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ABSTRACT 

The leaf area index (LAI) is one of the most important biophysical variables, providing crucial information 

about vegetation and its processes. The LAI is invaluable for climate and biodiversity studies, being part of 

the essential climate variables (ECVs) as well as the remote-sensing-enabled essential biodiversity variables 

(RS-enabled EBVs), as it is needed for many environmental models and can be of use for stakeholders like 

agriculturalists, foresters, and ecologists. Due to its importance, it is essential to be able to accurately 

measure or predict the LAI. The most common methods make use of remote sensing, and so far, LAI has 

been successfully estimated using spectral reflectance in the visible and near-infrared (0.4 – 1.3 μm, VNIR) 

and the short wave infrared (1.4 – 3 μm, SWIR) domains. However, the possibility of using the 

characteristics of vegetation in the thermal infrared (3 – 14 μm, TIR) for LAI estimation has not been 

researched as much. With studies under laboratory settings proving that the TIR data can be of interest 

when predicting LAI on the canopy level, there is a need for research in other environments and different 

settings. 

In this study, the prediction of LAI with the integration of VNIR and TIR data was investigated for a 

mixed forest, the Haagse Bos located in the North of Enschede, the Netherlands. During the field 

campaign in September 2021, in-situ LAI measurements were carried out. Simultaneously, VNIR and TIR 

images were captured by means of an unmanned aerial system (UAS). To assess the capabilities of 

integrating TIR with VNIR data for LAI prediction, land surface temperature (LST) and land surface 

emissivity (LSE) were calculated. For analysis using LST, data from two different separate flight heights of 

the UAS (85 m and 120 m) were used to assess the effect of altitude on the LAI prediction accuracy. LSE 

was calculated using the normalised difference vegetation index (NDVI) threshold method, which makes 

use of emissivity values for vegetation and bare soil, the NDVI, and the percentage of vegetation cover 

(PV). PV was taken from two different approaches, from in-situ data as well as from a canopy height model 

(CHM). The LAI prediction analysis was done by examining the relationship of LAI with nine different 

vegetation indices as well as with the use of partial least squares regression (PLSR). Analysis using 

vegetation indices as well as using PLSR was done by comparing the LAI prediction accuracy obtained 

using only VNIR reflectance spectra and when integrating the VNIR reflectance spectra with either LST 

or LSE.  

The highest prediction accuracy obtained between LAI and VNIR data was (R² = 0.5815, RMSE = 

0.6972) using reduced simple ratio (RSR) vegetation index. Prediction accuracy of LAI was not improved 

with the integration of LST and VNIR data using vegetation indices; however, it was increased when 

VNIR data integrated with LSE (RSR: R² = 0.7458, RMSE = 0.5081). The best result was obtained with 

LST integration with the VNIR reflectance spectra using PLSR with LST from the 85 m altitude (R2 = 

0.5565, RMSECV = 0.7998). However, the integration of VNIR data with LSE significantly improved the 

results using PLSR (R² = 0.7907, RMSECV = 0.8351). This indicates that LST is not beneficial for LAI 

prediction when integrating with reflectance spectra when using vegetation indices or PLSR. 

Additional results also showed that differentiation of plots by dominant species could improve LAI 

prediction accuracy with PLSR, especially when integrating LSE with VNIR data. Th study confirms 

outcomes of previous research, stating that information of the TIR domain shows promising results when 

integrating with reflectance data to predict LAI. An important finding is that while LST is not suitable for 

improving the LAI prediction accuracy, LSE seems to be a beneficial addition. Consequently, further 

research should aim to increase the knowledge on the relationship between LAI and LSE, focusing on 

different approaches and different environments to fill the existing scientific gap. 
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1. INTRODUCTION 

Although there is still too much denial by many individuals, there is a robust scientific consensus that the 

global climate is changing, and the earth is warming (Anderegg et al., 2010). Research to find causes and 

effects of anthropogenic climate change has come a long way, supported by numerous research studies 

and reports, as well as the International Panel on Climate Change (IPCC), which was set up by the United 

Nations and tries to combine all known facts on the matter in its synthesis reports which are created to 

provide policy makers with a comprehensive summary of all papers related to climate change (IPCC, n.d.). 

As a result of climate change, the biodiversity of many ecosystems is threatened (IPCC, 2014). To study 

the effects and causes of climate change, there is a need for global, harmonised observation to deliver 

regular, timely data on biodiversity change (Pereira et al., 2012).  

 

In order to understand and predict the transformation of the climate, the Global Climate Observing 

System (GCOS) developed the concept of essential climate variables (ECVs) (Bojinski et al., 2014). The 

concept was defined because of the need for global observation of the climate, to be able to understand 

the changes in our climate, with datasets that are adhering to quality standards, are easy to interpret, and 

open source (Bojinski et al., 2014; Doherty et al., 2009; Shapiro et al., 2010). ECVs are physical, chemical, 

or biological variables, classified into atmospheric, oceanic, and terrestrial classes, and are identified based 

on the criteria of relevance, feasibility, and cost-effectiveness (Bojinski et al., 2014). Many studies 

presented in the  IPCC make use of ECVs (Doherty et al., 2009). Due to the relevance of these variables 

for climate research, the ability to monitor them with high accuracy is of utmost importance. One of the 

terrestrial ECVs is the leaf area index (LAI). This research will focus on attempting to increase LAI 

prediction accuracy using remote sensing. 

 

 Leaf area index 

The LAI is one of the most important vegetation biophysical variables in climate and biodiversity studies 

(Zheng and Moskal, 2009). It is a crucial input for forest ecosystem models, as it helps to estimate 

productivity and biomass, which are indicators of forest health (Pope and Treitz, 2013). For broadleaf 

canopies, LAI is a dimensionless variable and is defined as "the one-sided green leaf area per unit ground 

surface area (LAI = leaf area/ground area, m2/m2)" (Chen and Black, 1992; Watson and Watson, 1953). 

LAI provides information on how much area is available to plants for photosynthesis, as it can be 

assumed that their leaves contain chlorophyll. In addition to the information about the gas exchange, LAI 

can also inquire about evaporation, transpiration, carbon absorption and assimilation, and the interception 

of solar radiation, wind, and precipitation (Zheng and Moskal, 2009). 

 

1.1.1. Leaf area index as an essential variable 

Inspired by ECVs, the concept of essential biodiversity variables (EBVs) was developed to provide a 

globally harmonised observation system on biodiversity change (Pereira et al., 2013). To ensure 

continuous monitoring of forest health and biodiversity worldwide, specific vegetation parameters should 

be agreed on to use for models, and LAI is one of those (Skidmore and Pettorelli, 2015). When looking at 
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variables that can be used for climate and biodiversity assessments, it is hard to ignore the LAI, as it 

indicates radiation and precipitation interception, energy conversion, and water balance (Bréda, 2003; 

Zheng and Moskal, 2009), as well as key indicators of plant health (Zheng and Moskal, 2009). Also, yield 

and fertiliser efficiency are related to LAI (Addai and Alimiyawo, 2015), as well as the net primary 

production of ecosystems (Bonan, 1993; Matsushita et al., 2004). Therefore, LAI is on the list of variables 

suggested as remote sensing-enabled EBVs, which are relevant for satellite observation (Skidmore and 

Pettorelli, 2015). Besides, other EBVs, such as canopy chlorophyll content, were found to be spatially 

correlated to LAI values (Darvishzadeh et al., 2008). Stakeholders benefitting from the monitoring of LAI 

could be found everywhere; examples are farmers, foresters, ecologists, and climate or biophysical 

modellers (Bréda, 2003). 

 

For observation and monitoring of many ecosystem structures and functions, LAI is indispensable (Asner 

et al., 2003). As the leaf area determines how much light or rain gets intercepted, it also stimulates the 

within- and below-canopy microclimates (Bréda, 2003; Zheng and Moskal, 2009). LAI is necessary as an 

input for many environmental models, as the exchange of energy and the gases carbon dioxide and oxygen 

between ecosystems and the atmosphere happens through the leaves (Song, 2013). As LAI is essential for 

many purposes, it is vital to be able to measure, calculate, and predict LAI on all possible scales with the 

highest accuracy. In this study, LAI was estimated using remote sensing data over the visible-near infrared 

(0.4 – 1.3 μm, VNIR) and thermal infrared (3 – 14 μm, TIR) domains by means of UAS (Unmanned 

Aerial System).  

 

1.1.2. Methods to measure leaf area index 

Given the theoretically simple calculation of the LAI, the area of vegetation divided by the area of 

associated background, it would be conceivable that the determination should not pose too many 

problems in practice. However, in reality, the procedure is more complicated because of its spatial 

(horizontal and vertical) and temporal variability as annual cycles and inter-annual variability interact with 

the structure, composition, and heterogeneity of plants (Bréda, 2003). 

 

Methods for estimating the LAI can be divided into destructive and non-destructive methods. In 

destructive methods, the area of the leaves is measured directly after cutting the plant or calculated with a 

ratio of a parameter with the help of a coefficient (Bréda, 2003). Destructive methods are the most 

accurate ones and, therefore, suitable for the calibration, evaluation, and validation of indirect methods 

because they relate directly to the leaf area and thus reflect the actual leaf area index (Bréda, 2003). Non-

destructive methods derive the LAI from radiation measurements from the vegetation using the radiation 

transfer theory (Anderson, 1971; Ross, 1981). These methods make use of statistical and probabilistic 

approaches to the distribution and pattern of leaf elements in the vegetation (Jones, 1992). Although 

errors will arise if a parameter is measured indirectly, these methods are popular because of their speed 

and simplicity, and their results are reliable (Danner et al., 2015).  

 

Collecting LAI in-situ data, whether destructive or non-destructive, is laborious, time-consuming, and not 

suitable for large areas (Zheng and Moskal, 2009). For large areas, remote sensing approaches are essential 

for the estimation of the LAI. With the help of satellite imagery, air-borne sensors, and UAS, the retrieval 

of the LAI from remote sensing data is probably the only feasible method for large areas (Song, 2013).  
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So far, the prediction of the LAI utilizing remote sensing has been addressed excessively (Brown et al., 

2000; Chang et al., 2019; Darvishzadeh et al., 2008; Pope and Treitz, 2013; Song, 2013; Zheng and Moskal, 

2009). This includes VNIR and short-wave infrared (1.4 – 3 μm, SWIR) data. The physiological and 

structural properties of leaves determine their naturally low reflectivity for the visible (0.4 – 0.7 μm, VIS) 

wavelengths, except for green light. In addition to the VIS domain, a high reflectivity of the vegetation in 

the near-infrared (0.7 – 1.4 μm, NIR) enables remote sensing to capture detailed information about the 

living, photosynthetically active plant populations and thus helps to understand the exchange between 

plant ecosystems and the atmosphere (Zheng and Moskal, 2009). Differences in spectral reflectance of 

vegetation with changing values of the LAI are not prominent in the VIS but show variations in the NIR, 

and the SWIR, with maximum values and differences in the NIR (Asner, 1998; Darvishzadeh et al., 2008). 

 

There are multiple approaches to estimate LAI through the vegetation spectral information using remote 

sensing data (Zheng and Moskal, 2009). These include the use of vegetation indices, regression models, 

physical models, and artificial neural networks. A limiting factor for the estimation of LAI through 

vegetation indices using remote sensing data can be spectral saturation at high LAI values (Chen and 

Cihlar, 1996; Gower et al., 1999). With high LAI values, canopy reflectance is strongly influenced by leaf 

optical properties, and LAI increases cannot be detected anymore (Asner, 1998). 

 

 Thermal infrared  

1.2.1. Thermal infrared remote sensing 

Another method to predict LAI is the use of TIR remote sensing data (Neinavaz et al., 2019, 2016a, 

2016b). TIR remote sensing data uses the radiation emitted by objects in the TIR range of the 

electromagnetic spectrum (Prakash, 2000). According to Planck’s law, every object with a temperature 

above 0 Kelvin emits electromagnetic radiation; Wien’s law states that with increasing temperature, the 

intensity of the radiation emitted increases. Most objects on earth (e.g., vegetation, soil, water, people) 

emit TIR radiation in the spectral range of 3 – 14 μm (Jensen, 2009).  

 

As spectral information in the TIR region mainly consists of radiative emission of objects rather than 

reflection (Neinavaz et al., 2016a), TIR data can be acquired at any time of the day. The atmosphere is 

mostly transparent for the TIR wavelengths as it offers a large atmospheric window (Clerbaux et al., 2011); 

however, atmospheric correction still has to be performed using radiative transfer models with 

atmospheric profiles to reduce the effects of absorption, emission, and scattering by particles in the 

atmosphere (Meier et al., 2011). At very low altitude acquisitions, the atmospheric effects can be avoided 

(Messina and Modica, 2020), benefitting remote sensing using UAS. 

 

TIR data has great potential in illuminating biophysical and biochemical characteristics of vegetation  

(Ullah, 2013). Primary absorption features and leaf structure parameters can be observed in TIR regions 

(Ribeiro da Luz, 2006). Through different spectral features in the TIR domain, plant species can be 

distinguished (Ribeiro da Luz and Crowley, 2010). Especially at the canopy level, there is scarce 

information available regarding the emissivity of vegetation in the TIR domain (Neinavaz, 2017). The 

reason for this is mainly technical. Sensors operating in the TIR domain must be able to capture the 

relatively low variance in emissivity values of plants (Neinavaz et al., 2016a; Ribeiro da Luz and Crowley, 

2007). For accurate TIR measurements, sensors with a high signal to noise ratio are required (Kirkland et 

al., 2002; Ribeiro da Luz and Crowley, 2010). Furthermore, the knowledge about spectral features of 
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plants in connection with plant physiology and organic chemistry lacks for many researchers in the TIR 

region (Quattrochi and Luvall, 1999). Especially with satellite data, TIR data mostly has a relatively coarse 

spatial resolution (Neinavaz, 2017; Quattrochi and Luvall, 1999).  

 

The energy leaves receive from the incident solar radiation is distributed over three different outputs: the 

reflection of incoming radiation, evapotranspiration, and heat (Gates, 1980). Most of the incoming energy 

is transferred to heat (McKinney and Schoch, 2003), and as heat is seen as radiation in the TIR domain, 

part of the energy of leaves can be detected with TIR data. The temperature of leaves is mainly regulated 

through transpiration (Drake et al., 1970), and there is a nearly linear relation between transpiration and 

leaf area (Vertessy et al., 1995). Analogous, also evaporation is linked to leaf area (van den Hurk et al., 

2003). The more leaf area is available for a plant, the more it can regulate its temperature over the leaf 

surface. Therefore, through heat regulation, a correlation between thermal emissivity values and leaf area 

can be seen.  

 

Most studies that use TIR data for vegetation studies concentrate on the calculation of land surface 

temperature (LST) and land surface emissivity (LSE) (Gomis-Cebolla et al., 2018; Göttsche and Hulley, 

2012; Jacob et al., 2017; Jiménez-Muñoz et al., 2006; Li et al., 2013a). LST is the radiative skin temperature 

of the land surface and gives information about physical processes of surface energy (Li et al., 2013a). LSE 

shows the percentage of radiation that is emitted by an element on the land surface in the TIR domain and 

is a measure of the radiant energy of the surface (Sobrino et al., 2001). With an increasing amount of 

vegetation, LSE also increases, a positive correlation between LSE and the normalized difference 

vegetation index (NDVI) has been found (Sobrino et al., 2008). Between LST and NDVI, there is a weak 

negative correlation (Kumar and Shekhar, 2015; Zhang et al., 2009). 

 

1.2.2. Applying thermal infrared data for leaf area index estimation 

 

The possibilities of the estimation of LAI with the TIR data is not yet fully explored (Neinavaz et al., 

2019, 2016a, 2016b), at least not as much as with VNIR/SWIR data. Estimating the LAI using TIR data 

has been carried out under controlled laboratory conditions (Neinavaz et al., 2016a, 2016b) and in the 

mixed temperate forest on landscape-level utilizing Landsat-8 image (Neinavaz et al., 2019). The research 

was done on the relation between LAI and LSE as well as LST. Research in the controlled environment 

shows that with increasing LAI, the emissivity over the TIR domain rises (Neinavaz et al., 2016b). Also, 

with similar LAI values, different species could be distinguished by their TIR emissivity spectra (Neinavaz 

et al., 2016b). The relation between LAI and LSE was found to be much stronger than between LAI and 

LST (Neinavaz et al., 2019). This research also focuses on the relation of LST and LSE with LAI and how 

the integration of these variables can increase the accuracy in LAI prediction. 

 

A significant advantage of the TIR compared to VNIR/SWIR data when looking at LAI estimation is the 

lack of saturation that occurs with VNIR/SWIR data for high LAI values; saturation in the TIR region 

happens at higher LAI values under laboratory conditions (Neinavaz et al., 2016b). Prediction accuracy of 

the LAI can be improved by integrating the TIR and VNIR/SWIR data (Neinavaz et al., 2019); however, 

this requires to be investigated thoroughly in various ecosystems using different platforms (Neinavaz et al., 

2019). This knowledge gap will be addressed in this study.  
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 Unmanned aerial systems 

In recent years, thermal imaging using UAS has improved due to the development of smaller thermal 

sensors and unmanned aerial vehicles (UAV) technology (Chen et al., 2016; Colomina and Molina, 2014). 

UAS are defined by the Federal Aviation Administration (FAA) as pilotless aircraft (Chen et al., 2016). 

While thermal remote sensing using UAS was first used for military purposes (Kostrzewa et al., 2003), it 

has found its way towards more common uses like forest fire detection, as well as scientific uses (Rufino 

and Moccia, 2005; Scholtz et al., 2011).  

 

Remote sensing data is mainly obtained using satellites, air-borne, and UAV platforms on which different 

sensors can be mounted. A UAS consists of three components; the UAV, the ground control station, and 

the control system that links and communicates between them (Colomina and Molina, 2014). Although 

acquiring satellite images is the easiest option, UAS data is often more suitable to the user, as the sensors 

and the time of flight can be chosen regarding the needs of the research and repeated when and how often 

as desired for smaller areas (Mitchard, 2016). In comparison to the use of manned aircraft, UAS have the 

considerable benefit of being less expensive. Advantages of UAS are that various sensors can be switched 

quickly and even mounted simultaneously, leading to the possibility of quick, inexpensive, and reliable 

acquirement of high-resolution data for the multitemporal assessment of parameters in different 

ecosystems (Lausch et al., 2017; Maes et al., 2017). The most prominent advantage of UAS compared to 

spaceborne platforms is the high spatial resolution, which is possible due to the low altitude.  

 

Restraints of UAS are their limited battery life, leading to short flights, as well as their payload (Maes et al., 

2017). Hyperspectral, cooled TIR cameras provide the highest radiometric accuracy (Boubanga-Tombet et 

al., 2019); however, they are heavy, costly, and consume a lot of power (Döpper et al., 2020). Until 

recently, only uncooled TIR cameras could be mounted on a UAS (Jensen et al., 2014), leading to more 

noise and, therefore, less sensitivity (Luhmann et al., 2013). Countering this downside, however, is the low 

flight altitude of UAS (Kuenzer and Dech, 2013). This is because noise mainly results from atmospheric 

absorption and emission effects, minimalised with low-altitude measurements (Messina and Modica, 

2020).  

 

In recent years, with the advance of UAS technology and their more general availability, research has also 

been conducted to retrieve LAI with the use of UAS (Chang et al., 2019; Fumera, 2020; Guo et al., 2018; 

Kanning et al., 2018; Li et al., 2019; D. Zhang et al., 2019; W. Zhu et al., 2019a; X. Zhu et al., 2019a). Most 

of these studies were performed for the agricultural area, and only a few studies have been addressed the 

LAI retrieval for forest ecosystem using UAS (Comba et al., 2020; Duan et al., 2019; W. Zhu et al., 2019b; 

Zhu et al., 2018; X. Zhu et al., 2019b). Regarding TIR technology and UAS, applications concern mostly 

the detection of crop water stress, identifying drainage networks in fields, identification of pathology 

symptoms, monitoring, and yield estimation in agricultural uses (Messina and Modica, 2020). In forest 

environments, UAS with TIR sensors have been used to get information about wildfires (Valero et al., 

2017). No research yet has been done to estimate LAI using UAS with the integration of the VNIR and 

TIR data, neither for agricultural nor forest areas. Using a thermal sensor together with a multispectral 

sensor and fusing their data can be beneficial and help to inquire knowledge for different field of studies 

(Messina and Modica, 2020; J. Zhang et al., 2019).  
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 Definition of the research problem 

As mentioned before, LAI is one of the most important vegetation biophysical variables and is needed as 

an input for most biodiversity and climate models. There are already various approaches for the estimation 

of the LAI. Estimating the LAI with TIR data can help to understand the link between canopy emissivity 

spectra and the processes that are related to the leaf area. Only recently, some research has been done to 

investigate the integration of the VNIR and TIR remote sensing data to predict LAI. It was concluded 

that it is possible to use TIR data to enhance the prediction accuracy of LAI; however, the estimation of 

LAI by means of TIR and VNIR data using a UAS platform had not yet been addressed for a forest 

environment.  

 

 Analysis of the research problem with regard to the wicked problem framework 

In accordance with the wicked problem framework (Georgiadou and Reckien, 2018; Hoppe, 2010) (Table 

1), the problem of this research can be classified as a moderately structured problem. In the past, there 

was disagreement between researchers on the usability of TIR data for vegetation studies, as the 

unavailability of applicable devices with high signal to noise performance and the complexity of spectral 

features of vegetation led to misinterpretations (Kirkland et al., 2002; Ribeiro da Luz and Crowley, 2010; 

Ullah et al., 2012). An example of contrary findings in the research field of TIR data for vegetation studies 

can be seen at the beginnings of TIR data research. It was stated that upper and lower leaf surfaces, as well 

as young and old leaves, could be distinguished when looking at TIR reflectance spectra (Gates and 

Tantraporn, 1952), while other research showed that they could not be distinguished (Wong and Blevin, 

1967), leading to the initial belief that vegetation is featureless in the TIR domain. The disagreement in the 

recent decades about the characteristics of plants in the TIR domain by different researchers may lead to 

the conclusion that there was indeed a wicked problem, with unknown facts and dissensus among 

stakeholders when the different researchers can be classified as stakeholders. A wicked problem was 

defined as much-debated political issues with disagreement concerning ethics and divided stakeholders' 

preferences, while knowledge about the issues at hand is uncertain (Georgiadou and Reckien, 2018). In 

this study, however, the problem focuses only on scientific research, without political or ethical issues. In 

that case, it is not a problem to do further research in the case that there is disagreement on results, it is 

encouraged; therefore, the problem can only be classified as a moderately structured one, with uncertainty 

of the facts.  

 

When looking at the stakeholders who can benefit from an accurately predictable LAI, such as farmers, 

foresters, ecologists, and climate or biophysical modellers, it is clear that there is no dissensus. As there is 

no adverse effect of being able to predict the LAI, there is no stakeholder who would see the outcome of 

this research as unfavourable. However, there is still uncertainty regarding the facts, concretely regarding 

how TIR data can increase the prediction accuracy. Since so far, only a few studies included the TIR 

domain in vegetation studies, there is not yet enough information available on how the inclusion of TIR 

data can benefit measurements of plant characteristics like LAI. There is a need for further research to be 

able to increase the knowledge that is available in this topic in order to make the problem a tame and 

structured one. With plenty of available insight, the stakeholders can apply the methods that have been 

researched. In this research, the outcome will increase the knowledge that is available on TIR data and 

how it can be applied. Using two different methods to approach the goal of the research, predicting LAI 

with the integration of TIR and VNIR data using vegetation indices and partial least squares regression, 

this research contributes towards the goal of developing methods and approaches for the relevant 

stakeholders to use. 
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Table 1: The wicked problem framework as adapted by Georgiadou & Reckien (2018) from Hoppe (2010) 

Spatial 

Knowledge 

Policy Goals and Values 

Consensus among Stakeholders Dissensus among Stakeholders 

Certain 

(facts and 

cause-effects) 

Tame or structured problems 

▪ Debate on technicalities 

▪ Geo-information tools as a 

problem solver 

Moderately structured problems 

▪ Participation to debate goals and 

values 

▪ Geo-information tools as a mediator 

Uncertain 

(facts and 

cause-effects) 

Moderately structured problems 

▪ Participation in debating cause-

effects and optimizing the 

collection of facts 

▪ Geo-information tools as analyst 

and/or advocate 

Wicked or unstructured problems 

▪ Endless debate 

▪ Geo-information tools as problem 

recognizer 

 

 Research objectives 

The overall research objective of the thesis is to assess the possibilities of integrating UAS-obtained TIR 

and VNIR remote sensing data to estimate the LAI for a mixed forest. The research aims to compare the 

prediction accuracy of LAI obtained from UAS using different methods, namely vegetation indices and 

partial least squares regression. 

 

Additional research objectives are: 

▪ Assess the prediction accuracy of the LAI for a mixed forest with the integration of UAS-

obtained TIR and VNIR data applying vegetation indices.  

▪ Assess the prediction accuracy of the LAI for a mixed forest using the integration of UAS-

obtained TIR and VNIR data using partial least squares regression analysis.  

▪ Assess the effect of UAS-TIR data acquisition at different flight heights and compare the 

prediction accuracy of the LAI for a mixed forest with the UAS-TIR data from both flight 

heights.  

 Research questions 

To evaluate the results of this research based on the research objectives, the following research questions 

were developed: 

▪ How will the prediction accuracy of the LAI be increased for a mixed forest with the integration 

of UAS-obtained TIR and VNIR data applying vegetation indices, compared to utilizing only 

VNIR data? 

▪ How will the prediction accuracy of the LAI be increased for a mixed forest with the integration 

of UAS-obtained TIR and VNIR data applying partial least squares regression, compared to 

utilizing only VNIR data? 

▪ What are the effects on the prediction accuracy of the LAI of different flight heights of the UAS 

for TIR data acquisition for the mixed forest using UAS-TIR data? 
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2. METHODOLOGY 

 General description of the study area 

Field measurements were carried out over the area named "Haagse Bos", which is located among the cities 

of Enschede, Oldenzaal, and Losser, in the province of Overijssel, the Netherlands (Figure 1). The study 

area used to be a production forest and has an approximate area of 52 ha (calculated using ArcGIS), and is 

under the management of the "Natuurmonumenten", a Dutch nature conservation organization, the 

Netherlands.  

 
Figure 1: Outline of the study area, with plots for which in-situ data was collected. 
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Haagse Bos is a mixed vegetation forest with broadleaf and coniferous tree species. Different species that 

exist in the forest including Scot pine (Pinus sylvestris), Douglus fir (Pseudotsuga menziesii), Norway spruce 

(Picea abies), European larch (Larix decidua), European beech (Fagus sylavatica), Oak (Quercus robur), 

European white birch (Betula pendula), and Alder (Alnus), as well as broadleaved trees are dominating the 

forest (Eshetae, 2020). The climate in the area is warm and moderate, with an average annual temperature 

of 9.1°C and 782 mm of rainfall per year (Climate-Data.org, n.d.). In September 2020, when fieldwork was 

conducted, the average temperature was 14.5°C, the average amount of rainfall was 48 mm (KNMI, 2021). 

 

 

 Data acquisition 

The field campaign was conducted in September 2020. In this study, the non-destructive method was used 

to collect LAI data. The ground measurements were carried out from 7th till 17th of September 2020, and 

UAS flight campaigns for collecting the TIR and multispectral images were executed on September 11th 

and September 14th, respectively. The random sampling strategy was adopted with the consideration of the 

accessibility of the plots. Consequently, 35 plots of 30 by 30 m were selected, resulting in 20 plots 

dominated by beech, 13 plots by oak, and two plots by Fir. Unfortunately, TIR images could only be 

acquired for 30 plots. Therefore the analysis to predict LAI was performed only with the data for these 30 

plots, even when only using reflectance spectra, to allow for comparison of the different methods that are 

used. 

 

 
Figure 2: Below-canopy measurement of LAI using the LICOR 2200C. 

 

2.2.1. In-situ measurement of the leaf area index 

The centre position of each plot was delineated using a compass and measuring tape, and further was 

recorded using a GNSS LEICA C15 -Leica (i.e., Global Navigation Satellite System). For each plot, 

existing species were recorded, and dominant species was determined. The structural forest parameters, 
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including LAI, number of trees, and the presence of understory or dead wood of the plot, were noted. 

LAI was measured with the LICOR 2200C plant canopy analyser (LICOR Inc., Lincoln, NE, USA) 

(Figure 3). The LICOR uses radiation measurements taken with a 148° fisheye sensor (Figure 4). Radiation 

measurements were carried out above and below the vegetation cover to determine the light transmission 

from five angles (LI-COR, 2019). The LAI is inferred indirectly through a simple light interception model 

by inversion of the so-called gap fraction (LI-COR, 2019). If the radiation of the incident light is measured 

below or within a plant stand, the gap fraction is the portion that is not absorbed by the vegetation and 

reaches the sensor. Through inversion, the part absorbed by the plant parts is deduced; it is proportional 

to the area occupied by the leaves (LI-COR, 2019).  

In addition to the LAI, the LICOR also measured the diffuse non-interceptive value (DIFN), which 

indicates the fraction of the sky that is not blocked by foliage (LI-COR, 2019) and is, therefore, the inverse 

of the percentage of vegetation cover (PV). 

 
Figure 3: The LICOR 2200C plant canopy analyser (©LICOR Inc.). 

 

 

 
Figure 4: Cross-section of the LICOR 2200C, showing the five concentric rings at different zenith angles for which 
radiation measurements are detected by the sensor (©LICOR Inc.). 

 

To quantify the LAI for each plot, a total of nine radiation measurements were taken with the LICOR. To 

prevent direct sunlight from reaching the sensor, a diffuser cap was used. This diffuser cap allows the 
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sensor to view an angle of 45° (Figure 5). Four reference samples of the above canopy measurements were 

taken at an open area close to the plot, and five below-canopy measurements, taken at the centre and the 

corners of the plot, facing inwards. From these nine readings, the LICOR computes the average LAI of 

the plot.  

 
Figure 5: View of the LICOR 2200C sensor with a 45° diffuser cap (©LICOR Inc.). 

 

2.2.2. Using the unmanned aerial system 

For all UAS flights, the UAV used to mount the different sensors was the DJI Phantom 4 (Figure 6). The 

UAV was manufactured by DJI (Shenzen, China), weighs 1380 gr, and is equipped with a 12.4 Megapixel 

RGB camera. The creation of flight plans and the control of the UAV during the flight was done with 

UgCS 4.0 (i.e., Universal ground Control Software) drone control software (i.e., SPH Engineering, Latvia). 

The horizontal hover accuracy range of the UAV with GPS positioning is ±1.5 m (DJI, n.d.). Both the 

thermal and the multispectral camera were mounted on the bottom of the UAV facing directly 

downwards, connected by cable to the Flight Controller for electricity.  

 
Figure 6: The UAV used for the flights, the DJI Phantom 4 (©DJI). 
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For capturing the multispectral images, the UAS flew across the whole study area, capturing a total of 

17344 images, which could then be stitched together to create orthomosaics and reflectance maps using 

Pix4d, a photogrammetry software by Pix4d S.A. (Prilly, Switzerland). Due to the high battery 

consumption of the FLIR camera, which prevents long flights, and the inability of Pix4d to generate 

orthomosaics of good quality from images captured by the FLIR, TIR images were only captured while 

hovering over the plots. 

 

2.2.3. Thermal infrared image collection with the FLIR Vue Pro R 

The TIR images were gathered with the FLIR Vue Pro R camera (Figure 7), designed for UAV integration 

and data collection. The camera uses an uncooled V0x Microbolometer sensor, which has a spectral range 

from 7.5 – 13.5 μm and an image size of 640 x 512 pixels. The camera has a weight of 113.4 gr and is 

manufactured by FLIR Systems, Inc. (Wilsonville, OR, USA). The model used in this study is equipped 

with a 19 mm lens with a field of view of 32° x 26° and is focused on infinity (FLIR Systems Inc, 2016). 

The FLIR camera calculates the absolute land surface temperature (LST), saved in 14-bit tiff-files with a 

scale factor as a digital number (DN). The measurement accuracy is given with ± 5°C (FLIR Systems Inc, 

2016). This introduces insecurity into the dataset; however, with all TIR images being collected on the 

same day, the error affects all measurements similarly. The values for the different plots are therefore 

comparable. 

 
Figure 7: The FLIR Vue Pro R thermal camera (©FLIR Systems Inc.). 

 

As it was desired to create stable images, the UAV flew at a desired height, and move from plot to plot, 

and then only take images above the plots while hovering. Two different flight heights, 85 m and 120 m 

above ground were used to capture TIR images. (Figure 8). For both flight altitudes, the plots in the study 

area were covered by three flights, and multiple images were taken per plot. Although the UAV flight plan 

covered all 35 plots for which data collection was done, images were only created for 30 plots. 
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Figure 8: Visualisation of the different flight heights (i.e., 120 and 80 m) for image acquisition by the UAS for TIR 
data. 

 

2.2.4. Visible and near-infrared image collection with the Parrot Sequoia 

The multispectral camera mounted on the UAV to capture reflectance in the VNIR region of the 

electromagnetic spectrum was a Parrot Sequoia, manufactured by Parrot Drones SAS (Paris, France), 

which includes a 16 Megapixel RGB sensor as well as four 1.2 Megapixel monochrome sensors for the 

four different spectral bands: green (0.55 μm), red (0.66 μm), red-edge (0.735 μm), and NIR (0.79 μm). 

The red-edge band has a 0.01 μm bandwidth, whilst the other three bands have a bandwidth of 0.04 μm. 

For the multispectral sensors, the image size is 1280 x 960 pixels, and the focal length is 3.98 mm. The 

Parrot Sequoia weighs 72 g (Cowley et al., 2017). 

 

With the Parrot Sequoia, it is possible to take multiple high-quality images while the UAV is flying. 

Therefore, the flights were planned to span the complete study area to create reflectance maps for all 

spectral bands for the whole area. The flight height was 120 m above the ground, flight speed was 6.5 

m/s, and images were taken every 1.5 seconds. Images were recorded as 16-bit TIFF files as well as JPG 

files. Before every flight, images of calibration panels were taken to be able to create accurate reflection 

maps. 
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Figure 9: The Parrot Sequoia multispectral camera, with an indication of its five different sensors (©HORUS 
Dynamics). 

 

 Unmanned aerial vehicle image pre-processing 

With the coordinates measured with the GNSS, a map of all plots was created in ArcGIS (Redlands, CA, 

USA) (Figure 1). As the coordinates show only the centre of every plot, the outline had to be created by 

first making a buffer with a radius of 15 m around the centre point and then laying a north-facing square 

around it. These squares now show the outline of all plots in the study area and are used to extract values 

per plot.  

Using Pix4d, the images from the Parrot Sequoia multispectral sensor were stitched together to create 

reflectance maps for all four spectral bands. The reflectance maps were created using values for calibration 

from the calibration panels. The stitching process included matching key points from images together, 

creating a point cloud, orthomosaics (Figure 10), and reflectance maps. For the analysis, calculations were 

done with the complete reflectance maps and the average reflectance values per plot, which were extracted 

by calculating zonal statistics using ArcGIS.  

 

2.3.1. Image quality assessment and pre-processing of thermal images 

Multiple thermal images were captured for every plot during the flight campaign. For each plot, all images 

were visually analysed and compared to each other. The sharpest image with the best overlap with the 

obtained multispectral images of the corresponding plot was selected for further analysis. This was done 

for both flight altitudes. Due to the spatial resolution, the images captured with the FLIR camera show an 

area of 53.1 by 41.5 m for the flight height of 85 m and an area of 75 by 58.5 m for the flight height of 120 

m. Therefore, the plots of 30 by 30 m needed to be clipped from the images. Using trigonometric 

equations, the pixels that needed to be cut away were calculated, and ArcGIS was used to extract the plots 

from the images to assure a good overlay of all used data. 
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Figure 10: RGB-orthophoto created with Pix4d from Parrot Sequoia images. 

 

2.3.2. Estimation of land surface temperature 

The images recorded by the FLIR Vue Pro in the tiff file format show the data in the TIR domain as a 

digital number (DN) for every pixel. The DN is an expression of the temperature that is measured by the 

sensor, stored with a scale factor. The temperature that is calculated by the camera is dependent on 

radiometric settings like target emissivity or background temperature. The DN can be converted to the 

land surface temperature (LST) in °C by the following formula (FLIR Systems Inc, 2021): 

 

𝐿𝑆𝑇 = 0.04 ∗ 𝐷𝑁 − 273.15 (1) 

 

Using the raster calculator in ArcGIS, LST was then calculated for these selected TIR images. For both 

flight heights, the average LST value for each plot was extracted. 
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2.3.3. Estimation of land surface emissivity 

While LST from the FLIR Vue Pro is determined assuming a constant emissivity value for the whole 

study area, the land surface emissivity (LSE) varies for heterogeneous surfaces (Li et al., 2013b) and can 

also differ depending on the type of vegetation (French et al., 2000; Ribeiro da Luz and Crowley, 2007; 

Ullah et al., 2012). The prediction accuracy for the LAI can be improved when including LSE instead of 

LST (Neinavaz et al., 2020, 2019). Therefore, another approach used in this study to improve LAI 

prediction accuracy is to combine LSE with VNIR reflectance spectra. 

 

The simplest way to calculate LSE is by using the popular NDVI-threshold method (Sobrino and 

Raissouni, 2000; Valor, 1996; Van De Griend and Owe, 1993). The method uses three different equations, 

depending on the NDVI, which indicates if a pixel is either fully vegetated, fully soil, or part vegetation 

part soil. For this, NDVI-thresholds are used that dictate which equation should be used to calculate LSE. 

The equations for calculation of LSE with the NDVI-threshold method are below (equation 2). 

 

Calculation of LSE was done with MATLAB (version R2020b Update 3). Most studies applied the global 

NDVI-threshold value for fully vegetated pixels of 0.5 (NDVIV) (Oltra-Carrió et al., 2012; Sobrino et al., 

2008; Sobrino and Raissouni, 2000). However, in another study using multispectral images obtained by 

UAS, a value of 0.9 considered for NDVIV; the used threshold value depends on the type of vegetation 

and study area and has to be evaluated before calculating LSE (Heinemann et al., 2020). The NDVIV is 

chosen by using a sample of pixels that are known to be completely vegetated and taking the average 

NDVI value of it. The same approach was used in this research, and an NDVIV threshold of 0.89 was 

found. For full soil pixels, the global NDVI-threshold for soil (NDVIS) of 0.2 (Sobrino et al., 2008) was 

used. For the calculation of LSE this was not relevant, as none of the plots had pixels with NDVI values 

below 0.5. 

 

𝐿𝑆𝐸 =  {
𝑁𝐷𝑉𝐼 <  𝑁𝐷𝑉𝐼𝑠
𝑁𝐷𝑉𝐼 ≥ 𝑁𝐷𝑉𝐼𝑣

𝑁𝐷𝑉𝐼𝑠 ≤ 𝑁𝐷𝑉𝐼 ≤ 𝑁𝐷𝑉𝐼𝑠
 

𝑎𝜆 + 𝑏𝜆𝜌𝑟𝑒𝑑

𝜀𝑉𝜆 + 𝑑𝜀

𝜀𝑉𝜆𝑃𝑉 + 𝜀𝑆𝜆 × (1 − 𝑃𝑉) + 𝑑𝜀

 

(2a) 

(2b) 

(2c) 

 

In the equations, aλ and bλ are channel-dependent regression coefficients, ρred is the reflectance value of 

the red band for bare soil, εV and εS are the emissivity values of vegetation and bare soil in the TIR region, 

and PV is the percentage of vegetation cover. The emissivity values for soil and vegetation used to 

calculate LSE are extracted from the ECOSTRESS spectral library from the California Institute of 

Technology (Baldridge et al., 2008; Meerdink et al., 2019). dε stands as the cavity effect, which can be 

calculated using the following equation: 

 

𝑑𝜀 = (1 − 𝜀𝑆)(1 − 𝑃𝑉)𝐹𝜀𝑉 (3) 

 

F is a shape factor, which is assumed to be 0.55, due to diverse geometrical distributions (Sobrino et al., 

2004, 1990). 

 

Calculating LSE using the NDVI-threshold method does not only depend on the NDVI-threshold and 

emissivity values but is also influenced by PV. In this research, PV was calculated using two different 

approaches as follows: 



PREDICTION OF LEAF AREA INDEX USING THE INTEGRATION OF THE THERMAL INFRARED WITH VISIBLE AND NEAR-INFRARED DATA ACQUIRED WITH AN UAV 

FOR A MIXED FOREST 

 

18 

1. PV is derived from the DIFN measured with the LICOR 2200C during field work. This approach was 

used because it provides the most accurate value for PV, as it is measured simultaneously with the 

LAI. 

2. PV is derived from the amount of vegetation with a canopy height above 15 m, calculated using a 

Canopy Height Model (CHM). The CHM was created by Luis Figueroa from a point cloud during the 

stitching process of the VNIR images from the Parrot Sequoia using Pix4d. A value of 15 m was 

chosen as the threshold for canopy height, as LAI measurements in the field only take the higher 

canopy into account, disregarding the undergrowth. This approach was used in order to get a value 

for PV independent of in-situ measurements. 

 

Using these different approaches to calculate PV resulted in different values of LSE for every plot: 

Hereafter, LSE calculated using PV from DIFN and LSE calculated using PV from the CHM refer as 

LSELICOR and LSECHM, respectively. 

 

 Estimation of leaf area index 

As discussed before, the aim of this study is that whether the combination of the TIR data with VNIR 

reflectance spectra can improve the prediction accuracy, including the prediction using vegetation indices, 

as well as the prediction using partial least squares regression (PLSR). To observe an effect, the prediction 

accuracy including TIR data was compared to the prediction accuracy without it. Therefore, in both 

approaches, LAI is first estimated using only the reflectance values from the multispectral data and 

afterwards with both reflectance spectra and LST or LSE. LAI estimation including LST is done for the 

two datasets from the different flight altitudes. 

 

2.4.1. Leaf area index prediction using vegetation indices 

So far, LAI has been successfully predicted in many studies using vegetation indices (Brown, 2000; Huete 

et al., 2002; Jiang et al., 2008; Stenberg et al., 2004; Xue and Su, 2017). In this study, the most applied 

vegetation indices considered to be used to estimate LAI successfully are investigated. Due to the 

availability of reflectance values from four multispectral bands as well as LST and LSE derived from the 

TIR images, it was decided to use vegetation indices using two as well as three bands. Table 2 shows an 

overview of the indices used.  

 

The indices using two bands as well as three bands (i.e., RSR) are indices that already have been used by 

Neinavaz et al. (2019). The other three-band indices, ASR and ANDVI, respectively, were created in this 

research experimentally. Somvanshi & Kumari (2020) highlighted that indices including a third band can 

benefit through atmospheric correction, such as is included with indices like the Atmospherically Resistant 

Vegetation Index (ARVI) and the Enhanced Vegetation Index (EVI). With results improving when 

including information from a third band in the indices SR and NDVI, it was decided to create the indices 

ASR and ANDVI. 

 

For all nine vegetation indices shown in Table 2, all possible combinations of the VNIR reflectance 

spectra were calculated. The resulting maps showed the values of the vegetation indices for the whole 

study area; the average value per plot was extracted by calculating zonal statistics. Afterwards, the 

relationship between each vegetation index and corresponding measured LAI has been examined. 
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Table 2: Vegetation Indices considered in this research 

Vegetation Index Abbreviation Original Equation Equation Reference 

Simple Ratio SR ∗
𝜌𝑁𝐼𝑅

𝜌𝑅𝑒𝑑
 ∗∗

𝜌𝜆1

𝜌𝜆2
 (Jordan, 1969) 

Modified Simple Ratio MSR 
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑 − 1

(𝜌𝑁𝐼𝑅 𝜌𝑅𝑒𝑑)⁄ 0.5
+ 1

 
𝜌𝜆1 − 𝜌𝜆2 − 1

(𝜌𝜆1 𝜌𝜆2)⁄ 0.5
+ 1

 (Chen, 1996) 

Difference Vegetation 

Index 
SD 𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑 𝜌𝜆1 − 𝜌𝜆2 (Tucker, 1979) 

Renormalized Difference 

Index 
RDI 

𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑

√𝜌𝑁𝐼𝑅+𝜌𝑅𝑒𝑑

 
𝜌

𝜆1
− 𝜌

𝜆2

√𝜌
𝜆1

+ 𝜌
𝜆2

 (Roujean and Breon, 1995) 

Modified Vegetation Index MVI 
𝜌𝑁𝐼𝑅−1.2𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅+𝜌𝑅𝑒𝑑
 

𝜌𝜆1 − 1.2 ∗ 𝜌𝜆2

𝜌𝜆1 + 𝜌𝜆2
 (Paltridge and Barber, 1988) 

Normalized Difference 

Vegetation Index 
NDVI 

𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅+𝜌𝑅𝑒𝑑
 

𝜌𝜆1 − 𝜌𝜆2

𝜌𝜆1 + 𝜌𝜆2
 (Rouse, 1974) 

Advanced Simple Ratio ASR 
𝜌𝑁𝐼𝑅 − (𝜌𝑅𝑒𝑑 − (𝜌𝐵𝑙𝑢𝑒 − 𝜌𝑅𝑒𝑑))

𝜌𝑁𝐼𝑅 + (𝜌𝑅𝑒𝑑 − (𝜌𝐵𝑙𝑢𝑒 − 𝜌𝑅𝑒𝑑))
 

𝜌𝜆1

𝜌𝜆2 + 𝜌𝜆3
 (Somvanshi and Kumari, 2020) 

Advanced Normalized 

Difference Vegetation 

Index 

ANDVI 
𝜌𝑁𝐼𝑅 − (𝜌𝑅𝑒𝑑 − (𝜌𝐵𝑙𝑢𝑒 − 𝜌𝑅𝑒𝑑))

𝜌𝑁𝐼𝑅 + (𝜌𝑅𝑒𝑑 − (𝜌𝐵𝑙𝑢𝑒 − 𝜌𝑅𝑒𝑑))
 

𝜌𝜆1 − (𝜌𝜆2 + 𝜌𝜆3)

𝜌𝜆1 + 𝜌𝜆2 + 𝜌𝜆3
 (Somvanshi and Kumari, 2020) 

Reduced Simple Ratio RSR ∗∗∗
𝜌𝑁𝐼𝑅

𝜌𝑅𝑒𝑑
(1 −

𝜌𝑆𝑊𝐼𝑅 − 𝜌𝑆𝑊𝐼𝑅𝑚𝑖𝑛

𝜌𝑆𝑊𝐼𝑅𝑚𝑎𝑥 − 𝜌𝑆𝑊𝐼𝑅𝑚𝑖𝑛
) 

𝜌𝜆1

𝜌𝜆2
(1 −

𝜌𝜆3 − 𝜌𝜆3𝑚𝑖𝑛

𝜌𝜆3𝑚𝑎𝑥
− 𝜌𝜆3𝑚𝑖𝑛

) (Brown et al., 2000) 

* Where 𝜌 denotes the reflectance value at a given wavelength λ, NIR is the near-infrared reflectance. 

** Where 𝜆1, 𝜆2, and 𝜆3 are the canopy reflectance spectra at different wavebands. 

 *** ρSWIR represents the SWIR reflectance, ρSWIRmin and ρSWIRmax represent the minimum and maximum values in the SWIR, respectively. 
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A linear regression for each vegetation indices and the measured LAI values was performed to assess the 

strength of the relationship between proposed indices and LAI in MATLAB (version R2020b Update 3). 

The coefficient of determination (R2) and the root mean squared error (RMSE) for all the different 

combinations were calculated. The indices that achieved higher accuracies were noted, and the best 

combinations of bands per index were found.  

 

After finding the best combinations of bands using only VNIR reflectance spectra, new combinations 

were calculated in which either LST or LSE replaced one of the bands used in each vegetation index. With 

this procedure, all possible influences by LST and LSE values to vegetation indices were evaluated.  

 

2.4.2. Leaf area index prediction using partial least squares regression 

PLSR is a multivariate statistical tool in which the inputs are transformed to form new components to 

reduce the number of inputs. It combines independent variables to new predictor factors that are not 

correlated. PLSR has also been applied regularly in remote sensing applications (Cho et al., 2007; Kooistra 

et al., 2004).  

 

Estimation of LAI using PLSR was done in MATLAB, using the “plsregress”-function (MathWorks 

Benelux, n.d.). Analogous to LAI estimation using vegetation indices, all multispectral bands are used as 

inputs for the PLSR function as a reference. Afterwards, LST or LSE is included as an additional input. 

To inspect the ability of the PLSR model to estimate the LAI using the different inputs, the cross-

validated Rcv² and RMSEcv are calculated using the “leave-one-out method” (Duda et al., 1995). These are 

values that indicate how well a model can predict samples that are left out of the dataset (Shao, 1993). The 

analysis is done to observe the number of predictor variables needed to get the most accurate prediction 

of LAI; the commonly used criterion to include another predictor variable is when it can decrease RMSEcv 

by 2% (Geladi and Kowalski, 1986). With the least possible predictor variables, a linear model is created to 

show the correlation between the predicted LAI values and the measured LAI values.  

 

Previous studies have shown that different vegetation species have individual emissivity signatures (French 

et al., 2000; Ribeiro da Luz and Crowley, 2007; Ullah et al., 2012). Therefore, the assumption can be made 

that when using TIR data in combination with reflectance spectra for single species to estimate LAI, better 

results can be achieved. To assess the influence of different vegetation species on the predictability of 

LAI, PLSR was also applied for plots with oak and beech as their dominant species. This resulted in PLSR 

analysis using ten plots for oak and 18 plots for beech. The analysis for the plots per dominant species was 

done analogous to the analysis using the complete dataset with mixed vegetation species plots. 
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3. RESULTS 

 Characteristics of the collected in-situ data 

During the field campaign, LAI measurements were taken with the LICOR 2200C. The dominant species 

and the number of trees per plot were recorded. From the 35 plots in which measurements were done, 21 

plots have European beech (Fagus sylavatica), 12 plots Oak (Quercus robur), and two plots Douglus fir 

(Pseudotsuga menziesii) as the dominant species. Additionally, the diffuse non-interceptive value (DIFN) was 

measured with the LICOR to infer the percentage of vegetation cover. Over 30 plots, LAI was measured 

with significant variance, ranging from 1.462 to 5.717. Table 3 shows statistics of the LAI, the DIFN, and 

the number of trees per plot. In Appendix I, the in-situ data of the individual plots is displayed. 

 

Table 3: Statistical characteristics over all plots in the study area for the measured in-situ data, including leaf area 
index (LAI), percentage of vegetation cover (PV), and the number of trees. 

Variable 
Mean 

statistics 
Mean Std. 

Error 
Min Max 

Std. 
Deviation 

LAI 4.1247 0.2889 1.462 5.717 1.0162 

DIFN 0.0584 0.0115 0.0107 0.3838 0.0682 
No. of Trees 27.4 1.04 14 39 6.14 

 

3.1.1. Relationship among leaf area index, reflectance spectra, land surface temperature and land surface 
emissivity 

After extracting the mean values of the reflectance spectra for each band per plot, their relationships with 

the measured LAI were investigated. Figure 11 shows the relation between the measured LAI values and 

the mean reflectance spectra for each band (i.e., the green, red, red-edge, and NIR bands) using the 

multispectral camera. As can be seen from the scatterplots, the correlation between the measured LAI and 

the different reflectance is minimal; the NIR reflectance shows the highest coefficient of determination 

(R² = 0.18567) with the LAI value. 

 

 

  
(a) (b) 
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(c) (d) 

Figure 11: Scatter plots of in situ measured leaf area index and the green reflectance (a), the red reflectance (b), the 
red-edge reflectance (c), and the NIR reflectance (d) for 30 plots. 

 

For each plot, the mean LST value was extracted, and its relationship between LAI and LST was studied. 

Table 4 shows the summary statistics of the LST for the altitudes of 85 m (LST85) and 120 m (LST120) for 

the 30 plots. For both altitudes, the mean, standard deviation and error, and the minimum and maximum 

value are similar. However, when looking at LST85 and LST120 for the individual plots, there is a significant 

difference in value for most plots (Appendix II), with an average difference of 2.68 °C between LST85 and 

LST120. This difference is also visible for one of the plots (Figure 12). Figure 12 shows an RGB map of the 

plot (plot 2, see Appendix I and II) and maps of the extracted LST for both flight heights. From the maps, 

it is visible that the average LST of the displayed plot was detected to be 2.5208 °C (see Appendix II, plot 

2) lower at the higher altitude of 120 m than from the 85 m altitude. 

 

Table 4: Statistical characteristics of the land surface temperature (LST), extracted from TIR images from different 
flight heights, 85 m and 120 m respectively (n=30). 

Variable Mean 
Mean Std. 

Error 
Min Max 

Std. 
Deviation 

LST85 21.4954 °C 0.3234 °C 18.3828 °C 25.1935 °C 1.7712 °C 
LST120 21.5095 °C 0.324 °C 18.5376 °C 24.8330 °C 1.7745 °C 
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(a) 
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(b) 
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(c) 

 

Figure 12: Maps of a single plot (outlined in red). RGB map (a), Land surface temperature (LST) map from TIR 
image captured at an 85 m altitude (b), and an LST map from TIR image captured at a 120 m altitude (c). 

 

The relationship between LST and the measured LAI for the different altitudes can be seen in Figure 13. 

There is no significant fit between LAI and LST for both altitudes; a Pearson correlation coefficient 

revealed no significant correlation for LST85 (r= -0.09, P-value ≤ 0.63) and LST120 (r= -0.14, P-value 

≤0.45). 
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(a) 

 
(b) 

Figure 13: Scatter plots of in situ measured leaf area index (LAI) and land surface temperature (LST) obtained from 
an 85 m (LST85) flight height (a), and LST detected from a 120 m (LST120) flight height (b) for 30 plots. 
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As mentioned previously, LSE was estimated using PV values that were calculated using different 

approaches. Table 5 shows the statistics for PV obtained from both approaches. With the LICOR, a mean 

PV of 93.6% vegetation cover was measured over all plots, while PV estimation using the CHM yields an 

average of 96.3%. Noticeable is that the LICOR did not detect a plot with a vegetation cover of 100%; for 

the approach using the CHM, this was the case for some plots. Figure 14 shows the relationship between 

LAI and PV from both approaches. Table 6 highlights the difference between the statistical characteristics 

of the resulting LSE. Due to the slightly higher average in PV when using the CHM, also the resulting 

LSECHM has a higher average (0.986) compared to LSELICOR with an average of 0.9846. 

 

Table 5: Statistical characteristics of the percentage of vegetation cover (PV) measured with the LICOR 2200C and 
estimated using a canopy height model (CHM). 

Variable Mean 
Mean Std. 

Error 
Min Max 

Std. 
Deviation 

PV LICOR 0.936 0.013 0.616 0.989 0.072 
PV CHM 0.963 0.011 0.764 1 0.063 

 

 

 
(a) 



PREDICTION OF LEAF AREA INDEX USING THE INTEGRATION OF THE THERMAL INFRARED WITH VISIBLE AND NEAR-INFRARED DATA ACQUIRED WITH AN UAV 

FOR A MIXED FOREST 

 

28 

 
(b) 

Figure 14: Scatter plots of in-situ measured leaf area index (LAI) and the percentage of vegetation cover (Pv) derived 
from measurements of the LICOR 2200C (PvLICOR) (a) and a canopy height model (CHM) (PvCHM) (b) for 30 plots. 

 

Table 6: Statistical characteristics of the land surface emissivity (LSE), calculated using the percentage of vegetation 
cover PV measured using different approaches (n=30). 

Variable Mean 
Mean Std. 

Error 
Min Max 

Std. 
Deviation 

LSELICOR 0.9846 0.0007 0.9677 0.9874 0.0038 
LSECHM 0.9860 0.0006 0.9755 0.9880 0.0033 

 

In Figure 15, the relationships between the measured LAI and the differently calculated LSE are 

demonstrated. As shown in Figure 15, there is a significant correlation between LSE and LAI, with the 

highest R² of 0.73627 between LSELICOR and LAI. Correlation is high between LSELICOR and LAI when 

assessing using the Pearson correlation coefficient (r= 0.8581, P-value < 0.001). Comparing LSECHM with 

the measured LAI yields an R² of 0.31858; correlation is less, but still significant (r= 0.5644, P-value = 

0.0012). Furthermore, from both scatterplots, it is visible that saturation occurs. As can be seen from 

Figure 15a, saturation occurs for LAI values higher than four. In Figure 15b, it can be seen that LSECHM 

reaches a maximum of 0.988 for multiple LAI values of three and higher. 
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(a) 

 
(b) 

Figure 15: Scatter plots of in situ measured leaf area index (LAI) and land surface emissivity (LSE) calculated with 
the percentage of vegetation cover PV derived using LICOR 2200C (LSELICOR) (a), and from a canopy height model 
(CHM) (LSECHM) (b) for 30 plots. 
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 Estimated leaf area index using vegetation indices 

3.2.1. Leaf area index estimation with vegetation indices using reflectance spectra 

The best band combinations of the nine chosen vegetation indices were calculated using the VNIR 

reflectance spectra (Table 7). From Table 7, it can be inferred that LAI can be predicted with moderate 

accuracy using vegetation indices using reflectance spectra. The SR, including the NIR and the green band, 

proves to be the best vegetation index using two spectral bands, with an R² of 0.5675 and an RMSE of 

0.7088, and slightly more accurate than the MVI and the NDVI. By upgrading the SR with a third band, 

for both ASR and RSR, LAI prediction accuracy increased compared to the two-band indices. The RSR 

using the NIR, green, and red-edge bands is shown to be the best predictor of LAI with an R² of 0.5815 

and an RMSE of 0.6972. The scatter plots in Figure 16 show the measured LAI versus the predicted LAI 

using the SR and the RSR indices. The scatter plots showing the measured versus the predicted LAI for all 

the vegetation indices using the reflectance spectra can be found in Appendix III. 

 

Table 7: The coefficients of determination (R²) and the root mean squared error (RMSE) among the best 
combinations of vegetation indices using VNIR reflectance spectra and leaf area index. 

Vegetation Index Best Equation R2 RMSE 

SR 
𝜌𝑁𝐼𝑅

𝜌𝐺𝑟𝑒𝑒𝑛
 0.5675 0.7088 

MSR 
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒 − 1

(𝜌𝑁𝐼𝑅 𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒)⁄ 0.5
+ 1

 0.4383 0.8078 

SD 𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒 0.294 0.9056 

RDI 
𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒

√𝜌𝑁𝐼𝑅+𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒

 0.4162 0.8236 

MVI 
𝜌𝑁𝐼𝑅−1.2𝜌𝐺𝑟𝑒𝑒𝑛

𝜌𝑁𝐼𝑅+𝜌𝐺𝑟𝑒𝑒𝑛
 0.5582 0.7165 

NDVI 
𝜌𝑁𝐼𝑅−𝜌𝐺𝑟𝑒𝑒𝑛

𝜌𝑁𝐼𝑅+𝜌𝐺𝑟𝑒𝑒𝑛
 0.5582 0.7165 

ASR 
𝜌𝑁𝐼𝑅

𝜌𝐺𝑟𝑒𝑒𝑛+𝜌𝑅𝑒𝑑
 0.5722 0.705 

ANDVI 
𝜌𝑁𝐼𝑅 − (𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑅𝑒𝑑)

𝜌𝑁𝐼𝑅 + 𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑅𝑒𝑑
 0.5645 0.7113 

RSR 
𝜌𝑁𝐼𝑅

𝜌𝐺𝑟𝑒𝑒𝑛
(1 −

𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒 − 𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒𝑚𝑖𝑛

𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒𝑚𝑎𝑥
− 𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒𝑚𝑖𝑛

) 0.5815 0.6972 

 

3.2.2. Leaf area index estimation with vegetation indices using reflectance spectra and land surface temperature 

Afterwards, LST was introduced as another band to be used to calculate the vegetation indices. Table 8 

shows the best combinations of bands for the vegetation indices when including LST. The vegetation 

indices were calculated with LST from both flight heights. It can be seen that the SR is performing the 

best for both LST85 (R² = 0.3621) with the NIR reflectance band and LST120 (R2= 0.2312) with the NIR 

reflectance band for the prediction of LAI. Compared to LAI prediction using vegetation indices with 

only the reflectance spectra, it can be seen that the vegetation indices, including LST, can predict LAI with 

lower accuracy. It can be observed that the vegetation indices SR, MVI, NDVI, ASR, and ANDVI, 

including LST85, obtained slightly higher accuracy than the ones including LST120. The other vegetation 

indices get very low values (R² ≤ 0.1) when including either LST85 or LST120. 
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(a) 

 
(b) 

Figure 16: Scatter plots of in-situ measured leaf area index (LAI) versus the predicted LAI using the simple ratio (SR) 
(a) and the reduced simple ratio (RSR) (b) with the VNIR reflectance spectra as bands. The dashed lines show the 
optimal one on one fit, and the dotted lines show the predicted fit. 
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Table 8: The coefficients of determination (R²) and the root mean squared error (RMSE) between the best 
combinations of vegetation indices using VNIR reflectance spectra and land surface temperature (LST) from two 
different flight heights as one of the inputs, and the leaf area index. 

Vegetation 
Index 

Best Equation 
85 m flight height 120 m flight height 

R2 RMSE R² RMSE 

SR 
𝐿𝑆𝑇

𝜌𝑁𝐼𝑅
 0.3621 0.8609 0.2312 0.945 

MSR 
𝐿𝑆𝑇 − 𝜌𝑁𝐼𝑅 − 1

(𝐿𝑆𝑇 𝜌𝑁𝐼𝑅)⁄ 0.5
+ 1

 0.0624 1.0437 0.091 1.0276 

SD 𝐿𝑆𝑇 − 𝜌𝑁𝐼𝑅 0.0112 1.0718 0.0233 1.0652 

RDI 
𝐿𝑆𝑇−𝜌𝑁𝐼𝑅

√𝐿𝑆𝑇+𝜌𝑁𝐼𝑅

 0.016 1.0692 0.0283 1.0625 

MVI 
𝐿𝑆𝑇−1.2𝜌𝑁𝐼𝑅

𝐿𝑆𝑇+𝜌𝑁𝐼𝑅
 0.3222 0.8874 0.1661 0.9843 

NDVI 
𝐿𝑆𝑇−𝜌𝑁𝐼𝑅

𝐿𝑆𝑇+𝜌𝑁𝐼𝑅
 0.3222 0.8874 0.1661 0.9843 

ASR 
𝐿𝑆𝑇

𝜌𝑁𝐼𝑅+𝜌𝑅𝑒𝑑
 0.3417 0.8745 0.2152 0.9549 

ANDVI 
𝜌𝑁𝐼𝑅 − (𝐿𝑆𝑇 + 𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒)

𝜌𝑁𝐼𝑅 + 𝐿𝑆𝑇 + 𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒
 0.3238 0.8863 0.1672 0.9836 

RSR 
𝜌𝑁𝐼𝑅

𝜌𝑅𝑒𝑑
(1 −

𝐿𝑆𝑇 − 𝐿𝑆𝑇𝑚𝑖𝑛

𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑚𝑖𝑛
) 0.0677 1.0407 0.0711 1.0388 

 

The following Figure (Figure 17) shows scatter plots of the measured LAI versus the predicted LAI from 

the best of the vegetation indices using LST85 and LST120 as one of the inputs, using SR. In Appendix IV, 

the scatter plots showing the measured versus the predicted LAI for all the vegetation indices using the 

VNIR reflectance spectra combined with LST. 
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(a) 

 
(b) 

Figure 17: Scatter plots of in situ measured leaf area index (LAI) versus the predicted LAI using the simple ratio 
index (SR) including VNIR reflectance spectra and land surface temperature (LST) obtained at 85 m (LST85) (a), and 
the SR including LST obtained at 120 m (LST120) (b). The dashed lines show the optimal one on one fit, and the 
dotted lines show the predicted fit. 
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3.2.3. Leaf area index estimation with vegetation indices using reflectance spectra and land surface emissivity 

Analogous to LST, LAI was also predicted using the nine different vegetation indices using LSE as one of 

the inputs. As mentioned previously, LSE was calculated two times using different values for PV, leading 

to two different estimations of LAI. The best combinations of bands for the vegetation indices, including 

LSE, are shown in Table 9. As shown in Table 9, the combination of the LSELICOR as an input and VNIR 

reflectance spectra in the different vegetation indices improved the prediction accuracy of LAI using RSR 

(R²=0.7458, RMSE=0.5081).  

 

When comparing the LAI estimation using LSELICOR and LSECHM, it can be seen that LSELICOR achieves 

better results with the SD (R² = 0.614) and the RSR (R² = 0.7458). With all other vegetation indices, for 

both LSELICOR and LSECHM, the R² and RMSE indicate a low accuracy for the prediction of LAI. Figure 

18 shows the measured versus the predicted LAI using the RSR index using VNIR reflectance spectra 

combined with the LSE. When including LSELICOR in the LAI estimation using RSR, the predicted LAI 

saturates at a value of 4.5. Also, for LAI estimation using the RSR, including LSECHM, it is visible that the 

predicted LAI reaches a maximum value of approximately 4.5 for multiple samples, for measured LAI 

values of three and higher. In Appendix V, the scatter plots of the measured versus the predicted LAI for 

all the vegetation indices using the VNIR reflectance spectra and LSE can be found. 

 

Table 9: The coefficients of determination (R²) and the root mean squared error (RMSE) among the best 
combinations of vegetation indices using reflectance spectra and land surface emissivity calculated using two 
different approaches (LSELICOR and LSECHM), for retrieval of the leaf area index. 

Vegetation 

Index 
Best Equation 

LSELICOR  LSECHM  

R2 RMSE R² RMSE 

SR 
𝐿𝑆𝐸

𝜌𝑁𝐼𝑅
 0.2522 0.8714 0.2603 0.8666 

MSR 
𝐿𝑆𝐸 − 𝜌𝑁𝐼𝑅 − 1

(𝐿𝑆𝐸 𝜌𝑁𝐼𝑅)⁄ 0.5
+ 1

 0.1725 0.9166 0.1901 0.9068 

SD 𝐿𝑆𝐸 − 𝜌𝑅𝑒𝑑 0.6114 0.6281 0.2318 0.8832 

RDI 
𝐿𝑆𝐸−𝜌𝑁𝐼𝑅

√𝐿𝑆𝐸+𝜌𝑁𝐼𝑅

 0.197 0.9029 0.2103 0.8954 

MVI 
𝐿𝑆𝐸−1.2𝜌𝑁𝐼𝑅

𝐿𝑆𝐸+𝜌𝑁𝐼𝑅
 0.2163 0.892 0.2231 0.8882 

NDVI 
𝐿𝑆𝐸−𝜌𝑁𝐼𝑅

𝐿𝑆𝐸+𝜌𝑁𝐼𝑅
 0.2163 0.892 0.2231 0.8882 

ASR 
𝐿𝑆𝐸

𝜌𝑁𝐼𝑅+𝜌𝑅𝑒𝑑
 0.2354 0.8811 0.2437 0.8763 

ANDVI 
𝜌𝑁𝐼𝑅 − (𝐿𝑆𝐸 + 𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒)

𝜌𝑁𝐼𝑅 + 𝐿𝑆𝐸 + 𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒
 0.2398 0.8786 0.2467 0.8745 

RSR 
𝜌𝑁𝐼𝑅

𝜌𝑅𝑒𝑑
(1 −

𝐿𝑆𝐸 − 𝐿𝑆𝐸𝑚𝑖𝑛

𝐿𝑆𝐸𝑚𝑎𝑥 − 𝐿𝑆𝐸𝑚𝑖𝑛
) 0.7458 0.5081 0.2707 0.8605 
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(a)  

 
(b) 

Figure 18: Scatter plots of in-situ measured leaf area index (LAI) versus the predicted LAI using the reduced simple 
ratio vegetation index (RSR) with VNIR reflectance spectra and land surface emissivity calculated using two 
approaches (as mentioned in section 2.3.3): LSELICOR (a) and LSECHM (b). The dashed lines show the optimal one on 
one fit, and the dotted lines show the predicted fit. 
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 Estimated leaf area index using partial least squares regression  

3.3.1. Leaf area index estimation with partial least squares regression using reflectance spectra 

Depending on the inputs used for PLSR, the optimal number of factors used to estimate LAI varied. To 

determine how many factors were needed, the percentage of variance explained by adding more PLS 

components was consulted, which is equal to R². To avoid overfitting by using too many PLS 

components, the RSMECV was used, as cross-validation indicates how well the model can predict LAI. 

Extra factors were only considered when RSMECV would not increase. Figure 19 shows the percentage of 

variance explained of the LAI and the RSMECV with the number of PLS components used, for when only 

the VNIR reflectance spectra are used as inputs. As R² is nearly at its maximum and RMSECV is at its 

minimum both for two PLS components, this was the optimal amount of PLS factors to be used in this 

case. 

 

 

 

(a) (b) 
Figure 19: Percent of variance explained in leaf area index (LAI) (a) and the cross-validated root mean squared error 
(RMSECV) (b) versus the number of partial least squares (PLS) components used in the partial least squares 
regression analysis, using the reflectance spectra as inputs. 

 

LAI was then estimated using PLSR with two factors. Figure 20 shows the measured LAI compared with 

the predicted LAI using PLSR with the VNIR reflectance spectra as inputs. It can be seen that with an R² 

of 0.44517, the LAI prediction accuracy is lower than when using vegetation indices (max R²=0.5815). 
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Figure 20: Scatter plot of in-situ measured leaf area index (LAI) versus the predicted LAI using partial least squares 
regression (PLSR) with two components applying the reflectance spectra as inputs. The dashed line shows the 
optimal one on one fit, and the dotted line shows the predicted fit. 

 

3.3.2. Leaf area index estimation with partial least squares regression using reflectance spectra and land 
surface temperature 

Following the PLSR analysis using only VNIR reflectance spectra, PLSR was executed with an additional 

input, LST, derived from both flight heights separately. As can be seen in Table 10, adding LST85 as 

another input increases the R² and decreases the RMSECV, indicating that the extra information from the 

added input helps to increase the prediction accuracy of LAI. Additionally, when adding another input like 

LST, the optimal number of PLS components increases to three. This is also visualised in Figure 21. 

Notable is that LST120 does not improve the prediction of LAI, which is a similar result as when predicting 

LAI with the use of vegetation indices and using LST120 as an input.  

 

Table 10: The optimal number of partial least squares (PLS) components, the coefficients of determination (R²), and 
the cross-validated root mean squared error (RMSECV) for partial least squares regression analysis (n=30). 

Inputs 
Number PLS 
components 

R² RMSECV 

Reflectance spectra  2 0.4452 0.8668 
Reflectance spectra & LST85 3 0.5565 0.7998 
Reflectance spectra & LST120 3 0.4512 0.8969 
Reflectance spectra & LSELICOR 3 0.7907 0.8351 
Reflectance spectra & LSECHM 3 0.3743 0.9767 
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(a) 

 
(b) 

Figure 21: Scatter plot of in-situ measured leaf area index (LAI) versus the predicted LAI using partial least squares 
regression (PLSR) and applying the reflectance spectra as well as land surface temperature (LST) from 85 m altitude 
(LST85) (a), and LST from 120 m altitude (LST120) (b) as inputs. The dashed line shows the optimal one on one fit, 
and the dotted line shows the predicted fit. 
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3.3.3. Leaf area index estimation with partial least squares regression using reflectance spectra and land 
surface emissivity 

LSE was also considered and added next to the VNIR reflectance spectra as an input to the PLSR analysis. 

Figure 22 depicts the ability of LSE in PLSR to successfully predict LAI with relatively high accuracy 

when using LSELICOR (R² = 0.7907). Similarly to LAI prediction with the RSR, a saturation is visible for 

LAI values of 4.5 and higher (Figure 22a). Adding LSECHM as input for PLSR decreases the prediction 

accuracy compared to using only reflectance spectra, as shown in Table 10 and Figure 22. Compared to 

the addition of LST to the analysis, the prediction of LAI with the inclusion of LSELICOR has improved to 

a much greater extent. 

 

3.3.4. Leaf area index estimation with partial least squares regression considering different dominant species 

Furthermore, analysis was done to assess the influence of the main species per plot on the prediction 

accuracy of LAI using PLSR. For the ten oak plots and the 18 beech plots, analysis was done analogous to 

the analysis with the complete mixed dataset. Table 11 shows the results of the PLSR analysis 

differentiated by dominant species. This includes using just the VNIR reflectance spectra as input, 

including LST, from both flight heights respectively, as well as including LSE from both approaches into 

the model. As can be seen from Table 11, PLSR analysis using only plots with oak as the dominant species 

yields lower values for R² compared to mixed plots when using only reflectance spectra as well as 

reflectance spectra and LST as inputs. For the reflectance spectra in combination with LSELICOR, R² is 

higher (R² = 0.9108) and RMSECV decreases (RMSECV = 0.4256). When using reflectance spectra and 

LSECHM to estimate LAI for oak plots, R² increases compared to mixed plots (R² = 0.398), however 

RMSECV increases (RMSECV = 1.2588). For plots with beech as their dominant species, the LAI 

estimation accuracy is slightly higher compared to mixed plots for all inputs, with the best result being 

achieved when using the VNIR reflectance spectra and LSELICOR as inputs (R² = 0.8766, RMSECV = 

0.4129).  

Table 11: The optimal number of partial least squares (PLS) components, the coefficients of determination (R²), and 
the cross-validated root mean squared error (RMSECV) for partial least squares regression analysis when analysing by 
dominant species. 

Inputs Species 
Number 
of plots 

Number PLS 
components 

R² RMSECV 

Reflectance spectra 

Mixed 30 

2 0.4452 0.8668 
Reflectance spectra & LST85 3 0.5565 0.7998 
Reflectance spectra & LST120 3 0.4512 0.8969 
Reflectance spectra & LSELICOR 3 0.7907 0.8351 
Reflectance spectra & LSECHM 3 0.3743 0.9767 

Reflectance spectra 

Oak 10 

2 0.3243 0.775 
Reflectance spectra & LST85 3 0.3395 0.8448 
Reflectance spectra & LST120 3 0.3357 0.945 
Reflectance spectra & LSELICOR 3 0.9108 0.4256 
Reflectance spectra & LSECHM 2 0.398 1.2588 

Reflectance spectra 

Beech 18 

3 0.5298 0.8566 
Reflectance spectra & LST85 3 0.5592 0.8626 
Reflectance spectra & LST120 4 0.5323 0.9013 
Reflectance spectra & LSELICOR 3 0.8766 0.4129 
Reflectance spectra & LSECHM 3 0.6589 0.7167 
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(a) 

 
(b) 

Figure 22: Scatter plot of in-situ measured leaf area index (LAI) versus the predicted LAI using partial least squares 
regression (PLSR) applying the reflectance spectra as well as land surface emissivity (LSE) calculated using two 
approaches (as inputs: LSELICOR (a), and LSECHM (b). The dashed line shows the optimal one on one fit, and the 
dotted line shows the predicted fit. 
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4. DISCUSSION 

This research was the first to estimate LAI with the integration of TIR and VNIR remote sensing data 

collected with a UAS for a mixed forest. This study shows that the prediction accuracy of LAI can be 

improved to some extent, depending on the methods and quality of the dataset. This emphasises previous 

findings for integration of TIR with VNIR/SWIR data using Landsat-8 images, stating that there is a high 

potential to improve the LAI prediction accuracy (Neinavaz et al., 2019). This section discusses the 

different outcomes of the research, analysing the results in the workflow order.  

 Analysis of data collection  

4.1.1. In-situ data 

To analyse the LAI prediction accuracy using remote sensing data captured by sensors mounted to a 

UAV, the in-situ data collected during fieldwork in this research is assumed to be correct, showing the 

actual LAI. While the operation of the LICOR 2200C is based on some assumptions, measurements that 

are performed with it are accepted and used in many studies regarding LAI as a reference (Bréda, 2003; 

Danner et al., 2015). The collected data shows that the lowest values for LAI were measured in plots with 

Fir as the dominant species (1.462 and 2.408), plots with Oak or Beech as the dominant species show 

similar values ranging from approximately 2.4 to 5.7 (Appendix I). High LAI values above 5 were found in 

plots with either very tall trees or plots with more than 30 trees (Appendix I). However, the number of 

trees does not have much influence on LAI when looking at all plots; this is due to the different size and 

crown projected area per tree.  

 

4.1.2. Images collected by means of UAS 

A remarkable difference has been observed in LST measured for the different flight altitudes for all plots 

(Appendix II). In previous research, it was noticed that atmospheric effects and water vapour can 

introduce an error in LST calculation (Ogawa et al., 2008; Tonooka and Palluconi, 2005). In contrast, it 

was stated that atmospheric correction is not needed for very low altitudes (Messina and Modica, 2020).  

Therefore, the LST difference for the UAS flight heights of 85 m and 120 m may come partly from the 

atmospheric conditions. Another aspect that could influence the LST values of the two altitudes is the 

temporal difference of image acquisition. UAS flights to capture the TIR images were performed for parts 

of the study area first with an altitude of 85 m and directly afterwards with an altitude of 120 m, leading to 

a time difference of approximately 20 minutes between the captures. Although this time difference would 

not lead to a noticeable difference in the true LST, the sensor measurements could be influenced by it, as 

thermal cameras can have an adjustment period in which the measurements can fluctuate (Berni et al., 

2009; Sagan et al., 2019). 

 

 Relationship among leaf area index, reflectance spectra, land surface temperature and land 
surface emissivity 

4.2.1. Relationship among leaf area index and reflectance spectra 

Previous studies using hyperspectral sensors have shown that a change in LAI causes high variation in 

NIR reflectance, while effects in the VIS domain are relatively small (Asner, 1998; Darvishzadeh et al., 
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2009). This is also reflected in this research; the linear regression models between LAI and reflectance in 

green (0.55 μm) and red (0.66 μm) bands show an R² of less than 0.01. The correlation between LAI and 

the red-edge reflection (0.735 μm) was 0.08, while the relation between LAI and the NIR reflection (0.79 

μm) shows the highest R² of 0.19.  

 

4.2.2. Relationship among leaf area index and land surface temperature 

 

Analysing the relationship between LAI and LST, as well as LAI and LSE also confirms findings from 

preceding research. While the LST was found to be influenced by vegetation in urban areas 

(Maimaitiyiming et al., 2014), there is no significant relation between LAI and LST (Kumar and Shekhar, 

2015; Neinavaz et al., 2019; Zhang et al., 2009). For both flight altitudes, the correlation between LAI and 

LST was found very low (R² = 0.009 for LST85, R² = 0.02 for LST120); our findings revealed a slight 

negative relation between LAI and LST (Figure 13). This does not yet give information about the quality 

of data from the different flight heights. 

 

4.2.3. Relationship among leaf area index and land surface emissivity 

 

The relationship between LAI and LSE shows a significant positive correlation for both LSELICOR and 

LSECHM. A literature review reveals that LSE was found to increase with an increase of vegetation (Olioso 

et al., 2007; Sobrino et al., 2005), and with dense vegetation and increasing LAI, the LSE value is expected 

to be increased (Jin and Liang, 2006). Also, Neinavaz et al. (2019) stated that a strong relation between LAI 

and LSE exists over mixed temperate forest using satellite image.  

 

The high correlation between LAI and LSELICOR can be explained by the fact that LSELICOR is calculated 

based on PV in-situ measurements using the LICOR 2200C, which expectedly has a higher accuracy as it 

was previously revealed that prediction accuracy of PV affects LSE calculation using the NDVI-threshold 

method (Neinavaz et al., 2020). This is also visible when comparing Figures 14 and 15, which show the 

relationship between PV and LSE with the LAI. For both approaches, using in-situ measurements and 

CHM-derived data, the R² is the same when comparing the relationship between PV and LSE with the 

LAI. This indicates that the NDVI-threshold method depends entirely on PV when the NDVI value falls 

in between the thresholds for full soil and full vegetation values (Sobrino and Raissouni, 2000), which was 

the case in this study for all plots.  

 

Notably, there is a saturation in LSELICOR for LAI values above 4.5. There is one distinct outlier visible in 

Figure 15a, which belongs to the plot with the lowest LAI measured (1.462) and also the lowest PV (61%) 

(plot 3, see Appendix I and II). The plot, with Fir as the dominant species, had only a few tall trees but 

much understory; LAI measurements were performed on a height of approximately 2 m above the 

ground, missing most of the understory. LSELICOR for this plot was very low due to the strong influence of 

soil emissivity as a background. It can also be assumed that the understory might increase the LSE value, 

which needs to be further investigated using different approaches.  

 

LAI and LSECHM are less correlated; however, there is still a significant relationship between the two 

variables. Figure 15b shows that for multiple plots, the maximum LSE value of 0.988 is reached. This 

comes forth because the CHM indicates a complete cover of tall vegetation for these plots (PvCHM = 1), as 

visualised in figure 14b. Therefore, using the NDVI-threshold method, LSECHM for these plots is only 

influenced by the emissivity of vegetation and not by the emissivity of the soil. Overall, LSECHM has higher 

values than LSELICOR due to the different derivations of PV accuracy. 
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 Leaf area index estimation using vegetation indices 

4.3.1. Leaf area index estimation with vegetation indices using reflectance spectra  

LAI was predicted broadly using vegetation indices (Broge and Leblanc, 2001; Darvishzadeh et al., 2006; 

Elvidge and Chen, 1995; Schlerf et al., 2005; Wang et al., 2005; Xue and Su, 2017). Most of the vegetation 

indices used in this research were adapted from Neinavaz et al. (2019). From the outcomes of that study, it 

was expected that the MVI performs best to estimate LAI, although with a moderate outcome: an R² of 

0.408 (Neinavaz et al., 2019). In this research, reflectance data with a higher spatial resolution are used; 

therefore, it was expected that the results show a higher correlation between the vegetation indices and 

LAI.  

 

Using the VNIR reflectance spectra, all used vegetation indices could predict LAI with moderate accuracy 

(R² ≥ 0.3). The best performing index using two bands was the SR (R² = 0.5675, RMSE = 0.7088), 

followed by the MVI and NDVI (R² = 0.5582, RMSE = 0.7165). The MVI and the NDVI score matching 

results throughout this research due to the formula of the indices being very similar, only differing in one 

constant. The best performing index using three bands was the RSR (R² = 0.5815, RMSE = 0.6972). 

When using only reflectance spectra in the VNIR domain, two bands are sufficient to predict LAI with 

reasonable accuracy (R² ≥ 0.5). However, applying three bands can slightly improve the prediction 

accuracy, as atmospheric influence and soil background effects can be reduced (Somvanshi and Kumari, 

2020; Zhu et al., 2010).  

 

When looking at the scatterplots of the best performing vegetation indices, the SR and the RSR (Figure 

16), it can be seen that the slope of the linear regression line (0.57 for SR, 0.58 for RSR) is not as steep as 

for a perfect fit, meaning that LAI was predicted higher for lower actual LAI values, and lower for higher 

actual LAI values. For the plot with the lowest measured LAI value (1.462), the LAI was overestimated a 

lot, getting a predicted LAI value of nearly three. The reason for this is the understory that was present in 

the plot; while the in-situ measurements did not cover the understory, it is of influence in the images 

captured by means of UAS. The predicted LAI is not exceeding a value of about five, indicating a 

saturation for high LAI. According to previous studies, this is expected when estimating LAI using 

VNIR/SWIR data (Asner et al., 2003; Gower et al., 1999; Sellers, 1985).  

 

4.3.2. Leaf area index estimation with vegetation indices using reflectance spectra and land surface temperature  

When comparing the results of LAI prediction using vegetation indices with LST inclusion with 

reflectance spectra (Table 8) with the results of LAI prediction using vegetation indices with only the 

reflectance spectra (Table 7), it is clear that the integration of LST did not improve the results. Our 

findings revealed that the SR (i.e., using LST and NIR reflectance as bands) was the best performing index 

for both flight heights.  In this regard, the predicted LAI only ranges between three and five, with lower 

LAI values being overestimated and higher LAI values being underestimated. 

LST120 has a lower accuracy for predicting LAI using vegetation indices than LST85 does for the SR, MVI, 

NDVI, ASR, and ANDVI. Therefore, even though the results of LST85 are also not very promising, it is 

visible that, when evaluating with R² and RMSE, LST120 scores worse. In other words, it seems that the 

LST values of the lower altitude are more accurate. As mentioned previously (i.e., section 4.2.2), both 

LST85 and LST120 do not have a strong relationship with LAI and their integration with the VNIR 

reflectance spectra in vegetation indices does not provide promising results. This confirms previous 
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findings, which stated that the relationship between LAI and LST is not significant, and the integration of 

LST with reflectance spectra to estimate LAI does not yield accurate results (Neinavaz et al., 2019).  

 

4.3.3. Leaf area index estimation with vegetation indices using reflectance spectra and land surface emissivity 

Previously, it was revealed that LSE is having a better relationship with LAI than LST (Neinavaz et al., 

2019). Therefore, it was expected that the LAI prediction accuracy using vegetation indices would also 

yield better results when including LSE as an input. The LAI prediction accuracy was promising (R² = 

0.7458, RMSE = 0.5081) when using the RSR.  However, prediction accuracy was not improved and, in 

fact, dropped using other vegetation indices in comparison with using only reflectance spectra (Table 9). 

These indices are mostly ratio-based. This could infer that while LSE has a high correlation with LAI, a 

ratio between LSE and reflectance spectra reduces its worth and ability to infer about the LAI. The RSR 

was developed as a vegetation index to improve the SR by reducing the effect of soil background 

reflectance with the inclusion of a third band, which would filter the results of the SR (Brown et al., 2000). 

With LSELICOR as the third band, the prediction accuracy of LAI could be improved when comparing to 

the SR using only VNIR reflectance spectra. Another benefit of the RSR is that it unifies different 

vegetation species to estimate LAI, making it a good predictor for mixed areas (Brown et al., 2000). This is 

also a factor that is of relevance in the study area of this research.  

 

R² for LAI estimation with the inclusion of LSECHM is below 0.3 for all vegetation indices. While PV 

calculated using the CHM may give some information about the state of the vegetation, the LSE values 

calculated with it seem to be inadequate for LAI prediction using vegetation indices. LAI predicted with 

the RSR as the best performing index using LSELICOR has an outlier at LAI below 2 (Figure 18). With low 

LAI, the background emissivity of the soil has a significant influence (Olioso, 1995). Due to the equation 

used to calculate LSE using the NDVI-threshold method (equation 2c), LSE is more affected by soil 

emissivity when PV values are low. For both LAI estimation with LSELICOR and LSECHM, a saturation is 

again visible for LAI values above 4.5 (Figure 18). As previously explained, this is because the LSE 

calculation with the NDVI-threshold method is highly dependent on PV (Neinavaz et al., 2020). Previous 

research found that saturation can occur for high LAI values using emissivity spectra in the TIR domain 

to predict LAI(Neinavaz et al., 2016b). The fact that saturation occurs in this research confirms these 

findings. 

 

 Leaf area index estimation using partial least squares regression 

4.4.1. Reflectance spectra for leaf area index estimation using partial least squares regression 

In addition to the approach using vegetation indices, LAI was successfully estimated using PLSR. In 

previous research, it was noted that PLSR could improve the LAI prediction accuracy compared to 

vegetation indices, as PLSR utilizes all available spectral information, while vegetation indices only use two 

or three inputs (Darvishzadeh et al., 2008; Neinavaz et al., 2016a). However, when using only the VNIR 

reflectance spectra as input for the PLSR, this research proves the statement wrong. The prediction 

accuracy of the LAI using PLSR is lower (R²=0.4452) than the best performing vegetation index (R² = 

0.5815, RSR). The best performing vegetation indices using VNIR reflectance spectra are ratio-based (i.e., 

RSR), mainly using vegetation characteristics in the NIR domain in relation to characteristics in the VIS 

domain. At the same time, PLSR creates a regression model with new variables (PLS components) made 

of all inputs. Our findings revealed that for LAI values above five, the prediction accuracy is 

underestimated, while for LAI values below three, the prediction accuracy is overestimated. In particular, 

for those plots which have lower LAI value and are highly influenced by understory in the plot, the 

predicted LAI is higher. 
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4.4.2. Integration of land surface temperature and reflectance spectra for leaf area index estimation using partial 
least squares regression 

Including LST as an additional input for the PLSR analysis yielded different results depending on whether 

LST85 or LST120 was used. Adding LST85 improved the estimation of LAI compared to using only 

reflectance spectra and applying vegetation indices. This is in agreement with the findings of Darvishzadeh 

et al. (2008), who showed that PLSR could improve the LAI prediction accuracy compared to vegetation 

indices over the VNIR and SWIR domains, and Neinavaz et al. (2016b), who revealed that PLSR could 

improve the prediction accuracy of LAI using the integration of VNIR and TIR data. The reason for an 

improvement to predict LAI with PLSR compared to vegetation indices when integrating LST with 

reflectance spectra is the limited amount of spectral information available with vegetation indices (Lee et 

al., 2004), making use of only two or three bands. With PLSR, it has been found that increasing the 

number of informative components can correspond to more relevant predictor variables (Cramer, 1993). 

Therefore, when including LST as an extra input to the PLSR model, the optimal number of PLS 

components increases from two to three compared to using only the reflectance spectra, meaning that 

LST helps create a third relevant predictor variable. Including LST120 as input in PLSR, results also show 

higher accuracy than when using vegetation indices; however, no improvements compared to PLSR using 

only reflectance spectra are visible. This indicates that the lower altitude provides better data to integrate 

into the LAI prediction process. 

 

4.4.3. Integration of land surface emissivity with leaf area index estimation using partial least squares 
regression 

Analogous, LSE was introduced as an input to the PLSR analysis. Our finding demonstrated that the 

combination of LSELICOR and reflectance spectra could significantly boost the LAI prediction accuracy (R² 

= 0.7907). As LSE has a significant correlation with LAI (Neinavaz et al., 2019), it was expected that its 

inclusion with VNIR data into the PLSR model results in predictor variables that can explain the 

variability of LAI with significant accuracy. Like the addition of LST, the additional variable added with 

LSE allows the model to create more relevant predictor variables that can explain LAI. In Figure 22a, it 

can be seen that the predicted fit of estimated LAI compared to the measured LAI is not far from the 

optimal one on one fit. However, there is still saturation visible for LAI above 4.5, the reasons being the 

same as previously mentioned when discussing LAI predictability with integration with LSE (sections 4.1.3 

and 4.2.3), which is in agreement with previous research (Neinavaz et al., 2016b).  

 

4.4.4. Leaf area index estimation with partial least squares regression considering different dominant species 

 As TIR data was used previously with success to distinguish different species (Ribeiro da Luz and 

Crowley, 2010; Ullah et al., 2012) and also LAI  was predicted with reasonable accuracy using TIR 

hyperspectral data under laboratory conditions (Neinavaz et al., 2016a), it was expected that differences in 

prediction accuracy would also be visible in this research. Research in the laboratory setup also showed 

that for the mixed dataset, the LAI prediction accuracy dropped compared to when a single species has 

considered  (Neinavaz et al., 2016a).  

 

This research confirmed these previous findings through PLSR analysis differentiated by dominant 

species. The results revealed that for the oak plots, LAI prediction accuracy did not increase using 

reflectance spectra with and without integration of LST, whereas by including LSE with reflectance 

spectra LAI prediction accuracy improved (Table 11). For plots dominant by beech, prediction accuracy 

was increased using reflectance spectra as well as reflectance spectra in combination with LST or LSE. For 
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mixed plots, oak plots, and beech plots, the integration of reflectance spectra with LSELICOR consistently 

achieved the best result; compared to mixed plots, the accuracy is increased further when analysing only 

oak or beech plots. This is because emissivity in the TIR domain can be different for plants of different 

ecological groups and species (Rock et al., 2016). It should, however, be noted that the small sample size 

of oak plots (n=10) precludes an accurate statistical evaluation. 

 

 Recommendations for further research 

An improvement to this research could be made by focusing on the quality of the TIR data collected by 

the UAS. As was mentioned in section 4.1.2, the collection of TIR images using the FLIR Vue Pro R was 

done only above the plots, introducing spatial insecurity. A solution would be to cover the study area for 

TIR data acquisition similar to the data collection with the Parrot Sequoia by taking thousands of images 

that could be combined to orthomosaics using suitable software. This process would also make the 

overlay of the TIR and the VNIR data easier. Furthermore, both the images from the FLIR Vue R Pro 

and the Parrot Sequoia have a relatively high spatial resolution, allowing the plot size to be smaller. This 

plot size was chosen in this research to allow for comparison with Landsat-8 data, for which the pixel size 

is 30 by 30 m. Landsat-8 data could not be used in this research, however, as a cloud cover during the 

overpass of the satellite in the desired time frame prevented the use of its data. If possible, research 

including Landsat-8 data should be considered. Decreasing the plot size makes LAI in-situ measurements 

more accurate, and with the same size of the study area, more sample plots can be taken.  

 

A challenge of this research was the calculation of LSE. Since measurements with the FLIR Vue Pro R 

were directly converted to LST instead of spectral radiance, LSE had to be calculated using the NDVI-

threshold method (explained in section 2.3.3), which considered as a practical approach, however, is 

dependent on the high accuracy of PV (Neinavaz et al., 2020). In the case that more TIR spectral bands are 

available, other approaches like the temperature/emissivity separation (TES) algorithm (Gillespie et al., 

1998) can be used, which can get more accurate results for the calculation of  LSE, and therefore also 

more accurate predictions of LAI can be expected. Hyperspectral TIR sensors have been proven 

beneficial to estimate LAI in laboratory conditions (Neinavaz et al., 2016a, 2016b); hence an application 

with a UAS and a TIR hyperspectral sensor should be able to increase the LAI prediction accuracy as well. 

Future studies using such a setup could close the gap between small-scale setups like in the laboratory and 

research in environments using low-resolution satellite data (Gerhards et al., 2018).  

 

The NDVI-threshold method is highly influenced by PV (Neinavaz et al., 2020). In this research, PV was 

obtained from two different approaches, demonstrating its significance and, as a result, its influence on the 

LSE results. PV from in-situ measurements yielded very accurate results, while PV from a CHM got less 

accurate results. It is also recommended to investigate different approaches to estimate PV, as in-situ 

measurements are not always available.  
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5. CONCLUSION 

So far, research on the predictability of LAI with the integration of TIR with VNIR data on a canopy level 

has only been done using Landsat-8 data (Neinavaz et al., 2019). To further improve the knowledge about 

the integration of TIR with VNIR data to predict the LAI, this study looked at using images captured by 

means of UAS for a mixed forest, the Haagse Bos, North of Enschede, the Netherlands. Analysis was 

done using VNIR reflectance spectra extracted from images of the Parrot Sequoia multispectral sensor, 

LST extracted from images of the FLIR Vue R Pro TIR camera, LSE calculated using the NDVI-

threshold method, and LAI in-situ measurements collected from the LICOR 2200C. Two different 

approaches were used to estimate LAI: vegetation indices as well as PLSR. 

 

The results of this study demonstrate that it is possible to improve the LAI prediction accuracy when 

integrating VNIR with TIR data, using both vegetation indices as well as PLSR. Confirming Neinavaz et 

al. (2019), the relationship between LAI and LST was not found to be significant, while a good 

relationship between LAI and LSE was proven. This research proves that the integration of LSE with 

reflectance spectra could significantly improve LAI prediction accuracy when comparing to using only the 

reflectance spectra; when using vegetation indices, LSE can successfully be included as a third band in the 

RSR, and PLSR results are increased when adding LSE as an input.  

 

Furthermore, the results also highlight the importance of accurate PV measurements when calculating LSE 

with the NDVI-threshold method, as two different approaches were used. LSE from PV in-situ 

measurements yielded the best results when integrating with reflectance spectra to estimate LAI, while 

LSE from PV estimated through a CHM did not get very good results. In addition, the prediction accuracy 

of LAI with the integration of LST with reflectance spectra was investigated from two different flight 

heights. Although LST, regardless of the altitude from which it was obtained, did not yield very accurate 

results, it was demonstrated that LST from the 85 m altitude performed better than LST from the 120 m 

altitude, as integration of LST with reflectance spectra using PLSR could marginally increase the LAI 

prediction accuracy. 

 

Another finding of this research is the improvement of LAI predictability when differentiating by species. 

PLSR analysis was performed for all plots divided by their dominant species, resulting in two datasets: 

plots with oak or beech as their dominant species. When using the integration of LSE with reflectance 

spectra, results improved significantly for both the oak and the beech dataset compared to the complete, 

mixed dataset. Further research is required to assess the differences in LAI predictability for different 

vegetation species and environments. 

 

This study proves that TIR remote sensed data could be of great value when assessing vegetation 

parameters like the LAI, which proves to be valuable for future climate and biodiversity studies and 

applications. Research should focus on the different approaches to estimate the LAI with the integration 

of TIR data, especially with LSE integration. TIR hyperspectral sensors could introduce more improved 

results; also, using different methods to calculate LSE should be looked into. 

 

 Answers to the research questions 

▪ How will the prediction accuracy of the LAI be increased for a mixed forest with the integration 

of UAS-obtained TIR and VNIR data applying vegetation indices, compared to utilizing only 

VNIR data? 
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This research indicates that the LAI prediction accuracy for a mixed forest can be increased by 

integrating TIR with VNIR data using UAS images applying vegetation indices when using LSE. LST 

inclusion as input for vegetation indices does not improve the LAI prediction accuracy compared to 

only using VNIR reflectance spectra. The inclusion of LSE can improve the results of LAI prediction 

accuracy compared to using only VNIR reflectance spectra, using both vegetation indices and PLSR. 

When the LAI was estimated using the RSR with LSE as the third band, higher accuracy was obtained 

(R² = 0.7458, RMSE = 0.5081). It has to be noted that LSE was calculated using the NDVI-threshold 

method and is therefore highly dependent on accurate values for PV, which was measured in-situ for 

the approach which yielded the mentioned result. 

 

▪ How will the prediction accuracy of the LAI be increased for a mixed forest with the integration 

of UAS-obtained TIR and VNIR data applying partial least squares regression, compared to 

utilizing only VNIR data? 

 

Using PLSR analysis to predict LAI for a mixed forest, the prediction accuracy could be improved by 

including TIR combined with VNIR data. Compared to using only VNIR reflectance spectra, the LAI 

prediction accuracy was improved when including LST from TIR images captured from an 85 m flight 

height; images from a 120 m flight height did not provide LST values able to improve the results. Best 

results (R² = 0.7907) were achieved when including LSE, calculated with the NDVI-threshold method 

using in-situ measured PV. 

 

▪ What are the effects on the prediction accuracy of the LAI of different flight heights of the UAS 

for TIR data acquisition for the mixed forest using UAS-TIR data? 

 

The effect of different flight heights of the UAS on the LAI prediction accuracy for a mixed forest 

was evaluated by comparing the integration of LST from the different heights (85 m and 120 m) with 

VNIR reflectance spectra. This was done using vegetation indices as well as with PLSR. With both 

approaches, integrating LST from the lower flight height achieved better results. For the same plots, 

the LST values from the different altitudes showed different values, indicating influences of the 

atmosphere or possible measurement errors. 
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APPENDIX I 

The following table shows the data measured in-situ for all plots for which TIR images were acquired.  

Plot 
Nr. 

LAI DIFN Trees 
Dominant 

species 
Remarks 

1 3.137 0.08326 21 Beech Some dead wood, some cut trees 

2 4.676 0.0238 18 Beech 
Multiple dead trees. Plot created by measuring 
corners, centre approximate 

3 1.462 0.3838 18 Fir 
A lot of dead wood and understory. Centre 
approximate 

4 4.778 0.02175 25 Oak Some understory and dead wood 

5 3.844 0.04739 24 Oak Understory with a lot of young birch 

6 2.39 0.1556 14 Beech Some dead wood, some cut trees 

7 4.554 0.02645 25 Oak 
Very mixed canopy. Lots of understory and 
young birches, some dead wood 

8 5.286 0.0163 25 Beech A lot of dead wood. Very tall trees 

9 4.578 0.03278 30 Beech A lot of fallen trees and dead wood 

10 2.727 0.1313 22 Oak 
A lot of very small understory, some dead 
wood 

11 4.347 0.03535 36 Beech Only tall beech, a little dead wood 

12 2.408 0.1457 31 Fir 
Partly understory on the south side. Some 
dead wood 

13 5.584 0.01117 23 Beech Some dead wood and dead trees 

14 3.507 0.06313 22 Beech Some dead wood 

15 2.664 0.1212 22 Beech Some dead wood 

16 3.346 0.06856 30 Beech Little dead wood, grass, next to open field 

17 3.775 0.04794 39 Oak 
Some grass, little dead wood, next to open 
field 

18 4.272 0.03332 33 Beech Some dead wood, some grass 

19 4.809 0.02369 26 Oak Understory with a lot of young birch 

20 3.996 0.0406 26 Beech 
Partly understory with young beech, dead 
wood 

21 4.035 0.03933 36 Beech 
Dead trees (lying and standing), some 
understory, young beech 

22 5.035 0.01751 37 Beech Dead wood, some understory 

23 4.312 0.03302 24 Beech A lot of dead wood 

24 4.964 0.01956 28 Beech Dead wood, some understory (young beech) 

25 4.554 0.03007 27 Oak Dead wood, light understory (young beech) 

26 4.635 0.02576 27 Oak Dead wood, some understory 

27 3.103 0.1087 19 Oak 
Dead wood, understory with young firs and 
bushes 

28 3.423 0.08076 36 Oak/Pine 
A lot of understory, dead wood. GPS less 
accurate (handheld) 

29 5.591 0.01131 34 Beech 
A lot of dead wood. GPS less accurate 
(handheld) 

30 5.717 0.01065 32 Beech Dead wood. GPS less accurate (handheld) 
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APPENDIX II 

The following table shows the mean reflectance of the VNIR reflectance spectra of the Parrot Sequoia as 

well as the mean LST for both flight altitudes captured with the FLIR Vue Pro R. The last column shows 

the difference between LST85 and LST120. 

Plot 
Nr. 

LAI 
Green 

reflectance 
Red 

reflectance 
Red-Edge 
reflectance 

NIR 
reflectance 

LST85 (°C) LST120 (°C) 
Difference 
LST (°C) 

1 3.137 0.0494 0.0238 0.2002 0.3852 23.1892 20.6971 2.4921 

2 4.676 0.0420 0.0208 0.1791 0.3423 22.5999 20.0791 2.5208 

3 1.462 0.0327 0.0161 0.1182 0.2155 23.3627 19.6140 3.7487 

4 4.778 0.0431 0.0203 0.1757 0.3475 22.9081 19.3946 3.5135 

5 3.844 0.0425 0.0206 0.1675 0.3212 19.7918 18.5376 1.2541 

6 2.39 0.0383 0.0196 0.1496 0.2878 23.8094 21.8321 1.9773 

7 4.554 0.0328 0.0157 0.1196 0.2319 18.3828 22.7184 4.3356 

8 5.286 0.0412 0.0212 0.1656 0.3136 21.1511 20.4004 0.7507 

9 4.578 0.0394 0.0190 0.1563 0.3032 21.4210 20.7142 0.7068 

10 2.727 0.0383 0.0181 0.1421 0.2643 19.1000 22.9778 3.8778 

11 4.347 0.0456 0.0224 0.1993 0.3662 20.5973 23.7049 3.1076 

12 2.408 0.0448 0.0223 0.1556 0.2585 20.6112 24.8330 4.2218 

13 5.584 0.0404 0.0213 0.1722 0.3457 23.1905 19.6580 3.5325 

14 3.507 0.0386 0.0203 0.1502 0.2721 20.8969 23.2567 2.3598 

15 2.664 0.0393 0.0212 0.1529 0.2760 19.0245 24.0253 5.0008 

16 3.346 0.0494 0.0260 0.2090 0.3825 24.6573 20.3643 4.2930 

17 3.775 0.0499 0.0274 0.2075 0.3870 25.1935 19.3574 5.8361 

18 4.272 0.0460 0.0221 0.2039 0.3942 24.1552 19.9725 4.1826 

19 4.809 0.0363 0.0177 0.1551 0.3064 23.3384 19.3529 3.9855 

20 3.996 0.0503 0.0230 0.2016 0.3680 22.1203 23.3020 1.1817 

21 4.035 0.0371 0.0193 0.1576 0.2903 19.6329 20.9074 1.2745 

22 5.035 0.0363 0.0171 0.1508 0.3000 18.6936 20.6664 1.9728 

23 4.312 0.0359 0.0180 0.1541 0.2961 21.3235 23.6578 2.3343 

24 4.964 0.0442 0.0206 0.1875 0.3482 21.2466 23.5066 2.2600 

25 4.554 0.0394 0.0188 0.1622 0.3353 20.4434 23.3125 2.8691 

26 4.635 0.0457 0.0237 0.1750 0.3302 20.7776 23.7504 2.9728 

27 3.103 0.0394 0.0177 0.1487 0.2912 20.9944 22.3843 1.3900 

28 3.423 0.0401 0.0206 0.1349 0.2395 20.2886 19.1309 1.1576 

29 5.591 0.0371 0.0176 0.1597 0.3125 21.0333 21.4270 0.3937 

30 5.717 0.0420 0.0198 0.1807 0.3580 20.9265 21.7502 0.8237 
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APPENDIX III 

Scatter plots of measured versus predicted leaf area index (LAI) for the best vegetation indices calculated 

from VNIR reflectance spectra. The dashed lines show the optimal 1 on 1 fit, the dotted lines show the 

predicted fit. 
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APPENDIX IV 

Scatter plots of measured versus predicted leaf area index (LAI) for the best vegetation indices calculated 

from VNIR reflectance spectra and land surface temperature (LST) for the flight altitudes of 85 m (LST85) 

and 120 m (LST120). The dashed lines show the optimal 1 on 1 fit, the dotted lines show the predicted fit. 
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APPENDIX V 

Scatter plots of measured versus predicted leaf area index (LAI) for the best vegetation indices calculated 

from VNIR reflectance spectra and land surface emissivity (LSE) calculated using different approaches 

(section 2.3.3): LSELICOR and LSECHM. The dashed lines show the optimal 1 on 1 fit, the dotted lines show 

the predicted fit. 
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