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ABSTRACT 

Geoinformation update and maintenance are crucial for planning, decision-making processes and geospatial 

analysis. In the Netherlands, the Dutch cadaster (Kadaster) handles the geodata maintenance, and updates 

those datasets. As per the Dutch Kadaster, “The digital map is still being built”. ‘Basisregistratie Topografie’ 

(BRT) registry of the Kadaster contains the geospatial information of objects such as buildings, the 

agricultural field, roads, and tracks, which are freely available as open data. One of the objects of interest is 

the greenhouses used for horticulture purposes. The greenhouses are being manually delineated for updating 

the geodata set. Kadaster has been using deep learning approaches for object recognition. However, state 

of the art image segmentation models applied in Kadaster typically output segmentation in raster format. 

The applications of geographic information systems often require vector output. Additionally, there is a 

considerable research gap for the delineation of greenhouses through the deep learning (DL) method in 

vector format. Thus, this study aims at developing a DL technique to extract the greenhouses in a vector 

format.  

 

There are two state of the art methods for vectorization using deep building segmentation. First is an end-

to-end method that learns the vector representation directly, and secondly, vectorizing the classification map 

by a network. In this study, the second state of the art method was utilized. Girard et al. (2020) introduced 

a building delineation method based on frame field learning to extract the regular building footprints in 

polygonal vector format using aerial RGB imagery. The method was utilized in the greenhouse, where a 

fully convolution network (FCN) was trained to simultaneously learn the mask of the greenhouse, contours 

and the frame field, followed by polygonization. The contours information in the frame field produces 

regular outlines which accurately detects the edges and the corners of the greenhouse.  

 

The study was conducted within the three provinces of the Netherlands. Two orthoimage datasets of 

summer and winter images with the resolution of 0.25 m and 0.1 m, respectively, were used. The normalized 

digital surface model (nDSM) was added to the winter RGB images to extract the accurate and regular 

greenhouse polygons. The addition of nDSM improved the prediction and outlines of the greenhouses 

compared to using only 0.1 m winter RGB images. The mean intersection over union (IoU) of (RGB + 

nDSM) for 0.1m images was 0.751, while for the same resolution dataset, the IoU was 0.673, indicating the 

improvement of greenhouse delineation accuracy with the addition of height information. The IoU for 

0.25m RGB image was 0.745 and could predict the greenhouses, which 0.1m RGB image could not. The 

qualitative analysis of the result shows the regular and precise predicted polygons. 
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1. INTRODUCTION 

1.1. Background 

Earth observation has largely broadened the range of applications with the availability of very high-

resolution (VHR) overhead images captured from airborne or satellite platforms (Kaiser et al., 2017). There 

is a vast amount of data available with different spatial, spectral and temporal resolutions. In the 

Netherlands, an abundance of geodata is available with VHR aerial imagery and light detection and ranging 

(LIDAR) data with the height model, which are freely available to the public (Kadaster, n.d.-c). With the 

vast amount of data, and inevitable changes occurring in the area (Cheng et al., 2017), there is a need to keep 

an updated geo-information database within the nation. The updated information can be used for planning, 

decision-making processes and geospatial analysis. 

 

VHR imagery has been used for object detection and extraction with high accuracy and reliable information 

(Chen et al., 2019; Shrestha & Vanneschi, 2018; Tayara & Chong, 2018). The high intra-class spectral 

variability among the same objects makes it difficult to solve the classical pixel-based classification problem 

(Girshick et al., 2014). According to Carrilho and Galo (2019), with high-resolution aerial imagery, 

complexity increases, which requires robust pattern recognition networks. Deep learning (DL) is a subset 

of machine learning, in which the algorithm learns the patterns through labelled training data (Hoeser & 

Kuenzer, 2020). Krizhevsky, Sutskever, and Hinton (2012) introduced convolutional neural networks 

(CNNs), which made DL popular in the computer vision society for image recognition of natural images. 

According to Hoeser and Kuenzer (2020), DL concepts from computer vision are transferred to earth 

observation applications for overhead images. The same authors also mentioned that DL methods have 

become popular with large data availability and faster processing units such as Graphics Processing Units 

(GPUs). Potlapally et al. (2019) mentioned that DL is used for extracting the high-level features from the 

input images. DL has been a growing field for the application on Earth observation such as land use and 

land cover (LULC) classification (Potlapally et al., 2019), building footprints (K. Zhao et al., 2020), road 

network (Buslaev et al., 2018), and vehicle detection (Gandhi, 2018).  

 

DL is also reliable for automatically extracting objects of interest such as buildings and roads using aerial or 

satellite images (Montoya-Zegarra et al., 2015; Pan et al., 2019; Saito & Aoki, 2015; Shrestha & Vanneschi, 

2018). Usually, the VHR images captured from aerial platforms have a low spectral resolution. Still, they 

have a very high spatial resolution, so they are mainly used for segmentation or detection rather than 

classification or recognition (Hoeser & Kuenzer, 2020). Image recognition means predicting the class label 

for a whole image, and traditional CNN solves the classification problem. Figure 1 shows the visual 

difference between these terms on computer vision. The fundamental step of automatic mapping is semantic 

segmentation. Each pixel is labelled with the class, i.e., the prediction is made for every pixel. Fully 

convolutional networks (FCNs) are considered the state-of-the-art for semantic segmentation (Long et al., 

2015). 

 

In object detection, the location of one or more objects in the image is identified, and bounding boxes are 

drawn around their extent with classes of the located objects (Brownlee, 2019; Su et al., 2019). Figure 1-c 

shows the detected object of interest and bounding box surrounding it. For object detection, Faster Region-

based Convolutional Neural Networks (Faster R-CNN) utilizes a network to predict the region proposals 

which are reshaped using a Region of Interest (ROI) pooling layer, which later is utilized to classify the 
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image within the proposed region to predict the offset values for the bounding boxes. Instance segmentation 

can be modelled as a multi-task problem where objects are precisely determined and segmented in each 

instance (P. L. Liu, 2020). It uses both the elements of object detection and semantic segmentation. The 

objects of interest are classified at an individual level with localization within a bounding box, and each pixel 

is classified within certain categories (He et al., 2020; Liu et al., 2018). Mask R-CNN architecture is a state-

of-the-art model for instance segmentation, which is built with Faster R-CNN; in which the object of 

interests are represented within the bounding boxes and the additional branch predicts the object mask (He 

et al., 2020). It means that it parallelly predicts the masks and the class labels of the object of interest in the 

image. Mask R-CNN is applied with an instance-first strategy in which the first object of interest is 

determined with the bounding box, and inside the bounding box, per-pixel classification is done with the 

output as the masked object with the bounding-box and class label in it  (He et al., 2020; Su et al., 2019). 

 

 

 

   

a. Aerial Image b. Semantic 

Segmentation 

c. Object Detection d. Instance 

Segmentation 

Figure 1: Computer vision tasks where the orange part denotes the greenhouse 
Adapted from : (Hoeser & Kuenzer, 2020) 

 

Nonetheless, for many geographic information systems applications, assigning a label to each pixel 

describing the category is not the final desired output. Image segmentation is an intermediate step if the 

objective of the work is to do object shape refinement, vectorization, and map generalization. Thus, there 

is a necessity to modify the conventional raster-based pipeline. Li, Wegner, and Lucchi (2019) developed a 

learnable framework, called PolyMapper which can predict the outline of the buildings and roads in a vector 

format from the aerial images directly. The approach directly learns the mapping with a single network 

architecture, which used to be a multi-step procedure of semantic segmentation followed by shape 

improvement with converting the building footprints and roads to polygons and refining those polygons. 

W. Zhao et al. (2021) modified the baseline method of the PolyMapper and established a new model with 

an end-to-end learnable model. It extracts the outline of polygons from VHR imagery, which can segment 

building instances of various shapes with greater accuracy and regularity. Girard, Smirnov, Solomon, and 

Tarabalka (2020) proposed a framework based on a deep image segmentation model using remote sensing 

images for building polygon extraction. It utilizes FCN for pixel-wise classification and add frame field to it 

obtain the building’s vectorized polygonization. The segmentation is improved via multi-task learning with 

the addition of frame field aligned to object tangents. 

 
This research will focus on the delineation of greenhouses in the Netherlands. Greenhouses are built for 

agriculture and horticulture purposes. The detection, monitoring, and mapping of the greenhouses are 

essential for urban and rural planning, crop planning, sustainable development, risk on the rapid expansion 
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of the greenhouses, for example, accumulation of vegetable and plastic waste, over-exploitation of water 

greenhouse, natural encroachment causing harm to the environment (Aguilar, Saldaña, & Aguilar, 2013;  

Celik & Koc-San, 2018, 2019; Dilek Koc-San, 2013). According to several authors (F. Agüera et al., 2006; 

Carvajal et al., 2010; Celik & Koc-San, 2018; D. Koc-San & Sonmez, 2016; Novelli et al., 2016), greenhouse 

delineation and mapping is a challenging task due to the changing spectral reflectance value obtained back 

in the sensor and due to the crops beneath the greenhouse. There are different classifications of greenhouses, 

such as a plastic-covered, glasses-covered, plain sheet, and corrugated sheet (fibre-glass reinforced plastic) 

greenhouse (Tiwari, n.d.). The spectral signature from different types of the greenhouse also changes 

drastically, making it difficult to automatically detect and classify the greenhouses (Agüera et al., 2008a). The 

state-of-art in the study of the greenhouse is only limited to object classification. The novelty of the study 

is that there is no study done based on the DL techniques for the automatic greenhouse extraction in 

regularized vector format. 

1.2. Problem statement 

According to the Dutch Kadaster, “The digital map is still being built“ (Kadaster, n.d.-d). Greenhouses are 

part of the ‘Basisregistratie Topografie’ (BRT) (further described in section 2.1.1.2. ) in TOP10NL as the 

objects. In Kadaster, greenhouses are being manually digitized. There is still a need for methods to extract, 

label, and update the greenhouse for the countries’ geodatabase. The governmental organization, private 

companies, and the public can utilize the updated geodata information properly. One of this study's 

motivations is the project required by Kadaster on updating BRT in terms of the greenhouses. Furthermore, 

there is a considerable research gap between the highly researched automatic building detection and 

delineation through deep learning for VHR aerial images and automatic greenhouse delineation through 

deep learning methods. Instance segmentation and polygonal mapping of the greenhouses is the major 

innovative point of the research, as there is no study related to automatic extraction through instance 

segmentation or object detection using DL in the case of the greenhouse. 

 

1.3. Geodata updating as a wicked problem  

Geo-information data needs to be revised regularly such that all the users of the data can utilized the updated 

data for analysis of a spatial problem. The updated information plays a role in spatial planning and 

governance, making it a wicked problem. So, there is a need of up to date geodata in an efficient way.  

Manual delineation of the data for updating geoinformation is time-consuming and expensive. Automation 

is necessary as it helps to save time and be more efficient with the use the resources. So, a way to minimize 

the process of updating geodata can help in lessening the wicked problem. 

 

1.4. Research objective 

1.4.1. General objective 

This thesis’s general objective is to develop a deep learning approach for greenhouses detection and 

delineation in polygon format using VHR aerial imagery and elevation data for the geodata update.  

1.4.2. Specific objective 

 

The main research objectives can be achieved through the following specific sub-objectives and research 

questions (RQs): 
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1. To develop a method to perform instance segmentation of the greenhouses, more specifically, a 

DL technique that can extract object instances in a vector format (polygon). 

 

RQ1: Which deep learning or CNN architecture is appropriate for automated delineation of 

greenhouses in the polygon format? 

RQ2: Which cadastral data sets are suitable for the experimental analysis? 

RQ3: Does the normalized Digital Surface Model (nDSM) data contribute to more accurate detection 

and segmentation of greenhouses?  

RQ4: What is the effectiveness of the approach for different types of greenhouses (plastics and 

glasses)? 

 

2. To compare different datasets combination to determine for greenhouse delineation 

 

RQ5: Which dataset performs better in terms of delineation of greenhouses?  

RQ6: What is the accuracy of the polygonized greenhouse with the standard metrics?  

 

3. To update the greenhouse polygons in the cadastral database. 

 

RQ7: What are the specification required by Kadaster to update the BRT in terms of the greenhouse? 

RQ8: How can the above technique be used for regular updating of the cadastral database of 

greenhouses? 

 

1.5. Thesis Structure 

This thesis contains seven chapters organized as follows: 

a. Chapter 1 presents the introduction that explains the background and the problem statement, 

research objectives, and research questions that the thesis wants to answer. 

b. Chapter 2 provides the conceptual framework, stakeholders involved, and the literature reviews to 

support the research 

c. Chapter 3 explains in detail the research methodology used in this thesis. 

d. Chapter 4 includes the materials used in the thesis, describing the study area, data used and pre-

processing of those data. 

e. Chapter 5 describes the experimental analysis and description of the evaluation metrics that are used 

in the thesis. 

f. Chapter 6 shows the result and discussion of the experimental analysis. 
g. Chapter 7 contains the conclusion, answer to the research questions and recommendation. 
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2. CONCEPTUAL FRAMEWORK AND RELATED WORKS 

This chapter describes the conceptual framework, describing the systems and subsystems involved in the 

study. Additionally, the literature's related works on mapping the greenhouses and existing deep learning 

methods are discussed.  

2.1. Conceptual Framework 

Figure 2 shows the main conceptual framework of the study. The TOP10NL BRT product for greenhouses 

needs to be regularly updated as there are changes in the greenhouses' numbers, location, and size. Currently, 

in the Dutch cadaster (Kadaster), manual digitization is used for updating the datasets. In this study, deep 

learning concepts are introduced; so that automation helps speed up the manual updating process for 

delineation of the greenhouse. If the vectorized greenhouse satisfies the specification of the BRT, then it 

can be used for updating it. 

 
Figure 2: Conceptual framework for delineating greenhouse with the involvements of stakeholders 

2.1.1. Key Registry of the Netherlands 

The basic registration is an officially designated registration by the government, which contains high-quality 

data, which needs to be used mandatory by all government agencies and is the product that can be used 

without further investigation (Kadaster, 2020). Topographical key registrations contain spatial information 

and are therefore very useful for solving geo-related tasks. The main purpose of a topographical key 

registration is to reuse the dataset many times as a base for many geo-related tasks. In the Netherlands, there 

are many different ‘Registraties’ i.e. Registrations within the Land Registry of the Key Registers and National 

Facilities (Ministerie Van Binnenlandse Zaken en Koninkrijksrelaties, n.d.). Only the overview of 

‘Basisregistratie Grootschalige Topografie’ (BGT)  and ‘Basisregistratie Topografie’ (BRT) will be outlined 

in this study as they are the most relevant topographical key registrations in terms of greenhouses. 

2.1.1.1. ‘Basisregistratie Grootschalige Topografie’ (BGT) 

BGT is a division of topographical key registrations with a detailed digital map of the Netherlands with an 

accuracy of up to 20cm (Digitaleoverheid.nl, n.d.). It is used as the base map of the Netherlands with the 
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location of the objects, for instance, buildings, roads, water, railway lines and greenery (agricultural sites) on 

a larger scale, which is registered unambiguously (Information about the Register of Large-Scale Topography 

(BGT) - Land Registry Business, n.d.). BGT is object-oriented topographical key registration for large scales 

from 1:5,00 to 1:5,000. Kadaster manages BGT with 392 source holders such as municipalities, provinces 

and water boards with the BZK, the Ministry of Defense, Rijkswaterstaat and ProRail, who works on their 

part for the completeness and uniformity of the BGT (Kadaster, n.d.-c). The BGT geodata is essential for 

planning green management, presenting plans for urban renewal, planning evacuation routes, so updating 

the geodata is essential (Ministerie van Binnenlandse Zaken en Koninkrijksrelaties, n.d.-a).  

 

2.1.1.2. ‘Basisregistratie Topografie’ (BRT) 

BRT contains both the objects and the raster digital topographic files (TOPNL and TOPraster data) with 

different scales for the whole of the Netherlands. The data available is in the map format and the object-

oriented files that are freely available as open data (Key Register Topography (BRT), n.d.). Top10NL is a 

digital topographic file within a scale ranging from 1:5,000 to 1:25,000. TOP10NL is suitable for geometric 

reference and used as a basis for GIS and web applications. It is also a standard for analogue topographic 

maps with the scales of 1:10,000 and 1:25,000. From 2013, the digital file of scale 1:50,000 is being produced 

by automatic generalization. TOP10NL is the standard basic topographic file for use within the government 

in the relevant scale area (Kadaster, 2020). It contains the information of the greenhouses in the digital 

format regarding the type of greenhouses and area occupied.  

2.1.2. Stakeholders 

Stakeholders are the individuals or organizations who have interest, power or influence in a decision 

(Hemmati, 2002). The identified stakeholders are described below: 

2.1.2.1. Dutch Kadaster 

Kadaster is the non-departmental public body in the Netherlands, which is the country’s Cadastre, Land 

Registry and Mapping Agency. It operates under the political responsibility of the Minister of the Interior 

and Kingdom Relations (BZK). It is involved in collecting, registering administrative and spatial data on the 

property. It is also responsible for national mapping along with the maintenance of the national reference 

coordinate system of the Netherlands. It is also the advisory body for land-use issues and national spatial 

data infrastructures (Kadaster, n.d.-a). If the Dutch governments such as ministries, provinces, 

municipalities and other governmental services need to work with the maps, they must use the geodatabase 

provided by Kadaster. 

2.1.2.2. Municipalities 

Municipalities are the small bodies of the government that are responsible for carrying out the tasks that 

directly affect the residents. There are 358 municipalities in the Netherlands, and each municipality has to 

work on the data of their location (Government.nl, n.d.). 

2.1.2.3. Users 

The users are the public, governmental bodies, and greenhouse owners who use the data and services to 

view the information or utilize the data for analysis. 

 

2.1.3. Stakeholder Analysis 

A stakeholder analysis was conducted to see the power and interest of the relevant stakeholders from the 

conceptual diagram, as shown in figure 2. A literature review was conducted regarding the interest of the 

stakeholder.  
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The power and interest of the stakeholder in terms of the requirement of up to date geodata information 

and the methodology to delineate the greenhouse is shown in figure 3. Kadaster has high interest and high 

power to update the geoinformation in terms of greenhouse and to develop a methodology to delineate the 

greenhouse as they have been updating the digital information data of the Netherlands (Digitaleoverheid.nl, 

n.d.). The municipality manages the geoinformation within their location, which requires the up to date 

geoinformation as all the government institutions are required to use the geodata information for public-

law tasks involving geodata information (Ministerie Van Binnenlandse Zaken en Koninkrijksrelaties, n.d.). 

However, Kadaster manages the BRT dataset, so the municipality does not have a role in the BRT dataset 

in terms of methodology needed to be delineated. The users who deal with the geoinformation data are 

interested in up to date information to do their analysis. The users are more interested in the dataset within 

certain standards than how they were obtained. Their interest mainly lies in the end product, so they do not 

have a role in the methodology being developed to delineate the greenhouse. The greenhouse owners have 

the least power and interest in terms of methodology to be developed for delineation of greenhouses, as 

they can view the data of the greenhouse in the geodatabase.  

   
Figure 3 shows that Kadaster is the main stakeholder with the most power and interest. The thesis mainly 

focuses on the methodology to delineate the greenhouses; the needs and requirements of the Kadaster are 

taken into account. The specifications or the criteria that define a greenhouse was questioned to Kadaster, 

which involved handling the digital objects to be included in the BRT. D.Nijmeijer (personal 

Power 

Figure 3: Stakeholder analysis based on the power and interest of the stakeholders 
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communication, July 13, 2021) pointed out the specifications required by Kadaster to update the BRT in 

terms of the greenhouses as: 

- Greenhouses should be bigger than 200 sqm, and greenhouses less than 200sqm is not considered 

greenhouse, 

- Greenhouses with plastic are only considered to be a greenhouse if they are permanent in nature. 

Otherwise, greenhouses made up of glasses are only considered to be defined as greenhouse, 

- If the greenhouse is moveable, it is not necessary to detect the new position.  

 

2.2. Literature Review 

This section is divided into two parts: one for the study review on greenhouses and the other for the instance 

segmentation and the polygonization done on the buildings. Greenhouse usually has similar structures with 

simple buildings. There is no research on automatic extraction and delineation of greenhouses in vector 

format using the deep learning method, the existing literature on deep building segmentation is considered. 

The literature on extraction on the building is shown in Table 1, which describes the summary of related 

studies on the greenhouses with remote sensing datasets, the method applied and the results. 

 

Table 1: Related studies on greenhouses classification 

Study 

No 
Title 

Remote 

Sensing 

Datasets 

Method Results Reference 

1 

“Detecting 

greenhouse 

changes from 

QuickBird imagery 

on the 

Mediterranean 

coast” 

QuickBird 

multispectra

l imagery  

It is based on the 

maximum likelihood 

classification method 

with different band 

combinations for 

classification and 

comparing the current 

image with the 

information system. 

The band 

combination of G-B-

NIR obtained the 

quality percentage 

(QP)of 87.11% and 

greenhouse detection 

percentage, i.e., recall 

of 91.45%  

  (F. 

Agüera et 

al., 2006) 

2 

Using texture 

analysis to 

improve the per-

pixel classification 

of VHR images 

for mapping 

plastic 

greenhouses 

QuickBird 

and 

IKONOS 

satellite 

image  

Maximum Likelihood 

Classification (MLC) 

with a different 

combination of bands 

of R, G, B, NIR, and 

panchromatic bands 

QuickBird image had 

a better result than 

IKONOS images, and 

the inclusion of 

texture information in 

classification did not 

improve the 

classification quality 

of plastic greenhouse 

(Agüera et 

al., 2008b) 

3 

“Mapping Rural 

Areas with 

Widespread Plastic 

Covered Vineyards 

Using True Color 

Aerial Data” 

Digital true 

colour aerial 

data 

captured 

using an 

Intergraph’s 

Z/I 

Image segmentation 

followed by 

classification based on 

eCognition software 

provides a data mining 

functionality called 

Feature Space 

Segmentation 

followed by the 

object-oriented 

approach is better for 

mapping plastic-

covered vineyards 

showing an overall 

(Tarantino 

& 

Figorito, 

2012) 
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Study 

No 
Title 

Remote 

Sensing 

Datasets 

Method Results Reference 

Imaging 

Digital 

Mapping 

Camera 

(DMC) 

Optimization (FSO); to 

calculate features in 

OBIA context, i.e. like 

spectral (image bands, 

band ratios), 

geometrical (area, 

compactness), 

contextual (difference 

to a neighbour), and 

textural properties. 

accuracy of 90.25% 

for all the classes in 

the classification. 

4 

“GeoEye-1 and 

WorldView-2 pan-

sharpened imagery 

for object-based 

classification in 

urban 

environments” 

Pan-

sharpened 

orthoimages 

from both 

GeoEye-1 

and 

WorldView-

2 (WV2) 

VHR 

satellites 

OBIA software, 

eCognition v. 8.0, was 

used to segment the 

image with the multi-

segmentation method. 

The features used for 

classification 

considered spectral, 

geometry, texture, and 

elevation features. Then 

the authors opted for 

manually classifying the 

segments to their 

respective classes. 

The accuracy for the 

GeoEye-1 image was 

close to 89% when 

spectral and elevation 

was taken into 

consideration. WV2 

obtained 83% 

accuracy with the 

same feature. No 

improvement on 

classification was seen 

with the new spectral 

bands of WV2 

(Coastal, Yellow, Red 

Edge, and Near 

Infrared-2). 

(Aguilar et 

al., 2013b) 

5 

“Evaluation of 

different 

classification 

techniques for the 

detection of glass 

and plastic 

greenhouses from 

WorldView-2 

satellite imagery” 

WorldView-

2 satellite 

imagery 

For land cover 

classification; 

Maximum likelihood 

(ML), random forest 

(RF), and support 

vector machines (SVM) 

are used as a classifier 

with emphasis on 

greenhouse detection. 

ML had higher 

accuracies compared 

to SVM and RF 

classifiers. 

(Dilek 

Koc-San, 

2013b) 

6 

“Methodological 

proposal to assess 

plastic 

greenhouses land 

cover change from 

the combination 

of archival aerial 

orthoimages and 

Landsat data” 

Archival 

aerial 

orthoimages 

(produced 

by the 

Spanish or 

Andalusia 

Governmen

ts) 

Object-based 

greenhouse mapping 

was done by using 

image segmentation in 

eCognition v. 8.8 

software using bottom-

up region-merging 

technique and multi-

resolution segmentation 

algorithm. It was 

The OA on combined 

orthoimage and 

LandSAT was higher 

than the OA on 

individual datasets. 

 

(González

-Yebra et 

al., 2018) 
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Study 

No 
Title 

Remote 

Sensing 

Datasets 

Method Results Reference 

and Landsat

 imagery  

followed by OBIA 

classification with 

features such as mean 

values, standard 

deviation, shape index 

and brightness were 

used in the same 

software. 

7 

“Greenhouse 

Detection Using 

Aerial Orthophoto 

and Digital Surface 

Model” 

Digital 

aerial 

photos and 

digital 

surface 

model 

(DSM) 

For greenhouse 

detection, Support 

Vector Machine (SVM) 

classifier was used to 

classify the orthophoto 

and nDSM was used as 

the additional data 

Producer accuracy 

(PA) for greenhouse 

classification is 

94.50%, and user 

accuracy (UA) is 

95.80%. 

(Celik & 

Koc-San, 

2018) 

8 

“Greenhouse 

Mapping using 

Object-Based 

Classification and 

Sentinel-2 Satellite 

Imagery” 

Sentinel-2 

Multispectra

l Instrument 

(MSI) data  

Object-based 

classification with 

multi-resolution 

segmentation was used. 

Spectral features like 

mean values, 

Normalized difference 

vegetation index 

(NDVI), Normalized 

difference water index 

(NDWI) were extracted 

for OBIA classification 

by applying the nearest 

neighbour classifier. 

The average user 

accuracy for the 

greenhouse class was 

96%, and PA for the 

greenhouse was 80%. 

(Balcik et 

al., 2019) 

9 

“Greenhouse 

Detection from 

Color Infrared 

Aerial Image and 

Digital Surface 

Model” 

Colour and 

infrared 

orthophoto

s, 

normalized 

Digital 

Surface 

Model 

(nDSM),  

OBIA was used to 

calculate the 

Normalized Difference 

Vegetation Index 

(NDVI) and Visible 

Red-based Built-up 

Index (VrNIR_BI). 

Multi-Resolution 

Segmentation method 

was used for 

segmentation and for 

classification,  K-

Nearest Neighbor (K-

NN), Random Forest 

(RF) and Support 

The literature suggests 

that only 2D 

information is not 

sufficient for 

greenhouse detection, 

and utilizing both 2D 

and 3D information 

from the colour 

orthophoto with the 

nDSM using OBIA 

detects the 

greenhouse 

effectively. The SVM 

classifier had a high 

PA of 96.88% and 

(Celik & 

Koc-San, 

2019b) 
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Study 

No 
Title 

Remote 

Sensing 

Datasets 

Method Results Reference 

Vector Machine (SVM) 

techniques were used. 

UA of 98.10% among 

the classifier. 

10 

“Mapping Plastic 

Greenhouses 

Using Spectral 

Metrics Derived 

From GaoFen-2 

Satellite Data” 

VHR 

optical 

satellite data 

(GaoFen-2 

image)  

First, the calculation of 

spectral characteristic 

analysis for land covers 

was done. A three-step 

procedure for 

classification was done 

where the index was 

used for classification. 

Double Coefficient 

Vegetation Sieving 

Index” (DCVSI), 

“High-Density 

Vegetation Inhibition 

Index” (HDVII) and 

Normalized Difference 

Vegetation Index 

(NDVI) were used.  

DCVSI enhanced the 

vegetation 

information and 

explicitly 

distinguished between 

greenhouse and 

vegetation on another 

land surface. HDVII 

was used to eliminate 

high-density 

vegetation explicitly, 

and NDVI to 

distinguish the plastic 

greenhouse. 

(Shi et al., 

2020) 

 

Table 2 summarises related studies on the instance segmentation with remote sensing datasets, methods 

used, and the results, particularly for the buildings instances. There are no particular studies done on a 

greenhouse on the relative method. 

 

Table 2: Related studies on instance segmentation on buildings 

Study 

No 

Title Remote 

Sensing 

Datasets 

Method Results Reference 

1 “Mask R-CNN” Natural images Mask R-CNN is 

state of the art; in 

instance 

segmentation, a 

branch for object 

mask prediction in 

parallel to the 

existing branch of 

bounding box 

recognition is used.  

In COCO suite 

challenges, for 

instance 

segmentation, 

person keypoint 

detection and 

bounding box 

object detection, it 

outperformed the 

COCO 2016 

winner. 

(He et al., 

2020) 

2 “Instance 

Segmentation in 

Remote Sensing 

Imagery using 

Deep 

High resolution 

orthogonal 

aerial images 

obtained from 

earth explorer 

Mask R-CNN is 

used where 

proposals are 

generated in the 

images classifies the 

For the detection 

of objects of 

interest, the mean 

average precision 

(mAP) at the IoU 

(Potlapally 

et al., 

2019) 
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Study 

No 

Title Remote 

Sensing 

Datasets 

Method Results Reference 

Convolutional 

Neural 

Networks” 

ROI for 

segmentation mask 

and bounding box 

along with the 

object of interest 

such as tress, crop 

fields, cultivated 

lands and water 

bodies. 

threshold of 0.5 

was 0.527. 

3 “Automatic 

Object 

Extraction from 

High-Resolution 

Aerial Imagery 

with Simple 

Linear Iterative 

Clustering and 

Convolutional 

Neural 

Networks” 

High-resolution 

aerial images 

The method uses 

object extraction 

similar to Fast R-

CNN architecture 

and uses a simple 

linear iterative 

clustering (SLIC) 

algorithm for ROI 

generation.  

Multi-scale SLIC 

generates ROI of 

different sizes and 

objects detection 

and segmentation 

with an overall 

accuracy (OA) of 

89%. 

(Carrilho 

& Galo, 

2019) 

4 “Boundary 

Regularized 

Building 

Footprint 

Extraction from 

Satellite Images 

using Deep 

Neural 

Networks” 

High-resolution 

satellite images 

of DigitalGlobe 

Worldview-3 

Satellite  

The method, 

namely R-

PolyGCN, is a two-

stage object 

detection network 

to produce ROI 

features and use 

graph models to 

learn geometric 

information for 

building boundary 

extraction. 

The F1 score is 

0.742 for building 

extraction, and for 

building 

regularization, R-

PolyGCN predicts 

the natural 

representation for 

the vertex, edges 

and the polygon. 

(K. Zhao 

et al., 

2020) 

5 “Object 

Detection and 

Instance 

Segmentation in 

Remote Sensing 

Imagery Based 

on Precise Mask 

R-CNN” 

VHR remote 

sensing images 

acquired from 

Google Earth 

The framework is 

based on Mask R-

CNN, including 

RPN and Fast R-

CNN classifier with 

Precise RoI pooling 

instead of RoI align. 

For object 

detection, AP is 

61.2, and for 

segmentation 

performance, AP is 

64.8. 

(Su et al., 

2019) 

6 “TernausNetV2: 

Fully 

convolutional 

network, for 

High-resolution 

satellite imagery 

FCN network called 

TerausNetV2 uses 

encoder-decoder 

type architecture 

with skip 

For DeepGlobe-

CVPR 2018, 

building detection 

sub-challenge, 

based on public 

(Iglovikov 

et al., 

2018) 
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Study 

No 

Title Remote 

Sensing 

Datasets 

Method Results Reference 

Instance 

segmentation” 

connection with the 

encoder called ABN 

WideResNet-38 

network and in-

place activated 

batch 

normalization. 

leaderboard score, 

the model scored 

0.74  

7 “Building 

Instance Change 

Detection from 

Large-Scale 

Aerial Images 

using 

Convolutional 

Neural Networks 

and Simulated 

Samples” 

VHR aerial 

images 

The framework 

consists of building 

an extraction 

network using Mask 

R-CNN for object-

based instance 

segmentation and 

FCN for pixel-

based semantic 

segmentation to 

build a binary 

building map.  

Both object-based 

and pixel-based 

model’s evaluation 

measured are used. 

Without using a 

real change sample, 

the AP of building 

instance was 0.63, 

Precision of 0.64 

and Recall of 0.943. 

(Ji et al., 

2019) 

8 “Topological 

Map Extraction 

from Overhead 

Images” 

VHR aerial 

images 

Method named 

Polymapper for 

pixel-wise 

segmentation for 

directly predicting 

the polygons of the 

buildings and the 

roads. It uses CNN 

as the backbone for 

feature learning and 

integrates with the 

feature pyramid 

network for 

bounding boxes for 

buildings. It uses a 

skip feature map 

with the bounding 

box obtained and 

RNN to get the 

vertices of the 

polygons of the 

buildings. 

Evaluated with the 

standard MS 

COCO measures 

with AP of 55.7 

and AR of 62.1. In 

which AP and AR 

for small buildings 

were lower 

compared to 

medium and large 

buildings. 

(Z. Li et 

al., 2019) 

9 “Building Outline 

Delineation: 

From Very High-

Resolution 

VHR aerial 

images 

Modified the 

baseline method of 

the PolyMapper by 

using EffcientNet 

For COCO metrics 

on the building 

delineation, the 

applied method had 

(W. Zhao 

et al., 

2020)  
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Study 

No 

Title Remote 

Sensing 

Datasets 

Method Results Reference 

Remote Sensing 

Imagery to 

Polygons with an 

Improved end-

to-end Learning 

Framework” 

as backbone feature 

encoder to the 

network and for 

better prediction 

accuracy of the 

corner, using the 

Boundary 

Refinement block 

(BRB). 

an AP value of 

0.445. The average 

Recall value of 

0.499. It can 

correctly segment 

the building 

instances of various 

shapes and sizes 

with more compact 

and regularized 

shapes. 

10 “Polygonal 

Building 

Segmentation by 

Frame Field 

Learning” 

VHR aerial 

images 

Method named 

Frame Field 

Learning for pixel-

wise segmentation 

and addition of 

frame field as 

output for 

polygonization of 

the buildings.  

The method is 

useful for the 

regularization of 

the sharp corners 

of the building and 

can handle holes in 

the buildings and 

walls in the 

adjoining building. 

(Girard et 

al., 2020) 

 
Table 3 describes the summary of related studies on the vectorization for deep building segmentation, which 

is divided into two different categories with remote sensing datasets, methods used, description about the 

method and the problems within the method for the buildings instances as there are no particular studies 

done on a greenhouse on the comparative method. 

 

Table 3: A related study on vectorization for deep building segmentation  

S.No Category Method used Problems encountered  

1. Classification 

map produced 

from deep 

learning 

network and 

vectorizing the 

classified map 

Contour detection (marching 

squares method (Lorensen & Cline, 

1987)) for constructing 3D surfaces 

by forming triangle modes of 

constant density surfaces and 

followed by polygon simplification 

(Ramer, 1972) algorithm where 

small-but not minimum-number of 

vertices within the curve is utilized 

to form a polygon.  

Sharp corners are not produced when 

the classification map is not perfect 

when the conventional deep 

segmentation method is used.  

 

The expensive and complex post-

processing procedure required to 

improve final polygons 

In the classification map, the 

approximate shape of the object is 

done using the polygonal partition 

refinement method(M. Li et al., 

2020), where progressively extended 

detected line segments are added 

together to form polygons. The 

The tuneable parameter does not 

control the exact number of output 

vertices compared to the other 

vectorization pipelines. 
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S.No Category Method used Problems encountered  

trade-off between complexity and 

fidelity is done using a tuneable 

parameter.  

FCN with a shared decoder and 

discriminator was used to train with 

the combination of adversarial and 

regularized losses to produce 

cleaner building footprints (Zorzi & 

Fraundorfer, 2020).  

The method is less stable than 

conventional supervised learning as it 

requires the computation of large 

matrices of pairwise discontinuity 

costs between pixels and the 

adversarial training system of 

networks. 

2. Deep learning 

segmentation 

method to 

directly learn 

vector 

representation 

(end-to-end 

method) 

Curve-GCN method: The 

prediction of all vertices 

simultaneously using graph 

convolutional network (GCN) is 

trained to deform a polygon to fit 

each object (Ling et al., 2019). 

GCN is difficult to train compared to 

CNN and is only suitable for simple 

polygons without holes. 

Polymapper method: It localizes the 

object of interest with a 

combination of the Feature 

Pyramid Network (FPN) for 

localization of the object of interest, 

detection of Region of Interest 

(ROI) in the image and 

PolygonRNN for the geometrical 

shape of the single (individual) 

object (Z. Li et al., 2019). 

It is not suitable for complex 

buildings, and although adjacent 

buildings are detected as individual 

polygons, the shared edges within the 

buildings are not aligned. 
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3. RESEARCH METHODOLOGY 

The existing work for vectorization using deep building segmentation have two categories, i.e., an end-to-

end method that learns the vector representation directly, and the other is vectorizing the classification map 

by a network. For delineation of greenhouses using deep learning methodology, both categories were 

investigated in this study. 

3.1. Method I: Polymapper 

The polymapper method is the end-to-end learning method that directly extracts the object of interest's 

polygon shape (mainly buildings and roads) with the provided aerial image and reference data. The method 

is used to achieve instance segmentation of the geometrical shapes of the buildings in the aerial images. 

Polymapper would help to detect (localize) all the objects of interest and precisely segment each object of 

interest in the polygon representation rather than a per-pixel mask. Polymapper is the combination of the 

Feature Pyramid Network (FPN) for localization of the object of interest, detection of Region of Interest 

(ROI) in the image, and PolygonRNN for the geometrical shape of the single (individual) object (Z. Li et 

al., 2019; W. Zhao et al., 2020).  

 
Figure 4: Workflow of investigated polymapper method for buildings using RGB images and reference data 

Adapted from : (Li, Wegner, & Lucchi, 2019) 

3.2. Method II: Frame field learning  

Girard, Smirnov, Solomon, and Tarabalka (2020) proposed a framework based on a deep image 

segmentation model using remote sensing images for buildings. It utilizes FCN for pixel-wise classification 

and adds frame fields to obtain buildings’ vectorized polygonization. Girard et al. (2020) has defined frame 

field as a 4-PolyVector field which is locally defined by two symmetric line fields, called frames. The frame 

is defined by two directions at each point in the image as two complex numbers 𝑢, 𝑣 ∈ C. The coefficients 

are represented as the complex polynomial in which the two directions are converted into coded form with 

relabelling and change of sign: 

𝑓(𝑧) = (𝑧2 − 𝑢2)(𝑧2 − 𝑣2) =  𝑧4 + 𝑐2𝑧
2 + 𝑐0 (1) 

Within the set of pairs of directions, the constants 𝑐0 , 𝑐2 ∈  𝐶 uniquely determines an equivalence class 

corresponding to a frame. The equation (1) can be denoted as 𝑓(𝑧; 𝑐0 , 𝑐2). One of the pair of directions, 

(𝑐0 , 𝑐2) pair can be recovered by defining the corresponding frame:  
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{  
𝑐0 = 𝑢

2𝑣2 

𝑐2 = −(𝑢
2 + 𝑣2)

 ⟺ 

{
 
 

 
 𝑢2 = −

1

2
 (𝑐2 + √𝑐2

2 − 4𝑐0)

𝑣2 = −
1

2
 (𝑐2 −√𝑐2

2 − 4𝑐0)

  (2) 

With equation (1), a smooth frame field with the property along building edges is learned such that at least 

one field direction is aligned to the polygon tangent direction. Girard et al. (2021) used PolyVector fields 

rather than vector fields to align the field to the tangent direction at the polygon corners. The frame field is 

used to prevent the corners of the polygon from being cut off. The neural network learns the field at every 

pixel of the image. The learning of (𝑢, 𝑣) pair per pixel is challenging due to labelling and sign so, the 

constant (𝑐0 , 𝑐2) pair is learnt in this method which has no sign or ordering ambiguity. 

 

The original frame field learning method takes H x W RGB image I as input, and the output is a classification 

map and a frame field. The classification map is made up of two channels, i.e., building interiors (𝑦𝑖𝑛𝑡) and 

the building boundaries (𝑦𝑒𝑑𝑔𝑒). The frame field consists of four channels corresponding to the two 

coefficients 𝑐0 , 𝑐2 ∈  𝐶. The original method utilizes a deep segmentation model as a backbone. This thesis 

uses U-net Resnet101 architecture as the backbone with a two-channel output corresponding to object 

interiors and contours. The training is supervised, which requires input image with labelled ground truth 

�̂�𝑖𝑛𝑡. The edges mask, and interior masks are generated from the polygons on the reference dataset by 

rasterizing them, which is the pre-processing part of the algorithm. The angle calculated from the segments 

of the reference data is used for the frame field. The model learns the feature extraction from the input data 

and, with the help of combined loss functions, constrain these tasks to make them consistent.  

 

The segmentation is improved via multi-task learning with the addition of frame fields aligned to object 

tangents. The method trains the network for pixel-wise classification of objects followed by additional 

learning of frame field aligned for the object outlines. The method introduces a frame field that increases 

segmentation performances, such as yielding sharper corners and vectorization information (Girard et al., 

2021). Frame field is added to leverage the polygonization with additional structural information and allow 

complexity tuning of the corner-aware simplification step for handling non-trivial building topology. 

 
Figure 5: Workflow of investigated frame field learning method for building and adapted for greenhouse delineation by fusing RGB, 

nDSM data and reference data  

Adapted from : (Girard, Smirnov, Solomon, & Tarabalka, 2020) 
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The input images with the reference data are utilized for segmentation. The base line method frame field 

learning only utilizes the RGB band, but in this study, nDSM is added to the first layer of the network as 

the additional layer so that the input images will have four channels. The output features of the backbone 

are fed to the shallow structures so that the frame field (utilizing four channels) and segmentation (utilizing 

two channels of the image) are produced.  

3.2.1. Loss Function 

During the training, there are three different tasks where loss functions were prevalent: a) segmentation, b) 

frame field and c) coupling losses. The height and width of the input image are denoted by H and W, where 

linear combined segmentation loss for cross-entropy function and dice function of the edge mask and the 

interior mask  is defined by: 

 

𝐿𝐵𝐶𝐸 (�̂�, 𝑦) =  
1

𝐻𝑊
 ∑ �̂�(𝑥). log(𝑦(𝑥)) + (1 − �̂�(𝑥)). log(1 − 𝑦(𝑥)) ,

𝑥 ∈ 𝐼

  (3) 

𝐿𝐷𝑖𝑐𝑒 (�̂�, 𝑦) =  1 −  2 .  
|�̂� . 𝑦| + 1

|�̂�  + 𝑦| + 1
, (4) 

 

𝐿𝑖𝑛𝑡 =  𝛼 . 𝐿𝐵𝐶𝐸 (�̂�𝑖𝑛𝑡 , 𝑦𝑖𝑛𝑡) + (1 −  𝛼) . 𝐿𝐷𝑖𝑐𝑒 (�̂�𝑖𝑛𝑡  , 𝑦𝑖𝑛𝑡), (5) 

  

𝐿𝑒𝑑𝑔𝑒 =  𝛼 . 𝐿𝐵𝐶𝐸 (�̂�𝑒𝑑𝑔𝑒 , 𝑦𝑒𝑑𝑔𝑒) + (1 −  𝛼) . 𝐿𝐷𝑖𝑐𝑒 (�̂�𝑒𝑑𝑔𝑒 , 𝑦𝑒𝑑𝑔𝑒), (6)
 

 

 

where, 𝐿𝐵𝐶𝐸  is the binary cross-entropy loss applied and 𝐿𝐷𝑖𝑐𝑒 is the dice loss for the interior mask and the 

edge mask output of the model. Furthermore, the 𝛼 is the hyperparameter with the value ranging from 0 

and 1. 
 

Figure 6: Two branches to produce segmentation and frame field 

 

The frame field is another output from the network obtained through the addition of a fully convolutional 

network via a module consisting of a sequence of 2 x 2 convolution, batch normalization, an exponential 

linear unit (ELU) nonlinearity, another 2 x 2 convolution and tanh nonlinearity. The concatenation of the 

segmentation output and the output feature of the backbone network layer from the frame field. The ground 

truth label is the angle 𝜃𝜏 ∈ [0, 𝜋) of the unsigned tangent vector of the polygon contour. Three losses are 

considered to train the frame field, which is given by  

𝐿𝑎𝑙𝑖𝑔𝑛 = 
1

𝐻𝑊
 ∑�̂�𝑒𝑑𝑔𝑒(𝑥)𝑓(𝑒

𝑖𝜃𝜏  ;  𝑐0(𝑥), 𝑐2(𝑥))
2

𝑥∈𝐼

, (7) 
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𝐿𝑎𝑙𝑖𝑔𝑛90 = 
1

𝐻𝑊
 ∑�̂�𝑒𝑑𝑔𝑒(𝑥)𝑓(𝑒

𝑖𝜃𝜏⟂   ;  𝑐0(𝑥), 𝑐2(𝑥))
2

𝑥∈𝐼

, (8) 

 

𝐿𝑠𝑚𝑜𝑜𝑡ℎ = 
1

𝐻𝑊
 ∑(||∇𝑐0(𝑥)||

2
+ ||∇𝑐2(𝑥)||

2
)

𝑥∈𝐼

, (9) 

 

The 𝜃𝜔 is the direction of vector 𝜔 = ||𝜔||
2
𝑒𝑖𝜃𝜔  and 𝜏⟂ =  𝜏 −

𝜋

2
. The losses of the different properties 

of the output field, which is described by 𝐿𝑎𝑙𝑖𝑔𝑛 makes the frame field aligned with the tangent direction of 

the line segment of the polygon, 𝐿𝑎𝑙𝑖𝑔𝑛90 events the frame field from collapsing into the line field and 

𝐿𝑠𝑚𝑜𝑜𝑡ℎ is the Dirichlet energy, which measures the smoothness of the function within the location of x in 

the image. 

 

With different outputs such as interior and boundary segmentation masks, the frame field must be 

compatible with one another, so coupling losses are added for mutual consistency. 

 

𝐿𝑖𝑛𝑡 𝑎𝑙𝑖𝑔𝑛 = 
1

𝐻𝑊
 ∑ 𝑓(∇𝑦𝑖𝑛𝑡(𝑥); 𝑐0(𝑥), 𝑐2(𝑥))

2

𝑥 ∈ 𝐼

, (10) 

 

𝐿𝑒𝑑𝑔𝑒 𝑎𝑙𝑖𝑔𝑛 = 
1

𝐻𝑊
 ∑ 𝑓 (∇𝑦𝑒𝑑𝑔𝑒(𝑥); 𝑐0(𝑥), 𝑐2(𝑥))

2

𝑥 ∈ 𝐼

, (11) 

 

𝐿𝑖𝑛𝑡 𝑒𝑑𝑔𝑒 = 
1

𝐻𝑊
 ∑ max(1 − 𝑦𝑖𝑛𝑡(𝑥),

𝑥 ∈ 𝐼

 ǁ∇𝑦𝑖𝑛𝑡(𝑥)ǁ 2). |ǁ∇𝑦𝑖𝑛𝑡(𝑥)ǁ 2 − 𝑦𝑒𝑑𝑔𝑒 (𝑥)|                  

 

  (12) 

 

where, 𝐿𝑖𝑛𝑡 𝑒𝑑𝑔𝑒  aligns the spatial gradient of the predicted interior map 𝑦𝑖𝑛𝑡  with the frame field. 

𝐿𝑒𝑑𝑔𝑒 𝑎𝑙𝑖𝑔𝑛 aligns the spatial gradient of the predicted edge map 𝑦𝑒𝑑𝑔𝑒  with the frame field. 𝐿𝑖𝑛𝑡 𝑒𝑑𝑔𝑒 aligns 

the interior mask and edge compatible with each other.  
 
The eight losses have different scales and are linearly combined using eight coefficients, so the normalization 

coefficient 𝑁(𝑙𝑜𝑠𝑠 𝑛𝑎𝑚𝑒) by averaging each loss on a random subset of the training dataset using a randomly 

initialized network. The normalization aims to rescale each loss equally, and the combination of main losses 

and regularization losses are made with parameter 𝜆 ∈ [0,1]: 

𝜆 (
𝐿𝑖𝑛𝑡 
𝑁𝑖𝑛𝑡

+ 
𝐿𝑒𝑑𝑔𝑒 

𝑁𝑒𝑑𝑔𝑒
+ 
𝐿𝑎𝑙𝑖𝑔𝑛 

𝑁𝑎𝑙𝑖𝑔𝑛
) + (1 − 𝜆)(

𝐿𝑎𝑙𝑖𝑔𝑛90 

𝑁𝑎𝑙𝑖𝑔𝑛90
+ 
𝐿𝑠𝑚𝑜𝑜𝑡ℎ 
𝑁𝑠𝑚𝑜𝑜𝑡ℎ

+ 
𝐿𝑖𝑛𝑡 𝑎𝑙𝑖𝑔𝑛 

𝑁𝑖𝑛𝑡 𝑎𝑙𝑖𝑔𝑛
+ 
𝐿𝑒𝑑𝑔𝑒 𝑎𝑙𝑖𝑔𝑛 

𝑁𝑒𝑑𝑔𝑒 𝑎𝑙𝑖𝑔𝑛
 + 

𝐿𝑖𝑛𝑡 𝑒𝑑𝑔𝑒 

𝑁𝑖𝑛𝑡 𝑒𝑑𝑔𝑒
) (13) 

 
 

In the original framework, the bias was set with the value 𝜆 = 0.75, and in this thesis, it is also set to 0.50.  
 

3.2.2. Polygonization 

For polygonization, interior mask and frame field are the input where the initial contour is extracted from 

the interior map using the marching squares method (Lorensen & Cline, 1987). Then they are optimized 

with the active contour method (ACM), which is made to align to the frame field. The corner-aware polygon 
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simplification was utilized by detecting the building corner vertices, one of the important vertices required 

for delineation.  

The polyline collection is polygonised with a list of polygons to detect the building polygons in a planar 

graph with the building probability value for each polygon with the predicted interior probability map and 

removing the low-probability polygons. 

 

 
Figure 7: ArcGIS model for aggregating different individual greenhouses separated in the largely dispersed geographical area as shown in 

figure 9 

 

The output of the predicted test tiles had individual shapefiles per tile. As per the BRT dataset, the size of 

the greenhouse ranges from 200 sqm to 589653.408 sqm. Since the size of the greenhouses are big and 

distributed over a large geographical area, a model in ArcGIS was created to aggregate the predicted 

individual greenhouses in the test dataset. The greenhouses which were separated into two or more tiles, 

would delineate separately as the model outputs the polygonization per image tiles in the test dataset. For 

joining such greenhouses together, the ArcGIS model was implemented. The individual predicted shapefiles 

per image tiles did not overlap with each other and had some gaps, as shown in figure 8-a. While manually 

checking the distance between the non-overlapped part, it was found to be less than 0.5m for one instance 

of the greenhouse. So, those individual predicted shapefiles were first merged together in the ArcGIS then 

was buffered within a distance of 0.5m, as shown in figure 8-b. The resultant was then dissolved such that 

the overlapped polygon are combined into a single polygon, as shown in figure 8-c. Since buffer was added 

with the distance of 0.5m, the vector polygon would increase with the distance of 0.5 than the original 

polygon, so a negative buffer was added. The distance value was set to -0.5m, and the negative buffer was 

done so that the final joined predicted polygon of the greenhouse was obtained, as shown in figure 8-d. 

Figure 8-e shows the difference of 0.5m prediction of buffered boundary and negative buffered boundary. 

 

 

 

 

 

a. Predicted merged 
individual shapefile 

b. Predicted buffered shapefile 
 

c. Predicted dissolved shapefile 
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d. Predicted final shapefile 
 

e. Zoomed layer showing the buffered and negative buffered 
result   

  
Figure 8: Application example of ArcGIS model on the test dataset 

 
 

  



POLYGONAL DELINEATION OF GREENHOUSES USING A DEEP LEARNING STRATEGY 

 

22 

4. MATERIALS  

This chapter introduces the study area where the research was conducted, followed by the datasets used. 

Finally, the description of the data preparation is described. 

4.1. Study Area 

This research was applied to three different provinces of the Netherlands out of twelve, namely Noord-

Holland, Zuid-Holland and Noord-Brabant. Based on the BRT dataset for the greenhouses in the year 2019, 

there were 13306 greenhouses covering an area of 132829632.50 sq m (132.83 sq km) in the Netherlands. 

Out of which, 2131 greenhouses covering an area of 1333163.85 sq m (1.33 sq km) were distributed in these 

three provinces. There were mainly two types of greenhouses present in the area, made up of glasses and 

plastic. The commercialized greenhouses and movable greenhouses were mainly made up of glasses while, 

in the farm area (rural part), a few plastic greenhouses were present. Greenhouses had been used for different 

purposes, such as department stores and greenhouse warehouses for horticulture and vegetation. 

Greenhouses in the Netherlands are distributed throughout the country, but the study area was selected 

such that commercialized greenhouses, movable greenhouses, small greenhouses were present. Also, 

greenhouses near building areas were considered. 

 
Figure 9: Location of the study area with the distribution of training, testing and validation tiles 

4.2. Data 

The dataset contains three parts: a) A VHR orthophoto aerial image, b) nDSM generated from stereo 

imagery, and c) BRT polygon of the greenhouse as reference data.  

4.2.1. Aerial Imagery 

A nationwide aerial photo of the Netherlands is captured bi-annually during the summer and winter months 

in different resolutions. The dataset with 0.25 m resolution is freely available to the public. Another dataset 

is of 0.1 m resolution, used internally. The raw aerial imagery is collected and processed to prepare 

orthophotos geometrically corrected with uniform scale in the “RD-New” map projection as accepted in 

the Netherlands. After quality control, the final product is made available to the general public (Kadaster, 

n.d.-b). Two different orthoimages were utilized for the experimental analysis in this study, which is 

described below: 
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4.2.1.1. Winter dataset (0.1m resolution dataset) 

The winter dataset is the aerial imagery (orthophotos) with the spatial resolution of 10 cm, which is an 

internal dataset from Kadaster. The aerial dataset utilized was from 2019 for all the training, validation and 

testing tiles. The orthophotos were of the size 1024x1024 with the file extension of .png as provided by 

Kadaster. The .png image file also contains a .wld formatted ESRI World (WLD) file containing control 

points that describe coordinate information for a raster image, including its pixel size, rotation, and 

coordinate location (ESRI, 2016).   

4.2.1.2. Summer dataset (0.25m resolution dataset) 

The summer data is freely available to the users via the Publieke Dienstverlening Op de Kaart (PDOK), 

which translates to Public Services On the Map website. It contains up-to-date and reliable geo datasets. It 

contains orthophoto mosaics of the entire country with RGB and Color Infrared (CIR) bands. The CIR 

band was removed, and only the RGB band was used for experimental analysis. A maximum of 5 years of 

orthophoto mosaics are available meaning, 2015 – 2019 is available (PDOK, n.d.-a). The summer dataset is 

the freely available imagery dataset with a resolution of 0.25m from the year 2019. 
 

 

 

 

a. Orthophoto (Aerial Image)  b. Normalized Digital 
Surface Model (nDSM) 

c. BRT dataset as the 
reference data 
overlapping the aerial 
image 

Figure 10: List of data used 

4.2.2. Normalized Digital Surface Model (nDSM) 

The nDSM used was also confidential data from Kadaster, which was derived from the VHR stereo imagery. 

With the overlapped stereo images, the feature points were determined and matched from which 3D 

coordinates were extracted from the points, which gave the information of 3D information. The nDSM 

provided was in the form of a raster image with the extension .tif. The nDSM provided the height 

information of what lies above the ground with a resolution of 0.20m. For winter images, nDSM was 

resampled into 0.1m. 

4.2.3. Greenhouse footprints 

The polygonal data was in the ESRI geodatabase format, which can be downloaded from pdok.nl. The 

greenhouse was one of the attributes within the ‘Buildings’ category on the TOP10NL product of BRT. 

Two different categories of the greenhouse were considered “overig|kas,warenhuis” and “kas, wareinhuis”, 

which translated to “other|greenhouse department store” and “greenhouse, warehouse”, respectively. 

There was no separation of plastic greenhouses or glass greenhouses within the attribute of the dataset. The 

BRT polygons are updated yearly, and the greenhouse footprints of the year 2019 were used for reference 

purposes. 
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4.3. Data Preprocessing 

The data used in this thesis was VHR resolution images, limiting the research area’s size under a certain 

number of pixels. This is the reason why within the three provinces, not all the greenhouses in the three 

provinces were selected.   

4.3.1. Tiles Preparation, selection and distribution 

The training, testing, and validation tiles were distributed over the study area such that geographical 

knowledge is considered, as mention in section 4.1. Stratified sampling techniques were used within the 

dataset for training, testing and validation such that there is less class imbalance in terms of greenhouse class 

and non-greenhouse class. The whole dataset was divided into a sample of a homogeneous dataset with 

specific criteria. The tiles were distributed for training, validation and testing in which 50% of the tiles were 

randomly selected, while 50% of the tiles were manually selected. The criteria for selecting the tiles were to 

have both the glasses greenhouses and the plastic greenhouses. Also, while randomly selecting the tiles, a 

complete boundary of the greenhouse was not selected due to big sized greenhouses. It means that a part 

of the greenhouse was being separated as different sets of grouped tiles (validation, training and testing).  

So, the tiles were manually selected such that a complete polygon lies within a set of grouped tiles. The 

separation of training, testing and validation tiles were considered with the changes in the greenhouse. The 

tiles of 1024x1024 were generated using the “Create Fishnet” tools in the ArcGIS for the 0.1m dataset. The 

tiles were used to clip the images as well as the nDSM. 

 

a. Winter dataset (0.1m resolution) 

For 0.1m resolution data, the raster information on the number of columns and the rows was made sure 

that the rows were 1024x1024 with the cell size to be 0.1. The nDSM was also resampled to 0.1m which 

was stacked as a 4th channel on top of the RGB images to produce a composite image.  

 

b. Summer dataset (0.25m resolution) 

For summer images with the resolution of 0.25m, the tiles generated from the same procedure was of 

512x512 such that the cell size was set to 0.25 and the number of columns and rows set to 512x512. The 

tiles area was considered such that it includes the same area for training, testing and validating areas as 

compared to the winter dataset. The summer images had some changes in the greenhouses area. Since the 

time to capture the images was different from the winter dataset, new greenhouses were being built, some 

greenhouses were being extended, and some greenhouses were demolished. 

 

From the total tiles, 60% of the tiles were selected as training tiles, 20% of tiles as validation and 20% of the 

tiles as testing datasets. Due to tiles with incomplete polygon among the tiles, the distribution of the tiles 

was not exactly within the ratio of 60:20:20 for training, testing and validation. The tile distribution, tile size 

and number of greenhouses within the tiles are shown in the table 4. 
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Table 4: Information on the tiles used for different datasets, training, validation, and test dataset for experimental analysis 

Dataset Tiles size Type Number of Tiles Number of 

greenhouses 

RGB and 

RGB+nDSM 

(0.1m) 

1024x1024 training 2303 1760 

validation 422 147 

test 512 224 

RGB and RGB 

(0.25m) 

512x512 training 1816 1748 

validation 302 147 

test 398 224 

 

4.3.2. Annotation of the reference dataset 

Every individual image tile had its own reference dataset. The name of the tiles of images and the reference 

data were the same. The reference data, i.e., the polygon of the greenhouse from BRT, was first clipped with 

respect to the image tiles using the “Clip” tool in ArcGIS. The clipped greenhouse was then split into 

individual shapefiles using the ArcGIS tool “Split by Attributes”. It was used such that the split shapefile 

would have the same name as the image, with the split field being the name of the image. Two different 

annotation format was utilized in the thesis which are described below:  

 

a. COCO format 

COCO (Common Objects in COntext) format is used mainly in object recognition and scene understanding. 

The coco format is considered the de facto standard to store the annotations of the object of interest 

(Waspinator, 2018). It uses .json (JavaScript Object Notation) to encode information about a dataset. It 

includes the “info”, “licenses”, “categories”, and “images” lists which represents the shapefiles metadata 

which is written as per the user. The annotations attributes contain information about the bounding box, 

area, segmentation (shape of the greenhouse), image_id, height and width of the tiles. Figure 11 shows the 

example of the annotation format for one of the shapefiles and its corresponding image saved in the coco 

format (Waspinator, 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 11: One of the BRT polygons in COCO dataset  JSON format  
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b. GeoJSON format 

The geographic features with the information of the nonspatial format are represented in an open standard 

geospatial data interchange format termed GeoJSON format (ESRI, n.d.). It is based on the JavaScript 

Object Notation(JSON) format with information on the type, geographic coordinate reference system, 

geometry types, and shapefile properties. A snippet of one of the shapefile in the geoJSON file format is 

shown in figure 12. 

 

 

 
 

 

 

 

 

Figure 12: BRT polygon dataset in geoJSON format  

 

4.3.3. Dataset Preparation for the Polymapper 

The dataset for the greenhouse was prepared using the aerial image of 0.1m resolution and reference data 

shapefile of greenhouses from the BRT, shown in figure 13. The shapefile of the reference data was 

transformed into COCO format to use the method of polymapper, which is shown in figure 10.  

 

 

 

a)  0.1m ortho-image b) BRT reference data polygon c) Individual polygon per tiles 

 Figure 13: Aerial imagery and reference data (BRT polygon) preprocessing 

The shapefiles were generated such that the polygon of the object of interest (in this case: greenhouse) was 

made within the image tiles, meaning that training, validating and testing image tiles and shapefiles with 

respect to each image tile were equal. 

4.3.4. Training the model and reasons for not using Polymapper method for greenhouse 

The model was trained with the datasets prepared for the greenhouses. While evaluating the trained model 

on the test dataset, it did not work. The reason was that the method needs to have at least one complete 

object of interest per image, i.e., the object of interest (at least one closed polygon per image). Since the 

greenhouses in the Netherlands are bigger in size with the area of greenhouses which has area up to 500000 

sqm., so the initial tiles of 1024 x 1024 was not suitable as a tile did not contain the complete polygon of the 

greenhouse, but it was divided into different other tiles. The option for bigger image tiles was also not 

possible because of the cloud machine’s memory issues and computational efficiency. 
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4.3.5. Data Preparation for Frame Field Learning 

 

The dataset tiles were prepared same as mentioned in the section 4.3.1. The dataset for the greenhouse was 

prepared using the aerial image of 0.1m resolution for winter images, 0.25m resolution for summer image 

and reference data shapefile of greenhouses from the BRT, shown in figure 13. The shapefile of the 

reference data per individual tiles was transformed into geoJSON format to use the method of frame field 

learning method. Furthermore, the mean and the standard deviation of all the training images, testing images 

and validation images were calculated as it is one of the inputs that need to be set in the model. To train the 

frame field learning model applicable for greenhouses, two different resolutions of images were taken into 

account with configuration described in the section 5.1.  
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5. EXPERIMENTAL ANALYSIS 

This chapter describes the experimental analysis done with the information on the configuration, 

combination of the dataset used, and the evaluation metrics used in the research. 

5.1. Configuration 

The model was trained with the following settings: 

Optimizer: Adam 

Batch size: 1  

(Due to CUDA memory error, batch size could 

not be increased for 0.1m dataset) 

Initial learning rate: 0.00001 

Exponential decay rate for the learning rate: 0.9 

Maximum epoch: 50 

Binary cross-entropy: 0.25 (first configuration) and 0.5 (second 

configuration) 

Dice Coefficient: 0.75 (first configuration) and 0.5 (second 

configuration) 

Polygonization parameter: 

Tolerance: (0.125, 1, 9) 

 

The network is implemented in PyTorch 1.4 and run in a single NVIDIA Tesla P10  GPU setting.  

5.2. Combination of the dataset for experimental analysis 

Table 5 shows the combination of the datasets for experiment analysis with reference dataset used. 
Table 5: Information on the datasets used for the experimental analysis 

Experiment 

Analysis 

Orthoimage of 

Resolution 

Bands Reference 

Dataset 

Parameter Tuning 

 0.1m (winter data) RGB Original Shapefile 

of BRT 

 

 RGB  Edited (digitized 

BRT) shapefile 

BCE and Dice 

coefficient change, 

tolerance for 

polygonization 

 RGB + nDSM Edited (digitized 

BRT) shapefile 

BCE and Dice 

coefficient change, 

tolerance for 

polygonization 

 0.25m (summer 

data) 

RGB Edited (digitized 

BRT) shapefile 

BCE and Dice 

coefficient to be of 

value 0.25 and 0.75 

respectively 
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5.3. Evaluation Metrics 

 
The quantitative and qualitative result on the experimental analysis in section 5.2. is done based on the 
combination of the metrics: 

5.3.1. Quantitative Analysis 

The section describes the metrics that was used during the study.  

a) Pixel-level metrics 

It represents the per cent of the pixels in the predicted result on the image classified correctly with the 

reference dataset. In the thesis, Intersection-Over-Union(IoU) is used, which is computed by dividing the 

area of overlap or intersected area by the area of the union between the predicted segmentation area (𝑝) 

and the ground truth (𝑔) (Tiu, 2019).  

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎 (𝑝 ∩ 𝑔)

𝑎𝑟𝑒𝑎 (𝑝 ∪ 𝑔)
 

 

b) Object-level metrics 

The delineation of the object of interest is the greenhouse in the thesis, which can be related to object 

segmentation. For this purpose, mean Average Precision (AP) and mean Average Recall (AR) was calculated 

with the evaluation metrics used by Common Objects in Context (COCO). The AP and AR have averaged 

over 10 IoU threshold values of 0.50:0.05:0.95 with 0.05 steps.  For better localization, averaging over IoU 

is calculated (COCO - Common Objects in Context, n.d.). AP represents the correctly predicted positive 

observation ratio to the total predicted positive observation within the IoU threshold. AR represents the 

ratio of the correctly predicted positive observation to all the predicted observations as the positive class. 

As per the standard COCO evaluation performance for the object detection, the following metrics are 

calculated:  

     

Average Precision (AP) 

AP AP at IoU=0.50:0.05:0.95 

APIoU=.50 AP at IoU=0.50 

APIoU=.75 AP at IoU=0.75 

AP Across Scales 

APsmall AP for small objects: area < 322 

APmedium AP for medium objects: 322 < area < 962 

APlarge AP for large objects: area > 962 

Average Recall (AR) 

ARmax=1 AR given 1 detection per image 

ARmax=10 AR given 10 detection per image 

ARmax=100 AR given 100 detection per image 

AR Across Scales 

ARsmall AR for small objects: area < 322 

ARmedium AR for medium objects: 322 < area < 962 

ARlarge AR for large objects: area > 962 

 

The standard metrics have evaluation metrics with small objects with an area less than 322 pixels, medium 

objects with an area between 322 and 962 pixels and large objects with an area greater than 962 pixels. AP 

and AR with the scales of the area are calculated where an area is measured as the number of pixels in the 

segmentation mask. It was calculated using the standard COCO evaluation for detection metrics by 

comparing the predicted dataset with the reference dataset. 
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5.3.2. Qualitative Analysis  

Visual inspection or human interpretation was used to check the delineated greenhouse to see if the 

greenhouse delineations were smooth and free of noise. The test tiles were visually inspected to see whether 

the predicted boundary of the greenhouse was delineated correctly or not. It was also used to see the false 

positives of the predicted greenhouses and to see where false positives were common compared to other 

non-greenhouses classes.  
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6. RESULT AND DISCUSSION 

This chapter includes the quantitative and qualitative analysis of the result obtained from the study. The 

results are discussed and are followed by the limitation of the research.  

 

The results on the test dataset of the aerial images (RGB) and composite images (RGB+nDSM) within the 

study area were compared. The model configurations were kept the same to ensure a fair comparison of the 

experimental analysis while changing the input dataset.  

6.1. Quantitative analysis 

Table 6 and 7 shows the quantitative results of different experimental analyses done on a different dataset 

combination as described in section 5.2.   

 

6.1.1. Training on the hyperparameter BCE of 0.25 and Dice Coefficient of 0.75 

Table 6: Extracted result on the test dataset on the entire study area with the calculation of mean IoU and standard AP and AR 
(COCO metrics) for hyperparameter BCE of 0.25 and Dice coefficient of 0.75 

Metrics RGB (0.1m) RGB+nDSM 

(0.1m) 

RBG (0.25m) 

Mean IoU 0.673 0.751 0.745 

AP IoU=0.50:0.05:0.95 0.005 0.003 0.003 

APIoU=.50 0.010 0.007 0.011 

APIoU=.75 0.006 0.004 0.006 

APsmall 0.000 0.000 0.000 

APmedium 0.011 0.008 0.010 

APlarge 0.019 0.017 0.020 

ARmax=1 0.037 0.037 0.038 

ARmax=10 0.056 0.058 0.054 

ARmax=100 0.058 0.058 0.054 

ARsmall 0.000 0.000 0.000 

ARmedium 0.024 0.017 0.022 

ARlarge 0.063 0.064 0.063 

 

Here, the value of APlarge and ARsmall was 0, which showed that the small greenhouse under the 322 pixels 

and for 0.1 sqm resolution was not visible because the greenhouse was not as small as the greenhouse area 

bigger than 322 x 0.12 pixel value. With the threshold of IoU = 0.50, AP of 0.1m RGB images was higher 

than the RGB + nDSM images indicating that there was the low false positive rate for RGB images, while 

0.25 m RGB has the highest among three which indicates that among the three band combination, 0.25 m 

RGB had low false positive rate. Whereas, RGB + nDSM for 0.1m images had high mean AR value 

indicating that there were few false negatives. The AP IoU=0.50:0.05:0.95 value for 0.1m RGB images was greater 

than the AP IoU=0.50:0.05:0.95 for 0.1m RGB + nDSM with the value of 0.003, meaning within the threshold 

from 0.5 to 0.95 with the steps of 0.05, the localization was better for 0.10m RGB images. 

6.1.2. Training on the hyperparameter BCE of 0.50 and Dice Coefficient of 0.50 

Table 7: Extracted result on the test dataset on the entire study area with the calculation of mean IoU and standard AP and AR 
(COCO metrics) for hyperparameter BCE of 0.50 and Dice coefficient of 0.50 
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Metrics RGB (0.1m) RGB+nDSM 

(0.1m) 

Mean IoU 0.784 0.807 

AP IoU=0.50:0.05:0.95 0.006 0.004 

APIoU=.50 0.011 0.008 

APIoU=.75 0.007 0.004 

APsmall 0.000 0.000 

APmedium 0.009 0.009 

APlarge 0.011 0.015 

ARmax=1 0.049 0.040 

ARmax=10 0.052 0.047 

ARmax=100 0.052 0.047 

ARsmall 0.000 0.000 

ARmedium 0.020 0.020 

ARlarge 0.058 0.052 

 

With the hyperparameter changed from 0.25 to 0.50 for BCE and 0.75 to 0.75 for Dice coefficient, the mean 

IoU has increased from 0.673 to 0.784 for 0.10m RGB images and from 0.751 to 0.807 for 0.10m RGB + 

nDSM images. The AP IoU=0.50:0.05:0.95 value for 0.1m RGB images with the value of 0.006 was greater than 

the AP IoU=0.50:0.05:0.95 for 0.1m RGB + nDSM value of 0.004, meaning within the threshold from 0.5 to 0.95 

with the steps of 0.05, the localization was better for 0.10m RGB images. With the change of 

hyperparameter, the accuracy had increased and can be seen in table 7 compared to table 6. 

6.2. Qualitative Analysis 

 

The prediction on 0.1m RGB bands after the training the model resulted in following 

 

  

Reference Dataset Prediction on 0.1m RGB dataset using original BRT shapefile 
Figure 14: Prediction on 0.1m RGB dataset using original BRT shapefile done on frame field learning method 

Initially, an experiment was conducted with the original datasets from BRT with the frame field learning 

method. As the area for tiles preparation was selected such that there were changes in terms of greenhouses 

along with different bigger and smaller greenhouses, the prediction of greenhouses were not good. The 

greenhouses were being predicted not only in the area where there were greenhouses but also in the 
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vegetation, roads, bare soil areas, and some in the buildings. The reference dataset from BRT was rechecked 

again and found that there were greenhouses where the image and the reference data polygon were not 

overlapping with each other, which is seen in figure 15-a. Within the datasets that were prepared for training 

the datasets initially, it was found that some of the greenhouses were not digitized so the model might have 

learnt the textural feature and the spectral information of the other classes rather than the greenhouses. 

 

 

 

 

a. Reference data of the greenhouse not overlapping 
the image. 

b. A shift of the greenhouse 

 

 

 

Figure 15: Errors in BRT shapefile within the dataset created 

Some of the reference data of the greenhouse were incomplete, meaning only a certain part of the 

greenhouse had overlapped boundary, while the rest of the greenhouse in the image was not overlapped. 

Also, some greenhouses have been changed from greenhouse to house and are not updated, resulting in the 

reference data being something else (e.g. houses) instead of the greenhouse. 

   

Missing greenhouse reference 
data 

Missing shapefile in the 
greenhouse (BRT shapefile 
not properly updated) 

Mistake in reference data dataset of 
greenhouse 

Figure 16: Missing BRT polygons and few errors on the BRT polygon shapefile 
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The dataset was corrected by manually digitizing the polygons which did not match with the orthoimage of 

2019. The BRT shapefile where greenhouses were missing, non-overlapped greenhouses, shifted 

greenhouses were digitized.  

 
The qualitative result obtained in the test set of the aerial images with the dataset combination in section 5.2 

with the configuration as mentioned in 5.1  is shown in figure 17 - 19. The red boundary depicts the reference 

data dataset, blue boundary depicts the predictions on the datasets RGB band with 0.1m, yellow boundary 

depicts the predictions on the dataset RGB+nDSM band with 0.1m and pink polygon depicts the prediction 

of the dataset RGB band with 0.25m are shown in the figure 17-18.  

 

 

 

 

 

Reference Dataset Updated or Edited BRT shapefile for 0.1m dataset and 0.25m dataset 
Prediction on 0.1m 
RGB dataset 

Prediction on 0.1m 
RGB+nDSM dataset 

Prediction on 0.25m 
RGB dataset 

 
Figure 17: Prediction of greenhouses with edited BRT shapefiles for a different combination of dataset 

 
The result for prediction of greenhouse has increased vastly compared with the figure 14 and 17 with 
digitizing the dataset. The prediction on the same area as shown in figure 17 proper delineation of 
greenhouse, not including prediction on the bare soils or vegetation area. 

 

 

 

 

 
 

Reference Dataset Updated or Edited BRT shapefile for 0.1m dataset and 0.25m dataset 
Prediction on 0.1m 
RGB dataset 

Prediction on 0.1m 
RGB+nDSM dataset 

Prediction on 0.25m 
RGB dataset 
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In some cases, the 0.1m RGB dataset could not predict greenhouses that were being predicted when 
nDSM was added to the 0.1m RGB image. It might be due to the elevation data information added to it. 
Also, 0.25m data was able to predict the greenhouse but could not predict correctly, and polygonization 
was only in some parts of the greenhouse. 
 

 

 

 

 

Reference Dataset Updated or Edited BRT shapefile for 0.1m dataset and 0.25m dataset 
Prediction on 0.1m 
RGB dataset 

Prediction on 0.1m 
RGB+nDSM dataset 

Prediction on 0.25m 
RGB dataset 

 
Figure 18: Prediction of greenhouse in the plastic greenhouse as well as solar panel beside it 

The plastic greenhouse is delineated correctly in the 0.1m RGB+nDSM, and in 0.25m RGB data was also 
able to delineate the greenhouse compared adequately to 0.1m RGB. The figure 18 also shows that the solar 
panel on the black building is predicted as a greenhouse in both 0.1m RGB+nDSM and 0.1m RGB band. 

 

 

 

 

Reference Dataset Updated or Edited BRT shapefile for 0.1m dataset and 0.25m dataset 
Prediction on 0.1m 
RGB dataset 

Prediction on 0.1m 
RGB+nDSM dataset 

Prediction on 0.25m 
RGB dataset 

 

The RGB 0.1m and 0.25m predicts greenhouses and the bare soils with a similar textural feature as the 

greenhouse. Adding nDSM has reduced the false positive and predicted the greenhouse, and removed the 

greenhouse in the ground. 
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Reference Dataset Updated or Edited BRT shapefile for 0.1m dataset and 0.25m dataset 
Prediction on 0.1m 
RGB dataset 

Prediction on 0.1m 
RGB+nDSM dataset 

Prediction on 0.25m 
RGB dataset 

 
In some cases, only a small part of the greenhouse was being predicted as a greenhouse in 3band RGB, 

whereas the addition of nDSM and 0.25m 3RGB had predictions in all the greenhouse areas. 

 
 

 

 

  

Reference Dataset Updated or Edited BRT shapefile for 0.1m dataset and 0.25m dataset 
Prediction on 0.1m 
RGB dataset 

Prediction on 0.1m 
RGB+nDSM dataset 

Prediction on 0.25m 
RGB dataset 

 
 
The buildings with the white roof are being detected as greenhouses relevant in all the experimental 
analyses.  
 
 

 

   

Reference Dataset Updated or Edited BRT shapefile for 0.1m dataset and 0.25m dataset 
Prediction on 0.1m 
RGB dataset 

Prediction on 0.1m 
RGB+nDSM dataset 

Prediction on 0.25m 
RGB dataset 
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Reference Dataset Updated or Edited BRT shapefile for 0.1m dataset and 0.25m dataset 
Prediction on 0.1m 
RGB dataset 

Prediction on 0.1m 
RGB+nDSM dataset 

Prediction on 0.25m 
RGB dataset 

 

 

 

Reference Dataset Prediction on 0.1m RGB dataset 

 
 

Prediction on 0.1m RGB+nDSM dataset Prediction on 0.25m RGB dataset 
 
The solar panels are being detected as greenhouses in all the experimental analysis. Kadaster, in one of 
their work (prediction of solar panel), found that their model was also predicting greenhouse instead of 
solar panel. In this experiment, we see that for greenhouse prediction, the solar panel was being detected 
as a greenhouse. It shows that there is some correlation between the greenhouse and the solar panels. 
There are also solar panels which are part of the greenhouse as one of the ongoing  European innovation 
programs in the southern Netherlands, ‘Greenhouse of the Future’, which might have resulted in these 
predictions of greenhouse in the solar panel (‘Greenhouse of the Future’ with Special Solar Glass Coming to 
Netherlands, 2018). 
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Reference dataset Prediction on 0.1m RGB dataset 

 

 

Prediction on 0.1m RGB+nDSM dataset Prediction on 0.25m RGB dataset 

 

 

Reference Dataset Prediction on 0.1m RGB dataset 



POLYGONAL DELINEATION OF GREENHOUSES USING A DEEP LEARNING STRATEGY 

39 

 

 

Prediction on 0.1m RGB+nDSM dataset Prediction on 0.25m RGB dataset 

 

The experimental analysis for the prediction of the polygon of the greenhouse with different tolerance levels 

(0.125 pixels, 1 pixel and 9 pixels) is shown in figure 19. For polygonization, as the number of tolerance for 

prediction increases, the number of vertices to make the polygon decreases. While the number of tolerance 

for prediction decreases, the number of vertices to make the polygon increases.  

 

  

A predicted polygon with the 
tolerance of 0.125 pixels for 
polygonization 

Number of vertices = 1468 

A predicted polygon with the 
tolerance of 1 pixel for 
polygonization 

Number of vertices = 674 

A predicted polygon with the 
tolerance of 9 pixels for 
polygonization 

Number of vertices = 395 

 
Figure 19: Example polygon obtained with different tolerance parameters for the polygonization for different band combination 

Greenhouses in the Netherlands are mainly made up of glasses, and when aerial images are taken from 

aircraft, from the position of the sun and the angle of the flights from which greenhouses were taken, there 

will be a reflection of the glass, resulting in greenhouses with different textures and spectral information. In 

figure 20, different types of greenhouses in the aerial images are seen: greenhouses are white with a spectral 

resolution of value 255 all over the greenhouse, transparent greenhouses that reflect clearly what lies 

underneath. One of the reasons for the detection of the white building as the greenhouse was the training 

dataset containing white greenhouse, which is the result from the angle from which the image was taken 

from the aircraft, making the glass of the greenhouse reflects white, as shown in figure 20.  

 

The method was more effective for the greenhouses made up of glasses than greenhouses made up of 

plastic. The reason can be the fewer plastic greenhouses in general. With the addition of nDSM, the plastic 
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greenhouses were predicted, although there was less training dataset due to additional elevational 

information. 

 

  

Figure 20: Greenhouses with different texture 

Some greenhouses are transparent, as shown in figure 21, which makes learning during training more 

difficult, and rather than learning the spectral and textural features of the greenhouse, it learns the 

underneath information. 

 

 

 

 

 

 

 

 

 

Figure 21: Transparent greenhouses 
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While acquiring the image of the greenhouse, a certain area within the greenhouse reflects the sun and the 

high-intensity reflection values are obtained in that greenhouse, as shown in figure 22. The spectral and the 

texture value in that area differs from the, which might have affected the result. 

 

 

Figure 22: High-intensity reflection in a certain area of the greenhouse while taking an aerial image 

6.3. Limitations 

The stratification procedure for data preparation might be biased as 50% of the tiles were manually selected 

with a greenhouse within them. As the greenhouses are big and occupy large areas ranging from 200 sqm 

to 589653.408 sqm, a complete greenhouse would occupy many tiles. The training, testing and validation 

tiles were selected such that a complete polygon of the greenhouse lies on one of the three tiles group.   

 
The method of joining the greenhouse that was introduced in section 3.2.2. also has its limitation. The 
ArcGIS method takes a distance value through which it is buffered. As the method merged and dissolved 
that predicted polygon together. If the minimal distance between two greenhouses is less than the distance 
value opted in this method, then the two greenhouses will merge, which will defer the objective of having a 
single instance of the greenhouse.  
 
The model predicts poor results for plastic greenhouses, which can be seen in figure 18. The distribution of 
plastic greenhouse in the study area is few. The model is biased towards the plastic and glasses greenhouses 
due to less number of plastic greenhouses.  
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7. CONCLUSION AND RECOMMENDATION 

This chapter first describes the conclusion of the overall study and later recommends how to improve the 

methodology further. 

7.1. Conclusion 

A method used to polygonize the building was utilized for polygonization of the greenhouse, which includes 

the standard segmentation model with an additional frame field. Adding the nDSM band to the RGB band 

resulted in incrementing the accuracy and regularity of prediction.  For the bigger objects of interest like 

greenhouses, frame field learning was more appropriate for instance segmentation, as the Polymapper 

method required to have at least one object of interest with all its boundary within the tiles. The mean IoU 

for 0.1 m RGB image was 0.673, while for RGB+ nDSM of 0.1 m dataset was 0.751. Some of the 

greenhouses were not predicted in RGB images of 0.1m resolution, while adding nDSM with the RGB 

predicted the greenhouse. It concludes that adding nDSM to extract the distinguishes the greenhouses and 

the background more accurately. The mean IoU of 0.25 m RGB image was 0.745. The results for 0.25m 

datasets were good in some cases, compared to 0.1m datasets, meaning that only resolution of VHR images 

cannot only be a factor for better prediction. Greenhouses are big in shape and are visible in both 0.1m and 

0.25m datasets. The network can learn spectral and textural features from what is visible from the VHR 

imagery. The 0.1m RGB images had more distinct texture features that need to be learned, which might 

have resulted in a poor result than the 0.25m datasets for three RGB bands. For 0.1m datasets, the BCE 

parameter 0.25 to 0.50 and the Dice coefficient was changed from 0.25 to 0.50, which increases the mean 

IoU from 0.675 to 0.784 for three-band RGB images and 0.751 to 0.807 for RGB + nDSM images. 

 

The answers to the research questions of the study are presented below: 

 

RQ1: Which deep learning or CNN architecture is appropriate for automated delineation of 

greenhouses in the polygon format? 

Frame field learning method was utilized for the delineation of the greenhouses. The model first produced 

the classification map by training the deep learning network (UNet-Resnet101) and later vectorised the 

classified map. Since the greenhouses to be delineated were big, with an area up to 589653.408 sqm, an 

ArcGIS model was introduced to join the greenhouse together.  

 

RQ2: Which cadastral data sets are suitable for the experimental analysis? 

Out of the different key registry in the Netherlands, the BRT dataset contained the footprints of the 

greenhouse data in the digital format, so the BRT key registry dataset was taken. In terms of images, summer 

and winter orthoimages were utilized with the resolution of 0.25m and 0.1m, respectively. The summer 

dataset was freely available which could be downloaded from the open government datasets platform, 

pdok.nl. The winter orthoimages were private data used for internal uses within the Kadaster. Kadaster took 

separate flights to produce the winter orthoimages. For the height data, freely available source, i.e., Actueel 

Hoogtebestand Nederland (AHN) data, was not available for the geographical areas within the year of 2019. 

So, the nDSM of 2019 with the resolution of 0.2m (which was later resampled for experimental analysis) 

was used. The nDSM data was internal data of Kadaster that was obtained from the stereophotogrammetry 

process. 

 

RQ3: Does the normalized Digital Surface Model (nDSM) data contribute to more accurate 

detection and segmentation of greenhouses?  
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The quantitative result and the qualitative result shows that the addition of nDSM increases the prediction 

of greenhouses. The height information contributed to distinguish the greenhouses from the background 

more accurately, as shown in figure 17 and 18. For BCE coefficient of 0.25 and Dice coefficient of 0.75, the 

mean IoU of 0.1m RGB images was 0.675, and for 0.1m RGB + nDSM images, the mean IoU value 

improved to 0.751.  

 

RQ4: What is the effectiveness of the approach for different types of greenhouses (plastics and 

glasses)? 

The study area with greenhouses had a high number of glasses greenhouses compared to plastic 

greenhouses. The training, validation and testing dataset prepared to apply in the frame field method had 

more glasses greenhouses, which makes the trained model biased. This is the reason why the prediction of 

greenhouse shown in figure 18 had a poor prediction for plastic greenhouses. However, the footprint of 

greenhouses on BRT had no separation of plastic or glasses greenhouse. So, only visual inspection was done 

to separate the type of greenhouses.  

 

RQ5: Which dataset performs better in terms of delineation of greenhouses?  

The height information (nDSM) to the RGB band has increased the prediction of greenhouses compared 

to the RGB band. The qualitative analysis shows that out of the combination with the same configuration, 

RGB + nDSM showed better performance with the mean IoU value of 0.751.  

 

RQ6: What is the accuracy of the polygonised greenhouse with the standard metrics?  

The accuracy of the predicted greenhouse can be seen in table 6 and 7. The mean IoU value was high for 

RGB + nDSM dataset with 0.751 for the hyperparameter of 0.25 BCE and 0.75 Dice coefficient. The AP 

IoU=0.50:0.05:0.95 value for 0.1m RGB images was greater than the AP IoU=0.50:0.05:0.95 for 0.1m RGB + nDSM with 

the value of 0.003, meaning within the threshold from 0.5 to 0.95 with the steps of 0.05, the localization was 

better for 0.10m RGB images. Whereas RGB + nDSM for 0.1m images had a high mean AR value, 

indicating few false negatives. 

 

RQ7: What are the specification required by Kadaster to update the BRT in terms of the 

greenhouse? 

The specification required by Kadaster to update the BRT is that the greenhouse is considered to be a 

greenhouse when the digital topographic files, in our case greenhouse, should lie in the scale of at least 

1:10000 (Ministerie van Binnenlandse Zaken en Koninkrijksrelaties, n.d.-b). The specification to be a 

greenhouse was answered by a representative of Kadaster, which is described in section 2.1.3. 

 

RQ8: How can the above technique be used for regular updating of the cadastral database of 

greenhouses? 

 
To be able to use the current method for a regular update in the cadastral database of the greenhouse, post-

processing needs to be done. As the predicted greenhouse has more false positives within buildings with 

white roofs and solar panels, utilizing the BRT dataset of buildings can help remove the prediction of 

greenhouses in buildings with white roofs. Since greenhouses do have solar panels above them, they cannot 

be utilized to remove false positives. Manual professional control is required to verify the correctness of the 

automatically predicted polygonal greenhouse for updating the cadastral database. 

7.2. Recommendation 

The proposed methodology can be adopted not only for the objects like a greenhouse but other objects 

within the digital objects in BRT. Since the original framework, frame field learning was done for building, 
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other objects such as solar panels and storage tanks have been actively being researched in the object 

detection team within Kadaster. The network can be further improved with the fusing strategy of another 

layer, such as introducing the nDSM and NIR band for the summer images as an additional layer that might 

help contribute to more accurate detection and segmentation. As the deep learning method requires a lot of 

ground truth information to train the model, if the method is going to be applied for the whole of the 

Netherlands, the training datasets should be significantly increased as only 1.33 sq km of greenhouses are 

taken into account. Also, the nature of the greenhouse (transparent glasses and some high-intensity values 

within the greenhouse) can be further reviewed. 

 

The parameters of BCE and Dice coefficient can be further checked in terms of greenhouses; as for 

buildings, the values of the hyperparameter had good results in 0.25 BCE and 0.75 Dice coefficient value, 

whereas for the greenhouse, the values with the hyperparameter of 0.50 BCE and 0.50 Dice coefficient has 

increased the accuracy. Further, using the building information, solar panels information, and road 

information can be used in post-processing to obtain the greenhouses such that false-positive prediction 

can be reduced. Furthermore, different polygonization methods or algorithms should be explored, tested, 

analysed, and compared to calculate the applied method’s reliability with other polygonized methods. 
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