5.38854973, 51.37665132]), 
ee.Geometry.Point([5.896298063, 52.24114129]), ee.Geometry.Point([6.032393454, 51.31345391]), ee.Geometry.Point([6.555606154, 52.55787144]), ee.Geometry.Point([6.717524901, 
52.88991353]), ee.Geometry.Point([6.778875114, 52.81315101]), ee.Geometry.Point([6.374023147, 52.53547167]), ee.Geometry.Point([5.257716916, 51.40988221]), 
ee.Geometry.Point([5.587773212, 51.31655086]), ee.Geometry.Point([5.893093325, 52.1512749]), ee.Geometry.Point([5.292376079, 51.43987274]), ee.Geometry.Point([6.236992038, 
53.06235869]), ee.Geometry.Point([6.790236604, 52.82483282]), ee.Geometry.Point([5.637982128, 51.58170158]), ee.Geometry.Point([6.469615266, 52.54524749]), 
ee.Geometry.Point([5.603947283, 51.43551024]), ee.Geometry.Point([5.262374953, 51.48548119]), ee.Geometry.Point([6.42070798, 52.17715039]), ee.Geometry.Point([5.951596075, 
50.76781982]), ee.Geometry.Point([6.107399644, 52.16885419]), ee.Geometry.Point([6.712433185, 52.8809824]), ee.Geometry.Point([6.732270214, 52.88620338]), 
ee.Geometry.Point([5.776689651, 52.80808597]), ee.Geometry.Point([6.714452131, 52.92589734]), ee.Geometry.Point([6.601615729, 52.99352698]), ee.Geometry.Point([6.12414631, 
53.05850012]), ee.Geometry.Point([6.744385802, 53.19162991]), ee.Geometry.Point([7.072907343, 53.06181025]), ee.Geometry.Point([6.522903287, 52.59728674]), 
ee.Geometry.Point([6.271043491, 53.09054519]), ee.Geometry.Point([6.714721561, 53.03374171]), ee.Geometry.Point([6.704194827, 52.94886113]), ee.Geometry.Point([6.705291477, 
52.89492454]), ee.Geometry.Point([5.767433095, 51.46891313]), ee.Geometry.Point([5.747450216, 52.20858188]), ee.Geometry.Point([5.959702437, 52.43681446]), 
ee.Geometry.Point([5.823076287, 52.23943384]), ee.Geometry.Point([5.873519051, 52.16868112]), ee.Geometry.Point([5.980327707, 52.0767471]), ee.Geometry.Point([5.83075751, 
52.25812873]), ee.Geometry.Point([6.207821202, 53.07090047]), ee.Geometry.Point([5.416952476, 51.72026498]), ee.Geometry.Point([7.095852322, 52.96112958]), 
ee.Geometry.Point([6.229395885, 51.92424043]), ee.Geometry.Point([5.761059259, 51.55125121]), ee.Geometry.Point([6.980443429, 52.29406945]), ee.Geometry.Point([5.141931194, 
51.6319177]), ee.Geometry.Point([5.083969937, 51.64367536]), ee.Geometry.Point([5.827789041, 51.97950894]), ee.Geometry.Point([6.748988144, 52.95379364]), 
ee.Geometry.Point([6.745909513, 52.84597826]), ee.Geometry.Point([6.393930024, 52.96566347]), ee.Geometry.Point([6.721857573, 52.85391462]), ee.Geometry.Point([6.567799762, 
52.69256927])] 
 
var i; 
for (i=0; i<points_list.length; i++) { 
 var curr_point = points_list[i] 
 var dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR') 
 //               .select(['B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B10', 'B11']) 
                .filterDate('2011-01-01', '2020-11-01') 
                .filterBounds(curr_point) // don't forget the other lines with cloud mask 
                 // Pre-filter to get less cloudy granules. 
                .filter(ee.Filter.lt('CLOUD_COVER',20)) 
                .map(maskL8sr) 
                .map(divideBands)  
                .map(addNDVI) 
                .map( 
                 function(image){ 
                  return image.reduceRegions(curr_point, 'first'); // selecting pixel per point (lon, lat) 
                 }) 
                .flatten() 
                .filterMetadata('B1', 'not_equals', null) // removing masked (clouded) pixels 
                 
 //Export the time series to drive 
 Export.table.toDrive({ 
   collection: dataset, // feature collection that we got 
   description: (i+85).toString(), // filename that will be used: point_ts.csv 
   folder: 'RTM_course_114_NDVI_points_LS8', // folder in your google drive that will be created 
   fileFormat: 'CSV' 
 }); 

} 
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APPENDIX B.2: CODES FOR VALIDATION DATA RETRIEVAL FROM GEE 

This is the code used for the validation time series data retrieval from Google Earth Engine as discussed in 

section 4.3. The code is to retrieve Sentinel-2 time series data.  
 
The method validation GEE was exactly the same as the data retrieval code, except the code line of “var 
points_list = …” was replaced by the following: 

//dead spruce points 
//var points_list = [ee.Geometry.Point([6.41494, 52.73663]), ee.Geometry.Point([6.41228, 52.73559]), ee.Geometry.Point([6.40492, 52.74760]), ee.Geometry.Point([5.37659, 51.33068]), 
ee.Geometry.Point([5.23570, 52.18600]), ee.Geometry.Point([5.49556, 52.01448]), ee.Geometry.Point([5.50167, 52.01885]), ee.Geometry.Point([5.88239, 52.17738]), 
ee.Geometry.Point([5.89712, 51.27397]), ee.Geometry.Point([5.90463, 51.27883]), ee.Geometry.Point([5.37690, 51.33124]), ee.Geometry.Point([5.94456, 51.28639])] 
 
//healthy spruce points 
var points_list = [ee.Geometry.Point([4.64959, 52.53695]), ee.Geometry.Point([5.10802, 51.68185]), ee.Geometry.Point([5.15950, 51.66538]), ee.Geometry.Point([5.19177, 52.14681]), 
ee.Geometry.Point([5.22129, 52.16165])] 
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APPENDIX B.3: CODES FOR SPI CALCULATION IN R 

This is the code used to retrieve the SPI values from R. This is discussed in section 5.3.1. 
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APPENDIX C.1: CORRELATION GRAPHS OF SENTINEL-2 

These are the linear regression graphs from the Sentinel-2 dataset as discussed in section 6.1. 

 

Sentinel-2 July VI averages and SPI 

SPI1 SPI2 SPI3 SPI6 
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APPENDIX C.2: CORRELATION GRAPHS OF LANDSAT 8 (AND R2 TABLE) 

These are the linear regression graphs from the Landsat 8 dataset and the determination coefficients (R2) as 

discussed in section 6.1. 

 

Landsat 8 July VI averages and SPI 

SPI1 SPI2 SPI3 SPI6 
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The R2 of the linear regression (Landsat 8) 

Broadleaved NDVI EVI RVI DVI NDMI SAVI 

spi1 0.027615 0.000247 0.011744 0.000335 0.33789 0.000297 

spi2 0.120017 0.001863 0.107399 0.001179 0.276107 0.002407 

spi3 0.059602 0.014323 0.054068 0.007891 0.176214 0.00859 

spi6 0.073761 0.030929 0.079655 0.039632 0.115091 0.029105 

       
Coniferous NDVI EVI RVI DVI NDMI SAVI 

spi1 0.00564 0.006762 0.010652 0.007837 0.577028 0.013267 

spi2 0.166753 0.017545 0.043368 0.017768 0.443526 0.032669 

spi3 0.124989 0.02407 0.026479 0.012612 0.390843 0.023737 

spi6 0.261503 0.007732 0.081883 0.005399 0.274046 0.000838 

       
Mixed NDVI EVI RVI DVI NDMI SAVI 

spi1 0.267763 0.005034 0.111923 0.002711 0.320521 0.004331 

spi2 0.532417 0.03576 0.317776 0.030227 0.407377 0.038991 

spi3 0.445968 0.099245 0.179055 0.07831 0.429615 0.08714 

spi6 0.269584 0.000599 0.119965 0.001003 0.175512 0.000139 

       
All NDVI EVI RVI DVI NDMI SAVI 

spi1 0.034067 0.02726 0.008423 0.03142 0.406201 0.038893 

spi2 0.209605 0.093962 0.139458 0.085573 0.343773 0.116745 

spi3 0.123305 0.142159 0.073525 0.103116 0.242722 0.128905 

spi6 0.202313 0.008932 0.136131 0.005319 0.173946 0.014558 
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APPENDIX D.1: ADDITIONAL VISUALIZATIONS OF SENTINEL-2 

This is an overview of exploratory visualisations as discussed in section 6.3. 
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Trend over time per band, broadleaved forests: 

 
Trend over time per band, coniferous forests: 
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Trend over time per band, mixed forests: 

 

 
 

 

NDVI over time, per month per forest type: 
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APPENDIX D.2: ADDITIONAL VISUALIZATIONS OF LANDSAT 8 

This is an overview of exploratory visualisations as discussed in section 6.3. 
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NDVI broadleaved forests, every single observation: 
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APPENDIX E: DESCRIPTIBE STATISTICS OF DATASETS 

These are the descriptive statistics of the datasets used in this study as discussed in section 6.3.1.1. 

 

Sentinel-2 

Full-year (3/2017 - 9/2020) 
 

Summer months (2017-2020) 
 

broadleaf conifers mixed total 
  

broadleaf conifers mixed total 

sand 3066 4099 4693 11858 
 

sand 792 1136 1257 2393 

clay 2961 175 1514 4650 
 

clay 722 40 26 66 

peat 1253 2068 844 4165 
 

peat 347 572 436 1008 

loess 625 0 99 724 
 

loess 188 0 238 238 

total 7907 6342 7150 21399 
 

total 2049 1748 1957 5754 
           

Landsat 8 

Full-year (3/2013 - 9/2020) 
 

Summer months (2013-2020) 
 

broadleaf conifers mixed total  
 

broadleaf conifers mixed total 

sand 1825 1574 1789 5188 
 

sand 484 436 478 1398 

clay 1783 101 64 1948 
 

clay 434 25 16 475 

peat 382 543 377 1302 
 

peat 101 155 108 364 

loess 267 0 234 501 
 

loess 72 0 60 132 

total 4257 2218 2464 8939 
 

total 1091 616 662 2369 

 

 

Sentinel-2     

 broadleaf conifers mixed total 

2017 457 379 447 1286 

2018 2757 2192 2503 7452 

2019 2129 1685 1906 5720 

2020 2612 2086 2294 6992 

     

Landsat 8     

 broadleaf conifers mixed total 

2013 206 111 129 446 

2014 206 284 310 1103 

2015 566 297 332 1195 

2016 647 336 366 1349 

2017 397 247 248 892 

2018 857 469 525 1851 

2019 504 229 270 1003 

2020 667 341 380 1388 
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APPENDIX F: ANOVA RESULTS 

These are the ANOVA results as discussed in various parts of section 6.3. 

 

ANOVA of the full dataset 

Landsat 8 NDMI 
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Landsat 8 NDVI 

 

 

Sentinel-2 NDMI 
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Sentinel-2 NDVI 
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ANOVA for the 3-month (summer) analysis 

Landsat 8 NDMI 
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Landsat 8 NDVI 
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Sentinel-2 NDMI 
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Sentinel-2 NDVI 
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ANOVA for the soil-types analysis (broadleaved forests only) 

Landsat 8 NDMI 
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Landsat 8 NDVI 

 

 

Sentinel-2 NDMI 
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Sentinel-2 NDVI 

 

 

 


