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ABSTRACT 

The rapid global proliferation of slums is a major challenge in urbanisation. Most of the growing urban 

population in Low- to Middle-Income Countries (LMICs) is absorbed by slums and informal settlements 

(here called deprived areas). In the last decades, deprived areas have been identified and mapped to a great 

extent, given the increasing availability of very-high-resolution (VHR) satellite images and the 

development of machine learning (ML) techniques. Yet, most earth observation (EO) approaches only 

yield a binary delineation of deprived/non-deprived areas – an oversimplified understanding of urban 

deprivation that mostly built upon physical or morphological features, with little information inferred 

regarding the intensity, variation, and diversity of intra-urban deprivation. In this study, we attempt to 

explore the potential of using VHR EO-based data to predict the degrees of intra-urban deprivation in 

Nairobi, Kenya. This involves a two-step workflow of characterising and predicting a continuous index of 

deprivation degrees. First, a principal component analysis (PCA) is conducted to characterize the multi-

dimensionality and intensity of deprivation as a set of continuous indices (i.e., the ‘multi-deprivation portfolio’), 

using 100m standard grids as analytical units. Next, a convolution neural network (CNN) based regression 

model is trained to directly predict the ‘multi-deprivation portfolio’, using only SPOT-7 images. The PCA 

results identify four major domains of deprivation, i.e., PC1: Poverty, accessibility to facilities, and 

maternal health support, PC2: Dense urbanization, absence of green space and waste management, PC3: 

Air and water contamination, and PC4: Transport infrastructure. Among these deprivation domains, PC2 

is the most morphology-based domain and successfully captures the spatial configurations of slums in 

Nairobi. During the test of EO-based data for predicting the domains of deprivation, the best prediction 

of the proposed CNN regression model is also obtained in PC2, with an R2 of 0.6543; whereas the CNN 

fails on other deprivation domains. Based on these results, this study confirms that urban deprivation is by 

nature a multi-dimensional, complex concept, and PCA is a useful tool to unpack and measure this multi-

dimensionality in continuous scales. Most importantly, we demonstrate the potential of an EO-based 

method to directly capture the degrees of multiple deprivation with relatively high accuracy. We suggest 

scaling up this method to inter-city, national or even global level and produce larger-scale maps of 

deprivation degrees in LMICs cities in future studies. 

 

Keywords: Deprivation, Slums, Earth Observation, Deep Learning, Low- to Middle-Income Countries 
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1. INTRODUCTION 

1.1. Background and justification  

Currently, more than half of the world’s population lives in urban areas, with an estimated increase to 68% 

by 2050 (United Nations, 2019). As the world becomes more urbanised, many cities, especially in the 

Low- to Middle-Income countries (LMICs), are facing urbanisation problems like growing numbers of 

slum dwellers, lack of basic services and infrastructure, a rising level of inequalities and social exclusion 

etc. (Zhang, 2016). The rapid proliferation of slums is considered one of the most direct manifestations of 

urban poverty (Arimah, 2010). Therefore, the urge to upgrade slum conditions and reduce informality has 

been recognised as a main global challenge and compiled in many development agendas. For example, in 

the Millennium Development Goals (MDG) proposed by UN, ‘to improve the lives of a minimum of 100 

million slum dwellers by 2020’ was established to address the rising expansion and severity of slum 

(United Nations, 2015), likewise in the Sustainable Development Goals (SDGs) target 11.1: “ensure access 

for all to adequate, safe and affordable housing and basic services and upgrade slums” (United Nations, 

2018). Despite the efforts in upgrading slum conditions worldwide, the actual number of slum dwellers, 

however, increased from 807 million to 883 million between 2000 and 2014, of which the vast majority 

happened in LMICs, especially in Asia and Africa (United Nations, 2018).  

The term ‘slum’ is widely used in urban and development studies but varies strongly across the world, 

which can be due to the inconsistency of slum definition itself, as well as the heterogeneity of slums in the 

sense of morphology and socio-economic status (Kohli et al., 2012). A broadly accepted definition of 

‘slum’ refers to the household or a group of individuals which lack one or more of the followings: durable 

housing, sufficient living space, access to safe water, access to adequate sanitation and security of tenure 

(UN-Habitat, 2003). Nevertheless, this definition provided by UN-Habitat is household oriented, 

reflecting little information at the area level (e.g. lack of infrastructures, hazard-prone risk, low accessibility 

to facilities etc.) faced by slum dwellers living in the deprived areas (Lilford et al., 2019). In addition, the 

definition also casts multi-dimensional characteristics that may not be mutually inclusive, and therefore the 

characteristics of people living in slums may not fully be manifested by the morphology of substandard 

housing, but usually coupled with deprived conditions in other domains (Gilbert, 2007). One of the 

consequences is that the morphologies of slums vary significantly across or even within the same cities   

(Taubenböck et al., 2018). For instance, in Mumbai, the slums appear heterogeneously across space in 

terms of geometry, density, pattern, and environment (Taubenböck & Kraff, 2014), yet, few systematic 

studies have been performed to investigate such complexity (Kuffer et al., 2017).  

Considering the multidimensionality and fuzziness in the characterisation of slums, the conventional 

dichotomy of “slums and non-slum areas” only provides an oversimplified understanding of deprivation, 

usually based upon their spatial configurations, locations and extents (Thomson et al., 2020). However, 

even within the same slum located in one city, there is a differing mixture of deprivation in terms of 

intensity and dimensions (social-economic, living conditions, ecological etc.) (Jankowska et al., 2011), 

whereas the authorities tend to decline the diversities of these slum-like regions (Baud et al., 2010). 

Similarly, the traditional aggregated census-based approach cannot reveal the inner variety in its study unit 

(usually neighbourhood), leading to few discussions on the diversity and cross-boundary clusters of 

deprivation (Kuffer et al., 2017). Another disadvantage is that once an area has been declared as a slum, it 

may bring unintended stigmatisation to its dwellers (Eksner, 2013). As such, it is more important to reveal 

the internal variation and heterogeneity of deprivations faced by slum dwellers (e.g., socio-economic 
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factors, environmental risks), which could be analysed later to underpin more comprehensive and 

contextualised slum upgrading plans.  

Recently, more approaches were introduced to investigate slums via the lens of ‘Multiple Deprivation’, 

which were widely explored in previous census-based studies (Baud et al., 2009; Gill, 2015), as it enables to 

capture slum as a multi-dimensional manifestation resulted from not only the traditional aspects such as 

housing conditions, access to water and sanitation but also the socio-economic status, environmental, 

ecological factors of deprived areas and the dwellers (Ajami et al., 2019; Arribas-Bel et al., 2017; Kuffer et 

al., 2017; Thomson et al., 2020). In general, the multiple dimensions of deprivation faced by slum dwellers 

are not independent of each other. Instead, it is the interplay of such multiple facets of deprivation that 

characterising and shaping the diversity and complexity of the slums (Mahabir et al., 2016).  Therefore, as 

a response to the SDG goals, it important to increase our knowledge of the variation and diversity of 

deprivation within a city and to develop a generalised method identifying deprivation level, which could be 

transferred to other LMICs. With rapidly expanding deprived areas, the governments and policymakers 

require more detailed and contextual spatial information to formulate urban development plans and 

support decision-making regarding the pro-poor agenda (UCLG, 2018). However, most of the LMICs 

usually lack routinely updated and accurate census and geospatial data of deprived areas due to limited 

resources and technologies (United Nations, 2018), thus failing to target such issues and being trapped in 

the vicious circle of deprivation. 

Conventionally, deprived areas were investigated via census or household surveys, considered as labour-

intensive, costly, large-scale and easy to be outdated (Mahabir et al., 2016). In the last decade, using very-

high-resolution (VHR) earth observation (EO) data to identify and map the spatial distribution of 

deprived areas has become one of the mainstreams in urban studies (Kuffer, Pfeffer, & Sliuzas, 2016), 

given the increasing availability of multi-spatiotemporal satellite image and the recognition that multiple 

deprivations partially manifest themselves on the physical morphologies in space (Duque et al., 2015; 

Taubenböck et al., 2009). Different EO-based methods and technologies have been applied to investigate 

deprived areas in terms of identification (Kit et al., 2012; Williams et al., 2020), temporal dynamics (Liu et 

al., 2019), and severity (Ajami et al., 2019; Arribas-Bel et al., 2017; Kuffer et al., 2020), ranging from local 

to the global level. In addition, the development of machine learning (ML) algorithms has opened a new 

gate for the EO community in image analysis. More advanced and efficient classifiers have been 

performed in slum-related studies, including traditional ML methods (i.e., using hand-crafted features) and 

deep learning models. For example, Leonita et al. (2018) applied two traditional ML algorithms, i.e., 

support vector machine (SVM) and random forest (RF), to identify deprived dwellings in Indonesia and 

compared the performances of two models. These powerful ML methods, given the availability of high-

quality VHR data and increasing computational ability, could reach a high accuracy from 75% to 95% 

(Kuffer, Pfeffer, & Sliuzas, 2016). However, revealed by Mahabir et al. (2018), even though the number of 

such researches has been growing over time, most of them are still restrained on limited geographic scales, 

e.g. only small areas (particular neighbourhoods and blocks) within a city (Ma et al., 2017), and insufficient 

reflection on the multi-dimensionality of slums, as the EO images mainly reflect physical information of 

the land surface, resulting in a lack of understanding in deprived areas regarding their variety within the 

global context. 

1.2. Research problem  

Deprived areas have been effectively detected and mapped through EO techniques in the last decades, 

with more advanced methods being developed and achieving remarkable performance (Kuffer, Pfeffer, & 

Sliuzas, 2016; Lilford et al., 2019). Yet, very limited information in relation to multiple deprivations on 

deprived areas has been extracted from the satellite images, such as diversity, severity and dynamics etc. 
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Most EO-based methods generate binary delineations of the slums depended on their morphological 

characteristics (Kit et al., 2012; Kohli et al., 2016; Persello & Stein, 2017). In other words, the linkage 

between the spatial morphology (manifested in EO data) and multiple deprivations (usually ‘hidden 

behind the images’) has not been systematically explored. Thus, to build such a connection and support an 

in-depth and more holistic understanding of urban deprivation, this study unpacks multiple deprivations 

as a multi-dimensional, continuous spatial concept. Moreover, previous studies mostly focus on small 

urban parts or pre-delineated deprived pockets, covering areas of several km2, rather than map deprivation 

at inter-/intra-city level (Ajami et al., 2019; Liu et al., 2019; Wang et al., 2019). However, we argue that 

depicting multiple deprivations at an intra-city level will surely provide more insights into the diversity of 

urban poverty and help the local government facilitate slum upgrading plans.    

In this research, to avoid the imprecision and inconsistency of terminological discourses about ‘slums’, 

and explicitly stress the multi-dimensionality, as well as the continuous degree of deprivation, we, instead, 

decide to employ a more comprehensive and area-based term: ‘deprived areas’, which encompasses the 

multi-dimensional deprivation characteristics of slums and helps to unveil the marginalisation and socio-

economic disparities of the deprived dwellers (Ajami et al., 2019; Arribas-Bel et al., 2017; Nolan, 2015; 

Thomson et al., 2020; Wurm & Taubenböck, 2018). Unlike conventional studies that identify areas as 

slums or non-slums (which, in essence, reflects only one dimension of deprivation), this research attempts 

to quantitatively measure the degree of multiple deprivations at standard gridded units within the entire 

urban area. More specifically, the ‘multi-deprivation portfolio’ – a set of continuous indices that indicate the 

degree of deprivation from multiple sub-domains and/or summarized domain – would be generated by 

this research. Afterwards, a convolutional neural network (CNN) model will be trained to directly estimate 

the degree of multiple deprivations, relying only on EO data. By doing this, the feasibility and 

effectiveness of leveraging the state-of-the-art method, combined with VHR EO images in predicting the 

degree of multiple deprivation would be examined.  

1.3. Research objectives  

1.3.1. General objective  

The overall objective of this research is to characterise multiple deprivation by exploring the potential of 

an EO-based approach in capturing the multi-dimensionality of urban deprivation. 

1.3.2. Specific objectives  

The general objective can be further broken down into three sub-objectives, combined with research 

questions formulated at the operational level:  

1. Characterise multiple deprivation and measure its spatial variation in continuous scales. 

a. What are the common key dimensions of multiple deprivations?  

b. Which method is appropriate to unpack the multi-dimensionality of deprivation as a set 

of multiple deprivation indices? 

c. What are the characteristics/diversity of deprivations within the study area?  

2. Explore the potential of an EO-based method to predict the intra-urban continuous 

deprivation degrees.  

a. What are the criteria to divide the dataset for training, validation, and test?  

b. How to train a CNN-based model to predict the continuous deprivation levels?       

c. What are the suitable measures to evaluate the CNN-based model?  

d. To what extent can the CNN-based model capture the degrees of multiple deprivations 

through VHR imagery?   
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3. Discuss the role of EO-based methods in deprivation mapping.   

a. What are the advantages of applying an EO-based model to directly capture deprivation 

degrees?  

b. What new insights of deprivation mapping does this research bring?  

c. Based on this research, how could EO-based methods contribute to deprivation 

mapping? 

1.4. Conceptual framework  

In this research, the key concept – ‘multiple deprivation’ is defined as a complex, multi-dimensional area-

based manifestation dependent on various aspects. The word ‘multiple’ here underscores its multi-

dimensionality but also somewhat contributes to the dissonance of which aspects should be included in 

defining multiple deprivation. In consequence, the definition of deprivation varies extensively from case to 

case. The goal of building this framework is not to exhaustedly list all the existing definitions of multiple 

deprivation and/or their components and deliver a universal agreement, but rather provide a broad 

consensus in “what usually constitutes multiple deprivations?” and “How different methods capture the 

variation of deprivation”, thus underpinning the development of the research methodology.  

The multi-dimensionality of deprivation is commonly deconstructed into the following sub-domains, 

including but not limited to socio-economic status, physical morphology, environmental factors, 

infrastructures and facilities etc. Conventionally, the EO-based approaches cannot fully investigate the 

complexity of multiple deprivation, nor the survey- or filed-based methods. Hence, the outputs from these 

methods are usually siloed and lack integration. Therefore, this research proposes a novel third option – a 

CNN-based model that directly aims to quantitively measure the complexity of multiple deprivation.     

Figure 1 - The conceptual framework of multiple deprivation mapping, developed for this MSc study. 
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The crucial part of the designed framework is a CNN-based deep learning model enabling to capture the 

multi-dimensional deprivation from physical morphologies in the EO data. To attain the model objective, 

resultant deprivation mapping built upon different deprivation domains would be fed back into the CNN 

as training data, combined with VHR EO images. Thus, by training this model, the usefulness of using 

EO-oriented features to predict deprivation degrees and its multi-dimensionality will be examined, with a 

continuous data-driven multiple-deprivation index expected, thus increasing our present knowledge on 

how multidimensionality and variety of deprivation could be extracted from physical characteristics in the 

imagery data. Ultimately, the outputs from this proposed model would support unveiling the diversity of 

multiple deprivations at the citywide scale. 

1.5. Thesis structure  

The overall structure of this thesis is outlined as follows:  

Chapter 1 introduces the background and rationales of this study and specifies the research problems and 

sub-objectives. A conceptual framework is also provided to clarify the inter-relationships of the main 

objects of interests in this study.  

Chapter 2 provides a detailed review of previous studies, covering several crucial concepts in the field of 

urban deprivation and advanced mapping techniques – i.e., ‘multiple deprivation’, ‘multi-dimensional 

index formulation’, ‘deprivation mapping’; ‘convolutional neural network’ and ‘CNN-based regression 

model’. It allows to identify the research gap and help to propose the methodology.  

Chapter 3 starts with a brief description of the study area, the reasons for choosing this study area, and an 

overview of the methodology; it then presents a summary of the input data and its pre-processing steps; 

lastly, it articulates the two major methods, i.e., the principal component analysis and convolutional neural 

network, applied in this study.  

Chapter 4 presents the results obtained from all the analysis conducted in this research. It describes the 

PCA results and visualizes the multiple deprivation indices of Nairobi, followed by a validation section. 

Next, the CNN results are reported and compared with the PCA results by visual assessments.     

Chapter 5 discusses the main finding obtained from the research and speaks out the advantages achieved 

by the proposed method in comparison to previous studies. A limitation discussion is also provided.  

Chapter 6 finalizes the research paper by summarizing the major conclusions, highlights from this study, 

and further providing some potential directions for future studies.  
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2. LITERATURE REVIEW  

2.1. Multi-dimensional deprivation   

Deprivation and poverty were commonly measured as a one-dimensional phenomenon solely dependent 

on income or household consumption in previous urban poverty researches (Lucci et al., 2018). Such 

approaches usually identify poverty based on a single value or threshold (e.g. poverty line, Gini Index) to 

divide the population into two groups, i.e. poor and non-poor (Martínez et al., 2016), providing limited 

and often biased information to tackle poverty (Tigre, 2018). Parallelly, related spatial analyses were also 

restricted on the “slum and non-slum” dichotomy whereby a place is classified as either slum or not (Patel 

et al., 2014). Following this dichotomy, researchers have generated a substantial amount of classification 

maps clearly presenting the spatial location and extent of slums (Kohli et al., 2016; Kuffer, Pfeffer, Sliuzas, 

et al., 2016; Persello & Stein, 2017; Williams et al., 2020), which could efficiently inform the urban 

planners and local communities to target the critically deprived regions. Yet, such dualism usually fails to 

further unveil the heterogeneity and variety of deprivations within and across slums, as the results are just 

formed of binary or multi-class categorical labels.   

Recently, more studies have switched to the concept of ‘Multiple Deprivation’, which incorporates other 

multi-dimensional characters of human well-being beyond the monetary aspect. The measure of multiple 

deprivations is commonly conducted by generating a composite index. For example, Baud et al. (2008) 

designed a holistic framework based on the asset livelihoods approach, characterising deprivation as the 

interplay of physical, social, human and financial capitals and applied it to three Indian mega-cities. 

Likewise, Alkire et al. (2014) unpack deprivation into three domains, namely education, health and living 

standard for measuring acute global poverty. On the national level, the British government has a long 

history of monitoring deprivation via the UK indices of deprivation, comprised of several domains for 

more than 30 years (Gill, 2015). Although there is a slight variance in how researchers conceptualise 

multiple deprivations, it is widely recognised that deprivation should be investigated from more than only 

the financial aspect (Martínez et al., 2016).  

2.2. Modelling deprivation  

The most common way of modelling deprivation is by calculating a multivariate index that indicates the 

degrees of deprivation. Such indices are often named differently, e.g., deprivation index (Yuan & Wu, 

2014), slum index (Duque et al., 2015; Engstrom et al., 2015), but all try to characterise deprivation. To 

present a brief outline, some common approaches in building the deprivation index were reviewed. In the 

early studies, different indicators were initially standardised (e.g., z-score method) into similar scales and 

then assigned with relative weights to formulate a single measure of deprivation (Dolk et al., 1995). 

Various criteria were applied to establish the weights, such as equal or arbitrary weights (Carstairs & 

Morris, 1990), expert opinions (Cabrera-Barona & Ghorbanzadeh, 2018) and previous literature. The 

output is quite straightforward and easy to interpret, so it can be reproduced across different regions and 

time (Allik et al., 2020). Later, a more refined approach is proposed where the scores of indicators 

representing the same domain are first combined to generate the indices of sub-deprivation and 

aggregated to a single index later. This composite measure allows to evaluate deprivation degree from 

different aspects individually and conduct inter-comparison. For example, Baud et al. (2008) calculated the 

deprivation index separately for four domains and summarised them with equal weight. However, these 

above methods are often criticised for the normative weighting subjective to value judgements and 

empirical perception from policymakers and researchers involved (Deas et al., 2003) and the inability to 

capture the intersection of multiple deprivation domains (Ipsum et al., 2015).  
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The third type of approaches, statistics-based methods, have become popular since no assumptions need 

to be pre-defined about the relative weights, thus argued to be more objective. Popular techniques include 

principal component analysis (Basu & Das, 2020; Vyas & Kumaranayake, 2006), multiple correspondence 

analysis (Ajami et al., 2019), factor analysis (Gill, 2015; Roy et al., 2020) and so on. Among the three 

approaches, PCA is suitable for quantitative indicators, while MCA works well on categorical data, and for 

factor analysis, it requires careful consideration of the communalities from the input. In the case of PCA, 

instead of manually determining a weight for each indicator, a set of linear combinations of variables will 

be derived based on a covariance or correlation matrix, which explains most of the variance of 

deprivation. It is widely used to reduce the large dimensionality of input data and then aggregate the 

retained components to generate a ‘data-driven’ index (Abdi & Williams, 2010).     

2.3. Mapping deprivation  

As stated before, the term ‘deprived areas’ was adopted to refer to slums, informal settlements, and other 

types of dwellings or settlements in slum-like conditions. In this section, previous studies that involved the 

detection of any aforementioned sub-categories of deprived areas were reviewed to present a brief 

summary of popular approaches and the state-of-the-art in deprivation mapping.  

So far, various approaches have been performed to investigate deprived areas. Recently, a detailed review 

of deprivation mapping by Kuffer et al. (2020) has summarised four major methods widely applied in 

practice, namely, 1) census and household survey (e.g., Agarwal et al., 2018; Baud et al., 2009; Fink et al., 

2012), 2) field-based mapping (e.g., Karanja, 2010; Makau et al., 2012), 3) visual interpretation of EO 

images by human (e.g., Anurogo et al., 2017; Gruebner et al., 2014) and 4) computational models using 

machine algorithms (e.g. Arribas-Bel et al., 2017; Engstrom et al., 2015; Mahabir et al., 2020). Yet, none of 

them is able to yield an integrated, scalable, frequently updated, and contextual result as each one has its 

own strengths and drawbacks. The census-based survey is the most traditional method in measuring 

deprivation. It often follows the definition of ‘slum’ by UN-Habitat, enabling to provide comprehensive 

information and conduct cross-city/country analysis (Basu & Das, 2020; Patel et al., 2014). However, one 

big disadvantage is that such surveys are mostly conducted at the household level and then aggregated into 

administrative units with irregular, variant spatial boundaries and scales. Through this aggregation, the 

statistics may be under-/over-estimated due to the Modifiable Areal Unit Problem (MAPU) (Nelson & 

Brewer, 2017), and some tiny slum pockets within an identified ‘rich’ area might also be overlooked 

(Christ et al., 2016; Subbaraman et al., 2012). Moreover, as census-based data are mostly collected at the 

household level, few area-level information of deprivation can be derived from it (Lilford et al., 2019). The 

field-based approach, on the other hand, is able to produce very local and contextual information with 

high validity and reliability by the local communities and NGOs, but hardly could be scaled up or 

generalised to other contexts (Kuffer et al., 2020). The visual interpretation approach requires intensive 

labour investment, and the criteria used to define slum boundary often vary among experts, thus also 

leading to high uncertainties on where to draw the boundaries of deprived areas (Kraff et al., 2020; 

Pratomo et al., 2017), albeit achieving relatively high accurate delineation.   

Nevertheless, among all the methods, using ML algorithms to map deprivation from satellite images has 

drawn more attention in the EO community because of its high accuracy, the ability to be automatised, 

the increasing availability of HR/VHR data and the ability to cover large areas in principle (Kuffer, 

Pfeffer, & Sliuzas, 2016). Common ML-based approaches in deprivation mapping include support vector 

machine, logistic regression and random forest, which are sometimes employed jointly with object-based 

image analysis (OBIA) to better leverage the spectral and contextual features to achieve better prediction 

(Kuffer, Pfeffer, & Sliuzas, 2016). Yet, two major problems still restrict the performance of traditional ML 

methods: the first one is the access to sufficient training labels, i.e., the ground-truth delineation of 
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deprived and non-deprived areas; the second one is the designing of hand-crafted features and the 

selection of suitable features that can better capture the deprivation characteristics across various contexts, 

which are usually time-consuming and highly dependent on user expertise, and computational ability 

(Kuffer et al., 2020). Moreover, it is very expensive to retrieve VHR satellite images.   

In general, with reference to Thomson et al. (2020), the research gaps of EO-based methods in relation to 

deprived area mapping could be described as follows: (1) limited scale of the study area, i.e., the detection 

only applied on small patches of slum-households and neighbourhoods, rather than at intra-/inter-urban 

scale. For example, Ajami et al. (2019) applied a CNN-based model to measure the deprivation degree 

only within the delineated slums in Bangalore, India, instead of upscaling to the whole city; (2) one-

dimensionality. The traditional methods only take into account the physical or morphological 

characteristics of the urban fabric from VHR image to identify deprived areas, resulting in a limited 

inference on the socio-economic status of the inhabitants, which are actually the major concerns and 

target groups of pro-poor policies; (3) dichotomous detection, and by this we mean that common outputs 

of such researches only provide a binary classification of deprived and non-deprived areas, therefore 

failing to provide enough information for further exploration such as the internal gradient of multiple 

deprivations across space and dimensions.    

2.4. Mapping deprivation through deep learning (CNN) 

Convolutional Neural Network (CNN), as a subset of Deep Learning (DL) algorithms, has stepped 

forward compared to the conventional ML methods in the field of image analysis. An overall sketch of the 

CNN model is presented in Figure 2.  

Similar to any kind of Neural Networks, the architecture of a standard CNN is also constructed in a multi-

layer fashion, consisting of three parts: input, hidden layers, and output. As a supervised learning 

approach, CNN requires image tiles and their corresponding ‘labels’ as input. Within the hidden layers, 

there are three main types of layers, namely, convolutional layers, pooling layers and the fully connected 

layers, of which the first two types of layers learn and extract the spatial-contextual features from the input 

images (Alom et al., 2019). A typical CNN training process is achieved via back propagation (Hecht-

Nielsen, 1989).  First, the input maps are convolved with learnable kernels and followed by a liner or non-

linear activation function. Then, such convolved output maps will be processed through a series of down-

sampling operations to reduce the dimensionality of feature maps (O’Shea & Nash, 2015). After several 

stacked convolutional and pooling layers, the feature maps are fed into a set of fully connected layers in 

which the classifying decisions take place, with the prediction generated in the final layer (Alom et al., 

Figure 2 - An overall structure of Convolutional Neural Networks. Source: (Alom et al., 2019). 
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2019). Next, the error between model prediction and the ‘reference labels’ would be calculated by a 

specified loss function (e.g., sigmoid, SoftMax, Tanh) and then backpropagated to the network, and later 

on be minimized by the gradient descendent method (Song et al., 2019). The weights of each neuron in 

the network are updated accordingly to minimize the loss error, and by doing these processes iteratively, 

the CNN model would finally converge.  

In the latest years, CNN has attracted overwhelming preference from researchers in image analysis and 

computer vision fields due to its strong self-learning ability to automatically recognise and extract 

significant spatial-contextual features from the input data (Lecun et al., 2015). Various CNN-based 

architectures have been developed and widely applied in image classification tasks. To give some 

examples, classical CNN architectures include LeNet (LeCun et al., 1998), AlexNet (Krizhevsky et al., 

2012), VGGNet (Simonyan & Zisserman, 2015), GoogLeNet (Szegedy et al., 2015), FractalNet (Larsson 

et al., 2016), ResNet (He et al., 2016) and so on.  

By training a deep CNN model, deprived areas could be successfully detected, without the preparation of 

hand-crafted features as in conventional ML methods, while still yielding promising results of average 

accuracy over 80%, consuming less time and labour cost (Kuffer, Pfeffer, & Sliuzas, 2016). For example, 

Persello & Stein (2017) tested a series of CNN models with dilated convolution to distinguish informal 

settlements from other land use types, among which the best model achieved more than 85% accuracy 

compared to 77.01% accuracy by the SVM model. Besides, another crucial advantage of CNN is the 

transfer learning capability of employing a pretrained algorithm embedded with significant previously 

acquired knowledge, and fine-tune it to address similar tasks with high efficiency and accuracy. To give an 

example, Wurm et al. (2019) tested the transferability of CNN in semantic segmentation of slums by 

applying a deep FCN model trained on QuickBird images at 0.5m to a much courser imagery datasets of 

Sentinel-2 at 10m, where the positive prediction value showed remarkable improvement from 38% to 

55%, further confirming the outstanding potential of transfer learning in deprivation mapping.  

2.5. Configuration of the CNN model (classification vs regression) 

In the EO community, CNN-based models have been largely exploited in various applications, most 

particularly in image classification problems, such as scene classification, object detection and object 

segmentation, due to its outstanding self-learning ability (Song et al., 2019). These classification tasks have 

been extensively dominating the applications of CNN models in the RS field, with a rising number of 

classification-wise studies being published. For instance, in deprivation mapping, existing studies mostly 

focus on binary classification of slum/non-slum (Liu et al., 2019; Mboga et al., 2017; Prabhu et al., 2021) 

or multi-classification between slums and other land use types, such as formal built-up, roads (Williams et 

al., 2020). In general, CNN-based approaches are able to achieve remarkable performance on class 

prediction, providing high accuracy in pixel-wise labelling of satellite images (Song et al., 2019).      

Although the majority of the CNN applications are still dominated by classification tasks, an increasing 

number of studies have started to leverage the state-of-art deep regression techniques in EO image 

analysis, encouraged by its excellent performance on other domains, such as bone age assessment (Ren et 

al., 2019), object counting (Walach & Wolf, 2016), human pose estimation (Toshev & Szegedy, 2014). To 

give some examples, Pyo et al. (2019) trained a regression CNN model using hyperspectral images to 

estimate the concentration of phycocyanin and chlorophyll-a in waterbodies, achieving higher accuracy (R2 

> 0.86 and 0.73, respectively) than conventional bio-optical methods. Li et al. (2020) developed an end-to-

end deep regression approach for image registration, in which the corner displacement parameters of 

unaligned images can be accurately measured and then directly passed onto the project transformation 

matrix. These advanced applications again ascertain the need for more attention devoted to exploring 

CNN in performing regression tasks when classification labels could not provide enough information.      
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However, to the author’s best knowledge, few attempts have been made to investigate the potential of 

applying a CNN model on urban EO data to perform regression task, specifically for measuring 

deprivation degrees. In general, the scarcity of CNN-based regression application in deprived area 

mapping mainly results from the insufficiency of ‘suitable’ training data at a continuous scale. Here, the 

word ‘suitable’ underscores the primary requirement of the target variable in regression analysis, i.e., the 

dependent variable must be continuous quantities (Draper & Smith, 2014). In common regression 

problems, continuous numerical values are predicted as outputs from the model, unlike classification tasks 

where the outputs are discrete, categorical labels, as shown in Figure 3. Yet, in reality, most of the reference 

data about deprived areas are still delineated by dichotomous boundaries of deprived/non-deprived based 

on inconsistent varying definitions, along with several nominal, usually oversimplified descriptions like 

‘high building density’, ‘overcrowding’ and ‘high pollution’ etc. (Lilford et al., 2019; Mahabir et al., 2016). 

To conclude, the lack of finer, detailed, and continuous measurement of deprived areas inhibits the CNN-

based regression application for predicting deprivation degrees.  

Most recently, the potential of applying CNN to capture deprivation level has been preliminarily explored 

by Ajami et al. (2019), where the authors first trained a deep CNN model to detect slums from formal 

built-up, and then modified the model architecture via changing the activation function from Log-

likelihood into Euclidean loss in the final layer, so that it could perform as a regressor to predict the 

degree of deprivation. This pioneering study proved the feasibility of using a CNN-based regressor 

combined with GIS and/or hand-crafted features to quantitatively capture the variations of deprivation 

from EO data, especially regarding its socio-economic characteristics (Ajami et al., 2019). Nonetheless, the 

overall methodology is still built upon a prior binary-classification CNN model, rather than directly 

inferring the deprivation levels from satellite images due to the limited training data on deprived areas. 

  

Figure 3 – Plots visualizing the difference between classification and regression outputs. 
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3. METHODOLOGY 

3.1. Study area  

In this research, Nairobi, the capital of Kenya, was selected as the study area. Figure 4 presents the location 

and a general view of the study area, Nairobi. The boundary of the study area (682 km2) was delineated 

based on the coverage of available VHR satellite images. Existing slum extents are also visualized. 

Being one of the biggest cities in Africa, Nairobi covers an administrative area of in total 684 km2, with an 

estimated population of 3 million (APHRC, 2014). In recent decades, Nairobi has been through rapid 

urbanisation and economic development. However, alongside this dramatic transition, the proliferation of 

deprived areas is still deeply rooted in the city, with nearly 50% to 60% of the total population residing in 

the slum or slum-like neighbourhoods (UN-Habitat, 2016). For instance, Kibera, located in the southwest 

of Nairobi, is the largest slum in Africa, whose dwellers have been enduringly suffering from poor housing 

conditions, overcrowding, and high pollutions, combined with lack of basic services (UN-Habitat, 2011). 

Apart from its large share of the deprived population, a high variation with the mixture of different 

deprivation dimensions also exist in Nairobi (Kraff et al., 2019), and yet, limited studies have been 

conducted to capture and quantify such variety, especially from an intra-city scale. Therefore, unveiling 

this ambiguous complexity becomes imperative to better inform the local planners. Another important 

reason to choose Nairobi is the data availability and richness. Fortunately, the authors have access to VHR 

satellite images at utmost 0.3m resolution and ground-truth of slum boundaries produced by local experts, 

given the linkage to other ongoing external projects, i.e., the SlumMap (SLUMAP, 2020) and the 

IDEAMAPS projects (Thomson et al., 2020). The retrieved VHR data covers the entire urban area of 

Nairobi, which is fundamental for this study to successfully train a deep-CNN model, as CNN usually 

requires thousands of input data. In addition, compared to other LMICs cities, slum-related data in 

Nairobi are more well-documented in terms of abundance, quality, and update frequency, due to the great 

presence of researchers, NGOs, and local initiatives actively investigating slums in Kenya. This data-rich 

environment of slums also helps the researchers to validate and compare the outputs from this study to 

previous knowledge.  

Figure 4 - The study area map of Nairobi. VHR image source: WorldView-3. 
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3.2. Overall Methodology 

As shown in the conceptual framework before (Figure 1), most of the traditional EO-based methods 

perform binary classification of deprived/non-deprived that built upon the physical features, while the 

survey- and filed-based approaches generate detailed information on the socio-economic status of 

deprivation, but mainly restricted to the household level. Such deprivation mapping products are usually 

siloed and lack a comprehensive reflection on the multi-dimensionality of deprivation. As such, this MSc 

research develops an integrated two-stepwise methodology to directly capture the diversity of deprived 

areas through predicting the intra-urban deprivation degrees from VHR images. The overall workflow of 

this research was visualised in Figure 5, comprised of two key technical parts: unsupervised learning and 

deep learning. The legend shows the sets of steps corresponding to three main research objectives.  

Based on the literature review and the local context of Nairobi, the term ‘multiple deprivations’ is firstly 

conceptualised to inform the development of candidate indicators, covering all possible sub-domains of 

deprivation. All the collected input data are then transformed and resampled into 100m grided raster 

layers, which was deemed as suitable units for this intra-city level study, also in line with other common 

global gridded datasets, e.g., WorldPop (Bondarenko et al., 2020). In the unsupervised learning process, 

principal component analysis (PCA) is applied to the deprivation indicators to generate a set of data-

driven continuous indices indicating the degrees of multiple deprivation (i.e., the ‘multi-deprivation portfolio’); 

next, the results from PCA are iteratively refined by inspecting the PCA-model statistic metrics and 

validated/cross-discussed with previous studies and local knowledge.  

Afterwards, the final ‘multi-deprivation portfolio’ is used as ‘labels’, combined with the VHR EO images to 

train a deep CNN-based regression model, aiming to estimate the deprivation degree from imagery 

features. Once trained, the CNN model will be applied to the whole urban area of Nairobi to predict the 

intra-urban degrees of deprivation. Finally, the gridded outputs will be validated and post-processed to 

discuss the utility of using an EO-based method to predict intra-urban deprivation degrees.   

Figure 5 – The overall methodology of mapping multiple-deprivation degrees. 
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3.3. Data  

In this research, the input data are divided into three major types: (1) deprivation-related spatial covariates 

data for characterising the ‘multi-deprivation portfolio’; (2) EO-based VHR satellite images for predicting the 

‘multi-derivation portfolio’; and (3) the auxiliary datasets for the validation and discussion of the results.  

3.3.1. Deprivation covariates data  

3.3.1.1. Data requirements  

In this study, considering the goal of building a continuous deprivation index at the intra-city level, a list of 

requirements was employed in the inclusion of candidate datasets. They are: (1) the data must be openly 

available so that this method could be replicated across other LMICs cities; (2) the data type should be 

numerical or quantifiable since PCA could only be applied on continuous numerical data; (3) the data 

must be spatial, i.e., the data format should be raster or could be rasterized in a sensible way; (4) the data 

should not be highly aggregated (e.g. census or survey data are usually collected at administrative units 

level), as the output index is set at 100m resolution; (5) the data needs to cover across the entire study area 

(Nairobi); (6) the data should fit in the local contexts of deprivation, in other words, the data should be 

representative of deprivation in the study area.     

3.3.1.2. Candidate data collection   

Recently, the Integrated Deprived Area Mapping System (IDEAMAPS) Network project has published a 

comprehensive, up to date, and complete scoping review based on existing deprivation studies, unpacking 

the multi-dimensionality of deprivation into three levels and nine sub-domains (Abascal et al., 2021). 

Therefore, the research adopts this conceptual framework (Figure 6) of multiple deprivation from the 

IDEAMAPS project as a reference to guide the searching and collection of all possible indicators for 

measuring the deprivation degrees.  

Figure 6 - The domains of multiple deprivation. Source: (Abascal et al., 2021) 
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Based on the adopted framework and the data requirements mentioned above, in total, 27 candidate 

indicators were preliminarily extracted from open databases. At least one indicator was collected to cover 

the sub-domains of multiple deprivation, except for the ones from physical hazards and assets, and 

governance domains. Indicators of physical hazards and assets are omitted, given limited data availability 

and local contexts, e.g., the slope indicator was discarded because the slum distribution is not really 

correlated with the slope in Nairobi. The exclusion of governance indicators is due to the nature of data 

and its limited availability - such data are usually qualitative and broad, which makes them hard to 

converted into the spatial format; also, they are more suitable for inter-city comparison. Table 1 provides a 

summary of all the 26 candidate indicators, including the data description, justification for adopting the 

indicator in characterising deprivation, its effect on deprivation, i.e., whether the increase of the indicator 

value would contribute to or reduce the deprivation degree, and the original format and sources.   
 
Table 1 – The list of candidate indicators for deprivation index formulation. 

Candidate 
indicator 

Effect Description (year) Rationale/Hypothesis 
Original 
format 

Data source 

Household Socio-economic Status 

Skilled birth 
attendance 

- The estimated possibility of 
receiving skilled birth attendants 
during delivery. (2014) 

Higher percent of receiving 
skilled birth attendants 
indicates less deprivation in 
maternal health care. 

Raster tiff 
(~300m) 

WorldPop 
Development and 
Health Indicators 
(Ruktanonchai et 
al., 2016) 

Poverty + Estimated proportion of people 
per grid living in poverty, as 
defined by the Multidimensional 
Poverty Index. (2008) 

Poverty rate is a key 
indicator in measuring 
deprivation. High poverty 
rates directly indicate more 
serious deprivation levels. 

Raster tiff 
(~1000m) 

WorldPop 
Development and 
Health Indicators 
(Tatem et al., 
2013) 

Female literacy - Estimated percentage of women 
aged 15−49 who are literate. (2014) 

If more women are literate, 
the less deprivation in 
education level. 

Raster tiff 
(~4700m) 

The DHS model 
Surface (Burgert-
Brucker et al., 
2018) 

Male literacy - Estimated percentage of men aged 
15−49 who are literate. (2014) 

If more men are literate, the 
less deprivation in education 
level. 

Raster tiff 
(~4700m) 

The DHS model 
Surface (Burgert-
Brucker et al., 
2018) 

DT3 
vaccination 

- Estimated percentage of children 
12−23 months received a third 
dose of DPT vaccination. (2014) 

The vaccination rates 
indicate the level of primary 
health care coverage for 
newborn children. 

Raster tiff 
(~4700m) 

The DHS model 
Surface (Burgert-
Brucker et al., 
2018) 

Access to 
Insecticide-
Treated Net 
(ITN) 

- Estimated percentage of the de 
facto household population who 
could sleep under an ITN if each 
ITN in the household were used 
by up to two people. (2014) 

The use of ITN reduces the 
risk of malaria illness and 
severe disease caused by 
insects. 

Raster tiff 
(~4700m) 

The DHS model 
Surface (Burgert-
Brucker et al., 
2018) 

Stunted 
Children 

+ Estimated percentage of children 
under age 5 years stunted (below 
−2 SD of height−for−age 
according to the WHO standard). 
(2014) 

The growth status of 
children indicates the level of 
deprivation. 

Raster tiff 
(~4700m) 

The DHS model 
Surface (Burgert-
Brucker et al., 
2018) 

Unmet family 
planning 

+ Estimated percentage of currently 
married or in-union women with 
an unmet need for family planning. 
(2014) 

The unmet need for family 
planning contributes to 
deprivation faced by the 
household. 

Raster tiff 
(~4700m) 

The DHS model 
Surface (Burgert-
Brucker et al., 
2018) 
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Candidate 
indicator 

Effect Description (year) Rationale/Hypothesis 
Original 
format 

Data source 

Housing  

Improved 
housing  

- Estimated prevalence of improved 
housing (with improved water and 
sanitation, sufficient living area and 
durable construction). (2015) 

Access to improved housing 
conditions reduces the level 
of deprivation. 

Raster tiff 
(~4700m) 

(Tusting et al., 
2019) 

Improved 
water source 

- Estimated percentage of the de 
jure population living in 
households whose main source of 
drinking water is an improved 
source. (2014) 

With access to better water 
source, the deprivation level 
decreases.  

Raster tiff 
(~4700m) 

The DHS model 
Surface (Burgert-
Brucker et al., 
2018) 

Open 
defecation  

+ Estimated percentage of the 
population living in households 
using open defecation. (2014)  

Households using open 
defecation are more deprived 
of sanitation. 

Raster tiff 
(~4700m) 

The DHS model 
Surface (Burgert-
Brucker et al., 
2018) 

Pit latrines + Kernel density of the pit latrine 
locations in Nairobi, generated by a 
bandwidth of 1000m. (2015) 

Households using pit latrines 
as defecation facilities are 
more deprived of sanitation.  

Point 
vector 

(Mahabir et al., 
2020) 

Social Hazards and Assets 

Armed 
conflicts  

+ Kernel density of reported armed 
conflicts occurred in Nairobi, 
generated by a bandwidth of 
1000m. (2019) 

If an area is more exposed to 
armed conflicts, it is more 
deprived of the security level.   

Point 
vector 

The Armed Conflict 
Location Events 
Dataset project 
(ACLED, 2020) 

Contamination  

PM 2.5 + The annual concentrations 
(micrograms per cubic meter) of 
ground-level fine particulate matter 
(PM2.5) in Nairobi, with dust and 
sea salt removed. (2016) 

Hight concentrations of PM 
2.5 reduces the air quality.  

Raster tiff 
(~1000m) 

NASA SEDAC 
(Van Donkelaar et 
al., 2016) 

Density of 
waterways  

+ Kernel density of OSM waterways 
(river, stream, canal) in Nairobi, 
generated by a bandwidth of 
1000m. (2020) 

The water quality in urban 
Nairobi is heavily polluted 
due to the increased 
discharge of industrial, 
commercial, and domestic 
effluents (Mulei, 2012). 
Thereby, the proximity to 
rivers indicates deprivation in 
water quality. 

Polyline 
vector 

Open Street Map 

Illegal dump 
sites 

+ Kernel density of illegal trash 
dump sites in Nairobi, generated 
by a bandwidth of 1000m. (2017) 

The presence of unplanned 
dump sites reflects poor 
waste management.     

Point 
vector 

(Ogutu et al., 2019) 
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Candidate 
indicator 

Effect Description (year) Rationale/Hypothesis 
Original 
format 

Data source 

Unplanned Urbanization  

Population 
density  

+ Estimated population density per 
pixel at 100m resolution, adjusted 
to match the corresponding 
UNPD 2020 estimate of Nairobi. 
(2020) 

Highly populated areas tend 
to be more deprived due to 
lack of living spaces and 
over-crowdedness.   

Raster tiff 
(~100m) 

WorldPop Grid 
Population Counts 
(Bondarenko et al., 
2020) 

Building 
density  

+ The number of buildings per grid 
cell area in m². (2020) 

High building density usually 
indicates the lack of 
sufficient living spaces.  

Raster tiff 
(~100m) 

WorldPop Urban 
Building Footprint 
(Dooley et al., 2020) 

NDVI - Maximum Normalized difference 
vegetation index (NDVI) in 
Nairobi. (2019) 

Low NDVI value indicates 
the absence of green space, 
which increases the 
deprivation in living 
environmental quality.  

Raster tiff 
(~30m) 

Climate Engine 
(Huntington et al., 
2017) 

Infrastructure   

Night-time 
light 

- The VIIRS night-time light value 
of Nairobi. (2016)  

The presence of electrical 
lighting on the earth surface 
indicates street light 
infrastructure, also widely 
used as a proxy of income, 
development.   

Raster tiff 
(~100m) 

WorldPop 
Covariates (Lloyd et 
al., 2019) 

Density of bus 
stations  

- Kernel density of informal bus 
stations in Nairobi, generated by a 
bandwidth of 500m. (2019) 

High accessibility to public 
transport indicates less 
deprivation level.   

Point 
vector 

The DHS model 
Surface (Burgert-
Brucker et al., 
2018) 

Distance to 
major roads 

+ Distance of per grid centroid to the 
nearest OSM major road. (2020)   

Proximity to major roads 
indicates less deprivation 
level in terms of access to 
transport.  

Polyline 
vector 

(OpenStreetMap, 
2020) 

Poor quality 
roads 

+ Kernel density of road with poor 
quality (i.e., unpaved, unsurfaced, 
track, path, footpath, grave) in 
Nairobi, generated by a bandwidth 
of 1000m. (2020) 

Areas dominated by roads 
with poor quality are 
deprived in transport 
infrastructure conditions.  

Polyline 
vector 

(OpenStreetMap, 
2020) 

Facilities and Services  

Distance to 
education 
facilities  

+ Distance of per grid centroid to the 
nearest education facilities 
(schools, college, university etc.). 
(2020)  

Areas with higher distance to 
education facilities are more 
deprived in accessibility.    

Point 
vector 

Humanitarian 
OpenStreetMap 
Team (HOTOSM, 
2020) 

Distance to 
health facilities 

+ Distance of per grid centroid to the 
nearest health facilities (hospital, 
clinic, pharmacy etc.). (2020) 

Areas with higher distance to 
health facilities are more 
deprived in accessibility.    

Point 
vector 

Humanitarian 
OpenStreetMap 
Team (HOTOSM, 
2020) 

Distance to 
financial 
facilities 

+ Distance of per grid centroid to the 
nearest financial facilities (bank, 
ATM, bureau de change etc.). 

Areas with higher distance to 
financial facilities are more 
deprived in accessibility.    

Point 
vector 

Humanitarian 
OpenStreetMap 
Team (HOTOSM, 
2020) 
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3.3.2. Deprivation covariates data pre-processing  

After establishing the pool of candidate indicators, several pre-processing procedures were conducted to 

prepare the input for the PCA model1. The pre-processing steps include (1) resampling of the raster 

indicators, (2) rasterization of the vector layers and (3) Z-score standardization for all the pre-processed 

inputs. The following sections introduce the detailed procedures in each pre-processing task.  

First, all the indicator layers with original formats in raster are reprojected to the Universal Transverse 

Mercator (UTM) Zone 37S coordinate system, the local coordinate system of Kenya, and then resampled 

into the standard 100m resolution grid. The resampling method used in the data preparation is ‘Cubic’ in 

ArcGIS, as recommended for interpolating continuous pixel values. The analysis scale for this research is 

set at 100m grid for four primary reasons: (1) 100m grid is the second finest resolution from all the input 

data, with only one indicator (i.e., NDVI) at 30m resolution. Thus, using 100m resolution would retain 

most of the information variance and richness from the datasets. (2) The 100m standard resolution is 

geographically coherent with existing global gridded datasets (e.g., WorldPop database), which may 

support the research approach and outputs to be linked, compared, and incorporated into other global 

studies/datasets or even generalised across cities in the future. (3) Considering this research is designed at 

an intra-city level, the size of analysing units should not be too large that masks off the diversity and 

gradient pattern of deprivation, nor it should be too small as it is usually costly to retrieve high resolution 

data, let alone its limited availability; (4) Last but not least, producing a deprivation degree map in high 

resolution would naturally highlight the most deprived areas, which usually scatter in and around the slum 

neighbourhoods. Even without any intention, in principle, such high-resolution deprivation mapping 

products may increase the stigmatization of slum dwellers.      

Second, the vector datasets were converted into raster format at 100m grid resolution. For the 

rasterization of all indicators related to facilities and services domain as well as the indicator of major 

roads, Euclidean distance to the nearest facility was calculated in kilometres. The rest of the point and 

polyline vectors (except for the bus station point layer) were rasterized by calculating the kernel density 

with a bandwidth of 1 km, following the same setting of research conducted by Mahabir et al. (2020) 

about mapping slums in Nairobi. For the indicator of bus stations, 500m bandwidth was used to calculate 

the kernel density, considering it as a common walking distance to the bus station with good accessibility 

(Daniels & Mulley, 2013).     

Finally, all the raster layers were standardized before entering the PCA model, given the large discrepancy 

of scale and measuring unit between individual indicators. PCA is well known as highly dependent on 

input scale because the input features with large variance and magnitude tend to dominate the retained 

components, thus leading to bias on the results (Baxter, 1995). To avoid so, the standardisation is achieved 

through rescaling the input features based on the standard score (Z-score) to obtain a normal distribution 

with a mean of zero and a standard deviation of one. The standardization was conducted using the 

following formula (Eq. 1).    

𝑥𝑠𝑡𝑑 =
𝑥− 𝜇

𝜎
    (1) 

Where 𝑥𝑠𝑡𝑑 is the standardized value of the observed indicators; 𝑥 is the raw value of indicators; 𝜇 and 𝜎 

refer to the mean and the standard deviation of the sample values, respectively.   

 
1 The pre-processing step was conducted in Python via Jupyter Notebook. The script is openly available at Github 
for the readers’ reference (https://github.com/EqiLuo/MappingDeprivation/tree/main/PCA_Process). 

https://github.com/EqiLuo/MappingDeprivation/tree/main/PCA_Process
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3.3.3. VHR satellite image data 

 
The available VHR EO imagery data for this research include Worldview-3 satellite image, and the SPOT-

7 satellite image of Nairobi (Table 2), acquired via the collaboration with an ongoing project – SLUMAP 

(Remote Sensing for Slum Mapping and Characterization in sub-Saharan African Cities) (SLUMAP, 2020). 

Both of the VHR images cover the entire urban areas of Nairobi and can provide a very clear visual 

difference between slums and non-slum settlements even from just inspecting the imagery features.  

Table 2 – The summary of available VHR satellite images of Nairobi for this study. 

Name  Resolution Producer Year Cloud coverage  

Worldview-3 

0.3m at panchromatic band.  
1.2m at 8 multispectral bands: red, red edge, 
coastal, blue, green, yellow, near-IR1 and 
near-IR2 

Maxar 
DigitalGlobe 

2019 
Several cloud patches scattered in 
the deprived areas in Nairobi. 

SPOT-7 
1.5m at 4 bands: red, green, blue and near-
infrared.  

Intellegience 
Airbus  

2017 Very less  

Although the Worldview-3 datasets have higher spatial resolution and more spectral bands, the SPOT-7 

satellite images were selected as the final inputs for the CNN model due to the presence of several clusters 

of cloud in the Worldview-3 images, which will naturally introduce undesirable noises to the deep learning 

model. Figure 7 shows a snapshot zooming into one of the biggest slums – Kibera in Nairobi. In the left 

graph of Worldview-3, it could be clearly observed that a few cloud patches block the deprived 

settlements within Kibera, coupled with some areas darkened by the shadows. While for the SPOT-7 

images in the right figure, all the physical morphology information is well retained without any cloud 

coverage. Most importantly, a well-trained CNN model requires the input data to contain as much as 

fewer noises, especially regarding the key target variables – in this case, the delineated slum extents, 

because they are the most direct morphological appearance of deprivation based on prior knowledge. In 

addition, removing the cloud coverage from EO images and filling up the missing information is often 

difficult to address, and inappropriate interpolation method may bring in extra noises to the model input, 

let alone this MSc research only has limited time availability.   

Figure 7 - The deprived areas shown in VHR images. (a) Worldview-3, 2019. (b) SPOT-7, 2017. 
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Indeed, it is agreed that the richness of EO information would be slightly reduced by adopting the 1.5m 

data from SPOT-7, rather than the 1.2m image of Worldview-3. However, the trade-off of compromising 

on spatial resolution is still reasonable to avoid bringing extra noises and bias to the model and to 

prioritize that the research problems and objectives could be first systematically explored.    

3.3.4. Auxiliary data 

In this research, several auxiliary datasets were used to provide detailed information about the contexts 

and help to support the validation and cross-discussion of the model outputs. The word ‘auxiliary’ here 

emphasize the supplementary and referencing functions of these datasets, although they are not directly 

used as raw inputs for the models in this study. The following sections briefly introduce the 

supplementary datasets and their benefits brought into this study. 

One of the most important datasets is the reference slum boundaries of Nairobi (see Figure 4). This is 

because, unlike traditional classification problem where the outputs can be directly validated with the 

ground-truth label, in this study, the characterization of multiple deprivations is designed to be measured 

in continuous values. Nonetheless, in theory, it should be foreseeable that the areas with a high estimate of 

deprivation degree would somewhat correlate (more specifically, geographically overlapping) with the slum 

region. Therefore, in the absence of ‘continuous labels’ for deprivation in Nairobi, the previously 

delineated slum extents become compulsory for supporting the validation of model outputs. The 

reference slum boundaries were collaboratively delineated by the local communities and NGOs in 2016, 

under the guidance and support from Slum Dwellers International (SDI). These established slum maps 

were also further validated by the local experts and hence should be regarded as reliable ground truth data. 

In total, there are 161 delineated slum polygons, accounting for 11.15 km2.  

Figure 8 - The land use typologies of urban areas in Nairobi, 2020. Base map: Worldview-3. Source: (Vanhuysse et al., 2021) 
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In addition to the slum boundaries, this research reaches out to a very recent output produced by the 

SLUMAP team (Vanhuysse et al., 2021), which contains more detailed information on land-use/land-

cover (LULC) typologies within Nairobi. This dataset collected 500 in-situ samples at 50m grid and 

classified the land use into different typologies, including high- to mid-density built up, low-density built 

up, industrial area and urban deprived areas (Figure 8). The major highlight of the SLUMAP dataset is that 

it further divides the deprived areas in Nairobi into two sub-classes, namely, typical deprived urban areas 

and atypical deprived urban areas (Vanhuysse et al., 2021). As shown in Figure 8, the typical deprived areas 

are usually dominated by highly dense, compact clusters of small settlements with irregular road networks; 

on the other hand, the atypical deprived areas accommodate compact to mid-dense building clusters, and 

the size of buildings are usually slightly bigger than the typical deprived settlements, coupled with a bit 

more organized road networks. In general, introducing this dataset would enrich the insights and 

understanding from this research and help to validate the results.   

Lastly, the Kenya Settlements Extents Database, produced by the Geo-Referenced Infrastructure and 

Demographic Data for Development (GRID3) initiative (CIESIN& Novel-T, 2020), was also included as 

an auxiliary dataset. This dataset contains the spatial boundary for three types of settlements, i.e., built-up 

areas, small settlements areas and hamlets (Figure 9). These extents are automatically derived from the 

Maxar/Ecopia building footprint (Maxar, 2021) and further classified based on the building density of the 

settlement agglomerations. This dataset provides a clear classification of built-up and non-built-up for the 

city of Nairobi and thus helps to confirm which types of land use should be included for this analysis.   

3.4. Principal component analysis  

Principal component analysis (PCA), as one of the most popular multivariate statistic methods, was first 

invented by Pearson (1901) and further elaborated by Hotelling (1933). It intends to derive a set of 

uncorrelated principal components (PCs) through an orthogonal transformation of the original variables 

that enables to retain most of the variance from the original datasets (Jollife & Cadima, 2016). Due to its 

outstanding performance in transforming data with large dimensionality while still minimising the 

information loss, PCA has been extensively applied by researchers to investigate multiple deprivation, 

specifically in identifying its variability and formulating the multiple deprivation index, ranging from 

Figure 9 - The settlements extents of Nairobi. Source: (CIESIN & Novel-T, 2020) 
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neighbourhood to area scale (Aungkulanon et al., 2017; Basu & Das, 2020; Mishra, 2018). Additionally, 

PCA is a non-parametric, automated statistic approach, independent from any presumption of the 

probability distribution for the original datasets, which makes it relatively easy and straightforward to 

implement (Abdi & Williams, 2010). In this sense, PCA could be considered as an unsupervised learning 

technique since it automatically explores the similarities and differences among the variables within the 

datasets and then derives the PCs that together explain the maximum variance (Hastie et al., 2009). Lastly, 

another advantage of PCA is avoiding the subjectivity from manually or semi-manually assigning weights 

(there are always personal judgements involved, which are inconsistent across people and contexts) to 

different variables when aggregate the deprivation indicators into a composite index (Deas et al., 2003). 

Given above all considerations, PCA is chosen to generate the multiple deprivation indices.  

In this analysis, all the 26 collected indicators (refer to Table 1) are firstly used as inputs for running the 

PCA. The inputs are standardized before entering the model to avoid bias from varying measurement 

units. The PCA was conducted via the software Statistical Package for the Social Sciences (SPSS). And 

prior to the application, several assumptions related to the fitness of the data on the PCA model need to 

be fulfilled. The Pearson correlation coefficient matrix was calculated to make sure that highly correlated 

(correlation coefficient p >0.8) pairs of indicators were not included and at least two or more correlation 

coefficients are above 0.3 or more (Tabachnick & Fidell, 2007). The Kaiser-Mayer-Olkin test (KMO) 

assesses the sampling adequacy of the data and to what degrees does the input fit the PCA model 

(Hutcheson & Sofroniou, 1999; Kaiser, 1960). The KMO value is suggested to be more than 0.6 as an 

acceptable threshold (Hair, 2006). Lastly, Bartlett’s test of sphericity was checked as statistically significant, 

with returned value p ≤ 0.001. All the 26 candidate indicators satisfied the above criteria and thus intactly 

retained for the PCA analysis.   

3.4.1. PCA-based index construction  

To achieve a comprehensive, transparent and quantitative insight towards the diversity and variation of 

multiple deprivation in Nairobi, this study implements a PCA-based technique to formulate a set of 

continuous deprivation indices – called the ‘multi-deprivation portfolio’. The calculation method of the multi-

deprivation indices is mainly based upon the ‘SoVI recipe’ (Cutter et al., 2003), added with slight 

modification inspired by the work from (Abson et al., 2012). Here, the word ‘SoVI’ refers to ‘Social 

Vulnerability Index’, and the ‘SoVI recipe’ is a classical index aggregation approach widely used in social 

vulnerability studies (Sherbin & Bardy, 2016; Fekete, 2009; Frigerio et al., 2016; Jankowska et al., 2011). 

Although the target variable here has changed from ‘social vulnerability’ to ‘multiple deprivation’, it is still 

sound and reasonable to transfer this ‘SoVI recipe’ as a manual to calculate the aggregate deprivation 

index, because, essentially, both of them are multi-dimensional, complex concepts that indicate the status 

of people being deprived or disadvantaged in one or several domains (Whelan & Maître, 2005). 

Nonetheless, it is not enough to just provide a single aggregate index, but more importantly, to capture the 

independent, unique facets of multiple deprivation. As such, the individual, explicit sub-dimension (i.e., 

the PC scores) of multiple deprivation are also retained and quantified as the sub-dimensional deprivation 

indices (Abson et al., 2012). The expected ‘multi-deprivation portfolio’ contains two products: an aggregate 

multiple deprivation index and a set of indices measuring the deprivation degree in individual sub-

domains. To conclude, this tailored PCA-based approach enables to not only present a summarized final 

score of the multiple deprivation level but also deconstruct the multi-dimensionality and complexity of 

deprivation into individual, less inter-correlated but more pure facets of multi-deprivation. The remaining 

sections would articulate the calculation procedures in detail.  

Suppose there is a dataset with 𝑛 samples and 𝑝 variables, which is equivalent to a 𝑛 × 𝑝 matrix 𝑋. The 

matrix consists of 𝑛 𝑝-dimensional vectors, denoted as 𝑋 =  (𝑋1, 𝑋2, … , 𝑋𝑝 ) (Jollife & Cadima, 2016). 

The PCA aims to derive a set of linear combinations of the original vectors (i.e., the columns of the matrix 
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𝑋) that can maximize the remained variance as much as possible. In essence, this linear combination of 

original variables is what usually referred to as the ‘Principal Component’. For example, the first 

component could be denoted via the following formula (Eq. (2)):   

𝑃𝐶1 =  𝑎11𝑋1 + 𝑎12𝑋2 + ⋯ +  𝑎1𝑝𝑋𝑝  (2) 

where 𝑃𝐶𝑖, subscripted by 𝑖 (𝑖 ≤ 𝑝) to indicate the order of the PCs (in this example, 𝑖 = 1), is the 𝑖𝑡ℎ PC 

scores; 𝑎 (𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑝) is a set of PC-specific loadings employed on the corresponding variables to 

calculate the linear sum. The first PC is calculated in a way to make itself accounting for the maximum 

variance from the original datasets, followed by the second PC explaining the largest share of the 

remaining variance, and so on.  

One important parameter to decide in PCA analysis is the number of retained PCs, because it directly 

relates to the total variance explained. This study follows the classic rule of thumb proposed by Kaiser 

(1960) that if the Eigenvalue of a PC is greater than 1, it will be retained, combined with the scree plot of 

the Eigenvalue. Next, the extracted PCs are rotated using the varimax orthogonal rotation method such 

that the rotated PCs are uncorrelated among each other. This ‘uncorrelatedness’ is extremely significant 

because it ensures that each extracted PC measures the different dimension of deprivation. Meanwhile, the 

rotated component matrix (RCM) is generated to help the researchers interpret the components by 

identifying the dominant variables (i.e., variables with high factor loadings) within that component. In 

other words, the sub-domain/facet of multiple deprivation reflected by each PC is determined by the 

significant loadings of the deprivation indicators on that component (Abson et al., 2012). Additionally, all 

the sub-dimensional deprivation indices are normalized to the scale between 0 to 1, where 0 represents the 

least deprived and 1 indicate the highest level of deprivation.  

As mentioned before, this study also seeks to generate an overall aggregate measure of the multiple 

deprivation degrees, so the retained PC scores (not normalized) are ultimately combined together to 

calculate the aggregate multiple deprivation index. The aggregation approach follows the ‘SoVI recipe’ and 

is denoted in Eq. (3): 

𝐴𝑀𝐷𝐼 =  ∑ 𝜎 ∗ 𝑃𝐶𝑖
𝑞
𝑖=1    (3) 

Where the Aggregate Multiple Deprivation Index is denoted as 𝐴𝑀𝐷𝐼; 𝑞 is the number of retained PCs 

from the previous analysis; 𝜎  is the directional adjustment coefficient, either equal to -1 (negative 

directionality) or +1 (positive directionality), dependent on the influence of the PC to the deprivation.  

More specifically, the positive directionality (+1) would be employed on those PCs that contribute to the 

multiple deprivation level, i.e., the increase of the values in those indicators would lead to the increase of 

deprivation degree. Note that just adding the directional adjustment does not import any weight on the 

PCs; instead, in this formula, each PC is regarded as equally important in contributing to the final 

deprivation score. This equal weight aggregation method is chosen due to the absence of a priori 

knowledge about the relative importance of different deprivation sub-domains in Nairobi. In fact, such 

knowledge can only be generated via very detailed field surveys and require validation from local experts’ 

judgements (Schmidtlein et al., 2008). Yet, given the COVID-19 pandemic outbreak, any field data 

collection with physical contact with people is hardly possible. Therefore, this research decides to give 

each PC equal weight as the best option in order to avoid potential bias from subjectively assigning 

weights but also ensure transparency and interpretability of the results. In addition, the 𝐴𝑀𝐷𝐼 value is also 

normalized into the range between 0 to 1 due to the same reason given above.   
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3.4.2. PCA-based index refinement  

All the 26 candidate indicators were first included in the PCA analysis to generate preliminary results. 

Then, the results are statistically checked based on the data suitability criteria stated above and also 

geographically visualized in the 100m standard grids to be inspected on the VHR satellite images and slum 

boundaries. In addition, the data fitness was carefully checked with a specific focus on ‘to what extent is 

the indicator appropriate for this intra-urban 100m grid analysis?’, as some of the original datasets have a 

relatively coarse resolution. The refinement was running iteratively until the result fulfils the quality 

requirements and its spatial patterns stay geographically inherent and stable with the auxiliary datasets.  

In the beginning, all the indicators were collected to cover the entire urban areas (i.e., contain both the 

urban built-up and non-built-up) of Nairobi, as the research aims to provide a complete measure for the 

intra-urban deprivation degrees. However, during the PCA analysis, the researchers realise that, by nature, 

the characteristics/intrinsic patterns of multiple deprivation vary substantially between urban built-up and 

urban non-built-up, let alone there is large heterogeneity even within the deprived built-up regions (Kuffer 

et al., 2017). For instance, common indicators for measuring the social-economic deprivation (e.g., 

population density, income level, food expenditure) or morphological deprivation (e.g., building density, 

building material, structure) would become naturally unapplicable and meaningless if applied to non-built-

up areas due to the absence of settlements and residents. As such, including the non-built-up areas in this 

analysis may introduce extra noises and inconsistency to the PCA model so that the important patterns of 

multiple deprivation on urban built-up cannot be recognized and captured. Additionally, it should be 

emphasized again that, in this context, one of the fundamental objectives is to not only provide a mapping 

product of multiple deprivation level but also know how to use it in order to better inform the local 

governments and stakeholders in helping the people in need. Given the above, this research decided to 

only focus on the multiple deprivation of urban built-up areas – where the people in need live in.     

Additionally, several candidate indicators were finally discarded to avoid potential bias on the results. A 

summary of the discarded indicators and the justification is provided in the results section 4.1. 

3.4.3. PCA-based index validation  

As introduced before, PCA is essentially an unsupervised learning technique from which the results are 

solely data driven. In this case, the magnitude and number of input indicators decide how much 

information can actually be drawn to capture the multi-dimensionality and variety of the deprivation level 

in Nairobi. Also, the quality of input data directly influences the reliability and quality of the outputs. 

Therefore, it is important to validate the ‘multi-deprivation portfolio’ using independently verified datasets and 

also compare it with local knowledge. The validation process includes two major parts: (1) statistical 

analysis combined with visual assessments; (2) local expert validation.  

Firstly, the auxiliary datasets are used for PCA results validation and/or cross-discussion via performing 

some basic exploratory statistical analysis. The major datasets used for validation are the slum boundaries 

and the land use typologies from SLUMAP project. Moreover, a detailed visual assessment is applied on 

the VHR satellite images and street-view images (Mapillary, 2021) for better comparing the PCA results 

with the ground truth and providing a more ‘in-situ’ understanding of deprivation in Nairobi.  

Secondly, a local validation is also conducted via an online semi-structured interview with the local 

experts. The local experts are selected from researchers with experience in geo-spatial data analysis and 

adequate knowledge of the local deprivation characteristics in Nairobi to provide more detailed, contextual 

insights and potential improvements for this approach. During the one-hour semi-structured interview, 

the presenter first shows the mapping products of ‘multi-deprivation portfolio’, ask several fixed questions 

(e.g., “Is the deprivation pattern in this map reflect the local situation?”), and lead to open discussion. The 

key feedback, suggestions and comments from the interview are noted for the results and discussion.   
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3.5. Deep CNN-based regression model   

As described in the overall methodology (Figure 1), after establishing the ‘multi-deprivation portfolio’ from 

PCA using all the selected indicators, a CNN-based regression model would be trained to directly predict 

those PCA-based indices using only EO data (Figure 10). All of the output indices from PCA are at the 

standard 100m grid. Hence, the PCA-based indices (i.e., the ‘multi-deprivation portfolio’) can be considered as 

a set of measures for the overall level of multiple deprivation within a square of 100m by 100m. In this 

sense, the task of the CNN-based regression model could be further specified as ‘using EO data to predict 

the overall level of the multiple deprivation within a 100m grid’.  

The remaining sections articulate the input preparation and sampling method for this model, the 

configuration of the proposed CNN regression model, the model optimization, and finally the evaluation 

metrics for the model performance.   

3.5.1. Input preparation  

3.5.1.1. Image tiles extraction 

Before training the CNN-based regression model, the first thing is to prepare the input images for the 

model. The selected VHR EO image for the CNN model is SPOT-7, given its very low cloud coverage. 

The SPOT-7 image has four bands (RGB + near-infrared) with a spatial resolution of 1.5m, covering the 

entire study area of Nairobi. As specified above that the multiple deprivation degrees were measured at the 

100m grid scale, it is natural and intuitive to also use the same size of EO imagery information for 

predicting this index. Considering this, the SPOT-7 image needs to be clipped into a series of small image 

tiles, of which the size is geographically equivalent to the 100m standard grid. Additionally, the clipped 

image tiles are also required to be spatially coincident with the PCA-based indices grids to ensure each of 

the image tiles corresponding to the correct reference values of multiple deprivation indices.  

The stepwise procedures of generating the image tiles are described as follows. Firstly, a polygon vector of 

100m-by-100m fishnet was created covering the whole study area and then snapped into the PCA-based 

indices layer. Next, all the fishnet grids intersected with the non-built-up areas were eliminated. 

Afterwards, a centroid layer of all the retained fishnet grids was generated. The converted centroid layer is 

especially significant for extracting the image tiles, because: although the size of the image tile is required 

to be as much as close to 100m grid, due to the 1.5m resolution of SPOT-7 image, it is hardly possible to 

clip an image tile of the exact same size (since 100m cannot be divided by 1.5m with no remainders). 

Additionally, a standard CNN model also requires a fixed input size of a square patch. Therefore, the 

centroid point was used as an alternative to creating the square sampling area by expanding the pixel in 

which the centroid locates with 32 strides. So, the size of each sampling area becomes 65 by 65 pixels, 

which is geographically equal to a 97.5m grid. Next, the square sampling areas were vectorized into 

‘sampling grids’ polygon layer (which are exactly in alignment with the raster pixels). Finally, the sampling 

grids were used to divide the input image tiles for the CNN model. 

Figure 10 - An illustration showing the inputs and outputs CNN-based regression model. 
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Although the established size of the image tile (97.5×97.5m) is slightly smaller than the standard 

100×100m grid, however, for the ease of data preparation and model implementation, this size is finally 

employed to divide the VHR image. In total, 45559 image tiles of 65×65 pixels were extracted from the 

original SPOT-7 image and will be used as inputs for the CNN-based regression model (Figure 11).  

3.5.1.2. Sampling of the training, validation, and test dataset  

As now the total 45,559 sample sets are well prepared, another crucial preparation task before entering the 

CNN model is to find a suitable way in dividing the overall samples into training, validation and test 

datasets. For the sampling process, two primary questions need to be answered: (1) what is a suitable 

proportion to divide training, validation and test datasets? (2) which sampling method should be applied 

to ensure that the subsets contain sufficient and comprehensive information from the original data?   

There are a lot of ways to divide the total samples into subsets for model implementation. The common 

rule of thumb follows the proportion such as 70%, 15%, 15% or 80%, 10%, 10% for dividing the training, 

validation and test dataset, respectively. It is particularly suggested to adopt those ratios when the number 

of total samples is relatively limited (Xu & Goodacre, 2018). However, given the total number of 45559 

samples, which can already be claimed as ‘large geo-dataset’, the training-validation-test splitting ratio does 

not necessarily need to adhere to the rule of thumb. Instead, this study specifically intends to train the 

CNN model using relatively small datasets because one of the research motivations lies on that if the 

model can be trained with only limited samples but still yields fairly accurate result in predicting multiple 

deprivation degrees, then this advanced approach could be transferred to other LMICs cities to inform 

local planners of urban deprivation with less cost in preparing training samples. In the end, the authors 

decide to take 7000 (around 15%) samples for training and validation, while the remaining 38559 samples 

would not be involved in any steps of the model development but only used to test the CNN model. 

Within the 7000 samples, 4900 (70%) is used for training, and 2100 (30%) is used for model validation, 

following the common rule of thumb.  

Figure 11 - The extracted image tiles for the CNN-based regression model. (a) examples showing the size of each image tile. (b) the 
total extracted image tiles for the whole study area. 

Figure 12 - The sampling approach for extracting the training and validation datasets. 
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The stratified random sampling method is employed to extract the 7000 samples (Figure 12). Compared to 

random sampling, stratified random sampling ensures that all the ‘sub-groups’ within the total samples can 

be well represented by the extracted subsets. In other words, the distribution pattern of deprivation level 

in the original dataset would still be retained in the extracted samples. The total samples were first divided 

into 5 sub-groups using the interval of 1 standard deviation so that each sample within the same sub-

group shares an identical label. Then, a package called ‘sampling tool’ developed by Buja & Menza (2013) 

was applied to conduct the stratified sampling based on the previously classified label.  

3.5.2. Regression CNN configuration  

In this study, a deep CNN-based regression model is proposed for extracting the spatial-contextual 

features from the VHR image to predict the PCA-based multiple deprivation indices in Nairobi. The 

proposed CNN regression model is built upon the VGG-16 (Simonyan & Zisserman, 2015) with some 

modifications to fit in the regression purpose and research context. The most important innovation of this 

proposed CNN architecture is the insertion of a regression layer (i.e., the Sigmoid activation layer) to 

replace the conventional ‘SoftMax’ layer in the classification model, such that the outputs would be a set 

of continuous values between 0 to 1, instead of categorical, discrete labels (Babu et al., 2016).   

It is also worth mentioning that the input image size for CNN has changed. Recall that when dividing the 

image tiles, the individual image size was decided on 65×65 pixels. However, as the proposed model is 

modified from VGG-16, it usually requires the input size to be an even number. Therefore, the actual size 

of the input image entering the CNN model is set at 64×64 pixels (96m ×96m grid), with the last column 

and row left outside. A more detailed description of the implemented CNN model is provided below.  

3.5.2.1. Architecture of the CNN regression model  

The overall architecture of the proposed CNN regression model is visualized in Figure 13. In general, this 

deep regression model consists of two major parts, namely, the feature extraction and the regression, each 

with several sublayers. A more detailed summary of the model structure is also shown in Table 3.  

Figure 13 - The overall architecture of the proposed deep CNN-based regression model. BN means batch normalization, ReLU means 
rectified linear unit activation function.  
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Table 3 – A detailed summary of the proposed deep CNN-based regression model structure.   

Stage Layer name 
Number 

of filters 

Size of feature map 

(H × W × D) 

Filter 

Size 

Conv block 1 

Input layer  64 × 64 × 4  

Conv1-1  64 64 × 64 × 64 3 × 3 

BN + ReLU    

Conv1-2 64 64 × 64 × 64 3 × 3 

BN + ReLU    

Max Pooling   32 × 32 × 64 2 × 2 

Conv block 2 

Conv2-1 128 32 × 32 × 128 3 × 3 

BN + ReLU    

Conv2-2 128 32 × 32 × 128 3 × 3 

BN + ReLU    

Max Pooling  16 × 16 × 128 2 × 2 

Conv block 3 

Conv3-1 256 16 × 16 × 256 3 × 3 

BN + ReLU    

Conv3-2 256 16 × 16 × 256 3 × 3 

BN + ReLU    

Conv3-3 256 16 × 16 × 256 3 × 3 

BN + ReLU    

Max Pooling  8 × 8 × 256 2 × 2 

Conv block 4 

Conv4-1 512 8 × 8 × 512 3 × 3 

BN + ReLU    

Conv4-2 512 8 × 8 × 512 3 × 3 

BN + ReLU    

Conv4-3 512 8 × 8 × 512 3 × 3 

BN + ReLU    

Max Pooling  4 × 4 × 512 2 × 2 

FC stage 

1st fully connected   512  

BN + ReLU    

2nd fully connected   256  

BN + ReLU    

Regression   Sigmoid activation   1  

In total, 4 convolution blocks comprised of 11 individual convolutional layers are built to extract the 

features for multi-deprivation index estimation. In this analysis, a ‘convolution block’ is defined as a series 

of convolutional layers, with each followed by a batch normalization (BN) layer and a rectified linear unit 

(ReLU) layer and placed with a max-pooling layer at the end of the block. Throughout the coevolution 

blocks, all the convolutional layers are set at the same filter size of 3×3 to keep the output feature map 

unchanged. The convolutional layer applies filters (also called kernels) in a moving window fashion to 

extract the contextual information from the input image. The batch normalization layer is applied right 

after the convolutional layer and before the activation layer in order to reduce the internal covariance shift 

and fasten the training speed (Ioffe & Szegedy, 2015). Then, ReLU is chosen as the activation function 

due to its lower computation cost and the ability to avoid vanishing gradient problems compared to other 

common activation function like Sigmoid or Tanh (Glorot et al., 2011). At the end of each convolution 

block, the max-pooling layer is applied to reduce the size of the feature map while still retaining the high-

level features (Kalchbrenner et al., 2014). After passing through all the convolutional blocks, the extracted 
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feature map from the feature extraction phase is flattened and directly fed into the fully connected layers 

(the FC stage and regression in Table 3). In the FC stage, two fully connected hidden layers are applied to 

further process the feature vectors, with each of the neuron nodes set as 512 and 256, respectively. Finally, 

the regression layer is applied to predict the multiple-deprivation index. To work as a regressor and 

produce a continuous value between 0 to 1, the activation function in the final output layer is set as 

Sigmoid. Thus, a numerical value within the range of 0 to 1, which indicates the level of multiple 

deprivation degree, would be the final expected output from this proposed deep CNN regression model.  

In total, this proposed CNN-based regression model contains 11,969,153 trainable parameters to learn.  

3.5.2.2. Model training initialization setting   

In this study, considering that the ‘multi-deprivation portfolio’ provides more than one measure of the multiple 

deprivation degrees in Nairobi, thus, before training the CNN model, the ‘target variable’ needs to be 

decided, i.e., which measure from the ‘multi-deprivation portfolio’ should be first be predicted by the model? 

As a starting point, the authors decide to use the sub-dimensional deprivation index that most related to 

morphological deprivation as the input ‘label’ to explore the potential of using the EO method in 

estimating deprivation degree. It is expected that to some extent, the variance of morphology-based 

deprivation should be partially captured by the proposed CNN regression model, as the input imagery 

data carries substantial morphology information.  

As stated in section 3.5.1.2, in total, 7000 image tiles of 64×64 pixels were selected as the training and 

validation datasets. Among them, 4900 tiles (70%) are used for model training, whereas the remaining 

2100 tiles (30%) for model validation. To initialize the model training process, several hyper-parameters 

are set based on the knowledge from previous deep regression studies (Ajami et al., 2019; Lathuiliere et al., 

2020; Pyo et al., 2019; Ren et al., 2019) and empirical experience. A summary of the hyper-parameter 

setting for model initialization is provided in Table 4.  

Table 4 – A summary of the hyper-parameter setting for the model initialization  

Hyper-parameter  Value  

Optimizer  Adam 

Loss function Mean Squared Error (MSE) 

Batch Size 32 

Learning rate (lr) lr = 0.001, with reducing learn rate on plateau.  

Epochs 80 

Adam is applied as the model optimizer because of its high computational efficiency and generally stable 

performance on various applications (Kingma & Ba, 2015). The batch size is empirically set at 32. The 

learning rate is set as 0.001, along with the call back function of ‘reducing learning rate on plateau’ to help 

the model reach the minima once the learning stagnates. The number of epochs is empirically set at 80. 

Lastly, the loss function for the model initialization follows the common choice applied in regression 

tasks, the mean squared error (MSE). The proposed CNN model is trained by minimizing the MSE loss 

between the regression output 𝑦𝑖 and the reference deprivation index produced by PCA �̂�. The MSE loss 

function is defined as: 

𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦𝑖 −  �̂�𝑖)2𝑁

𝑖=1   Eq. (4) 

where 𝑁 is the number of training samples.  
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The CNN model is implemented using Keras deep learning library and the Python programming language 

via Jupyter Notebook 2. To address the high computational cost in processing large geo-datasets, the 

whole CNN simulation is performed in the modelling platform of ITC Centre of Expertise in Big 

Geodata Science (CRIB, 2021) with the NVIDIA Jetson AGX 8-core GPU and 32 GiB memory, which 

greatly helps to save the training time and fasten the model optimization. In general, one complete training 

process takes about 20 minutes, which is not very time-consuming.   

3.5.3. Model hyper-parameter optimization  

After the first CNN training initialization finished, the model is optimized via fine-tuning some of the 

hyper-parameters. Table 5 provides a list of the hyper-parameters to be explored for the model 

optimization. To find the optimal combination in a systematic and efficient way, a stepwise hyper-

parameter tuning strategy is established, where each hyper-parameter will be tuned in a specific order 

while holding the other hyper-parameters still. For example, in this study, the batch size is firstly checked 

by only changing its values, with the other hyper-parameters following the default setting, and then 

compare the model performances to select the optimal value. This updated optimal value will be passed 

onto the next hyper-parameter tuning but staying still to find the optimal value for the second hyper-

parameter, and so on.   

Table 5 – The list of hyper-parameters to be tuned for model optimization. 

Order Hyper-parameter  Explored values  

1 Batch Size (32, 64, 128, 256, 512) 

2 Learning rate  (0.0001, 0.0005, 0.001, 0.005)  

3 Loss function (MSE, MAE, Log cosh, Attention loss) 

Only three key hyper-parameters are explored in this study. The batch size and learning rate are usually 

considered as one of the most important hyper-parameters influencing the model training process, so they 

are chosen as the first two parameters to be tuned. Additionally, the CNN configuration is usually very 

context-dependent, meaning that the CNN model settings always need to be dynamically adjusted 

according to its application context (e.g., if there is any imbalance in input distribution; what is the subject 

of high interest, etc.). Therefore, other loss functions are also tested in case they may fit better in this 

regression task. The ‘attention loss’ is included as one of the explored options because it is proved to be 

particularly useful in dealing with the imbalanced distribution of input values in regression task (Ren et al., 

2019). This imbalance distribution may also occur in the multi-deprivation degrees of Nairobi, as only 

limited areas were delineated as slums (morphologically deprived areas) based on prior knowledge. The 

attention loss (AMAE) is denoted in Eq. (5) as adopted from (Ren et al., 2019): 

𝛼𝑖  =  |
𝑦𝑖

�̂�𝑖
− 1|   

𝐴𝑀𝐴𝐸 =  
1

𝑛
∑ 𝛼𝑖

𝑘𝑛
𝑖=1 |�̂�𝑖|   Eq. (5) 

where 𝛼𝑖  measures the relative difference between model prediction 𝑦𝑖  and reference value �̂�𝑖 ; 𝑘 is the 

parameter specifying how many ‘attentions’ should be employed on the ‘hard’ subjects (the ones with a 

large discrepancy between prediction and reference) so that the model could automatically down-weight 

the dominant majority of easily predicted subjects (Lin et al., 2017).  

 
2 The complete Python script of the CNN simulation is available at GitHub for the readers’ reference 
(https://github.com/EqiLuo/MappingDeprivation/tree/main/CNN-based_regression_model).  

https://github.com/EqiLuo/MappingDeprivation/tree/main/CNN-based_regression_model
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3.5.4. Performance evaluation  

To comprehensively evaluate the performance of the proposed CNN-based regression model, three 

common metrics for regression task were adopted. The evaluation metrics include mean absolute error 

(MAE), root mean squared error (RMSE) and the coefficient of determination (R2). The MAE calculates 

the average of the absolute difference between the prediction and the actual value, thus indicating the 

average magnitude of the error from the predictions. The RMSE measures a squared magnitude of the 

average error from the predictions. The RMSE tend to give bigger weight to large errors, so it is useful for 

detecting the outliers in predictions. These MAE and RMSE are calculated by Eq. (6) and Eq. (7), 

respectively.  

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 −  �̂�𝑖|𝑛

𝑖=1    Eq. (6) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 −  �̂�𝑖)2𝑛

𝑖=1   Eq. (7) 

Where 𝑦𝑖  is the predicted deprivation index; �̂�𝑖  is the reference deprivation index (i.e., the deprivation 

index generated by the PCA); and 𝑛 is the total number of samples included.  

The R2 provides an overall assessment of to what degrees does the regression model fits the actual data. It 

measures the proportion of the variance of the target variable explained by the independent variables of 

the regression model. The R2 ranges between 0 to 1, and the closer to 1 indicates the better fitness of the 

model. The calculation of R2 is shown in Eq. (8).  

𝑅2 = 1 −  
∑ (�̂�𝑖− 𝑦𝑖)𝑖

∑ (�̂�𝑖− �̅�)𝑖
   Eq. (8) 

Where 𝑦𝑖 is the predicted deprivation index; �̂�𝑖 is the reference deprivation index; �̅� is the mean of �̂�𝑖 .  

In addition to the statistical metrics, the CNN outputs are also geographically visualized and compared 

with the PCA reference data, i.e., the ‘multi-deprivation portfolio’. The visual assessments are conducted for 

each of the deprivation indices produced by the CNN model.     
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4. RESULTS  

4.1. Elimination of unsuitable indicators for PCA 

Since PCA is a very data-dependent approach, it requires the input data with good suitability to retain 

meaningful variance from the original datasets. To achieve this, a set of PCA-based indices produced by 

different subsets of the inputs were visualized and iteratively compared with the reference data.  

In the end, 11 candidate indicators were discarded, including all the DHS model surface datasets (7 in 

total) (Burgert-Brucker et al., 2018), the improved housing prevalence (Tusting et al., 2019), the pit latrines 

(Mahabir et al., 2020) and the armed conflicts (ACLED, 2020).  Detailed justification for discarding those 

indicators is given in Table 6. Although the information richness of multiple deprivation would shrink to 

some level after the removal of several indicators, the authors still argue that it is more important to 

ensure the indices are produced from relatively fine-resolution datasets with high quality and balanced 

distribution, especially for this intra-city analysis.  

Table 6 – The summary of discarded indicators for PCA analysis after the quality check. 

Removed datasets Justification 

The DHS model surface 
in Kenya 2014;  
The improved housing 
prevalence  

Unsuitable spatial scale: The original resolution of these indicators is 
around 4.7km, which may be too coarse for this 100m grid intra-urban 
analysis. Thus, using such ‘big scale’ data would distort and mask off the 
spatial heterogeneity of other finer indicators and bring unwanted spatial 
autocorrelation from the 4.7km grid (Abson et al., 2012). 

Pit latrines 

Imbalanced distribution: the locational data of pit latrine was highly 
concentrated on existing slums because of the greater presence of non-
government organizations (e.g., local initiatives, research institutes) 
conducting investigations in and around the deprived areas (Mahabir et al., 
2020). Thus, the data outside slums might be under-reported.  

Armed conflicts 

Imbalanced distribution: The Armed conflicts and events dataset are 
mostly retrieved from media-based sources (Eck, 2012). After a visual 
assessment, it is observed that the locational crime data tend to be largely 
underreported, especially outside the central business district, because the 
occurred events may not be reported on media.     

4.2. Decomposing deprivation dimensionality through the PCA component scores  

From the PCA results, four principal components are retained, with each of the PC’s eigenvalue scoring 

more than 1. A KMO test value of 0.862 is also achieved, which can be considered good for this analysis 

(Hair, 2006). In total, the first four PCs together explain 63.8% of the total variance from the original 15 

variables included in the PCA. The varimax rotation is applied for a better interpretation of each 

component. Table 7 details the four extracted PCs and their effects on deprivation, eigenvalue, and 

percentage of explained variance, along with the dominant loadings bolded and highlighted in different 

colour shade. Note that each component is interpreted into different facets of multi-deprivation according 

to its heavily loaded factors. The effect column indicates whether the retained PCs contribute to or reduce 

the degrees of deprivation.  
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Table 7 – The retained principal components scores and the component loadings in the rotated matrix. 

Component Name Effect Eigenvalue  
% variance 
explained 

Rotated Component Matrix 

Dominant variables 
Component loadings 

PC1 PC2 PC3 PC4 

Poverty, accessibility 
to facilities, and 
maternal health 
support 

+ 4.010 26.73 

Estimated % of people living in poverty 0.865 -0.239 -0.064 0.088 

Distance to health facilities 0.844 -0.088 -0.277 -0.014 

Distance to education facilities 0.779 -0.135 0.225 -0.146 

Distance to financial facilities 0.723 -0.063 -0.399 0.127 

% of skilled birth attendance in delivery -0.709 0.186 0.272 -0.081 

Night-time light value -0.619 0.346 0.309 -0.314 

Dense urbanization, 
absence of green 
space and waste 
management 

+ 2.651 17.67 

Population density -0.201 0.800 0.083 0.118 

Building density -0.032 0.794 0.042 0.007 

Maximum NDVI value 0.118 -0.653 -0.396 0.271 

Density of illegal dumpsites -0.192 0.606 0.145 0.045 

Air and water 
contamination + 1.599 10.66 

Annual concentrations of pm 2.5 -0.165 0.160 0.856 -0.079 

Density of waterways -0.196 0.290 0.466 0.298 

Transport 
infrastructure + 1.311 8.74 

Density of roads with poor quality -0.231 0.348 -0.028 0.640 

Density of bus station -0.385 0.336 -0.024 -0.598 

Distance to OSM major roads 0.417 -0.030 -0.019 0.456 

Total Variance explained   63.804 
 

The first component (PC1) accounts for 26.7% of the total variance. PC1 is heavily dominated by the 

following six indicators: population living in poverty, distance to heath facilities, distance to education 

facilities, distance to financial facilities, percentage of skilled birth attendance and night-time light (NTL) 

value. Among these, the poverty rate and NTL value reflect the level of poverty – NTL is a very popular 

proxy for measuring the poverty level (Jean et al., 2016; Kuffer, Pfeffer, et al., 2018); while the three 

distance indicators explain the accessibility to common facilities and the skilled birth attendance indicates 

maternal heaths care level. Thus, PC1 is titled “Poverty, accessibility to facilities, and maternal health 

support”.  

The second component (PC2) explains 17.67%, the second largest share from the total variance. PC2 is 

heavily loaded on four indicators, including population density, building density, maximum NDVI value 

and the density of illegal dumpsites. The combination of these indicators tends to reflect those areas with 

highly dense buildings where the large population reside, also coupled with the lack of vegetation coverage 

and poor waste collection. As such, PC2 is termed as “Dense urbanization, absence of green space and 

waste management”.  

Regarding the third component (PC3), it includes two dominant factors – the annual concentration of 

pm2.5 and water density – which together account for 10.66% of the total variance. As mention earlier 

that most of the waterways have been seriously polluted in Nairobi, the spatial density of waterways then 

becomes a proxy to indicate the water pollution degree. Therefore, PC3 can be titled “Air and water 

contamination”.  

The last retained component (PC4) accounts for 8.74% of the total variance. PC4 is largely dominated by 

three indicators – density of roads with poor quality, the density of bus station and distance to major 

roads, with each pertaining to transport condition and road infrastructure. Based on this, PC4 is labelled as 

“Transport infrastructure”.    
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Lastly, it is worth stressing that the naming convention employed on the retained PCs is to help unpack 

the multi-dimensionality of urban deprivation into inter-independent sub-domains, as well as highlighting 

the unique characteristics and patterns within the identified sub-domains of multi-deprivation.  

4.3. PCA-based multiple deprivation indices 

Based on the PCA analysis, the ‘multi-deprivation portfolio’ is established to provide a comprehensive and 

continuous characterisation for the multiple deprivation degrees in Nairobi. As mentioned earlier, the 

‘multi-deprivation portfolio’ is a compilation of the individual sub-dimensional deprivation indices (i.e., the 

extracted PC scores) and the aggregate multi-deprivation index (i.e., the additive score of all the PCs with 

equal weight). In the following paragraphs, a detailed description of the ‘multi-deprivation portfolio’ and its 

spatial distribution in Nairobi is presented.  

4.3.1.1. The sub-dimensional deprivation index  

The spatial distribution of the sub-dimensional deprivation indices is visualized in Figure 14 at the standard 

100m grid level. All the deprivation values are divided into 10 sub-class with the same interval (0.1), for 

the ease of visual interpretation and inter-comparison between PCs. It could be shortly noticed that the 

emerging spatial distribution pattern of the deprivation index varies strongly across the PCs, with each 

scoring high or low values on different areas within Nairobi. In spite of this large discrepancy, a level of 

spatial correlation could still be observed between some of the PCs, e.g., both PC2 and PC4 detects 

similar highly deprived areas; the PC1 and PC2 generally shows an east-west division pattern of derivation.  

Regarding PC1, the most deprived areas can be founded on the east outskirt of Nairobi, especially the 

right-upper conner highlighted by dark red colour. Contrarily, the pan-central areas score the lowest 

deprivation degree of PC1 on average. In general, it can be observed that as the distance to the city core 

increases, the deprivation index of PC1 also tends to rise, showing an outwardly ascending pattern. 

Therefore, the PC1 result map indicates that, compared to the city centre, most of the urban periphery in 

Nairobi is more deprived in terms of income level, accessibility to common facilities and the chance to 

receive maternal health support.  

In terms of PC2, the vast majority of the deprivation values stays in a very low range, as shown in Figure 

14. (b), where most of the areas in Nairobi are covered by darker green colours. Nonetheless, some highly 

deprived spots can still be recognized from the study area, although only accounting for relatively small 

patches. There are three major deprived clusters identified in Nairobi, with the first one at the lower mid-

left part, the second one (like a triangle shape) located at the opposite side of the first one and the third 

one, also the biggest one, located in the upper mid-right part of Nairobi. According to the map, it can be 

claimed that the average level of PC2 deprivation is low, but some small pockets (i.e., the highlighted 

deprived spots) are in severe deprivation resulted from dense urbanization, absence of green spaces and 

poor waste management. Additionally, it is worth underlining again that PC2 mainly reflects the urban 

morphology aspect of multi-deprivation and a detailed discussion about it is provided later.         

In terms of PC3, the spatial distribution indicates a strong concentration of high deprivation values on the 

mid-east part of Nairobi, especially the bottleneck-shaped region that connects east Nairobi to the main 

urban body. The mid-lower part of Nairobi is also facing above mediate deprivation level. On the other 

hand, the lower deprivation level of PC3 is observed at the east edge, coupled with the northwest corner. 

Generally, the majority of Nairobi is deemed as relatively deprived of good air and water quality. 



MAPPING AND PREDICTING THE INTRA-URBAN DEPRIVATION DEGREES USING EO DATA 

34 
   

Figure 14 – Spatial distribution of the extracted four sub-dimension deprivation indices: (a) PC1 - Poverty, accessibility to facilities, and maternal health support; (b) PC2 - Dense urbanization, absence of 
green space and waste management; (c) PC3 - Air and water contamination; and (d) PC4 - Transport infrastructure.  
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As for PC4, it can be apparently seen that the areas of low deprivation level follow a distribution pattern 

similar to the traffic roads, with some nodes of even lower deprivation value scattered along the paths. 

Yet, some highly deprived ‘islands’, which are surrounded by lower values meanwhile standing alone 

among each other, still appear on the map. It is interesting to note that the locations of such deprived 

islands in PC4 are somewhat spatially overlapping with the highly deprived spots in PC2. Overall, 

regarding deprivation level of transport infrastructure, the city centre and the roads extending outward to 

the east and west are the least deprived, and as the distance to them increases, the deprivation level also 

tends to rise, but there are also some islands in between that are characterized by high deprivation level.    

4.3.1.2. The aggregate multi-deprivation index 

Figure 15 visualizes the spatial distribution of the aggregate multi-deprivation index, calculated via an 

additive, equal-weight aggregation method (Eq. (3)). It can be clearly observed that there is a significant 

variation of the aggregate index within Nairobi, which results from the aggregation of those individual 

sub-dimensional indices.  

Generally speaking, based on the map, the entire urban areas tend to show an east-west division of 

multiple deprivation degrees, where most areas in eastern Nairobi have a relatively higher level of multi-

deprivation on average compared to the rest of the city. This spatial concentration of high deprivation 

values is in alignment with the spatial pattern of PC1 and PC3, where the east of Nairobi is also 

characterised as a highly deprived region. Moreover, it can be observed that the city centre and its 

neighbouring areas are less deprived, except that some highly deprived spots and patches, which have 

already been recognized in the maps of PC2 and PC4, are still appearing on the aggregated index map. 

Regarding the westside of Nairobi, the overall multi-deprivation level can be described as low-to-medium, 

with only some areas scoring medium values in the middle and the lower edge.    

Figure 15 – Spatial distribution of the aggregate multi-deprivation index. 
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4.4. PCA results validation and interpretation  

4.4.1. Comparison with slum boundary 2016 

The PCA results are first checked using the slum boundary dataset. All the built-up areas that do not fall 

within the slum extents are considered non-slums. The distribution of PCA-based deprivation indices on 

slums and non-slum areas is shown in Figure 16. A summary of the mean of deprivation indices and its 

difference between slum and non-slum is also provided in Table 8.  

 

 

 

 

 

 

Based on the boxplot, it is clear that except for PC1, the majority of slum areas always have higher 

deprivation degrees than the majority of non-slum areas. Surprisingly, the deprivation level in PC1 shows 

an opposite feature, i.e., most of the non-slum areas are more deprived compared to the defined slum 

regions, with a difference of -0.091 between the mean of non-slum and slum (Table 8). This discrepancy 

indicates that non-slum areas in Nairobi are more deprived in one or more of the following aspects: 

income level, accessibility to facilities and maternal health support. Regarding PC3, the deprivation level 

does not differ a lot, with slums scoring slightly higher on average. And for PC4 and the aggregate index, 

both the slum regions outweigh non-slums, confirming that slums are more deprived in general.  

 Mean value  

 Non-slum Slum Difference 

PC1 0.330 0.239 -0.091 

PC2 0.150 0.340 0.190 

PC3 0.515 0.564 0.049 

PC4 0.408 0.568 0.160 

Aggregate 0.315 0.503 0.188 

Table 8 – The mean of deprivation indices between 
slum and non-slum. 

Figure 16 – A boxplot showing the distribution of PCA-based deprivation 
indices on slum and non-slum areas. 

Figure 17 – The map overlying the slum boundary with PC1, PC3, PC4 and aggregate index. 
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Figure 17 allows for spatially overlaying the slum boundary with the deprivation indices for better visual 

interpretation. Corresponding to the description above, the slum boundary does not fall within the highly 

deprived areas in PC1, nor does it exclusively scatter in more deprived areas in PC3. Nevertheless, most of 

the areas of high deprivation degrees in PC4 and aggregate index are geographically overlapping with the 

slum boundary, meaning that there is a distinct difference between slums and non-slums regarding them.  

Among all the facets of multiple deprivation, PC2 shows the strongest variation of average deprivation 

level between slum and non-slum (0.190, from Table 8). Apart from this, Figure 18 further reveals an 

obvious spatial pattern, where nearly all the slum extents are geographically overlapping with the highly 

deprived spots identified by PC2. Based on the previous categorization of each PC, these highly deprived 

spots from PC2 are characterised as dense urbanization, absence of green space and poor waste 

management, among which the first two characteristics can be considered as morphology-based (Table 7). 

Given this inherence of morphological features in PC2, plus its spatial coincidence with the defined slum 

extents, it can be claimed that the spatial manifestation of the slum in Nairobi is mostly captured or 

reflected by PC2.  Therefore, in this case, PC2 is regarded as the morphology-based deprivation domain, 

which is highly likely to spatially emerge as slum entities, and its continuous value characterises the degree 

of morphology-based deprivation. Additionally, previous studies have proved that the EO-based methods 

have the unique strength in detecting and capturing the physical/morphological features with high 

accuracy, covering large scales (Kuffer et al., 2020; Kuffer, Pfeffer, & Sliuzas, 2016). Given the above 

considerations, PC2 will be the primary object of interest to be further investigated and explained in this 

study.  

 

 

Figure 18 – The map overlaying the slum boundary with PC2. 
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4.4.2. Variance of LULC typologies within deprivation 

The LULC typologies data are also included for validating the PCA results. To compare the distribution of 

each PCA-based index across different land use types, multiple boxplots are visualized in Figure 19. In 

total, five land use classes are compared, namely, high to mid-density built area, low density built area, 

industry/large structure, and two types of deprived areas, as shown in the legend of Figure 19. Note that 

here, class 4 (Type 1 deprivation) refers to the typical deprived areas with highly dense building density 

and unstructured road networks (see Figure 8 the lower-left picture), whereas class 5 (Type 2 deprivation) 

represents the atypical deprived areas of mid-dense building clusters and less irregularity in the road 

networks (see Figure 8 the lower-right picture).   

In PC1, the highest level of deprivation occurs in the low-density built areas, which usually located in the 

sub-urban regions of Nairobi with a relatively long distance to the city centre. The lower level of 

deprivation in PC1 is, however, mainly distributed in the high to mid-density built-up areas, as well as the 

highly-dense deprived areas, both of which mostly located in the central urban areas.  

With regards to PC2, the morphology-based deprivation domain, the highest level of deprivation degrees 

can be clearly observed in the typical deprived areas, closely followed by the atypical deprived areas. On 

the other hand, the low-density built areas score the lowest in morphological deprivation degrees, while 

the more compact built areas still show a relatively high deprivation level on average. In short, there is a 

strong correlation between the PC2 deprivation degrees and the spatial form and density of settlements.    

Moving to PC3, a relatively even distribution of deprivation degrees can be noticed among the land use 

types. However, it is worth noting that, on average, the industrial areas and/or the large structures are the 

most deprived in PC2, meaning that they suffer more from air and water contamination. This pattern 

intuitively makes sense because industrial production is usually the major source leading to air and water 

pollution. Additionally, the average lowest level of PC3 deprivation occurs in the low-density built areas.    

Figure 19 – The grouped boxplots showing the distribution of PCA results on different land use typologies. 
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As for PC4, the dense deprived areas score the highest value on average, with a relatively large difference 

compared to the rest land use types. This may indicate that the typical deprived areas are strongly deficient 

in transport infrastructure in terms of road quality, adequate bus stations coverage and proximity to near 

major roads.  

In general, from an aggregate perspective, in Nairobi, the highest deprivation level still falls within the 

deprived urban areas, with the typical dense deprived areas scoring first, followed by the atypical, mid-

dense deprived areas. This pattern is retained mainly due to the variation from PC2 and PC4. Contrarily, 

the formal built-ups have lower values in aggregate multi-deprivation degrees.  

4.4.3. Visual assessment of PC2 with the VHR and street-view images 

In this section, a visual assessment is conducted on PC2 – the most morphology-dominated dimension, by 

comparing it with the VHR satellite images. Additionally, the street-view images of Nairobi are also 

included for visual assessment to add more ground information. The street-view images are retrieved from 

the Mapillary website, an online platform for accessing street-level imagery data (Mapillary, 2021).   

First, the defined slum areas are visually checked. Figure 20 selects the two most representative areas to 

reveal the huge spatial variation of morphological deprivation degrees in Nairobi. Apparently, nearly all 

the orange-to-red grids (i.e., the highly deprived areas as identified by PC2) are spatially overlapping the 

slum boundaries such that even on the gridded map of PC2, those highly deprived girds form a boundary 

that explicitly distinguishes themselves from other land uses. When the urban fabric changes from dense 

slums to green vegetation and/or more structured built-up areas, the PC2 deprivation index starts to drop. 

This pattern is confirmed by Figure 20, where the regions coved by vegetation or mixed with several 

sparsely scattered buildings have the lowest deprivation value. Two street-level photos of typical slums are 

purposely selected as representative ground view images. Photo-1 (Mathare slum) shows a relatively high 

density of pedestrians walking on unpaved roads. Several garbage tiles can be found on the street. Photo-2 

(Kibera slum) shows a better infrastructure condition with paved roads but still dominated by the dense 

concentration of low-height, unorganized sub-standard housings, coupled with trashes on the street.    

Figure 20 - The visual assessment of PC2 on slum areas by comparing with VHR and street-view images. Source: (Mapillary, 2021).  
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Figure 21 presents the visual inspection of PC2 deprivation degrees in the central business district (CBD) 

area. Normally, CBD is one of the most developed areas in a city, with a mixture of different land-use 

types and great accessibility to jobs, facilities, and infrastructures. Overall speaking, the CBD has a quite 

low level of deprivation in PC2, although the upper-left part is more deprived compared to the rest, which 

may result from its higher building density. Nonetheless, as further unveiled by the street-view image, the 

CBD in Nairobi is generally a very well structured and modernized urban areas.      

The atypical deprived areas are also carefully checked via visual evaluation (Figure 22). A distinct gridded 

boundary that differentiates the highly deprived patches from less deprived patches can be found on both 

of the selected sites from the first subgraphs. Such gridded boundaries also roughly overlap with the 

boundaries that actually divide the atypical deprived areas and formal built up, as shown in the second 

subgraphs in Figure 22. Therefore, it can be concluded that using the proposed PCA approach enables to 

capture or identify the mid-dense deprived areas from formal areas. In addition, the two street-level 

photos show a lower building density and less waste accumulated on the streets in the atypical deprived 

areas in comparison to the slum.    

Figure 22 – The visual assessment of PC2 on the atypical deprived areas by comparing with VHR and street-view images. Source: 
(Mapillary, 2021). 

Figure 21 – The visual assessment of PC2 on CBD area by comparing with VHR and street-view images. Source: (Mapillary, 2021). 
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Lastly, two sites dominated by well-organized, low-density buildings along with some green coverages are 

visually checked. Unsurprisingly, the two areas both have very low deprivation level in PC2, especially for 

the grids that mainly comprised of vegetation. The two street-view images further affirm this non-

deprivation status. As shown in the ground photos, such areas often have nicely paved and clean roads, 

sufficient green space and a low density of settlements.     

4.4.4. Local expert validation on PCA results  

The local validation of the PCA results was conducted via an online semi-structured interview with a local 

expert, who is a researcher from the African Health and Population Research Centre (APHRC) with 

strong experience and substantial local knowledge on deprivation in Nairobi.  

From the interview, the expert further confirmed that PC2 best resembles to the local patterns of 

deprivation at the ground, as perceived by the local people. In general, the highly deprived areas in PC2 

are located within and around the de facto deprived neighbourhoods, and the ‘well-off’, non-deprived areas 

have low deprivation values (Figure 18). This may imply that in Nairobi, the indicators that strongly 

differentiate the deprived from non-deprived areas are mostly related to the physical morphology, green 

space coverage and waste management. The PC4 also somewhat performs well in capturing the deprived 

slum region, in line with the local knowledge that most of the slums suffering from poor road quality (e.g., 

unpaved, unstructured). In terms of PC3, the expert suggested that the overall spatial pattern of 

contamination is relatively valid, as the east part of Nairobi locates a lot of industry, and the waterways 

crossing through the city centre are highly polluted. The validity of PC1 is a bit controversial because large 

parts of the urban outskirt are predicted as deprived by PC1, but according to ground knowledge, those 

sub-urban areas are usually low-density neighbourhoods whose residents tend to be middle-upper class. 

This counter-local deprivation pattern may result from the dominance of ‘distance’ indicators and night-

time light in PC1 because urban peripheries are often far from facilities and have lower building density. 

Yet, this may not necessarily indicate that the sub-urban is more deprived of accessibility because the 

residents usually have greater access to automobiles.  

Figure 23 – The visual assessment of PC2 on the formal built-up areas by comparing with VHR and street-view images. Source: 
(Mapillary, 2021). 
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4.5. CNN model implementation and optimization  

Through the validation and visual assessment of PCA results, PC2 is recognized as the primary subject 

given its strong morphological characteristics and spatial coincidence with slum extents. Therefore, as a 

starting point, PC2 – the morphology-based deprivation index – is first fed into a deep CNN regression 

model to explore the potential of leveraging EO data in predicting deprivation degrees.       

As mentioned early, a stepwise hyper-parameter tuning is conducted for model optimization. For the 

detailed records of performed tuning experiments, please refer to Annex 1 attached in the Appendix. Table 

9 provides the final results of hyper-parameter tuning. Overall, three hyper-parameters were tested, namely 

batch size, learning rate and loss function. Based on the result, the optimal value for batch size is found at 

256, and the one for learning rate is 0.001. Here, the attention loss is specifically employed for the PC2 

simulation because the original distribution of PC2 is highly skewed – i.e., the vast majority of the training 

samples have a very low value of less than 0.2 in PC2, as shown in Figure 24. As such, it is necessary to 

ensure the model identify and be able to predict the high-value samples. The optimized model achieves an 

MAE of 0.422, RMSE of 0.0585 and R2 of 0.6637 on the validation dataset (Annex1).       

 
Table 9 – The optimal values after hyper-parameter tuning.  

Order 
Hyper-

parameter 
Explored values Optimal value 

1 Batch Size (32, 64, 128, 256, 512) 256 

2 Learning rate (0.0001, 0.0005, 0.001, 0.005) 0.001 

3 Loss function 
(MSE, MAE, Log cosh, 

Attention loss) 
Attention loss (k = 1.15) 

After the model optimization, the final configurated CNN-based regression model is implemented on the 

unseen test dataset, i.e., the remaining 38559 sample grids (around 85% of the total) that are independent 

of the model training and validation process. By doing this, the generalization ability of the CNN model in 

predicting the intra-city deprivation degrees for the entire Nairobi, given only limited training data, is 

tested. The performance of the proposed CNN-based regression model on the test dataset is reported in 

Table 10. The MAE and RMSE value on the test dataset is 0.0421 and 0.0582, respectively. The proposed 

model achieves an R2 of 0.6543 on the test dataset, indicating the trained model can moderately explain 

the variance of the PC2 index. In fact, from all the experiments conducted for the PC2 simulation, the 

resultant R2 values always fall within a stable range of around 0.65, with very small variances. Therefore, 

the reported R2 value can be considered as a reasonable assessment of the model performance.  

The density scatter plot comparing the CNN prediction with the reference values on the test dataset is 

visualized in Figure 25. The vast majority of the test samples 

concentrates on lower values of PC2. It can be observed that in 

the lower range, the difference between model prediction and 

reference data is relatively small and stable. However, as the value 

increases over 0.4, the error between the prediction and reference 

data also starts to become larger, with more samples being under-

estimated by the CNN model.     

Table 10 – The CNN performance on the test datasets in predicting PC2. 

 MAE RMSE R2 

PC2 0.0421 ± 0.0402  0.0582 0.6543 

Figure 24 - Histogram of PC2 input samples. 

Figure 25 – The density scatter plot of PC2 
prediction on test dataset. 
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4.6. CNN prediction on the morphology-based deprivation index 

To provide a more intuitive and straightforward understanding of the outputs, the CNN predicted 

morphology-based deprivation index is projected back to the 100m standard girds and visually compared 

with the PC2 deprivation map (Figure 26). Note that here the symbology for visualization of PC2 values is 

adapted using different intervals to underscore the highly deprived areas, considering the large skewness in 

PC2 value distribution. In this sense, a value more than 0.5 can already be regarded as highly deprived.  

Based on the map, the overall spatial pattern of the CNN prediction is similar to the PCA-based 

deprivation degree. It is clearly shown that the highly deprived areas are identified by the proposed model 

Figure 26 - The visual comparison between CNN prediction and the reference PC2 index. 
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within the roughly same spatial locations as in the PCA results. For example, the lower-left deprived spot 

– i.e., Kibera, the biggest slum area in Nairobi, as highlighted by the red dashed boxes – also appears in 

the CNN output map and characterised as one of the most deprived areas. Similar spatial coincidences of 

the highly deprived patches can also be observed in other highlighted dashed boxes. However, the severity 

of deprivation degrees from CNN output tends to be lower than the PCA-based degrees, as the size of 

deprived areas in CNN output is smaller, combined with also lighter colours. In addition, regarding the 

areas with low deprivation level, the proposed CNN model generates a noisier pattern in contrast to the 

spatial continuum observed in the PCA map.      

Nonetheless, based on the reported R2 of 0.6543 (Table 10) combined with the similar spatial patterns of 

PC2 between the prediction and reference shown in Figure 26, it can be claimed that a deep CNN-based 

regression model is able to partially capture the variation of morphological deprivation degrees.    

4.7. CNN prediction on other deprivation indices  

After testifying the potential of using deep learning technique in directly predicting PC2, the CNN model 

is also experimented on other deprivation indices. The CNN implementation on other deprivation indices 

follows the same optimized hyper-parameter setting as PC2, except the loss function adapted to MSE. In 

total, PC1, PC3, PC4 and the aggregate index have all been tested by the CNN model. The remaining 

sections describe the CNN model performance on each deprivation index. 

PC1 prediction: As presented in Figure 27, by only relying on the satellite images, the CNN model fails to 

predict the deprivation degrees in PC1. The CNN results show very little spatial variation across the city, 

with most of the areas dominated by deprivation level between 0.2 to 0.4. This even distribution pattern 

obtained in the PC1 prediction cannot correspond to the PCA-based index.      

Figure 27 – The CNN prediction on PC1 (Poverty, accessibility to facilities, and maternal health support). 

Figure 28 – The CNN prediction on PC3 (Air and water contamination). 
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PC3 prediction: The model outputs on PC3 are largely overestimated compared to the reference PCA 

values, as the vast majority of Nairobi is highlighted by the dark red colour (Figure 28). Overall, the CNN 

model also fails to explain the variance of deprivation degrees in PC3. However, it is worth noting that a 

general spatial pattern, where the east part of Nairobi is more deprived in PC3 compared to the west, can 

still be captured even within such noisy results. 

PC4 prediction: Similar to PC1, the CNN prediction on PC4 also shows an evened spatial pattern where 

large homogeneity of the PC4 distribution can be observed (Figure 29). Based on the model prediction, 

nearly all urban built-up areas are mistakenly characterised as non- or low-deprived, coupled with even 

those high deprivation patches being uncaptured on the map.     

 

Figure 30 – The CNN prediction on the aggregate deprivation index. 

Aggregate deprivation index prediction: Lastly, the model is trained to predict the aggregate deprivation index in 

Nairobi. According to Figure 30, the proposed CNN model, again, fails to explain the variance of the 

aggregate deprivation degrees. A lot of noises can be observed on the prediction map, especially on the 

west side of Nairobi, and the overall severity of intra-urban deprivation is over-estimated to some extents. 

In short, the CNN model cannot yield meaningful prediction on the aggregate deprivation index.  

Given the above model mis-performances on other deprivation indices, it can be concluded that by just 

using EO-based imagery data, the proposed CNN-based regression model is unable to capture the non-

morphological deprivation degrees in Nairobi.     

Figure 29 – The CNN prediction on PC4 (Transport infrastructure). 
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5. DISCUSSION 

In this study, we designed a two-step method that enables to first characterise the degrees of multiple 

deprivation as continuous indices and then examine the potential of an EO-based method to directly 

capture the multiple deprivation degrees. We used two key techniques, i.e., PCA for characterising the 

multi-dimensionality of deprivation, and a deep CNN-based regression model for predicting the multi-

deprivation degrees. The discussion part is framed in terms of the multi-dimensionality nature of 

deprivation, the measuring of multiple deprivation, the role of an EO-based method in deprivation 

mapping, and lastly, the limitations of this study.        

5.1. Multi-dimensionality nature of deprivation  

In the beginning, we would like to point out again that, by nature, deprivation is a multi-dimensional, 

complex concept consisting of different but also inter-connected components, e.g., socio-economic status, 

physical morphology, environmental quality (Abascal et al., 2021; I. Baud et al., 2010; Thomson et al., 

2020). This intrinsic complexity and intertwined nature of deprivation inhibit the researchers, local 

governments and any other stakeholders involved from arriving at a consensus on its definition, leading to 

the following investigation and characterisation of multiple deprivation lack consistency across or even 

within the LMICs cities. Therefore, the initial conceptualisation of multiple deprivation and the 

development of the related indicators directly determine the extent, magnitude, and dimensions of the 

resultant characterisation of deprivation.  

As stated before, this study does not aim to exhaustedly enumerate all the components and/or indicators 

related to deprivation, nor to deliver a universal definition that works omnipotently across any cities – 

both are impossible given the complexity of reality. However, we do attempt to propose a general 

conceptual paradigm, which includes the major domains of multiple deprivation, especially in LMICs, with 

the flexibility to be adapted to different contexts via allowing users to discard and/or insert some 

indicators based on the local knowledge. This objective has been obtained by leveraging the ‘IDEAMAPS 

Domains of Deprivation Framework’ (Abascal et al., 2021) to establish the inventory of multi-deprivation 

indicators for Nairobi, with some adaptation made to underscore the local contexts in (Table 1).  

Despite the difficulty in conceptualising deprivation, another great challenge is the uncertainties in the 

input data for characterising deprivation. Aiming to provide a transferrable and scalable approach, we 

purposely establish the indicators from open databases, which inevitably bring some levels of uncertainties 

to the deprivation mapping results. In this study, though we initially collect 26 candidate indicators, only 

15 of them are included in the deprivation characterisation after the quality check (Table 6). Some 

indicators (e.g., the DHS datasets) are removed due to their coarser resolution that leads to high 

uncertainties of the distribution at the grid level. Discarding unsuitable indicators helps to reduce the level 

of uncertainties and resultant biases, but meanwhile, the information richness of the model outputs 

regarding deprivation degrees also shrinks (in this case, mainly in the social-economic status). Therefore, 

we could only interpret and discuss the deprivation results based on the original magnitude of the input 

data and also realise that deprivation can only be partially measured due to the input data constraint. 

Moreover, high uncertainty is an unavoidable risk of using open data; nevertheless, with more open data 

becoming available and the development of advanced data mining techniques, deprivation mapping can 

still largely benefit from this data-rich environment (Mahabir et al., 2020), as long as the scope and 

uncertainty of input data are well concerned and informed by the researchers.    
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5.2. Measuring multiple deprivation  

To characterise the multi-dimensionality of deprivation, this study employed an unsupervised PCA-based 

approach to produce a set of data-driven continuous measures of deprivation degrees. We named such 

PCA-based mapping products the ‘multi-deprivation portfolio’ (see Figure 14 & Figure 15) to underscore the 

comprehensiveness and richness of information provided by the continuous indices. Most of the 

traditional approaches generate binary or multi-categorical mapping products of urban deprivation, 

ranging from pixel-, grid- to administrative-level (Agarwal et al., 2018; Kuffer et al., 2017; Kuffer, Pfeffer, 

Sliuzas, et al., 2016; Mahabir et al., 2020). Such products with discrete labels are very straightforward and 

communicable to the local planners and stakeholders; however, it often fails to further unveil the variation 

and severity within the deprivation classes, coupled with the lack of reflection on deprivation diversity. 

Therefore, we suggest that our proposed ‘multi-deprivation portfolio’ could fill in this gap by detailing 

deprivation on a continuous scale so that the value directly represents the deprivation degree. Besides, the 

continuous index is also versatile to be categorised back into different classes (e.g., deprived/non-

deprived) if the users require a general binary mapping of deprived areas. 

This research also reveals that measuring urban deprivation is sensitive to the analysing scale and thus 

needs to be carefully decided on (in this study, 100m grids). During PCA refinement, we first encountered 

difficulties in interpreting the mapping results because the indicators with broader spatial scales tend to 

mask off or distort the information from a relatively finer scale. This problem has been solved by retaining 

only the indicators with relatively fine scales. Yet, this does not necessarily mean that PCA is unsuitable 

for large scale analysis; instead, it is the inclusion of indicators that should always adapt to the study scale, 

e.g., for a national deprivation mapping, the discarded DHS indicators (Table 6) may be highly valuable. 

Besides, another key finding is that when we narrow to the urban built-up areas, the results significantly 

improve as more of the slum boundaries are captured. This improvement may imply that mapping 

deprivation at a relatively fine grid level needs to first distinguish the built-up areas. 

Moreover, we would also like to stress the important role of the 100m standard grid in adding flexibility to 

product application, as well as the transferability and scalability of the PCA-based deprivation mapping 

method. Firstly, the gridded outputs can strongly support governmental decision-making activities by 

overlaying the grid cells of deprivation index with other crucial spatial layers. For example, the users may 

overlay the gridded deprivation index with flood hazard maps to identify the target areas exposed to 

floods, meanwhile also suffering from serious deprivation, thus prioritizing them to receive more 

investments and policy intervention. Secondly, as highlighted by the IDEAMAPS project (Kuffer et al., 

2020), a gridded mapping system can work flexibly across different spatial scales, ranging from small area 

units, intra-city towards national or even global scale, by sensibly adjusting the size of the grid or 

aggregating the finer grid-level information into a larger scale. In this way, the gridded results can be easily 

integrated into other layers with varying scale, hence more transferable among LMICs cities. Moreover, a 

gridded deprivation index does not present a sharp boundary that clearly differentiates deprived and non-

deprived areas as in the traditional administrative-units-based analysis, therefore avoiding the 

stigmatisation of deprived neighbourhood.  

On the other hand, through the visual assessment of the ‘multi-deprivation portfolio’, we also realise the ‘trade-

offs’ of information richness between the aggregate multi-deprivation index (Figure 15) and the sub-

dimensional deprivation indices (Figure 14). By delivering a single aggregate map of multi-deprivation, the 

policymakers can quickly identify the urban areas facing high deprivation level, yet which specific domains 

contribute to the high deprivation degree among different areas still remains unclear. Thus, we suggest the 

users should be more cautious about the underlying reasons of the highly deprived areas on the aggregate 

map and always refer back to the sub-dimensional, easily interpretable indices. Additionally, in the index 

aggregation, another common challenge is “which weighting system should be applied?”. For this study, 
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we decided on equal weights considering the absence of local knowledge on the priority of different 

deprivation domains. Nonetheless, we still suggest that, given reliable local experts knowledge and 

engagements from the stakeholders, the researchers are encouraged to adopt different weights to highlight 

the most crucial deprivation dimension(s). For example, after the local validation with expert, we may 

suggest adding more weights on PC2 in the index aggregation to better inform the local panner, as PC2 is 

identified as the most accurate domain that represents the slum patterns in Nairobi.      

5.3. Role of an EO-based method in deprivation mapping 

In the second part of this study, we aim to train a deep CNN-based regression using only EO data to 

predict the continuous deprivation indices. Prior to the model training, the ‘multi-deprivation portfolio’ needs 

to be thoroughly interpreted to identify which PC should be first fed into the model, as the satellite images 

only contain physical and morphological features. The identification of target PC requires adequate 

knowledge of the multi-dimensional deprivation, which can be achieved via local validation, statistical 

analysis, and visual assessments with reference data. From the validation, we notice that PC2 is the most 

morphology-based deprivation domain that spatially captures the vast majority of slum areas in Nairobi, 

thus used as the first input. The CNN model yielded an R2 of 0.6543, indicating a moderate-to-good 

performance in explaining the variance of PC2. Besides, the visual comparison also displayed a similar, 

consistent spatial pattern between the CNN prediction and PC2 index map (Figure 26). Therefore, we 

testify that an EO-based method has the potential to directly predict morphological deprivation degrees. 

This may open a new gate to the deprivation mapping community in generating scalable, transferrable, and 

‘end-to-end’ mapping products of the continuous morphological deprivation index.  

However, when we tried to train the proposed CNN on other deprivation indices and the aggregate index, 

none of the experiments was able to generate good results. We suggest that, by only relying on satellite 

images, a CNN-based regression model cannot explain the variation of other non-morphological 

deprivation domains in Nairobi. This finding is in line with the previous studies that EO-based 

approaches could only capture the physical and morphological domains of deprivation, and need to build 

a remote sensing proxy to model other aspects of deprivation (Kuffer et al., 2020; Taubenböck et al., 

2018). A potential way to improve the model performance on non-morphological deprivation may be by 

introducing other supplementary data. For example, Ajami et al. (2019) added hand-crafted and GIS 

features to the trained CNN model to predict deprivation degrees of slum settlements in Bangalore, and 

the R2 increased from 0.67 (using only EO data) data to 0.75. Notwithstanding, we may still argue whether 

adding additional hand-crafted feature layers is meaningful for an ‘end-to-end’ learning model like CNN 

because it may compromise the convenience and efficiency of the state-of-the-art approach.  

Even though the EO-based methods fail to directly capture non-morphological deprivation, they still have 

the irreplaceable strengths that traditional survey- or field-based approaches cannot fully achieve, e.g., 

covering large areas, high efficiency and accuracy, scalability, and transferability (Kuffer et al., 2020; 

Kuffer, Pfeffer, & Sliuzas, 2016; Kuffer, Wang, et al., 2018). The important thing to further explore is 

“How can we use EO-derived information in helping multi-deprivation mapping?”. A clear yet not largely 

explored direction is to build the physical proxies that allow using image-based features to directly estimate 

deprivation degrees (Duque et al., 2015; Georganos et al., 2019; Jankowska et al., 2011; Stoler et al., 2012). 

This method is based on the assumption that deprived status would physically manifest itself in the 

imagery features in a distinct manner (Kuffer, Wang, et al., 2018). To bridge the gap between EO-based 

features and multiple deprivation, we suggest investigating more discriminant and robust EO variables 

that better reflect deprivation levels and jointly introducing ground-based data to state the uncertainties in 

the EO-based mapping products.  
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5.4. Limitations  

The first limitation lies on the difficulties in providing a complete characterisation of deprivation, due to 

the inconsistency and quality of deprivation covariates data collected. The original spatial resolutions of 

the included indicators vary from 30m to nearly 1000m. Although all the input were resampled into the 

standard 100m resolution, the down-sampling of courser data would inevitably introduce some level of 

bias. Also, the output year of the indicators is not very consistent, among which the oldest one was the 

poverty information of 2008. However, given the limited data availability and the exploratory purpose of 

this study, the included datasets should be regarded as acceptable.   

Secondly, the analysing unit of 100m grid itself decides that the output cannot further reveal the variation 

smaller than a grid, which may be argued by some researchers that such resolution is too coarse in 

mapping intra-urban deprivation. We indeed observed that the grided map of PC2 cannot really provide a 

sharp, explicit boundary between slum and non-slum (which is not our research intention) but rather 

shown in an obfuscating, dark-to-light spectrum. We also noticed that for those grids located around the 

edge of the slum boundary, the predicted deprivation levels are often underestimated due to the presence 

of other land covers with non-deprived features (e.g., roads, green space), thus leading to higher errors 

occurring on the grids intersected with the slum boundaries.  
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6. CONCLUSION AND RECOMMENDATION  

6.1. Conclusions  

The main objective of this research is to characterise and measure multiple deprivation by exploring the 

potential of an EO-based approach to directly capture the multi-dimensionality of urban deprivation. To 

achieve this, we proposed a two-step methodology that first characterises multiple deprivation as a set of 

continuous degrees and later on uses only VHR EO data to predict the established continuous deprivation 

degrees. The final conclusions are drawn by summarizing the key findings of each sub-objectives.  

Regarding the first sub-objective of characterising multiple deprivation and measuring its spatial variation 

in continuous scales, we achieved it by first identifying the common deprivation domains using the 

IDEAMAPS framework (Abascal et al., 2021) and then applying PCA on 15 deprivation indicators at 

100m standard grids. Through the PCA, we delivered a collection of gridded deprivation mapping 

products called the ‘multi-deprivation portfolio’, each a continuous index between 0 to 1, indicating the degrees 

of deprivation in different domains. After the validation, we conclude that given suitable and sufficient 

data, PCA has its unique advantages on deconstructing the multi-dimensionality of deprivation into inter-

independent, explicit sub-domains with few assumptions, as well as providing a data-driven continuous 

measure of deprivation level with more flexibility to support multiple user needs. In addition, PC2 was 

recognized as the most morphology-based deprivation domain, spatially capturing most of the slum 

configurations, thus recognised as the dominant deprivation pattern in Nairobi.  

The second sub-objective seeks to explore the potential of EO-based methods to directly capture the 

intra-urban continuous deprivation degrees. To our best knowledge, this is the first study that attempts to 

apply a CNN-based regression model to directly estimate the deprivation degrees at an intra-urban level 

from VHR imagery features. Among the experiments, we observed promising performance of CNN in 

estimating PC2, with an R2 of 0.6543. However, regarding other non-morphology-based deprivation 

domains, the proposed CNN model failed. Therefore, we conclude that an EO-based method has the 

ability to capture deprivation degrees in Nairobi, although only restricted to the morphological dimension. 

The last sub-objective is to discuss the role of EO-based methods in deprivation mapping. Based on this 

research, we confirm that EO-based methods have unique strengths in capturing physical and 

morphological deprivation domains compared to traditional methods (e.g., census, filed-based mapping). 

In general, we suggest that the major roles of EO-based methods in deprivation mapping could focus on 

two aspects: (1) directly capturing the morphological deprivation degrees across different cities and scales; 

(2) developing more advanced and flexible physical proxies to infer or support the multi-deprivation 

characterisation.     

6.2. Recommendations for further studies 

Looking forward, as more spatial data related to urban deprivation, VHR EO images become available 

across LMICs, along with the development of advanced modelling techniques, we see a great potential of 

providing more accurate, routinely updated, and scalable mapping products of urban deprivation. 

Tiptoeing from this research, we would like to list a few potential directions for further studies: 

1. We set the study scale of this research at an intra-city level, using 100m grids as analytical units. 

However, producing only city-level deprivation maps is not enough to support SDG11.1 and 

facilitate international cooperation. Therefore, we suggest future studies may scale up this 

approach into inter-city, national or even global scale by sensibly expanding the grid size.   
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2. It is worth applying this approach to other LMIC cities with varying context not only to test the 

transferability of our approach, but also to compare the deprivation pattern across cities. Given 

the large heterogeneity between deprived areas, the deprivation domains established by PCA may 

also differ strongly across cities. Such information can help us better understand the commonality 

and diversity of deprived areas, which is important to build a global deprivation inventory.  

3. As a pilot study in leveraging the EO-based method to directly predict deprivation degrees, we 

did not really go in-depth to train and optimize an ‘excellent’ CNN model due to limited time and 

resources, which means that there is surely room to improve the model performance. Therefore, 

we strongly encourage researchers to further explore more advanced techniques and model 

architectures to improve prediction accuracy.    
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APPENDIX 

Annex 1: The records of all conducted experiments for hyper-parameter tuning.   

 

Order 
Hyper-

parameter 
Value 

MAE RMSE R2 

Training Validation Training Validation Training Validation 

1 Batch size 

32 0.0375 0.0420 0.0556 0.0615 0.6668 0.6282 

64 0.0363 0.0427 0.0529 0.0612 0.6979 0.6315 

128 0.0324 0.0412 0.0479 0.0594 0.7525 0.6526 

256 0.0069 0.0419 0.0129 0.0585 0.9821 0.6632 

512 0.0262 0.0425 0.0395 0.0599 0.8319 0.6469 

2 Learning rate 

0.005 0.0341 0.0413 0.0495 0.0590 0.7357 0.6574 

0.001 0.0069 0.0419 0.0129 0.0585 0.9821 0.6632 

0.0001 0.0048 0.0428 0.0090 0.0599 0.9913 0.6472 

0.0005 0.0070 0.0454 0.0108 0.0647 0.9875 0.5876 

3 Loss function 

MAE 0.0069 0.0419 0.0129 0.0585 0.9821 0.6632 

MSE 0.0373 0.0428 0.0486 0.0590 0.7447 0.6574 

Log-cosh 0.0089 0.0427 0.0105 0.0602 0.9880 0.6429 

Attention loss (1.2) 0.0238 0.0418 0.0332 0.0597 0.8809 0.6487 

Attention loss (1.15) 0.0034 0.0419 0.0054 0.0588 0.9969 0.6599 

Attention loss (1.1) 0.0065 0.0422 0.0105 0.0585 0.9881 0.6637 

 


