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ABSTRACT 

Food loss occurring along the supply chain poses a major challenge in sustaining global food security. 

While agricultural production has improved significantly over the recent years, the facilities to manage this 

production have not kept up. This insufficiency results in post-harvest losses that occur after the 

harvesting of agricultural products. Post-harvest losses are prevalent issues in developing countries, 

thwarting the efficiency of agricultural food supply chains. Transportation has a substantial role in these 

losses since it is a vital link in the post-harvest chain. Particularly in developing regions, where road 

transport is the typical linkage, there is a decisive necessity to ensure the quality of transport facilitation. 

Ensuring quality in this sense means that the condition of roads has to be monitored, maintained, and 

rehabilitated. However, due to the lack of sufficient resources, these activities are not undertaken regularly. 

This aspect has resulted in the prevalence of poor-quality road that induces in-transit damages to 

perishable agricultural products such as tomatoes. 

 

This study argues that spatial road quality information is a valuable tool in addressing these challenges. 

More importantly, enabling the convenient accessibility of this information is vital for resource strained 

regions such as Sub-Saharan Africa. Towards this goal, this research investigated the potential of mapping 

road pavement quality from freely accessible optical satellite imagery using machine learning methods. 

Accordingly, shallow and deep learning models were developed to extract road quality information from 

Sentinel-2 satellite imagery using reference data collected for a corridor running from Accra (Ghana) to 

Ouagadougou (Burkina Faso) with crowdsensing technology. 

 

The results were encouraging in realizing the use of such a data source for convenient access to road 

pavement quality information.  The deep learning model, i.e., U-Net, reported an F1-score of 37.93% and 

an IoU of 32.40%, outperforming the shallow ML alternative in the form of random forest. The inherent 

data imbalance prevents comparison with conventional segmentation task performance. The results, 

however, were comparable to analogous road extraction projects that utilized Sentinel-2 images. The study 

also contrasted the use of Sentinel-2 imagery to that of Planet imagery data to assess the relative potential 

of Sentinel-2 imagery in the task. The results showed that Sentinel-2 images were more suitable than the 

Planet ones in the pixel-wise classification of road pavement quality (RPQ). 

 

Furthermore, a three-class RPQ classification model was presented to resolve the ambiguity surrounding 

severity classes. With an F1-score of 53.65% and an IoU of 46.03%, this model performed substantially 

better. Alternative to this approach, a flexible modeling paradigm based on probabilistic threshold moving 

was also explored. Aided with heuristics of precision-recall tradeoff and the probabilistic nature of ML 

model predictions, the study showed that predictions of the models could be molded to suit the utility 

desired. 

 

KEYWORDS 
 

Post-harvest losses, Road pavement quality (RPQ), Optical satellite imagery, Machine learning, Deep 

learning 
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1. INTRODUCTION 

1.1. Background and Motivation 

 

Realizing food security and preventing all forms of malnutrition are among the 2030 Sustainable 

Development Goals (SDGs) and the main concerns of the United Nations Decade of Action program. In 

that regard, several efforts have been made towards achieving these goals. Even though overall global 

progress has been observed, Africa and most developing countries still exhibit significant uncertainties in 

food security (FAO et al., 2020). In 2019, Africa logged a Prevalence of undernourishment rate of 19.1%, 

far from the proposed trajectory and an increase from the earlier records (FAO et al., 2020). 

 

The current trend in the works to tackle this issue is focused on reducing food waste and loss. The ironic 

truth is that even though there is enough food being produced globally for everyone, one person in nine 

suffers chronic hunger (FAO, 2018). This aspect highlights that a significant amount, more specifically, 

one-third of food produced globally, is wasted (FAO, 2011b). With a potential cascading effect of 

economic losses across the food value chain, and increasing prices for consumers, these losses impede 

food accessibility to vulnerable groups, thereby affecting their food security (FAO, 2017). Reducing food 

losses and waste can increase food availability and reinforce food security by ensuring an efficient food 

value chain from agricultural production to the consumer (FAO, 2017; van Berkum et al., 2018). 

 

Recently, food losses that occur after the harvesting of agricultural products, i.e., post-harvest losses 

(PHLs), have become hot topics of discourse, especially in Sub-Saharan Africa (SSA) (Sheahan & Barrett, 

2017). The first World Food Conference of 1974, which aimed to half the 15% PHL estimate of that time 

by 1985, marks PHL's early attention (Parfitt et al., 2010). Since then, several methods and technologies 

have been employed in Africa to respond to PHLs, most of which were of insufficient success and 

adoption (World Bank, 2011). PHLs remain an ever-present problem, particularly in SSA (Affognon et al., 

2015). 

 

One systemic contributory factor to PHLs is that even though global agricultural production capacity is 

increasing, food consumption habits in developing countries are also simultaneously changing (Kearney, 

2010). A considerable effect of these changes is the increased attention to food quality and supply chain 

traceability (Bollen et al., 2006). This transformation is mainly because of the public's increasing concern 

about the accessibility and safety of agricultural food products (Hastuti, 2008). Moreover, despite 

advancing agricultural technology, climate change is growingly straining food production in many food-

insecure areas, which further emphasizes the need to reduce these food losses (Bellù, 2017) 

 

The largest PHLs exhibited in SSA are in fruits, vegetables, root crops, and tuber crops, which is primarily 

attributed to their perishable nature and the lack of suitable post-harvest infrastructure in the region 

(Affognon et al., 2015). Estimates of worldwide post-harvest losses range from 20-60% for fruits, 

vegetables, roots, and tubers and 20-30% for cereals and legumes (FAO, 2011a). Furthermore, qualitative 

losses can occur at several stages of the value chain resulting in these products being sold at reduced prices 

and virtually incurring economic value losses (Kitinoja & AlHassan, 2012). 
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These findings make the argument for a need to reduce PHLs primarily to improve food security in most 

affected areas such as SSA. Studies that aim to reduce PHLs open up the possibility of improving people's 

economic state throughout the food supply chain. Nevertheless, in contrast to the attention given to 

lessening farm-level losses, technologies developed to address off-farm PHLs are limited (Affognon et al., 

2015). 

 

As the means by which agricultural products are moved from farms to markets and consumers, transport 

has an essential role in post-harvest agricultural linkage (Tunde & Adeniyi, 2012). Among the various 

surface transport systems, road transport (trucking) is the dominant mode in most countries, and 

particularly in developing regions, attributed to its intrinsic flexibility, reliability, and relative planning 

simplicity (Londoño-Kent, 2009; The World Bank, 2020). However, developing countries remain hindered 

by inadequate surface transport systems that serve as the veins of inland food transport from “farm to 

fork” (Londoño-Kent, 2009; World Economic Forum, 2017). Primarily, poor quality of roads, largely 

evident in most African countries, exacerbated by inappropriate transporting practices, develop adverse 

conditions for food transportation resulting in substantial losses (Kojo Arah et al., 2015). In-transit 

vibration and shock caused by defects on bad roads have been proven to inflict damage on most fruits 

(Fadiji et al., 2016; Fernando et al., 2019; Jarimopas et al., 2005; Van Zeebroeck et al., 2006; Wasala et al., 

2015), vegetables (Chonhenchob et al., 2009; Pretorius & Steyn, 2019), and roots and tubers (Rees et al., 

2001; Shiina et al., 2013) thereby resulting in significant PHLs. Therefore, ensuring adequate quality road 

routes for agricultural food transport plays a vital role in reducing PHLs, increasing the efficiency and 

sustainability of food value chains, and consequently improving food security, especially in developing 

countries. Eliciting from this motivation, the following subsections describe the conceptual framework, 

point of entry for intervention, related works, and identified gap for this study. 

1.2. Conceptual Framework 

 
There are various conceptualizations of PHLs as a result of divergences about timing (e.g., pre-harvest, 

harvest, post-harvest), scope (e.g., criteria for loss), and terminology (e.g., waste and loss) (Chaboud & 

Daviron, 2017). This study will adopt the HLPE (2014) definition of PHLs with a food security 

perspective as a loss criterion. Accordingly, food loss refers to a decrease, at all stages of the food chain 

before the consumer level, in quantity or quality (FAO, 2014), of food that was originally intended for 

human consumption, regardless of the cause (HLPE, 2014). Quantitative food loss refers to the reduction 

in the mass of food, and qualitative food loss refers to the decrease of quality attributes of food, i.e., 

reduction of nutritional value, economic value, food safety, and consumer appreciation (FAO, 2014). 

Furthermore, specifying to PHLs, HLPE (2014) identifies post-harvest as the stage between harvesting 

and processing, notably excluding the processing stage. Commercial or economic loss translates the 

various types of losses into economic and monetary terms (Grolleaud, 2002). Adhering to these 

definitions establishes the boundary of this study. 

 

In their re-framing work on PHLs, Tröger et al. (2020) indicated that studies on PHLs could benefit from 

viewing the supply and value chain as a system of human activities. The causes of PHLs should not be 

ascribed to one stage or actor in the food value chain; they should instead be viewed as being 

interconnected at micro, meso, and macro levels (HLPE, 2014; S. K. Tröger, 2019) and spatial scales (S. 

K. Tröger, 2019). The three causal levels and their adaptation to the context of this study are described in 

Table 1.1. Qualitative and quantitive damages to harvested food products due to in-transit vibration, 

identified as the immediate cause of PHLs at the transport stage, are the micro-level causes. These 

vibration and shock damages can be attributable to several meso-causes at various stages and scales, as 
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explained in Table 1.1. However, from the various meso-causes, a common denominational causal factor 

can be deducted as the lack of convenient information on road conditions and their implications. It can be 

argued that unawareness—regarding apparent road conditions—of the responsible actors and 

coordinating bodies relevant to the food supply chain results in the listed meso-level causes. Nelson et al. 

(Nelson et al., 2006) highlighted the importance of road quality information in cutting the costs imposed 

by poor road quality. A transporter aware of on-coming road quality conditions can better plan a travel 

route to reduce losses due to PHLs and vehicle damage. Traders and farmers can make informed decisions 

in procuring transportation options, i.e., choosing vibration resilient transport vehicles or less damaged 

routes. More importantly, reliable information on existing road quality will have crucial significance in the 

effective and efficient planning and prioritization of road rehabilitation and construction projects. 

Additionally, information on the existence of difficult road conditions can encourage the formation of 

closer (to farming site) market locations that can intercept food products with more minor damage. The 

overarching inadequacy of road infrastructure translates to a macro-level systemic challenge the gives rise 

to consequent emergent causes of PHLs. 

 

Table 1.1 The three levels of causes of PHL taken from HLPE (2014) and with their adaptation to this study 

Level of causes HLPE (2014) definition Adaptation 

Micro-level causes Those resulting from actions or non-

actions of actors at the same stage of 

the food supply chain where the loss 

occurs 

Vibration and shock due to poor roads 

causing damages at the transport stage that 

translate into PHLs 

Meso-level causes Those related to any stage or the whole 

of the food supply chain  

Arising from the organization and 

relation of actors across the chain 

Inappropriate packing of agricultural food 

products and procurement of transportation 

options that lack consideration of road 

conditions by traders and sometimes by 

farmers (when there is no trader involved in 

between) 

Poor travel route planning by transporters 

unaware of existing road conditions 

Poorly spaced vehicle repair facilities 

Inadequate rehabilitation and construction of 

roads and difficulty in their prioritization 

Macro-level causes Those that can be explained by more 

systemic issues and favor the 

emergence of subsequent level causes 

Lack of adequate road infrastructure to 

support the food supply chain 

 

According to the above interpretation, a conceptual framework shown in Figure 1.1 was developed to 

describe the cause and effect relationships across the food supply chain. The supply chain actors 

(displayed in light gray boxes at the bottom row) were outlined with the Sub-Saharan country situation and 

perishable products in mind by aggregating different terminologies obtained from the works of Robinson 

& Kolavalli (2010) and Van Wesenbeeck et al. (2014). The dark gray boxes describe the various causes and 
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effects across the supply chain categorized by their levels (row labels). The downward solid arrows show 

cause and effect relationships, while the dotted downward arrow from macro to meso level describes an 

emergence relationship from the former to the latter. It is used to illustrate that the need for information 

on road quality is an emergent behavior resulting from the inadequacy of road infrastructure. The state 

authority in the framework is used to represent an aggregate of governing entities that oversee and 

facilitate the whole food supply chain. Consequently, it is shown to be responsible for the rehabilitation 

and construction of roads. The two levels in the effects row show the direct effects, i.e., PHLs, and 

indirect effects of the overhead cause. The following subsection elaborates on the causal relationship of 

road quality and PHLs and establishes an argument for the meso level cause of inadequacy of 

conventional road condition information as per the defined conceptual framework. 

 

 
Figure 1.1 Conceptual diagram of the causes of PHLs in relation to transportation 

 

1.2.1. Road quality information and PHLs 

 
Road transport is often the viable option in developing countries to deliver perishable food products from 

farms to consumers as it offers shorter travel times and flexibility (Pretorius & Steyn, 2019). However, 

according to previous studies, the road imposes physical damage to sensitive food products such as fruits 

and vegetables due to in-transit vibration (Jarimopas et al., 2005). Besides the resulting loss in visual quality 

that deters consumers, researchers have also shown that physical damage also speeds up spoilage and loss 

of nutritional value, thereby collectively imposing considerable PHLs (Opara & Pathare, 2014). The trader 



MAPPING ROAD PAVEMENT QUALITY FROM OPTICAL SATELLITE IMAGERY USING MACHINE LEARNING 

 

5 

and the farmer will hold the economic burden. At the same time, the market and consumer end will suffer 

the resulting supply insufficiencies, e.g., food shortage and price increase (see Figure 1.1). It is also 

important to note that transporters can incur costs from mechanical damages on their trucks due to poor 

road conditions. If the vehicles take a long time to fix, it will significantly delay delivery, risking spoilage of 

their products. 

 

Soleimani and Ahmadi (2015) identified that road (surface or pavement) roughness is a critical factor in 

vibration-caused fruit damage. Physical damage to fruits and vegetables during transportation, regardless 

of their maturity before loading and packaging, is directly related to road roughness (Chonhenchob et al., 

2009; Jarimopas et al., 2005). This aspect makes road roughness an important indicator relating road 

quality with PHLs. Sayers et al. (1986) define road roughness as the “variation in surface elevation that 

induces vibrations in traversing vehicles.” Several indices have been used to quantify road roughness, 

among which the international roughness index (IRI) (Sayers et al., 1986) is the most used measure 

worldwide due to its versatility, practicality, and objectivity (S.-L. Chen et al., 2020). 

 

Road surface distress, on the other hand, although not having a standard of measure like IRI, has recently 

been a common topic of interest in research and public applications related to road quality information. 

Surface distress generally describes road defects such as cracking, potholes, transverse and longitudinal 

deformation (e.g., rutting), and other miscellaneous ones (Wang, 2018). The taxonomy and explanation of 

the different types of road surface distress as described in the work of Paterson (1990) can be found in 

Appendix: Annex 1. These road defects are prevalent issues in African roads since their monitoring and 

rehabilitation are usually untimely. Surface distress information regarding the type, extent, and severity of 

the distress is valuable in scheduling maintenance activities since these defects have a deteriorating 

influence on the functionality of the road (Robinson et al., 1998). If timely maintenance (such as crack 

sealing and pothole patching) is not made at the early onset of visible defects, more costly measures (i.e., 

large-scale rehabilitation or reconstruction) might be required in due time (Robinson et al., 1998).  

 

Several studies have analyzed the relationship between IRI and surface distress. Most of these 

investigations obtained high correlations (Rajendra Prasad et al., 2013), particularly with severe defects 

such as potholes (Mubaraki, 2016). However, it should be noted that different defects have different 

effects on IRI. Therefore, a reasonable conclusion from these works is that surface distress and roughness 

have a commonly causal relationship (Mubaraki, 2016). Surface distress is also known to cause difficulty in 

measuring road roughness due to the strong perturbation caused by the defects that distort calibration of 

modern vibration-based roughness measuring techniques (Wang, 2018). Moreover, information on road 

conditions regarding surface distress is often collected with semantics, such as the type and severity of the 

defect, that offers insight for decision making, even if it comes with the difficulties associated with visual 

assessments. This level of semantics is often challenging to achieve with roughness measurements such as 

IRI. This aspect makes pavement distress information important at both low and high levels of pavement 

management decision-making. 

 

Road roughness and surface distress serve as essential measures in providing road quality information. 

However, it is vital to note that road quality information can vary significantly depending on available (or 

preferred) data collection methods and the desired utility of the information. In realizing the value of this 

information in road pavement management and transport facilitation, Paterson and Scullion (1990) 

formulated the concept of information quality levels (IQLs). They provide a solid foundation for 
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establishing the amount of detail that individual data items must attain to support various levels of 

management tasks (Wang, 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following description was summarized from the work of Bennett & Paterson (2000) in proposing the 

IQL framework. In this framework, information at low level (i.e., low-level data) representing 

comprehensive detail aggregates to progressively summative information at high levels of IQL (i.e., high-

level data), as shown in Figure 1.2. At IQL-1, a thorough form of pavement condition information with 

more than 20 attributes collected from research, laboratory, theoretical, and electronic collection sources is 

represented, typically, to support project-level decision making. Close, in detail, to the previous level, IQL-

2 represents reduced attributes obtained from engineering analyses. Bennet & Paterson (2000) define IQL-

2 as having a simple level of detail, typically described by roughness, surface distress, and skid resistance—

as relevant to road condition—appropriate for road network-level decision-making. At IQL-4, a 

summative attribute such as the description of road pavement condition in class values (i.e., good, fair, 

poor) or a categorical index (0-10) is presented for planning and management or in the context of low data 

collection capacity. Finally, IQL-5 represents vital performance indicators of road infrastructure obtain by 

combining road conditions with other measures (Bennett & Paterson, 2000). 

 

An area of interest for this study would reasonably be the level IQL-4. This specificity closely relates to 

the linking nature of road quality information identified in the conceptual framework (see  Figure 1.1 in 

Section 1.2). While lower IQLs serve a domain-specific purpose of detailed road monitoring, the higher 

levels at IQL-5 and beyond, as proposed by Bennett et al. (2000), relate to regional statistical indicators of 

road among those of other infrastructures. The middle point is where the two levels of authority and 

concern connect, and it is where, ideally, understandable and accessible information is preferred to a 

precision. Bennett et al. (2000) illude upon the need for such information to be easily understood without 

much technical background in the interest of high-level road management and the public. Users of the 

road, i.e., transporters and traders in the case of this study, can also be beneficiaries of such information, 

as mentioned previously. 

 

Figure 1.2 Information quality level (IQL) concept taken from Bennett and Paterson (2000) 
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Given that these users are less likely to find more value in detailed and high-accuracy road information, it 

is easily understandable that IQL III and IV would be the recommended levels of information for users’ 

utility in planning their transportation. The value in the offering of road quality information for users lies 

in frequency and convenience. While reliability and resolution remain of fair importance, frequently 

updated and easily accessible information on road quality is of greater value for the users. More frequent 

collection of such information reduces the granularity of aggregation with which it is disseminated to 

higher-level decision-makers. These authorities are responsible for prioritization and procuring road 

rehabilitation/construction projects. The reduced granularity allows them to make better decisions with 

significantly less uncertainty. IQL-4 and perhaps IQL-3, where efficiently possible, are, therefore, the 

intersecting levels of information for the relevant stakeholders in the food supply chain. 

 

Accordingly, this study adopts the term Road Pavement Quality (RPQ) from Ujuizi Laboratories (2018), 

which is an IQL-4 (arguably IQL-3) road condition information based on a categorical rating of road 

quality with three classes: good, bad, and very bad. It is used to evaluate the effects of typical road 

imperfections such as cracking, potholes, speed bumps, rough patches, bridge expansion joint, rumble 

strips, corrugated surfaces, sunken utility, etc., Ujuizi Laboratories, (2018). Although it involves identifying 

the type of road defects (distresses) and their severity in the data collection, it is fundamentally adopted in 

this study as a measure of the severity of surface distress. Section 4.2.1 discusses, in detail, the collection 

method of this reference data. Concluding on the complex dilemma of PHLs and poor road 

infrastructure, the following section formulates the problem as a ‘wicked’ problem and proposes an 

intervention based on the wicked problem framework (Georgiadou & Reckien, 2018). 

1.3. The Wicked Problem of PHLs 

 
Based on the wicked problem framework by Georgiadou & Reckien (2018), adapted from Hoppe (2010), 

a wicked problem can be characterized by uncertainty regarding facts, causes, and effects in one dimension 

and dissensus among stakeholders with respect to policy goals and values in another dimension. Starting 

with the uncertainty dimension, PHLs are characterized by a lack of consistent and clear knowledge 

regarding their occurrence, magnitude, causes, location (spatially and along the value chain), and their 

extent, leading to sub-optimal solutions and policy faults (Affognon et al., 2015). This aspect is particularly 

apparent in SSA (FAO, 2011b; Parfitt et al., 2010; Prusky, 2011). The multi-level cause and effect 

relationships explained in Section 1.2 emphasize the uncertainty of identifying a single cause and effect 

path for PHLs. An important intuition here is that, from a systems perspective, identifying the interrelated 

system of causes is the precursor to recognizing possible mitigation and priorities for action (HLPE, 

2014). 

 

Along the consensus dimension, developing scenarios in which each actor (agent) in the system is given 

autonomy to resolve the problem allows for examining alternative formulations of the problem and, thus, 

understand the existing dissensus. Table 1.2 summarizes these scenarios using four characteristics: 

perception, effects, accusation, and response. Perception describes the extent to which each isolated actor 

in the supply chain perceives the causes of PHLs. Effects indicate the resulting negative implications of 

PHLs to the corresponding actor. Accusation identifies the agent(s) that the respective actor would blame 

for the adverse effects of PHLs. Lastly, response describes the actions each would take had it been up to 

them to mitigate the effects of PHLs. This multi-perspective scenario evaluation illustrates the divergence 

in the conceptualization of the problem of PHLs and how that divergence provokes uncompromising 

responses from each actor, further consolidating the existing dissensus. 
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Table 1.2 Supply chain actors’ perspectives and responses on PHLs and their causes 

Actors Perception Effect Accuse Response 

Farmers - Lack information on 

causing factors 

- Price loss, less 

frequent trader visits 

- local sellers could 

suffer direct PHLs 

- Traders for low 

price rates 

- Sell as quickly as 

possible (can lead to 

overpacking) 

Traders - Acknowledge that 

physical damage causes 

PHLs but lack 

awareness of the 

causes of physical 

damage 

- PHLs resulting in 

economic loss 

- opportunity losses 

- Farmers for poor 

quality products 

- Overpack to account 

for the loss 

- Reduce visits to farmers 

- Decrease buying prices 

and increase selling 

prices 

Transporter - Acknowledge that 

physical damage causes 

PHLs but not the 

various causes of 

physical damage 

- vehicle damage due 

to bad roads 

- economic loss if 

paid via sales 

- State Authority - Less frequent 

transportation trips 

- May take alternate 

routes to avoid bad 

roads 

State 

Authority 

- Acknowledge that 

poor infrastructure can 

indirectly cause PHLs 

- strain on budget to 

maintain roads 

 

- Transporters for 

overloaded trucks 

damaging roads 

- Traders for low 

quality and over-

profiting 

- set priorities for road 

rehabilitation & 

construction 

- establish rigorous 

regulations for quality 

control 

Market & 

Consumers 

- Relatively less 

knowledge on the 

causing factors 

- Poor quality 

- Price increase 

- Shortage 

- Traders for poor 

quality products 

- opt for increased 

control of quality 

- resort to alternative 

sources, e.g., imported 

food products 
 

 

 
Based on the above argumentations, it is reasonable to frame PHLs as a wicked problem. Therefore, 

towards structuring this problem as per the wicked problem framework of Georgiadou & Reckien (2018), 

this study navigates across the spatial knowledge dimension to decrease the uncertainty regarding the 

whereabouts of the causes of PHLs, particularly on the transport stage.  Spatially locating the causative 

indicators can offer immense insight towards a comprehensive understanding and well-informed decision-

making on PHLs. The agricultural supply chain as a logistical system has a better chance to make a holistic 

transition to efficiency if it can recognize where it is inefficient. Following the systemic approach 

described in the conceptual framework, three levels of causes to PHLs were identified. To answer the 

question of "where" in this context requires a balance between the degree of abstraction to allow entry 

points for interventions and the level of detail to link with the ground reality. Identifying causes at higher 

abstraction, e.g., recognizing a low-grade corridor connecting farm sites to urban markets, conceals the 

entry point for intervention, behavioral changes, and prioritization of investment. On the other hand, a 

higher level of detail in mapping causes, i.e., micro-level causes such as physical damages, is open to 

multiple interpretations such that a clear roadmap for action cannot be developed from such information. 

This gap calls for a bridging intervention between the macro and micro (Bergström & Dekker, 2014), 
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which ideally lies in the meso level. However, it is essential to recognize the necessity of a mediating 

element as an intervention towards establishing trust and relative consensus. Reducing information 

asymmetry across the food supply chain has been recognized to have a vital role in establishing trust 

among actors and ensuring economic fairness (Minarelli et al., 2002). Therefore, it is essential, intervening 

through the provision of information on road conditions at the meso-level in this case, that this 

information is provided at the convenience of all relevant actors. Laubis et al. (2019) identified the 

facilitative value of frequent and timely available road condition information in the relation between users 

and authorities that manage roads. As per the discussion in the previous subsection, Road Pavement 

Quality (RPQ), serving as the adopted indicator for road condition information, fits this role suitably. 

 

Mapping RPQs can offer decision-supporting information in the systemic transition of food supply chains 

towards sustainability. Primarily, as the overlooking authority, the state can use such information to draw 

out points of action and strategies that address PHLs relating to food transport with due consideration of 

other areas of concern. The essential utility aspect comes in distinguishing the need for action, thereby 

helping the act of prioritization of rehabilitation and construction works. Moreover, improved spatial 

information on RPQs not only drives policy and infrastructural changes but also brings about behavioral 

improvements among the actors in the system (Ujuizi Laboratories, 2018). This information can help 

transporters make well-informed route plans to reduce the overall cost of transport. Traders benefit from 

the realization of their profit and loss as well as streamlining their logistics for efficiency. An emergent 

result of this information would be lowering PHLs, by a part attributed to the transport stage of the 

supply chain. Prospectively, objective sources of information on road conditions that can be obtained 

efficiently and conveniently pave the way for further research and development. For instance, it can be 

used in developing PHL models that can make of RPQ information to estimate losses with multivariate 

analysis, as proposed by Ujuizi Laboratories (2018), or logistical models to evaluate transporting costs of 

the road corridor. By extension, such works integrate well with the effort of Nelson et al. (Nelson et al., 

2006) in developing a high-quality publicly available global road information database. 
 

3.3. Organization of the Thesis 

This thesis document is organized as follows: 

 

▪ Chapter 1 Introduction: This chapter consists of the background, motivation, and conceptual 

framework of this study. 

▪ Chapter 2 Literature review: This chapter includes the various research works, state-of-the-art, 

and the existing methodological gap related to assessing and mapping road pavement quality. 

▪ Chapter 3 Research objectives and questions: This chapter includes the problem statement and 

outlines the guiding objectives and related research questions. 

▪ Chapter 4 Methodology: This chapter presents the methodology undertaken to achieve the 

objectives of this study. 

▪ Chapter 5 Results and discussion: The findings of the thesis are presented in this chapter, along 

with an analysis of the findings. 

▪ Chapter 6 Conclusion and recommendations: This chapter presents the insights generated from 

the study and the suggestion for future related works. 

▪ Appendix: This includes the supplementary materials that support the thesis document. 

▪ References: This presents the bibliography of the works cited within the document. 

 



MAPPING ROAD PAVEMENT QUALITY FROM OPTICAL SATELLITE IMAGERY USING MACHINE LEARNING 

10 

2. LITERATURE REVIEW 

This chapter reviews methodological approaches used by research works in assessing and monitoring road 

conditions. The approaches were categorized into standard (traditional), crowdsensing, remote sensing, 

and machine learning-based to illustrate the advancement in the field, the state-of-art, and the challenges 

faced in those approaches. In the end, a conclusive remark will be drawn, describing the existing 

technological gap in road condition assessment, which serves as the logical basis for this research. 

2.1. Standard road condition monitoring methods 

 
Standard road condition information, such as roughness and surface distress, is typically collected using 

specialized vehicles fitted out with high precision laser and position sensors (Laubis et al., 2019). This 

method is the automated/semi-automated and naturally preferred alternative to manual profile 

measurement, e.g., rod and level, due to its relative efficiency and lower labor costs (Wang, 2018). These 

approaches provide absolute profile measurement at high accuracy representing IQL I or II (Class I or II). 

Nowadays, response-type road roughness measurement systems (RTRRMS) such as those using 

accelerometers and transducers have gained interest in indirectly offering road roughness indicator 

information from vehicle response measurements. Since these response-type methods do not measure 

absolute profiles directly (only correlational) and often have lower accuracy than the earlier standard 

methods, the information obtained typically belongs to IQL III (sometimes arguably IQL II). Quantitative 

measurements obtained through standard methods are often aided with visual in-situ surveys based on 

human observations in small-scale inspections (Fagrhi & Ozden, 2015). Surface distresses, in particular, 

are assessed through video distress analysis, transverse profilers, and commonly with on-site visual surveys 

(Bennett et al., 2006). 

 

Although these techniques offer accurate assessment, they are expensive, time-consuming, and inefficient, 

especially in developing countries and extensive road assessments (Cadamuro et al., 2018; Fagrhi & 

Ozden, 2015). As a result, these inspections are made at long intervals or not at all. This coarse temporal 

granularity of the information limits its utility for determining efficient road maintenance strategies by 

road authorities and real-time dissemination to road users (Laubis et al., 2019). Alternative systems 

equipped on vehicles and specialized for detecting surface defects (distresses), such as ground-penetrating 

radar, photo, or video cameras, thermal or acoustics, Light Detection and Ranging (LiDAR), and 

Terrestrial laser scanning (TLS), have also been used. However, none satisfies the technical (accuracy and 

practicality), cost efficiency, or information frequency criteria (Schnebele et al., 2015). 

2.2. Crowdsensing approaches 

 
The widespread usage of smart devices and modern vehicles equipped with numerous sensors enabled 

several crowdsensing-based approaches (i.e., users as data sources) to complement or replace traditional 

road monitoring approaches (Eriksson et al., 2008; Laubis et al., 2019). Crowdsensing methods have 

crossed into practical use cases  (Lars Forslöf & Hans Jones, 2015; Ujuizi Laboratories, 2018), leveraging 

their novelty in using the frequent travels of road users to allow extensive coverage. There has been much 
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research into using smartphones for detecting specific road irregularities like potholes, speed bumps, 

sunken manhole covers, and so on (Eriksson et al., 2008; Mohan et al., 2008; Rajamohan et al., 2015). 

Wang (2018) and Laubis et al. (2017; 2019) provided an extensive summary of the various smartphone-

based application and crowdsourcing efforts in collecting road quality information. Typically, these 

approaches detect road defects through the various data channels of smartphones (e.g., GPS, 

accelerometer, digital camera, etc.) or determine road roughness indicators such as IRI through 

correlations. They aim to offer road condition information at IQL III or II. With the recent advent of 

machine learning algorithms, the approach shifted to regression (determining precise road roughness 

values at IQL III or II) and classification (road quality classes information suitable for IQL IV) solutions 

common in machine learning methods. The use of machine learning facilitated the self-calibration of new 

vehicles into a crowdsensing system (Laubis, 2017). This aspect made the crowdsensing technology more 

reliable, robust, and practical in road condition monitoring with high spatiotemporal coverage. Moreover, 

it enabled a more effortless fusion of multi-sensor data accessible through smart devices.  

 

These approaches, however, are often challenged in achieving reliable information, especially when 

concerned with high-level decisions such as the rehabilitation of road networks (2019). Variations in 

sensor and GPS accuracy (which often relies on cellular network systems) across devices pose questions in 

the reliability of crowd sensed road conditions information (Cadamuro et al., 2019). CHEETAH1, a 

smartphone application developed by Ujuizi Laboratories (Ujuizi Laboratories, 2018) for PHL and road 

pavement quality monitoring, tried to improve the reliability of an existing road anomaly detection 

algorithm through user validation of identified road defects facilitated by artificial intelligence (AI). 

Nevertheless, the challenge of system adoption and crowd motivation would persist to the detriment of 

the coverage and robustness of the method. Moreover, the difficulty of calibrating for new perturbations, 

which can be infinite depending on driver behavior and other conditions, has not been fully addressed and 

can cause wrong unrelated measures. 

2.3. Remote Sensing Approaches 

 
Typically, remote sensing, in this context, would refer to any surveying method that does not require 

physical contact with the road surface, and this would include vehicle-mounted approaches that do not 

require contact (Schnebele et al., 2015). However, the term in this study excludes vehicle-mounted 

methods and accordingly focuses on unmanned aerial vehicles (UAVs), airplanes, and satellites as remote 

sensing platforms. Remote sensing techniques use the wide range (spectrum) of electromagnetic radiation 

to gather information in various ways depending on the region of spectrum used. Out of the various 

remote sensing data collection methods, optical imagery (Multispectral and Hyperspectral imagery) and 

Synthetic Aperture Radar (SAR) have been commonly used in road condition assessment. Multispectral 

and hyperspectral imagery utilize the visible and infrared range of the electromagnetic spectrum to collect 

images with multiple channels (bands) representing different spectrum regions. The difference between 

the two is that the latter provides denser information with many bands at smaller spectrum intervals. SAR, 

on the other hand, uses the microwave range of the spectrum. 

 

 
1 CHEETAH is an acronym for Chains of Horticultural Intelligence; towards Efficiency and Equity in Agro-Food 
Trade along the trans-Africa Highway. 
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Despite the importance of ground-based methods for road quality monitoring, remote sensing approaches 

have also emerged as suitable supplements and alternatives for this task. Through remote sensing, it is 

possible to collect ground information over broad spatiotemporal coverage rapidly. With the recently 

increasing availability and accessibility of open sources and higher quality commercial remote sensing 

products, the utility of remote sensing in monitoring conditions of infrastructures has significantly 

improved. Early works in road condition monitoring using remote sensing relied on developing a 

relationship between spectral signatures obtained from hyperspectral imagery and road pavement quality 

identifiers. Herold & Roberts (2004) pioneered the development of this relation. They found that 

pavement aging and erosion of asphalt mix causes a general increase in reflectance (albedo) and changes in 

small-scale absorption features. Accordingly, hyperspectral reflectance features have the potential to be 

used as a road condition indicator. Following these findings, several investigations (Abdellatif et al., 2019; 

Andreou et al., 2011; Bridgelall et al., 2015; Mettas et al., 2015) used spectral characteristics to assess road 

condition and damages. In addition to their use of very high-resolution HSI imagery, these works are 

dependent on a collection of spectral libraries (information), which makes the methods inapplicable at 

scale in providing road quality information. 

 

The advantage of HSI in offering wide spectral coverage at fine spectral resolution enabled the 

formulation of these relationships. However, with a higher spectral resolution, there is often a limitation in 

spatial resolution. Coupled with high spatial variability of viewed objects, mixed pixels, where one image 

pixel can represent multiple surface features (objects), are common issues in remote sensing imagery, even 

in high-resolution images (Small, 2003). Particularly for roads, narrow features surrounded by other land 

cover types, determining road conditions from image analysis poses high uncertainty due to asphalt 

pavement usually belonging to a mixed pixel (Pan et al., 2017). The usual approach in addressing this issue 

is either to use higher spatial resolution HSI obtained at high commercial cost or to increase spatial 

resolution at the expense of spectral information (Karimzadeh & Matsuoka, 2021; Pan et al., 2018). At 

lower (spatial and/or spectral) resolutions, e.g., multispectral imagery from Sentinel-2, various image 

processing techniques such as thresholding, morphological algorithms, and Fourier transformation, which 

can isolate defects from the background and enable binary interpretation, have been used to detect flexible 

pavement distresses (Chambon & Moliard, 2011; Schnebele et al., 2015; Singh & Garg, 2013). However, 

considering sharp variations of lighting and road surface in remote sensing imagery, the automatic 

detection of pavement distress using image processing becomes a complex and challenging task (Pan et al., 

2018). 

 

Synthetic Aperture Radar (SAR) data can also be a suitable alternative or supplement to optical imagery 

data for its sensitivity to surface roughness (Workman et al., 2016) and independence from atmospheric 

conditions like clouds, rain, snow, fog, daylight, etc. (Ager, 2013). Moreover, SAR data is not affected by 

mixed pixels issues, unlike optical imagery. Meyer et al. (Meyer et al., 2020) used high-resolution SAR data 

acquired at X-band to develop a model to classify road segments into “good road quality” and “road in 

need of repair” and reported an overall accuracy of 92.6%. This work realized the applicability of SAR 

data in assessing the quality of secondary roads. However, the implementation depended on high-

resolution commercial SAR data and was challenging to replicate in other areas and conditions. Suanpaga 

& Yoshikazu (2010) developed a multinomial and binary logit model to evaluate highway riding quality 

from Phase Array type L-band SAR (PALSAR) with a resolution of 12.5 meters and achieved an overall 

accuracy of 61% and 87% for respective models. A common trait observed in both mentioned methods, 

and arguably in other works involving feature classification, is that the accuracy is bound to improve with 

fewer classes. This aspect, however, comes at the expense of losing information quality. Although SAR 
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offers immense potential in extracting road quality information, because of its side-looking nature and 

intrinsic constraints, such as foreshortening, the interpretation of the data is more complicated than that 

of optical data (Karimzadeh & Matsuoka, 2021). As a result, its potential in this task is less explored, and 

models developed based on the data are often complicated to interpret and replicate. 

2.3.1. Spectral Unmixing 

 

Spectral unmixing is another solution to the trade-off in the spatial and spectral resolution of remote 

sensing imagery. A typical issue in low/medium resolution satellite images, and even in high resolution 

depending on what task is of concern, is that multiple ground objects can occupy a single pixel, resulting 

in what is commonly known as a mixed pixel. Spectral unmixing is a procedure developed to address this 

issue by decomposing mixed pixels into a compilation of constituent spectra, i.e., endmembers, and a set 

of corresponding fractions, i.e., abundance (Keshava & Mustard, 2002). An endmember represents the 

ground objects, and the abundance describes its spectral (visual) proportion or dominance in the pixel. 

There are two types of models to undertake spectral unmixing: linear and non-linear models. Their 

distinction lies in the assumption of how solar incident radiation reflects from the surface. The linear 

model assumes a one-to-one interaction between arriving photons (incident radiation) and components on 

a surface consisting of spatially distinct components, also described as checkerboard mixture (Keshava & 

Mustard, 2002). Under this assumption, if the area under view is split proportionally according to the 

fractional abundances of the endmembers, then the reflected radiation will convey the same proportions 

of the corresponding endmember (component) (Keshava & Mustard, 2002). This condition then elicits 

the formulation of a linear relationship between the fractional abundance of the components comprising 

the area in view and the spectra in the reflected radiation. Accordingly, a mixed pixel can be expressed as a 

linear combination of endmembers weighted by their corresponding abundances, as shown in equations  

(2-1) and (2-2). 

 

 

 

 

 

 

 

 

 

 

 

 

Non-linear models, on the other hand, model the surface as an intricate mixture that causes multiple 

bounces, a condition that becomes more apparent when the size of the mixed element is small (Borsoi et 

al., 2020). Comparatively, linear mixing models are more widely used due to their relative simplicity, high 

efficiency, and transparent scientific and physical basis. At coarser resolutions and more complex ground 

conditions, however, the assumptions of linear models fail to encourage the use of non-linear methods. 

 

𝑥 =  ∑ 𝑎𝑖𝑠𝑖

𝑀

𝑖=1

+ 𝑤 (2-1) 

 

Figure 2.1 Interpretation of linear mixing (left) and non-linear mixing (right) models 



MAPPING ROAD PAVEMENT QUALITY FROM OPTICAL SATELLITE IMAGERY USING MACHINE LEARNING 

14 

 𝑋 = 𝑆𝑎 + 𝑤 (2-2) 

 

where, x is the B x 1 spectral vector of a pixel, 

ai is the fractional abundance for endmember i = {1, 2, …, M}, 

si is the B x 1 spectral vector of endmember i = {1, 2, …, M},  

w is the B x 1 observation noise vector, and 

M and B represent the number of endmembers and number of spectral bands, respectively 

 

Equation (2-2) is the matrix version applicable for images of size N pixels 

 

In more straightforward interpretations of linear models, the abundances are usually constrained to be 

nonnegative and to sum to one, which restricts the spectral data to lie inside a simplex (i.e., a triangular 

geometry generalization) spanned by the endmembers. This interpretation provides a clear geometric 

understanding of the problem, as shown in Figure 2.2 for a case of 3 endmember simplex. It lays the 

foundation for some simple geometric-based linear unmixing methods (Winter, 1999), which rely on 

optimizing the fit of the spectral data within the identified endmembers simplex. However, this 

interpretation is often only possible under the assumption of pure pixels (i.e., pixels containing only one 

endmember) existing within the image corresponding to the vertices of the simplex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There has been an extensive amount of research in the field of linear spectral unmixing, all with various 

methods and strategies.  The comprehensive review work on linear spectral unmixing methods by Borsoi 

et al. (2020) can be referred to for more detail on these methods, their advantages, and disadvantages. 

More relevantly to the topic at hand, the use of spectral unmixing methods in enhancing the potential of 

using medium resolution satellite imagery for road condition assessment has rarely been explored. A 

notable work by Pan et al. (2017) used the multiple endmember spectral mixture analysis (MESMA) 

method to map classes of road based on aging and distress from Worldview-2 imagery (1.84 meters spatial 

resolution resampled to 2 meters) with an overall accuracy of 81.71 % and Kappa coefficient of 0.77. 

 

Remote sensing data, especially optical imagery, holds huge potential in providing road condition 

information at various IQLs depending on their spatial (and spectral) resolutions. Most research works 

have explored the use of high-quality satellite data (very high spatial and/or spectral resolution) in 

mapping road pavement conditions, often aiming to obtain higher IQLs information. The use of high-

quality commercial images that incur a high cost for frequent monitoring deters the adoption of these 

Figure 2.2 Three-endmember simplex in subspace 
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techniques in resource strained regions. With the leverage of more advanced techniques such as spectral 

unmixing, lower resolution yet accessible imagery can offer great potential in filling this gap.  Nevertheless, 

extraction and dissemination of this information at a convenient IQL, i.e., IQL-4, with the use of more 

accessible yet lower in resolution sources of optical satellite imagery, lacks attention. One notable work, in 

this regard, is that of, Karimzadeh et al. (2021), which used Sentinel-2 images and in-situ collected road 

quality data to develop a discriminant model that was able to classify road quality in Azerbaijan at an 

accuracy of 65% (and kappa=0.59). Although promising, the scalability of the method is constrained due 

to the limited transferability of the function developed for the study area, as noted by the authors. 

2.4. Machine learning-based approaches using remote sensing imagery 

 

Theoretically based deterministic models, statistical approaches, and image processing techniques have 

been significant in exploring the potential of remote sensing and crowdsensing data for tasks such as road 

extraction and road quality assessment. However, their scalability, automation, and robustness across 

various conditions are challenging. Appropriately, this is where machine learning (ML) methods shine. 

Lary et al. (2016) described ML algorithms as “universal approximators,” i.e., they are able to learn 

underlying patterns in diverse systems from a set of training data without the need for prior knowledge 

about the relationship between the data and the pattern. Machine learning methods can be categorized 

into supervised and unsupervised. Unsupervised ML algorithms, typically consisting of clustering 

algorithms, can learn patterns from the input data without the need for a target output to learn from. 

These techniques are often used in an explorative manner to discover patterns from remote sensing 

observations. Clustering methods such as the K-means algorithm are widely applied in object-based image 

segmentation techniques. They have also been applied in spectral unmixing works to cluster locally 

unmixed endmembers (Borsoi et al., 2020). The use of unsupervised ML methods in remote sensing 

presents challenges in the interpretation of the results. 

 

Supervised ML methods are algorithms that learn from input-output pairs to later predict the unknown 

desired output. They have been extensively used in various remote sensing data analysis tasks such as 

classification, segmentation, regression, object detection, and change detection. Supervised MLs used in 

remote sensing can be classified into shallow and deep ML methods (except some deep learning methods 

such as autoencoders, Bayesian networks, and generative models that belong to unsupervised categories). 

The following subsections briefly describe shallow and deep ML methods and their application in remote 

sensing imagery processing, particularly in road condition assessment tasks. 

 

2.4.1. Shallow machine learning-based approaches 

 

Before the introduction of deep learning (DL), “shallow” machine learning (ML) methods such as support 

vector machine (SVM), artificial neural network (ANN), and ensemble classifiers such as random forest 

(RF) took the focus in remote sensing data processing tasks such as image classification and change 

detection. The capacity of SVM to handle high dimensionality data and good performance with small 

training samples and the ease of use and usually high accuracy of RF models proved crucial in remote 

sensing-related works. 

 

These shallow ML methods have also been used in automatic pavement defect detection in the form of an 

image semantic segmentation problem (Özdemir et al., 2020; Pan et al., 2017, 2018). (Ozdemir et al., 

2020). Due to their ensemble nature, RF models were mostly found to perform better in these works than 

other shallow ML algorithms. These implementations were commonly applied on high-resolution imagery 
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such as a multispectral image captured by unmanned aerial vehicle (UAV) and required feature selection to 

ensure fair segmentation accuracy. Furthermore, Yifan et al. (2018) investigated the effect of reducing 

image resolution on the performance of ML models used to detect potholes and cracks from UAV 

multispectral imagery. The classification accuracy of the models started to show a significant decline in 

classification accuracy over 3 cm resolution, close to the mean width of cracks, which indicated a probable 

threshold for a very detailed level of road condition assessment using shallow ML algorithms. 

 

2.4.2. Deep learning-based approaches 

 

In more recent years, with renewed interest in neural networks, deep learning (DL) methods have gained 

more attention in undertaking complex tasks in remote sensing such as land use and land cover (LULC) 

classification, segmentation, and object detection. DL models or networks are built from many layers of 

neurons that learn, via progressively higher-level features, to transform input data such as images into the 

desired output, e.g., classes (Bishop, 2006). The designation “deep” refers to a neural network that 

contains multiple “hidden” layers. Recently, deep neural networks became preferable because they were 

able to reduce the need for manual feature engineering required prior to training shallow ML models and, 

more importantly, because they continue to improve performance with more data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A significant development in DL research was perhaps the introduction of convolution neural network 

(CNN) by (Lecun et al., 1998), which became popular after their use in the development of AlexNet 

(Krizhevsky et al., 2017). CNNs advanced the traditional neural network (NN) architecture by introducing 

hierarchical structures that included convolutional layers, pooling layers, and fully connected (i.e., regular 

NN layer), shown in Figure 2.3. Convolutional layers enable efficient feature learning from large 

unstructured data such as images through kernel-based weight sharing (Lecun et al., 1998). Through this 

technique, these layers generate feature maps with progressively increasing features such as edges and 

texture from the image, which are subjected to an elementwise non-linear transform function, i.e., 

activation function, to introduce non-linearity to the model. The fully connected layer (FC), where weights 

Figure 2.3 Illustration of CNN architecture adapted from O’Shea & Nash (2015) 
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are no longer shared, then flattens the features and learns the classification rules (O’Shea & Nash, 2015). 

Pooling layers were introduced to reduce the dimensionality of the model (e.g., when images are too large) 

by applying spatial pooling, such as max and average pooling, over the feature maps, thereby reducing the 

number of parameters (Ma et al., 2019). A max pool, for instance, picks the largest element from within 

the applied area of the feature map (O’Shea & Nash, 2015), as shown in Figure 2.3. 

 

More relevant to the task at hand, fully convolutional networks (FCNs) (Long et al., 2015) paved the way 

for the broad adoption of DL methods in semantic segmentation of images, i.e., pixel-level segmentation. 

While typical CNNs were built with contracting (encoder) blocks of convolution, pooling, and fully 

connected layers, FCN incorporates an expanding path (decoder) consisting of simple up-sampling, 

transposed convolution, or un-pooling layers (O’Shea & Nash, 2015). This way, they make predictions for 

each pixel. These networks initially attracted much attention in the medical sector and research related to 

road extraction from remote sensing images, which contributed significantly to the growth of the state-of-

the-art in semantic segmentation using FCNs. Several researchers have used FCNs for road extraction 

from remote sensing images (Cheng et al., 2017; L. Gao et al., 2019; Mnih & Hinton, 2010; Oehmcke et 

al., 2016; Panboonyuen et al., 2017; Xu et al., 2018; Zhang et al., 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With such works, deeper and more novel models were constantly being introduced in the field of 

segmentation. One mentionable introduction was U-Net (Ronneberger et al., 2015), developed initially for 

medical research applications. U-Net addressed a persistent problem in segmentation using FCN—the 

loss of information during down-sampling—by including a “skip connection” that recovers spatial 

information by concatenating features “skipped” from each level on the encoder to the corresponding 

level in the decoder. Moreover, the implementation of U-Net identified the value of image augmentation 

in effectively training models with small training samples (Ronneberger et al., 2015). Nowadays, U-Net is 

the go-to architecture for most segmentation tasks either in raw form or modified for performance 

improvement (Zhang et al., 2017). 

 
Given the potential to leverage the advancement of deep learning to take advantage of dense information 

compounded in remote sensing imagery to extract road quality, a limited body of work has investigated 

this capacity. Cadamuro G. et al. (2018)  used extensive IRI data collected for roads in Kenya and 

employed various pre-trained CNNs such as AlexNet, VGG, and SqueezeNet to classify road quality from 

very high-resolution satellite imagery (i.e., 50 cm resolution). Approaching the problem as a categorical 

classification task, they obtained overall accuracies of 88 % and 73 % for binary and 5-category 

Figure 2.4 FCN architecture adapted from Long et al. (2015) 
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classification. Building on this work, Cadamuro G. et al. (2018) utilized the same dataset to predict the IRI 

values from the satellite imagery, i.e., regression. They made use of more advanced DL models such as 

LSTMs, arguing that modeling the image patches as sequential (not independent of each other) can allow 

the use of LSTMs, which infer information from all sections of the road in predicting for a given segment 

(Cadamuro et al., 2019). With this approach, they achieved an R2 of 0.79, although, for their generalization 

strategy, i.e., testing for held-out data, this fell to 0.35. 

 

At a more granular level, Oshri et al. (2018) used Sentinel 1 and Landsat 8 imagery and CNNs to predict 

infrastructure quality, which includes road quality, among others, based on survey collected data as a 

reference. In contrast to the granularity of the previous work, very high-resolution (VHR) images taken 

from UAV were used by Jiang L. et al. (2020) to segment pavement cracks at high precision employing a 

U-Net model. More recently, Brewer E. et al. (2021) were able to apply a transfer learning strategy by 

training various CNN architectures on comprehensive VHR imagery data for roads in the United States, 

for which they collected categorical road quality reference data via a phone-based platform. They applied 

their best model, with fine-tuning, on imagery data of Nigeria to achieve an accuracy of 94.0% in 

predicting road quality. 

 

The superiority of deep learning methods in inferring more from more data offers the opportunity to 

leverage the increased availability of freely accessible remote sensing data such as Sentinel imagery. 

Although the attribute of free access often entails lower data quality (e.g., spatial resolution), deep learning 

methods can be designed to address these issues. For instance, by combining spectral unmixing techniques 

and deep learning, Alam et al. (2017) used a CNN architecture to learn features from abundance maps of 

unmixing and classify LULC features from hyperspectral imagery. Oehmcke et al. (2019) used deep 

learning frameworks to extract hardly visible road segments from Sentinel-2 time-series imagery producing 

good performance (35.70% F1-score for small roads) and realizing the capability to extract fine details at 

medium spatial resolutions. Such novel approaches can expand the limits of low/medium resolution 

satellite imagery to applications that can benefit from the improved accessibility of the resulting 

information. Regarding these constraints, in a study to assess Sentinel-2 imagery's limitations for accurate 

feature detection, Radoux et al. (2016) indicated that the limit for road detection is at 3m. Despite these 

potentials, deep learning approaches have rarely been used to extract road features from low-resolution 

images such as Sentinel-2 imagery. 

2.4.3. Performance Evaluation 

 

Due to the various measures of road condition assessment applied in research, the performance or 

accuracy of the methods used is often problematic. IRI-based assessments used in works such as that of 

Cadamuro et al. (2019) are evaluated based on R2 values, typical for regression problems. Others have 

transformed IRI values of the reference data into categorical classifications, i.e., good, fair, and bad, based 

on various IRI grading systems (Brewer et al., 2021; Cadamuro et al., 2018; Karimzadeh & Matsuoka, 

2021). With the possibility of obtaining this information from satellite imagery, the challenge of assessing 

road conditions can be posed as an image classification or (semantic) segmentation task typically assessed 

with the metrics of overall accuracy. 

 

The task of extracting road quality from satellite imagery is inherently based on class-imbalanced data, 

whereby the target class, i.e., bad or poor road pixels/segments, is dominated by the road or non-road area 

of the image. As a result, standard accuracy metrics, such as overall accuracy, used for classification are 

rendered paradoxical, where they report high performance while the minor classes are not being predicted 
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at all (He & Garcia, 2009). Although to a lesser extent, this effect is also apparent in road extraction from 

satellite imagery. Common metrics used in these works include precision, recall, f1 score, and IoU (Jaccard 

index), all preferred to the basic metric, overall accuracy for their intuitive behavior in class imbalance. 

These metrics can all be calculated from the confusion matrix, a mapping of the true labels with the 

predicted ones, shown in Table 2.1. The interpretation and calculation formula of these metrics is 

presented in Table 2.2. 

 
Table 2.1 Binary confusion matrix 

  Predicted  

 Classes Positive Negative Total 

T
ru e
 Positive True Positive (TP) True Negative (TN) TP + TN 

Negative False Negative (FP) False Negative (FN) FP + FN 

 Total TP + FP TN + FN  

 

Recently, a more interactive classification metric that plots the relationship of precision and recall values at 

a range of prediction probability thresholds called the precision-recall curve (plot) is gaining attention in 

assessing the performance of ML models. It has been proven to illustrate the susceptibility of classifiers to 

data imbalance and allow for a practical interpretation of model performance (Saito & Rehmsmeier, 2015). 

It enables model selection based on the proposed application of the results through the interpretation of 

the trade-off between false alarm detection (related to precision) and completeness of detection (i.e., 

related to recall). 

 

 
Table 2.2 Description and formula of the various performance metrics used in image segmentation 

Performance 

Metric 

Description 
Equation 

Overall 

accuracy 

(accuracy) 

▪ The percentage of instances in the dataset that is 

correctly predicted by the classifier  

▪ misleading when data is imbalanced 

𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

(2-3) 

Precision 

(Correctness or 

exactness) 

▪ the percentage of model predicted positives that 

are actually true 

▪ tells how much the model can be trusted when it 

predicts a label positive (Grandini et al., 2020) 

▪ e.g., the percentage of road segments with model 

predicted conditions ‘bad’ that is actually in bad 

condition (Wang, 2018) 

𝑇𝑃 

𝑇𝑃 +  𝐹𝑃
 

 

(2-4) 
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Performance 

Metric 

Description 
Equation 

Recall 

(Completeness) 

▪ the percentage of true positives that are classified 

correctly as true 

▪ it measures the ability of the model to find all the 

positive units in the dataset 

▪ e.g., the proportion of roads with a true condition 

of ‘good’ that is also classified as ‘good,’ i.e., a 

score of 1 means that all actually ‘good’ road 

segments were classified correctly as ‘good’ 

(Wang, 2018) 

𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

 

(2-5) 

F1-score ▪ interpreted as the weighted (harmonic) average of 

precision and recall 

▪ preferred to overall accuracy for its balance 

between precision and recall 

2 × (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙
) 

(2-6) 

 

IoU (Jaccard’s 

index) 

▪ is a measure of similarity between labels 

▪ Usually defined as intersection over union 

▪ Widely used in image segmentation 

𝑇𝑃

𝑇𝑃 +  𝐹𝑃 +  𝐹𝑁
 

 

(2-7) 

 

2.5. Chapter conclusion 

 

The following conclusions were drawn based on the reviewed works related to mapping road pavement 

quality. 

▪ Traditional road quality and condition assessment methods are not efficient in providing regular 

and timely information on road quality. 

▪ Higher-level IQL information on road quality obtained from granular sources can best serve in 

decision-making for the stakeholders considered in this study because it can be offered frequently 

and conveniently. 

▪ Although crowdsensing approaches are promising, calibration difficulty, circumstantial 

perturbations to measurement, and ineffective system-wide adoption have limited their scalability 

in providing such information. 

▪ Remote sensing data in the form of optical satellite data offer great potential in this task. 

However, the larger body of work on extracting road quality information from remote sensing 

data has focused on using high-quality information (HR and/or HSI). 

▪ Advanced image analysis techniques such as spectral unmixing can expand the limitations of 

lower resolution imagery. 

▪ Advancements in computer vision using deep learning algorithms have opened several avenues in 

remote sensing that have not been sufficiently explored, particularly for mapping road pavement 

quality using lower resolution imagery. 
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3. RESEARCH OBJECTIVES AND QUESTIONS 

3.1. Problem Statement 

 
Efficient, reliable, and convenient information on road pavement quality plays a significant role in 

reducing PHLs occurring during the transportation of agricultural products. Machine learning approaches 

have great potential in mapping such features from freely accessible, low-resolution images such as 

Sentinel-2 imagery. Up to now, very few studies have used deep learning methods to map small-scale 

features such as road pavement quality from Sentinel-2 imagery.  

3.2. Research Objectives and Questions 

 
The main objective of this study is to investigate the use of lower resolution optical satellite imagery and 

machine learning techniques in mapping road pavement quality. The following sub-objectives and related 

research questions are outlined to achieve the main objective. 

 

1. To develop a machine learning model for mapping RPQ from optical satellite imagery, 

RQ-1.1. Does a deep learning method yield better performance in mapping RPQ compared 

to a shallow machine learning algorithm? 

2. To determine the suitable resolution for the extraction of RPQ, 

RQ-2.1. How does using Planet imagery with higher spatial resolution affect the 

performance of the model compared to using Sentinel-2 imagery? 

3. To investigate the added value of integrating spectral unmixing into the methodology 

RQ-3.1. Can the performance of the models be improved through the application of spectral 

unmixing as a pre-processing step? 

3.3. Hypotheses 

The related hypotheses for the research questions outlined above are presented as follows: 

RQ-1.1. 

H0 – A deep learning method performs equally or worse compared to a shallow machine learning 

algorithm in mapping RPQ. 

H1 – A deep learning method yields better performance in mapping RPQ compared to a shallow 

machine learning algorithm. 

RQ-2.1. 

H0 – Using Planet imagery improves the performance of the models in extracting RPQ compared to 

using Sentinel-2 imagery. 

H1 – Using Planet imagery yields equal or worse performance in extracting RPQ compared to using 

Sentinel-2 imagery. 

RQ-3.1. 

H0 – Applying spectral unmixing as a pre-processing step does not improve the performance of the 

models in mapping RPQ. 

H1 – Applying spectral unmixing as a pre-processing step produces improved performance in 

mapping RPQ. 
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4. STUDY AREA AND DATA 

4.1. Study area 

The study area for this investigation covers the road corridor from Tema (Ghana) to Ouagadougou 

(Burkina Faso). Otherwise known as the “central corridor,” this corridor passing through Kumasi and 

Tamale is more commonly used and takes less travel time than the alternative shorter route via the 

“eastern corridor” due to the poor road quality of the latter (Roche, 2014). The road, reaching up to 1,000 

km, serves as the sole surface transport route for cargo from Tema to Ouagadougou (TCBoost & WA 

Trade Hub, 2010). As can be seen in Figure 4.1, a large part of this corridor lies inside Ghana. This 

corridor is one of the eight key land corridors that link coastal city ports with major inner landlocked 

countries. Internal trade transactions inside Ghana hold 80-90 percent of the cargo volume transported on 

this corridor, while the remaining 10-20 percent is cross-border transactions between Burkina Faso and 

Ghana (Saana Consulting, 2016). Most of the cross-border trade involves raw agricultural produce, 

especially perishable products like vegetables, collected by traders from Burkina Faso and sold in Ghana 

among other neighboring countries (World Bank, 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following aspects of the corridor were adapted and summarized from an extensive study undertaken 

by the World Bank on regional connectivity in the area (World Bank, 2019). 

Figure 4.1 Map showing the Accra-Ouagadougou corridor 
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• The corridor is primarily used for internal and regional trade. 

• Cross-border and domestic trucking in the region remains characterized by aging trucks and own-

account transport. 

• The corridor section from Accra to Kumasi is the busiest route in Ghana in terms of cargo and 

passenger traffic; the corridor from Kumasi onward is the second busiest. Extending to Tema 

port, it is the sole corridor that connects Tema, Accra, Kumasi, and Tamale, which are important 

trade cities of Ghana. 

• About 90% (over 950km) of the corridor length is in fair to good condition, while the rest (about 

100km) is in poor condition. * 

• It has undergone sectional improvements under various infrastructure development programs 

such as the Transport Sector Programs 2008-2012 and 2013-2017 (citing USAID (2017)). 

* According to available data at the time of reporting 

 

The selection of this corridor as a study area for this research was justified for two reasons. From a 

technical standpoint, the availability of extensive datasets regarding road pavement quality (RPQ) across 

the corridor collected under the CHEETAH pilot project by Ujuizi Laboratories (2018) can serve as the 

ground truth for this research. Secondly, from a societal problem perspective, reports from the 

CHEETAH pilot project indicating the prevalence of poor road conditions motivate the research 

attention. As per the pilot project, the road users (truck drivers), which contributed to the collection of 

RPQ information, reported experiencing an average of 20 to 50 road anomalies in a week. This aspect was 

further corroborated with the crowdsourced RPQ data (see Figure 5.2 in Section 5.1.2), indicating the 

prevalence of road defects across the corridor. Moreover, the continual investment in restoring and 

upgrading the road infrastructure—reflecting the importance of the corridor—illustrates the value of 

providing RPQ information regularly and conveniently for concerned authorities. 

4.2. Data 

4.2.1. CHEETAH RPQ Dataset 

 

CHEETAH, an acronym for ‘Chains of Horticultural Intelligence; towards Efficiency and Equity in Agro-

Food Trade along the trans-African Highway,’ is an app developed by Ujuizi Laboratories in an effort to 

provide value chain stakeholders (Transporters, Consumers, Growers, Officers from public and private 

agencies) a stronger voice by allowing them to express value chain flaws. The information captured by the 

CHEETAH app covers a wide range of fields, among which is road pavement quality (RPQ). The 

CHEETAH RPQ dataset refers to data collected on RPQ across the Tema-Ouagadougou corridor by 

Ujuizi Laboratories (2018). For the pilot project, which was carried between June 2016 and August 2017, 

they used the app to collect data from motion sensors and input from the users to assess road quality via 

crowdsensing. The motion sensor data, i.e., accelerometer, gyroscope, magnetometer, etc., was used to 

detect road anomalies. These detection results were then continuously enhanced by an artificial 

intelligence (AI) algorithm as the user encounters and confirms/adds/rejects the detected road defect 

(Ujuizi Laboratories, 2018). The end product data includes the detected road anomalies and the severity of 

the anomalies concerning road quality. RPQ in this study refers to the severity of the road defects. The 

data was extracted from the database via API access obtained from Ujuizi Laboratories. 
 

The data contains GPS locations in point vectors with attributes detailing the detected road defect types, 

severity classes (referred to as RPQ classes in this study), and metadata related to the method of data 

collection and processing. The severity was categorized into three classes: ‘Good,’ ‘Bad,’ and ‘Very Bad,’ 
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referring to the condition of the road segment based on the severity of the defect detected. This data, i.e., 

RPQ data, will be used as a reference to train the proposed machine learning models in classifying road 

pavement segments into the predefined classes. 

4.2.2. Optical Satellite Data 

 

Sentinel-2 optical satellite imagery data 

 
Sentinel-2 is a multi-spectral satellite imaging mission developed under the Copernicus program. The 

complete mission is composed of two twin satellites: Sentinel-2A, launched in June 2015, and Sentinel-2B, 

launched in March 2017 (European Space Agency, 2015). These satellites fly in the same orbit but are 

phased at 180° to provide a high revisit rate of 5 days at the Equator (European Space Agency, 2015). 

Each satellite carries a multi-spectral payload (MSI) that provides measured reflected radiance in 13 

spectral bands ranging from visible and near-infrared (VNIR) to shortwave infrared (SWIR) (Main-Knorn 

et al., 2017). The bands selected for this study and their respective spatial resolutions are described in 

Table 4.1. Sentinel-2 products are offered to users in two product levels: Level-2A product offering 

orthorectified Bottom-of-atmosphere (BOA) reflectances and Level-1C product offering orthorectified 

Top-of-atmosphere (TOA) reflectances. The Level-2A products can be directly used, while the Level-1C 

products require processing for atmospheric correction to obtain BOA reflectances. The years 2016 and 

2017 were selected for acquisition to align with the reference data. 

 

Table 4.1 Sentinel-2 image spectral bands and respective spatial resolutions 

Spectral Band 
Central 

Wavelength (nm) 

Bandwidth 

(nm) 

Spatial 

Resolution (m) 

B2: Blue 490 65 10 

B3: Green 560 35 10 

B4: Red 665 30 10 

B8: Near-IR 842 115 10 

B11: SWIR1 1610 90 20 

B12: SWIR2 2190 180 20 

 

The vector of the road centerline extracted from OpenStreetMap was used as the baseline for identifying 

the area-of-interest (AOI) and later labeling the road section. The AOI for this study was then established 

by setting a buffer distance of 10 km from the road centerline. Temporally, 2016 and 2017 were selected 

to align with the reference data (CHEETAH data). The temporal range was crucial because straying too 

far (i.e., very wide range) from the time of the road condition reference data could result in a significant 

discrepancy in road quality apparent in the imagery to that of the reference. However, restricting the range 

too small meant limiting the coverage of clear and consistent imagery (i.e., cloudless with minimal spectral 

variation spatially) obtainable within the time range. Upon the first trial using the whole two years as the 

range, it was observed that in the rainy season, i.e., March/early April until mid-July and minorly 

September-October (Owusu & Waylen, 2013), much of the imagery in the AOI will be covered with 

cloud. This meant that many of the collected cloudless image tiles were gathered between January to April 

of 2017 except for a few (see Table A 7.2 in the Appendix). This result aligned well with the reference data 

and thus was used as the temporal filter for this study. 
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Planet optical satellite imagery data 

 

Planet’s high-resolution imagery data is accessible through Norway’s International Climate & Forest 

Initiative (NICFI) program for free public use in scientific research and the development of policies and 

innovative solutions for tropical regions (Planet, 2021). This imagery data includes Planet’s satellite surface 

reflectance mosaics that are analysis-ready. The analysis-ready specification indicates that the images are 

optimized for scientific and quantitative analysis by applying rigorous scene selection, atmospheric 

correction, cloud masking, and normalization algorithms (Pandey et al., 2020). The images consist of four 

bands: red, green, blue, and near-infrared, all at a spatial resolution of 4.77 m. The spatial coverage is over 

the global tropical region, suitable for this research since the study area lies in this region. With Level 1 

access, two collections of image datasets are available: 

▪ Bi-Annual historical archive with a temporal range of December 2015 to August 2020, 

▪ Monthly monitoring product from September 2020 onwards. 

Considering the selected timeline, the Bi-Annual data of the year 2017 was selected for this study. In 

particular, the July 2017 mosaic was used. The data was accessible through Planet’s API using credentials 

obtained after signing up for the program. The mosaic was downloaded in tiles called quads that can be 

mosaicked together for the selected area. This data will be referred to as Planet imagery/images (or data) 

hereafter in this document. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MAPPING ROAD PAVEMENT QUALITY FROM OPTICAL SATELLITE IMAGERY USING MACHINE LEARNING 

26 

5. METHODOLOGY 

This chapter describes the methods that were used to achieve the research objectives established 

previously. The overview of the research methods workflow is shown in Figure 5.1. This research made 

use of two satellite imagery datasets: Sentinel-2 and Planet imagery, which require slightly different pre-

processing steps (thus the different processing flows described in solid and dashed lines, respectively in 

Figure 5.1). Accordingly, four sets of image datasets relevant to the previously defined research question 

were obtained, each of which was analyzed using the two machine learning models selected for this study. 

The CHEETAH RPQ dataset was used to develop the label raster used for training the machine learning 

models. Each of the processing steps will be elaborated in the following subsections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.1 Research methodology workflow 
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5.1. Data pre-processing 

5.1.1. Basic raster pre-processing 

 

Basic pre-processing refers to atmospheric correction and the common geometric and raster operations 

implemented on the image collections to obtain a single mosaic. The Sentinel-2 images were 

atmospherically corrected using sen2cor (version 2.55) (Main-Knorn et al., 2017) to obtain bottom-of-

atmosphere reflectance images. The configuration of the atmospheric correction as per Main-Knorn et al. 

(2017) is described in Table A 7.3. Digital Elevation Model (DEM) obtained from Jarvis et al. (2008) was 

used as additional input to estimate elevation for the correction. The method was used only for 

atmospheric correction. Since bands 11 and 12 of Sentinel-2 images have a lower resolution than the other 

bands, they were resampled to match the others using the bilinear interpolation method. The bands were 

then stacked together to produce multiband images. These procedures were not required for the Planet 

images as they are obtained analysis-ready with atmospheric correction applied to them. The images were 

then mosaicked and clipped to AOI. The AOI was further narrowed down to a 1 km buffer distance from 

the road centerline to reduce the non-road area (e.g., vegetation, bare soil, etc.) in the images, which helps 

improve the pixel imbalance of the road land cover class during model training. The Sentinel-2 image tiles 

were clipped to the AOI before mosaicking to reduce the computation load of mosaicking larger image 

collections. The mosaics were then normalized to center the reflectances between 0 and 1. This procedure 

is helpful for the performance of machine learning algorithms, particularly those based on gradient 

descent, because it adjusts a common scale for all the features in the data. In this case, it sets the 

reflectances of each band to have a standard scale of 0 to 1. 

 

To later feed the images to the machine learning models, it was essential to split them into patches of 

smaller size for easier computation and practicality. The patches were created sequentially (north to south, 

west to east) from the mosaic image in a sliding window manner with partial overlap between each patch 

to enable image augmentation and increase the number of samples obtained for training the models. The 

choice of smaller patch size would reduce class imbalance within each patch—an issue critical in this 

case—and the granularity of the segmentation, at the cost of possible loss of contextual information 

(Hamwood et al., 2018) and increased training time. Moreover, to ensure the image size fits into the 

network architecture, i.e., to prevent down-sampling below 1-pixel size during feature encoding, the 

minimum size of patches has to be limited. Larger patch sizes were also limited due to GPU memory 

limitations. Accordingly, patch size of 96 by 96 pixels with 20 pixels overlaps, and patch size of 192 by 192 

pixels with 40 pixels overlap were used, respectively, to generate 619 patches from the Sentinel-2 and 795 

patches from the Planet mosaic images. The patch size for the Planet image was double that of Sentinel-2 

since the resolution of the former is approximately half of the latter. 

 

5.1.2. RPQ data pre-processing and road labeling 

 

Before processing the RPQ data, road labeling was undertaken. OpenStreetMap (OSM) data was used to 

outline the centerline of the road. Upon visual observation on Google Earth in combination with the 

Sentinel-2, the vector obtained from OSM was found to have several discrepancies from the true 

centerline of the road (visually determined). Accordingly, these errors were adjusted. The use of the 

Sentinel-2 for this labeling was necessary in this case, despite its lower resolution, due to the image 

misalignment issues observed in the Google Earth images (Potere, 2008). A buffer distance of 3.6 meters, 

i.e., typical road width, was then applied to the adjusted centerline vector to define the road section. Two 

issues observed during labeling the road was that road width might vary in some places, and over urban 

areas, several roads that do not have corresponding RPQ data were within the images. These issues could 
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detriment the quality of the reference data and the learning of the model. Therefore, some urban areas and 

wider road sections, which often coincided in proximity, were excluded from the imagery mosaics. These 

exclusions were also reasonable as the related issues were not within the scope of this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The RPQ attribute data contained detection of the CHEETAH method, which were found impossible 

and/or unnecessary to detect using satellite imagery for this study. These features include labels such as 

police checkpoint, flooding, stops, zebra crossing, unknown, etc. Moreover, road defects type were often 

labeled in various descriptions. Therefore, the data was cleaned by removing unnecessary features and 

grouping labels. The spatial information in the RPQ data was in the form of vector points which were 

GPS locations of the detected road anomaly. However, these locations were often slightly inaccurate and 

transversely misaligned with the road. The points were snapped to the road centerline using QGIS to 

adjust the transverse misalignment. The configuration for this procedure includes setting the tolerance and 

snapping behavior. The tolerance specifies how close the points need to be to the road vector to be 

selected and snapped. The snapping behavior determines modification (upon snapping) of the original 

input vectors to match the reference vector, usually required for two or more dimensional vectors. A 

tolerance of 50 m was used for this case, and the points found beyond this distance were considered 

inaccurate and removed from the data. Since the vectors in concern here were points, the snapping 

behavior was set only to move endpoints with a preference of the closest point. The points were then 

buffered by a distance of 4 m, equal to the average width of the road, and converted to area features to 

account for the snapping shift and GPS inaccuracy. This conversion entails that RPQ information is 

expressed in sections of the road within a 4 m distance longitudinally of the point location of the detected 

defect. For instance, it can describe a certain 8 m (2 x 4 m) section (length) of the road as poor if a road 

anomaly was detected in that area of the road. However, it is important to note that this interpretation 

changes when these vectors are rasterized for the preparation of the label and that it also depends on the 

resolution of rasterization. Accordingly, for the Sentinel-2, the granularity will be at 10 m long segments of 

the road. Nevertheless, the choice would remain reasonable since, in satellite images, assuming road 

Figure 5.2 Map showing RPQ along the Accra-Ouagadougou corridor 
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defects such as rough patches or aged road sections have a spectral influence over, at least, an area 

represented by a pixel(s). 

5.1.3. Spectral Unmixing 

 

The problem of mixed pixels in satellite imagery, more apparent at lower resolutions, makes distinguishing 

small features in the images (e.g., pothole) very difficult. Such features usually occupy a pixel together with 

other background features in proximity. One solution to this issue is to interpret the image at a sub-pixel 

level and describe a pixel as a proportional combination of the spectra of the features inside of it (i.e., 

endmembers). This procedure is called spectral unmixing. Image spectral unmixing aims to estimate the 

number of reference features (i.e., endmembers), their spectral signatures, and their proportions in each 

pixel of the image (i.e., abundance fractions). This study uses this technique to assess its potential in 

improving the extraction of road pavement quality information from satellite imagery such as that of 

Sentinel-2. The use of this method in various satellite image segmentation tasks, including road and road 

condition extraction, was discussed in this document’s literature review section (see Section 2.3.1). There 

are numerous techniques for spectral unmixing, each with its advantages and disadvantages. 

 

In applying spectral unmixing for this study, spectral library requirement, automation, and computational 

efficiency were considered important criteria, along with the method’s reliability. Some unmixing methods 

require spectral libraries to be established, which makes the procedure contextual and less adaptable. In 

addition to their adaptability, the possibility of automating the procedure makes unmixing techniques that 

do not require spectral libraries more desirable in our case. Automating the process improves the 

frequency and ease with which the information produced can be disseminated to the users.  Likewise, 

reducing computational demand is often advantageous towards reducing the cost and time of 

computation. However, these choices come at the cost of the accuracy of the unmixing result. The choice 

of unmixing method was made considering this trade-off. Accordingly, the sparsity promoting iterated 

constrained endmember (SPICE) unmixing algorithm developed by Zare & Gader (2007) was used to 

undertake the spectral unmixing procedure in this study. The SPICE method is a sparsity-promoting 

extension of the iterative constrained endmember extraction algorithm (ICE) (Berman et al., 2004). Due 

to the intricacies of the SPICE algorithm, the details of its formulation as per Zare & Gader (2007) are 

described in Annex 3 of the Appendix. 

 

The SPICE unmixing method (particularly the python implementation) has four primary parameters: µ 

(the regularization parameter), Г (constant controls the degree of sparsity), endmember pruning (removal) 

threshold, and the iteration stopping criteria. The last parameter refers to the desired change of the 

objective function between iterations below which the iteration stops. Optionally the iteration can be 

stopped by capping the maximum number of iterations. Although there is an option to insert initial 

endmembers (e.g., from a spectral library), the SPICE algorithm can initialize with randomly selected 

endmembers. Eventually, it generates endmembers—in addition to estimating their numbers—fitting the 

mixing model of the image without the need for a user-defined spectral library or the assumption that all 

the endmembers have pure pixel representation in the image (Berman et al., 2004). This capability makes 

the SPICE method easily automatable. 

 

Moreover, this study uses a localized unmixing strategy by fragmenting the large mosaics into smaller 

regions via a sliding window approach. In this way, different sets of endmembers and corresponding 

abundances are extracted for each sliding window. This strategy can enhance the unmixing results by 

simplifying the spectral mixture problem into smaller sub-spaces with less complex mixtures and spectral 

variability. Spectral variability means that a feature or endmember may be represented by various spectra 

instead of a unique one because of changing illumination conditions, the intrinsic variability of the feature, 
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and atmospheric effects (Borsoi et al., 2020). Via localized unmixing, there is a possibility to collect 

different spectra for a single feature as viewed in different windows, thereby accounting for the spectral 

variability of that feature. This approach is also computationally more efficient than unmixing larger-size 

images. However, the challenge of this strategy comes in globalizing (generalizing for the whole image) the 

local unmixing results. Typically, this generalization is made by grouping all the local endmembers into 

bundles using a clustering algorithm. The local proportional contributions (i.e., local abundances) are then 

summed up in each pixel if they belong to the same class (bundle). Although this approach is intuitive in 

addressing spectral variability, it is important to note that the results of the unmixing will significantly 

depend on the clustering reliability. Considering clustering is a typically unsupervised method, the resulting 

clusters are often difficult to interpret, thus adding uncertainty to the unmixing procedure. 

 

Endmember clustering 

 

Clustering is a commonly unsupervised algorithm of grouping similar objects into clusters, making it 

possible to discover similarities and differences between the objects and obtain the information contained 

in them. Clustering is a valuable technique in remote sensing data processing and has been widely used in 

segmentation, classification, feature selection, and change detection application of remote sensing images. 

More relevantly, clustering has been effectively used in unmixing satellite imagery through bundling 

extracted endmembers (Borsoi et al., 2020), even for road condition assessment (Pan et al., 2017). 

Commonly distance-based clustering algorithms such as k-means (Lloyd, 1982; MacQueen, 1967) and 

fuzzy c-means (Bezdek et al., 1984) are applied for image processing. However, when it comes to features 

that display strong spectral inseparability, in this case, poor and good asphalt road, distance-based 

methods often fall short in identifying separate clusters. Probabilistic mixture models that apply clustering 

based on the assumption that the data can be explained as a mixture of a specified number of distributions 

have been found to be intuitive in addressing this issue. With this assumption, it is possible that separate 

distributions (i.e., separate clusters) can overlap, which indicates that these approaches do not assign hard 

clusters. Their clustering is instead based on a probability that a data point belongs to a certain 

distribution, often described as soft clustering. 

 

The mixture model with multivariate Gaussian distribution, usually called Gaussian mixture model 

(GMM), has been widely used in various remote sensing image processing tasks (Ait Kerroum et al., 2010; 

Ari & Aksoy, 2014; Çelik, 2011; Tadjudin & Landgrebe, 2000; B. Zhao et al., 2016). As the name indicates, 

GMM assumes a mixture of Gaussian (normal) distributions of data points. This model is useful in 

clustering data, with elliptically shaped groupings—an often difficult task for distance-based clustering 

algorithms—, which is more apparent in remote sensing images. GMM defines clusters by estimating the 

parameters (i.e., mean, variance/covariance, and size) of the distributions in the data by maximizing a 

certain likelihood function, i.e., the maximum likelihood estimation method (MLE). One of the most 

widely used algorithms for this estimation is the expectation-maximization (EM) algorithm (Dempster et 

al., 1977). 

 

An inherent challenge in using GMM is its complexity when it is applied to cluster high dimensional data 

(Thiesson et al., 2001). The model tends to show confusion in identifying the true structure of clusters 

when the data has a large number of features, some of which do not contribute to the cluster delineation 

(i.e., “noisy features”) (Maugis et al., 2009). Although the dimensionality in our case is relatively low, the 

intrinsic inter-band correlation of Sentinel-2 imagery (J. Chen et al., 2017) results in significant difficulty 

for clustering by adding noise. Clustering tasks have often been done after a feature selection process (or 
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dimensionality reduction) to address this issue, whereby only important features are chosen to represent 

the data for clustering. Due to its simplicity and computational efficiency, principal component analysis 

(PCA) has been widely used as a dimensionality reduction method. Moreover, the number of features 

(components) to represent the data does not have to be known a priori since it can be determined 

intuitively based on the desirable explained variance of the data under the new components. This aspect 

enables automation under the desired threshold of explained variance. 

 

The main parameter in this clustering is the number of components (clusters), which, typical of 

unsupervised clustering, is often a difficult task since the algorithm will always prompt more components. 

There are several measures developed to select the number of components (Akaike, 1972; Rissanen, 1978; 

Schwarz, 1978), among which the Bayesian Information Criterion (BIC) (Schwarz, 1978) is the most 

commonly used. BIC is a model selection criterion derived from the Bayesian probability concept and 

suited for models based on the maximum likelihood estimation framework. It is preferable to its 

alternatives because of two reasons. Firstly, it optimizes the trade-off between model performance and 

complexity through a strong penalization of more complex models (Bishop, 2006). Secondly, its basis in 

Bayesian probability entails that the probability that it will select the correct model increases as the sample 

data size increases (Hastie et al., 2009). However, for smaller and less representative datasets, the criterion 

will be more likely to choose undesirably simple models (Hastie et al., 2009). Normally, the model (or the 

number of components) with the lowest BIC value will be selected. However, according to Zhao et al. 

(2008), the BIC value can often decrease continuously such that a minimum cannot be found at a 

reasonable number of clusters. It is, therefore, recommended to locate the knee point of the “number of 

clusters vs. BIC value” curve instead (Q. Zhao et al., 2008). The knee (or elbow) point is the point at 

which the gradient (slope) of the curve visibly changes from high to low. In this case, it is the point after 

which there is no value in increasing the number of clusters and hence is the optimal number of clusters 

for the model. Although this point can be roughly identified through visual identification, it is preferable 

to use a theoretical basis for consistency and automation. Consequently, the method developed by Satopää 

et al. (2011) was used to find the knee point, preferred to other approaches for its versatility and ability to 

fit on partial data (i.e., “online algorithm”). 

 

Based on the choices mentioned above, the following strategy was utilized for the unmixing procedure in 

this study. An important note here is that the unmixing pre-processing, although initially proposed, was 

not applied to the Planet image. The spectral information limitation of Planet images, i.e., only four bands, 

would minimize the effectiveness of unmixing, e.g., limiting the number of discoverable endmembers. 

Accordingly, the following procedures are only applicable to the Sentinel-2 imagery data. 

i. Since the mosaic image was partitioned into smaller patches for machine learning image 

segmentation, which suited the localized approach selected for unmixing, the local spectral 

unmixing was applied directly on these patches. 

ii. The patches were unmixed using the SPICE method initialized with the parameters listed below 

obtained based on the recommendation of Zare & Gader (2007) and modified empirically. The 

selected parameters, their recommended values, and the remarks on why they were changed if so are 

described in Table A 7.4 of the Appendix. 

iii. The unmixing process outputs the spectra vectors of endmembers and images with the proportion 

of each endmember in each pixel (abundance map) for each patch. The abundance maps have 

bands representing the endmembers identified in the patch. 

iv. The endmember spectra of all the patches were collected together to form a large library of 

endmembers. 
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v. Dimensionality reduction was applied to the endmember spectral library using the PCA method 

parameterized to have 95% of the data variance explained, which resulted in three components. 

vi. The endmembers were then clustered using the Gaussian mixture model optimized by the EM 

algorithm. BIC values were used to optimize the model and determine: the covariance type and the 

number of components (clusters). The BIC knee point for each covariance type model was 

calculated and compared to select the best model, i.e., “full” covariance with five components. The 

comparison of the knee points for each covariance type and the plot describing the knee location of 

the best covariance type are shown in Figure A 7.1 and Figure A 7.2, respectively. 

vii. Accordingly, five clusters were defined for the endmember spectral library. 

viii. Based on these defined clusters, each patch's corresponding abundance maps (image representing 

the endmember proportion in each pixel) were rearranged and/or summed up to obtain abundance 

maps that had consistent band-wise structure through the patches. This patch images dataset named 

hereafter in this document as unmixed Sentinel dataset or SU for short was established as input data 

to the machine learning model in relevance to the third research question of this study. 

ix. These images were stacked together (band-wise) with their corresponding Sentinel-2 normalized 

patch images to explore further the potential of the unmixing step in the improvement of the 

machine learning predictions, again with regards to the second research question. This dataset will 

be, henceforth in this paper, referred to as the combined Sentinel dataset or SC for short. 

5.2. RPQ segmentation using machine learning 

 

With the aim of addressing the second research question of this study, a deep learning method in the form 

of a fully convolutional neural network (FCN) model was selected and compared with a shallow machine 

learning model in the task of mapping road pavement quality posed as a satellite image segmentation. The 

following subsections explain the shallow and deep learning models investigated in this paper. 

 

5.2.1. Shallow machine learning: random forest classifier 

 

Random forest (Breiman, 2001) was selected for the baseline shallow machine learning approach. Random 

forest (RF) is an ensemble-type learning algorithm built from a collection (forest) of a certain number of 

decision tree classifiers. Each tree is trained on a different bootstrapped sample of the training data, in 

which these samples are selected randomly with replacement to increase diversity among the trees 

(Breiman, 2001). It also applies a similar bootstrap approach for the features used to find the best split by 

selecting a random subset of the original feature set at each node of a tree. The splits are then tested based 

on a selected feature value test, e.g., maximization of the Gini index. The data is accordingly split 

recursively until all the nodes are pure (i.e., all samples in each node belong to the same corresponding 

class) or when a user-defined criterion such as maximum depth is met. The predicted class of a sample 

point is determined from every tree in the forest and assigned based on a majority vote of all the trees. 

These characteristics of random forest strengthen its robustness and generalization compared to learning 

algorithms. It also allows the evaluation of the importance of every feature as a predictor, which is 

insightful for model tuning. 

 

The hyperparameters to optimize random forest classifiers include the number of trees (or estimators), 

split quality criterion, maximum tree depth, maximum features considered for the best split, and whether 

to bootstrap the training data or not. Among these parameters, the number of trees is the most important 

one, which significantly influences the accuracy and computation efficiency of the model. The split quality 

criterion refers to the test function used to measure the quality of splits. In the Sklearn framework 

(Buitinck et al., 2013) used here, there are two options for this parameter: the Gini impurity and 
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information gain (entropy). Maximum depth is the maximum number of levels in a tree. Sklearn has 

various functions to calculate the maximum features for best split based on the number of features in the 

data, the selection of which was set to be a hyperparameter for tuning in this study. 

 

Although RF models are typically trained for the whole batch, this study uses a mini-batch approach in 

training the RF model due to computational limitations. This approach adds more estimators (trees) to the 

model after each batch. It fits the new model, which retains aspects of the previously fitted model as 

initializers to the subsequent batch.  This process is repeated until the entire data is fitted. The number of 

estimators to add and the mini-batch size were set to be hyperparameters for tuning. 

 

Accordingly, the model was tuned to select the best combination of these hyperparameters mentioned 

above. A random search algorithm was used to sift through the hyperparameter randomly until a limited 

number of trials and report the hyperparameter combination that resulted in the maximum performance 

score. The selected hyperparameters are reported in Table A 7.6 of the Appendix.  The model was then 

trained using the selected hyperparameters on the respective dataset.  

 

Since random forest models cannot extract features themselves, unlike DL methods, a feature extraction 

process is applied prior to feeding the data for training/tuning. Basic features of intensity, edge, and 

texture were computed for each band of the images at different scales by applying Gaussian blurring with 

a range of kernel values used to average local neighborhoods. The Gaussian blurring applied at different 

kernel values before the computation of the features allows them to be created at different spatial scales, 

i.e., multiscale feature creation. This technique enables the model to potentially learn from features at 

various spatial levels. 

 

5.2.2. Deep learning: U-Net 

 

This research utilizes the U-Net architecture (Ronneberger et al., 2015), a deep learning model widely used 

in semantic segmentation, for road pavement quality segmentation from optical satellite imagery. U-Net is 

a deep encoder-decoder type FCN, consisting of a contracting or down-sampling path (encoder) to 

capture context and an expansive or up-sampling path (decoder) for object localization. The novelty of 

this architecture was in the skip connections between the encoder and decoder paths, through which 

feature maps from the encoder are copied, cropped (if necessary), and concatenated to the corresponding 

layer in the decoder. 

 

A slightly modified architecture—from the original—was applied for this study. The encoder of this 

architecture, shown in Figure 5.3, consists of repeating blocks of two 3x3 convolutions, each followed by 

a batch normalization, a leaky rectified linear unit (LeakyReLU) activation, and ending with a 2x2 max 

pooling operation with a stride of 2 for down-sampling (except for the last one, i.e., the bridge, which does 

not apply max pooling). The feature channels (the number of feature maps) are doubled with each down-

sampling block. The batch normalization and LeakyReLU (with a negative slope, i.e., α, of 0.3) were 

applied here, instead of the direct ReLU, to improve the training performance (Ioffe & Szegedy, 2015) and 

prevent the dying ReLu problem(Lu et al., 2019; Maas et al., 2013), respectively. Dying ReLu is a problem 

in training deep neural networks when ReLu activations only output zero for any input, effectively killing 

the corresponding neuron and reducing model learning capacity (Lu et al., 2019). LeakyReLU prevents by 

mapping the zero outputs to values at a certain slope (α). The decoder is also formed from two repeating 

similar blocks. These blocks consist of a 3x3 transposed convolution (inverted convolutions) with a stride 

of 2, such that it halves the number of feature channels, and a 3x3 convolution followed by batch 

normalization and LeakyReLU. After the transpose convolution, the halved feature maps are concatenated 
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with their corresponding feature maps (cropping was not needed here as their sizes matched) from the 

encoder. The final layer after the decoder is a 1x1 convolution with a SoftMax activation used to map each 

feature vector to the number of classes for segmentation. Additionally, the input image size of the model 

was adjusted to fit the size of the patches, i.e., 96x96 pixels for those corresponding to Sentinel-2 and 

192x192 pixels for those of Planet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.3. Data imbalance and focal loss 

 

The size of roads in the satellite images is too small such that their pixel-level representation in the data 

causes a class imbalance in the target labels. This aspect is even more apparent in road quality labels, as 

shown in Table 5.1. The data shows a drastic imbalance between the RPQ label classes and the 

background non-road class, even with under-sampling the background label by reducing the AOI and 

patch size. A common technique applied to address this issue in DL-based small object detection works is 

to modify the loss function such that it encourages the detection of ‘hard’ classifications 

(underrepresented class). 

 

Table 5.1 Label class balance 

Label class 
Class to total 

ratio 

Non-road 0.989775 

Good road 0.009648 

Bad road 0.000394 

Very bad road 0.000184 

 

Figure 5.3 U-Net architecture used in this study adapted from Ronneberger et al. (2015) 
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Focal loss (FL), a loss function proposed by (Lin et al., 2017), has been found to be effective in achieving 

good performance in class imbalanced small object detection tasks. It is a modification of the widely used 

Cross-Entropy loss (CE). When training a model for data with a large class imbalance, the loss gets 

overwhelmed (dominated) by the easily classified majority class (background), which determines what the 

model learns to predict by influencing the gradient (update of the weights). FL modifies the CE function 

by including a class weighting factor (𝛼𝑡) and, more importantly, a modulating factor. The class weighting 

factor improves prediction on imbalanced data by weighting the loss based on the predicted class. The 

modulating factor improves training on imbalanced data by encouraging hard classified examples 

(predictions with low probability, e.g., bad road class) and the opposite for easily classified examples (e.g., 

background object such as a non-road class in this case) (Lin et al., 2017). These two factors were 

considered hyperparameters, and their values were set based on model tuning. 

 

5.2.4. DL model training 

 

To address the limitation of available data, four sets of image augmentations were selected and applied 

randomly from six types of augmentations: 900, 1800, and 2700 rotations and horizontal, vertical, and 

transpose flipping. These augmentations are reasonable to make since the expected road orientation can 

be at any angle. The model was trained using Adam optimizer (Kingma & Ba, 2015), selected for its ease 

of implementation and computational efficiency. An initial learning rate of 0.00001 (i.e., 10-5), obtained via 

hyperparameter tuning, was used to train for a maximum of 100 epochs, which were capped off via early 

stopping on the plateau of validation accuracy with a tolerance of 15 epochs (smaller value was used for 

tuning). This strategy stopped the training and saved the best model weights when the model was no 

longer improving for 15 epochs, preventing overfitting and reducing training time. The learning rate was 

reduced stepwise throughout the training at a rate of 0.5 (i.e., halving the learning rate) every 20 epochs 

based on tuning results. A different learning rate schedule was used for the Planet images with a rate of 0.5 

every ten epochs (see the section below for reasoning). Both L1 and L2 regularization techniques were 

applied since the model had a strong tendency to overfit. These regularizations will penalize larger weights 

within the model, hence reducing the complexity of the model, i.e., its tendency to overfit. 

 

5.2.5. DL model tuning 

 

The U-Net model was tuned to develop a model of the best possible hyperparameters with due 

consideration of computational limitations. Since deep learning models have several hyperparameters, the 

tuning was done in a divided manner. As per Goodfellow et al. (2016), DL model development should be 

started from the simplest implementation, ensuring the model’s capability to overfit on the training data, 

after which improving parameters can slowly be included to get the best model. This approach ensures the 

expected functionality of the model. Accordingly, the model was tested and confirmed to overfit on the 

training dataset. Next, a suitable initial learning rate was established empirically, with default settings for 

other hyperparameters, balancing between the overshooting problem of high learning rates and the 

slowing effect of low learning rates. Then the first group of hyperparameters, i.e., L1 and L2 regularization 

rates and focal loss function hyperparameters, were tuned using the selected learning rate and default 

settings for other hyperparameters. Lastly, the model was refined by tuning the batch size and learning rate 

schedule (i.e., decay rate and steps). Due to processing limitations, the batch size was limited to lower 

numbers (i.e., at the cost of time). This strategy for tuning the model was found reasonable because the 

strength of influence in the model performance of each of those hyperparameters follows the same order, 

and thus makes tuning hierarchical and easier to understand hyperparameters’ influences. The tuning of 
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the last two groups was automated through a random search algorithm. This algorithm goes through the 

multiple parameter combinations within the hyperparameter space randomly until the limit of maximum 

trials, i.e., 7 and 12 in this case, respectively, for each group of hyperparameters. The best hyperparameters 

obtained after tuning are shown in Table A 7.7 of the Appendix.  

5.3. Performance Evaluation 

 

Several ML performance evaluation metrics, particularly those relevant to image segmentation tasks, were 

considered to comprehensively address the research questions and investigate the potential of the RPQ 

mapping method proposed in this study. An inherent challenge distinctive to RPQ mapping (semantically 

segmenting) is class imbalance within the target data. This imbalance is caused by the minuteness of the 

road defect features (in pixels) within satellite images. Evaluating models under heavy data imbalance is a 

paradoxical undertaking. The major class(es) can overshadow the minor ones and display near-to-perfect 

performance in several metrics, such as overall accuracy. Even though directly using the confusion matrix 

to assess the misclassifications is insightful, it raises difficulty in comparing results with other works. Based 

on the literature review, precision, recall, and F1-score are known to be particularly useful in evaluating the 

performance of machine learning models on imbalanced datasets. Jaccard index or intersection-over-union 

has also been used widely specific to segmentation evaluation. 

 

Balanced accuracy weighted by per-class rarity weights was used during training to assess performance 

over the validation set. Balanced accuracy is the class averaged (also called macro averaged) recall. When 

weighted with the rarity (inverted frequency), this accuracy score rewards detection of the rare class more 

than others (Brodersen et al., 2010; Cohen et al., 2006; Gupta et al., 2020). The use of this metric helped 

optimize the model to be sensitive in detecting bad and very bad road pixels. 

 

During testing (evaluation), class-wise metrics and scalar summaries were used to assess the generalization 

of the models. The scalar summaries were used to report and compare experiment accuracies and select 

the best performing model. The metrics used for this report are precision, recall, F1-score, and IoU. 

Macro averaging, the average of the scores over the classes, was used to calculate the one value summaries 

for each metric. It was preferable to the alternative, i.e., micro averaging, since it assigns equal weight to all 

classes, contrary to assigning more importance to the higher-frequency class (Branco et al., 2016). As such, 

the macro summary will report low accuracy when there is low performance in the minor class, while the 

micro reports high performance overwhelmed by the majority class. Balanced accuracy is similar to macro 

averaged recall score. Rescaling the balance accuracy value between 1/(1 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠) and 1, 

adjusted balanced accuracy was used to preliminarily identify models performing worse than a random 

classifier, i.e., score less than 0 (Brodersen et al., 2010; Guyon et al., 2015). On a single model assessment 

basis, the precision, recall, F1-score, and IoU for each class, along with the confusion matrix, were 

analyzed to distinguish which class is poorly classified. 

 

Moreover, the precision-recall curve was utilized to analyze the uncertainty related to model predictions 

and further refine good-performing models (based on previous metrics) through the visual illustration of 

model precision and recall at different model confidence levels. This approach enabled the interpretation 

of model performance as a trade-off in information quality relating to the various purposes and target 

users of the results. 

5.4. Experimental setup 

 

The patch images dataset was split for training, validation, and testing (evaluation), as shown in Table 5.2. 
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Table 5.2 Train-validation-test data split of Sentinel-2 and Planet patches 

Source Mosaic Total number 

of patches 

Training set 

(70%) 

Validation set 

(15%) 

Testing set 

(15%) 

Sentinel-2 619 433 93 93 

Planet 795 556 120 119 

  

Experiments were set up based on the two machine learning models selected to assess their performance 

in the task of road pavement quality segmentation from optical satellite imagery datasets sourced and 

processed via different methods. The imagery datasets consist of the raw (spectral unmixing not applied) 

Sentinel-2 images (S), unmixed Sentinel-2 images (SU), combined Sentinel-2 images (SC) (unmixed stacked 

together with the raw ones), and Planet images (P). These datasets were analyzed using the U-Net and 

random forest models to establish eight experiments, as shown in Table 5.3. 

 
Table 5.3 Model experiments undertaken and their designation 

Model Dataset Experiment 

Designation 

U-Net Raw Sentinel-2 images (S) DL-S 

Unmixied Sentinel-2 images (SU) DL-SU 

Combined Sentinel-2 images (SC) DL-SC 

Planet images (P) DL-P 

Random Forest Raw Sentinel-2 images (S) RF-S 

Unmixied Sentinel-2 images (SU) RF-SU 

Combined Sentinel-2 images (SC) RF-SC 

Planet images (P) RF-P 

 

All the experiments were conducted using a 12 core Intel® Core™ i7-9750H CPU @ 2.6 GHz with 16 

GB RAM and a single NVIDIA Quadro T1000 GPU with 4 GB dedicated memory. The U-Net model is 

accelerated by the GPU (and partially by the CPU for processing data feed), while the CPU undertakes the 

processing for the RF model. Multiprocessing and multithreading approaches were applied where 

possible. All the code implementations in this research were based on python programming language 

using the library modules and frameworks described in Table 5.4. 

 
Table 5.4 Programming frameworks and libraries used for the implementation of the experiments 

Tasks Python Library/Framework 

Data acquisition 
GEE python API, 

Planet python API 

GMM clustering, PCA, RF model, 

and performance metrics 
scikit-learn 

U-Net model and data pipeline TensorFlow 

Feature creation scikit-image 

Model tuning kerastuner 

Raster and vector processing Rasterio, GDAL/OGR 
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6. RESULTS AND DISCUSSION 

This chapter reports and critically discusses the results of the experiments undertaken to investigate the 

potential of different strategies in using satellite imagery to extract road quality. Only the essential and 

most relevant results are displayed in this chapter to reduce cluttering. For the complete report of the 

results, see Appendix: Annex 7. The chapter will be divided into sections that transition from discussing 

the initial results to interpreting the sources of uncertainty and proposing modifications to address them. 

6.1. Performance results of the experiments 

6.1.1. Results of the RF model 

 

The performance evaluation results of the RF model are presented in Table 6.1. The RF model produced 

an overall subpar performance across each accuracy metrics under all three datasets considered for the 

experiment. Experiment RF_SU, trained and tested on the unmixed dataset, showed the poorest 

performance with a recall accuracy of 44.88% (below 50%) and an even lower precision of 28.15%. This 

result indicates that the RF_SU model was not able to classify the RPQ labels sufficiently and correctly. 

The corresponding adjusted balanced accuracy, i.e., 28.15%, was also edging close to zero, indicating a 

near-random prediction. This aspect implies that the abundance maps from the unmixing were not helpful 

features for the RF model to classify road conditions. The lower performance of RF_SC compared to 

RF_S, indicating the degrading effect of adding the abundance maps as features, further demonstrates this 

aspect.  Considering the correctness of predictions (how many predictions were actually correct), i.e., 

precision and an F1-score, the RF_S model showed the best performance with a precision of 34.03% and 

an F1-score of 37.67%. On the other hand, at the cost of incorrectness, the RF_P was able to return the 

most complete classification with a recall of 57.90%. The harsher metric, IoU, was commonly below par 

for all experiments, with the top performance coming from the RF_S experiment (32.22%). 

 
Table 6.1 Comparison of the performance of different experiments considered for the RF model 

Experiment Macro 

Precision 

Macro 

Recall 

Macro 

F1-score 

Macro 

IoU 

Adjusted 

Balanced 

Accuracy 

RF_S 34.03% 53.72% 37.67% 32.22% 38.29% 

RF_SU 28.15% 44.88% 29.02% 24.96% 26.51% 

RF_SC 32.13% 51.06% 35.22% 30.23% 34.74% 

RF_P 29.81% 57.90% 31.60% 27.59% 43.86% 

 

The confusion matrix for the best overall performing RF experiments, i.e., RF_S and RF_P, shown in 

Figure 6.1, will help further analyze the performance of the models (see Appendix: Annex 7 for the other 

confusion matrices). In each box intersecting between the true and predicted, the confusion matrix in 

Figure 6.1 shows the total classified pixels (top) and percentage correctly classified (i.e., prediction 

normalized) by the model (bottom). The color shades are visual guides, for which a strong diagonal (left to 

right) shade indicates good performance. However, as illustrated in both results, the box shades are 

stronger in the top two rows, i.e., ‘non-road’ and ‘good’ road classes. This aspect indicates that 

significantly large amounts of ‘non-road’ pixels are misclassified as ‘good,’ ‘bad,’ and ‘very bad’ road. The 
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same can be observed between the ‘good’ road class vs. ‘bad’ and ‘very bad’ road classes. These 

misclassifications drag the precision and F1-score of the corresponding classes (see Table A 7.8), which 

ultimately drag the macro summation scores of the classifier to be very small. This misclassification is 

strongly evident in experiment RF_P (right), and even more so in the other two models, i.e., RF_SU and 

RF_SC (see Figure A 7.4 and Figure A 7.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The two basic criteria to assess the performance of the models are: (1) whether they can correctly classify 

the road pixels from non-road ones, and (2) the classification capability between good, bad, and very bad 

road segments. In this sense, the former criterion poses strong importance in distinguishing between 

asphalt (tar) road and bare soil or unpaved road. This distinction can be made in one of the two ways: the 

model can make hard classifications, labeling bare soil and unpaved road areas as ‘non-road,’ or it can 

classify it as ‘bad road’ or ‘very bad road.’ The latter is feasible since damaged roads display similar spectral 

characteristics as bare soil/unpaved (or completely worn out) roads (Herold et al., 2004, 2008). Moreover, 

under the scope of this study, it is of less importance to necessitate stringent delineation of road segment 

from other land covers (except bare soil and unpaved road) than it is to detect road distresses correctly 

and completely. 

 

Accordingly, both models overpredict for the ‘road’ class in general (good, bad, and very bad), with the 

RF_P showing very strong signs of this misclassification, illustrated by the darker shades in the last three 

columns at the top row in Figure 6.1 (right). However, they both do predict most of the true road 

segments correctly, with a very small number of true ‘road’ pixels misclassified as non-road, as shown in 

the lighter shades in the bottom three rows of the first column of Figure 6.1. Within the three road 

condition classes, similar overestimation can be observed in both models; the RF_S model, however, 

shows more conservative predictions by classifying most road segments as ‘good’ (see Figure A 7.3). 

6.1.2. Results of the DL model 

 

The performance results of the U-Net model (DL), shown in Table 6.2, indicate a slight improvement 

from the RF model performance across all metrics, particularly the DL_S and DL_P experiments. The 

DL_SC model performed worse than its corresponding RF_SC experiment with an F1-score and IoU 

measure of 29.31% and 24.94% compared to 35.22% and 30.23% of the latter. The recall rates showed 

significant improvement for all the DL experiments. The relatively poor performance in using the SU and 

Figure 6.1 Prediction normalized confusion matrix of experiments RF_S (left) and RF_P (right) 
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SC datasets persists in the DL model, which imposes the need for further assessment of the sources of 

error in the unmixing procedure to explain the performance degradation effect of the obtained abundance 

maps as features for learning. Model DL_S, with a 37.93% F1-score and 32.40% IoU, can be selected as 

the best performing DL model with respect to all the measures except for recall, on which the DL_P 

model edges slightly with a score of 61.39%. The DL_S model outperforms all the RF models as well. 

 
Table 6.2 Comparison of the performance of different experiments considered for the DL model 

Experiment 

Macro 

Precision 

Macro 

Recall 

Macro 

F1-score 

Macro 

IoU 

Adjusted 

Balanced 

Accuracy 

DL_S 35.62% 61.32% 37.93% 32.40% 48.43% 

DL_SU 28.69% 48.99% 29.32% 25.22% 31.99% 

DL_SC 28.92% 52.88% 29.31% 24.94% 37.17% 

DL_P 34.90% 61.39% 36.54% 31.75% 48.51% 

 

The confusion matrix for experiments DL_S and DL_P are shown in Figure 6.2 (see Appendix: Annex 7 

for the other confusion matrices). A similar trait of misclassifying ‘non-road’ pixels as ‘good’ or ‘bad’ or 

‘very bad’ observed in the random forest models is also displayed in the confusion matrix of the DL_S 

and DL_P models. They show similar performance as the RF_S model in identifying the road pixels. 

DL_P, however, shows the most balanced road distinction (correctness and completeness). In 

distinguishing between the three road classes, both models show more or less similar performances. 

However, they have contrasting performance compared to RF_S, producing more complete RPQ 

segmentation at the cost of stronger overprediction of road defects (shown by higher percentages in the 

last two columns of the second row). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1.3. Visual comparison of the results 

 

An example of the prediction of the four models selected randomly is shown in Figure 6.3(a). The 

overestimation of the ‘bad’ and ‘very bad’ road classes indicated upon by the performance metrics is 

visually displayed here. Significantly larger segments of the road are predicted to be bad or very bad 

Figure 6.2 Prediction normalized confusion matrix of experiments DL_S and DL_P 
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compared to the reference data. This aspect is more apparent in the models trained on Planet imagery 

Figure 6.3(b), i.e., RF_P and DL_P, in which almost all the road section is predicted as either in bad or 

very bad condition. This overestimation can be attributed to the fact that these models were tuned to 

maximize the weighted balanced accuracy (macro recall), which encourages the predictions of the minor 

classes, i.e., ‘bad’ and ‘very bad’ road in this case.  A peculiar case is displayed in the result of RF_P in 

which the road condition labels are overestimated in contrasting areas to the reference. Though RF_S 

shows the least exaggeration of the poorness of road quality, it fails to extract the road section within the 

urban area. In this regard, the DL_P experiment shows a good distinction between road and urban 

coverage, while the other two, i.e., DL_S and RF_S, tend to misclassify some of the urban coverage as 

road or ‘bad’/’very bad’ class. The road is wider in all the experiment predictions, which explains the large 

number of misclassified ‘non-road’ labels. 

 

Figure 6.4 demonstrates the effect of water features within the image on the predictions of the models. All 

experiments misclassify the river in the image as a ‘good’ road or even ‘very bad’ road. The reason for this 

effect is the spectral similarity of asphalt road and water in satellite imagery (Yang et al., 2018) and, more 

related to this case, the small representation of water features in the imagery dataset. Additionally, the 

figure demonstrates the severe misclassifications by the models, particularly evident in models trained and 

tested on the Planet imagery data, Figure 6.4(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RF_S DL_S RF_P DL_P 

Figure 6.3 Comparison of predictions of (a) experiments RF_S & DL_S and (b) experiments RF_P & DL_P 

(b) 
(a) 
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6.1.4. Concluding remarks on the results of the experiments 

 

RQ-1.1. Does a deep learning method yield better performance in mapping RPQ compared to 

a shallow machine learning algorithm? 

Overall, the top two performing experiments from each model were RF_S, RF_P, DL_S, and DL_P, as 

shown in Table 6.3. The DL_S experiment showed the best performance score, with DL_P and RF_S 

following at slightly lower scores. This aspect indicates that the deep learning method, in the form of U-

Net, yielded better performance in mapping road pavement quality from optical satellite imagery rejecting 

the null hypothesis (H0) under RQ-1.1. and confirming the alternative hypothesis (H1). This result is 

expected considering deep learning models are particularly designed for computer vision tasks such as this. 

However, some factors on the implementations of the random forest, such as the mini-batch training and 

basic feature extraction, can be attributed to the lower performance of the RF experiments. Considering 

that their score falls only slightly lower from the top accuracy, improving those limiting factors and 

obtaining enhanced performance from the RF models is possible. Additionally, the RF models tend to 

predict RPQ more conservatively, favoring correctness more than complete detection, while the DL 

models favor completeness (recall) more than correctness. The use of focal loss, which encourages 

detection of minor classes, i.e., defects, can be attributed to this contrast. 

 
Table 6.3 Summarized comparison of the performance of the two best experiments from each model 

Experiment 

Macro 

Precision 

Macro 

Recall 

Macro 

F1-score 

Macro 

IoU 

Adjusted 

Balanced 

Accuracy 

RF_S 34.03% 53.72% 37.67% 32.22% 38.29% 

RF_P 29.81% 57.90% 31.60% 27.59% 43.86% 

DL_S 35.62% 61.32% 37.93% 32.40% 48.43% 

DL_P 34.90% 61.39% 36.54% 31.75% 48.51% 

 

RF_S DL_S RF_P DL_P 

(a) 

Figure 6.4 Comparison of the effect of water feature on the predictions of (a) models RF_S & DL_S and (b) 
models RF_P & DL_P 

(b) 
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RQ-2.1.  How does using Planet imagery with higher spatial resolution affect the performance 

of the model compared to using Sentinel-2 imagery? 

Comparing the datasets used in the experiment, the Sentinel-2 dataset, despite having a lower spatial 

resolution, produced better results in both models compared to the Planet imagery. This result confirms 

the alternative hypothesis (H1) under RQ-2.1, which stated that using Planet imagery would yield equal or 

worse performance in extracting RPQ compared to using Sentinel-2 imagery. This outcome can be 

attributed to the additional two bands in Sentinel-2 imagery, i.e., SWIR1 and SWIR2, which are 

informative indicators of the condition of asphalt roads (Herold et al., 2004, 2008; Özdemir et al., 2020), 

that improved. Consequently, it demonstrates the viability of use Sentinel-2 imagery data to map road 

pavement quality. However, it is important to note that the results tend to overestimate the severity and 

extent of the defects compared to the reference data. 

 
RQ-3.1.  Can the performance of the models be improved through the application of spectral 

unmixing as a pre-processing step? 

The poor performances exhibited by RF_SU and DL_SU indicate that the unmixing procedure does not 

improve the models’ performance in mapping RPQ, which confirms the null hypothesis (H0) under RQ-

3.1. Combining the abundance maps (i.e., outputs from spectral unmixing) as additional bands with the 

raw Sentinel-2 images further reduced the models’ performance compared to using only the raw ones. 

This aspect further consolidates that including spectral unmixing in preprocessing did not improve 

performance. 

 

Although the results largely addressed the objectives outlined for this research, there is a substantial 

amount of uncertainty attached to these implications. In that regard, it is important to identify the points 

of uncertainty that hinder the potential of the proposed methodology, which the following subsection will 

address. 

6.2. Sources of uncertainty 

 

The challenge in assessing the quality of information about minute features such as road defects extracted 

from granular primary data lies in addressing the various levels of uncertainty that come along with it. The 

following sources of uncertainty were identified, considering the intricate details of processing undertaken 

during this investigation. 

 
Imagery artifacts: refer to uncertainties arising from undesired features existing within the raw imagery data 

or developed during the basic pre-processing. It includes light (cirrus) cloud cover that might interfere 

with the spectral effect and cause misclassifications, mosaicking artifacts on the edge of original tiles 

shapes, and loss of information during resampling of Bands 11 and 12, among others. 

 

Unmixing procedure: The unmixing procedure can be considered as one of the most error-prone elements in 

the methodology since it consisted of several intricate processing steps. Hence, the default in performance 

of the models using images processed through this method. Nevertheless, the value of this procedure in 

the task of road quality assessment is not to be diminished, hence entails further work to explore the 

applicable potential. 

 

Reference data reliability: This source of uncertainty is particularly challenging because of the vector 

characteristics of the data causing complications in transforming to a label raster. In addition to the 
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inherent spatial inaccuracy of the data, converting it to a label raster poses several challenges. All the 

vector transformations applied to locate the point within a tolerable level spatial inaccuracy (i.e., 50 m 

transverse snapping-to-road distance) combined with the effect of rasterization kernel can be pointed out 

as possible sources of uncertainty. Of course, the granularity of the Sentinel-2 imagery irons out these 

uncertainties to some extent. In this reasoning, the considerable degradation in model accuracy on the 

Planet data can also be attributed to this effect, among other causes.  Nevertheless, a significant vector 

shift from the collected reference point can mean a difference in raster pixel being labeled as ‘bad road,’ 

and in this sense, the accuracy metrics can no longer be a fully viable option to decide on a performing 

model. Moreover, the reliability of the collected RPQ data, which can be significantly perturbated by 

various driver and vehicle behaviors (Wang, 2018), can cause significant challenges to the reliability of 

models trained based on them. 

 

Differences in timeline: The various ranges of time with which the datasets for this investigation were 

collected have a substantial effect, particularly in this case, since road quality is not a static feature. In 

addition to the gradual changes in quality various transient visual interferences can occur over the road 

surface, such as sand cover and collecting water, that distort reflectances and induce ‘false alarm’ 

prediction of bad road section by the models. Although the latter features are more difficult to distinguish, 

their transient characteristics allow for smoother reports by aggregating several temporal predictions to 

even out their effects. Sentinel-2 imagery, with a 5-day cycle, is very well suited for this task. Nevertheless, 

it is still a factor of uncertainty to consider since such readings can mislead other more time-sensitive 

users, such as truck transporters planning their routes. On the other hand, the gradual changes made 

training and validating the models on the available data a difficult undertaking. Between the date of 

collection of the reference data and the sensing date of the imagery, the road pavement can deteriorate 

and display distresses or undergo rehabilitation such as patchwork. These changes would entail a 

discrepancy between the reference data and the information extracted from the satellite imagery and 

devalue the validation to some extent. In this sense, it would be difficult to tell which data is correct.  

 

Undetectable defects: In realizing the limitations of the approach employed here, it is important to note that 

some road defects, perhaps at the threshold of 3 meters size as Radoux et al. (2016) suggested, cannot be 

detected in the Sentinel-2 imagery or even in Planet imagery (at 4.7 m resolution). However, the reference 

data is less limited by these traits and therefore includes some of these features, which by training the 

models on this data to detect these features, we are asking a near-impossible task. The resulting product 

can be deceptive by mimicking the reference data through the overfitting characteristics of ML models. 

Although the data has been preprocessed to remove some of these features based on their RPQ 

annotations, as mentioned in Section 5.1.2, it is possible that some might have passed through since their 

annotations do not describe their overhead distinguishability. 

 

The fine line between ‘bad’ and ‘very bad’ roads: The categorical classification of road quality is often made 

subjectively. Since the standard of categorizing the severity of the detected defects of the reference data 

has not been reported, it has to be considered that these categories can be interpreted in other ways. 

Moreover, in using medium resolution satellite imagery to detect these features, the distinguishing line 

between these categories is further thinned since typically, they will only display minimal differences in 

spectral characteristics unless viewed with high-resolution HSI imagery (Herold et al., 2008). This effect 

can influence the performance of the ML models by inducing confusion between ‘bad’ and ‘very bad’ road 

classes, which is observable from the confusion matrix results in Sections 6.1. 
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Model uncertainty: ML classifiers are probabilistic learners, which means that they undertake classification by 

estimating the probability of a certain data belonging to a certain class. Accordingly, these classifiers have 

their own confidence level in assigning classes (Brownlee, 2020), which contributes to the overall 

uncertainty of the obtained information product. 

 

Unknown utility: Considering the target users this research aims to address, i.e., transporters, traders, and 

road authorities in Ghana and Burkina Faso, it is implausible to decide how such products can be used 

without having a certain level of stakeholder engagement. Accordingly, it is valuable to realize that some 

users prefer products with low false alarm rates. In contrast, some would rather have high detection rates 

towards estimating the maximum risk incurred from these defects. Therefore, this unknown utility 

encourages the inclusion of some degree of flexibility in the model’s predictions, a trait that will be further 

discussed in Section 6.2.5. 

 

Towards addressing these uncertainties, the following subsections describe findings corresponding to the 

sources of uncertainty mentioned above. 

6.2.1. Validation on Street View information 

 

Street View images collected from Google Earth were used in this study with the aim of offering an 

additional degree of observation and reducing (if not accounting for) uncertainties caused by time 

differences, reference data reliability issues, and undetectable road defects as noted in the previous section. 

Fortunately, the Street View images available for long segments of the corridor were collected in April 

2016, which is close enough to the reference observation timeline to infer some insight on the results 

obtained in this study. The results from the best performing model, i.e., DL_S, were used for this 

assessment. The figures presented below show the model prediction (top left), reference label (top 

middle), Google Earth image (top right), and the Street View images referenced by the numbered circles 

numbers in the top images. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 6.5 Model DL_S predictions compared with the referenced data and Street View images 
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From the first impression of Figure 6.5, a simple conclusion can be drawn that the model predictions are 

misclassifying most of the road section as ‘bad’ (indicated by large yellow coverage on the predictions). 

Upon observation of scenes from Street View, the road is covered with frequent patch fixes (at almost 

regular intervals throughout) that appeared to be applied close to the time of the Street View images. 

Noting from the RPQ annotations from the CHEETAH data, most of the RPQs in this section were 

rough patches. The circles labeled 1 and 2 are observations of these fresh patches, which were identified as 

a defect in the corresponding timelines of the reference data and predictions. The observation of these 

rough patches on Street View provides a plausible explanation that these patches deteriorated during the 

time difference and got detected as RPQ defects in the reference data and hence predicted as such by the 

models. The larger spatial extent observed as overestimation in the model prediction can be explained by 

the degree of deterioration of these patches at the time of imagery and the length of the patches, which, as 

shown in label 2 in Figure 6.5, can extend very long. A particular discrepancy observed in label 4, which is 

the missing road section in the predictions, is explained as a good performance in clipping out vegetation 

from the road while also showing predictions in between the occlusions. Moreover, label 3 shows a ‘bad’ 

road prediction also evident in Street View, missing in the reference data. The corresponding defects were 

found to be bridge expansion joints that were mislocated in the reference data upon inference from the 

RPQ annotations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Like the previous example, we can observe a large overestimation of road defects. In fact, almost all of the 

road section is classified as either ‘bad’ or ‘very bad’ road by the DL_S model. These exaggerated 

predictions were proven incorrect from observation of Street View on the road section, although the 

timeline and other factors can still be plausible explanations aside from model incorrectness. Circles 3 

shows an instance of this misclassification where the model predicted a ‘very bad’ road, while no road 

Figure 6.6 Model DL_S predictions compared with the referenced data and Street View images 



MAPPING ROAD PAVEMENT QUALITY FROM OPTICAL SATELLITE IMAGERY USING MACHINE LEARNING 

 

47 

defects were identified on the Street View images and the reference data displayed only a small patch of 

‘bad’ road. On the other hand, circles 1, 2, and 4 demonstrate agreement between model prediction and 

reference data. Circle 1 and circle 2 were also confirmed on Street View, displaying a worn-out concrete 

speed table and an edge break-off, respectively. However, detection of road defects (annotated as speed 

bumps and rough patches) shown in the predictions and reference data under Circle 4 could not be 

confirmed on Street View. 

6.2.2. Identifying undetectable defects 

 

As noted previously, it is important to delineate the limits of the proposed methodology such that its 

utility is well defined. By comparing the predictions with the reference data and associating this 

information with the defect annotations that were also rasterized for this assessment, a simple statistic on 

the type of road defects correctly identified by model DL_S was obtained. This statistic is presented in 

Figure 6.7. From these findings, we could infer that some road defects, such as road joints, have poor 

detection rates while rumble stripes, which typically have broader spatial coverage, have more than 50% 

detection rate. Interestingly, out of the three corrugated road features, all were detected by the model. 

Although this assessment is very sparse to offer insight into selecting which defects to detect in such a 

methodology, robust information on these detectability rates can be estimated through the aggregation of 

dense temporal data collections. In this sense, it could enable the standardization of such remote sensing 

approaches in detecting road defects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.3. Three-class RPQ segmentation 

 

At the cost of losing information depth, the classes of the RPQ segmentation were decreased from 4 to 3 

(aggregating the ‘bad’ and ‘very bad’ classes as one ‘bad’ road class) to investigate the effect on mitigating 

the uncertainty related to the classification confusion between the two aggregated classes. Of course, this 

would entail an increase in the performance metrics scores, the significance of which will be investigated 

in this section. The DL (U-Net) and RF models were considered for this experiment undertaken with the 

plain Sentinel-2 and Planet imagery datasets. The designations for the experiments are RF_S_3C, 

RF_P_3C, DL_S_3C, and DL_P_3C, representing the RF model on the Sentinel-2 and Planet data, and 

the DL model on the Sentinel-2 and Planet data, respectively. 

 

Accordingly, Table 6.4 shows the performance evaluation results of these experiments. In each 

experiment, significant improvements can be observed throughout all scores. Their adjusted balanced 

Figure 6.7 Percent correctly detected for each road defects 
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accuracies are also well above 50%, indicating an overall good performance. Experiments RF_S_3C and 

DL_S_3C were the top performers from their respective model groups (i.e., RF and DL). DL_S_3C tops 

the list in all measures with an F1-score and IoU of 53.65% and 46.03%, comparable to previous remote 

sensing-based road quality assessment works (Karimzadeh & Matsuoka, 2021) and even to recent road 

extraction works (Oehmcke et al., 2016). Figure 6.8 and Figure 6.9 show some example patches 

demonstrating the results of the three-class RPQ segmentation for experiments DL_S_3C and DL_P_3C. 

From these figures, we can observe the improvement in the overestimation of road defects, although it is 

still present. 

 
Table 6.4 Performance results of the three-class RF and DL models 

Experiment 

Macro 

Precision 

Macro 

Recall 

Macro 

F1-score 

Macro 

IoU 

Adjusted 

Balanced 

Accuracy 

RF_S_3C 45.33% 73.84% 48.78% 41.88% 60.77% 

RF_P_3C 40.50% 75.80% 43.56% 37.86% 63.71% 

DL_S_3C 50.95% 81.44% 53.65% 46.03% 72.17% 

DL_P_3C 47.00% 75.89% 51.34% 44.36% 63.84% 
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Figure 6.9 Three class RPQ segmentation result for experiment DL_P_3C 

Figure 6.8 Three class RPQ segmentation result for experiment DL_S_3C 
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6.2.4. Spectral Analysis 

 

Due to various pre-processing levels involved in this study's methodology, it is important to track how 

much spectral information is retained from the original features of RPQ defects to assess the source of 

uncertainty related to these pre-processing steps. This subsection discusses this aspect by describing the 

spectral characteristics of the datasets used at various processing stages. A basic spectral index-based 

analysis was used to describe these spectral characteristics. Accordingly, three spectral indices and their 

ideal land use/land cover classification indices adapted from Chen et al. (2006) were used. The indices 

used are Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1973) in Eq.(6-1), Normalized 

Difference Water Index (NDWI) (B. C. Gao, 1996) in Eq. (6-2), and Normalized Difference Built-up 

Index (NDBI)  (Zha et al., 2003) in Eq. (6-3). These indices are formulated to identify vegetation, water, 

and built-up areas, respectively. The recommended classification value ranges for different land use/cover 

types as used in Chen et al. (2006) are described in Table 6.5. It is important to note that the use of these 

indices is not intended as an additional hard classification method but as means of inferring distinguishing 

patterns of features in the data. 

 

 
 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
=

𝐵𝑎𝑛𝑑 8 − 𝐵𝑎𝑛𝑑 4

𝐵𝑎𝑛𝑑 8 + 𝐵𝑎𝑛𝑑 4
 (6-1) 

 

 

 
𝑁𝐷𝑊𝐼 =  

𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅
=  

𝐵𝑎𝑛𝑑 3 − 𝐵𝑎𝑛𝑑 8

𝐵𝑎𝑛𝑑 3 + 𝐵𝑎𝑛𝑑 8
 (6-2) 

 

 

 
𝑁𝐷𝐵𝐼 =  

𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅
=  

𝐵𝑎𝑛𝑑 11 − 𝐵𝑎𝑛𝑑 8

𝐵𝑎𝑛𝑑 11 + 𝐵𝑎𝑛𝑑 8
 (6-3) 

 

 

Where GREEN, RED, NIR, and SWIR represent the green, red, near-infrared, and short-wave infrared 

channels of the spectrum. The equations on the left-hand side are those used as per Sentinel-2 band 

notation. 

 
Table 6.5 Spectral indices value ranges for different land use/cover types adapted from Chen et al. (2006) 

Land use/cover 

types 
NDVI NDWI NDBI 

Built-up < 0.2 < 0 0.10 – 0.30 

Bare land < 0.2 < 0 > 0.25 

Vegetation > 0.2 > 0.05 < 0 

Water < 0 > 0 < 0 

Semi-bare land > 0.2 > 0 > 0.2 

 

At first, we will assess the spectral characteristics of pixels categorized as ‘good,’ ‘bad,’ and ‘very bad’ road 

based on the referenced data. Box plots were used to better visualize the distribution of the data across the 

values of the indices. Figure 6.10 shows the box plots of NDVI (top left), NDWI (top right), and NDBI 

(bottom center) for each class. From this figure, we can infer that most of the pixels in each class have 

NDVI values below the threshold (indicated by the top of the boxes, i.e., the upper quartile or at least 
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75% of the data, falling below). This aspect means that these classes are considerably differentiable from 

vegetation. The plot also indicates the consistency of these values, as shown by the small height of the box 

and whiskers. However, some representative data points (around 25% for the ‘good’ class) and the outliers 

display higher NDVI values. This aspect is typically an indication of mixed pixels caused by nearby or 

over-the-top (tree) vegetation imposing spectral interference on the road. The box plot of the NDWI 

shows a clearer distinction between water features and roads, with only some outliers that can be 

explained by the inherent spectral similarity between fresh road and water features. The NDBI plot is 

trickier to interpret because the values for each class show slight differences, and the data points in each 

class are centered within the range of the built-up area indicator. Moreover, many outliers fall below that 

range, possibly due to the mixed pixel effect, as noted earlier. However, a slight rising trend is observable 

in the center of the data points, moving from ‘good’ to ‘very bad,’ indicating a potential distinguishability 

between the classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The spectral characteristics of endmembers obtained during unmixing can offer good insight into the 

drastic degradation caused by including these features for the ML algorithms. Primarily this helps in 

characterizing the clusters and determining whether there is a significant distinction between them. It also 

enables the proposal of mitigations for further research in this field. Accordingly, Figure 6.11 shows the 

respective box plots for the endmember clusters found by the GMM method employed in this study. 

From the NDVI boxplot, it can be inferred that cluster 1 (falling completely above the threshold) refers to 

vegetation, and cluster 5 can be an effect of mixed pixels or a semi-bare land cover. The NDWI plot 

distinguishes cluster 2 to contain some water feature endmembers as outliers. A possible explanation of 

this aspect is that cluster 2 refers to noisy data points that do not have enough representation to form 

Figure 6.10 Box plots of NDVI (top left), NDWI (top right), and NDBI (bottom) values of each RPQ class 
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clusters, which in this case would be water features and rooftops. The center of this cluster was shown to 

fall in the range of built-up coverage on the NDBI boxplot, further consolidating the explanation above. 

Cluster 3 stands out in the NDBI plot by large portions of the datapoints displaying high NDBI values 

followed by clusters 4 and 5 (excluding cluster 2). Consequently, given their significant spectral 

separability, these three clusters can reasonably be considered features usable to distinguish between 

‘good,’ ‘bad,’ and ‘very bad’ road and bare soil. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With these preliminary suppositions, it is evident that there is significant value in applying unmixing as a 

pre-processing technique. Nonetheless, the difficult task is transforming these endmembers into features 

usable by the ML algorithms, i.e., abundance maps. This transformation is strongly sensitive to the 

distribution of the data in each cluster. If there are outliers representing bare soil within a cluster 

describing ‘good’ roads, then it would mean that while most feature maps of this cluster represent the 

former, some will refer to the latter. This aspect confuses ML algorithms which depend on the consistency 

of the structure of features in the data, thereby degrading the learning process. Unfortunately, this defect 

was evident in the abundance maps obtained after unmixing (see Figure A 7.7). The creation of blank 

bands further exacerbates this aspect due to the absence of an endmember that belongs to that cluster 

representing the band within the patch considered. 

 

Finally, to assess the spectral features of the RPQ predictions, the results of experiment DL_S were 

explored (since it is the best performing model and enables the calculation of NDBI). Accordingly, the 

boxplots shown in Figure 6.12 describe the spectral characteristics of the RPQ classes inferred by the 

DL_S model. The plots show more or less similar traits as the reference RPQ pixels, albeit with 

Figure 6.11 Box plots of NDVI (top left), NDWI (top right), and NDBI (bottom) values of each endmember cluster 
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significantly larger outliers in each class for all three indices. Looking at the NDBI in particular, we can 

observe that the distribution center of the ‘good’ class falls lower than the other two, which entails ‘bad’ 

and ‘very bad’ class roads appear more similar to bare soil than ‘good’ roads do. This trait is also slightly 

apparent in the reference data, as noted previously. Although these traits are good indications of the ML 

model’s learning effectiveness, they are merely data statistics. The extending 25 percentile and outlier 

datapoints of each class would indicate significant misclassifications and thereby introduce more 

uncertainty to the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.5. Prediction probability analysis 

 

Supervised ML classifiers, including those used in this study, are typically probabilistic models (exceptions 

include Support Vector Machines). Probabilistic models make classifications by assigning probabilities to 

each class and naturally applying thresholds equivalent to the inverse of the number of classes, i.e., 0.5 for 

binary classifications, to produce crisp classification labels (Fernández et al., 2018). In this sense, for a 

binary classifier, if a class has a probability value of more than 0.5 for a data point, then that data point will 

be assigned to that class. The probabilities provide information on the model’s confidence in assigning 

that class and therefore are important factors to consider in assessing the uncertainty related to ML model 

classification. In practice, the thresholds for classification can be selected based on the application 

intended (Brownlee, 2020), which is valuable in this case to understand the uncertainties associated with 

model choices and propose trade-offs based on the uncertainty tolerance of the users. More importantly, 

the natural thresholds of ML models often may not represent the optimal classification based on the 

probabilities due to class distribution imbalance and the biased cost of misclassifying one class more than 

the others (Fernández et al., 2018). The former cause is strongly evident in our case, while the latter is also 

Figure 6.12 Box plots of NDVI (top left), NDWI (top right), and NDBI (bottom) values of each predicted class 
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an important factor in deciding the information quality as per the targeted user. According to this 

interpretation, the choice of the threshold depends on the optimization of model performance as well as 

the trade-off between the desired class error and the tolerable counter class error. This threshold selection 

is called threshold-moving and is commonly applied through the trade-off between precision and recall 

over the precision-recall curve (pr curve). The precision-recall curve is particularly suitable for an 

imbalanced dataset as it is intuitive in interpreting model prediction on imbalanced data (Saito & 

Rehmsmeier, 2015). Through threshold-moving, it is possible to evaluate a model using the pr curve, 

interpret the trade-offs, select the optimal threshold, and apply the threshold to make new predictions 

(Brownlee, 2020). 

 

In applying this approach for this assessment, the best performing model, i.e., DL_S, was selected here 

again. Figure 6.13 presents the frequency of prediction probability (i.e., how many times the model 

assigned a probability value to a certain class) for the selected model. This figure informs us of how 

confident the model assumes it is in predicting the respective class. In that regard, while the non-road class 

(top left) frequently shows high probabilities, the other classes are showing very small (0.0 to 0.2) 

probability values in most of their predictions. This aspect comes as an effect of class imbalance. 

Moreover, the probability maps obtained by removing the softmax operation from the last layer of the U-

Net model are shown in Figure A 7.8. They display the spatial distribution of the probabilities assigned for 

each class along with the final predictions made. From the figures, we can infer how small the threshold 

for the ‘bad’ and ‘very bad’ classes are set to be, which can explain the priorly observed model 

overestimation of those classes.  

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Based on the findings above, the precision-recall curve (pr curve) was employed to select the optimal 

threshold for the DL_S model prediction. Figure 6.14 presents the pr curve produced for the model (see 

Appendix for the pr curve of model DL_P for performance comparison). The dashed horizontal lines 

calculated from the frequency of the class in the dataset are an indicator for random performance, i.e., the 

same as the 0.5 probability for predicting a coin toss. A curve that falls below that line is considered less 

performant than a random classifier. This line is very high for the ‘non-road’ class (black dashed line), 

Figure 6.13 Frequency histogram of the prediction probabilities for non-road (top left), good (top right), bad 
(bottom left), and very bad road (bottom right) class 
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while it is barely visible for the ‘bad’ and ‘very bad’ classes. This aspect is an indication of the heavy class 

imbalance within the data. Based on the previously described criteria, the classifier for ‘non-road,’ ‘good,’ 

and ‘bad’ road classes are shown to perform better than a random classifier (black, turquoise, and yellow 

solid lines, respectively).  However, the classifier for ‘very bad’ road (solid red line) falls very close to the 

random classifier line, and it is possible that at some threshold value, it can fall below it. Considering the 

interpretation of these curves (Saito & Rehmsmeier, 2015), the ‘non-road’ classifications display a near-

perfect performance, while that of the ‘good’ road class are considered good performances. Given the 

degree of imbalance, the classifications of 'bad' roads can be taken as fair classifiers. However, the 'very 

bad' road classifier indicates poor performance, although not random in totality. The area under the curves 

(AUC) can also be used as a performance metric, with similar characteristics as F1-score. 

 

The selection of optimal threshold can be made from this curve by maximizing the F1-score, which is a 

balancing average between precision and recall and therefore optimizes both simultaneously. The 

precision-recall coordinates that correspond to this threshold are shown in the figure by the bold points 

on individual curves with the optimizing threshold and the respective maximum F1-score indicated in the 

plot legend. The class-wise selected thresholds, corresponding scores, and the overall performance are 

summarized in Table 6.6. Alternatively, these points can be visually located by using the iso-f1 curves, 

which are lines connecting points in the pr curves with equal F1-score. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14 Precision-recall for curve for model DL_S 
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Table 6.6 New performance scores of DL_S based F1-score optimized thresholding 

  Metrics 

Class Threshold P R F1 IoU 

Overall  40.80% 46.80% 42.89% 36.07% 

Non-road 0.06 99.24% 98.45% 98.84% 97.71% 

Good 0.38 46.98% 61.71% 53.35% 36.38% 

Bad 0.59 8.37% 20.42% 11.87% 6.31% 

Very bad  0.69 8.59% 6.65% 7.50% 3.89% 

 

 

The above thresholding leans to the conservative side, meaning that it favors more confidence (especially 

in the RPQ classes) than it does detections. For a sense of comprehensive understanding, the following 

tables present alternate thresholding results: the first one is based on an empirically selected threshold for 

this study, and the second one is from the opposite end of a conservative choice, i.e., favoring more 

detection (see below). The results demonstrate the corresponding trade-offs between precision and recall. 

 

 
Table 6.7 Performance scores of DL_S for empirical and non-conservative thresholding 

   Metrics 

Choice Class Threshold P R F1 IoU 

Empirical Overall  35.95% 60.67% 39.33% 33.41% 

Non-road - 99.93% 96.15% 98.01% 96.09% 

Good 0.28 37.84% 66.75% 48.30% 31.84% 

Bad 0.46 4.78% 40.95% 8.56% 4.47% 

Very bad  0.28 1.26% 38.83% 2.44% 1.23% 

Non-

conservative 

Overall  35.62% 61.32% 37.93% 32.40% 

Non-road - 99.97% 95.28% 97.57% 95.25% 

Good - 38.73% 59.35% 46.87% 30.61% 

Bad 0.1 2.63% 56.63% 5.02% 2.57% 

Very bad  0.1 1.18% 34.04% 2.28% 1.15% 

 

6.3. Limitations of this study 

 

This research recognizes two significant limitations in the undertaking of the investigation. The first 

limitation is the lack of reliable reference data for validation. Although the CHEETAH RPQ dataset was 

used as a reference to validate the experiments, the complications identified in the previous subsections 

raised challenges in validating the results of this study. An ideal source of reference data for validation, in 

this case, would have been in-situ collected data. However, due to the retrospective nature of this study, 

in-situ data was not possible to collect. Therefore, it would be of significant value to reiterate this work 

using ground collected data as a reference towards suitably evaluating the potential of the proposed 

approach. 
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Secondly, due to time limitations, the experiments designed for this study were not tested for variance in 

model initialization (i.e., different data split, neural network weight initializations, etc.) via multiple trials. 

These variances can be an additional source of uncertainty related to the models that can influence the 

applicability of the models. Moreover, the time limitation also restrained tuning of the models such that 

the optimal hyperparameter combinations were selected based on the Sentinel-2 dataset. Although the U-

Net model was slightly adjusted for the Planet imagery dataset by reducing the mini-batch size and 

learning, it is possible to obtain better results from the Planet dataset if the models were tuned 

accordingly. 
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7. CONCLUSION AND RECOMMENDATIONS 

With the motivation of addressing post-harvest losses (PHLs) in developing countries, this study identified 

the need for spatial information on road pavement quality among these regions. On the basis of a multi-

level conceptual framework for causes of food loss (HLPE, 2014), it was recognized that the provision of 

this information at a lower quality but in a timely and accessible manner could mitigate PHLs that occur 

due to poor road infrastructure. 

 

In this regard, freely accessible and lower resolution optical satellite imagery hold significant potential as 

primary resources to extract road pavement quality information.  However, perhaps due to the complexity 

of the task, there was limited existing research regarding the extraction of road quality information from 

lower resolution optical satellite imagery, such as Sentinel-2. Upon establishing the lack of a 

methodological body of work in this field, this research investigated the use of machine learning methods 

in the considered task. Accordingly, two machine learning (ML) models: a random forest and a U-Net 

model, representing the two frameworks of ML, i.e., shallow and deep learning, were explored. 

Additionally, a novel approach of integrating a spectral unmixing procedure was proposed to address the 

challenge of identifying minute details from low-resolution imagery. This unmixing procedure involved a 

local unmixing strategy that made use of the patch-based learning of the ML models to apply localized 

unmixing using a sparse statistical algorithm called SPICE (Zare & Gader, 2007). Towards this end, 

experiments were undertaken to investigate the performance of the proposed methods in using Sentinel-2 

satellite imagery to extract road pavement quality over a road corridor based on reference data collected 

for the road through crowdsensing. 

 

The results, although objectively subpar, were promising in realizing the use of such data sources for the 

timely accessibility of road pavement quality information. The best model, i.e., the U-Net deep learning 

architecture, reported an F1-score of 37.93% and an IoU of 32.40%. This result indicates that the deep 

learning model, i.e., U-Net, outperforms the shallow ML algorithm, i.e., random forest, confirming the 

alternative hypothesis (H1) under RQ-1.1 stated in the Section 3.2. The inherent heavy data imbalance 

does not allow comparison with typical segmentation task performance. However, the results were 

comparable to the relevant work by Oehmcke et al. (2016), which reported an F1-score of 35.70% and an 

IoU of 21.70% in detecting small roads from Sentinel-2 imagery using a discriminant model. Overfitting is 

a particularly challenging task in improving the performance of DL models learning from such strongly 

imbalanced data. Accordingly, deeper and intuitive convolutional networks with less tendency to overfit, 

such as DeepUNET (Li et al., 2018), should be explored in future related studies to improve DL model 

learning capacity. 

 

Moreover, the study also compared the use of Sentinel-2 imagery with that of Planet imagery in examining 

the relative potential of the Sentinel-2 imagery in the task. The results showed that Sentinel-2 images were 

more suitable than the Planet one in pixel-wise classification road pavement quality, reporting a higher F1-

score (37.93% > 32.40%) and IoU (36.54% > 31.75%). This outcome rejects the null hypothesis (H0) 

under RQ-2.1 and confirms the alternative, which stated that using Planet imagery would yield equal or 

worse performance in extracting RPQ compared to using Sentinel-2 imagery. The higher performance of 

using Sentinel-2 imagery can be attributed to the additional two bands in SWIR1 and SWIR2, which the 

Planet imagery does not possess. These bands have previously been identified as indicators of road 

deterioration (Herold et al., 2004, 2008; Özdemir et al., 2020). 
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The proposed methodology of integrating spectral unmixing as a pre-processing step for Sentinel-2 images 

proved to have a degrading effect on the performance of the models. Abundance maps, i.e., the outputs of 

spectral unmixing, stacked together with the raw Sentinel-2 image, showed significantly lower performance 

compared to that of only using the raw bands. This results implies that the null hypothesis (H0) under RQ-

3.1, which stated that applying spectral unmixing as a pre-processing step would not improve the 

performance of the models in mapping RPQ is confirmed.  Upon assessment of the intermediate 

products, i.e., the spectral features of endmembers and the abundance maps, the cause for the 

performance loss was identified to be the inconsistency in the band information structure of the 

abundance maps after endmember clustering. An abundance map corresponding to a certain endmember 

in one patch might end up representing another endmember in another patch. This inconsistency tends to 

confuse the ML algorithms and thus produce poor results. In this regard, this research recommends the 

exploration of more advanced unmixing techniques that can maintain consistency in structuring the 

endmembers globally. One such method can be the multiple endmember spectral mixture analysis 

(MESMA) method (Roberts et al., 1998) or its variants for a more automated procedure. 

 
Furthermore, the study assessed several sources of uncertainty related to the applicability of the proposed 

methodology. In addressing these uncertainties, several avenues of model analysis paradigms were 

explored. Using Street View as an additional degree of observation, a slightly more robust validation 

approach was established. The results of this validation revealed that a significant portion of the 

discrepancy between the model predictions and reference data could be explained by timeline differences 

and spatial granularity. Comparing several spectral indices of the RPQ classes from the reference data and 

predictions indicated that the best performing model is, for the most part (i.e., since there were outliers), 

learning to recognize the spectral characteristics of each class. The model’s capacity to detect defects was 

also assessed through cross-checking with the RPQ annotations. This result showed that some defects, 

such as rumble strips, which have a larger spatial coverage, are more frequently and correctly detected than 

others. These assessments helped to understand the limitations of the methodology. However, with these 

uncertainties in mind, it is recommended that the proposed approach be repeated on more reliably 

extracted and time-aligned reference data to realize the actual value of the methodology. 

 

Towards addressing the uncertainty regarding severity classes, a three-class RPQ classification model was 

presented. This model showed significantly improved performance with an F1-score of 53.65% and an 

IoU of 46.03%. Alternative to this approach, a flexible modeling paradigm in the form of probabilistic 

threshold moving was also explored. Assisted with heuristics of the precision-recall curve and the 

probabilistic nature of ML model predictions, the study showed that predictions of the models could be 

molded to suit the utility desired. This approach is grounded on the trade-off between precision and recall, 

which translates to the trade-off between ‘false alarm’ rate and incompleteness of information. Models can 

be developed using this approach to be applicable to various users under the basis of a single architecture. 

 

7.1. Reflection on the wicked problem of PHLs 

 
Significant value can be obtained in extending the results above towards the social challenge considered in 

this study. The proposed methodology would enable regular road infrastructure monitoring at minimal 

cost, which is an essential attribute for resource strained regions challenged by PHLs because of poor road 

quality. Primarily, it can be used by road authorities at a higher level to make well-informed decisions on 

further detailed investigations and future rehabilitation plans based on granular observations of RPQ 
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obtained from Sentinel-2 imagery. With frequent observations enabled by the Sentinel-2, road quality 

deterioration can be monitored conveniently to outline optimal rehabilitation plans. Truckers 

(transporters) can plot out their travel plans based on RPQ maps. Since it can ideally offer road quality 

information at IQL-4, it can link the road users with managing authorities, thereby serving as a check and 

balance in road infrastructure management. These contributions will collectively induce better awareness 

and management of road quality, which translates to reduced PHLs caused by transportation damages. In 

a more systemic and directed way, it is also possible to use the product of this methodology as an input to 

develop models of estimating PHL and vehicle maintenance costs, offering a seamless information 

infrastructure for food supply chain management and decision-making.  

 

However, these applications are predicated on the decent performance of the proposed methodology. In 

that regard, it is necessary to address the uncertainties pointed out in this study. Notably, more work is 

required to isolate the road section using advanced road extraction algorithms. The RPQ segmentation 

problem is simpler to address once the non-road pixels are clipped out. Moreover, the generalizability of 

the method has to be scaled by training the models on data from various regions and conditions. The 

models can be applied in broader contexts and in various areas that can benefit from the approach with 

increased generalization capability. 
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APPENDIX 

Annex 1 - Taxonomy and description of road surface distress 

 

Table A 7.1 Taxonomy and description of road surface distresses taken from Paterson (1990) 

Mode Type Brief description 

Cracking 

Crocodile - Interconnected polygons of less than 300 mm diameter 

Longitudinal - Line cracks longitudinal along the pavement 

Transverse - Line cracks transverse across the pavement 

Irregular - Unconnected cracks without a distinct pattern 

Map - Interconnected polygons more than 300 mm in diameter 

Block - Intersecting line cracks in a rectangular pattern at spacing 

greater than 1m 

Disintegration 

Raveling - Loss of stone particles from surfacing 

Potholes - Open cavity in surfacing (> 150 mm dia. and 50 mm 

depth) 

Edge break - Loss of fragments at the edge of surfacing 

Deformation 

Rut - Longitudinal depression in the wheel path 

Depression - Bowl-shaped depression in surfacing 

Mound - Localized rise in surfacing 

Ridge - Longitudinal rise in surfacing 

Corrugation - Transverse depression at close spacing 

Undulation - Transverse depressions at long spacing (> 5 m) 

Roughness - Irregularity of pavement surface in the wheel path 
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Annex 2 Data Specifications and pre-processing configuration 

 

 

Table A 7.2 Sentinel-2 image tiles used and their date of ingestion 

Sentinel 
Product 

Date of 
ingestion 

Tile ID 

MSIL2C 1/7/2017 T30PXU 
MSIL2C 1/7/2017 T30PYQ 
MSIL2C 1/27/2017 T30NXN 
MSIL2C 1/27/2017 T30NYN 
MSIL2C 1/27/2017 T30PXS 
MSIL2C 1/27/2017 T30PXT 
MSIL2C 1/27/2017 T30PYR 
MSIL2C 1/27/2017 T30PYS 
MSIL2C 1/27/2017 T30PYT 
MSIL2C 1/27/2017 T30PYU 
MSIL2C 1/30/2017 T30PXU 
MSIL2C 3/18/2017 T30PXQ 
MSIL2C 3/18/2017 T30PXR 
MSIL2C 4/17/2017 T30NYM 
MSIL2C 12/23/2017 T30NXP 
MSIL2C 12/15/2017 T30NZM 

 

 

 

Table A 7.3 Sen2Cor atmospheric correction configuration 

Atmospheric 

correction 

lookup table Configuration Remark 

Aerosol type AUTO  

Mid_latitude AUTO  

Ozone content 0 
To get the best approximation 

from metadata 
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Annex 3 Details of the SPICE unmixing algorithm 

 

The SPICE method is a sparsity-promoting extension of the iterative constrained endmember extraction 

algorithm (ICE) (Berman et al., 2004). The ICE algorithm is a statistical approach that works by 

minimizing the error between the original pixel spectra and the algorithm estimates via the minimization 

of a residual sum of squares (RSS) term based on the convex geometry model (see Section 2.3.1) (Berman 

et al., 2004). Breman et al. (2004) added a sum of squared distances (SSD) term to the objective function, 

arguing that the solution of minimizing the RSS terms is not unique. Since the SSD term is related to the 

volume bounded by the endmembers (i.e., the simplex volume), adding this term to the objective function 

entails that the algorithm finds endmembers that provide a tight fit around the data (Zare, 2008). Breman 

et al. (2004) formulates this term as shown in Equation (7-1), 

 

 
𝑆𝑆𝐷 = 𝑀 (𝑀 − 1) 𝑉 (7-1) 

where M is the number of endmembers and V is the sum (over the bands) of the variances of the simplex 

vertices. However, instead of adding the SSD term, ICE uses V in the objective function to make it 

independent of the number of endmembers (M) (Berman et al., 2004). Moreover, a “regularization” 

parameter, µ, is included in the function to control the trade-off between the RSS and SSD terms. 

Accordingly, the ICE objective function is as shown in Equation (7-2), 

 

 
𝑅𝑆𝑆𝑟𝑒𝑔 = (1 −  𝜇) 

𝑅𝑆𝑆

𝑁
+  𝜇𝑉 (7-2) 

 

When it comes to the SPICE algorithm, the goal of sparsity promotion over the ICE method is to 

minimize the number of parameters generally applied by driving parameter values to zero (Zare, 2008). 

Typically, especially in neural network models, this is done by adding a weight decay term to the objective 

function (Williams, 1995). Similarly, the SPICE algorithm adds a sparsity-promoting term (SPT) of the 

form shown in Equation (7-3) to the ICE objective function. 

 
𝑆𝑃𝑇 =  ∑ 𝛾𝑘

𝑀

𝑘=1

∑ 𝑝𝑖𝑘

𝑁

𝑖=1

 (7-3) 

 

where N is the number of pixels in the image, pik is the proportion of endmember k in pixel i, and γk is set 

as shown in Equation (7-4), 

 

 
𝛾𝑘 =

𝛤

∑ 𝑝𝑖𝑘
𝑁
𝑖=1

 (7-4) 

 

where Г is a constant that controls the degree that the proportion values are driven to zero (i.e., sparsity). 

Since Г is a constant throughout the minimization of the objective function, if the sum of a certain 

endmember’s proportion values (abundance) becomes small, then its weight, γk, becomes larger (i.e., 

inverse relationship). This weight increase encourages the minimization of the corresponding proportion 

values (abundances). Including the SPT into the ICE objective function, Zare and Gader (2007) 

formulates the objective function of SPICE as shown in Equation (7-5), 

 

 
𝑅𝑆𝑆𝑟𝑒𝑔

∗ = (1 −  𝜇)
𝑅𝑆𝑆

𝑁
+  𝜇𝑉 + 𝑆𝑃𝑇 (7-5) 
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The SPICE algorithm minimizes this function iteratively, checking, after each iteration, the maximum 

proportions for every endmember (Equation (7-6)). If this maximum proportion drops below a user-

defined threshold, the endmember can be removed (pruned) from the set of endmembers (Zare & Gader, 

2007). 

 

 𝑀𝐴𝑋𝑃𝑘 = 𝑚𝑎𝑥
𝑖

{𝑝𝑖𝑘} (7-6) 

 

 

 

Table A 7.4 Parameter configuration for SPICE unmixing 

Parameter 
Recommended 

values 

Used 

values 
Remarks 

µ 0.001-0.1 0.01 
To account for some degree of noise 

assumed to be in the data 

Г (gamma) 1-10 1 
Empirically (trial & error) observing global 

consistency of endmembers 

Initial no. of 

endmembers 
20 20 As recommended 

Objective change 

threshold 
- 0.001 Based on desired numerical precision 

Endmember 

pruning threshold 
- 0.0005 

To reduce excess endmember variability 

since it is applied on patches 
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Annex 4 Endmember clustering GMM selection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A 7.2 Knee point location for 'full' covariance GMM model BIC plot 

Figure A 7.1 GMM cluster model selection 

BIC 

BIC 
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Annex 5 – U-Net model specifications 

 

Table A 7.5 Architecture of the proposed U-Net model 

U-Net Encoder U-Net Decoder 

Layer Details Size Layer Details Size 

Input Input Image 96x96x6 TranspConv1 kernel size: 3x3 

stride: 2; filters: 512 

BatchNorm 

LeakyReLu: 0.3 

concat: Conv4_1 

12x12x512 

Conv1_1 kernel size: 3x3 

filters: 64 

BatchNorm 

LeakyReLu: 0.3 

96x96x64 Conv6_1 kernel size: 3x3 

filters: 512 

BatchNorm 

LeakyReLu: 0.3 

12x12x512 

Conv1_2 kernel size: 3x3 

filters: 64 

BatchNorm 

LeakyReLu: 0.3 

96x96x64 Conv6_2 kernel size: 3x3 

filters: 512 

BatchNorm 

LeakyReLu: 0.3 

12x12x512 

Pool1 2x2 max pool 

stride: 2 

48x48x64 TranspConv2 kernel size: 3x3 

stride: 2; filters: 256 

BatchNorm 

LeakyReLu: 0.3 

concat: Conv3_1 

24x24x256 

Conv2_1 kernel size: 3x3 

filters: 64 

BatchNorm 

LeakyReLu: 0.3 

48x48x128 Conv7_1 kernel size: 3x3 

filters: 256 

BatchNorm 

LeakyReLu: 0.3 

24x24x256 

Conv2_2 kernel size: 3x3 

filters: 64 

BatchNorm 

LeakyReLu: 0.3 

48x48x128 Conv7_2 kernel size: 3x3 

filters: 256 

BatchNorm 

LeakyReLu: 0.3 

24x24x256 

Pool2 2x2 max pool 

stride: 2 

24x24x128 TranspConv2 kernel size: 3x3 

stride: 2; filters: 128 

BatchNorm 

LeakyReLu: 0.3 

concat: Conv2_1 

48x48x128 

Conv3_1 kernel size: 3x3 

filters: 64 

BatchNorm 

LeakyReLu: 0.3 

24x24x256 Conv8_1 kernel size: 3x3 

filters: 128 

BatchNorm 

LeakyReLu: 0.3 

48x48x128 

Conv3_2 kernel size: 3x3 

filters: 64 

BatchNorm 

LeakyReLu: 0.3 

24x24x256 Conv8_2 kernel size: 3x3 

filters: 128 

BatchNorm 

LeakyReLu: 0.3 

48x48x128 

Pool3 2x2 max pool 

stride: 2 

12x12x256 TranspConv3 kernel size: 3x3 

stride: 2; filters: 64 

BatchNorm 

96x96x64 
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U-Net Encoder U-Net Decoder 

Layer Details Size Layer Details Size 

LeakyReLu: 0.3 

concat: Conv1_1 

Conv4_1 kernel size: 3x3 

filters: 64 

BatchNorm 

LeakyReLu: 0.3 

12x12x512 Conv9_1 kernel size: 3x3 

filters: 64 

BatchNorm 

LeakyReLu: 0.3 

96x96x64 

Conv4_2 kernel size: 3x3 

filters: 64 

BatchNorm 

LeakyReLu: 0.3 

12x12x512 Conv9_2 kernel size: 3x3 

filters: 64 

BatchNorm 

LeakyReLu: 0.3 

96x96x64 

Pool4 2x2 max pool 

stride: 2 

6x6x512 Conv10 kernel size: 1x1 

filters: 4 

SoftMax 

96x96x4 

Conv5_1 kernel size: 3x3 

filters: 64 

BatchNorm 

LeakyReLu: 0.3 

6x6x1024    

Conv5_2 kernel size: 3x3 

filters: 64 

BatchNorm 

LeakyReLu: 0.3 

6x6x1024    
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Annex 6 Hyperparameter configurations 

 
Table A 7.6  Selected hyperparameters for the random forest model 

Hyperparameter Selected configuration 

Initial number of estimators (trees) 150 

Feature selection criterion Gini 

Maximum depth 8 

Maximum features Sqrt of number features 

bootstrap No 

Mini-batch size 200 

Estimators added each batch 50 

 

Table A 7.7 Selected hyperparameter for the U-Net model 

Hyperparameter Selected configuration 

Initial learning rate 10-5 

Batch size* 5 (2) 

Learning rate decay step* 20 (10) epochs 

Learning rate decay rate 0.5 

L2 rate 0.1 

L1 rate 0.0001 

Focal loss alpha 0.5 

Focal loss gamma 2 

 

  * The values in brackets are those applied for the Planet dataset 
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Annex 7 – Performance evaluation results 

 

Table A 7.8 Class-wise performance results of all four class experiments 

  Experiment     

Metrics Class RF_S RF_SU RF_SC RF_P DL_S DL_SU DL_SC DL_P 

P Non-road 99.89% 99.32% 99.90% 99.92% 99.97% 99.49% 99.83% 99.92% 

Good 32.56% 11.74% 26.60% 18.28% 38.73% 14.28% 14.56% 37.50% 

Bad 2.37% 1.24% 1.18% 0.55% 2.63% 0.76% 0.90% 1.34% 

Very bad  1.31% 0.32% 0.84% 0.48% 1.18% 0.24% 0.41% 0.86% 

R Non-road 95.32% 87.82% 93.84% 93.18% 95.28% 87.97% 86.09% 97.31% 

Good 80.87% 65.91% 83.41% 59.32% 59.35% 47.36% 47.24% 51.11% 

Bad 24.32% 17.90% 12.76% 37.27% 56.63% 50.00% 25.13% 52.62% 

Very bad  14.36% 7.90% 14.22% 41.82% 34.04% 10.64% 53.05% 44.50% 

F Non-road 97.55% 93.22% 96.78% 96.43% 97.57% 93.37% 92.45% 98.60% 

Good 46.43% 19.93% 40.34% 27.94% 46.87% 21.94% 22.26% 43.26% 

Bad 4.31% 2.32% 2.17% 1.08% 5.02% 1.49% 1.74% 2.61% 

Very bad  2.40% 0.61% 1.59% 0.96% 2.28% 0.46% 0.82% 1.69% 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A 7.3 True normalized confusion matrix of experiments RF_S (left) and RF_P (right) 
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Figure A 7.4 Confusion matrices of experiments RF_SU (1 & 3) and DL_SU (2 & 4) 
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Figure A 7.5 Confusion matrices of experiments RF_SC (1 & 3) and DL_SC (2 & 4) 



MAPPING ROAD PAVEMENT QUALITY FROM OPTICAL SATELLITE IMAGERY USING MACHINE LEARNING 

72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A 7.6 Confusion matrices of experiments RF_S_3C (1 & 3) and DL_S_3C (2 & 4) 
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Figure A 7.7 Endmember abundance maps and model predictions of DL_SU compared to the reference labels 
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Figure A 7.8 Plots showing predictions with their class-wise probabilities 
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