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ABSTRACT 

According to literature, slums, herein referred to as deprived settlements, are located in hazardous areas. 

However, there have been very few studies that examine this notion. Studies that have analyzed this 

relationship (between hazards and deprived settlements) have primarily focused on single-hazards. In 

contrast, the analyses of multi-hazards have been hindered by a lack of sufficient methods and data. 

However, technological advancements in geospatial data and techniques present an opportunity to 

empirically investigate the relationship between hazards and deprivation. This study identifies multi-hazards 

in the select case study area of Nairobi through literature review and expert interviews. Using geospatial 

data, we identify proxies used to construct a city-wide index to investigate the location of deprived 

settlements and multi-hazards. We contrast morphologically identified deprived settlements to non-

deprived settlements. We find that settlements in the inner city are more exposed to hazards than those 

located in the periphery. Further, physical traits determine the degree of susceptibility to hazards that a 

neighbourhood faces. Therefore, in partial agreement to literature, deprived settlements in the inner city 

are highly exposed to hazards, but so are formal planned high to mid-density settlements. On the other 

hand, deprived settlements in the urban periphery are less exposed except to hazards influenced by the 

neighbourhood characteristics, such as fire. Additionally, we test the predictability of deprivation using 

multi-hazards. We find that despite obtaining a high OA of 74%, the classification results by multi-hazards 

appear generalized. In contrast, though obtaining a lower OA by 2%, texture features result in more realistic 

land use classification. Lastly, we conduct household interviews in two deprived settlements to contrast the 

findings of the index. The index proxies used adequately capture the hazards. However, more localized data 

can improve multi-hazard index performance. Moreover, the cross-cutting approach of hazard assessment 

from the city to the household level lead to the detection of hidden patterns of deprivation – intra-

settlement socio-spatial marginalization. 
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1. INTRODUCTION 

 Background and Justification 

Globally, disasters cause millions in economic losses and thousands of fatalities annually (Dilley et al., 2005; 

EM-DAT, 2009). Presently, cities are affected by more than one hazard, and the frequency of disasters is 

reportedly increasing (Dilley et al., 2005). Disasters refer to sudden accidents, potentially causing damage 

and losses, while hazards are defined as physical phenomena that can lead to disasters (Gallina et al., 2016). 

Yet, cities are currently home to more than 50% of the world's population (United Nations, 2019). 

Continued rapid urbanization aggravates the issue since cities are located in hazard-prone areas and 

contribute to increased hazards. Urbanization has also been spatially expansive, characterized by increased 

impervious surfaces and less vegetation due to mass land cover changes (Seto, Sánchez-Rodríguez, & 

Fragkias, 2010). These characteristics make cities heat sources and poor water storage and drainage systems 

(Seto & Shepherd, 2009). They have also destroyed natural ecosystems, led to environmental stresses, and 

degradation (Seto & Shepherd, 2009).  Additionally, urban areas have led to increased heat-trapping 

greenhouse gases (GHG) due to fossil fuel combustion (Revi, Satterthwaite, et al., 2014). Carbon Dioxide 

(CO2) emissions from cities account for over 70% of the anthropogenic GHG (UNEP, 2020). Collectively, 

these anthropogenic causes have significantly contributed to global warming, a phenomenon characterized 

by the increase in the earth's average surface temperature. Global warming's associated impacts are reported 

to be already influencing the climate system,  thus posing ‘new threats’ to urban areas (Hoegh-Guldberg, 

Jacob, & Taylor, 2018).  

In addition to adversely affecting the climate system, inequality characterizes many cities globally. Inequality 

is presented as an economic polarization between the wealthy and the poor; and is perpetrated by 

inequitable distribution of resources and insufficient anti-poor policies (Phillips et al., 2007). As a result, 

urban poverty (a set of socio-economic difficulties brought about by systemic inequality) is a looming 

phenomenon in cities. The magnitude of inequality is particularly dire in the Global South, where urban 

poverty manifests as slums settlements (non-exclusively) (Baker, 2008; UN-Habitat, 2015).  Presently, one 

in eight urban dwellers live in a slum (UN-Habitat, 2015); and in Sub-Saharan Africa (SSA), 59% of the 

urban population are slum residents (UN-Habitat, 2015). Slums are defined by UN-Habitat using five 

household deprivations - the lack of access to improved water services, sanitation facilities, sufficient living 

area, durable housing, and tenure security (UN-Habitat, 2003). Similar to other studies (see Kuffer et al., 

2020, 2018; Thomson et al., 2020) and conscious that the term slum bears a negative connotation and has 

been politicized, we adopt the term deprived areas (and its variants) to refer to slums in this study (Borie, 

Pelling, Ziervogel, & Hyams, 2019; Mayne, 2017). Specifically, “deprivation implies a standard of living or 

a quality of life below that of the majority in a particular society, to the extent that it involves hardship, 

inadequate access to resources, and underprivilege” (p.362, Herbert, 1975). It is also important to note that 

not all who live in deprived areas are poor, and poverty exists beyond the boundaries of deprived 

settlements (Calder, Medland, Dent, & Allen, 2009). 

Furthermore, deprived settlements have been linked to housing inadequacy and unaffordability (UN-

Habitat, 2015; United Nations, 2019a). Specifically, inadequate housing supply and unaffordability have 

resulted from a failure by urban authorities and institutions to meet the demand for housing and service 

provision (UNFPA, 2007). Therefore, in the absence of adequate and affordable housing, the urban poor, 

lacking land access and tenure security (which affords access to financial mechanisms), put up shelter in 

hazardous areas (UN-Habitat, 2015). Additionally, the quality of the housing structure in deprived areas is 

often precarious and offers insufficient protection from climate and weather elements (UN-Habitat, 2015). 

Collectively, these challenges are captured by UN-Habitat’s domain of durable housing that considers (i) 

structure permanency - an evaluation of the type and quality of building material, compliance with building 

codes, and state of a structure; and (ii) location of structure - evaluated based on whether or not a dwelling 
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is located in hazardous areas (on or near toxic waste, a geologically hazardous zone, high-industrial pollution 

areas, or other unprotected high-risk zones) (UN-Habitat, 2018). Consequently, disasters in cities represent 

a significant source of risk, especially for the urban poor (Dilley et al., 2005; Revi, Satterthwaite, et al., 2014). 

Despite this, there has been systemic failure to assess the physical and environmental living conditions of 

the urban poor since many studies have focused on a set of social and economic factors such as income, 

consumption, and expenditure of households to define the phenomenon (Sanusi, 2008; UNFPA, 2007). 

Additionally, the primary assumption held by urban authorities and development agencies was that urban 

poverty is a "transient phenomenon of rural-to-urban migration and will disappear as cities develop" (p.14, 

Phillips et al., 2007). This assumption has been held for decades and transferred from the industrial cities 

of the 1800s into the 21st century (Mayne, 2017).  As a result, the degree of urban poverty and its spatial 

patterns have remained masked for decades. Urban poverty studies have progressively shifted focus to 

incorporate processes leading to urban poverty and the heterogeneity and multi-dimensional nature of the 

phenomenon (Cano, 2019). In particular, Geospatial and Earth Observation sciences have been beneficial 

in analyzing urban poverty by investigating urban areas' spatial patterns.  

 Research Problem 

Deprived settlements represent urban poverty, a high degree of deprivation, and socio-spatial 

marginalization where the inhabitants are severely disadvantaged and subjected to life-threatening 

conditions (UN-Habitat, 2015). As the frequency of disasters increases in cities, there is a dire need to 

effectively mainstream disaster risk reduction strategies into development agendas (Dilley et al., 2005); and 

develop tools primarily targeted to protect those living in deprivation (United Nations, 2017). To do this, 

adequate and timely data of deprived areas is imperative. However, data on deprived areas have been 

missing from official records for years - a matter attributed to the political connotation around their 

existence. In addition, efforts to capture their presence and conditions have been mainly through household 

surveys. These are often limited in scope, lacking geo-locational and spatial characteristics, time and 

resource-intensive, aggregated at pre-defined administrative boundaries and collected after long periods, 

e.g., national censuses  (Kohli, Sliuzas, Kerle, & Stein, 2012; Martínez, Pfeffer, & Baud, 2016; UN-Habitat, 

2018). A representation that only gives a partial view of deprivation.  

Looking at hazards in cities, the scope of the investigation has been limited due to the focus on single 

hazards (e.g., J. Wang, Kuffer, Sliuzas, & Kohli, 2019; S. Wang, Wang, Fang, & Feng, 2019). Additionally, 

many studies rely on household survey data and are operationalized at very localized scales (e.g., Mulligan, 

Harper, Kipkemboi, Nobi, & Collins, 2017). However, advancements in remote sensing and machine 

learning can be used to address these challenges. Earth observation data are spatial and offer many 

advantages over the traditional data collection methods such as timeliness, high spatial and temporal 

resolutions, wide coverage, and higher accuracy (Kuffer, Pfeffer, & Sliuzas, 2016). They also capture 

environmental phenomena indicative of hazards that have been incorporated in studies to investigate the 

relationships between deprivation and different types of hazards, for example: using air quality (S. Wang et 

al., 2019) and temperature (J. Wang et al., 2019). On the other hand, machine learning techniques provide 

the advantage of being computationally powerful; thus, they can handle large datasets. They also help solve 

complex problems. Hence, they have been found helpful for intra-city mapping and analysis of deprivation 

(e.g., Ajami, Kuffer, Persello, & Pfeffer, 2019; Liu, Kuffer, & Persello, 2019; Mboga, Persello, Bergado, & 

Stein, 2017). 

Therefore, leveraging the advantages of remote sensing and machine learning, this study analyzes the 

relationship between hazards and deprivation using a multi-hazard approach and employs it at three spatial 

levels (city, settlement, and household level). By considering multi-hazards, defined as “the totality of 

relevant hazards in a defined area” (p.7, Kappes, 2011) e.g. within an administrative boundary, we anticipate 

to identify the hazards which deprived settlements are predisposed to and that also hidden deprivation is 
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uncovered.  Furthermore, we present a crosscutting approach to understanding how urban residents 

interact with hazards by considering three spatial levels for analysis. Moreover, the study aims at being 

flexible on the data used. For example, Müller et al. (2020) illustrated, the slope can be used as a proxy for 

indicating susceptibility to landslides. Due to their affordability, transferability, and ease of replicability, free, 

open-source data and machine learning algorithms are used in this study. The study and the approaches 

employed are seen as necessary in the wake of climate change risks in cities and for the reporting on slum 

indicators that aid in informing decision-making, guiding efficient planning, and developing impactful 

policies and programs.  

 Research Objectives and Questions 

1.3.1. General objective 

To analyse the relationship between hazards and deprivation using machine learning. 

1.3.2. Sub-objectives 

1. Identify geospatial data indicators of hazards to be used as predictors of deprivation. 

2. Apply machine technique using identified data to predict deprivation. 

3. Investigate the intra-settlement disbursal of hazards 

1.3.3. Research Questions 

1.3.3.1. Sub-objective 1 

Which hazards are deprived areas predisposed?  

Which open geospatial data can be used as hazard indicators? 

1.3.3.2. Sub-objective 2 

Are deprived areas more likely to be located in hazardous areas in relative comparison to formal 

settlements? 

What share of deprived areas are located in hazard-prone areas?  

Can a multi-hazard dataset be used to predict deprivation? 

How do multi-hazard datasets compare to textural features in the prediction of deprivation? 

1.3.3.3. Sub-objective 3 

How are hazards disbursed within a deprived settlement? 
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2. LITERATURE REVIEW  

In this chapter, findings from other studies are presented to justify the aim of our research and the choice 

of data and methodologies that we employ.  

 Multi-Hazards 

The acknowledgement of the existence of multiple hazards was first made at the Agenda 21 conference 

(UNEP, 1992), recognizing the importance of multi-hazard analysis as part of pre-disaster planning. It is 

also where the concept - multi-hazards was first mentioned (Gallina et al., 2016). Since then, the progressive 

increase of disaster risks has emphasized the need for an integrated approach to hazard analysis (Dilley et 

al., 2005; Greiving, 2006). From the definition of multi-hazards presented earlier, two key elements are 

captured: (i) totality and (ii) relevancy of the hazards (Melanie Simone Kappes, 2011). Hence, the definition 

implies that all hazards relevant within a study area should be considered in assessing multi-hazards. 

However, this has not been the case since multi-hazards are diverse and require different data and methods 

for their assessment (Melanie S. Kappes, Keiler, von Elverfeldt, & Glade, 2012). 

Further, the lack of interdisciplinary approaches to identify hazards and develop suitable methods presents 

additional challenges (Melanie S. Kappes et al., 2012). These challenges are captured by Gallina et al. (2016) 

in their review of multi-risk methodologies. The study reveals that even in cases of multi-hazard assessment, 

many studies focus on one type of hazard, e.g., natural hazards or technological hazards. Still, attempts at 

integrating climate change-induced hazards have not been made. We further note that hazards such as air 

pollution, a significant global public health threat (WHO, 2021a), are not considered in multi-hazard 

analyses, despite their infamous research in urban and health studies. 

To address the challenge of heterogenous hazard data (for natural disasters), Dilley et al. (2005) create a 

simple hotspot multi-hazard index. Similarly, a multi-risk index developed by Greiving (2006) constitutes a 

spatial weighted multi-hazard index. Indices are widely used methodologies in studies that rely on 

heterogenous data since their primary function is to compile different data into a single metric. The 

approach has proven helpful in assessing various phenomena, especially in social sciences, e.g., the 

development of the human development index (HDI), further adopted to measure deprivation (Sanusi, 

2008). Furthermore, Ajami, Kuffer, Persello, & Pfeffer (2019) developed a methodological framework 

combining surveyed and earth observation data, providing a more holistic deprivation index. Their research 

implemented a deprivation index using machine learning and very high resolution (VHR) images. 

Therefore, indices demonstrate their ability to handle heterogenous data while providing meaningful results 

in multi-hazard analyses, social and urban studies, and interoperability with different methods. Thus, in this 

study, we use a simple equal-weighted index for the assessment of multi-hazards. 

 Hazards and Deprivation Mapping 

Despite the increase in multi-hazard assessments, very few studies have empirically investigated the location 

of deprived settlements in hazardous areas. This could be attributed to the reliance on standard socio-

economic surveys method for collecting data on deprived settlements. Nonetheless, with increased climate 

change-driven hazards, innovative household surveys have shown that deprived settlements are located in 

hazardous areas (e.g., Mulligan, Harper, Kipkemboi, Nobi, & Collins, 2017). In their study, carried out in 

parts of Kibera, Nairobi – Kenya's largest informal settlement, 50% of the surveyed households reported 

that they experienced flooding during the long rainy season. These results, however, still face the mentioned 

challenges (section.1.3.) of using household surveys. Additionally, using such methods, it is only implied 

that deprived settlements are located in hazardous areas since the spatial component remains a miss.  
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Remote sensing has, however, been used to address this data gap. Recently, satellite imagery has been used 

to provide quantifiable evidence on the location of deprived settlements in hazardous areas. For example, 

Müller et al. (2020) assessed deprived settlements on landslide-prone areas using slope proxy. Their study, 

carried out across seven cities, found that deprived settlements are relatively more likely to be located in 

landslide-prone areas than formal settlements. Another study investigating heat exposure in urban areas 

found deprived settlements in places with higher temperatures (J. Wang et al., 2019). These studies stress 

the need for empirical investigation of the presence of deprived areas in hazardous areas. Despite this, 

single-hazard approaches remain limited in that they neither present the overall degree of hazardousness 

nor allow for the understanding of interactions between hazards (Melanie S. Kappes et al., 2012).   

 Prediction of Deprivation Using Multi-Hazard Index 

Research on deprivation mapping is progressively expanding and improving in the development of methods 

and frameworks used. Robust image processing techniques, like machine learning, show that, similar to 

traditional deprivation indices, multisource geospatial data can be compounded into indices for assessing 

different dimensions of deprivation. Initially designed for pattern recognition, machine learning techniques 

have been incorporated in remote sensing, with the main advantage of automatically detecting patterns in 

data (Goodfellow, Bengio, & Courville, 2016). They also use multisource data as input in the models and 

have thus been found effective for land use and land cover classification (Gislason, Benediktsson, & 

Sveinsson, 2006).  

For this reason, we use the traditional machine learning method - Random Forest Classifier (RFC) in our 

study. RFC is based on the combination of automatic learning algorithms and hand-crafting feature 

engineering techniques (LeCun, Bottou, Bengio, & Haffner, 1998). Hand-crafted techniques are limiting, 

especially in processing large data, since the process is laborious, non-transferable, non-scalable, and prone 

to biases which can compromise the models performance (LeCun et al., 1998; Persello & Stein, 2017). 

Despite these limitations, RFC offers the following advantages in comparison to other ML models: (i) 

achieving high classification accuracy with fast processing speed; (ii) they are robust to little training data 

compared to more conventional ML models like Neural Networks and (iii) they are interoperable with data 

from different sensors (multi-source data) (Belgiu & Drăgu, 2016; Gislason et al., 2006). The operations of 

RFC are discussed below in detail. 

2.3.1. Ensemble Classifiers: Multisource Data Analysis Using Random Forest Classifier (RFC) 

Ensemble classification is a machine learning (ML) technique that combines several base classifiers to 

produce one optimal model (Gislason et al., 2006). A commonly used base classifier is Decision Trees 

(Belgiu & Drăgu, 2016). In an ensemble of trees(a collection of decision trees built sequentially where each 

succeeding tree recovers the loss of the previous (Nagpal, 2017)), each classifier is trained and the results 

aggregated through a voting process (Belgiu & Drăgu, 2016; Gislason et al., 2006). This approach has 

yielded better accuracies than using single decision trees (Belgiu & Drăgu, 2016). In training the classifiers, 

the most commonly used techniques are boosting and bagging (Bootstrap AGGregating) (Belgiu & Drăgu, 

2016; Gislason et al., 2006). The boosting approach employs an iterative re-training and re-weighting (for 

incorrectly classified samples) process using all the training samples (Belgiu & Drăgu, 2016; Gislason et al., 

2006). On the other hand, the bagging approach draws subsamples of the entire training set (Belgiu & 

Drăgu, 2016; Gislason et al., 2006). Both methods have been found to offer the advantage of reduced 

classification variance (Belgiu & Drăgu, 2016; Gislason et al., 2006). In contrast, boosting has been found 

to produce higher accuracies than bagging: while bagging offers the advantage of requiring less 

computational resources and effect on classification bias (Belgiu & Drăgu, 2016; Gislason et al., 2006). 
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2.3.1.1. Random Forest Classifier 

Random Forest Classifier (RFC) uses an ensemble of Decision Tree-type supervised classifiers called 

Classification and Regression Trees (CARTs) (Belgiu & Drăgu, 2016). CARTs are trained using a similar 

approach to bagging: with a tweak in how the splitting of trees occurs. While in the standard bagging 

approach, the trees break at similar features in each tree; in RFC, random subsamples of the training set 

(with replacement) are used for training the classifiers (Belgiu & Drăgu, 2016). Randomizing this process 

reduces the correlation between trees, and using a subset of the features with replacement reduces the 

computational costs (Belgiu & Drăgu, 2016). Thus, the trees are split at different features (nodes), creating 

bigger ensembles. Then, the class prediction is made based on the majority vote in the ensemble (Belgiu & 

Drăgu, 2016). Consequently, they produce a predictor model with the advantages of bagging and greater 

accuracies comparable to the booting approach without its shortcomings (Belgiu & Drăgu, 2016; Gislason 

et al., 2006).   

 

Figure 1: Training and classification phases of Random Forest classifier 

i = samples, j = variables, p = probability, c = class, s = data, t = number of trees, d = new data to be classified, and value = the 

different values that the variable j can have. 

Source: Belgiu & Drăgu, (2016) 

2.3.1.2. Multisource Data Analysis 

CARTs are non-parametric, meaning they do not assume normal data distribution (Belgiu & Drăgu, 2016; 

Gislason et al., 2006). Therefore, RFCs can effectively analyze multivariate data, e.g., multispectral imagery 

for LULC classifications that rarely have a normal frequency distribution (Belgiu & Drăgu, 2016; Gislason 

et al., 2006). Additionally, supervised classifiers are robust in learning class characteristics from training 

sample data and subsequently identifying them in unclassified data (Belgiu & Drăgu, 2016). Specifically, 

RFCs perform well with noisy and imbalanced training samples (Belgiu & Drăgu, 2016). RFCs also offer 
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the advantage of assessing variables' ability to classify target classes and rank them in order of importance 

by determining their collinearity (Belgiu & Drăgu, 2016). These characteristics are particularly useful in this 

study, where multisource earth observation and geographic data are analysed in the form of a multi-hazard 

index. 

2.3.1.3. RFC Model Operation And Validation  

Two user-defined parameters are required in an RFC. Ntree determines the number of trees that grow, and 

mtry determines the number of splits at each tree node (Belgiu & Drăgu, 2016). Additionally, RFC has an 

internal performance evaluation technique that uses out-of-the-bag (OOB) samples to produce an error 

estimate, called the OOB error (Belgiu & Drăgu, 2016). The out-of-the-bag samples constitute approximately 

one-third of the input samples. The rest of the (in-bag) samples are used in the training of the trees (Belgiu 

& Drăgu, 2016).  

2.3.2. Linear Canonical Discriminant Analysis 

RFC, despite its interoperability with multi-source data, is considered a ‘black-box’ model. Efforts towards 

transforming the model into a white-box model have been made using programming libraries such as 

treeinterpreter in python, which decompose the model’s predictions (Saabas, 2014). The processes are, 

however, complex to implement, and our skills and knowledge level are limited. For this reason, we 

incorporate an additional method –statistical discriminant analysis to perform classification of deprivation 

using multi-hazards. 

Discriminant analysis is a nonparametric linear model which is used for multi-variate analysis (Field, 2017). 

It has been mainly used in health and environmental/ecological studies, including those with a spatial 

component (e.g., Hall, Evanshen, Maier, & Scheuerman, 2014; Reitz, Hemric, & Hall, 2021). One of the 

mentioned studies analyses the nonpoint source of contamination in watersheds by comparing the effects 

of different land use/land covers (Reitz et al., 2021). The study demonstrates how discriminant analysis 

uses cases comprising categorical variables and predictor variables as input. Each case is plotted on a feature 

space, labeled by its class (Field, 2017). Therefore, by plotting the cases, the model forms decision 

boundaries by class and can thus make predictions of new cases based on where they lie in the feature space 

when plotted (Field, 2017). The popularity of discriminant analysis in ecological studies is implied to 

originate from the need for localized analysis dependent on the detection of subtle categorical distinctions, 

e.g., of transitional zones whose dynamics are critical indicators of environmental change (Lobo, 1997). 

Based on this logic, we consider canonical discriminant analysis an appropriate method for distinguishing 

Figure 2: Illustration of black-box and white-box models 
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residential land uses (deprived vs. non-deprived) with subtle distinctions. Additionally, given the study’s 

attempt to predict deprivation using multi-hazard data, we deem it important to understand the local 

interpretation of the predictions (implied by the predictor variables). 

 Theoretical Framework 

The theoretical framework below summarizes interrelationships of the theories and concepts discussed in 

the above sections - explaining the phenomenon of deprivation and its relationship with hazards. 

Additionally, the framework captures how we take advantage of geospatial data that offer promising 

opportunities. They have been used to map deprivation and capture the different phenomena indicative of 

hazards. Furthermore, geospatial data are interoperable with machine learning techniques that have proven 

robust in analysing complex phenomena (including deprivation and hazards).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Theoretical framework – a logical representation of theories framing the study  
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3. RESEARCH METHODOLOGY 

This chapter discusses the research process used to identify data, including the data collection techniques 

and analysis processes. Since we are undertaking a case study approach for the research, the study area is 

also presented in this section. We also analyse four different types of residential settlements in our study 

area, differentiating deprived and non-deprived settlements to compare the degree of hazardousness across 

settlements. These data are also used as the label data in our predictive classification process. Specific to 

the data collection and analysis, we start by constructing the multi-hazard index. The process is informed 

by extensive literature review and key informant interviews – a consultative participatory approach (Vaughn 

& Jacquez, 2020). By consulting the experts, we gain insights into the hazards present in the study area and 

thus refine the theoretical multi-hazard index. Next, we conduct extensive literature and database search to 

identify geo-data to construct the index. We then apply descriptive statistics to analyse the relationship 

between hazards and the different settlements in our study area. Afterwards, using machine learning 

methods, we test the ability of multi-hazards to predict deprivation. Lastly, we contract a local research 

group (comprising residents from deprived settlements) to conduct household interviews, employing 

consultative and inclusive participatory research principles (Vaughn & Jacquez, 2020). The results are 

contrasted to the multi-hazard index outcomes. The household survey outcomes are also used to analyse 

the inter-settlement hazard dispersal and household-level exposure to hazards.  

 

Figure 4: Research process 
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 Case Study Area – Nairobi  

 

The study area (Fig.5) is Nairobi, the capital city of Kenya and a central economic hub in East Africa. 

Nairobi has a population of 4.4 million people, which accounts for approx. 9% of the country's populace 

(Kenya National Bureau of Statistics, 2019). Similar to other colonial towns, Nairobi is still faced with the 

long-standing effects of residential racial zoning and rigid building standards, which were entrenched in the 

city’s master plan of 1948 entitled “Nairobi Master Plan for A Colonial Capital” (Gatabaki-Kamau & 

Karirah-Gitau, 2004; Pamoja Trust, 2009).  The plan remained the city’s sole master plan until 2015 

(Gatabaki-Kamau & Karirah-Gitau, 2004) (Fig.6). Such processes reflect poor urban governance systems, 

including the conduction of city boundary extensions in the absence of concrete master plans (Fig.7). 

Figure 5: Case study area 

Figure 6: Nairobi Masterplan of 1948 

Source: (Pamoja Trust, 2009) 
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The 1948 master plan was developed to establish Nairobi as a colonial capital from a railway headquarter. 

The plan carried on the concept of racially stratified residential neighborhood schemes introduced by the 

1927 settler plan. As a result, the Europeans occupying more than 50% of the residential land - with the 

lowest densities - located in the north-western regions of the city, which have higher altitudes and well-

drained soils (Gatabaki-Kamau & Karirah-Gitau, 2004; Gattoni & Patel, 1974). The Asians occupied the 

areas near the city center and industrial area, and; the Africans occupied rental hostel-type quarters in the 

low-lying eastern region of the city near the industrial area and train station, on land characterized by soils 

of poor drainage that are prone to flooding (Gatabaki-Kamau & Karirah-Gitau, 2004; Pamoja Trust, 2009). 

To date, many deprived neighborhoods are located in the eastern region of the city (Mwau & Sverdlik, 

2020). In addition to the stack discrepancies in the location of non-native settlements, the housing 

conditions of Africans during the colonial era were temporary. Thus, the city is seen to have been typically 

designed for non-natives and enforced through anti-native policies. Notably, the kipande system restricted 

access of Africans into the city; and land and property rights were exclusive to non-natives  (Home, 2014).  

Upon attaining independence in 1963, African movement restrictions into the city were lifted, resulting in 

an influx of rural-urban migrants (Gatabaki-Kamau & Karirah-Gitau, 2004; Mitullah, 2003). In the absence 

of a new plan, Nairobi experienced a housing crisis that primarily affected the migrants and urban poor. 

Furthermore, the introduction of Structural Adjustment Programs (SAPs) in the 1980s led to housing 

privatization; thus, deprived settlements proliferated the cities (Mwau & Sverdlik, 2020). At present, 

approximately 95% of Kenya’s urban housing stock is supplied by the private sector (individual and 

companies), including slumlords, with Nairobi having the highest proportion (86.4% ) of households 

renting residential units (KNBS, 2018). 

The post-independence administration also inherited discriminatory planning, and socio-economic 

segregation simply replaced racial segregation. The effects are reflected in the recorded 1972 residential 

densities within the European (8persons/acre), Asian (32 persons/acre), and African zones (400 

persons/acre)(Dierkx, 2019). The trend continued, and as of 2009, slums occupied only 1% of the land in 

Nairobi and yet provided accommodation for 50% of the city’s residents (Pamoja Trust, 2009). 

Furthermore, the 1948 master plan had been accompanied by the establishment of building codes and 

standards. These were rigid and unaffordable to the migrants and urban poor leading to the continuity of 

the hostel-type housing (single room with shared facilities) (Mwau & Sverdlik, 2020). Notably, this type of 

housing is still prevalent, sheltering approx. 67% of Nairobi households (KNBS, 2018) characterizing many 

deprived settlements (Mwau & Sverdlik, 2020). 

Figure 7: Historical development of Nairobi 
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 Conceptualizing Settlements Using Earth Observation (EO) Data 

To predict deprivation and compare the degree of hazardousness of deprived and non-deprived 

settlements, we identify four types of residential settlements within our study area. We use the generic slum 

ontological (GSO) framework, a hierarchical grouping framework for morphological deprivation (slums) 

developed by Kohli et al. (2012). The hierarchical order enables context-specific identification and 

differentiation of deprived settlements from the rest of the city. The framework has also been used to 

describe non-deprived settlements (e.g., Owusu, 2020). 

Therefore, we use the GSO to describe different types of residential settlements considered in our study. 

The settlement selection is based on the availability of scientifically (stratified random sampling) generated 

label data for our machine learning processing (Vanhuysse et al., 2021). The label data comprise five classes: 

(i) high to mid-density built area, (ii) low density built area, (iii) deprived area (type I), (iv) deprived area 

(type II), and (v) large buildings/complexes (industrial/commercial) (Vanhuysse et al., 2021). Below we 

describe the four identified residential settlements using the GSO and show their locations within the city.   

 

Figure 9: Distribution of different types of residential settlements in Nairobi 

 

Figure 8: The hierarchical (spatial) conceptualization of slums with associated indicators. 

Source: Kohli et al. (2012) 
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Table 1: Residential densities and slum settlement characteristics 

 

Type of Residential settlement  Level Indicators 

Class 1: High to mid-density built area 

 

Environs Location: Close to the CBD  

Neighborhood characteristics: 
Single-family housing with compounds 
and apartment complexes. 

Settlement Shape: Elongated street blocks. 

Density: High roof coverage with very 
little vegetation (usually trees). Mid-
density settlements are located further 
from the CBD and have more 
vegetation (trees). 

Object Buildings: Permanent building material 
with terrace roofing, tiles and coated 
iron sheets. 

Access Network: Well defined, regular 
street pattern. 

 

Class 2: Low density built area  

 

Environs 

 

Location: Urban periphery/suburbs. 

Neighbourhood characteristics: 
Large single-family housing 

Settlement Shape: Large, regular street blocks. 

Density: Low roof and high vegetation 
(trees and lawns) coverage. 

Object Buildings: Permanent building material 
with mostly tiles or coated iron sheets. 

Access network: Well defined, regular 
street pattern. 
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Class 3: Deprived urban area (Type I) 

 

Environs 

 

Location: Inner city and many are in 
‘evidently’ hazardous locations-near the 
city’s major drainage channels (river).  

Neighbourhood characteristics: Near 
the CBD and industrial area 
(employment).  

Settlement Shape: Tend to follow the shape of 
natural and man-made features e.g. 
rivers, roads and rivers. 

Density: Compact, with high roof 
coverage (>70%) and no (or very little) 
vegetation coverage. 

Object Buildings: Mainly temporary buildings, 
single-storey housing made of 
corrugated iron sheet roofing. 

Access network: Irregular street 
pattern. Very few paved/quality roads 
as they mainly rely on footpaths. 

 

Class 4: Deprived urban area (Type II) 

 

Environs 

 

Location: More towards the city’s 
periphery. 

Neighbourhood characteristics: Near 
higher-income neighbourhoods. 

Settlement Shape: Slightly regular with elongated 
street blocks. 

Density: Less compact than (type I), 
high to mid-density (>40%) and 
presence of some vegetation (trees, 
undeveloped plots or small farms 
depending on location). 

Object Buildings: Mix of temporary and 
permanent building material, single as 
well as multi-storey buildings. A mix of 
roofing material (corrugated iron sheets, 
tiles and terraces). 

Access network: Narrow, slightly 
regular streets. 

 

We also sketch the horizontal transect of the settlements used in our study (fig.10) to conceptualize the 

environs' transition from one settlement to another. The sketch is only a representation and doesn’t capture 

the entirety of the situation.  
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Figure 10: Horizontal section (sketch) representation of the transition among conceptualized settlements in Nairobi 
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 Data and Software 

In defining our area of interest (AOI), we select Nairobi county’s (which is also the city’s) political-

administrative boundary (fig.5). Additionally, we obtain cloud-free Sentinel 2 surface reflectance 

multispectral imagery from European Space Agency (ESA). The imagery is downloaded using Google Earth 

Engine (GEE) for 2019, where the annual mean values are computed, and cloud masking is also undertaken. 

A similar approach is undertaken to acquire Land Surface Temperature from MODIS and air pollution data 

from Sentinel 5P, where the annual maximum values are computed. The Digital Elevation Model (DEM), 

a Synthetic Aperture Radar (SAR) Radiometric Terrain Corrected (RTC), imagery is obtained from the 

National Aeronautics and Space Administration (NASA) Earth Data portal.  

Nairobi’s land use map and building outlines were generated by Columbia University's Center for 

Sustainable Urban Development in 2010 and obtained through the World Bank data portal. The slum 

boundaries were obtained from a local company – Spatial Collective, and represent morphological slums. 

Ancillary data was obtained from Open Street Map (OSM). ESRI satellite imagery, accessed through QGIS, 

is used as a base map and conceptualizes settlements. Free and Open Source Software for Geoinformatics 

(FOSS4G) solutions are employed in our study. Specifically, QGIS is used for raster and vector data 

manipulation, KoBo Toolbox for primary data collection (household questionnaires), and R studio for 

advanced statistical manipulation, i.e., texture extraction and machine learning (annex.8.5). We, however, 

also use commercial software: ArcGIS 10.8.1-Topography Toolbox (Tom Dilts, 2015) for extracting the 

Height Above Nearest Drainage (HAND); ZOOM – a video teleconferencing platform for conducting key 

informant interviews; MS-Excel and SPSS for statistical analysis of our data. MS Excel is also used to 

present the outcomes of the statistical analysis. 

 

Table 2: Data sources and description 

 Data  Resolution  Type Description Date  Source 

Sentinel 2 10m Multispectral Multi-spectral  2019 ESA 

Sentinel 5P  5.5km  Air pollution (CO,SO2, NO2 

& O3) 

2019 ESA 

MODIS 1km  Land surface temperature 

(LST) 

2019 NASA 

ALOS PALSAR  12.5m  Digital Elevation Model 

(DEM 

2009/2007 NASA 

Slum 

boundaries 

- Shapefiles Morphological Boundaries 

of Nairobi’s deprived 

settlements 

- Spatial 

Collective 

Land use map - Shapefiles Land use cover map of 

Nairobi 

2010 Columbia 

University 

Ancillary - Shapefiles  Polygon and line features - OSM 

Building 

outlines 

 Shapefiles Outlines of buildings in 

Nairobi 

2010 Columbia 

University 

Administrative 

Boundaries 

 Shapefiles Politically administered 

boundaries, including AOI 

2019 GADM 

ESRI Satellite -  Base map satellite imagery in 

QGIS 

 ESRI 
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 Multi-Hazard Index 

3.4.1. Identification of Hazards 

To develop and localize a multi-hazard index, we review UN-Habitat’s durable housing domain to identify 

hazards relating to deprived settlements. As a first step, we check the Emergency Events Database (EM-

DAT) (https://www.emdat.be/) classification of disasters to UN-Habitats’ measures of durable housing 

(Table 1), where we identify two broad hazard domains, i.e., natural and technological hazards (table 3). 

EM-DAT is a global disaster database operated and maintained by the Centre for Research on the 

Epidemiology of Disasters (CRED) (https://www.cred.be/).  

Table 3: Hazard domain derivation from UN-Habitat 'Durable Housing' measures 

Hazard group Hazard sub-group Description (EM-DAT, 2009) UN-Habitat durable 

housing measures 

Natural Hydrological, e.g., 

floods and 

landslides 

‘A hazard caused by the occurrence, 

movement, and distribution of surface 

and subsurface freshwater and saltwater.’ 

Housing in geologically 

hazardous zones (landslide/ 

earthquake and flood areas) 

Geophysical, e.g., 

earthquake and 

volcanic activity 

‘A hazard originating from solid earth. 

This term is used interchangeably with 

the term geological hazard.’ 

Biological e.g., 

epidemic  

‘A hazard caused by the exposure to 

living organisms and their toxic 

substances (e.g. venom, mould) or vector-

borne diseases that they may carry.’  

Housing on or under garbage 

mountains 

Meteorological e.g. 

extreme 

temperature  

‘A hazard caused by short-lived, micro- to 

mesoscale extreme weather and 

atmospheric conditions that last from 

minutes to days.’ 

Quality of construction (e.g. 

materials used for wall, floor 

and roof)  

Technological Transport e.g. air, 

rail and road 

‘A hazard caused by transport-related 

accidents or incidents.’ 

Housing around other 

unprotected high-risk zones 

(e.g. railroads, airports, energy 

transmission lines) 

Industrial e.g. 

pollution and 

explosions 

‘A hazard caused by industry-related 

accidents or incidents.’ 

Housing around high-industrial 

pollution areas 

Miscellaneous e.g. 

fire and building 

collapse  

‘Any other hazard which may cause harm 

to a population or destruction of 

assets/property.’ 

Compliance with local building 

codes, standards and bylaws. 

 

Next, we review the country’s National Policy for Disaster Management (Government of Kenya, 2009). 

Despite the lack of city-specific categorization of disasters/hazards, we find that the main threats in the 

country are: “droughts, fire, floods, terrorism, technological accidents, diseases and epidemics” 

(Government of Kenya, 2009). Next, review the EM-DAT database for recorded disasters in Nairobi over 

ten years (2009-2019) (annex 8.2). From this, we find that; floods, fire, building collapse, transport accidents, 

epidemics, and industrial accidents (explosion) occurred. It is also noted that EM-DAT primarily focuses 

on the national scale and reported disasters. Thus, hazards like air pollution are not captured, and ‘smaller’ 

incidents may go unrecorded.  We, therefore, review projects that focus on the city and settlement scale.  

At the city scale, we identify the “Tomorrow’s Cities: Urban risk in transition” project under current 

implementation in Nairobi. Their initial results indicate the following single hazards affect Nairobi: “(i) 

geophysical (earthquakes, volcanic eruptions, landslides), (ii) hydrological (floods and droughts), (iii) shallow 

earth processes (regional subsidence, ground collapse, soil subsidence, ground heave), (iv) atmospheric 
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hazards (storm, hail, lightning, extreme heat, extreme cold), (v) biophysical (urban fires), and vi) space 

hazards (geomatic storms, and impact events)” (Malamud et al., 2021).   

At settlement level, we review the IDEAMAPs framework of Domains of Deprivation (Abascal et al., 

2021). Although their scope is global, they identify studies operationalized at the settlement level. Of interest 

to our study, we identify two categories: Contamination and physical hazards and assets. Under the physical 

hazards and assets, identified hazards are natural (flood zone, weather, and slope), ecological, natural assets, 

and nonspecific/multiple.  Contamination comprises air pollution, garbage accumulation, industrial 

pollution, noise pollution, water pollution, and non-specific/multiple. Notably, the hazard categorization 

by both the Tomorrow’s Cities project and IDEAMAPs Domains of Deprivation bare similarities with 

those used by EM-DAT. Differences are also noted and can be attributed to the difference in scale and the 

scope of focus.  

Lastly, we conduct expert interviews to identify hazards affecting our study area at the city and deprived 

settlement levels. The outcomes are presented in the results section. The interview questions were prepared 

beforehand based on the literature review. They covered four main topic areas: (i) deprived settlements, (ii) 

hazards, (iii) durable housing and, (iv) ethical concerns/considerations (Table 4) (annex 8.3). The data from 

the interviews were analysed by identifying key themes. The response summaries are compiled, and 

descriptive analysis is undertaken. 

Table 4: Interview topic areas and key questions 

Topic Main Question 

Deprived Settlements What data is helpful in slum mapping, and who are the involved actors in data use 

and generation? 

Hazards What hazards affect Nairobi and the informal settlements in the city? 

Durable housing Does the location and type of housing protect against hazards? 

Ethical concerns Does slum mapping using improved technology (e.g., AI and VHR imagery) pose a 

threat to the privacy of slum residents? 

Key informant interviews were conducted with experts working in the urban or disaster risk fields and 

residents of informal settlements. The experts were selected due to their experience working in deprived 

settlements or analysing urban poverty in different types of organizations and professions to capture diverse 

views on the subjects (Table 5). 

Table 5: Experts on urban and/or disaster risk and their roles in slums 

Designation Role 

Urban Policy Analyst Evidence provision to inform decision making  (advisory role) 

Urban Systems Officer Developing and implementing urban acupuncture projects (e.g. space activations) 

Program Officer 

(Human Settlements) 

Capacity building for municipalities and communities and systematic approach to 

slums interventions-strategies, plans etc. 

Spatial Data Expert Spatial data production and analysis for monitoring progress towards achieving 

SDGs 

Professor in Geography Researcher in community-based vulnerability risk assessment  

Kibera resident (1) Community leader – born and raised in Kibera 

Kibera resident (2) Data collection enumerator 

3.4.2. Construction of the Multi-Hazard Index 

We identify spatial multi-hazard index construction principles outlined by Greiving (2006) to inform this 

study. Although developed for a multi-risk index, three of the four principles are relevant for developing a 

multi-hazard index. The principles are also in line with the definition of multi-hazards considered in this 

study (Melanie Simone Kappes, 2011). These are: (i) non-sectoral, meaning the consideration of hazards 

should incorporate different sectors; (ii) the hazards should have spatial relevancy; and (iii) collective 

hazards are what should be considered (Greiving, 2006). Under the second characteristic, Greiving (2006) 
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highlights that ‘ubiquitous’ risks (including epidemic and traffic accidents) should not be considered. These 

two components are fundamental in urban/spatial planning1; therefore, we still consider them in our study.  

To construct the index, we identify open geospatial data indicative of hazardousness following extensive 

literature search and outcomes of the expert interviews (section 4.1.1). We identify appropriate geographic 

and EO-based variables that capture the hazards through comprehensive data search in global and local 

repositories. Due to data limitations, we drop some previously identified hazards, e.g., geophysical hazards, 

and building collapse, resulting in 6 hazard indicators and 18 variables (Table 6). The selected variables 

include primary variables (i.e., temperature, air pollution) and proxy variables (e.g., geomorphon).  

 

After identifying relevant data for the indicators, we follow the steps as outlined (figure 13). We start by 

pre-processing the data, including projecting the data to Nairobi’s Coordinate Reference System(CRS) - 

EPSG:32737 - WGS 84 / UTM zone 37S, masking, and clipping to our AOI, and cleaning the data. Next, 

we process all the vector data into raster format. All the data are resampled to 10m, our chosen unit of 

operation, for consistency purposes- given that we rely on Sentinel 2 data (10m resolution) for further 

analysis (following sections). We also code the indicators by assigning the first alphabet of the sub-hazard 

group to which it belongs, followed by a number (from 1-18, the total number of indices present). For 

industrial hazards, we use the letter J instead of I to avoid confusion with number 1. 

All the data are normalized, resulting in values ranging from 0  to 1 (lowest to highest indication of 

hazardousness). Normalization of data is essential since it minimizes complexity and allows us to compare 

the indicators. Data normalization's cost and benefit functions are used for the study and operationalized 

using the raster calculator tool in QGIS.  

Specifically, the LST, air pollution, and building and industries densities data are normalized using the 

benefit function since higher values indicate a higher likelihood of hazardousness. On the other hand, the 

road network density, NDVI, proximity data, and HAND are normalized using the cost function since 

lower values indicate a higher likelihood of hazardousness. Lastly, we assign equal weights to each of our 

six main hazard groups. Thus, each hazard group is accorded equal importance. Equal weightage is 

considered since we lack access to data that could be used to compute the weights (e.g., frequency of 

hazards). The weights are then distributed among the sub-hazard groups and all 18 data indicators (table.6).

 
1 John Snow: the cholera epidemic of London in 1854 & Transport Oriented Development 

[(𝑣𝑎𝑙𝑢𝑒 –  𝑚𝑖𝑛)/ 𝑟𝑎𝑛𝑔𝑒] 

 

Equation 1: Benefit normalization formula 

[1 − ((𝑣𝑎𝑙𝑢𝑒 –  𝑚𝑖𝑛)/ 𝑟𝑎𝑛𝑔𝑒)] 

 

Equation 2: Cost normalization formula 

 

Figure 11: Susceptibility to hazards index workflow 
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Table 6: Hazard indicators, their descriptions and properties 

Hazard  Weight Sub-Hazard  Weight Code Data  Weight Data Description  Resolution Measurement 

Flood 0.167 Riverine floods 0.0835 F1 Height Above Nearest 

Drainage (H.A.N.D) 

0.042 Height relationship of locations to nearest 

natural drainage (extract of DEM) 

12.5m Vertical distance 

(m)  

F2 Proximity to Rivers 0.042 Distance from major river drainage system of 

the city 

10m Euclidean 

distance (m)  

Run-off 0.0835 F3 Geomorphons 0.0835 Terrain form of the city extracted from DEM 12.5m Classified 

absolutes values  

Epidemic 0.167 Epidemic 0.167 E4 Proximity to Garbage dump 

sites  

0.167 Distance from the city’s dumpsite/landfill 10m Euclidean 

distance (m)  

Weather 

and climate  

0.167 Extreme 

temperatures 

0.167 W5 Day Land Surface 

Temperature (LST)  

0.0835 Daytime radiative temperature of the city 1000m Kelvin (K) 

W6 Night Land Surface 

Temperature (LST)  

0.0835 Night-time radiative temperature of the city 

Transport 

accidents 

0.167 Rail accidents 0.0557 T7 Proximity to Railway lines 0.0557 Railway lines cutting through the city 10m Euclidean 

distance (m)  

  
Road accidents 0.0557 T8 Proximity to major roads 0.0557 Major roads and highways of the city 10m 

Aero accidents 0.0557 T9 Proximity to Airports 0.0557 Airport boundaries/runways and infrastructure 10m 

Industrial 

accidents 

0.167 Industrial 

accidents 

0.167 J10 Proximity to Industries 0.0835 Proximity to industries 10m 

J11 Density of industries 0.0835 Number of industries outlines per unit area 

(1km2) 

10m Density (No. of 

features/km2) 

Biophysical 

hazards 

0.167 Fire 0.0835 B12 Density of buildings  0.0278 Number of building outlines per unit area 

(1km2) 

10m 

B13 Road density 0.0278 Number of roads (line segments) per unit area 

(1km2) 

10m 

B14 NDVI 0.0278 Density of plant growth  0.01 arc 

degrees 

(approx. 

11.1 km) 

mol/m2 

Air pollution 0.0835 B15 Sulphur Dioxide (SO2) 0.021 Vertical pollutant column density - a ratio of 

pollutant and total air mass factor B16 Nitrogen Dioxide (NO2) 0.021 

B17 Ozone (O3)  0.021 

B18 Carbon Monoxide (CO) 0.021 
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3.4.3. Indicator Description and Relevance 

3.4.3.1. Flooding 

Kenya is affected by flooding, and it accounts for approximately 60% of disaster-related fatalities (UNDP, 

2012). From our evaluation of the EM-DAT disaster database of Nairobi and expert interviews, flooding 

events are attributed to riverine flooding and run-off due to heavy rainfall. 

I. Riverine floods 

Most of Nairobi’s slums are located along the city’s natural drainage system (fig. 5). Many settlements 

encroach on the riparian reserves, and there are hardly any protection measures to prevent flooding into 

the settlement. Due to this, we select two data indicators for assessing the susceptibility of settlements to 

flooding. Proximity to major river tributaries is considered a factor of Euclidean distance. We assume that 

locations near the river are more likely to be affected by riverine floods than those further away.  

To compute the Euclidean distance, we filter OSM water body features in QGIS. Using Boolean operations, 

we select only the rivers and major streams. Due to incompleteness, we substitute the OSM data with rivers 

classification from the LU dataset. For polygon to line conversion, we use the HCMGIS plugin to extract 

centrelines. This data is supplemented using the Nairobi Land Use data. For correctness, we check the 

filtered results against the city maps. Next, we convert the features from vector to raster, and using the 

Proximity (Raster Distance) function in QGIS, we compute the Euclidean distances of the city from major 

rivers.  

In addition to considering Euclidean distances from rivers, we also compute the Height Above The Nearest 

Drainage (HAND). HAND is the vertical distance measure of locations to the nearest drainage channel 

(Nobre et al., 2011). The vertical distances are computed from a DEM and drainage channel. We use 

HAND since river inundation is more likely to affect flatter areas, despite their Euclidean distance from 

the drainage channel. To create HAND, we use the major rivers and DEM as input and operationalize the 

process in ArcMap, using the Riparian tool within the Topography Toolbox developed by Tom Dilts 

(2015). The process entails: (i) flattening the DEM, (ii) ingraining drainage lines into the flattened DEM, 

(iii) computing the height above nearest drainage for each cell. 

II. Runoff 

Runoff is affected by: (i) meteorological factors and (ii) physical characteristics (USGS, n.d.). Under the 

meteorological factors, precipitation and its different factors such as intensity, amount, and duration are 

identified (USGS, n.d.). These are important since the IPCC (Revi, David E., et al., 2014) projects an 

increase in weather events in East Africa. The effects are already being felt in Kenya, with increased annual 

temperatures and more intense rainfall reported (GoK), 2010). With the increase in rainfall, flooding due 

to surface runoff is anticipated to increase. Therefore, the physical characteristics of our study area are 

considered indicators of runoff flooding. 

Under physical characteristics, we consider the soils and topography. Run-off occurs when the absorption 

capacity of the soil is saturated (Kim Rutledge et al., 2011). The clay material in the soils in our study 

comprises kaolinites, interstratified, and montmorillonites. Kaolithic clay soils are prominent in the 

northwestern region of the city, while the montmorillonites are in the central and eastern regions. Of the 

three clay mineral components, montmorillonites cover 68% of the city and are more prone to floods since 

they expand while wet hence retain more surface water (Aksu, Bazilevskaya, & Karpyn, 2015). Data on the 

soils are, however, too coarse and are exempted from our analysis. Therefore, we focus on the topography 

by creating geomorphons. Geomorphons are terrain forms comprising most common landforms: PK-peak; 

RI-ridge; SP-spur; SL-slope; SH-shoulder; FS-foot slope; FL-flat; HL-hollow; VL-valley; and PT-pit. 
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Additionally, studies have found soils correlated to geomorphons (Jasiewicz & Stepinski, 2013; Silva et al., 

2016). 

 

 

To create the Geomorphons, we first resample the 12.5m ALOS PALSAR DEM to 10m using the GRASS 

raster resample (r.resample) function in QGIS. Next, using the GRASS geomorphon function in QGIS, we 

vary the search radius (L) as (3,5,10,15,20,25,30,35,40,45,50,100,150 and 200 pixels). The search radius (L) 

determines the scope of the terrain search. Large L radius gives a global overview of the terrain, whereas 

smaller L values are localized. Geomorphon with L=100 is selected based on visual representation. This 

approach was undertaken due to the limited time and scope of this study.  

 

Figure 12: Geomorphons - the ten most common landforms and respective 8-tuple representations of a pixel’s surface relief in relation to 

its neighbours within line of sight. 

Source: Jasiewicz & Stepinski, (2013) 

Figure 13: Different number of cells as radius for creating Geomorphons 
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Next, we vary the skip radius (inner radius) from 0 to 40 with intervals of 10. Skip radius helps eliminate 

irregularities (Jasiewicz & Stepinski, 2013). We maintain the system default for the flatness threshold (10) 

and flatness distance (0) parameters through the process.  At a skip radius of 50, we obtain the geomorphons 

which we categorize in order of most to least susceptible to surface run-off floods (PK-peak; RI-ridge; SP-

spur; SH-shoulder; SL-slope; FL-flat; FS-foot slope; HL-hollow; VL-valley; and PT-pit). Our logic guides 

the categorization that high relief terrains are less prone to flooding than lower relief terrains.  

 

The categorization is based on the 8-tuple representations of each of the ten generated terrain forms. We 

first consider and rank pit, flat, and peak terrains (represented having pure tuples) from most to least likely 

to flood (respectively). Next, we check the degree of purity of the remaining seven terrain forms to the peak 

and pit terrain forms resulting in the following ranking: PK, RI, SP, SL, HL, VL, and PT from least to most 

susceptible to runoff. We have SL as the medium terrain form and are left with SH, FL, and FS. Next, 

provided we have an even number of terrain forms and cannot equally separate them (to place the SH, FL, 

and FS in the ranking). We consider FL (having pure tuples) to rank SH and FS. Next, provided SL and FL 

are the terrains in the middle, we rank SL as being less likely to be adversely affected by runoff in comparison 

to FL (since runoff would quickly accumulate on flat terrain).  

 

Table 7:Summary of terrain forms ranking process from least to most likely to be affected by runoff 

 

Figure 14: Geomorphons created using L=100 and Skip radius = 50 



24 
 

3.4.3.2. Epidemic  

Infectious diseases are a major health concern since they are one of the leading morbidity causes globally 

(Adiga et al., 2018). Infectious diseases include water-borne (e.g. cholera), vector-borne (e.g. malaria) 

diseases as well as respiratory diseases (e.g. COVID-19). For our study, we consider “proximity to garbage 

sites as an indicator” of infectious diseases and for the data we use the location of Nairobi’s sole landfill – 

Dandora landfill (UNEP, 2018). Garbage sites are ‘hot-spots’ for infectious diseases. The sites act as 

breeding grounds for living organisms such as insects and rodents, which are carriers of vector-borne 

disease. They have also been found responsible for respiratory diseases caused by air pollution resulting 

from burning garbage (e.g. UNEP, 2018); and water-borne disease outbreaks such as cholera - which is one 

of the global public health threats, due to contamination of water sources (e.g. UNEP, 2018). Therefore, 

high proximity to dumpsites can be considered hazardous. We extract the vector feature of the city’s landfill 

from the land use data for the index.  We then rasterize the feature and compute Euclidean distances 

following the same procedure used for the river features.  

3.4.3.3. Extreme temperatures 

Urbanization driven land use and land cover changes have resulted in the modification of , the urban micro-

climate. This is manifested as an urban heat island (UHI), where the temperatures in urban areas are higher 

in comparison to their surroundings (Seto & Shepherd, 2009; Zhou, Zhao, Zhang, Sun, & Liu, 2015). 

Furthermore, extreme temperatures are predicted for East Africa due to climate change (Revi, David E., et 

al., 2014), and are already being experienced in Kenya (GoK, 2010). To capture this phenomenon, we use 

day time and night time LST data. LST is a measure of radiative emissivity of the earth’s surface. It has been 

used to analyse the UHI phenomenon (e.g. Zhou et al., 2015), and in mapping deprived areas where J. 

Wang et al. (2019) found that slum locations are exposed to higher local temperatures. For the LST, we 

consider the maximum temperature since it is a recommended unit for assessing climate extremities (Gallina 

et al., 2016). Additionally, maximum values indicate the point at which the highest temperatures are reached 

within the city and are therefore a suitable indication of susceptibility to hazards. As aforementioned, these 

data are downloaded using GEE.  

3.4.3.4. Transport accidents 

The proximity to transport modes pose high risk of accidents which may cause injuries and fatalities.. They 

also expose the residents to air and noise pollution Literature on transport accidents, however, majorly 

focus on road related accidents, probably due to their infamous occurrence. In Kenya, reported causes of 

road accident fatalities in a recent study are attributed to driver related causes such as ‘running over victims’ 

(Muguro, Sasaki, Matsushita, & Njeri, 2020). From this we infer that secondary causes of accidents such as 

the lack of pedestrian walk ways that are often not reported, influence the occurrence of road accidents. 

Furthermore, no literature is found on rail and air accidents. Therefore, we use proximity to road, rail and 

air transport infrastructure as indicators to identify high-risk areas where transport accidents are likely to 

occur. We compute the Euclidean distances of the city from the three transport infrastructure. The 

transport infrastructure features are obtained through the filtering of OSM data in QGIS. Next, we rasterize 

the vector features and we compute the Euclidean distances of the three features. 

3.4.3.5. Industrial accidents 

Industrial accidents are caused by anthropogenic factors, including lack of monitoring and maintenance of 

industrial infrastructures and; are also triggered by natural hazards such as extreme weather events and 

physical hazards (UNECE, 2021). Particularly, chemical accidents related to the oil and gas refineries, 

storage and pipelines have resulted in significant deaths, serious injuries and economic losses at a large scale 

(e.g. Mutiga, 2011). Such cases affect deprived settlements that are often located close to industrial 

infrastructures and lack adequate disaster-coping mechanisms and infrastructures. Additionally, the nature 
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of the settlements, typically crowded, only worsens the situation.  To account for industrial accidents, this 

study considers the proximity to industries and the density of industries as indicators. Industries data is 

obtained from OSM and land use data. The Euclidean distance from industries is then computed, and using 

the Kernel Density Estimation tool in QGIS, the heatmap indicating densities of industries per km2 is 

calculated. Due to the unavailability of data on industrial infrastructures like oil pipelines, we only consider 

the building locations of industries in the study.  

Further, we note that the triggering effect of natural disasters on industrial accidents and particularly 

chemical accidents (referred to as Natech hazards) are gaining recognition as an emergent risk globally 

(Krausmann, Cozzani, Salzano, & Renni, 2011; UNECE, 2021). These interrelations highlight the need for 

an integrated approach to investigating and managing hazards.  

3.4.3.6. Biophysical hazards 

I. Fire 

Urban fires are frequent in deprived settlements within Nairobi. These fire outbreaks are attributed a 

number of factors including poor power connections, and drunkenness (Ngau & Boit, 2020). Besides these 

causes, fires due to  explosions of oil pipelines were also highlighted by two experts. In spite of the causes, 

slum conditions intensify fire outbreak incidents due to their high density and compactness; lack of open 

spaces to provide safety; and combustible building materials (Ngau & Boit, 2020). The poor road 

connectivity further hinders responses to the fires within the settlements (Ngau & Boit, 2020). These 

secondary factors are what we consider for our index except for building material since spatial data or 

proxies couldn’t be identified. Therefore, we consider three factors: (i)road density, (ii) building density and 

(iii)normalized difference vegetation index. Starting with the road density, we use OSM data where we first 

filter out footpaths, etc., from the data and remain with a selection of roads, which are wide enough to 

allow fire extinguisher tracks and services. Then, using the QGIS line density interpolation tool, we compute 

the density of roads per km2 for the city. To obtain the building density measured as the number of buildings 

per km2, we manipulate the building outline data using the Kernel Density Estimation tool in QGIS. Lastly, 

in QGIS, we also create the NDVI from the Sentinel 2 multispectral image using the red and NIR (near-

infrared) bands by applying the formula:   

𝑁𝐷𝑉𝐼 =  (𝑁𝐼𝑅 –  𝑅𝑒𝑑)/ (𝑁𝐼𝑅 +  𝑅𝑒𝑑) 

Equation 3: Normalized difference vegetation index 

II. Air pollution 

We only consider outdoor/ambient air pollution in compounding the index since we cannot capture indoor 

air pollution using geospatial data at a city-wide scale. Ambient air pollution is caused by excessive 

atmospheric gases and particulate matter (World Health Organization (WHO), 2018). Currently, air 

pollution is considered the most prominent environmental health risk factor, especially in cities, since it is 

a major cause of morbidity and respiratory diseases (WHO, 2016). The reported air pollutants with 

substantial evidence of causing health implications are Particulate Matter (e.g. PM2.5, P.M10), Carbon 

Monoxide (CO), Nitrogen Dioxide (NO2), Sulphur Dioxide (SO2), and Ozone (O3) (WHO, 2021b). 

Therefore, we consider these pollutants, except PM – due to data unavailability, for our analysis. These data 

are obtained from sentinel 5P. They are measured as a ratio of pollutants to air mass factor. The data are 

obtained as the annual maximum for the city and resampled to 10m. Maximum values are considered using 

the same logic highlighted for extreme temperature.  
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 Application of Multi-Hazard Index to Predict Deprivation 

3.5.1. Statistical Discriminant Analysis 

After constructing the multi-hazard index, we first statistically evaluate whether the multi-hazard datasets 

can be used to predict deprivation. Our dataset comprises the multi-hazards and the grouping variable (label 

data) containing four classes (section 3.2): (i) high to mid-density built area, (ii) low density built area, (iii) 

deprived area (type I), and (iv) deprived area (type II). Multi-hazard datasets from our susceptibility index 

are first analysed as the dependent variables using multivariate analysis of variance (MANOVA) performed 

using SPSS software.  

Next, we carried out a discriminant function analysis to evaluate the performance of outcome variables in 

discriminating the classes. The multi-hazard dataset represents the outcome variables, and the grouping 

variables represent the dependent variables. For each outcome variable, there are underlying linear 

dimensions called variates used to determine the discriminant functions (Field, 2017). These linear variates 

are used for determining group membership predictions and can be described using a linear regression 

model function (Equation 4) (Field, 2017).  

𝑦𝑖 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ 𝑏𝑛𝑥𝑛 

Equation 4: Linear regression equation 

Where: X1 = outcome variable 1 and b = weights indicative of each variable’s contribution to the variates. 

 

The b values are calculated from eigenvectors that assess the ratio of systematic variance to unsystematic 

variance (SSM/ SSR) for the underlying variates to the functions and reduce the dimensionality of the dataset 

(Field, 2017). From eigenvectors, we obtain eigenvalues that measure the degree of freedom of our model 

(similar to F-statistics)(Field, 2017). The larger the eigenvalue, the higher the variance between the linearly 

combined variables. On the other hand,  the functions (e.g., Yi) representing the ratio of variability within 

the outcome variables as explained by the model (SSM) and error in prediction (SSR) maximize group 

differences using a linear combination of outcome variables (Field, 2017). Lastly, the number of 

discriminant functions is determined by K-1 (where K is the number of categories/group memberships) or 

the number of variates which is equivalent to p (number of outcome variables) (Field, 2017). 

Given that we have four groups, three statistically significant discriminant functions were obtained (Table 

13). The first discriminant function has a maximized ratio of variability since it tests the model as a whole. 

As a result, the first function is the most powerful discriminating dimension. Subsequent functions control 

the preceding functions while following a similar approach. Canonical correlation analysis is also carried 

out to assess the strength of association between the multi-hazard datasets and the categorical groups. They 

help explain the nature of the variates. Lastly, predictive classification is undertaken, with the outputs given 

as an overall accuracy of the model and the cumulative accuracies. 

3.5.2. Predicting Deprivation Using Random Forest Classifier (RFC) 

The results of the discriminant analysis statistically prove that multiple hazards can be used to predict 

deprivation. First, we perform land cover classification to extract built-up areas that serve as input for the 

deprivation prediction. Next, we use the multi-hazard index as variable input for the RFC. To test the 

accuracy of multi-hazard predictors, we also use conventional variables (spectral-textual features) and 

compare the models’ performance (fig.15).  
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Figure 15: Land cover land use classification process 

3.5.2.1. Extracting Features 

Studies show that spectral, textural, and contextual features are important for image interpretation 

(Haralick, Dinstein, & Shanmugam, 1973; Kuffer, Pfeffer, & Sliuzas, 2016). Textural features, in particular, 

have proven to be effective complementary data to the more readily available data (spectral and contextual) 

for land use land cover classifications (LULC) (Engstrom, Harrison, Mann, & Fletcher, 2019; Kuffer et al., 

2020). Textural features capture the grey tone variation of a surface and the spatial statistical distribution of 

the tones that reveal the structure of the surface and its relationship to its environment (Haralick et al., 

1973). Therefore, we extract the Grey-Level Co-Occurrence Matrix (GLCM), a commonly used texture 

measure for LULC classification. Specifically, the use of GLCM has yielded good results for extracting 

built-up areas using Sentinel-2 (10m resolution) (Saini, Verma, & Gautam, 2021), as well as for deprivation 

mapping using random forest (Kuffer, Pfeffer, Sliuzas, & Baud, 2016).  

Our study extracts eight common textural measures using 10m resolution Sentinel-2 red, green, blue (VIS-

visible bands), and near-infrared (NIR) bands. These textural features are: Contrast, Entropy, Mean, 

Dissimilarity, Homogeneity, Angular Second Moment (ASM), Correlation, and Variance. These are 

generated in R Studio using the GLCM package. We set the user-defined parameters of window size (kernel) 

and shift. Kernels apply a function to the central pixel based on the neighbouring pixels. They, therefore, 

not only deal with noise in data but also influence the performance of models. Thus, it is important to select 

one that best fits the data characteristics. Using a scaling factor of two, we use varying kernel sizes ranging 

from 5X5 to 27X27 for each of the four bands and, applying a shift factor of 1. As a result, we have 416 

textural bands collectively described as high dimensional data (or big data). 

3.5.2.2. Variable Selection 

To reduce the dimensionality of our data and by identifying the best kernel size for classification., we use 

the Variable Selection Using RF (VSURF) algorithm, implemented in R Studio. VSURF is a CART-based 
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model that reduces data dimensionality through feature selection (Genuer, Poggi, & Tuleau-Malot, 2015) 

that has proven robust with geospatial data (Lou et al., 2020), especially for optimizing LULC classification 

(Georganos et al., 2018). The algorithm uses a step-wise approach for variable selection in three steps 

(Genuer et al., 2015). First, noisy variables - with the least importance are eliminated. The variables with 

the smallest OOB error are selected, and thirdly, variables for prediction are selected if the OOB error 

decrease is higher than the model’s threshold (> than the mean variation with noisy variables) (Genuer et 

al., 2015).  

3.5.2.3. Parameter Optimization 

The optimal parameters in Random Forest (ntree and mtry) are determined using iterative tunning operations. 

The first parameter that we tune is ntree, which indicates the number of trees used to build the model. For 

both land cover and land use classification, the optimal value is determined by starting the value at 0-5000 

and varying the intervals by 500 until the learning curves of each predictor class (including OOB samples) 

stabilizes. While optimizing ntrees, the mtry values are kept at default, i.e., mtry=√number of variables. Mtry 

represents the number of nodes to be split in each tree. After finding stable values for ntrees, mtry is 

optimized by varying the value starting with the number of predictor variables in each scenario.  

3.5.2.4. Land Cover Classification 

To perform land cover classification, we identify four classes of land cover in the study area, i.e. built-up, 

bare land, vegetation and water. Within each category, we further identify sub-classes to capture the diverse 

nature of our study area. The built-up sub-classes are mentioned in previous sections (high-mid density, 

low density, deprived type I, deprived type II, including non-residential buildings) (Vanhuysse et al., 2021). 

Non-built classes are generated from OSM data, and specifically, for bare land, unpaved roads, and 

vegetation cover, the process is supplemented by manual sampling. Given the diverse vegetation cover in 

the study area, we increase the sample data in this sub-class.  To ensure correctness, we use visual assessment 

to validate the label samples. In total, we generate 1219 labelling samples (table.8). The labelling data is 

randomly split into 70% for training and 30% for validation. Since we use a random forest algorithm with 

an internal validation system, we don’t generate testing samples but rely on the OOB samples to evaluate 

the model’s classification performance.  

Table 8: Label data sampling scheme for land cover classification 

Land Cover Sub-Class No. of Samples Total 

Built-up High-Mid Density 94 579 

 

 

 

 

 

Low Density 86 

Industrial/Commercial/Administrative 100 

Deprived Type I 100 

Deprived Type II 100 

Tarmac 99 

Bare land Bare Soil 108 213 

Untarmacked Roads 105 

Vegetation  Trees 118 309 

Vegetation 191 

Water Rivers, streams, dams, and ponds 118 118 

 

The predictor data comprises two datasets. One that comprises GLCM textures of kernel size 3X3 in 

combination with the spectral bands and NDVI. These data have been successfully used to extract urban 

built-up areas using Sentinel 2 imagery (Saini et al., 2021). The second dataset comprises the entire GLCM 

textures in combination with spectral bands and NDVI.  The classification is performed using RF model.   
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3.5.2.5. Predicting Deprivation 

Next, we conduct a predictive classification of deprived settlements – a land-use classification problem. For 

the classification, we identify six thematic land uses: deprived type I, deprived type II, low-density 

residential, high-mid density residential, non-residential (commercial/industrial/administrative), and non-

built areas (Table 9). The label data for the land uses are sampled using a random stratified strategy. Since 

the heterogeneous nature of the urban regions deters land use classification, we use polygons of 50X50m 

as label data ensuring that we maximize the number of pixels used to identify the thematic classes. We 

immitate the classification process used by polygon reference datasets and generate points for each pixel 

corresponding to the polygons. This approach is undertaken due to the long processing time to run the 

model using polygon reference data. Given that our raster data has a 10 m resolution, the total number of 

extracted sample points is 14600. However, these sample data result in overfitting of the data and incur a 

long processing time. Therefore we sample a third of the points from within the labelled dataset, resulting 

in 4865 samples. We split the data into 70% for training and 30% for validation.  

 

Table 9: Sampling scheme for land deprivation prediction 

Land Use No. of Sample 

Polygons 

No. of Sample 

Points 

High-density residential 94 780 

Low-mid density residential 86 730 

Deprived type I residential 100 830 

Deprived type II residential  100 830 

Non-residential  (Industrial/commercial/administrative) 100 830 

Non-built up 104 865 

 

To predict deprivation, we develop two datasets (Table 10). For the first dataset, we use GLCM textures 

and spectral features (VIS+NIR) to form the first dataset. Secondly, since our study aims to test the 

predictability of deprivation using multi-hazards, we combine the multi-hazard dataset with the VIS+NIR 

to create the second dataset. Then, for both datasets, we select predictor variables using VSURF. The 

selected predictor variables are in combination with the land cover classification map to perform land use 

classification.  

 

Table 10: Datasets composition for land use classification (predicting deprivation) 

Group Variables Dataset 1  Dataset 2  

 

 

Red (B1) x x 

Green (B2) x x 

Blue (B3) x x 

NIR (B8) x x 

Texture features Contrast x  

Entropy x  

Mean x  

Dissimilarity x  

Homogeneity x  

Angular Second Moment (ASM) x  

Correlation  x  

Variance x  

Land cover Built-up vs non-built x x 

Multi-hazards Multi-hazards (Table 6)  x 
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3.5.2.6. Accuracy Assessment 

To assess the model performance, perform accuracy assessments by comparing classified data to reference 

data. We compute the overall accuracy from the confusion matrix that provides the global accuracy 

assessment measure based on total correctly classified pixels. Additionally, we compute the F1 score- the 

weighted average function of precision and recall (Brownlee, 2014). Precision is calculated using the 

confusion matrix as a ratio of correctly predicted observations to the total predicted positive observations. 

On the other hand, recall is calculated as the ratio of correctly predicted positive observations to total 

observations by class.  

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗ (𝑅𝑒𝑐𝑎𝑙𝑙 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) / (𝑅𝑒𝑐𝑎𝑙𝑙 +  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) 

Equation 5: F1 score function 

 Validation of Multi-Hazard Index Using Household Survey 

3.6.1. Design and Structure of Questionnaire 

To cross-validate the outcome of the multi-hazard index, we conduct household surveys in two deprived 

settlements in Nairobi: Kibera and Kariobangi North. In developing the questionnaire, we focus on the 

hazards identified in the multi-hazard index. Furthermore, given that the purpose of the questionnaire is to 

understand the hazards experienced in deprived settlements and at the household level, we use a funnel 

approach for the survey design (from settlement to household level). The questions are closed-ended with 

an allowance for additional commentary by the respondents (annex 8.4). Due to COVID-19 regulations, a 

local community group (Community Mappers) was contacted to provide research assistant services. 

3.6.2. Target Population and Number of Participants 

The two settlements were selected following a recommendation by the contracted community group as 

they represent different types of deprived settlements in Nairobi. Surprisingly, they match the two types of 

deprived settlements captured in section 3.2. Kariobangi North, though not captured in our provided data 

of morphological slums, we find that its morphological characteristics match those classified as deprived 

settlements type II. The availability of research assistants in the two settlements was also a contributing 

factor in selecting the two settlements. Given time and resource constraints, the total number of target 

households was 100; 70 households in Kibera and 30 in Kariobangi North. This approach was taken given 

that Kibera (approx.2.2km2) is double the size of Kariobangi North (approx.1.1km2).  

3.6.3. Sampling Technique and Data Collection 

A random sampling strategy was employed as a measure to reduce bias in the data collection. Specifically, 

we created grids of 100mx100m over the settlements and using the random selection tool in QGIS, 70 grid 

cells were selected in Kibera and 30 in Kariobangi North (fig.16). In developing the questions, we focused 

on both settlement and household levels. The questions comprise basic household information, including 

household size. The main focus is, however, on the hazards present/ experienced by the respondents. The 

design of the questionnaire is a combination of closed and open-ended thus, leaving room for capturing 

additional comments. The questionnaire was designed and deployed using the KoBo toolbox, which was 

selected due to its compatibility with mobile devices, geo-location collection capabilities, and is a free and 

open-source application. Also, considering that the enumerators constituted members of different informal 

settlements within Nairobi, they were consulted to fine-tune the questionnaire. Some of the changes 

included adding options to our response choice lists and translating the key questions (and response 

choices) into Kiswahili. 
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3.6.4. Data Analysis 

To analyse the household responses, we first encode the responses by stripping off the personal 

identification details (respondents names), then categorize the data into different topics to answer the 

research questions. Given the nature of the survey, we have multiple responses, which are first grouped by 

defining variable sets. All the responses are then analysed through descriptive statistics, which give a 

summary of the answers.  Contingency tables are also produced to summarize the relationship between 

different variables. The analysis is conducted using SPSS and graphs generated using MS Excel. Also, using 

the grids from which households were selected for interviews, we compute the hazard scores based on the 

multi-hazard index. The operations are undertaken in QGIS employing the zonal statistics tool, where the 

mean values are calculated. For ease of comparison, the results are aggregated and presented per sub-hazard 

category (Table 6), with the aim of contrasting household survey results to those of the multi-hazard index.  

 Limitations of Data and Methods 

In designing the multi-hazard index, we accommodate the inherent heterogeneous nature that characterises 

multiple hazards, which means that we use data generated using different measurements and spatial 

resolutions. For instance, we use data with coarse resolution (e.g., LST and air pollution data with 1000m 

resolution) that minimally show the intercity variations. Thus, we upsample these data to 10m resolution - 

our chosen analysis unit. We use bicubic interpolation techniques that alter the original data values by 

considering the surrounding pixels to highlight intra-city variations. Transition areas are most affected since 

interpolation techniques rely on surround cell values to compute new values for the resampled data.  

The multi-hazard index also relies on proximity measures, specifically, the computation of euclidean 

distances. By using such measures, we assume that proximity to a hazard threat indicates high vulnerability. 

These assumptions simplify the complexity of hazards and are significantly influenced by a lack of data. For 

Figure 16: Study area with location of selected settlements for HH survey(top), and randomly selected grids within Kibera (bottom left) 

and Kariobangi North (bottom right). 
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instance, in assessing transport accidents, the proximity to rail infrastructure is computed. However, we are 

aware that despite having rail infrastructure in most city areas, operations are only currently underway in 

the city's central and eastern regions. Thus only settlements in these areas would technically be threatened 

by rail accidents. To capture this complexity, we would require rail operations data to select better fitting 

data. 

Additionally, since hazards are analysed as a factor of occurrence and magnitude, our multi-hazard index 

shows the susceptibility of an area to identified hazards. Primarily, this decision is influenced by insufficient 

and complete hazard data (occurrence and magnitude) matching our index. Further, our goal is to estimate 

the relative severity of multi-hazard risk using justifiable spatial proxies. In compiling the index, we 

acknowledge the interrelation among the different hazards. However, we neither assess the causal 

interactions among the hazards nor explore causal relationships between the hazards and the 

presence/conditions of deprived settlements. Nonetheless, we highlight these relationships with evidence 

from literature and expert interviews.  

Further, our attempt to predict deprivation using multi-hazards acknowledges that some data such as 

building and road characteristics and their derivatives, e.g. density, have been used to inform some 

conventional textural features used in image classification (Kohli et al., 2012). To mitigate this conflict, we 

generate two datasets and compare their predictive power. One dataset is based on spectral data with 

textural features, while the second combines spectral data and multi-hazards.  

Lastly, in designing the household questionnaire, the main limitation is the failure to capture all the hazards 

from the index. A challenge that was encountered since both processes were being conducted concurrently. 

Additionally, the responses rely on the respondents' perceptions, for instance, in assessing the degree of 

extreme temperatures. The responses are based on the households experience and sensitivity to weather 

elements. As we know, these vary from person to person due to different factors, including biological 

‘make-up’. 
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4. RESULTS 

In this chapter, we present the results of the study. First, we present the outcomes of the expert interviews 

on hazards affecting Nairobi. These were used to refine our theoretical multi-hazard index that is presented 

next. As aforementioned, the multi-hazard index is used to contrast the degree of hazardousness between 

deprived and non-deprived settlements presented in section 3.2. We then present the discriminant analysis 

results that were used to evaluate whether the multi-hazard index can predict deprivation. In addition to 

the statistical evaluation, the discriminant analysis was used to identify discriminant variables for each 

settlement. These results are contrasted to conventionally used datasets for predicting deprivation. Next, 

we present the household survey outcomes that assessed settlement and household level disbursal of 

hazards. Lastly, since we discuss different subjects with the experts, these results are infused in the different 

sections as deemed appropriate and cover the topics on ‘slum’ definitions, the data used for deprivation 

mapping and geo-ethics issues related to studying deprivation.  

 Multi-Hazard Susceptabillity Index 

The multi-hazard index developed in this study covers the entire city of Nairobi and is informed by 

extensive literature search and expert opinion. The index approximates hotspots indicating areas most 

susceptible to hazards and the regions of hazard overlaps. To understand intra-city disbursal of hazards, 

the degree of hazardousness among different residential settlements is contrasted. 

4.1.1. City-wide vs Deprived Settlements Hazards in Nairobi 

The interviewed experts identified hazards affecting our study area at the city level and deprived settlement 

level. Two significant hazards identified by all experts were flooding and fire (Table 11). For flooding, 

distinctions were made between runoff and riverine flooding, as these were more prominent in non-

deprived and deprived settlements, respectively. Runoff was attributed to insufficient and blocked drainage 

channels, while riverine floods were attributed to the settlements encroaching on riparian reserves. 

However, the experts distinguish that runoff is the primary flooding hazard at the city level while riverine 

floods are localized in deprived settlements. Fire hazard was specifically considered more prone in deprived 

settlements. Further, deprived settlements were exposed to more hazards than the rest of the city (Table 

11).  

Table 11: Frequency count of expert opinion on hazards at city level and deprived settlement level in Nairobi 

City-wide Hazard Deprived Settlements 

7 Floods 7 

0 Fire 7 

0 Crowding 1 

1 Transport accidents 1 

0 Industrial accidents 1 

1 Unfavourable micro-climate 1 

0 Contamination (air/water/land pollution) 2 

0 Political Conflict 1 

0 Building collapse 1 

0 Garbage accumulation 1 

2 Infectious diseases 2 

4.1.2. Spatial Analysis of the Multi-Hazard Index 

To test the assumption that deprived settlements are located in hazardous areas, we use the identified four 

types of residential settlements within our study area in combination with the multi-hazard index. Using the 

weighted values per sub-hazard category, we standardize the values by dividing the values using the 
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maximum for ease of comparing the susceptibility of the settlements. We select an equal number of samples 

(n=86) spread throughout the city for each settlement class. Lastly, we present the results of the multi-

hazard index entailing all identified sub-hazards and, in a similar fashion, compare the inter-settlement 

performance. 

 

Figure 17: City-wide analysis of degree of hazardousness by the ten sub-hazard categories of the multi-hazard index. 
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4.1.2.1. Flooding 

Notably, most of the city has index scores > 0.6 as explained by two factors. First, the city has a relatively 

flat terrain. The difference between the highest and lowest point, computed from the DEM, is approx. 

700m. Secondly, the city has three major tributaries ( Nairobi, Mathare and Ngong rivers) of the Nairobi 

Drainage basin system cutting through the city. The combination of these two factors makes the city highly 

susceptible to river inundation. Despite the seemingly high susceptibility to riverine flooding, the experts 

inform us that the river tributaries do not pose a significant threat to the city because the tributaries don’t 

have a big extend and are in valley terrains. In contrast, the drainage system threatens many deprived 

settlements since they are located on riparian reserves, as highlighted by the outcomes of our analysis (fig. 

17).  

Figure 18: Variability of residential settlements per flooding hazard sub-categories; riverine and runoff flooding. 

 

On the other hand, the experts indicate runoff flooding as a more significant threat at a city-wide scale. We 

find that the central and eastern regions of the city are at high risk of runoff flooding with index scores of 

approx.0.5. The terrains of these regions are characterized by foot slopes that transition into flat terrain. 

Additionally, they lie downstream of the Nairobi drainage system. In addition to terrain form, blockage of 

drainage systems by garbage and lack of adequate drainage systems are mentioned as causes of runoff 

floods. Regardless of the anthropogenic causes of runoff, deprived settlements type I are found most 

susceptible (fig.17b).  The other residential settlements show high variability indicating that they are located 

in different city areas with varying degrees of hazardousness. Both high-mid density settlements and 

deprived areas type II have a similar trend for both types of flooding. However, high-mid density 

settlements are more susceptible to runoff flooding than deprived type II settlements. In both instances, 

low-density settlements are least vulnerable to flooding hazards.    

4.1.2.2. Epidemic 

Susceptibility to epidemics is based on the proximity of settlements to the city’s sole landfill, located in the 

northeastern region. We find that all the different residential settlements are located near the landfill 

(fig.18a). However, both deprived settlements type I and high-mid density settlements are most susceptible, 

given that 75% of the sampled cases are found in areas with scores >0.7 (fig.18). In contrast to low density 

and deprived type II settlements, these settlements are primarily located in the inner city (fig.9).   
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Figure 19: Variability of residential settlements per epidemic and extreme temperature hazards. 

4.1.2.3. Extreme Temperatures 

Extreme temperatures gradually transition from high temperatures to cool temperatures from the eastern 

to western regions of the city, with the northwestern areas being the coolest (fig.16). Climatic factors can 

explain the sharp contrast between the west and east parts of the city. The western regions are closer to the 

highland areas (Kiambu), while the eastern and southern regions are towards the semi-arid climatic zones 

(Machakos and Kajiado). Interestingly, we find that high-mid density settlements and deprived type I 

settlements have similar trend and tend to be located in areas with high temperatures. Low-density 

settlements have the highest variability, followed by deprived settlements type II since they are mainly 

located in the periphery of the urban core (fig.9). Meaning that these types of settlements can be found in 

both the cooler western regions and the hotter eastern areas.  

4.1.2.4. Transport Accidents 

Nairobi is well served by road, rail and air transport infrastructure (fig.16). Given that we use proximity 

measures to these infrastructures, most of the city is susceptible to transport accidents. Due to the high 

connectivity of the road and rail infrastructure, most of the city except the far eastern region is hazardous 

(fig.19a&b). As a result, we find that all settlements are susceptible to road accidents, having hazardous 

scores >0.8. Despite high city-wide connectivity, the distribution of low-density settlements is negatively 

skewed, indicating lower susceptibility to road accidents. On the other hand, high-mid density settlements 

rank highest, explained by their high road connectivity as depicted by the neighbourhood layout (section 

3.2). Deprived settlements (both type I and II) are generally found near rail infrastructure. In terms of air 

transport accidents, generally, the wider central region of the city is found hazardous (fig.16). We, however, 

find that deprived type I are the most susceptible, followed by high-mid density settlements (fig.19).  

4.1.2.5. Industrial Accidents 

The industrial hazards are distributed throughout the city (fig.16). As a result, the risk of industrial hazards 

isn’t as high compared to the other assessed hazards. The presence, however, of an industrial area in the 

city’s core, as zoned in the 1948 master plan (fig. 6), is captured in our analysis as a highly hazardous hotspot 

area. Similarly, the assessment of the residential settlements reflects this (fig.19). Despite the low variation 

among the settlements, deprived settlements type I are most susceptible given their positively skewed 

distribution, including outliers. Additionally, despite having the highest variance, over 50% of the sampled 

deprived type I cases are in areas with hazard scores >0.6, contrasting the other settlements with 

approximately 75% of the cases in areas with scores <0.6. High-mid density settlements rank second most 
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hazardous due to the location of these two kinds of settlements in the inner city, where the city’s industrial 

area is located.  

Figure 20: Variability of residential settlements per road, rail, air transport and industrial accidents. 

 

4.1.2.6. Biophysical Hazards 

 

I. Fire  

Distinct hotspot areas highlight fires hazards in the city (fig.16). Interestingly, the hotspot patterns 

distinctively outline some commonly known deprived settlements such as Kibera, classified as deprived 

type I settlement (fig.15). Unsurprisingly, the comparison between settlements reveals that deprived areas 

type I are most susceptible to fire hazards, followed by deprived areas type II (fig.20). These results match 

the outcomes from the expert interviews (Table 11). Attribution is made to the district characteristics of 

deprived settlements, i.e. densely built, lacking adequate road infrastructure and green spaces (all features 

used to describe the susceptibility to fire hazards).  
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II. Air Pollution 

The urban core is the most affected by air pollution, spreading to the western, northern and southern 

regions (fig.16). The possible reason for this is that by looking at the annual wind directions, the most 

predominant winds blow from the northeast direction and hardly any from the west (Windfinder, 2021). In 

the inter-settlement comparison (fig.20), all settlements are located in areas with hazard scores of approx. 

0.44. and over 75% of all settlement types, with the exemption of low-density settlements, are located in 

areas with hazard scores (>0.7). However, high-mid density settlements are most susceptible to air pollution 

hazards, followed by deprived settlements type I. Additionally, we find that despite the high variance, low-

density settlements have a positive skew, indicating that most of these settlements are located in hazardous 

areas.  

4.1.2.7. City-wide Hazard Susceptibility 

To compute the overall hazard index, we sum the weighted indicators. As a result, we find that the urban 

core of Nairobi is the most hazardous while the western region is the least.  Comparing the settlements’ 

scores, deprived type I are the most hazardous, followed by high-mid density settlements; their location 

partly explains since they are mostly found in the inner city, whereas deprived type II and low density are 

located further from the urban core.  

 

Figure 22: Spatial distribution of hazards in Nairobi. Categories indicate the degree of hazardousness computed from the summation of weighted 

hazard indicators. 

Figure 21: Variability of residential settlements per biophysical hazards (fire and air pollution hazards). 
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 Predicting Deprivation Using MultiHazards 

4.2.1. Discriminant Analysis 

By first running MANOVA, we find that our model based on the multi-hazard dataset and four types of 

residential settlements (section 3.2.4) is statistically significant. We establish this by evaluating all four 

multivariate test statistics (Pillai’s Trace, Wilk’s Lambda, Hotelling’s Trace and Roy’s Largest Root) that 

obtain p<0.0001, indicating that the classes differ significantly (Table 12). Additionally, a Wilk’s lambda of 

V=0.062 indicates a high ability of class separation within our data.  

 

Next, we carried out a discriminant function analysis to evaluate the performance of outcome variables in 

discriminating the classes. Given that we have four groups, three statistically significant discriminant 

functions were obtained (Table 13). The first discriminant function tests the model as a whole, explaining 

69.2% of the variance, with canonical R2= 0.79; the second function explained only 17.6%, with canonical 

R2=0.49, and the third 13.2% with canonical R2=0.42.  

 

To understand the discriminant functions, we explore the model’s canonical structure matrix (fig.23). The 

structure matrix indicates variables with high contribution to class separation. The higher the canonical 

variate correlations value (R), the higher the contribution of outcome variables to group separation 
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Table 12: Multivariate analysis of variance for multi-hazards dataset 
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(Bargman, 1970, as cited in Field, 2017). Typically, variables with R>3 are considered to have a significant 

effect (Field, 2017).  

In addition to the canonical structure matrix (fig.23), the discriminant analysis gives the functions at group 

centroids (Table 14). These show the functions used for discriminating the classes. The group centroids 

represent the group/class mean function scores (Field, 2017). The class with an opposite sign indicates that 

the function discriminates that specific class (Field, 2017). Therefore, the first function differentiated low-

density areas (mean = -3.29); the second function differentiated type II deprived areas (mean = -1.515); 

and the third differentiated high to mid-density built areas (mean = 1.473). Also, by observing the 

differences in mean values for the classes, we understand the relationship among the classes. We find that 

deprived areas - type I have positive high mean scores in both the first and second functions (Table 14). 

Thus, highlighting the high contrast between deprivation type I and the classes discriminated by these 

functions, i.e. low-density built-up areas and deprived areas type I (Table 14). Similarly, deprivation type II 

also has high values (mean = 0.705), though not as high as deprivation I. Additionally, these observations 

can be observed from the plotted distribution of the class samples (including the group centroids) against 

the functions (fig.24).  

 

Using the observations from the canonical structure matrix and group centroid functions, we can further 

understand the discriminating factors (variables) between classes. Importantly, we note that positive 

relationships show the functions’ discriminating classes based on dimensions that similarly affect the 

variables, whereas negative ones show the inverse (Field, 2017).  Looking at the outcome variables that are 

significant in the first function (fig.23), we deduce that NDVI (B14) (R=0.661), the density of buildings 

(B12) (R=0.512), proximity to airports (T9) (R=0.329) and proximity to rivers (F2) (R=0.317) are significant 

discriminators of low density built areas from the rest of the classes, and especially type I deprivation 

(further captured by the significant distance along the horizontal axis)) (fig.24). In terms of class separability, 

however, the low-density areas group centroid sign is negative, highlighting it has an opposite relationship 

to the variables.   

Considering NDVI and building density as examples, and taking into account that the variable values were 

normalized (section 3.4.2); where typically high NDVI values signify high vegetation cover, the NDVI 

values were inversely transformed. Therefore, areas with low vegetation cover have higher values to indicate 

higher hazard susceptibility. In contrast, building density values remained unaffected through data 

normalization and, areas with high building density have higher values and represent high hazard 

susceptibility. The canonical values for these variables are positive (fig.23), whereas the group function for 

low-density settlements is negative (Table 14). Hence, low-density settlements have higher vegetation cover 

and low building densities. A sharp contrast is observed for deprivation type I, with a high group centroid 

value with a positive sign (mean = 2.107), indicating lower vegetation cover and high building densities.  

The second function discriminates type II deprivation from the other classes and especially from type I 

deprivation (Table 14) (also see fig. 24 vertical axis distance). The significant variables within the function 

were found to be proximity to airports (T9) (R=0.448),  night LST (W6) (R=0.444), and CO (B18) 

(R=0.323). The variables were also found to have a positive relationship with the discriminant function, 

while the type II deprivation group centroid was negative (mean = -1.515). Therefore, we find type II 

deprivation settlements farthest from airports and have low night LST and CO exposure of all the 

Table 14: Functions at group centroids 
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settlements. However, the inverse applies for deprivation type I having a significant positive group mean 

value of 1.081 compared to deprivation type II.   

 

The third function discriminates high-mid density built-up areas with a positive mean of 1.473 (Table 14) 

and, using the variables road density (B13) (R= -0.728), night LST (W6) (R=0.528), CO (B18) (R=0.497), 

building density (B12) (R= -0.370) and proximity to major roads (T8) (R=0.364) (fig.23). For the variables 

night LST, CO and proximity to major roads, the canonical values are positive, as is the case for the function 

at group centroid for high-mid density settlements. These positive values indicate that high-mid density 

settlements have high night LST, CO, and proximity to major roads. On the other hand, road density 

(transformed similarly to NDVI) and building density have negative values. Thus, high-mid density 

settlements have high road and building density. However, these variables can discriminate other classes 

better despite their significance in discriminating high-mid density settlements. And as seen from the first 

and second functions, building density and road density contribute significantly to the discrimination of 

deprivation type I.  

In summary, the first function demonstrated that deprived type I settlements are most susceptible to fire 

hazards (building density and NDVI) and riverine flooding. Both the first and second functions further 

explain that deprivation type I is susceptible to air transport accidents. On the other hand, the second and 

third functions show both deprivation type I and high-mid density settlements experience high night LST 

and CO exposure. However, the canonical values of the third function highlight high-mid density 

settlements to be more susceptible to these hazards. The high nigh time LST values can be explained by 

the highly built nature of these settlements (J. Wang et al., 2019). High CO values can be attributed to fossil 

fuel combustion due to road traffic related to the high road density (WHO, 2016). Further, the third 

function shows that high-mid density settlements are most prone to road transport accidents. Therefore, 

our assessment finds deprivation type I more susceptible to hazards, followed by high-mid density 

settlements than the other settlements. These findings are similar to those of the multi-hazard index and 

expert interviews. Lastly, by testing classification performance, the discriminant functions yield overall 

classification accuracy of 79.7%.  

 

Figure 24: Plotted samples and respective group centroids against the first and second canonical discriminant functions 
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4.2.2. Random Forest Classifier 

4.2.2.1. Land Cover Classification 

We undertake supervised multi-class prediction. Similar to the study by (Saini et al., 2021), we first use 

GLCM textural features of kernel size 3X3 in combination with VIS+NIR, and NDVI bands, resulting in 

a total of 37 features (Dataset1). The features were then selected using the VSURF algorithm,  where ten 

predictor features are obtained. These variables are used in RF with the parameters set at ntrees = 5000 and 

mtry at default. The overall accuracy of 68.4% at a 95% confidence level is obtained. We also conduct a 

second test using all GLCM features (416 bands) combined with VIS+NIR and NDVI bands totalling 421 

(Dataset2). Following a similar approach, seven predictor variables are selected using VSURF, and an 

accuracy of 70% at a 95% confidence level is obtained. The kappa coefficients of both tests only differed 

by 0.1, indicating moderate agreement that can be expected at random chance. The results summary are in 

table 15. Also, an experiment of binary classification, i.e., built vs non-built, achieved a higher overall 

accuracy of over 80% using both datasets (Dataset1 and Dataset2). From the first level, therefore, the errors 

are propagated into the subclasses. 

 

Table 15: A summary of land cover classification using RF model with ntree=5000 and mtry=√number of variables. 

 

From the tests, the use of only 3X3 kernel textures results in noisier land cover classification results 

(fig.25&26). Through visual inspection, both datasets overestimate bare land by confusing the areas to built-

up. On the contrary, the second test requires significantly higher processing time despite obtaining higher 

accuracy and less noisy classification maps (fig.25&26) - additionally, the second dataset yields a higher 

overall accuracy and kappa coefficient value. Therefore, we consider the second dataset for classification 

and test the parameters by tunning the ntree and mtry values. We find that the combination of ntree =2500 

and mtry =2 yields a classification accuracy of 73% at a 95% confidence level and a kappa coefficient value 

of 0.59 

 

 

 

Test VSURF  
Computation Time 

Overall 
Processing Time 

Total No. of 
Variables 

No. of Pred. 
Variables  

OA  
Kappa 

Test 1 0.2 hrs 1.2 hrs 36 10 68.4% 0.52 

Test 2 6.6 hrs 7.7 hrs 421 7 70% 0.53          

Figure 25: Land cover classification comparison based on two datasets. 
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Additionally, our presented outcomes indicate that a kernel size of 3X3 performs well for extracting textural 

features for land cover classification using HR imagery (10m resolution) and; of the eight textural feature 

types, variance, entropy, and mean are significant since they are selected using VSURF (fig.27). These 

outcomes are, however, inconclusive since, through several tests, we make a notable observation that 

descriptive statistics texture measures (variance and mean) and orderly measures (i.e., entropy) are generally 

significant for classification when generated by smaller kernel sizes 3X3 to approx.9X9. In contrast, textural 

measures (homogeneity, dissimilarity and contrast) generated by larger kernel sizes, e.g. 15X15, are 

significant for land cover classification. These findings can be explained by the type of texture measure and 

the possible amount of texture information generated per region defined by the kernel size in relation to 

the image resolution (Haralick et al., 1973).  

 

 

Figure 27: Random Forest generated ranking of variable imporance. 

Figure 26: Subset region's land cover classification results: a) reference image and b) dataset one and c) dataset two classifications. 
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Moreover, there are fluctuations in the selection for predictions of textures generated using different 

spectral bands using the VSURF algorithm. High correlations among the features can explain the variations 

observed in various iterations (Haralick et al., 1973). Therefore, no explicit contrasts are observed that 

distinguish kernel sizes or spectral bands of textures for land cover classification using HR imagery. In all 

cases, however, NDVI is selected and ranked as a significant variable. Despite having high significance for 

image classification, spectral data yields better results in combination with additional features. 

4.2.2.2. Land Use Classification: Deprivation Prediction 

Following the land cover classification, we conduct land use classification. One of the aims of our study is 

to test the ability of multi-hazards to predict deprivation. A comparison between textural features and multi-

hazards, when combined with land cover data, is made. We use the VSURF algorithm to select the best 

features for predicting deprivation. 35 features of 420 are obtained from the texture-based dataset, while 

only seven are selected from the multi-hazard dataset. Both datasets obtain overall accuracy of above 70% 

at 95% confidence (Table 16). The multi-hazard dataset, however, performs slightly better by 2% OA. 

These are results obtained with the tuned parameters of ntree=3000 and mtry=2 for the multi-hazard dataset 

and ntree= 2500 and mtry=6 for the texture dataset.  

Table 16: Land use classification model summary. 

 

 

For the multi-hazard datasets, the confusion matrix shows the confusion of class prediction between low-

density settlements and non-built areas. The lower recall values (0.58) of low-density settlements followed 

by non-built (0.63) reflect this (Table 17). Also, low-density settlements have the lowest F1 score (53%), 

indicating that they were under classified. We find this to occur due to the high vegetation cover that lew-

density settlements have similar to non-built areas in many parts of the city. Additionally, the data we use 

has a resolution of 10m; thus, some houses in low-density neighbourhoods may be undetected.  

As for the textures dataset, a similar observation is made where the low-density settlements are confused 

with non-built areas. Also, we find high-mid density settlements to be confused with both types of deprived 

settlements. As a result, we see that high-mid density settlements have the lowest recall (0.66) (Table 17).  

However, the F1 scores show that deprived type II areas have the lowest value of 63%, indicating the 

model’s underperformance in classifying these areas and classifying high-mid density settlements (Table 

17).  

Table 17: A comparison of precision, recall and F1 score per class for multi-hazard and texture-based datasets 

 Multi-Hazard + LCC  Textures + LCC 

Precision              Recall                F1     Precision              Recall                 F1                  

High-Mid Density 0.73 0.64 0.68  0.74 0.66 0.71 

Low Density 0.50 0.58 0.53  0.53 0.83 0.65 

Non-Residential 0.99 0.89 0.94  0.63 0.73 0.68 

Deprivation Type I 0.85 0.83 0.84  0.84 0.73 0.78 

Deprivation Type II 0.68 0.87 0.76  0.59 0.69 0.63 

Non-Built 0.71 0.63 0.67  0.93 0.67 0.68 

Datasets Total No. of Variables No. of Pred. Variables OA Kappa 

Multi-hazards + 
Spectral Features 

22 7 74% 0.69 

Textural +  

Spectral Features 
420 35 72% 0.66 
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Despite having a high OA, we see from the visual interpretation of the classification that the multi-hazards 

dataset generalizes entire regions and appears to overfit the model. On the other hand, the results of the 

textures though noisy, capture a more realistic scenario (fig.28). 

 

 

Figure 28: Reference image, and land use maps generated from multi-hazard dataset and texture features (top-bottom). 
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Lastly, the investigation of variables used for mapping deprivation from the multi-hazard dataset reveals 

that proximity to industries, building density and proximity to rivers are the leading features for predicting 

deprivation (Table 18). When using texture features, correlation, ASM, and contrast are the most significant. 

Notably, most of the texture features with high importance are generated by large kernels (Table 18). This 

is possibly due to the need to increase the scope of focus by the model, given the highly heterogenous 

nature of urban land use.  

 

Table 18: Variables with leading feature importance as evaluated by Randon Forest (mean decrease accuracy) 

Multi-Hazards + LCC 

 

Textures + LCC 

Features Var. Importance  Features Var. Importance 

Industry_Proximity 263.94  correlationB8_27            95.86839 

Building_Density 194.67  second_momentB8_11       88.13104 

River_Proximity 182.87  contrastB3_27             85.8445 

Road_Density 162.55  correlationB8_23      84.54208 

Rail_Proximity 155.49  contrastB8_27              82.7192 

Dumpsite_Proximity 132.82  homogeneityB8_27          82.27968 

Nighttime_LST 121.72  contrastB2_9              81.71509 

 

4.2.3. Discriminant Functions and VSURF Algorithm Hazard Predictors 

First, by looking at the outcomes of the discriminant analysis and VSURF procedure undertaken as part of 

the land use classification process, significant hazard indicators (variables) for differentiating residential 

settlements are identified (Table 19). This assessment highlights the advantages of discriminant analysis in 

determining the variables used for differentiating specific classes. Both analyses find proximity to rivers, 

night LST, building density, and road density significant. These variables are essential for distinguishing 

settlements and highlight the hazards that the settlements are exposed. While nearness to rivers highlights 

susceptibility to riverine flooding, high building density and low road density – indicate fire susceptibility; 

night LST represents modified micro-climates resulting from urban land transformations (section 3.4.3).  

In addition to identifying the more prone hazards in settlements, our use of hazard proxies that characterize 

settlements enables us to contrast the morphological characteristics of deprived and non-deprived 

settlements empirically. For instance, theoretically, deprived settlements are said to be located in flood-

prone areas. From our discriminant analysis, we find that distance to rivers significantly discriminates 

deprived settlements. This is also the case for high building density and low road density measures. High 

night-time LST (J. Wang et al., 2019) and high road density discriminate high-density settlements; thus, we 

infer that these areas are highly built-up. 
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 Inter and Intra-Settlement Disbursal Of Hazards 

We investigate the household survey results conducted in Kibera and Kariobangi North to understand the 

hazards faced at the settlement and household level. Analysis of the performance of the two settlements 

based on the multi-hazard index is also undertaken to compare results to the settlement level hazards as 

reported by households.   

4.3.1. Settlement Level Assessment 

The highest reported hazard is garbage accumulation in both settlements, at 26% in Kariobangi North and 

19% in Kibera at the settlement level (fig.30). Garbage accumulation in both settlements can be attributed 

to the city's lack of adequate garbage disposal services. For many years, Nairobi has relied on the Dandora 

landfill, which was declared full 25years ago (UNEP, 2018) and only recently was sanctioned for closure 

through a court ruling (Kiplagat, 2021).  

 

Sub-Hazards Hazard indicators Discriminant 
Analysis 

Random Forest 
(VSURF) 

Riverine Flooding Height Above Nearest Drainage 
(H.A.N.D) 

  

Proximity to Rivers × × 

Runoff Geomorphons   

Epidemic Proximity to Garbage dumpsites   × 

Extreme Temperatures Day Land Surface Temperature 
(LST)  

  

Night Land Surface Temperature 
(LST)  

× × 

Transport Accidents Proximity to Railway lines  × 

Proximity to Major roads ×  

Proximity to Airports ×  

Industrial Accidents Proximity to Industries  × 

Density of industries   

Fire Density of buildings  × × 

Road density × × 

NDVI ×  

Air Pollution Sulphur Dioxide (SO2)   

Nitrogen Dioxide (NO2)   

Ozone (O3)    

Carbon Monoxide (CO) ×  

Table 19: A comparison of the significant hazard indicators selected by the canonical discriminant functions and VSURF algorithm. 

Figure 29: Garbage accumulation in the Nairobi River in Kibera, 2019. 
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In Kariobangi North, disease outbreaks (22%) is the second most reported hazard, followed by air pollution 

(12%) and fire (11%) (fig.30). The three leading causes of disease outbreaks are attributed to inadequate 

water drainage systems (23%), poor environmental conditions (20%) and burst sewerage pipes (20%). Air 

pollution in Kariobangi North is reportedly caused by burning garbage (44%) and industries (35%), while 

fire is mainly caused by poor electricity connections (53%) and industrial accidents (24%). In Kibera, air 

pollution (14%) and fire (14%) are the second-highest reported hazards, followed by floods (10%)  and 

disease outbreaks (10%) (). Similar to Kariobangi North, burning garbage is the highest cause of air 

pollution, and poor power connections (60%) is the leading cause of fires in Kibera. The reported causes 

of flooding are blocked drainage channels (33%), insufficient drainage channels (33%), and proximity to 

river channels (31%). Disease outbreaks, on the other hand, are linked to several factors, including the 

reliance on unprotected toilets (19%), bursting of sewerage pipes (18%), poor water drainage systems and 

poor sanitation and hygiene by households (17%). 

 

 

We also explore the two settlements' degree of hazardousness as captured by the multi-hazard (fig.31). 

Generally, both settlements have a degree of hazardousness higher than the city’s average and, when 

contrasted, Kariobangi North has a higher overall degree of hazardousness than Kibera. Specifically, we 

find that all sub-hazards afflict Kariobangi North at a higher degree than the city’s average with the 

exemption of runoff flooding and industrial accidents.  

To compare the settlement level highly reported hazards to the multi-hazard index, we find that Kariobangi 

North faces a high threat of epidemics at a significantly high degree compared to the city’s average and 

Kibera. Similar findings are reported at the settlement level. While the index outcome is due to the 

settlement’s proximity to the city’s landfill, the challenges are more localised at the settlement level; the 

causes are linked to the high accumulation of garbage and infrastructure failures. Further, looking at Kibera, 

the second-highest reported hazard from the household survey is fire. The index reflects this, showing that 

the scores are significantly higher than the city’s average and Kariobangi North. On the other hand, air 

pollution was reported among the top-three hazard threats in both settlements. We find both settlements 

to have higher than average scores from the index, with Kibera’s being significantly higher (>0.9). Similarly, 

the household reporting of air pollution hazards was higher in Kibera at 14% to 12% in Kariobangi North. 

Figure 30: Comparison of hazards affecting Kibera and Kariobangi North 
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Furthermore, both settlements show a high degree of hazardousness for riverine flooding and transport 

accidents from the index. On the contrary, these hazards were not highly reported by the household survey. 

Nonetheless, we found the main causes of flooding in the settlements are blocked drainage channels at 57% 

in Kariobangi North and 33% in Kibera.  Proximity to rivers (29%) and proximity to sewerage plant inlets 

(14%) was also reported in Kariobangi North, and insufficient drainage channels (33%) and proximity to 

rivers (31%) in Kibera. Interestingly, however, these findings reflect the experts' opinion whereby both 

runoff flooding due to blocked drainage channels and inadequate channels was reported and regarded as a 

city-wide threat, including in deprived settlements. However, both expert opinion and the index reflect that 

riverine flooding is a more prominent threat than runoff. These findings are contrary to household 

interviews, where runoff flooding (as implied by the causes of flooding) poses a higher threat in deprived 

settlements. The low extends of river inundation by the drainage channels in Nairobi can explain these 

findings. Additionally, we find that Kariobangi North is also affected by point source runoff due to its high 

proximity to the city’s sewerage treatment plant.   

Additionally, road and rail transport accidents are high in both settlements, as captured by the multi-hazard 

index. However, these findings are contrary to the household survey since only 9% reported road accidents 

in both settlements. Additionally, rail accidents (4%) were only reported in Kibera. Despite this, it is worth 

noting that the index captures Kibera as having high susceptibility to rail accidents compared to Kariobangi 

North. These differences can be related to the scale of analysis. The multi-hazard index is a city-wide 

assessment, thus when contrasted to other types of settlements, Kariobangi North is closer to rail 

infrastructure. However, making an inter-settlement comparison reveals that Kibera has higher rail 

accidents scores from the index than Kariobangi North. The threat to rail accidents can be related to 

operational railway lines cutting through Kibera and not Kariobangi North. This is is reflected in the 

reported causes of rail accidents, i.e. proximity to the railway lines (56%) and insufficient/lack of pedestrian 

crossings (44%) by Kibera residents. Similar to rail accidents, the causes of road accidents are attributed to 

close distance to transport lines (43%)  and insufficient/lack of pedestrian crossings (43%) in Kariobangi 

North. 14% also reported that poorly trained/untrained motorcycle riders cause road accidents. In Kibera, 

the reported causes of road accidents are mainly related to insufficient pedestrian crossings (44%), proximity 
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Figure 31: Multi-hazard index scores of Kibera and Kariobangi North 
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to roads (42%) and inadequate road networks (14%). We were not able to capture the air transport hazard 

threats using the household survey.  

 

Lastly, based on the morphological deprivation dataset (having 136 deprived settlement boundaries); 

computation of the degree of hazardousness based on the overall multi-hazard index reveals that all 

morphologically deprived settlements are located in areas with hazard scores >0.5, with the majority having 

scores >0.8 (fig.32).  

4.3.2. Household Level Assessment 

Following a similar fashion, garbage accumulation is the highest reported hazard at the household level in 

both Kibera (32%) and Kariobangi North (35%) (fig.33). In Kariobangi North, this is followed by disease 

outbreaks (26%), fire (12%) and industrial pollution (12%), following a similar trend with the settlement 

level reported hazards. In Kibera, extreme cold (21%) is the second-highest hazard, followed by fire (11%) 

and extreme heat (10%). Additionally, building collapse is also only reported in Kibera at a low percentage 

(7%).  

 

To understand the interaction of the hazards captured at the household level, we asked the respondents the 

reason as to why they were affected by reported hazards based on four household dwelling characteristics: 

roofing, walls, floor, and geographic location. However, in the household survey design, we acknowledge 

that not all hazards affect the household based on the four aforementioned characteristics. Therefore, for 

Figure 32: Distribution of deprived settlements by degree of hazardousness 

Figure 33: Hazards reported at household level. 
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the reported hazards of disease outbreaks and industrial pollution, we infer that the causes are similar to 

those reported at the settlement level.  

For the hazards reported at the household level but not at the settlement level (extreme heat, extreme cold 

and building collapse), we found the type of flooring (34%) as the highest cause of extreme cold, closely 

followed by the type of walls (30%). Upon investigating the type of floor and wall material of by reporting 

household, we find that 53% have concrete plastering as they type of floor material and similarly 53% have 

iron sheets for walls. Also, all households reporting extreme heat had iron sheets for walls. On the other 

hand, the majority (50%) of households reporting building collapse had mud walls (without modifications) 

followed by mud walls with concrete plastering 38%. In Kariobangi North, only 4% and 1% reported 

experiencing extreme heat and cold. Of those experiencing extreme heat, 75% reported the type of roof as 

the cause. All the households had iron sheets for roofing material. 

 

Next, since fire is considered a significant hazard in deprived settlements, we deem it necessary to 

investigate additional household characteristics. From literature, we also found fire hazards are also 

attributed to the presence of combustible material mong other household characteristics and behavioural 

mannerisms (Ngau & Boit, 2020). These sentiments were also shared by one of the interviewed experts,  a 

resident in a deprived settlement. The expert also highlighted an anticipated cause of fire within deprived 

areas: liquefied petroleum gas (LPG) cylinder explosions. Advancement in technologies has led to a shift in 

the sources of cooking energy from more traditional means such as charcoal and firewood to reliance on 

LPG as reflected in the household data collected, where 48% of all surveyed households rely on LPG, 

followed by kerosene (23%) and charcoal (20%) (fig.34). 

In comparison, a study undertaken in 2014 found that charcoal and kerosene were the primary sources of 

cooking energy in Kibera, whereas only 0.5% of their respondents used LPG (Kamengere, 2014). 

Additionally, a majority of the households rely on electric power (89%) for lighting, and only 11% rely on 

kerosene lamps. These electricity connections are often illegally supplied by cartels who fill a service and 

utility void left by local governments (Langat & DiCampo, 2019). These findings are reflected in the 

settlement level assessment of fire causes. Additionally, the combustible building material is also considered 

a significant enhancer of fires (Ngau & Boit, 2020). Therefore, we also look into internal housing 

modifications made by households, such as polythene-based rugs/carpets (fig.35). Generally, synthetic 

materials are considered highly flammable in comparison to natural materials (Michalovič, 2014). We find 

that 26% of the respondents have bare/earth floors with polythene carpets, and 19% have polythene 

Figure 34: Reported sources of cooking energy in surveyed households. 
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ceilings. Despite the low figures, their presence in densely populated areas poses a high risk of combustion 

and fire spreading. 

Furthermore, since riverine flooding was considered a significant threat for deprived settlements by the 

experts, we investigated the causes of flooding at the household level. Important to note that both 

settlements had low reporting of flooding at the household level compared to other hazards, with only 6% 

in Kariobangi North and  5% in Kibera.  In both settlements, the dwelling location is the main reason 

behind the households being affected by flooding (33%- Kibera, 40%-Kariobangi North). Interestingly, in 

Kibera, we found the type of roofing (29%) as the second most reported cause of flooding at the household 

level. In Kariobangi North, other reasons, including poor drainage infrastructure was the second largest 

cause of flooding, indicative of runoff flooding. In terms of household characteristics, the type of walls 

(20%) was the third reported cause of flooding at the household level in Kariobangi North.  

Since the location of dwellings was the highest reported cause of flooding, and following the expert 

opinions that riverine flooding is a major hazard in deprived settlements, we investigate the distance of 

households from rivers. All households that reportedly experienced flooding due to their location had a 

collective average distance from rivers of 21meters, a significantly low value compared to the total average 

of 41meters for all surveyed households. In Kibera, the average distance from rivers of households 

experiencing flooding was 20meters, while in Kariobangi North, it was 27meters. Furthermore, the 

distances from rivers varied most in Kibera, with 71% of households reporting flooding being less than 

10meters from the rivers. The remaining 29% were over 50meters from the rivers. This variation is possibly 

due to other flooding causes such as insufficient drainage systems and blocked drainage systems (runoff 

flooding), as captured in the above reporting, expert interviews and settlement level analysis.  

4.3.3. Location And Household Characteristics: What Do They Tell Us About Hazards In Deprived Settlements? 

From the multi-hazard analysis, we find that deprived settlements are generally located in hazardous areas. 

Additionally, we find that their exposure to hazards goes beyond the settlement's location and that there 

are intra-settlement and household variations to hazard exposure. Therefore, in this section, we first explore 

the understanding by experts of durable building materials and how those translate into different types of 

settlements in the urban space. Next, we investigate household characteristics, including reasons for living 

in the surveyed settlements, type of building material, and rental income. Further, we analyse the 

relationship between these household characteristics.  

Figure 35: Cemented floor with polythene-based carpet 

Source: Household survey, Nairobi, 2021 
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4.3.3.1. Discourse on Durable Housing 

A discussion with the experts involved ranking from most to least durable different types of settlements 

(and housing) found in urban areas (tents, pavement dwellings, slums, informal settlements, formally 

planned settlements, shacks, old Swahili housing). The list, by large, captures different types of settlements 

and housing options within the study area, including non-conventional shelter options such as tents and 

pavement dwellings. 

Among our first findings, it’s highlighted that tents are no longer present in deprived areas within Nairobi 

and remain an emergency/transition shelter option found in IDP and refugee camps. Acknowledgement 

is, however, made that this reality could vary in different regions globally. On the other hand, Pavement 

dwellings were highlighted as a housing option that often gets left out in the discourse on informality. These 

findings are also captured by our analysis of household dwelling characteristics discussed below.  

Next, we find that some clustering is possible for some of the housing/settlement options listed. For 

example, shacks were considered a housing option captured under slum settlements. Both were, however, 

regarded as better classified under ‘informal settlements’. The discussions highlighted the overlap in our 

presented options, which we acknowledge as the complexity of socio-spatial marginalization. Further, there 

is the diverse coexistence of multiple housing types in what we refer to as deprived settlements in this study 

(see Mwau & Sverdlik, 2020). Nonetheless, the rankings result in interesting results, where surprisingly, 

mud-walled houses are considered most durable after stone (quarry stone) and brick-walled houses (see 

fig.36).  

Figure 36: Common types of building material used in deprived settlement dwellings in Nairobi  

Source: Household survey, Nairobi, 2021 
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Further, to unpack the complexity of housing/settlement options presented, we look into the reasoning 

given for the rankings by the experts. Reasons given for the rankings are based on the characteristics of 

building material and structural integrity, such as their robustness and adherence to building standards. 

Interestingly, the ‘number of parties involved in putting up the structure’ was also highlighted since it is 

closely linked to building standards. Also, the effects of tenure security on the pattern of development and 

living standards (quality of life-QoL) are emphasized. Unanimously, the experts highlight that the quality 

of building material is highly influenced by the level of investment - a factor of both willingness and financial 

ability, thus stressing the socio-economic aspect of housing.  

 

Consequently, we identify five primary elements: spatial arrangement, legal status, income group, type of 

housing and building material that summarize the discussion. Collectively, the elements form a conceptual 

model for the discourse on durable housing (fig.37). For ease of interpretation, we include examples 

presented to the experts for ranking. The x-axis is represented as a continuum given that there are no 

explicit ‘cut-offs’ for the elements. Also, by considering the elements to indicate likelihood, e.g. stone-walled 

houses are more likely to belong to high-middle income households with formal tenure and, in a planned 

neighbourhood, we better understand the different urban settlements/types of housing. We, however, 

acknowledge that this is a simplification of the very complex reality, especially in deprived settlements, 

especially when it comes to the type of housing (see fig.38). The y-axis shows the interaction among the 

elements, moving from the settlement to the household level and vice versa.  

From our synthesis of the discourse on durable housing, the spatial arrangement of settlements is seen as 

an important ‘entry point’ in analysing urban settlements. Meaning, spatial patterns of settlements indicate 

their legality/tenure status and socio-economic conditions and status of the inhabitants. These give insight 

into the probable type of housing and the building materials used. Notably, this presents a top-down 

approach to understanding settlements and, by large, describes geospatial data and methods of analysing 

settlements. However, the inverse (a bottom-up approach) is also applicable whereby the type of building 

material informs the kind of housing, from which inference on the socio-economic and tenure status can 

be made. The cumulative deductions are revealed through the spatial arrangement of the settlement.  

Figure 37: Discourse on durable housing as represented by five primary elements characterizing urban settlements 
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Figure 38: Image depicting three types of building material in one area. On the right is a stone-walled house with a second storey for an 

iron shack; on the left, a mud with concrete plastering house. 

Source: Household survey, Nairobi, 2021 

4.3.3.2. Why are Deprived Settlements Located in Hazardous Areas? 

According to the experts, deprived areas are affected by hazards due to two main reasons: their location 

and the quality of the structure. As highlighted by the experts (also in literature see Ramin, 2009; Wekesa, 

Steyn, & Otieno, 2011), deprived settlements are located in non-conventional land use areas, including 

protected areas such as riparian reserves, abandoned quarries and generally land with low value. These, 

however, don’t apply to all deprived settlements since some are found next to high-income 

neighbourhoods. Additionally, deprived households also exist in more formal neighbourhoods through 

unplanned or illegal in-fill practices. Further, the nature of deprivation in Nairobi is highlighted to have 

evolved over the years. Presently, the development of high-rise tenements is highlighted as a popular low-

cost housing solution that accommodates the lower-middle-class (or upper-lower class) residents (see Mwau 

& Sverdlik, 2020). Nonetheless, the experts highlight a trade-off between hazard exposure to opportunities 

such as wealth, industries, markets, and mobility systems for the urban poor.  

 

From the household survey, the interviewed households in Kariobangi North (42.2%) reflected the experts' 

sentiments by stating that their main reason for living in the settlement was the closeness to opportunities 

followed by rent affordability (37.8%) (fig.39). The main reason for the Kibera residents was the inverse, 

Figure 39: Respondents reasons for selecting the settlement they live in. 
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with the affordability of rent (33.3%) leading, followed by closeness to opportunities (32.3%) (fig.39). 

Closeness to services was the third leading reason for residents in both settlements.  Further, the household 

survey shows that the paid rent per month by residents in Kibera is lower than in Kariobangi North. The 

majority of the Kibera residents pay approx. 20-30 USD in rent per month whereas Kariobangi North 

residents pay approx. 40-50 USD (fig.40). These values are significantly low compared to the reported 

median urban rental expenditures of approx.300USD in Kenya (KNBS, 2018). Further, only Kibera 

reported respondents who didn’t pay rent, mainly because they/their families owned the structures.  

 

Discussions with the experts further reveal that rent affordability is linked to structure quality determined 

by the type of building materials used.  In terms of building characteristics, we find that the type of walls is 

the important determinant for the rent. This was done by comparing the material used for roofing, walls, 

and floors in the surveyed settlements (fig.41). We find similarities in the materials used for roofing and 

flooring in the two settlements. Iron sheets are the most commonly used material for roofing and concrete 

plastering for flooring. On the other hand, significant differences are recorded for wall construction 

materials. In Kibera, mud with concrete plastering (51%) is the most common type of construction material, 

followed by iron sheets (23%) and mud (without any modifications) (19%). In Kariobangi North, stone 

walls (50%) are the most common, followed by mud with concrete plastering (27%) and iron sheets (17%). 

Figure 40: Comparison of house rent paid per month in Kibera and Kariobangi North 

Figure 41: Comparison of building materials used for roofs, walls and flooring in the surveyed settlements. 
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Folowing these interesting results and considering the experts opinions, we analyse the relationship between 

building material and rent using the household dwelling characteristic with the most variance – walls. Since 

bricks and wood have low reporting in both settlements, we exempt them from the analysis. We find that 

housing with mud walls and concrete plastering, iron sheets and mud mainly cost approx. 20-30 USD 

whereas those made of stone walls are, however, more highly-priced at approx. 40-50USD (fig.42).  

 

Lastly, as demonstrated by our analysis (section 4.3.2), literature and the expert interviews, the location of 

a settlement hence the dwelling, is also influenced by tenure security. Ofter, where deprived areas develop, 

they tend to lack tenure security, leading to structures with poor quality material. Two main reasons given 

for this relationship are (i) lack of access to financial mechanisms (Meinzen-Dick, 2009) and (ii) fear of 

demolitions as a form of forced evictions. Additionally, the building material used for housing influences 

the household’s exposure to hazards. Descriptions given by two of the interviewed experts, who are 

residents of deprived settlements, highlighted these intra-settlement variations and further exposed the 

intra-settlement socio-spatial marginalization that exists in deprived settlements as described below:  

• Houses near the river are often constructed using temporary materials due to their exposure to 

hazards. This is the preferred approach by slumlords to incur less financial losses in the advent of 

flooding. 

• Housing near the bus stops, main entries into the settlement, and main settlement roads constitute 

more permanent housing due to the economic lucrativeness. These locations allow for more 

commercial use of the dwellings. 

Our study highlights the complex nature of deprivation and the interplay of deprived settlement 

characteristics comprising tenure security and income that influence the location and building 

characteristics, which further determine the exposure to hazards of households. Using Kibera as an example 

where 7% of the households reported to be affected by building collapse (there were no reports of building 

collapse in Kariobangi North) (fig.33). The main reason for building collapse was found to be due to poor 

construction material (32%), followed by poor construction techniques (27%) and malicious demolitions 

(24%). Additionally, the dwelling walls were the most affected by building collapse, with a reporting of 

53%, followed by the type of roof at 33%. Upon investigation of the type of building materials used for 

walls for households reported to be affected by building collapse, 50% had houses made of mud walls and 

37.5% of mud with concrete plastering.  

Figure 42: Comparison between building material and rent. 
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Despite mud being ranked third highest in durability after quarry stone and bricks, especially when modified 

by coating the surface with concrete plastering, these results aren’t surprising. First, because the 

construction techniques are often poor (see fig.36). Also, since most of the residents are tenants, the 

responsibility of renovating the house belongs to the landlord. And, as demonstrated above, the landlords 

tend to lack a moral obligation to provide adequate and safe shelter for the tenants, an issue propagated by 

the privatization of housing that has resulted in the greed of maximizing profits at the expense of the lives 

of the urban poor.  

 ‘Slums’, Data, GEO-Ethics and Scientific Communication 

4.4.1. Alternatives to the Term Slum 

Literature highlights that the term ‘slum’ bears a negative connotation, resulting in alternative terms such 

as deprived settlements as applied in this study. We also find that deprived settlements have been 

misrepresented for decades under the term ‘slum’, globally adopted to refer to the urban residents living in 

squalor (Mayne, 2017). As further captured in his book, “Slums: The History of Global Injustice,” Alan 

Mayne highlights the detrimental effects of this misrepresentation that goes beyond the terminology into 

influencing the types of interventions undertaken globally in attempts to eradicate slums. 

We, therefore, find it essential to find out the terms used by our interviewed experts in their work. We find 

that all the experts use different words, with “informal settlements” being the most popular. Alternative 

terms such as “deprived settlements”, “spontaneous settlements”, and “home/community” are also 

mentioned (Table 20). The main reason behind the use of alternative terms is the need to humanize the 

residents of the said settlements, which enables the experts to shape and restructure their approaches in 

“slum” interventions and creates a sense of positive urgency in developing solutions for the residents of 

deprived settlements. The urban systems officer (expert) highlights this (paraphrased) by stating that the 

use of different terms other than ‘slums’: 

“…it gives the settlements a human aspect and allows one to view the people settled there as clients. This allows for one to 

understand the settlement better, including why the people choose to live there….” 

~Urban systems officer 

 

Table 20: Summary of alternative terms to 'slum' used by interviewed  experts. 

Alternative Terms Urban 
Policy 
Analyst 

Urban 
Systems 
Officer 

Human 
Settlements 
Program 
Officer  

Spatial 
Data 
Expert 

Professor 
in 
Geography 

Deprives 
settlement 
resident 
(1) 

Deprived 
settlement 
resident 
(2) 

Informal  × ×   ×  × 

Spontaneous   ×      

Deprived    × ×    

Low income      ×   

Home/Community   ×   ×  

Ghetto       × 

Of the responses, the term ‘Home/community’ emphasizes the need to adopt more applicable terms that 

are dignifying and how such seemingly minor changes help reshape how deprived settlements are viewed 

and studied/analysed. Additionally, the description of what a ‘slum’ is (paraphrased) by a deprived 

settlement highlights that the residents of these settlements are not blind to the challenges they face.  

“ Slums are home to a community of people living together but faced with many challenges that are beyond their control.” 

~Informal settlements resident I 
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Further, according to the programme officer (human settlements), a communal approach to defining the 

settlement can easily be translated into area-based approaches in defining settlements. Thus, presenting the 

opportunity to capture the totality of the challenges faced by the community and, in turn, provide 

opportunities for finding solutions. 

“…there’s no personal space. The community is interconnected, and individuals cannot detach themselves from the 

settlement…they share spaces and utilities such as communal bathrooms and toilets….” 

~Human settlements program officer 

4.4.2. Recommended Level of Aggregation/Disaggregation 

As part of our study, we also aimed to investigate the recommended scale for mapping deprivation. The 

expert interviews reveal that the aim of the research determines the scale of use. However, there is a lack 

of a unified ‘format’ for data disaggregation and aggregation. Having identified three 

disaggregations/aggregation scales for deprivation mapping (ward level – lowest administrative unit in 

Nairobi, grids, and neighbourhood level -street block), they are presented to the experts.  

Generally, street-blocks are found the most favourable unit for analysing deprivation. The main reason 

invoked from Tobler’s first law of Geography is that “everything is related to everything else, but near 

things are more related than distant things” (p.236, Tobler, 1970). Furthermore, street blocks are helpful 

for localized reporting of findings, e.g., to the community. On the other hand, administrative units are 

reportedly most favourable for policy recommendation and implementation of interventions. At the same 

time, grids are the least prefered/recommended unit for analysis, except for scientific research purposes. 

Further, a distinction is made between two steps of research, i.e., analysis and reporting findings. 

Specifically, the reporting of results is seen as a more critical step since the findings of studies are intended 

for wider audiences than the analysis description.  

4.4.3. Slum Data and Actors 

Our study also aimed at identifying data sources and their use on deprived settlements. From the expert 

interviews, we find that there is a high reliance on non-spatial data. All interviewed experts rely on 

household interview generated socio-economic data and, only three of the experts rely on spatial data for 

their analysis. The main source of data being national census data. Besides the national census, the experts 

highlight that data on deprived settlements is hard to come by. Most of the data is generated by CBOs or 

NGOs working locally with the communities. Additionally, academic institutions and active local 

governments were identified as deprived settlement data producers. On the other hand, more actors were 

identified as interested groups in accessing data on deprived settlements. They comprise international 

development partners, donors and funders, individuals, and government bodies. This highlight’s an 

imbalance between data production and demand.  

Additionally, the experts highlight two main challenges facing data generation (and access) on deprived 

settlements: lack of collaboration between actors and a needs-driven approach to data generation. The 

experts state that actors often work in silos, resulting in unstandardized data at the local level, which hinders 

interoperability. Also, generally, there are no standardized frameworks for household data collection. A 

needs-driven approach, on the other hand, results in the generation of project-specific data. Meaning, the 

spatial coverage is limited since city-wide projects are rare. Also, only data on specific topic areas are 

captured. Thus, the data production process isn’t dynamic or continuous. Additionally, the lack of 

centralized open-data repositories and coordination bodies within cities hinders data access and results in 

‘unnecessary’ data reproduction (an expensive affair). In addition to the challenges mentioned above, data 

on deprived settlements often lack corresponding metadata and attribution.  



60 
 

4.4.4. Geo-Ethical Concerns  

Regarding the use and sharing of data on deprived settlements, we focused on issues around the household 

data, and EO and GIS generated data capturing deprivation. The experts were interviewed on privacy issues 

and foreseeable concerns with advancements in the production of VHR data and the use of artificial 

intelligence methods in the analysis deprivation. The results show that when it comes to household data 

collection, personal information that includes personal identification details, health records data, and tribal 

related information is sensitive and should be protected. The development of open data repositories for 

data on deprived settlements was encouraged, with recommendations that the communities be the primary 

data custodians.   

Regarding VHR data, the only concern is the residents' privacy, including exposing their locations, as this 

might subject them to evictions (due to their illegality). Notwithstanding, VHR imagery was prefered to HR 

imagery since deprived settlements are often crowded, making it hard to analyse using coarse imagery. A 

severe concern raised was the probable threat of combining VHR and artificial intelligence - since there are 

no known and set limitations to what AI algorithms extract from data. Furthermore, despite the advantages 

presented by EO in the mapping of deprived settlements, the accuracy of the mapping outcomes were 

questioned, including the validation processes. Especially since the methods are primarily top-down and 

most experts, including technocrats and organizations working in and with deprived communities, have 

little to no knowledge of EO based methods. Top-down approaches were further criticized for not 

integrating – especially the social dynamism of deprived communities. Despite the critical concerns, no 

expert had objections to using EO and AI methods. The principal recommendation is that 

scientists/researchers develop transferable knowledge that can be synthesized and used by practitioners 

and communities for local operations.  

4.4.5. Democratization of Science 

With advancements in science and technology, the participation of citizens is crucial. Dijkstra, Bakker, Dam, 

& Jensen (2020) highlight that communication about science goes beyond communicating scientific 

findings, and now more than ever, there’s the need to democratize science since its implications affect 

everyone. Further, they highlight the need for inclusive practices and acknowledge the importance of citizen 

participation in identifying societal challenges and solutions. It is for this reason that we ask local experts 

for their opinions on this matter. We recognise the following themes that highlight current challenges, 

causes of the challenges, and some possible solutions from the discussion. 

(i) Patch-Work Research  

Due to the previously mentioned challenge of project-based approaches to interventions, most research 

ends up being “patchwork” since they lack continuity or connectivity to existing and previous works. Thus, 

research projects gradually lose their potential to impact societies positively. This highlights the dire lack of 

collaboration among actors in different fields of study. Additionally, we find that the lack of cooperation 

among actors working with deprived settlements worsens the situation. Further, we find that lack of 

collaboration is also an identified challenge to developing multi-hazard approaches (Melanie S. Kappes et 

al., 2012).  

(ii) Extractive Research 

The possible causes for the challenges highlighted above seem to arise from the lack of sufficient 

engagement of communities in research practices. We find that researchers often fail to engage the very 

communities they are researching through simple procedures such as data collection processes, where often 

non-community members are contracted instead of the community members. Also, collected data and study 

findings are hardly communicated back to communities. Generally, it is seen that researchers lack the 

flexibility to adapt their research interests to fit community needs or priorities. Therefore, from a 
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community member’s standpoint, researchers approach communities with pre-defined problems. As a 

result, communities are treated as subjects of science and not a part of it. Communities are locked out of 

the process of formulating their narratives and understanding their challenges despite having an interest. 

For instance, from the household survey, 9 out of 10 households were interested in our research findings 

with their preferred language of communication being both English and Kiswahili (the official and national 

languages in Kenya) and, the top three preferred modes of communication being through Social Media 

platforms, website links and posters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 
 

5. DISCUSSION  

The main aim of this study was to analyse the relationship between deprivation and hazards in cities. The 

aim also formed the title of this study, from which three sub-objectives were formulated. The first is to 

identify hazards within our study area and spatial indicators for constructing a multi-hazard index. Secondly, 

we aimed to test the predictability of deprivation from multi-hazards. This was contrasted to the use of 

conventional data. Also, the multi-hazard index was tested by comparing the degree of hazardousness 

among different types of residential settlements within Nairobi. Thirdly, to test the realizations of the multi-

hazard index, household interviews were conducted in two types of deprived settlements within Nairobi.  

In this chapter, the research findings are discussed, and the aim of the study is evaluated. Challenges that 

were encountered are also discussed, and possible solutions presented. 

 Identification of Hazards and Hazard Indicators 

Identifying hazards to construct the multi-hazard index was a challenge for this study because very few 

studies have conducted interdisciplinary multi-hazard analyses, especially in urban areas (Greiving, 2006; 

Melanie S. Kappes et al., 2012). The challenge extends to identifying spatial data that serve as proxies of 

hazards due to unavailability of data, including coherent frequency, magnitude or occurrence of the hazards 

data. Further, analysing multi-hazards requires multi-source data with different measurement units (Melanie 

Simone Kappes, 2011). Thus, we implement a simple method for multi-hazard assessment –a susceptibility 

index implemented at the city scale. 

Generally, we find that the inner city is highly hazardous in comparison to the periphery. And that riverine 

flooding, road and rail accidents are spread throughout the city, whereas fire and industrial accidents have 

distinct hotspot areas. Interestingly, fire hazard hotspot regions shape major deprived settlements such as 

Kibera and Mukuru. Runoff flooding is moderate through the city, with the river channels having high 

susceptibility. Despite having lesser development, the city’s eastern region has a higher degree of 

hazardousness due to extreme temperatures, which can be due to the climatic zones of the country. Air 

pollution, on the other hand, follows the opposite trend. Where the central and western regions are more 

hazardous, we found that the winds in Nairobi typically blow from the city's eastern region. Epidemics and 

air transport accidents have hotspots regions innately influenced by the features used to assess the hazards, 

i.e., the location of dumpsites and airports, respectively.   

 Relationship between Hazards and Deprivation 

Our analysis revealed that the inner city is the most hazardous region. As a result, in comparing the exposure 

to hazards of different types of deprived and non-deprived settlements, we find that deprived settlements 

type I and high-mid density settlements are prone to more hazards than deprived settlements type II and 

low-density settlements. Generally, deprived settlements type I and high-mid density settlements have a 

similar trend for all analysed sub-hazard categories with exemption to fire hazards. Since the assessment of 

fire hazards is based on indicators that capture the physical traits of settlements, we find that similarly, 

deprived type II settlements, despite their primary location being farther from the urban core, have high 

susceptibility to fire hazards. Deprived settlements are often crowded and contiguous, thus highly dense 

and lacking adequate road infrastructure. These findings are in agreement with the expert opinions that fire 

hazards are more prone in deprived settlements.  

Also, another notable difference between deprived settlements type I and high-mid density settlements is 

the variance in the location of the samples. High-mid density settlements have a higher variance and 

negatively skewed distribution for most hazards (riverine flooding, transport accidents, industrial accidents, 

extreme temperatures and air pollution), indicating that they are not typical to hazardous areas. The variance 
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can, however, be explained by the diversity in these settlements. Our morphological categorization of high-

mid density settlements comprises different types of settlements whereby typically, the highest density 

settlements are closer to the urban core. In contrast, the mid-density settlements are towards the periphery.   

Low-density settlements are the least susceptible to hazards since they are located in the periphery. The 

assessment, however, reveals that some samples of low-density settlements are located in hazardous areas, 

with the highest variances observed for susceptibility to runoff flooding, epidemic hazards and air pollution. 

Further, the high variance in the location of low-density settlements reflects the changes that Nairobi has 

undergone, from the historical colonial period where these settlements were typical to the northwestern 

region. This is demonstrated especially by the variance in air pollution susceptibility. Whereas the data is 

positively skewed, indicating that many low-density settlements are in the western region, where exposure 

to air pollution is higher, there are instances of low-density settlements in the less hazardous eastern region. 

Similarly, deprived settlements type II in the less hazardous areas, especially the city's western region, reflect 

these changes.  

These changes show the implications of urban governance processes. Like many colonial cities (Home, 

2014), Nairobi has a prejudiced history against non-domineering social groups. From the case study review, 

we find that historical influences are present in the city. These are reflected in both the location of 

settlements and the type of buildings. In terms of location, we find from the multi-hazard index assessment 

that the city's central region is most susceptible to hazards. In reference to the colonial planning, these areas 

were designated for non-Europeans (fig. 6). Additionally, poor urban governance systems demonstrated by 

the historical development of the city, characterised by city boundary extensions that are unaccompanied 

by plans, policies that are implemented without adequate systems in place, have propagated inequality.  For 

instance, the privatization of housing, a primary need and basic public good, resulted in inadequate 

provision of low-cost housing and the failure to adhere to planning and building standards (Gatabaki-

Kamau & Karirah-Gitau, 2004). The challenge extends to the lack of services and infrastructures in, 

especially, deprived settlements. As a result, deprived settlements have proliferated formally planned areas. 

Further, illegal urban infill practices as observed from satellite imagery (also mentioned by some experts) 

have resulted in denser planned residential neighbourhoods.  

These effects are further demonstrated by assessing indicators used by the analysis to discriminate 

settlements. We found that deprived settlements are characterized by low vegetation cover, high proximity 

to rivers, high building density, low road density and high proximity to airports (section 4.3.1), whereas the 

opposite characterises low-density settlements. These differences highlight the hazardous nature of 

deprived settlements. They also indicate the stack socio-economic polarization in Nairobi since roads and 

vegetation are morphological traits that distinguish affluent neighbourhoods from deprived 

neighbourhoods (Kohli et al., 2012; Kuffer, Barros, & Sliuzas, 2014). On the other hand, high-mid density 

settlements are primarily characterized by high proximity to major roads, high nighttime LST, CO, high 

road and building density. These were interesting results of our study that though non-indicative of 

deprivation, these hazard indicators highlight the more anthropogenic effects of urban development that 

contribute to hazardous cities.  

Further, by assessing the type of buildings and materials used for construction in two deprived settlements 

(type I and II), we found that buildings made of durable material are much more high priced (monthly rent) 

and that the location of a dwelling within a settlement influences the type of building materials. Further, 

more hazard-prone areas are also areas with non-durable housing (both in terms of building material and 

techniques) and thus cheaper, a technique used by slumlords to minimize losses in the advent of a disaster. 

Also, from expert discussions, it was inferred that the household’s income affects the kind of housing. 

These findings were reflected by the household survey, whereby affordability of rent was the second most 

report reason for living in a deprived settlement, following the need to access opportunities. Both are 

reasons closely tied to the socio-economic well-being of these populations. We, therefore, find that socio-
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spatial marginalization is rampant at both the intra-city and intra-settlement levels, where the poorest are 

most exposed to hazards.  

We further contrast the multi-hazard index and household survey outcomes. We found that despite some 

hazards having high scores from the index, their reporting at settlement and household levels was low. The 

difference in scope of analysis can explain these differences. While the index is a broad assessment, the 

household responses are more localized. Further, the selection of multi-hazard proxies proved sufficient at 

capturing the hazards.  However, as shown by the household responses, we acknowledge that better proxies 

can be used for some hazards. For instance, specific to rail and road transport accidents, the absence of 

pedestrian crossings is one of the leading reasons that was reported. Therefore, these data would better 

capture these hazards in place of Euclidean measures from road and rail infrastructure. Also, epidemics 

measured from the presence of dumpsites would be better captured using disaggregated data. Especially 

given that garbage accumulation was the highest reported hazard at both settlement and household levels. 

Generally, we found settlement level hazards similar to those reported at the household level, except for 

hazard exposures influenced by the characteristics of the dwelling, such as extreme temperatures (section 

4.3.2). 

Given these pre-existing conditions, the projected increase of disasters and climate change-related risks in 

urban areas will only accentuate the risks inhabitants of deprived settlements face (Revi, Satterthwaite, et 

al., 2014). Therefore, proactive measures such as adaptation and building resilience must be undertaken and 

targeted at those living in deprivation: an approach proposed by the United Nations, (2017) New Urban 

Agenda for the achievement of Sustainable Development Goal (SDG)11 aiming at inclusivity, safety, 

resilience and sustainability in cities.  

 Geospatial Data and Methods 

Geospatial data and methods have proven revolutionary in assessing urban poverty by filing a gap that has 

existed for decades – the mapping of slums. The importance of geospatial data is captured by the discourse 

on durable housing (section 4.3.1) that demonstrates how the spatial arrangement of settlements provides 

a way to understand more complex challenges at more local levels, e.g. household level. Additionally, they 

have proven useful through this study on multi-hazard and deprivation—our attempts at using multi-hazard 

datasets to map deprivation results in high model accuracies. However, the data generalize the results. As a 

result, we find that conventional texture features, although obtaining a slightly lower accuracy and rely on 

many more predictor variables, yield better results. 

Furthermore, despite the aforementioned advantages, geospatial methods are generally top-down since they 

limited interaction with the people being mapped. Furthermore, these techniques have been found complex 

and needing simplification for comprehension and transferability. The use of satellite imagery has further 

been found to potentially infringe on the locational privacy of the urban poor, thus putting the already 

vulnerable in worse situations such as the potential threat of eviction. These issues are alarming and need 

addressing, especially since higher resolution imagery is being produced and more powerful automated 

artificial intelligence algorithms are developing. In addition, the challenges of deprived settlements go 

beyond acknowledging their existence since they are faced by layered deprivations (as highlighted in the 

definition provided) and therefore require a combination of physical and social scientific approaches. 

Dijkstra, Bakker, Dam, & Jensen (2020) highlighted that one way of including social scientific knowledge 

in science and technology's growing and evolving body is through participatory approaches. Such 

approaches have produced a wealth of knowledge and the posterior adoption of the tools by communities 

to address other challenges (Cornwall & Jewkes, 1995). This example shows the advantage of participatory 

approaches at redistributing power and demonstrates the importance of empowering communities through 

their inclusion in finding solutions to their problems. However, from the literature review, the lack of 

integration of participatory approaches has persisted (Cornwall & Jewkes, 1995), creating a nuanced 
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challenge. Where, on the one hand, the physical scientific methods provide transparency by offering a 

common motivating factor to influence decision making (Borie, Pelling, Ziervogel, & Hyams, 2019), i.e. 

mapping deprivation; on the other hand, the top-down nature of EO data and methods challenge the notion 

of creating and strengthening the relationship between science and society.  
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6. CONCLUSION AND RECOMMENDATIONS 

While typical assessments rely on occurrence or magnitude data for hazard analysis, the unavailability of 

these data resulted in the construction of a multi-hazard susceptibility index. Multi-hazard assessments 

allow for the estimation of the overall degree of hazardousness in a city (Melanie Simone Kappes, 2011),  

as demonstrated by the hotspot analysis carried out in this study. Our study shows that settlements located 

in the inner city are prone to hazards. As a result, both deprived settlements and high-mid density 

settlements are affected. Therefore, the study agrees with the literature's perception that deprived 

settlements are located in hazardous areas. However, another category of deprived settlements is located in 

the city’s periphery and are thus less prone to hazards. Hence, better and more consistent approaches for 

delineating deprived settlements is required for future studies to ensure that the different types of 

settlements are adequately captured.   

Further, since a susceptibility index acts as a useful starting point for localized hazard assessments, we 

conducted household interviews with two aims in mind. We first localized the hazard assessment, whereby 

we uncovered an interesting finding that there is intra-settlement socio-spatial marginalization. However, 

provided the small proportion of households, the survey is considered an indicative sample. Secondly,  we 

found that the proxies selected for indicating respective hazards performed well. Nonetheless, we 

acknowledge that better-suited indicators can be used for some hazards. Some indicators were 

acknowledged while constructing the index, but the lack of open data hindered their operation. 

Nonetheless, all the data used in our analysis comprises open geospatial data, which proved satisfactory for 

constructing the multi-hazard index. In addition to employing a simple multi-hazard assessment method, 

our study provides a simple to implement and easily replicable technique for hazard assessment. Further, 

by considering multi-hazards simultaneously, dependencies and interrelations between hazards were also 

made (Gallina et al., 2016), leading to the further understanding of hazards (section3.4.3).  

Lastly, at a practical level of assessing urban poverty, the importance of the terminology used to refer to 

deprived settlements is highlighted. The continued efforts to find more dignifying terms is commended and 

seen to redefine the services and approaches employed in works aimed at improving the lives of the urban 

poor. Specifically, as demonstrated by the failure of previous ‘slum’ intervention programmes and as 

captured by Mayne (2017), this can be done by employing people-centred methods. For instance, we 

conducted expert interviews to aid in identifying hazards within our study area. We found that interviews 

by experts in the related fields covered by this study provided insightful information, e.g., identifying 

hazards. The interview outcomes matched the results of the different assessments conducted in this study, 

highlight the importance of infusing local knowledge in scientific studies. Thus, the importance of people-

centred methods is reflected in this study and recommended for integration in geospatial approaches that 

are typically top-down.  
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8. ANNEX 

 Research Design Matrix and Process 

Using a case study approach, our research integrates participatory principles and combines qualitative and quantitative 
methods to answer the research questions. These are summarized in the research design matrix below.  
 

S.O.nr
. 

Research Question Data Requirement  Participatory 
Principle 

Method 

1 Which hazards are deprived areas 
predisposed to?  

 

Which open geospatial data can be 
used as hazard indicators? 

Key informant 
interviews (local 
experts and field 
experts) 

 

Informal meetings with 
research groups 

 Consultation Literature review 

 

Database search 

 

 

2 Are deprived areas more likely to 
be located in hazardous areas in 
relative comparison to formal 
settlements? 

 

What share of deprived areas are 
located in hazard-prone areas?  

 

Can a multi-hazard dataset be used 
to predict deprivation? 

How do multi-hazard datasets 
compare to textural features in the 
prediction of deprivation? 

Geo-spatial and EO data 

 

 

 

 

 

 

 

 

Label data (training and 
testing samples) 

 - GIS Spatial analysis 

Spatial statistical analysis 

Descriptive statistics 

 

 

 

 

Multivariate analysis of 
variance (MANOVA) 

Exploratory analysis 
(Discriminant analysis) 

Machine learning (RFC) 

3 How are hazards spread within a 
deprived settlement? 

Household survey  Consultation 
and Inclusion 

Descriptive statistics 
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 EM-DAT Nairobi’s Recorded Disasters (2009-2019) 

 

Source: EM-DAT, CRED / UCLouvain, Brussels, Belgium 

  www.emdat.be (D. Guha-Sapir) 

Version: 2021-04-21 

File creation: Wed, 21 Apr 2021 11:05:23 CEST 
 

Disaster Group Disaster Subgroup Disaster Type Disaster Subtype 

Natural Biological Epidemic Bacterial disease 

Natural Biological Epidemic Bacterial disease 

Natural Biological Epidemic Bacterial disease 

Natural Hydrological Flood Riverine flood 

Natural Hydrological Flood Riverine flood 

Natural Hydrological Flood Riverine flood 

Natural Hydrological Flood Riverine flood 

Natural Hydrological Flood 
 

Natural Hydrological Flood 
 

Technological Technological Industrial accident Explosion 

Technological Technological Industrial accident Collapse 

Technological Technological Miscellaneous accident Fire 

Technological Technological Miscellaneous accident Collapse 

Technological Technological Miscellaneous accident Fire 

Technological Technological Miscellaneous accident Other 

Technological Technological Miscellaneous accident Collapse 

Technological Technological Miscellaneous accident Fire 

Technological Technological Transport accident Road 

Technological Technological Transport accident Road 

Technological Technological Transport accident Road 
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 Key Informant Interview Questions 

Interview Questions 

Interviewer Introduction 

I am a Masters student at the University of Twente, Faculty of Geo-information science and earth observation, undertaking 

a course in Urban Planning and Management. As part of my course work, I’m conducting research on the mapping of informal 

settlements using Machine Learning. Particularly my research aims to analyse the relationship of hazardous locations and 

deprivation (informal settlements/urban poverty). 

Respondent 

Name and Title/Designation: 

Part 1: General Questions on “slums” 

1. What is your role in slum planning, management or interventions?  

2. In your work, how do you define a slum?  

3. What information (geographic/spatial & non-spatial) about slums do you use in your work? 

4. What actors are involved in the collection and use of slum data/information? 

5. What is the frequency of collecting and updating these data? 

6. For which areas is this information collected? 

7. How do you use this information?  

8. Are there any missing data about slums you think would be helpful to your work? 

9. Which level of spatial detail do you use/require for your work? 

Administrative units (wards) Street Blocks Grids 

   
 

Part 2: Hazards  

10. Which hazards affect Nairobi? 

11. To your understanding, are the effects of these hazards evenly spread? 

12. If not, what are some of the conditions or characteristics that make the spread uneven? 

13. Does location and permanency of housing have an effect on perceived (or otherwise) safety and security from 

adverse weather/climatic/natural disasters and related effects? 
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Part 3: Durable Housing  

UN-Habitat lists durable housing as a domain in the definition of slums. It captures two main aspects: structural quality of 

housing and location and structural quality of the housing and permanency of the structure. 

14. Is the quality of housing important in defining settlements? 

15. What is your general perception of the location of slums and the type of structures present? 

16. What definition of durable housing do you use/ are you familiar with? 

17. Do you use this domain in your work on slums? If so, how? 

18. What data do you use to capture “durable housing”?  

19. What data would you recommend to be used to capture the aspect of durable housing? 

20. How do you collect and use these data?  

21. On a scale, how would you rank the following types of housing (include others) in terms of durability (tent, 

pavement dwellings, slums, informal settlements, formally planned settlements, shacks, old Swahili housing)? 

22. What do you take into consideration when making the ranking? 

Part 4: Ethical concerns 

23. What information about slums do you consider sensitive in your work?  

24. Who should have access to slum information, and to what extent? 

25. What concerns do to have with regards to the use of technology such as AI in the analysis of deprivation? 

26. Do you have any “sensitivity” to the use of high resolution (e.g.10m resolution) and very high resolution (e.g. 1.5m 

resolution) satellite imagery in the analysis of deprivation (Helber et al., 2018)? 

If yes, what are they, and what are probable ways of handling them? 

 

 

 

 

Part 5: Respondent’s privacy concerns 

How would you like research results and information communicated to you? 

Which of the following do you give consent to use in our research? (Designation/Title and Organization 
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 Household Questionnaire 

 

Priscilla MSc. Research 

Please record the date of conducting this survey. 

Date of data collection 

 yyyy-mm-dd hh:mm 

 

Select your name (enumerator's name) 

Select settlement of data collection 

Kibera 

Kariobangi North 

We are working with a University called University of Twente. We know that people in Kibera/Kariobangi North face 

several challenges related to hazards (madhara). We would like to ask you some information about yourself and your 

household. 

Some of the questions may seem personal and we'd like to guarantee that your information will be kept safe and 

anonymized. It is also not compulsory to answer all questions, if you don't feel comfortable to. Introduction 

 

The survey will take approximately 20-30 minutes. Do you consent to being 

interviewed? Yes 

No 

Ask for respondent's name. 

 

 

 

Age 

How old is the respondent? 
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Can you tell us how many people live in this house? 

 

 

What is the highest level of education completed by any of the household members? 

Anyone in the household 

Primary 

Secondary 

Tertiary 

None of the above 

Why did you (or your family) choose to live in this settlement (Kibera/Kariobangi North)? 

Ni kwa sababu gani uliamua kuchagua makaazi haya? 

It's our family home (ushago) 

Close to opportunities 

Rent is affordable 

Close to services 

Other 

If other, please specify 

 

For how long have you lived in this house? 

How long they have lived in the structure where the interview is being conducted. 

0-1years 

1-2years 

2-5years 

5 years and above 

Do you pay rent for the house? 

Yes 

No 

How much do you pay in rent per month? 
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Below 1000 kes 

1000 - 2000 kes 

2000 - 3000 kes 

3000 - 4000 kes 

4000 - 5000 kes 

5000 and above 

If you don't pay rent, could you please describe for us the living arrangement of this house. 

Landlord (I own the structure) 

Landlord (the structure belongs to my family) 

Tenant ( I have an agreement with the owner) 

Other 

If other, please describe. 

 

How do you pay for rent? 

Kama hulipi kodi ya nyumba kwa pesa, unatumia njia ipi? 

 

As we mentioned in the introduction, we are interested in understanding hazards. The following questions will therefore 

be related to hazards that affect this community and/or your household. 

Maswali yanayofuata ni kuhusu madhara yanayoathiri kijiji/jamii yako 

 
 

Do any of the following hazards affect your community/neighborhood? 

Kati ya haya, ni madhara gani ambayo kijiji lako lina pitia? 
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Floods (mafuriko) 

Fire (moto) 

Extreme heat (joto jingi) 

Extreme cold (baridi mingi) 

Disease outbreaks e.g. cholera (magonjwa ya mlipuko) 

Building collapse (maporomoko ya manyumba) 

Road (motor vehicle and boda boda) accidents (ajali za barabarani) 

Rail accidents (ajali za reli) 

Garbage accumulation (mkusanyiko wa takataka) 

Air pollution (uchafuzi wa hewa) 

Industrial hazards - pollution (air, water, land/soil contamination, noise) (madhara kutokana na sekta ya 

viwanda kama vile uchafuzi wa hewa, maji na ardhi) 

Industrial hazards - explosions (milipuko kutokona na sekta ya viwanda) 

Others (mengineo) 

If others, please specify. 

 

If the settlement is affected by flooding, what is the cause of the flooding? 

Sababu za mafuriko 

Closeness to river 

Insufficient drainage channels 

Blocked drainage channels 

Terrain 

Other 

If others, please specify. 

 
If the settlement is affected by fire, what is the cause of the fire? 

Sababu za kuchomeka/moto 

Poor power (electricity) connection 

Cooking accidents 

Lighting accidents 

Burning to evict people - to set up new structures 

Industrial accidents e.g. explosions 

Other 
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If others, please specify. 

 

If the settlement is affected by air pollution, what is the cause of the pollution? 

Sababu za uchafuzi wa hewa 

Industries 

Transport - roads, rail, airport 

Burning garbage 

Traditional cooking means e.g. firewood, charcoal 

Other 

If others, please specify. 

 

If the settlement is affected by disease outbreak, what is the cause? 

Sababu za magonjwa ya mlipuko kama vile kipindupindu, COVID-19 etc. 

Poor sanitation and hygiene at individual level 

Poor sanitary environment at community level e.g. garbage accumulation 

Poor water drainage system 

Contamination of water/food 

Burst sewerage pipes 

Unprotected toilets 

Others 

If others, please specify. 

 
 

 

 

 

If the settlement is affected by road related accidents, what is the cause? 

Sababu za ajali za barabara 

Close distance to transport lines 

Insufficient transport network (e.g. roads) 

Insufficient/lack of pedestrian crossing 

Others 

If others, please specify. 
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If the settlement is affected by rail related accidents, what is the cause? 

Sababu za ajali za reli 

Close distance to transport lines 

Insufficient transport network (e.g. roads) 

Insufficient/lack of pedestrian crossing 

Others 

If others, please specify. 

 

If the settlement is affected by collapse of buildings, what is the cause? 

Sababu za manyumba kuporomoka 

Poor construction techniques 

Poor construction material 

Unstable ground e.g. swamp 

Malicious demolitions 

Others 

If others, please specify. 

 

Individual/ Household level 

Maswali yanayofuata ni kuhusu madhara yanyo kuathiri nyumbani kwako 

 

Do you think that the house you are living in adequately protects you from the mentioned hazards? 

Nyumba yako inakupa usalama wa kutosha kutokana na madhara ambayo tumeyaongolea? 

Yes 

No 

If your house adequately protects you from hazards, please explain how. 

Tuelezee jinsi nyumba yako inakinga tosha kutokana na madhara tunayoyaongelea 

Which of the above mentioned hazards has ever affected your household? 

Ni madhara gani kati ya haya ambayo yanakuathiri/ yanathiri nyumba yako? 
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Floods (mafuriko) 

Fire (moto) 

Extreme heat (joto jingi) 

Extreme cold (baridi mingi) 

Disease outbreaks e.g. cholera (magonjwa ya mlipuko e.g. kipindupindu) 

Building collapse (maporomoko ya manyumba) 

Road (motor vehicle and boda boda) accidents (ajali za barabarani) 

Rail accidents (ajali za reli) 

Garbage accumulation (mkusanyiko wa takataka) 

Industrial hazards - pollution (air, water, land/soil contamination, noise) (madhara kutokana na sekta ya 

viwanda kama vile uchafuzi wa hewa, maji na ardhi) 

Industrial accidents - explosions (milipuko kutokana na sekta ya viwanda) 

Not affected at all (sihathiriwi hata kidogo) 

Others (mengineo) 

If others, please specify. 

 

Why do you think your household was affected by floods? 

Mbona nyumba yako iliathiriwa/inaathiriwa na mafuriko? 

Poor housing structure - roof 

Poor housing structure - walls 

Poor housing structure - floor 

Location of structure 

Other 

If other, please specify 

 

Why do you think your household was affected by fire? 

Kwa nini nyumba yako iliathiriwa/inaathiriwa na moto? 

Type of housing structure - roof 

Type of housing structure - walls 

Type of housing structure - floor 

Location of structure 

Other 
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If other, please specify 

 

Why do you think your household was affected by extreme heat? 

Kwa nini nyumba yako iliathiriwa/inaathiriwa na joto jingi? 

Type of housing structure - roof 

Type of housing structure - walls 

Type of housing structure - floor 

Location of structure 

Other 

If other, please specify 

 

Why do you think your household was affected by extreme cold? 

Kwa nini nyumba yako iliathiriwa/inathiriwa na baridi nyinigi? 

Type of housing structure - roof 

Type of housing structure - walls 

Type of housing structure - floor 

Location of structure 

Other 

If other, please specify 

 

Why do you think your household was affected by building collapse? 

Kwa nini nyumba yako iliathiriwa/inaathiriwa na maporomoko? 

Type of housing structure - roof 

Type of housing structure - walls 

Type of housing structure - floor 

Location of structure 

Other 

If other, please specify 

 

To help us understand better the exposure to hazards, we will ask you a couple of more questions about your 

household. Do you agree to this? 

Ili tuweze kupata maarifa ya kutosha, tunataka kukuuliza maswali mbili zaidi kuhusu nyumbani kwako, ni 

sawa? 
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Yes 

No 

Which of the following does your household rely on for lighting? 

Unatumia aina gani ya taa (ya kuonea)? 

Electricity (stima) 

Kerosene lamp (taa ya mafuta) 

Candles (mishumaa) 

Other 

If other, please specify. 

 

Which of the following does your household rely on for cooking? 

Unategemea aina gani ya moto kupikia? 

Charcoal (makaa) 

Firewood (kuni) 

Kerosene stove (mafuta ya taa) 

Gas e.g. meko 

Electricity (stima) e.g. coil 

Other 

If other, please specify 

 

 

This marks the end of the household questions. Thank the respondent for their time and ask them if they would be 

interested to know the outcome of the research. 

Tunakushukuru kwa muda wako. Ungeweza kupata taarifa kuhusu utafiti huu? 

Yes 

No 

If yes, which mode of communication would they like? 

Ungependa kupata taarifa kuhusu utafiti huu kwa njia gani? 
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Posters 

Booklet 

Community Workshop 

Newspaper article 

Whatsapp link (to a website) 

Social media e.g. Facebook, Instagram, Twitter 

Others 

If other, please specify. 

 
Which language would you like the communication to be in? 

Ungependa taarifa kuhusu utafiti huu uenezwe kwako kutumia lugha gani? 

English 

Kiswahili 

Sheng 

Other 

If other, please specify. 

 

In the following sections, kindly record the structure characteristics by observation. This might take some time, therefore 

inform the respondent that you will be there for a couple of minutes more. 

Rekodi aina ya nyumba ambayo umefanya utafiti. 

 

Material used for roofing 

Iron sheet 

Makuti 

Carboard 

Tiles 

Other 

If other, please specify 

 

Internal roofing modifications i.e. material for ceiling. 
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Polythene ceiling 

Wooden ceiling 

Carboard ceiling 

None 

Material used for walls 

Mud 

Mud with concrete plastering 

Iron sheets 

Bricks (matofali) 

Stone 

Wood 

Other 

If other, please specify 

 

Material used for flooring 

Bare ground 

Bare ground covered with polythene carpet 

Concrete plastering 

Wood 

Other 

If other, please specify 

 

Kindly record the geo-coordinates of the structure with an accuracy of below 10m 
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Point and shoot! Use the camera to take a photo 

Take photo of the general neighborhood. Be careful not to take a photo of anyone. 

 

If consent for being interviewed is not given, thank the respondent and terminate survey. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GPS ifikishe chini ya mita 10 

 

 

 

 

 



87 
 

 Codes used 

 

Process Platform/IDE Link 

Data collection Google Earth Engine https://github.com/MappingMojo/LULC-
GLCM-RFC 
 
 

GLCM feature extraction R Studio 

Land Cover Classification 

Land Use Classification 

 

https://github.com/MappingMojo/LULC-GLCM-RFC
https://github.com/MappingMojo/LULC-GLCM-RFC

