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ABSTRACT 

The United Nations includes slum upliftment as one of the agenda in the Sustainable Development Goals 

11, Target 11.1- "safe and affordable housing" to fight against poverty. The information to keep track of 

target 11.1, such as physical location and size of slums, is lacking or inadequate in governmental 

documents. Therefore it is vital to map slums in order to comprehend the existing situation and build 

future slum development policy plans to achieve target 11.1. Remote Sensing (RS)-based approaches have 

gained much recognition in the slum mapping field in the last few decades due to the availability of 

Remote Sensing Imagery (RSI) of Very High Resolution (VHR). In RS-based approaches, the Deep 

Learning (DL) approaches such as Fully Convolutional Network (FCN) have been shown to achieve 

reasonably higher accuracies for slum mapping than other RS-based approaches. However, using RSI 

alone has its limitation, i.e., the absence of ground-level information, making slum identification difficult 

in the dense urban scene. Previous studies show that adding ground-level information with RSI can help 

identify slums more precisely than using RSI alone, but none of the studies used Street View Imagery 

(SVI) as the source of ground-level information to compliment RSI in the field of slum mapping. 

Therefore this research aims to integrate RSI with SVI using FCN for slum mapping. Implementing FCN 

has three significant challenges, from which the first challenge is general for all slum mapping approaches, 

and the remaining two are specifically for the FCN. First is the conceptualization of slums because there is 

no unique definition of slums, i.e., it varies from institution to institution. Second, extraction of ground-

level information through SVI to identify slums. Third, setting up an FCN pipeline to integrate overhead 

information with ground-level information, i.e., integrating RSI with extracted features of SVI. 

The city of Jakarta was chosen for this study because of two main reasons. First, the presence of 

kampungs (urban villages) in Jakarta. Around 60% of Jakarta's population lives in kampungs, and the 

diverse socioeconomic conditions in kampungs make it challenging to identify slums inside kampungs, i.e., 

the line between slums and non-slums is vague. There are two types of kampungs such as legal and illegal. 

This research focused on the illegal kampungs called slums. Second, there are various local definitions of 

slums used in Jakarta, making the conceptualization of slums more difficult. Initially, the western region of 

Jakarta was chosen for study because of the high density of slum settlements according to the official slum 

reference map of 2017, but due to data constraints, approximately half of the western region with some 

part of the northern and central region was selected as a study area. 

In this research, four deep neural networks are applied with different datasets, i.e., FCN-DK6 used RSI 

alone, Places365-VGG16 was fine-tuned using SVI, and FCN-DK6-i and Modified FCN-DK6 used a 

combination of RSI and SVI in the study area. The FCN-DK6 network was trained with RSI alone to map 

slums in the study area. The Places365-VGG16 network was fine-tuned in the context of Jakarta's slums 

using  SVI captured in the study area. Further, the fine-tuned Places365-VGG16 network was used to 

extract the features from widely dispersed SVI and spatially interpolated them to precisely match the 

spatial resolution of RSI, which are combined with RSI for slum mapping using FCN-DK6-i and 

Modified FCN-DK6 networks. The result shows that the Modified FCN-DK6 outperforms FCN-DK6 

and FCN-DK6-i in slum mapping, demonstrating that combining RSI and SVI can achieve higher 

accuracy because SVI contains useful ground-level information which helps to identify slums in an urban 

setting than using RSI alone. Furthermore, we describe experimental investigations by combining the 

extracted SVI features with RSI at different levels in FCN-DK6-i and Modified FCN-DK6, which shows 

that the combination of RSI and SVI can improve the accuracy obtained from RSI alone, but it also 

depends on how they are integrated. The Modified FCN-DK6 presented here obtains better results than a 

direct integration through FCN-DK6-i. 
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INTEGRATING REMOTE SENSING AND STREET VIEW IMAGES TO MAP SLUMS USING DEEP LEARNING APPROACH 

1 

1. INTRODUCTION 

1.1. Background and Justification 

Urbanization is a global megatrend that is unstoppable and irreversible (United Nations-Habitat [UN-

Habitat], 2018). More than half of the population currently live in urban areas in this rapidly urbanizing 

world and is expected to increase to 68% by 2050 (United Nations Department of Economic and Social 

Affairs [UNDESA], 2018). Rapid urbanization and inadequate city planning increase pressure on necessary 

infrastructure and services such as lack of affordable housing, sanitation, water, waste management, and 

roads, which leads to increased slums and slum dwellers. According to the United Nations Department of 

Economic and Social Affairs [UNDESA] (2020), more than one billion people currently live in slums or 

informal settlements. Most of these informal settlements' growth has happened in developing regions such 

as Northern Africa, Western Asia, sub-Saharan Africa, and South Asia (UNDESA, 2020). These regions 

have limited resources and capacity to overcome development challenges that result in unplanned 

urbanization. These unplanned urbanization areas promote informal settlements' growth, resulting in 

urban poverty, inadequate housing, and inequality (UN-Habitat, 2018). 

In the last two decades, the reduction of informal settlements or slums has been a high priority on the 

worldwide agenda. In the year 2000, a goal has been set to uplift at least 100 million slum dwellers by the 

end of 2020 under Millennium Development Goal (MDG)-7 (United Nations Development Programme 

[UNDP], 2016). In contrast to the MDG-7 target, 320 million slum dwellers were uplifted, i.e., gained 

access to basic amenities such as drinking water, sanitation, and less populated dwellings between 2000 

and 2014, exceeding the set target (UNDESA, 2020). Further in 2015, the new framework has been 

proposed with 17 different goals under Sustainable Development Goals (SDG) for 2030 (United Nations 

Department of Economic and Social Affairs [UNDESA], 2015). The global slum reduction goal is 

addressed under SDG 11- "Make cities and human settlements inclusive, safe, resilient and sustainable," 

Target 11.1-"Safe and affordable housing" (United Nations Department of Economic and Social Affairs 

[UNDESA], 2017, p. 11). The goal of Target 11.1 is to "ensure access for all to adequate, safe, and 

affordable housing and basic services and upgrade slums" (UNDESA, 2017, p. 11). 

According to UN-Habitat (2018), slums and informal settlements have significant overlap in terms of 

physical characteristics, but some informal settlements may have good living conditions and even be fairly 

wealthy. On the other hand, the settlement is called a slum if at least one of the following criteria is 

fulfilled:  (1) absence of tenure security, (2) lack of housing durability, (3) insufficient living spaces, (4) lack 

of access to water and sanitation (UN-Habitat, 2018) and these criteria are used to identify slums in urban 

environment. Slums are quite dynamic, i.e., slum characteristics change over time, such dense structure, 

location, building size and height, and building arrangement, making slum identification extremely 

complex. Different indicators are used to understand the complexity of slum areas in the urban scene on a 

local level (Kohli, Kerle, and Sliuzas, 2012). The government continuously improves the existing situation 

by constructing and implementing pro-poor policies (Arimah, 2011), providing necessary infrastructure 

and amenities to uplift slum dwellers from their current conditions. Generally, the spatial information 

regarding slum areas is missing or incomplete from the official records (Nijman, 2008); hence, it is 

necessary to identify slum areas to understand the current situation for further slum development policy 

plans (Duque, Patino, Ruiz, and Pardo-Pascual, 2015). 

Slum mapping is complicated because it is extremely difficult to define the actual boundary of slums in an 

urban environment. The process of slum mapping involves different stakeholders like government, 
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private, and the public in various disciplines such as economic and social environments. The stakeholders 

must understand the different levels of slum and their characteristics to produce a slum map. A slum map 

is an efficient way to express the spatial distribution and information about slums helps governmental 

organizations to make better decisions for slum upgrading plans and policies. 

There are three approaches for mapping slums: survey-based approaches, participatory approaches, and 

Remote Sensing (RS) based approaches (Mahabir, Croitoru, Crooks, Agouris, & Stefanidis, 2018). Survey-

based approaches contain long temporal gaps between the data collections, and it is also time and 

resource-intensive. However, they are still very useful in some cases where ground data is needed, such as 

population statistics (Kohli et al., 2012). Often slums have been ignored in these formal surveys while 

collecting mapping data (Joshi, Sen, and Hobson, 2002). In participatory approaches, local people are 

involved in making a better perception of reality, but there can be a conflict of interest between people's 

perceptions which may lead to different results. For example, one person uses a lack of access to water 

and sanitation as an indicator to identify slums, but maybe the other person won't use the same indicator; 

thus, both persons have different perspectives to identify slums. Participatory approaches also take lots of 

resources, time, and money to implement, and the data obtained from this approach can be highly 

accurate because they collect data on the ground (Kohli et al., 2012). RS-based approaches reduce human 

effort and time but need an RS expert to analyze the data. RS data helps to analyze the situation in real-

time (Hofmann, Strobl, Blaschke, and Kux., 2008) and provides up-to-date information with a birds-eye 

view, including areas with no available data. 

In the last few decades, the RS approach gained a lot of recognition in the research community with the 

large availability of Very High Resolution (VHR) Remote Sensing Imagery (RSI) (Kuffer, Pfeffer, & 

Sliuzas, 2016). Researchers have developed different RS-based approaches for slum mapping; the primary 

step for most approaches is to define and design different sets of criteria through which slum and non-

slum can be differentiated from RS imagery (Mahabir et al., 2018). However, different RS-based 

approaches of slum mapping are challenged with varying morphological features and characteristics of 

slums within and across the cities (Kuffer et al., 2016). This complexity makes the designed criteria limited 

to those specific areas only with the unique dataset usage. If the designed criteria are used with some other 

dataset (imagery) or different areas within the city boundary, they might perform poorly because of 

different morphological features. In such cases, Machine Learning (ML) approaches outperform the 

classical RS-based approaches, such as Object-Based Image Analysis (OBIA) for slum mapping (Kuffer et 

al., 2016). ML approaches extract spatial features by long-range pixels from RSI to map slums (Persello & 

Stein, 2017). Thus, ML-based approaches such as Random Forest (RF) and Support Vector Machine 

(SVM) will produce better results than the classical RS-based approach. Still, ML approaches required a 

clear notion of slum characteristics (Leonita, Kuffer, Sliuzas, and Persello, 2018). As stated above, a 

proper understanding of local and contextual knowledge of slum is required because there is no universal 

conceptualization of slums, i.e., the definition of slum changes with area and time, and it is highly 

dependent on the local or national governmental bodies. 

In contrast to traditional ML approaches such as RF and SVM, Deep Learning (DL) approaches such as 

Fully Convolutional Network (FCN) consist of different stack layers that help extract more accurate 

information from input imagery to identify slum areas with higher accuracy (Persello & Stein, 2017; 

Hoeser & Kuenzer, 2020). Different studies show that FCN can be used for slum mapping through RSI 

(Ajami, Kuffer, Persello, and Pfeffer, 2019). However, researchers could not fully understand the 

complexity of urban forms to map slums by using RSI. The limitation of using only RSI is the absence of 

ground-level information such as inferior building materials, open drainages, and the number of floors. 

The ground-level information can be inferred through ground surveys, interviews, and Street View Images 

(SVI), i.e., street-level photographs. Only a few studies have been carried out to communicate the 
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integration of different ground-truth dataset with RSI to delineate slums in urban scene. In comparison, 

none of the researchers used SVI to compliment RSI for mapping slums. 

Previous studies used RSI and SVI individually to map or identify slums in a dense urban scene. For 

example, Ibrahim, Haworth, and Cheng (2019) use only SVI to identify slums using SlumNet architecture 

based on the Convolutional Neural Network (CNN) model, recognized the difference between slum or 

non-slum urban scenes. The architecture of SlumNet consists of 10 hidden layers in which two are fully 

connected layers. SlumNet did not accurately classify slums or non-slum due to little understanding of the 

urban scene. The author did not correctly conceptualize slums and downloaded random slum images of 

Africa and Egypt from the internet to fine-tune the pre-trained model, as we know the morphological 

characteristics of slums vary with places due to which the model did not perform well. There is always a 

possibility of error that exists while mapping slums using RSI and SVI individually. The combination of 

RSI and SVI can be potentially used to quantify slums more precisely as it combines the bird-eye view of 

the VHR images and the ground images (SVI) with additional feature information. Thus, this study 

explores the potential of integrating SVI with VHR satellite imagery using state-of-the-art deep learning 

algorithms to map slums in the dense urban scene. 

1.2. Research Gap and Innovation Point 

Several studies have shown that the physical characteristics of slums can be examined using VHR satellite 

imagery for slum mapping via visual image interpretation, OBIA, and ML approaches. The ML approach 

shows remarkable performance in slum mapping because it incorporates spatial, spectral, textural,  and 

structural features (Kuffer et al., 2016). However, slum mapping is difficult using RSI alone because the 

RSI captures the urban environment from a bird-eye view, resulting in a lack of ground-level information, 

which plays a crucial role in slum mapping. Nowadays, the increased open-source of geotagged data can 

help us infer the ground-level information that can be further combined with RSI for slum mapping. For 

example, SVI can be used for accessing ground-level information. 

Previously researchers have used RSI alone to map slums, whereas only very few researchers have used 

SVI to identify slums. There is always a possibility of misclassification in mapping slums using RSI 

because the information in RSI is limited to overhead information. For example, it might be possible that 

slum and non-slum areas share the same physical characteristics like high building density, which can cause 

misleading results because the human eye may not significantly recognize the features captured through 

RSI. In contrast, using SVI alone can help identify slum and non-slum settlements, but the slum map can 

not be generated because SVI are captured along the road with limited coverage around the point from 

which it is captured. For example, if we want to map an area that is only accessible by foot, those areas can 

not be map through SVI because SVI are taken in those areas accessible by motorbike or car. 

The complementary information from SVI can be used with the RSI to understand the complex urban 

scene, and it can be hypothesized that the combination of RSI with SVI may lead to better results in slum 

mapping. As mentioned in the above literature, none of the researchers integrated the ground-level 

information extracted from SVI with RSI to map slum areas in the dense urban scene using the DL 

approaches. 

1.3. Research Objective and Questions 

1.3.1. Main objective  

This study aims to integrate remote sensing images and street view images using a deep learning model to 

map slums in the complex urban scene of Jakarta, Indonesia. 
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1.3.2. Sub objectives and Research Questions 

I. To identify the characteristics of slums versus non-slum in the study area.  

• What are the physical characteristics of slums in the study area?  

• Which features can be extracted from RSI to classify slums?  

• Which visual features can be extracted from SVI to classify slums?  

II. To incorporate SVI with RSI for slum mapping using FCN.  

• Which FCN architecture is the best fit for using the combination of RSI and SVI to identify 

slums?  

• What is a suitable grid size?  

• Which technique can be used to interpolate the feature vector of SVI into the 2-dimensional 

space of RSI?  

• How to deal with the incomplete data of SVI?  

III. To investigate the significance of using SVI for mapping slums. 

• What is the added value of combining SVI and RSI for mapping slums? 

1.4. Research Conceptual Framework 

 As previously stated in Section 1.1, rapid urbanization makes it very challenging for the government to 

develop and enforce effective city planning and puts extensive pressure on essential infrastructure and 

services. Therefore we need to know which areas in the city are deprived in terms of essential services so 

that the government can make policy to uplift those areas. Different approaches use ground-level data 

(SVI) or overhead data (RSI) to delineate slum areas, as discussed in Section 1.2. However, RSI and SVI 

contain complementary information. Therefore we propose an innovative method to integrate two 

different datasets for mapping slums. Figure 1.1 shows the conceptual framework of this research.

Figure 1.1: Research Conceptual Framework 
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1.5. Thesis Structure 

The thesis is divided into different chapters. Chapter 2 provides a detailed literature review to understand 

the different slum mapping approaches that evolved in the last few decades, mainly focusing on the deep 

learning approach. Chapter 3 describes the study area and discusses slum dynamics and characteristics of 

slums in Jakarta. Chapter 4 provides a detailed description of the datasets used in this research. Chapter 5 

explains the detailed methodology to achieve the research objective by answering the research questions. 

Chapter 6 presents the outcome of the research. Chapter 7 provides a detailed discussion on the research 

outcome. Finally, Chapter 8 summarizes the research by presenting the research's conclusions and 

limitations and suggests recommendations for future work. 
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2. LITERATURE REVIEW 

This chapter reviews the literature and illuminates the direction of this research work. It starts with Section 

2.1 by reviewing various literature on slums for understanding how slums are conceptualized in different 

research articles. Section 2.2 reviewed different approaches for slum mapping in the domain of RS.  

Finally, section 2.3 reviewed different DL approaches and accuracy matrices for slum mapping, which was 

further used in this research. 

2.1. Complexity in Defining Slums 

Different terminology has been used in literature to refer slums, such as "informal," illegal," "squatter," 

"irregular," "unplanned," "deprived," or "substandard settlement/area" (Kuffer et al., 2016, p. 6). These 

terms have been used interchangeably with slums by different authors (Kuffer et al., 2016).  

Slums do not have any universal definition (Verma, Jana, and Ramamritham, 2019). However, United 

Nations has defined slums on a broader scale, as mentioned in Section 1.1, but due to the varying 

characteristics of slums such as lack of basic service and infrastructure (e.g., electricity, sanitation, water), 

overcrowding, construction materials, hygiene and health, crime and violence, land tenure and security, 

etc. (United Nations-Habitat [UN-Habitat], 2003), it is hard to address slums with one unique definition; 

therefore, the definition of slums can vary in different regions. Generally, the definition of a slum depends 

on different standards of local or national government authorities, and these authorities conceptualize 

slums differently. For example, the Bangkok government uses overcrowding, health and hygiene, crime 

and violence, and surrounding environment indicators to define slum areas (UN-Habitat, 2003). Most 

South Asian countries use insecure land tenure, lack of access to water and sanitation, and overcrowding 

as major indicators to define slum areas (UN-Habitat, 2003). 

According to Lilford et al. (2019), slums can be conceptualized in two ways. The first approach is "feature 

first," which generally depends on household-level surveys. According to local or national authorities' 

standards, the observed features of slums and non-slums are identified first. Then the area is defined 

based on the observed features; therefore, it is also called a bottom-up approach. The second approach is 

the "space first" or top-down approach because it starts with selecting an area first. Then the selected area 

is classified into slum and non-slum based on features.  

According to Kuffer et al. (2016), there are various physical characteristics of slums, which differentiate 

slums from non-slum built-up areas, such as small roof size, high roof coverage density, poor building 

materials, smaller and irregular building size. However, some physical features, such as building density 

and building size, can be delineated using RSI, but physical features like poor building materials can not be 

identified using RSI. The measurement of physical features can be problematic using RSI alone even if 

they are appropriately defined (Pratomo, Kuffer, Kohli, and Martinez, 2018); these problems can arise due 

to a lack of local contextual knowledge to conceptualize slums (Kuffer et al., 2016). For example, some 

historical settlements can be easily misclassified as slums because they have the same morphological 

characteristics as slums (Kuffer et al., 2016). Thus the resembling physical characteristics of slum and non-

slum area makes it more uncertain about using RSI alone. 

2.2. Remote Sensing-Based Slum Mapping 

In the last few decades, several approaches have been developed to map slums with VHR images 

(Mahabir et al., 2018). The slum mapping approach can broadly be divided into three types: visual image 

interpretation, OBIA-based approaches, ML-based approaches (Mahabir et al., 2018). 
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Visual image interpretation can map slums with quite a reasonable accuracy rate (Taubenböck & Kraff, 

2014). The visual image interpretation approach is time-consuming and has some uncertainties with 

boundary delineation because it depends on how the interpreter perceives slums (Pratomo et al., 2018). 

Generally, the data mapped using visual image interpretation is used as reference data for cross-checking 

the results from other approaches. 

OBIA is a popular approach to map slums (Kuffer et al., 2016).  The image is divided into different 

meaningful objects with their geographic information, and then the characteristics of those objects are 

computed (Blaschke et al., 2014). OBIA outperforms the conventional pixel-based approaches because 

OBIA handles the input images as a set of objects instead of pixels and integrates different spatial, 

spectral, and contextual properties of the selected object for classification (Kohli, Warwadekar, Kerle, 

Sliuzas, and Stein, 2013). In contrast, the pixel with the same reflectance is assigned to the same class in 

pixel-based classification. The common problem with the pixel-based classification is the salt and pepper 

effect because it relies only on an object's spectral signatures (Kohli et al., 2013). Generally, OBIA is used 

with VHR satellite imagery. However, the concept of slum should be clear while defining the set of rules 

for OBIA for slum mapping (Kohli et al., 2013). Kohli et al. (2013) map slums using OBIA in 

Ahmedabad, tested the accuracy using different datasets and achieved overall accuracy ranging from 47 to 

68%. The accuracy of OBIA decreases with the increase of urban environment complexity, i.e., sometimes 

the roofing material of slum and non-slum show the same spectral reflectance, making it hard to capture 

the characteristics of slums (Kuffer et al., 2016). Thus to overcome misclassification from OBIA, the 

OBIA ruleset can be combined with ML approaches such as Support Vector Machine (SVM) (Zahidi, 

Yusuf, Hamedianfar, Shafri, and Mohamed, 2015). 

In general, ML-based approaches perform better than classical RS-based classification approaches (Verma 

et al., 2019). ML-based approaches are frequently used for slum mapping, and these approaches are data-

driven, i.e., heavily dependent on a large amount of data. The availability of large data set with extensive 

pixel-based information makes ML approaches ideal for image classification (Verma et al., 2019). Duque, 

Patino, and Betancourt (2017) and Kuffer et al. (2018) explore ML algorithms such as Random Forest 

(RF) and SVM for slum mapping; the SVM achieved an F1 score varying between 0.73 to 0.92, and RF 

achieved F1 score varies between 0.72 to 0.94. Previous studies show that the ML approaches produce a 

better result than classical RS-based approaches. However, ML approaches' accuracy depends on feature 

selection, requiring a clear understanding of the local contextual knowledge of slums  (Leonita et al., 

2018). ML algorithm learns features from the training data set to generate output from the unknown input 

(Persello & Stein, 2017; Hoeser & Kuenzer, 2020). In contrast, DL consists of different stack layers that 

help extract more accurate information from input data. 

DL is part of ML, popular in the scientific community for slum mapping because high accuracy can be 

achieved using the DL approach (Kuffer et al., 2016). DL recently gained attention in the RS community 

due to the open-source DL models (Verma et al., 2019). DL consists of CNN and FCN. CNN is one of 

the main image classification approaches in DL, and FCN is derived from classical CNN. Currently, CNN 

and FCN are getting attention for mapping slums (Persello & Stein, 2017). 

DL model extracts the information from the input data using different convolutional layers and further 

predicts and displays the result using the classification layer. DL consists of more than two layers (Zhu et 

al., 2017). According to the training data set, the weights are optimized to different layers and reduce the 

prediction error (Persello & Stein, 2017). Therefore it is irrelevant to design the rule set or selection of 

features for the classification. DL approaches can be used in the complex urban environment with 

different dataset combinations, i.e., a combination of overhead data and ground-level data. However, the 

results of the DL model heavily rely on reference data (ground truth data) used for training. 
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2.3. Deep Learning-Based Approach 

2.3.1. Convolutional Neural Networks 

CNN is a patch-based classification approach. The CNN classifies the input images' central pixels and 

labels them accordingly in the output (Michael, Neal, Burke, Lobell, & Ermon, 2016). CNN architecture 

includes feature extraction and classification layers. Generally, CNN consists of four layers: convolutional 

layers, non-linear activation, pooling layers, and fully connected (FC) layers. All the layers are trained 

throughout the network. Figure 2.1 shows the CNN architecture acquired from Mboga, Persello, Bergado, 

and Stein (2017). A standard CNN consists of multiple convolutional and fully connected layers. The 

convolutional layer extracts the image features from the training dataset and converts them into a one-

dimensional array vector, further given as input to the FC layer. Then the output from the FC layer is 

passed through to the activation layer (softmax) for image classification. Thus, both convolutional and FC 

layers are accountable for learning classification rules (Persello & Stein, 2017). 

 

Researchers have found that CNN can outperform previous RS-based approaches (Persello & Stein, 

2017). Verma et al. (2019) used CNN to map slums in Mumbai. The author obtained overall accuracy and 

kappa coefficient of about 94.2 % and 0.70 for VHR imagery and 90.2 % and 0.55 for Medium resolution 

(MR) imagery. Mboga et al. (2017) used CNN to map slums in Dar es Salaam with Quick bird imagery and 

obtained an overall accuracy of 91.71%. Michael et al. (2016) used CNN with nighttime satellite imagery to 

map slums in African countries.  

In contrast to RSI, Ibrahim et al. (2019) used VGG16 CNN to identify slums using SVI and achieved the 

validation accuracy of 85%, but the model did not perform well in the complex urban environments, i.e., 

in those areas where slum and non-slum have similar characteristics. There are two key barriers in 

implementing CNN to a large RSI or aerial dataset: (i) a large amount of reference data is needed, and (ii) 

high computation costs (Persello & Stein, 2017) because of which the learnable parameters become larger 

than the convolutional layers while training. FCN is derived from CNN, which might overcome the 

barrier of CNN in terms of high computational cost. 

Figure 2.1: CNN architecture acquired from Mboga et al. (2017) 
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2.3.2. Fully Convolutional Neural Networks 

FCN is a pixel-based classification approach and is also trained throughout all the layers. It is also called a 

semantic segmentation network. In FCN, deconvolutional layers replace the FC layers, allowing flexibility 

in the input size. The convolutional–deconvolutional layer or dilated kernel layer helps keep the output 

similar to the input in terms of size and resolution of an input image (Long, Shelhamer, and Darrell, 2015; 

Wurm, Stark, Zhu, Weigand, and Taubenböck, 2019), resulting in the lower computational cost of FCN 

compared to CNN. The result in the FCN requires less computational cost than CNN. 

FCN consists of five parts: (1) convolutional layers; (2) non-linear activation functions (e.g. leaky Rectified 

Linear Unit (lReLU)); (3) pooling (e.g. max pooling); (4) deconvolutional layers; (5) classification layers 

(e.g. Softmax). The deconvolutional layer improves the model performance and reduces the chances of 

overfitting (Teerapong, Kulsawasd, Siam, Panu, and Peerapon, 2017). Figure 2.2 shows the Encoder-

Decoder FCN architecture acquired from Teerapong et al. (2017). 

Few studies use FCN for slum mapping. Wurm et al. (2019) explored the FCN-VGG19 to identify slums 

in Mumbai using different sensors for slum mapping. The model was trained on QuickBird imagery and 

obtained 86% of Positive Prediction Value (PPV). Further, the trained model is transferred to different 

datasets such as Sentinel -2 and TerraSAR-X and achieved 38% and 79% PPV. Stark et al. (2019) explored 

FCN-VGG19 with pre-trained weights from Imagenet and fine-tuned it to identify slum areas in Mumbai 

and Delhi. The author achieved an accuracy of 64% for Mumbai and 34% for Delhi because slum 

structures of Mumbai differ from Delhi, and slums and non-slum areas of Delhi make the transfer 

learning a bit difficult (Stark et al., 2019). 

FCN also uses dilated kernels technique to increase the sizes of the receptive fields (RFs) (Persello & 

Stein, 2017). The FCN-architectures with dilated kernel technique do not have deconvolutional layers, and 

it is called FCN-DK (fully connected convolutional neural network with the dilated kernel) (Persello & 

Stein, 2017). 

FCN-DK reduces the number of features that prevent the overfitting of data and lower the computational 

cost compared to other FCN networks. FCN-DK consists of different convolutional blocks. Each 

convolutional block comprises four layers: zero-padding layers, convolutional layers (different dilated rates 

in separate blocks), activation layers, and pooling layers, which are finally connected to the classification 

layer. Figure 2.3 shows the FCN-Dk3 architecture proposed by Persello & Stein (2017). 

Figure 2.2: Encoder-Decoder FCN architecture acquired from  Teerapong et al. (2017) 
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Persello & Stein (2017) compared the performance of CNN, SVM, and different FCN-DKs such as 

FCN-DK3, FCN-DK4, FCN-DK5, and FCN-DK6 for slum mapping in which the FCN-DK6 

outperformed other models with an overall accuracy (OA) of 84%. However, the accuracy of FCN-DKs 

will be reduced if applied in the complex urban environment where there is an overlap between the feature 

of slum and non-slum. These networks extract the features based on the input dataset, i.e., if slum and 

non-slum don't have the distinct feature on the satellite imagery, the result will probably not be 

satisfactory. Therefore, we need to simplify the urban complexity by using an additional dataset with RSI, 

which will help the network to understand the urban environment better so that slum and non-slum can 

have distinct features.  

2.3.3. Techniques for Training Deep Learning Network 

DL model can be trained in two ways. The first option is to adjust, i.e., fine-tune the pre-trained network 

to match the current classification requirement. Thus, the pre-trained network effectively reduces the 

required training data and computational cost because the network was already trained on the generalized 

dataset to classify the required class. In some cases, the generalized dataset consists of a somewhat similar 

class, not the same class on which it is further fine-tuned. At the time of fine-tuning, some of the initial 

convolutional layers can be frozen, and a new trainable convolutional layer can be added after the frozen 

layers because the pre-trained model has a broader understanding of features of the required class. The 

second option is to train the DL model from scratch, but it requires intensive training data and higher 

computational requirements, resulting in lesser accuracy. For example, Stark et al. (2019) set up two 

experimental models (i) fine-tune the pre-trained FCN-VGG19 on ImageNet (ii) train FCN-VGG19 from 

scratch. As a result, the first model produces an accuracy of 69%, whereas the second model produces an 

accuracy of 34% only. 

2.3.4. Multimodal Data Fusion 

Recently, researchers are integrating macro overhead data (e.g., Satellite images) and micro ground-level 

data to understand urban environment better (Cao et al., 2018). Researchers have explored the 

combination of different data sources using the DL approach, such as  Zhao et al. (2019) identified the 

geographical object using high-resolution (HR) RSI and OpenStreetMap (OSM). Recently few authors 

integrated the RSI and SVI to map different urban land-use/land cover using CNN and FCN. Workman, 

Zhai, Crandall, and Jacobs (2017) used kernel regression and density estimation technique to convert the 

extracted features from the SVI to generate the dense feature maps and further interpolate them with the 

Figure 2.3: FCN-DK3 architecture proposed by Persello and Stein (2017) 
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RSI using Nadaraya–Watson kernel regression technique. Then the integrated imagery was fed to CNN to 

classify building function, building age, and land use. Cao et al. (2018) used FCN-VGG16 to fuse 

overhead imagery with SVI. Two individual FCN-VGG16 channels were set up for SVI and RSI, i.e., 

FCNSVI and FCNRSI. FCNRSI aimed to extract the features from RSI, and FCNSVI aimed to extract the 

features from SVI. The extracted features from FCNSVI were fused with extracted features of FCNRSI at 

the third convolutional block, and then finally fused imagery was fed to deconvolutional block for the final 

prediction map and obtained an overall accuracy of 78.10%. 

2.3.5. Accuracy Assessment 

In RS investigations, the output classification map accuracy is compared to reference data obtained from 

municipal datasets or data collected in the field or data delineated by RS-experts. Generally, the 

comparison has been made based on the kappa coefficient, overall accuracy, recall, precision, F1 score, 

and Jaccard Index (also known as Intersection over Union (IoU)) (Rahman & Wang, 2016) to evaluate 

output classification map statistical significance. In the case of slum mapping, there is one major problem 

in assessing the accuracy of the output classification map using slum reference data because different 

institutions define slum differently, resulting in the generation of different slum maps for the same area as 

discussed in Section 2.1. These uncertainties in the slum reference map negatively affect the classification 

accuracy of different slum mapping approaches. Therefore many researchers define their own definition 

of slums according to the local context of the study area and generate the slum reference map manually 

using image interpretation technique to assess the accuracy of the output slum classification map from 

different RS-based approaches (Kohli, 2015). 

There are a variety of accuracy metrics have been used in previous slum mapping studies. This section 

discusses the different accuracy indicators used in different slum mapping studies during recent years. 

Table 2.1 shows the list of accuracy indicators that have been used in previous slum mapping studies 

adopted from Gao (2020). 

Recent Studies Approaches Accuracy Indicators 

Stark et al. (2019)  Deep learning (FCN) IoU 

Wurm et al. (2019)  Deep learning (FCN) PPV, IoU 

Persello & Stein (2017)  Deep learning (FCN) OA, Recall 

Verma et al. (2019)  Typical CNN OA, Kappa estimate, IoU 

Leonita et al. (2018)  Machine learning (SVM, RF) OA, Kappa estimate, F1-Score 

Kohli et al. (2013)  Grey-Level Co-occurrence Matrix OA, Precision, Recall 

Table 2.1: List of accuracy indicators used in previous slum mapping research adopted from Gao (2020) 
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3. STUDY AREA 

This chapter provides the background of Jakarta. Section 3.1 describes the demographic scene in Jakarta, 

followed by explaining the slum dynamics under Section 3.2. Section 3.3 discusses the challenges in slum 

monitoring due to various terminology of slums and the evolution of the urban village. Finally, section 3.4 

explains the selection of study area in Jakarta. 

3.1. Introduction to Jakarta 

Indonesia's capital city Jakarta is the second largest urban agglomeration globally (Martinez & Masron, 

2020), including five regions and one regency. The population of Jakarta is 10.56 million in 2019, which 

means it was increased by 10% from the 2010 census (Martinez & Masron, 2020). Table 3.1 shows the 

region-wise population density of Jakarta. 

Region Area in Km2 Population 
Population density in 

Km2 

Central Jakarta 48,13 1.056.896 21.959 

Western Jakarta 129,54 2.434.511 18.794 

Eastern Jakarta 188,03 3.037.139 16.152 

Southern Jakarta 141,27 2.226.812 15.763 

Northern Jakarta 146,66 1.778.981 12.130 

Thousand Islands 8,70 27.749 3.190 

Total 662,33 10.562.088 15.947 

Table 3.1: Region-wise population density of Jakarta  

Retrieved from https://jakarta.bps.go.id/ 

3.2. Slum Dynamics in Jakarta 

Jakarta is a rapidly urbanizing city and one of Indonesia's largest densely populated provinces (Martinez & 

Masron, 2020). It is Indonesia's economic center that attracts people from other parts of the country to 

search for work opportunities. Thus, an increasing population causes the scarcity of affordable housing 

inside the city that forces people to live in low-quality housing (Pratomo, Kuffer, Martinez, & Kohli, 

2017), resulting in informal settlements' growth. Around 60% of Jakarta's population lives in informal 

settlements called kampungs (Pratomo et al., 2017). Figure 3.1 shows the location map of Jakarta. 

Since 1997, Jakarta's government has been monitoring slum dynamics through ground-level surveys to 

update slum areas on the map. The measurement has been done using ten indicators: building material, 

population density, building density, building orientation, air circulation, clean water, sanitation, drainage, 

wastewater disposal, and type of roads (Pratomo et al., 2017). The result of ground-level surveys has been 

categorized into four slum classes (Figure 3.2): very light slums, light slums, medium slums, and heavy 

slums, but the criteria used by local government officials for dividing slums into different categories are 

not clear. Between 2014 – 2015, slum areas are reduced under the local government's policies in which 

slum areas were largely relocated, resulting in the drastic change in slum dynamics in Jakarta (Pratomo et 

al., 2017). 

 

 

 

https://jakarta.bps.go.id/
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Figure 3.1: Location map of Jakarta 

Figure 3.2: Official slum reference data of 2017 with different categories of slums, i.e., heavy, medium, light, and very light slums 
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3.3. Problems in Mapping Slum Dynamics 

There are mainly two major issues to map slum dynamics in Jakarta. First, the different existing definitions 

of slums. Second is the presence of kampungs, also known as urban villages, where it is challenging to 

differentiate slum and non-slum areas. 

3.3.1. Different Definitions of Slums 

Indonesia is committed to aligning its development target with the 2030 global agenda of SDGs. 

Accordingly, the national government has included global agendas in the development planning policy and 

programs such as the National Medium-Term Development Plan (RPJMN) and its related budget 

(Minister of National Development Planning [MNDP] Indonesia, 2019). For example, one of the leading 

global agendas incorporated into the national development plans is "Improving the quality of housing and 

settlements" under RPMJN 2020 – 2024. However, the main emphasis is given to Goal 6- "Clean Water 

and Sanitation" (MNDP Indonesia, 2019), under which 100-0-100 (100% access to clean water, zero 

slums, and 100% access to sanitation) policy was implemented. The key to ensuring the success of this 

initiative is to keep track of slum reduction progress. However, different institutions in Indonesia at the 

national, regional, and local levels define slums differently. 

The definition of slums is not universal, which makes it challenging to monitor slum dynamics. According 

to the Indonesian National Law on Housing No 1/2011, slums are divided into slum housing and slum 

neighborhoods (Irawaty, 2018). Slum housing is defined as an inadequate living space, whereas a slum 

neighborhood is defined as housing without basic amenities (Pratomo et al., 2017). Accordingly to 

national law, different institutions defined several indicators to measure slums (Pratomo et al., 2017). For 

example, the ministry of public works and public housing defines six indicators: coverage and quality of 

the road network, poor water quality, poor wastewater disposal, density and quality settlements, and the 

area size of inundation. 

In contrast, Indonesia's central board of statistics defines four indicators: insufficient living space, poor 

quality of building materials, lack of access to drinking water, and poor sanitation. Likewise, Jakarta's local 

government also defines eight indicators: building layout and orientation, inadequate living space, quality 

of housing, garbage collection, sanitation, building density, unpaved/light roads, and air and light 

ventilation to measure slums based on national law definition. Thus using the different sets of indicators 

will lead to different measurements of slums. Indonesian national planning agency came up with a concept 

of legal and illegal slums, i.e., if the owner owns the house and the government recognizes it, then it is 

called a legal slum, whereas if the owner doesn't own the house and the government doesn't recognize it 

then it is an illegal slum. This research focuses on illegal slums. The comparison between the different 

institution definitions of slums is shown in Table 3.2 

We have defined our definition of slums for this research based on some of the important indicators used 

by different governmental institutions and academic literature to avoid different interpretations from 

different conceptualizations of slums. The indicators used to define slums in this research are the absence 

of tenure security, temporary building materials, a dense area with lesser roads, unplanned layout, 

unpaved/light roads, building footprint area less than 60-meter square (m2), poor roofing materials, near 

to industrial and warehouse area, proximity to rivers, railroads, swamps, and shrine, and less open green 

spaces, this will be discussed in detail in Section 5.2.  

3.3.2. Presence of Kampungs (evolution of Kampungs) 

Discussing the problem of mapping slums is closely related to the kampungs in Jakarta. About half a 

century ago, after the end of the colonial period, Jakarta faced rapid urbanization (Putranto, 2009). At that 

time, the government does not govern any planning institution (Rukmana, 2008), promoting irregular 

housing development. For example, many vacant land and agricultural fields turned into settlements, and 
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some of the settlements are dominated by low-income groups called kampungs. More people moved 

towards Jakarta due to the rapid urbanization resulting in new kampungs or expanding the existing ones. 

The increasing population has put enormous pressure on the housing sector, and many people have to opt 

for substandard housing due to the local government's incapacity. This gradual growth made kampungs 

bigger and more heterogeneous with the middle-class income group (Pratomo et al., 2017). 

Kampungs can be categorized into two types (1) legal kampungs have been provided the land rights and 

basic amenities although high-density characteristic doesn't change (Putranto, 2009). On the other hand, 

(2) illegal kampungs don't have land rights and basic amenities generally located along the railway line, 

riverbank, green paths and park, canal, and often in flood-prone areas (United Nations-Habitat [UN-

Habitat], 2013), and these illegal kampungs are generally invisible from the city plans. Figure 3.3 and 

Figure 3.4 show the different types of kampungs, i.e., legal and illegal. However, legal and illegal kampungs 

may share some characteristics, i.e., high-density housing, making it quite challenging to categorize legal 

kampungs (non-slums) and illegal kampungs (slums). 

 

Criteria  International1 National Law2 National Institution3 Susenas4 Local Institution5 

Lack of Basic Amenities Included Included Included Included Included 

Lack Quality of Housing Included Included Included Included Included 

Inadequate Living Space Included Included Included Included Included 

Insecurity of Tenure Included - - - - 

Non-conformity with Spatial Plan - Included - - - 

Poor Socio-economic Condition - Included - - - 

Poor Accessibility - - Included - Included 

Hazardous Area - - Included - - 

Other - - - - Included 

Table 3.2: Comparison between the different institution definitions of slums for better understanding 

Partially adapted from Pratomo et al. (2018) 

 
1 United Nations Habitat from UN-Habitat, 2018; UNDESA, 2017 

2 Government of The Republic of Indonesia from The World Bank, 2016 
3 Ministry of Public Works and Public Housing from Pangeran & Akbar, 2020 
4 Indonesian Central Board of Statistics from Central Bureau of Statistics, 2019 
5 Department of Building and Settlements DKI from Central Bureau of Statistics DKI Jakarta, 2020 

Figure 3.3: Legal Kampung in which owner owns the land 
rights on which they live, i.e., non-slum 

Retrieved from Google street view images 

Figure 3.4: Illegal Kampung in which owner doesn’t own the 
land rights on which they live, i.e., slum 

Retrieved from Google street view images 
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3.3.3. Selection of Subset in Jakarta 

The idea behind selecting the study area is to cover the major location of slums in Jakarta according to the 

official slum reference map of 2017. The western region has been selected as the subset of Jakarta for this 

research because it is the second-most densely populated region after the central region, as shown in Table 

3.1. Central Jakarta is not chosen due to the Central Business District (CBD) because the presence of a 

large number of commercial places around the CBD with fewer residential and open spaces implies the 

probability of dense slums (heavy slum) will be minimum as shown in Figure 3.2. Therefore, the west 

region is chosen over the central region. Due to data availability constraints, we couldn't acquire data for 

the whole western region. Consequently, we modified the study area with a local expert's help (Mr. Jati 

Pratomo - Ph.D. Candidate, PGM Department, Faculty ITC, University of Twente) and acquired half of 

the west region with some part of the north region with heavy slums and a small part of the central region 

along the creek where the probability of slum will be maximum, as shown in Figure 3.5. 

 

Figure 3.5: Extent of the study area and satellite imagery is highlighted with red, covering half 
of the west, some part of the north, and a small part of the central region 

(the satellite image was ordered according to the study area) 
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4. DATA 

The chapter describes six different datasets used in this research. Section 4.1 describes the acquired VHR 

satellite imagery. Section 4.2 provides a brief explanation of the official reference data of 2017, and 

Sections 4.3, 4.4, and 4.5 discuss ancillary data such as road network, building footprints, and zoning data 

of Jakarta. Finally, section 4.6 describes the procurement of the Google Street View (GSV) imagery. 

4.1. Satellite Imagery 

This research concentrates on delineating slums in complex urban scenarios using VHR satellite imagery. 

We chose to explore the WorldView/GeoEye mission for VHR imagery. The imagery was procured from 

the European Space Agency (ESA) free of cost by sending a detailed project proposal (European Space 

Agency, 2021).  

ESA approved the GeoEye mission satellite imagery of 125 km2.  We tried to order the image in the same 

year (2017) as when the official slum reference data was prepared, but due to the data availability 

constraint, we have to shift the ordering date to the year 2018. The ordered image has a spatial resolution 

of 1.65 m for multispectral image with four bands (red, green, blue, and near-infrared band) and 0.41 m 

panchromatic image. ESA provided a pan-sharped image with a spatial resolution of 0.4 m. While 

procuring satellite imagery in tropical countries, the biggest issue is avoiding cloud interference in the 

ordered satellite imagery. Therefore we have chosen an option of cloud cover of less than 10%. The 

procured image specifications are shown in Table 4.1, and the extent of the ordered image and the 

procured satellite imagery are shown in Figure 3.5, and Figure 4.1shows the procured satellite imagery. 

Image specification Description 

Bands 1 panchromatic and 4 multispectral (Red, Green, Blue, Near Infrared) 

Resolution 0.4 m 

Cloud cover 0% 

Orthorectified on a scale 1:12000 

Date of acquisition March 2nd, 2018 

Table 4.1:  Detailed specifications of procured GeoEye satellite imagery from ESA 

4.2. Slum Reference Data 

In 2017 Jakarta's local government published official slum boundaries (RW Kumuh) based on different 

indicators mentioned in Section 3.3.1. Further, they have categorized slums into four different categories 

of slums such as heavy (Berat), medium (Sedang), light (Ringan), and very light (Sangat Ringan), as shown in 

Figure 3.2. Examples of GSV imagery of these different categories of slums are shown in Figure 4.2. The 

official slum map of 2017 was procured from Mr. Jati Pratomo. In addition, the official reference map was 

further tweaked for our analysis according to the definition of slum used for this research, as will be 

discussed in Section 5.3.1.1. 
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 Figure 4.2: Google street view imagery of different categories of slums according to official slum reference map of 2017 

Figure 4.1: GeoEye satellite imagery of spatial resolution of 0.4 m procured from ESA 
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4.3. Road Network Data 

The road network shapefile of Jakarta was downloaded from the official website of Jakarta's government 

(https://jakartasatu.jakarta.go.id/portal/apps/sites/#popup). Then the study area was clipped from the 

downloaded road network shapefile. The attribute table of the road network shapefile consists of road 

class (kelas jala) and information (keterangan). The road classes are categorized into different classes such as 

major road (artery and collector), minor road (local), branch (environment), and toll (tol) roads from which minor 

road and branch road are used for selecting the street view locations.  

The information column consists of some important information related to road class, such as which 

roads are bridges, dirt roads (unpaved roads), links, and busways. Thus the information column is used to 

sort out the unpaved roads from the road network for tweaking the slum reference layer because the 

unpaved road is one of the indicators of slums in this research. 

4.4. Building Footprint Data 

The building footprint shapefile of Jakarta was downloaded from the official website of Jakarta's 

government (https://jakartasatu.jakarta.go.id/portal/apps/sites/#popup). Then the study area was 

clipped from the downloaded building footprint shapefile. The attribute table of building footprint 

shapefile consists of the building footprint area (shape area). The building footprint area is used to sort out 

the building footprint area less than 60 m2 from the total building footprint area for tweaking the slum 

reference layer because building footprint is one of the indicators of slums in this research. 

The concept behind taking the building footprint area less than 60 m2 was when we overlayed the building 

footprint layer on the official slum reference map of 2017, we observed that the building area less than 60 

m2 overlays with the maximum number of buildings lying inside the slum boundary of the 2017 official 

slum reference map, which is called slums according to the local government, as shown in Figure 4.3. 

4.5. Zoning Data 

The zoning data shapefile of Jakarta was downloaded from the official website of Jakarta's government 

(https://jakartasatu.jakarta.go.id/portal/apps/sites/#popup). Then the study area was clipped from the 

downloaded zoning data shapefile. The attribute table of zoning data shapefile consists of the zone (zona). 

The zone is used to sort out different zoning classifications such as green belt (zona jalur hijan), city park 

(zona tamon kota/ lingkungan), waterway (zona terbuka biru), cemetery (zona permakaman), and industrial and 

warehouse area (zona industri dan pergudangan) for tweaking the slum reference layer because zoning is one 

of the indicators of slum in this research.  

The zoning classifications such as green belt, city park, waterway, and cemetery are areas where any kind 

of construction is prohibited, which means that the building constructed in these areas does not have land 

ownership. Thus, there is a high probability of finding slums in those areas. 

4.6. Google Street View Images 

The latitude and longitude in meters were generated for each street view location using ArcGIS. Then 

using the coordinate point of each street view location, images were obtained in cardinal directions using 

Google Street View Static API. For reference, SVI  for the cardinal directions at one location in western 

Jakarta, where slums are present according to the official slum reference map of 2017, are presented in 

Figure 4.4. The selection of point locations of GSV will be discussed in-detail in Section 5.3.2.2. 

 

 

https://jakartasatu.jakarta.go.id/portal/apps/sites/#popup
https://jakartasatu.jakarta.go.id/portal/apps/sites/#popup
https://jakartasatu.jakarta.go.id/portal/apps/sites/#popup
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Figure 4.3: Official slum reference map of 2017 with building footprint area less than 60 m2 marked in orange 

Figure 4.4: SVI images in the cardinal direction at one location in the study area were downloaded through Google API using latitude 
and longitude in meters 
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5. METHODOLOGY 

This chapter discusses the methodology used to answer the research questions. Section 5.1 provides an 

overview of the research methodology. Section 5.2 explains the different steps taken for conceptualizing 

slums for this research. Section 5.3 explains the preparation of the dataset and execution of proposed 

architectures. Section 5.4 explains the selection of different accuracy metrics used to evaluate and compare 

the proposed architectures' results. Finally, section 5.5 provides the technical specification for executing 

proposed architectures 

5.1. Overall Approach 

   This research is divided into three phases. In the first phase, we have identified the different 

characteristics of slums to conceptualize slums in our study area using RSI, SVI, and ancillary data. The 

second phase was divided into two steps: (i) pre-processing and (ii) experimental design. In the last phase, 

the accuracy of all models has been compared and analyzed. Figure 5.1 depicts the steps performed to 

attain the research objective. 

5.2. Identification Stage 

This phase aims to determine the characteristics of slums in Jakarta, i.e., how slums can be seen in the real 

world and the image domain such as RSI and SVI with additional ancillary data. This stage is critical since 

the subsequent stages rely on the outcome of this procedure.  

Figure 5.1: Overall approach of research (divided into three stages: identification, implementation, and accuracy assessment) 
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First, an extensive literature review was done to identify the characteristic of slums in two parts. In the 

first part, different governmental organization documents at global, national (Indonesia), and local 

(Jakarta) scales were reviewed, as mentioned in Section 3.3.1. We have gone through each set of indicators 

used by various governmental organizations to understand how they define slums. In the second part, 

different research papers have been reviewed to understand how they define slums in Jakarta's kampungs 

using different characteristics at the local level. Additionally, we discussed with a local expert (Mr. Jati 

Pratomo) to understand the slum characteristics in Jakarta at ground level. Based on the literature review 

findings, we have generated the list of indicators used in governmental documents and research papers to 

identify the characteristic of slums, as shown in Table 5.1. It is evident from Table 5.1 that physical 

characteristics play an important role in identifying slums. 

Type of 

Characteristics 
Characteristics Adopted by 

Basic services 

Lack of access to water and sanitation 

International; National law; Susenas; 

Local Institution; Alzamil (2018); Zhu 

(2010) 

  

Lack of access to drinking water International; Susenas   

Poor wastewater disposal International ; National Institution   

Poor water quality International ; National Institution   

Socio-economic 

conditions 

Socio-economic Conditions National law   

Based on population 
Legarias, Nurhasana, and Irwansyah 

(2020) 
  

Others 

Non-conformity with Spatial Plan National law   

Absence of tenure security 
International; Pratomo et al. (2017); 

Nurdiansyah (2018) 
  

Garbage collection Local Institution   

Physical 

Lack of housing durability/ Poor 

quality of housing/ Poor quality of 

building materials/ Poor wall 

materials/ temporary building 

materials/ Poor roof materials 

International; National law; National 

Institution; Susenas; Local Institution, 

Pratomo et al. (2017) 

  

Inadequate living space 
International; National law; Susenas; 

Local Institution 
  

Coverage and quality of the road 

network / Dense area with lesser 

roads 

National Institution   

Proximity to hazardous zone International; National Institution   

High building density 
Local Institution; Irawaty (2018); Legarias 

et al. (2020) 
  

Air and Light ventilation Local Institution   

Unplanned layout/Irregular building 
Local Institution; Pratomo et al. (2017); 

Alzamil (2018) 
  

Building orientation Local Institution; Pratomo et al. (2017)   
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Type of 

Characteristics 
Characteristics Adopted by 

Physical 

Unpaved/Light roads Local Institution   
Small building size (building footprint) Pratomo et al. (2017)   

Proximity to the river and railroads 
Pratomo et al. (2017); Irawaty (2018); 

Alzamil (2018); Nurdiansyah (2018) 
  

Near to industrial and warehouse area Pratomo et al. (2017)  

Hazardous location Irawaty (2018)   

Less open and green spaces Zhu (2010)   

 

Government document and Research Paper   

Government document   

Research Paper   

Table 5.1: List of characteristics of slum adopted by governmental documents at an international, national, and local 
level and research papers focusing on Jakarta 

According to Pratomo et al. (2017), sometimes slums and non-slum areas in kampungs share the same 

physical characteristic, i.e., high-density housing, making it quite challenging to identify slums. Mapping 

slums in kampungs can be challenging with RSI alone because some of the physical characteristics that 

differentiate slums from non-slums cannot be captured through RSI, such as inferior building materials. 

Therefore to capture detailed physical characteristics, ground-level knowledge is needed. In this research, 

SVI is used for ground-level knowledge with RSI to identify the physical characteristics of slums in 

Jakarta's kampungs. 

Only those slum characteristics were chosen from Table 5.1, which can be detected using RSI or SVI or 

available ancillary data such as road network data, building footprint data, and zoning data in our study 

area to conceptualize slums in this research. Table 5.2 shows the list of selected characteristics captured 

through RSI, SVI, and ancillary data, and Table 5.3 shows the translation of slum characteristics into the 

mapping indicators. 

Type of 

characteristics 
Characteristics RSI SVI 

Ancillary data (Vector layer) 

Road 

network 

Building 

footprint 
Zoning 

Other Absence of tenure security No No No No Yes6 

Physical 

Temporary building materials No Yes No No No 

Dense area with lesser roads Yes No Yes6 No No 

Unplanned layout Yes No No No No 

Unpaved/Light roads Yes Yes Yes6 No No 

Small building size/building 

footprint 
Yes No No Yes6 No 

Poor roof materials Yes 
Yes 

(Partially) 
No No No 

 
6  With the help of RSI 
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Type of 

characteristics 
Characteristics RSI SVI 

Ancillary data (Vector layer) 

Road 

network 

Building 

footprint 
Zoning 

Physical 

Proximity to river, railroads, 

swamps, and shrines 
Yes Yes No No No 

Near to industrial and 

warehouse area 
Yes No No No Yes6 

Less open and green spaces Yes 
Yes 

(Partially) 
No No No 

Table 5.2: List of selected slum characteristics captured through RSI, SVI, and ancillary data in our study area for 
conceptualizing slums in the research 

The selected characteristics shown in Table 5.2 for slum mapping are defined as follows:  

Absence of tenure security: This indicator cannot be seen directly through the RSI and SVI. Therefore, 

tenure status was determined using zoning data to point out the illegal structures because Jakarta has strict 

zoning policies (Pratomo et al., 2017). In this research, zoning data (vector layer) was used to delineate 

illegal structures, i.e., slums, with the help of RSI. The attribute selected from the zoning data for finding 

the illegal encroachment was discussed in Section 4.5. 

Temporary building materials: According to International; National law; National Institution; Susenas; 

Local Institution, slums in Jakarta's kampungs consist of temporary building materials such as iron sheets, 

wood blocks, plastic sheets, and low-quality construction materials. These temporary building materials are 

the ground-level characteristic that can be captured using the SVI. Therefore only SVI is used for 

identifying temporary building materials in our study area. 

Dense area with lesser roads: According to National Institution, a high-density building area with less 

connectivity of roads is categorized as a slum. We have used RSI and road network data (vector layer)  to 

delineate areas with less connectivity, .i.e, where the roads are not present compared to high-density 

buildings. The road network information was mainly inferred from road network data, according to which 

the area was delineated with the help of RSI, but in some areas where the roads were not present in the 

road network data, we have used visual interpretation for identifying the dense area with lesser road 

connectivity through RSI. 

Unplanned layout: According to Local Institution; Pratomo et al. (2017); Irawaty (2018), slums in Jakarta 

consist of the unplanned/irregular shape of the building. The unplanned/irregular shape of the building 

was delineated through RSI, i.e., overhead imagery. 

Unpaved/ light roads: This indicator was used by the Local Institution for delineating slums. This 

indicator can be observed through RSI with road network data, RSI individually, and SVI. In this research, 

we used RSI with road network data (vector layer) to find out which roads are unpaved in Jakarta 

according to which slums were delineated with the help of RSI. The attribute selected from the road 

network data for finding the unpaved roads was discussed in Section 4.3. 

Small building size/building footprint: According to Pratomo et al. (2017), slums in Jakarta consist of 

the small size of the building footprint. The small building size can be seen through RSI individually and 

RSI with building footprint data. We have used building footprint data (vector layer) to quantify building 

footprints less than 60 m2 and delineated slums with the help of RSI, as discussed in Section 4.4. 

Poor roof materials: According to Pratomo et al. (2017), slums in Jakarta consist of inferior roofing 

materials such as iron sheets and asbestos sheets which were further confirmed through RSI and SVI, but 

we have also found plastic covering material used as roofing materials at some places in slums while 
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exploring SVI. The slums were delineated on RSI with the help of visual interpretation through RSI and 

SVI. 

Proximity to river, railroads, swamps, and shrines: According to Pratomo et al. (2017); Alzamil (2018); 

Irawaty (2018); Nurdiansyah (2018), many slums in Jakarta are present close to the river bank and rail lines 

which was further confirmed using RSI and SVI. We have added two more landmarks, such as swamps 

and shrines, because slums can be clearly located near them while exploring SVI. The slums were 

delineated on RSI with the help of visual interpretation through RSI and SVI. 

Near to industrial and warehouse area: According to Pratomo et al. (2017), there is a high probability 

of unskill or low-skill workers' lives in slums (illegal kampungs) near industrial and warehouse areas. This 

indicator was observed through RSI individually and RSI with zoning data. In this research, we used 

zoning data (vector layer), i.e., industrial and warehouse areas, to delineate the nearby illegal kampung 

settlements with the help of RSI.                          

Less open and green spaces: According to Zhu (2010), slums in Jakarta's kampungs are densely packed 

structures overlapping each other, i.e., the probability of any green space or open space is lower in slum 

areas, which was confirmed through RSI and SVI. The SVI has limited coverage along the road, due to 

which this indicator was partially explored through SVI. The slums were delineated on RSI with the help 

of visual interpretation through RSI and SVI. 

Characteristics Mapping indicators 

Absence of tenure security • Ancillary data: Zoning data 

Poor wall materials 
• SVI: Iron sheets, Wood-blocks, Plastic sheets, and Low-quality construction 

materials 

Dense area with lesser roads 
• Ancillary data: Road network data 

• RSI Shape: Compactness 

Unplanned layout • RSI Shape: Compactness 

Unpaved/Light roads 
• Ancillary data: Road network data 

• RSI Shape: Compactness  

Small building size/building 

footprint 

• Ancillary data: Building footprint data 

• RSI Shape: Compactness 

Poor roof materials 
• RSI Tone: Iron sheets and Asbestos sheets 

• SVI: Iron, Asbestos, and Plastic sheets 

Proximity to river, railroads, 

swamps, and shrines 

• RSI Association: Proximity to River, Railroads, Swamps, and Shrines  

• SVI: Proximity to River, Railroads, Swamps, and Shrines 

Near to industrial and 

warehouse area 

• RSI Association: Near to the industrial and warehouse area 

• Ancillary data: Zoning data 

Less open and green spaces 
• RSI Association: less open and green spaces 

• SVI: less open and green spaces 

Table 5.3: Translation of selected slum characteristics into the mapping indicators7 for tweaking official slum 
reference map of 2017 

 
7 The characteristics in SVI can be seen through the naked human eye because the SVI's are true color composite images, and for 

interpreting RSI images, visual elements: tone, shape, size, association, geographical features are used. 
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5.3. Implementation Stage 

The section starts with the pre-processing step in which the preparation of the relevant data is briefly 

explained for further analysis. Then the next step of experimental design is briefly described. 

5.3.1. Pre-processing of Image 

The pre-processing is divided into two steps. In the first step, the official slum reference map of 2017 was 

modified using the characteristics of slums discussed in Table 5.2. In the second step, the ground truth 

dataset for training and testing was prepared using the tweaked slum reference map generated in the 

previous step for further analysis. 

5.3.1.1. Preparation of Tweaked Slum Reference Map 

In the official slum reference map of 2017, some areas did not align with the definition of slums used in 

this research, as shown in Figure 5.2 and Figure 5.3. Figure 5.2 shows that some of the well-developed 

areas, such as large green spaces and high residential buildings, are classified as slums in the official slum 

reference map of 2017. Whereas in Figure 5.3, the industrial and warehouse areas are also classified as 

slums in the official slum reference map of 2017. Therefore, the official slum reference map was tweaked 

for this research according to our definition of slums using different mapping indicators as mentioned in 

Table 5.3: Translation of selected slum characteristics into the mapping indicatorsTable 5.3. 

As shown in Figure 5.2, the official slum reference map has four categories of slums, but the tweaked 

slum reference map has an additional category "unknown" because when we started digitizing slums using 

different mapping indicators, as mentioned in Table 5.3, we found that some areas in the study area are 

not categorized as slums in the official slum reference map of 2017 but still possess the characteristics of 

slums according to our definition of slums, as shown in Figure 5.4. Therefore we have digitized those 

areas and categorized them as an unknown type of slum because we don't know the basis on which the 

local government of Jakarta differentiates slums into different categories, such as heavy slums, medium 

slums, light slums,  and very light slums. Further, we have shared our generated slum map with the local 

expert (Mr. Jati Pratomo) to get an insight into the areas delineated as slum and especially the unknown 

categories of slums, and he confirmed that the slum layer is correctly classified according to his 

knowledge. 

The tweaked slum map was used in this research to generate ground truth training and testing datasets for 

the DL models and finally used for finding the accuracy of the predicted slum maps. Figure 5.5 shows the 

tweaked slum reference map used in this research. 

5.3.1.2. Preparation of Ground Truth Training and Testing Dataset 

As we discussed above, the tweaked slum reference layer has five categories, but the primary objective of 

this research is the binary classification of the areas into slums and other (non-slum). Slums are 

represented as polygons in the tweaked slum reference shapefile. Therefore tweaked slum shapefile is 

converted to the raster into two classes (slum and other) with the exact spatial resolution of the RSI. 

The data preparation for the training and testing dataset is based on previous studies of FCN and many 

trials. The slum raster was cut into 12 tiles with equal rows and columns, i.e., 2000 x 2000 pixels. The total 

area covered on the ground by each tile is 800 m x 800 m. The tiles are arranged manually to balance class 

distribution in each tile, i.e., we have tried to distribute the classes (slum and other) equally into each tile 

by manually adjusting them. Figure 5.6 depicts the arrangement of training and testing tiles according to 

tweaked slum reference data. Among the 12 generated ground truth tiles, 10 were used for training, and 2 

were used for testing the FCN networks in the research. 
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Figure 5.2: Contradicting areas such as large green spaces and high residential buildings are classified as 
slums in the official slum reference map of 2017 

Figure 5.3: Industrial and warehouse areas are classified as slums in official slum reference map of 2017 
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Figure 5.5: Tweaked slum reference map generated by using mapping indicators for this research 

Figure 5.4: GSV images of  unknown slum areas which are characterized as slums according to our definition of 
slums, but they are not delineated  as slums in official slum reference map of 2017 
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5.3.2. Experimental Setup 

This section is divided into three major sections based on datasets: (i) RSI, (ii) SVI, and (iii) integration of 

RSI and SVI. Further, each section is divided into 3 sub-sections, i.e., network selection, data preparation, 

and training of the selected network. 

5.3.2.1. Remote Sensing Imagery 

I. FCN Architecture 

Persello & Stein (2017) introduced FCN-DK for slum mapping in which FCN-DK6 outperforms all the 

other FCN-DKs architecture, as mentioned in Section 2.3.2. Furthermore, the FCN-DK can support the 

n-number of input bands for training, whereas FCN-VGG19 supports only three bands (Long et al., 

2015).  Therefore the FCN-DK6 architecture was used for this research. A detailed explanation of the 

proposed FCN-DK6 architecture is given in Annexure-I. 

II. Data Preparation 

The RSI was clipped according to 12 ground truth tiles generated based on the tweaked slum reference 

map, as discussed in Section 5.3.1.2. The snapshot of RSI and ground truth tiles prepared for training 

FCN-DK6 is shown in Figure 5.7. 

Figure 5.6: Arrangement of 12 ground truth tiles according to tweaked slum reference data in which 10 are used for 
training and 2 are used for testing FCN network 



INTEGRATING REMOTE SENSING AND STREET VIEW IMAGES TO MAP SLUMS USING DEEP LEARNING APPROACH 

30 

Figure 5.7: Snapshot of RSI and ground truth tiles prepared for training FCN-DK6 

III. Training Network 

The samples were systematically extracted from each training tile by splitting them into non-overlapping 

equal-area patches with the dimension of 125 x 125 pixels. Based on many trials, the size of the patch 

dimension was fixed. Thus 256 training patches have been created for each training tile. Finally, the 

network configuration shown in Table 5.4 was used to train FCN-DK6, and the weights are randomly 

initiated. We have also used EarlyStopping methods from Keras library to monitor validation accuracy 

with the patience of 10 epochs, i.e., the model will stop training if it doesn't see any rise in validation 

accuracy in the past 10 epochs. 

Number of epochs 300 

Batch size 64 

Validation split 0.30 

Optimizer 

Stocastic Gradiant 

Desent (SDG) 

Learning rate: 1x 10-5 

Momentum: 0.9 

Table 5.4: Network configuration used for training FCN-DK6 in this research 

5.3.2.2. Street View Imagery 

I. CNN Architecture 

As discussed in Sections 2.3.1 and 2.3.3, training CNN from scratch can be time-consuming, resource-

intensive, and require the disposal of a vast database. Therefore, a pre-trained network on the Places365 

dataset was fine-tuned in the context of Jakarta to recognize urban scenes from SVI.  

The Places dataset was introduced in the Places project and it consists of 434 scenes representing 98% of 

different types of man-made and natural scenes that a person can encounter, such as park, lawn, arena, 

desert, forest, etc. (Zhou, Lapedriza, Khosla, Oliva, & Torralba, 2018). The Places dataset was composed 

of four steps: first, the images were downloaded through an online image search engine using WordNet 

synonyms set for each scene class. Second, the annotators were provided with a specific definition of each 

class and 500-1200 ground truth images per class as a reference to label the downloaded image database. 

Third, the images that were not classified manually in the previous step were classified using AlexNet 
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(deep learning scene classifier) with a validation accuracy of 32%. The classified images with predicted 

class confidence of more than 0.8 were further annotated manually, and the rest of the images were 

dumped due to the lower predicted class confidence value. Fourth, the separation between similar classes 

was improved manually. Finally, the data set was finalized with 10 million labeled images with 434 

categories. Only 365 categories were selected from 434 categories with 4000 images for each category to 

generate the Places365 dataset. We have selected the Places365 dataset because slum is included as one of 

the categories in the dataset. We could not get the specific definition of slum used in the Places365 

dataset. In contrast, we have explored the sample images of slums in the Places365 dataset and found out 

the characteristics of slums represented in the images, such as inferior building materials, low-quality 

roads, high-density housing, hazardous locations, poor roofing material, as shown in Figure 5.8.  The four 

subset datasets that were generated from the Places365 dataset are Places365-Standard, Places365-

Challenge, Places205, and Places88, and we have used the Places365-Standard dataset in this research. 

Zhou et al. (2018) trained different CNN architectures such as ALexNet, GoogLeNet, VGG16 with the 

Place365-Standard dataset. The training has been done on nearly 1 million images, 50 images per class for 

validation, and 900 images per class for testing. They finally concluded that the VGG16 performed better 

than others networks. Therefore the same VGG16 network with 5 convolutional blocks and 1 

classification block was used for this research. From now on in this research, VGG16 will be addressed as 

Places365-VGG16 because VGG16 was pre-trained on the Places365-Standard dataset. A detailed 

explanation of the proposed Places365-VGG16  architecture is given in Annexure-I. 

II. Data Preparation 

As discussed in Section 4.3, minor road and branch road networks were used to generate random points 

on the road in the study area. As shown in Figure 5.5, slums cover a much smaller proportion of the city's 

surface area than non-slum (other). Therefore, we have generated random points in slum and non-slum 

Figure 5.8: Sample images of slum category in Places365 dataset 
(images were used for understanding the definition of slum used for generating slum categories in the Place365 dataset) 
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areas individually and tried to generate an equal number of random points in both areas. We got one 

optimum solution through many trials in which the coverage of random points was distributed over slum 

and non-slum areas with an approximately equal number of random points using random points along line 

tool in QGIS. For slum areas, we have generated two random points per feature (road) with a minimum 

distance8 of 25 m and a global minimum distance8 (between the previously generated points on roads) of 

10 m. For non-slum areas, we have generated one random point per feature (road) with a global minimum 

distance8 of 50 m. The points on the boundary of slum and non-slum areas were removed from the 

analysis using spatial queries (select by location) in ArcGIS to ensure that the SVI capture at those points 

should only cover either slum or non-slum areas. For example, if the point lies on the boundary of slum or 

non-slum, then the SVI captured at that point will cover both slum and non-slum areas, which can 

generate incorrect results in further analysis. Finally, we obtain 6903 random points for slum areas and 

7339 points for non-slum areas, as shown in Figure 5.9. 

The randomly generated points for slum and non-slum are called Google Street View (GSV) Locations 

from now on in the thesis. Image in the four cardinal directions was obtained for each GSV location 

through the Google API. After fetching the images, we have got only 19796 images for slum and 24,596 

for non-slum, and the rest were no data points, i.e., the GSV images are not present at those locations. 

The downloaded images were thoroughly checked for the anomalies such as completely dark images and 

images taken inside the buildings, and those images were deleted from the dataset. Finally, we have 

individually selected 19748 images for slum and non-slum, i.e., four images were taken at each GSV 

location. In total, 4937 GSV locations were selected for slum and non-slums individually. The whole 

image dataset is split into training, validation, and testing datasets, as shown in Figure 5.10. 

 
8 with the minimum distance between points, only points on the same line feature are considered, while for the global minimum 

distance between points, all previously generated points are considered. 

Figure 5.9: Distribution of random points on roads  in slum and non-slum areas  
(green are non-slum point and red are slum point) 
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III. Training Network 

Places365-VGG16 is a sequential model, i.e., all the layers are arranged sequentially in the model. First, the 

ImageData Generator was imported from the Keras library because it imports the data with their labels 

and is also used for data augmentation functions. Augmentation functions such as rescale, horizontal flip, 

and shear range are used for the training dataset, whereas only rescale augmentation function is used for 

validation and testing. The important thing about ImageData Generator is that it does not change the 

stored data; thus, it alters the data while passing it into the model. Slum and non-slum data are kept 

separately in different folders for training, validation, and testing. 

To better understand slums in Jakarta, the Places365-VGG16 model was fine-tuned by training some 

layers and leaving other layers frozen. For this research, we have frozen the 5 convolutional blocks and 

fine-tuned the classification block. Finally, the Places365-VGG16 network configuration shown in Table 

5.5 was used for fine-tuning Places365-VGG16, and the weights are initiated with Places365 weights. We 

have also used EarlyStopping methods from Keras library to monitor validation accuracy with the 

patience of 10 epochs, i.e., the model will stop training if it doesn't see any rise in validation accuracy in 

the past 10 epochs. Initially, the number of the epoch was set to 300 for training, but the model was 

terminated at the 49th epoch because the validation accuracy didn't increase in the past 10 epochs. 

Number of 

epochs 
300 

Batch size 64 

Optimizer 

Stocastic Gradiant Desent 

(SDG) 

Learning rate: 1x 10-4 

Momentum: 0.9 

Table 5.5: Network configuration used for training Places365-VGG16 in this research 

5.3.2.3. Integration of  Remote Sensing and Street View Imagery 

The feature maps from SVI were generated for integrating RSI with SVI. The generation of the feature 

maps consists of two main steps: (i) feature extraction and (ii) spatial interpolation. 

Figure 5.10: Distribution of data (GSV images) for training, validation, and testing for Place365-VGG16 
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• Feature extraction 

Features from GSV images were extracted using fine-tuned Places365-VGG16 network to identify slum 

and non-slum areas. The features were extracted from the dense layer (dimensionality of 128) before the 

last fully connected layer of the fine-tuned Places365-VGG16 network; thus, 128 features were extracted 

for each GSV image. However, it is hard to study the 128 features for each GSV image. Therefore to 

reduce the feature dimensionality of the GSV image, the feature reduction technique is used. There are 

two main reasons for using the feature reduction technique: (i) to reduce training time and (ii) to reduce 

overfitting. 

We have used Principal Component Analysis (PCA) because it is one of the most crucial feature reduction 

techniques. PCA transforms the dataset into a compressed format using linear algebra (Brownlee, 2018). 

The advantage of using PCA is that users can select the number of dimensions or principal components in 

the transformed outcome. 

• Spatial interpolation 

The spatial coverage of GSV images is distributed along with the accessibility of road networks through 

motorbikes. GSV images help us to visualize the urban scene at each GSV location, i.e., "The GSV images 

capture the scenes of nearby visual areas instead of single dots in the space" (Cao et al., 2018, p. 6). 

Therefore it is important to project the extracted ground-level information of GSV images from the bird's 

eye view using the feature map. The feature maps were generated using the Inverse Distance Weighted 

(IDW) spatial interpolation technique. 

I. FCN Architecture 

We have used two different approaches to integrate RSI with the feature maps of SVI, as explained below. 

• Approach 1: FCN-DK6-i 

The feature maps were stacked with RSI using a composite band tool in ArcGIS result in an increase in 

the band of the stacked imagery. The stacked imagery was used as an input to FCN-DK6 to classify slums 

in the study area. As mentioned 5.3.2.1, FCN-DK6 supports n-number of bands. Therefore, FCN-DK6 

was used for the stacked imagery. The FCN-DK6 used for stacked imagery is called FCN-DK6-i from 

now on in the thesis to avoid confusion between FCN-DK6 architecture used for RSI alone and FCN-

DK6 architecture used for stacked imagery (RSI + feature maps). 

• Approach 2: Modified FCN-DK6 

Cao et al. (2018) have used FCN-VGG16 for fusing RSI with SVI for classifying urban land use, as 

mentioned in Section 2.3.4. The drawback of using FCN-VGG16 is the high computational cost 

compared to FCN-DK6, and FCN-DK architecture was unexplored for fusing RSI and SVI. Therefore 

we have proposed Modified FCN-DK6 architecture for fusing RSI with SVI in this research. 

We have proposed an innovative approach to integrating the feature map of SVI with RSI using FCN-

DK6 architecture with 6 convolutional blocks. However, the feature map of SVI is concatenated with the 

output of  2nd convolutional block in FCN-DK6 architecture. Figure 5.11 shows the architecture of 

Modified FCN-DK6 used for this research, and a detailed specification of each block is given in 

Annexure-I. 

We have modified the FCN-DK6 architecture to use two individual inputs to generate a single 

classification output. The first input was passed through the first 2 convolutional blocks, and then the 

output of the 2nd  convolutional block is concatenated with the second input at the fusion layer. Then the 

fusion layer is fed to the 3rd convolutional block as an input, and then the output of the 3rd convolutional 
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block is passed through from the remaining convolutional blocks. Finally, the classified map is generated. 

In this approach, RSI was the first input, and the stacked feature map of SVI was the second input. 

The convolutional block has the trade-off between location and semantic information. The initial blocks 

have more precise location information, whereas end blocks have more precise semantic information. 

Therefore we have fused the RSI and stacked feature map of the SVI at the end of 2nd convolutional block 

to balance location and semantic information. 

II. Data Preparation 

The data preparation consists of three main steps. The first step discusses the generation of feature maps 

from SVI. The second step discusses the generation of new points around GSV locations, and the last 

section discusses the preparation of two different inputs for two different approaches, as discussed above. 

Figure 5.14 shows the data preparation for Approach 1 and Approach 2. 

• Feature extraction 

All the selected 39496 GSV images obtained from 9874 GSV locations were used to generate the feature 

map. The fine-tuned Places365-VGG16 network was used to extract 128 features for each GSV image. 

Later PCA was used to reduce the dimensionality of extracted features of each image from 128 to 32 

because the total variance shown with 32 features is 58.35% of 128 features. Finally, we produced 32 

features for each GSV image, i.e., each GSV location has 32 features in each direction (east, west, north, 

and south) according to their GSV images. Figure 5.12 shows the variance percentage for 32 principal 

components generated through PCA. 

• New point generation 

We have generated one point at a distance of 0.5 cm in each direction (east, west, north, and south)  for 

the selected GSV location, i.e., 9874, as shown in Figure 5.13. Then the extracted features are appended to 

Figure 5.11: Proposed Modified FCN-DK6 architecture for integrating RSI and feature map of SVI 

(Input 1 is RSI and Input 2 is SVI feature map) 
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the newly generated points according to their GSV location and the relevant direction. Further feature 

map has been generated using IDW spatial interpolation technique in ArcGIS. The number of feature 

map generation depends on how many features are appended to each point. For example, if two features 

are appended to each point, only two feature maps will be produced. Figure 5.14 shows the procedure for 

generating the feature maps. 

 

Figure 5.12: Variance percentage for 32 principal components generated through PCA, i.e., 128 features each SVI were 
reduced to 32 features using PCA  

Figure 5.13: New points were generated in the cardinal direction at a distance of 0.5 cm from each GSV location  
(red are GSV location and yellow are newly generated points) 
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• Input dataset 

Approach 1: The generated feature maps will be stacked with the four bands of RSI using composite 

bands tools. Then the stacked imagery was clipped according to 12 ground truth tiles generated based on 

the tweaked slum reference map, as discussed in Section 5.3.1.2. The snapshot of RSI and ground truth 

tiles prepared for training FCN-DK6-i is shown in Figure 5.15. 

Figure 5.14: Generation of feature maps and the data preparation for Approach 1 and 2 
(this figure only shows the data preparation from two features; similarly, it can be done for 32 features) 

Figure 5.15: Snapshot of RSI and ground truth tiles prepared for training FCN-DK6-i 
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Approach 2: This approach required two inputs.  For the first input, the RSI was clipped according to 12 

ground truth tiles generated based on the tweaked slum reference map, as discussed in Section 5.3.1.2. For 

the second input, the stacked feature map produced by stacking the different feature maps was clipped 

according to 12 ground truth tiles generated based on the tweaked slum reference map, as discussed in 

Section 5.3.1.2. The snapshot of the input tiles with the ground truth tiles for training Modified FCN-

DK6 is shown in Figure 5.16. 

III. Training Network 

• Approach 1: FCN-DK6-i 

The samples were systematically extracted from each training tile by splitting them into non-overlapping 

equal-area patches with the dimension of 125 x 125 pixels. Based on many trials, the size of the patch 

dimension was fixed. Thus 256 patches have been created for each training tile. Finally, the network 

configuration is shown in Table 5.6 was used to train FCN-DK6-i, and weights are randomly initiated. We 

have also used EarlyStopping methods from Keras library to monitor validation accuracy with the 

patience of 10 epochs, i.e., the model will stop training if it doesn't see any rise in validation accuracy in 

the past 10 epochs. 

Number of 

epochs 
400 

Batch size 64 

Validation split 0.30 

Optimizer 

Stocastic Gradiant Desent (SDG) 

Learning rate: 1x 10-5 

Momentum: 0.9 

Table 5.6: Network configuration used for training FCN-DK6-i in this research 

• Approach 2: Modified FCN-DK6 

The samples were systematically extracted from each training tile by splitting them into non-overlapping 

equal-area patches with the dimension of 125 x 125 pixels. Based on many trials, the size of the patch 

dimension was fixed. Thus 256 patches have been created for each training tile (only for the first input). 

Finally, the network configuration is shown in Table 5.7 was used to train Modified FCN-DK6, and 

weights are randomly initiated. We have also used EarlyStopping methods from Keras library to monitor 

Figure 5.16: Snapshot of the input tiles, i.e., RSI and feature map with the ground truth tile for training Modified FCN-DK6 
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validation accuracy with the patience of 10 epochs, i.e., the model will stop training if it doesn't see any 

rise in validation accuracy in the past 10 epochs. 

Number of 

epochs 
400 

Batch size 64 

Validation split 0.30 

Optimizer 

Stocastic Gradiant Desent (SDG) 

Learning rate: 1x 10-5 

Momentum: 0.9 

Table 5.7: Network configuration used for training Modified FCN-DK6 in this research 

5.4. Accuracy Assessment Stage 

The prediction accuracy was assessed on the testing tile to evaluate the model's accuracy in this research.  

As mentioned in Section 2.3.5, different slum mapping researchers have used different accuracy indicators 

such as kappa coefficient, overall accuracy (OA), recall, precision, F1 score, and IoU. According to 

Mohammad & Sulaiman (2015), the kappa coefficient is not fit for the image classification problem. 

Likewise, OA also produces misleading results, especially when classes are imbalanced in the classified 

image, i.e., a higher OA value doesn't always account for the better performance of the model, such as 

slum mapping task where non-slum areas dominate slum areas. Therefore this research will use recall, 

precision, F1 score, and IoU for assessing the model results (Gao, 2020). 

Precision is defined as the proportion of correctly classified slum pixels/images to the total classified slum 

pixels/images, as shown in Equation 1. The recall is defined as the proportion of correctly classified slum 

pixels/images to the total actual slum pixels/images, as shown in Equation 2. The F1 score is defined as 

the harmonic mean of precision and recall, as shown in Equation 3. Finally, IoU is defined as the 

proportion of correctly classified slum pixels/images to the sum of total classified slum pixels/images plus 

falsely classified slum pixels/images, as shown in Equation 4. 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                                                                                    𝐸𝑞. 1 

𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                                                                  𝐸𝑞. 2 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
𝑃 ∗ 𝑅

𝑃 + 𝑅
 ∗ 2                                                                                                                     𝐸𝑞. 3 

𝐼𝑜𝑈 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                                                                                                                 𝐸𝑞. 4 

 
Precision (P), Recall (R), Ture-Positive(TP), False-Positive (FP), True-Negative (TN), False-Negative (FN) 

The confusion matrix has been generated for each testing tile where the columns represent the reference 

data (ground truth), and the rows represent predicted results. First, the total number of ground truth pixels 

and the predicted outcome pixels were breakdown into binary classes, i.e., slum and other (non-slum), and 

assigned to the relevant columns and rows as shown in Table 5.8. Then the accuracy of each testing tile is 

calculated using recall, precision, F1 score, and IoU. Further in this research, the predicted slum pixels 

were broken down into different categories of slums, and their accuracies were calculated for each slum 

category. 
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Ground Truth 

Slum Non-Slum 

Predicted 

Result 

Slum True Positive (TP) False Positive (FP) 

Non-Slum False Negative (FN) True Negative (TN) 

Table 5.8: Design of confusion matrix used for summarizing the performance of proposed architectures in this 
research 

5.5. Software and Platform 

QGIS was used to generate the random points using random points along line tool, and ArcGIS was used 

for geospatial operations such as Overlay, Reprojection, Add XY coordinate, Spatial Join, Polygon to 

Raster was used to generate rasterized slum reference layer as the same spatial resolution of the RSI image, 

IDW spatial interpolation was used for generating feature maps from the extracted features of SVI, and 

Composite Band tool was used for stacking RSI and feature maps of SVI with the help of the model 

builder. 

Python was used to implement the different models: FCN-DK6, Places365-VGG16, FCN-DK6-i, and 

Modified FCN-DK6. The models are based on the Tensorflow 2.x library (with inbuilt Keras library).  

The models were trained on the Jupyter lab hosted on the "CRIB" (ITC geospatial hub sever). The server 

has a high computing unit with an inbuilt GPU, i.e., Jetson AGX (8-core ARMv8.2, 32 GB, GPU). The 

Python script and the relevant data were stored on CRIB, and the satellite imagery was stored on ITC 

geodatabase as a backup. 
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6. RESULTS 

The results of this research are presented in this chapter. Section 6.1 shows the characteristics of slums in 

our study area. Section 6.2 shows the predicted outcome of the proposed architectures used in this 

research. Section 6.3 compares the cumulative accuracy of proposed architectures and compares the 

accuracy of different slum categories between proposed architectures. 

6.1. Identification Outcome 

Understanding local slum characteristics in Jakarta is a crucial part of this research. We used governmental 

documents, academic literature, and ground-level insight of a local expert (Mr. Jati Pratomo) and come up 

with the list of slum characteristics, which can be identified through RSI, SVI, and ancillary data in our 

study area to conceptualize the slums in this research, as shown in Table 5.2 and generate tweaked slum 

map for this research. 

As discussed in Section 5.3.1.1, the tweaked reference map consists of two major classes, i.e., slum and 

other (non-slum). Further, slums were divided into high, medium, light, and very light categories according 

to the local government of Jakarta, and we defined the unknown slum category. Figure 5.5 shows the 

tweaked slum reference map used for this research with different slums categories. 

6.2. Experimental Outcome 

Different architectures were proposed in this research to identify slums using 3 dataset combinations: (1) 

RSI, (2) SVI, and (3) the combination of RSI and SVI. The results of the proposed architectures are 

presented below with their corresponding accuracy assessment table. The accuracy of the architecture is 

calculated based on the ground truth (tweaked reference data) using the accuracy indicators: precision, 

recall, F1 score, and IoU, as discussed in Section 5.4. 

We went one step further to understand our results from the analysis by categorizing the predicted slums 

into different slum categories based on the tweaked reference map. Thus, we can determine how well 

different categories of slums were understood from the proposed architectures. 

1. RSI 

The RSI was used to train the proposed FCN-DK6 architecture with the network configurations shown in 

Table 5.4. The network is tested on two tiles, and the outcome was a slum map with two classes shown in 

Figure 6.1 and Figure 6.2, where Figure 6.1 shows the predicted outcome of tile-3 and Figure 6.2 shows 

the predicted outcome of tile-12. The cumulated accuracy metrics of the testing tiles are presented in 

Table 6.1, and Table 6.2 shows the cumulated confusion matrix with different categories of slums and 

other (non-slum). 

In Table 6.1, the classification result of FCN-DK6 gets 78.22% precision which means 78.22% of slum 

pixels are correctly identified from the total predicted pixels of slums. The recall value is 74.42%, i.e., 

74.42%  of slum pixels are correctly identified from the total number of slum pixels. The F1 score is 

76.28%, which combines precision ad recall values.  The value of IoU is 61.65% which means 61.65% of 

the predicted slum map overlaps with the ground-truth data. 

Table 6.2 presents the pixel-level breakdown of the predicted outcome of FCN-DK6 into different 

categories of slums and shows the recall values of different slum categories, i.e., 45.17% of the heavy slum 

were correctly identified. Similarly, 68.78%, 79.63%, 64.57%, and 76.72% of medium, light, very light, and 

unknown slums were correctly identified. The recall value of other (non-slum) was 81.39%. 
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FCN-DK6 for RSI 

Precision 78.22 

Recall 74.42 

F1 score 76.28 

IOU 61.65 

Table 6.1: Cumulated accuracy metrics of FCN-DK6 are shown in percentage 

 

 

 

 

 

 

 

 

Figure 6.2: Predicted slum map of tile-12 generated from FCN-DK6, where white represents slum and black represents other (non-slum) 

Figure 6.1: Predicted slum map of tile-3 generated from FCN-DK6, where white represents slum and black represents other (non-slum) 
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Cumulated 

  

Ground Truth 

Total Others 
(non-slum) 

Slum 

Heavy 
Slum 

Medium 
Slum  

Light 
Slum 

Very Light 
Slum  

Unknown 
Slum 

Predicted 

Other (non-slum) 3430732 33992 234532 281891 139941 277700 4398788 

Slum 

Heavy Slum 

784200 

28004         

3601212 

Medium Slum   516801       

Light Slum     1102194     

Very Light Slum       255087   

Unknown Slum         914926 

Total 4214932 61996 751333 1384085 395028 1192626 8000000 

Correctly classified in % (Recall) 81.39 45.17 68.78 79.63 64.57 76.72 
 

 

Table 6.2: Cumulated confusion matrix of FCN-DK6 are shown with different categories of slums and other (non-
slum) 

2. SVI 

SVI was used to fine-tune the proposed Places365-VGG16 architecture with the network configurations 

shown in Table 5.5. The network is tested on 7904 images to detect slum and non-slum, i.e., the network 

is trained to detect the difference between slum and non-slum. The network's output gives the probability 

of individual images to be categorized as slum or non-slum, shown in Figure 6.3. The accuracy metrics of 

the network are presented in Table 6.3, and Table 6.4 shows the cumulated confusion matrix with 

different categories of slums and other (non-slum). 

Table 6.3, the classification result of Places365-VGG16 gets 66.66% of precision, .i.e, 66.66% of slum 

images are identified correctly from total predicted images of slums. The recall value is 76.75%, i.e., 

76.75% of slum images are correctly identified from the total number of slum images. The value of the F1 

score is 71.35%, i.e., the combination of precision and recall. The value of IoU is 55.46%  which means 

55.46% of predicted slum images overlap with ground-truth data. 

Figure 6.3: Correctly predicted images of slum and non-slum generated from Places365-VGG16 
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Table 6.4 presents the breakdown of the predicted outcome of Places365-VGG16 into different categories 

of slums and shows the recall values of different slum categories, i.e., 86.33% of the heavy slum were 

correctly identified. Similarly, 83.45%, 73.53%, 72.27%, and 74.33% of medium, light, very light, and 

unknown slums were correctly identified. The recall value of other (non-slum) was 61.61%. 

CNN for SVI 

Precision 66.66 

Recall 76.75 

F1 score 71.35 

IOU 55.46 

Table 6.3: Cumulated accuracy metrics of Places365-VGG16 are shown in percentage 

C
N

N
 f

o
r 

SV
I 

Cumulated 

  

Ground Truth   

Other 
(non-slum) 

Slum Total 

Heavy 
Slum 

Medium 
Slum 

Light Slum 
Very Light 

Slum  
Unknown 

Slum 
  

Predicted 

Other (non-slum) 2435 35 139 90 122 533 3354 

Slum 

Heavy Slum 

1517 

221         4550 

Medium Slum   701         

Light Slum     250       

Very Light Slum       318     

Unknown Slum         1543   

Total 3952 256 840 340 440 2076 7904 

Correctly classified in % (Recall) 61.61 86.33 83.45 73.53 72.27 74.33 
 

 

Table 6.4: Cumulated confusion matrix of Places365-VGG16 are shown with different categories of slums and 

other (non-slum) 

3. Two different architectures were implemented for using the combination of RSI and SVI. 

• Approach 1: FCN-DK6-i 

The stacked RSI and SVI imagery were used to train the proposed FCN-DK6-i architecture with the 

network configurations shown in Table 5.6. The network is tested on two tiles, and the outcome was a 

slum map with two classes shown in Figure 6.4 and Figure 6.5, where Figure 6.4 shows the predicted 

outcome of tile-3 and Figure 6.5 shows the predicted outcome of tile-12. The cumulated accuracy metrics 

of the testing tile are presented in Table 6.5, and Table 6.6 shows the cumulated confusion matrix with 

different categories of slums and other (non-slum). 

Table 6.5 was comprehended in the same way as  Table 6.1. The classification result of FCN-DK6-i gets 

77.38% precision, 75.04% recall, 76.19% F1 score, and 61.54% IoU. 

Table 6.6 presents the pixel-level breakdown of the predicted outcome of FCN-DK6-i into different 

categories of slums and shows the recall values of different slum categories, i.e., 46.79% of the heavy slum 

were correctly identified. Similarly, 70.23%, 81.43%, 66.25%, and 75.04% of medium, light, very light, and 

unknown slums were correctly identified. The recall value of other (non-slum) was 80.30%. 
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FCN-DK6-i for Integrated RSI and SVI 

Precision 77.38 

Recall 75.04 

F1 score 76.19 

IOU 61.54 

Table 6.5: Cumulated accuracy metrics of FCN-DK6-i are shown in percentage 

 

 

 

 

 

Figure 6.5: Predicted slum map of tile-12 generated from FCN-DK6-i, where white represents slum and black represents 
other (non-slum) 

Figure 6.4: Predicted slum map of tile-3 generated from FCN-DK6-i, where white represents slum and black represents 

other (non-slum) 
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Cumulated 

  

Ground Truth 

Total Other 
(non-slum) 

Slum 

Heavy 
Slum 

Medium 
Slum  

Light 
Slum  

Very Light 
Slum  

Unknown 
Slum 

Predicted 

Other (non-slum) 3384406 32986 223688 257084 133317 297621 4329102 

Slum 

Heavy Slum 

830526 

29010         

3670898 

Medium Slum   527645       

Light Slum     1127001     

Very Light Slum       261711   

Unknown Slum         895005 

Total 4214932 61996 751333 1384085 395028 1192626 8000000 

Correctly classified in % (Recall) 80.30 46.79 70.23 81.43 66.25 75.04 
 

 

Table 6.6: Cumulated confusion matrix of FCN-DK6-i are shown with different categories of slums and  
other (non-slum) 

• Approach 2: Modified FCN-DK6 

Two different inputs, such as RSI and the feature map of SVI, are used to train the proposed Modified 

FCN-DK6 architecture with the network configurations shown in Table 5.7. The network was tested on 

two tiles, and the outcome was a slum map with two classes shown in Figure 6.6 and Figure 6.7, where 

Figure 6.6 shows the predicted outcome of tile-3 and Figure 6.7 shows the predicted outcome of tile-12. 

The cumulated accuracy metrics of the testing tile are presented in Table 6.7, and Table 6.8 shows the 

cumulated confusion matrix with different categories of slums and other (non-slum). 

Table 6.7 can be comprehended in the same way as Tables 6.1 and 6.5. The classification result of 

Modified FCN-DK6 gets 77.07% precision, 77.93% recall, 77.50% F1 score, and 63.26% IoU. 

Table 6.8 presents the pixel-level breakdown of the predicted outcome of Modified FCN-DK6 into 

different categories of slums and shows the recall values of different slum categories, i.e., 54.07% of the 

heavy slum were correctly identified. Similarly, 73.25%, 83.33%, 67.82%, and 79.20% of medium, light, 

very light, and unknown slums were correctly identified. The recall value of other (non-slum) was 79.18%. 

Figure 6.6: Predicted slum map of tile-3 generated from Modified FCN-DK6, where white represents slum and black represents 

other (non-slum) 
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Modified FCN-DK6 for Integrated RSI and SVI 

Precision 77.07 

Recall 77.93 

F1 score 77.50 

IOU 63.26 

Table 6.7: Cumulated accuracy metrics of Modified FCN-DK6 are shown in percentage 
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Cumulated 

  

Ground Truth 

Total Other 
(non-slum) 

Slum 

Heavy 
Slum 

Medium 
Slum  

Light 
Slum 

Very Light 
Slum 

Unknown 
Slum 

Predicted 

Other (non-slum) 3337202 28475 200990 230783 127138 248024 4172612 

Slum 

Heavy Slum 

877730 

33521         

3827388 

Medium Slum   550343       

Light Slum     1153302     

Very Light Slum       267890   

Unknown Slum         944602 

Total 4214932 61996 751333 1384085 395028 1192626 8000000 

Correctly classified in % (Recall) 79.18 54.07 73.25 83.33 67.82 79.20 
 

 

Table 6.8: Cumulated confusion matrix of Modified FCN-DK6 are shown with different categories of slums and 

other (non-slum) 

6.3. Accuracy Outcome 

6.3.1. Accuracy Comparison 

We look at the F1 score and IoU in more detail instead of looking at precision, recall, F1 score, and IoU 

for comparing accuracy between the proposed architectures because the F1 score combines precision and 

Figure 6.7: Predicted slum map of tile-12 generated from Modified FCN-DK6, where white represents slum and black represents 

other (non-slum) 
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recall, and IoU is the benchmark accuracy metric for assessing the PASCAL VOC challenge, which are 

well-known computer vision competitions (Liu, Qinghui & Salberg, Arnt-Børre and Jenssen, 2018). 

The accuracy metrics of predicted outcomes from proposed architectures are represented in Figure 6.8. 

The horizontal axis shows all the accuracy metrics, i.e., F1 score and IoU. The vertical axis shows the 

accuracy metrics value in percentage. The different color bars show the accuracy of proposed architectures 

using different input datasets, i.e., (i) Places365-VGG16 used SVI, (ii) FCN-DK6 used RSI, (iii) FCN-

DK6-i used stacked imagery (RSI + SVI feature maps), and (iv) Modified FCN-DK6 used RSI and SVI 

feature map as two different inputs 

As shown in Figure 6.8, Modified FCN-DK6 has the highest F1-score and IoU among all the other 

architectures, which means using the combination of RSI and SVI will lead to better results compared to 

using RSI or SVI alone. It can be concluded that the help of the ground-level of information from SVI 

can increase the classification accuracy when combined with RSI. In our case, slums can be mapped more 

precisely using the combination of RSI and SVI than using RSI or SVI alone. 

On the other hand, the FCN-DK6-i also uses the combination of RSI and SVI, but the accuracy is slightly 

less than the FCN-DK6, which means it is equally important to choose the right network for using the 

combination of RSI and SVI because the combination of these two datasets won’t give a better result with 

every FCN network. 

The proposed FCN-DK6-i is overfilled with input data information, i.e., the stacked imagery has 36 bands 

such as red, green, blue, near-infrared, and 32 feature maps of SVI. The result generated from FCN-DK6-i 

using the stacked imagery (high dimensional data) is not so good for two reasons. First, the network 

couldn't properly understand the features from the input data due to the high dimensionality. Second, 

edge information plays a critical role in FCN (pixel-wise classification) and there is a high probability of 

losing the edge information at the time of feature extraction while training the deep learning network with 

high dimensional data (Liu, Zhenwei, Pan, Zhang, Luo and Lan, 2020). 

6.3.2. Slum Categories Comparison 

This section compared the breakdown of the predicted outcome into different categories of slums. The 

categories of predicted slums from proposed architectures are represented in Figure 6.9. The horizontal 

axis shows different categories of slums. The vertical axis shows the recall values in percentage for 
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Figure 6.8:  Compares accuracy metrics (F1 and IoU) of predicted outcomes from proposed architectures in this 
research 
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different categories of predicted slums. The different color bars show the performance of proposed 

architectures to identify the different slum categories using different input datasets, i.e., (i) FCN-DK6 used 

RSI, (ii) FCN-DK6-i used stacked imagery (RSI + SVI feature maps), (iii) Modified FCN-DK6 used RSI 

and SVI feature map as two different input, and (iv) Places365-VGG16 used SVI. 

As shown in Figure 6.9, Places365-VGG16 can identify heavy, medium, and very light slums more 

precisely than other architectures, but it won't perform well for identifying light and unknown categories 

of slums. The Modified FCN-DK6 performs better than FCN-DK6-i and FCN-DK6 in identifying the 

different categories of slums. However, Modified FCN-DK6 performs better than Places365-VGG16 to 

identify light and unknown categories of slums.  

As shown in Figure 6.9, Modified FCN-DK6 and FCN-DK6-i outperform FCN-DK6 for categorizing 

various slum categories, with the exception of one case where FCN-DK6 outperforms FCN-DK6-i but 

still won't perform well as compared to Modified FCN-DK6 for classifying an unknown slum category. 

Hence, the combination of RSI and SVI helps to classify the different categories of slums more precisely 

than RSI alone.  

As shown in Figure 6.9, the SVI understands heavy slums very well than RSI, i.e., the classification 

percentage of the heavy slum for SVI and RSI is 86.3% and 45.2%. Therefore, there is a significant 

increase in the classification accuracy of heavy slums in Modified FCN-DK6 compared to FCN-DK6, i.e., 

from 45.2 % (FCN-DK6) to 54.1% (Modified FCN-DK6). 

  

Figure 6.9: Compares predicted outcome into different categories of slums for proposed architectures in this research 
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7. DISCUSSION 

This chapter discusses the research outcome. Section 7.1 discusses the characteristics of different 

categories of slums. Section 7.2 compares the outcome of the proposed architectures based on their 

performance. Finally, section 7.3 discusses the accuracy of proposed networks.  

7.1. Characteristics of Slum 

Slum mapping requires a deep understanding of the local characteristics of slums. We have listed different 

local characteristics of slums in Jakarta using governmental documents, academic articles, and discussion 

with a local expert (Mr. Jati Pratomo), and discovered the difference between the conceptualization of 

slums within and between governmental documents and academic articles, making slum mapping 

challenging. Then we have come up with our definition of slums for this research by selecting a set of 

slum characteristics, as discussed in Section 5.2. 

When we looked into the official slum reference map of 2017 using our definition of slums, we found out 

that some slum areas were not coinciding with our definition of slums, and some areas that were 

characterized as slums according to our definition were not delineated as slums in the official slum 

reference map. Therefore we have tweaked the official slum reference map according to our definition of 

slums and created a tweaked slum reference map with five categories of slums, as discussed in Section 

5.3.1.1. We have used RSI and SVI to understand the different categories of slums. Still, we could not 

distinguish the different categories of slums using RSI because slum categories possess the same visual 

characteristics: irregular shape, texture, small building footprint, building density, and proximity to rivers 

and railroads. In contrast, some ground-level characteristics were found that can be used to differentiate 

between slum categories by exploring SVI, as shown in Table 7.1. Figure 7.1 shows the ground-level 

characteristics of slums by exploring SVI. 

Ground-Level 

Characteristics 
Description 

Inferior building materials 

Buildings are constructed with low-quality materials like iron sheets, 

asbestos sheets, wood, low-grade concrete materials. The low-grade 

concrete causes cracks, leakages, and improper installation of doors and 

windows. These problems can be seen with the help of SVI, and 

unfinished walls of the buildings are also used to identify the inferior 

building in the study area. 

Low-quality roads 

The low-quality roads are the roads that are categorized as deteriorated 

roads and unpaved roads. Although the unpaved roads can be seen 

through VHR satellite imagery, the low-quality roads can not be seen 

through  VHR satellite imagery. 

Open drainage Uncovered drainage lines along the roads. 

Number of floors 

An approximate number of floors in the buildings present in that area 

and the type of construction, i.e., inferior buildings or good quality 

buildings.  

Good building materials 

Buildings are constructed with good-quality materials like concrete walls 

and roofs without cracks, leakages, and improper installation of doors 

and windows. It can be seen with the help of SVI. 

Table 7.1: Explains the ground-level characteristics of slums used for differentiating the slum categories 
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Ground-Level 

Characteristics 
Heavy Slum 

Medium 

Slum 
Light Slum Very Light Slum 

Unknown 

Slum 

Inferior buildings 

with number of floors 
Ground + 1 Ground + 1 Ground + 1 Ground + 1 Ground + 1 

Low-quality roads Yes Yes Yes Yes Yes 

Open drainages Yes Yes Yes Yes Yes 

Good buildings with 

number of floors 

Mostly Ground 

floor buildings 

(few) 

Ground 

floor and 

Ground + 1 

(very few 

buildings) 

Ground floor, 

Ground + 1 and 

Ground + 2 (few 

buildings) 

Ground floor, 

Ground + 1 and 

Ground + 2 

Ground floor, 

Ground + 1, 

and Ground + 2 

(very few 

buildings) 

Table 7.2: The ground level characteristics observed in SVI corresponding to different categories of slums 

By exploring SVI, it can be interpreted that the heavy and medium slum areas can be easily identified 

compared to other categories of slums (light, very light, and unknown). As shown in Figure 6.9, that fine-

tune Places365-VGG16 network understands heavy and medium slum relatively better than RSI. Thus it 

can be concluded that the heavy and medium slum areas have more general characteristics like inferior 

building materials,  which helps to identify them easily compared to other slums categories, as shown in 

Table 7.2. In contrast, RSI cannot detect ground-level characteristics like inferior building materials, 

making it difficult to separate categories based on RSI. 

7.2. Applied Architectures 

This research used two different types of DL architecture, i.e., CNN and FCN. The CNN architecture was 

used to categorize each SVI as slum or non-slum. In contrast, FCN architectures were used to generating 

Figure 7.1: Ground-level slum characteristics derived from visual interpretation of SVI in the study area 
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slum maps. Therefore, this section is divided into two parts. The first part discusses the results generated 

from CNN architecture, i.e., Places365-VGG16, and the second part discusses the results generated from 

FCN architectures, i.e., FCN-DK6, FCN-DK6-i, and Modified FCN-DK6. 

7.2.1. CNN Architecture 

For a better understanding of results generated from the Places365-VGG16 network, we have visualized 

the features which were used by the network to reach its decision, i.e., slum or other (non-slum). Due to 

the time constraints, we have only visualized features responsible for classifying the image into slum, i.e., 

only correctly classified slum images by Places365-VGG16 network were used for visualizing the features, 

as shown in Figure 7.2. 

Figure 7.2 shows the result of Places365-VGG16 for identifying slums, (a) the actual SVI of correctly 

classified slum images, (b) visualize feature map of correctly classified slum images. It is evident from 

Figure 7.2 that the Places365-VGG16 network use ground-level characteristics such as low-quality roads, 

open drainages, and inferior building materials to identifying slums in an urban scene. Although we did 

not visualize the features for all correctly classified slum images, we have visualized less than 10% of 

correctly classified slum images. Therefore, we are not concluding that the ground-level features 

mentioned above are the only ones responsible for classifying the images into slums. There might be a 

possibility of finding other ground-level features when more correctly classified slum images will be 

visualized. 

7.2.2. FCN Architectures 

We have compared the output generated from different FCN networks in this section because the main 

objective of this research is to use two different datasets, i.e., RSI and SVI, to map slums in the urban 

scene. 

The FCN-DK6 used RSI alone, whereas FCN-DK6-i and Modified FCN-DK6 used the combination of 

RSI and SVI to map slums. Adding SVI with RSI increased the understanding of the urban scene better as 

compared to RSI alone. Figure 7.3 shows the classification of proposed architectures for identifying slum 

and non-slum, (a) the actual image of slum and the non-slum area with GSV locations, but there is one 

non-slum building in slum area highlighted with red, (b) FCN-DK6 shows the false prediction of the non-

Figure 7.2: The result of Places365-VGG16 for identifying slums, (a) the actual SVI of correctly classified slum images by Places365-VGG16 
network, (b) visualize feature map of correctly classified slum images. 
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slum building as a slum, (c) FCN-DK6-i  shows the better result than FCN-DK6, (d) Modified FCN-DK6 

shows the correct prediction of the non-slum building as non-slum and additionally it also increases the 

coverage of slum area accurately. The Modified FCN-DK6 performs well because of the availability of 

SVI at that location which helps to improve the prediction. It can be concluded that the ground-level 

information provided by SVI help to understand the complexity of the urban areas, like how the Modified 

FCN-DK6 identifies the single non-slum building in a slum area, which was quite hard to identify through 

FCN-DK6 because of the absence of the ground-level information in RSI. Thus by looking into feature 

map of the SVI, it can be said that the inferior building material help to differentiate non-slum building in 

slum area. 

In contrast, Figure 7.4 shows the classification of proposed architectures for identifying the non-slum 

area, (a) the actual image of slum and non-slum area with GSV locations, and (b), (c), and (d) FCN-DK6, 

FCN-DK6-i, and Modified FCN-DK6 shows the false prediction of the non-slum area as a slum. The 

proposed architectures show similar results because the non-slum area has similar characteristics as slum 

areas like irregular shape, small building footprint, high-density buildings, and similar roofing materials as 

like slum. Those non-slum areas do not have the SVI coverage, due to which FCN-DK6-i and Modified 

FCN-DK6 show false predictions. 

Figure 7.3: Classification of proposed architectures for identifying slum and non-slum area, the Modified FCN-DK6 identify the non-slum 
building in a slum area with the help of GSV imagery feature, i.e., inferior building materials 
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Figure 7.5 shows the classification of proposed architectures for identifying slum area, (a) the actual image 

of slum area with limited GSV locations, and (b), (c), and (d) FCN-DK6, FCN-DK6-i, and Modified 

FCN-DK6 shows the false prediction of slum area as non-slum. The proposed architectures show similar 

results because slum area didn't show characteristics like slums, especially the roofing material. The FCN-

DK6 shows the whole area as non-slum, whereas the FCN-DK6-i  and Modified FCN-DK6 predict very 

few buildings as a slum in that area. The poor performance of FCN-DK6-i  and Modified FCN-DK6 is 

because there is only one SVI available in that area. In contrast, Figure 7.6 shows the classification of 

proposed architectures for identifying slum area, (a) the actual image of slum area with the GSV locations, 

(b) FCN-DK6 shows the poor prediction of slum area, (c) FCN-DK6-i shows the better result when 

compared to FCN-DK6 and (d) Modified FCN-DK6 show the good prediction of slum area. The 

availability of SVI increases the performance of Modified FCN-DK6 when compared to FCN-DK6. The 

FCN-DK6-i didn't perform well because of the lack of understanding of the urban scene compared to 

Modified FCN-DK6. 

 

 

Figure 7.4: Classification of proposed architectures for identifying the non-slum area, all the architectures performed same due to 
unavailability of GSV location in non-slum area 
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 Figure 7.6: Classification of proposed architectures for identifying slum areas where Modified FCN-DK6 perform quite good as compares to 
others due to the availability of GSV locations 

 

 

Figure 7.5: Classification of proposed architectures for identifying slum area, where FCN-DK6-i and Modified FCN-DK6 perform 
poor due to very limited access to GSV location 
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Figure 7.7 and Figure 7.8 compares Modified FCN-DK6 and FCN-DK6 outcomes for tile-3 and tile-12. 

Modified FCN-DK6 shows a better prediction of slums as compared to FCN-DK6. The prediction 

accuracy of Modified FCN-DK6 increases with the availability of SVI because the SVI provides ground-

Figure 7.7: Compare predicted slum map of Modified FCN-DK6 and FCN-DK6 for tile-3 
The red circles show areas where the Modified FCN-DK6 performs better than FCN-DK6 due to SVI's availability 

Figure 7.8: Compare predicted slum map of Modified FCN-DK6 and FCN-DK6 for tile-12 
The red circles show the areas where the Modified FCN-DK6 performs better than FCN-DK6 due to SVI's availability 
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level information, which helps to understand slums in an urban environment. As shown in Figure 7.7 and 

Figure 7.8, the red circles show areas where the Modified FCN-DK6 performs better than FCN-DK6 due 

to SVI's availability. 

7.3. Accuracy of Applied Architectures 

7.3.1. Accuracy  

The ground feature map generated from the SVI provides the ground-level information, which helps 

improve the accuracy in the prediction when the combination of SVI and RSI is used. However, there is a 

slight increase in the resulted accuracy of Modified FCN-DK6 as compared to FCN-DK6. There are  

various reasons why the results didn't change drastically despite a slight increase in the result accuracy, 

including: 

i. The limited coverage of SVI because of two reasons. First, the SVI can only capture the 

information along the road, making the information limited, i.e., SVI can capture the limited scene 

along the sides of the roads. Second, some of the roads for which the SVI is not available means 

the ground-level information is not accessible, i.e., the GSV images are not taken along those 

roads. 

ii. Some information loss might happen while generating feature maps from the extracted features of 

SVI using the spatial interpolation technique. 

iii. It might be possible that the selected 32 features for generating feature maps didn't have sufficient 

ground-level information to improve the result drastically when it is integrated with RSI for slum 

mapping. The 32 features show only 58.35% variance of 128 extracted features. Whereas at the 

time of experimentation, we initially used only 2 features to generate the feature maps instead of 

32 features. The result generated using 2 features was quite similar to RSI because 2 features show 

an 8.2% variance of  128 extracted features. After increasing the number of features, the 

classification accuracy was increased compared to RSI. Thus, increasing the features will increase 

the ground-level information, which will finally increase the accuracy of the classification result. 

7.3.2. Slum Categories 

A combination of SVI with RSI helps identify the different categories of slums more precisely than RSI 

alone. Figure 6.9 shows that the integration of RSI and SVI leads to an increase in the classification result 

for every category of slums compared to RSI alone, i.e., Modified FCN-DK6 and FCN-DK6-i understand 

the different categories of slums better when compared to FCN-DK6. There are two main reasons why 

there is an increase in the classification value for each category of slums: 

i. Some of the detailed ground-level information possessed by SVI helped to differentiate between 

different categories of slums, as mentioned in Table 7.1 and discussed in Section 7.2.1, because it 

is hard to get such details from RSI alone. 

ii. As shown in Figure 6.9, the fine-tuned Places365-VGG16 network understands the features of 

different slums categories, especially heavy and medium slum. The Places365-VGG16 network is 

used to extract SVI features, further combined with RSI for slum classification. Therefore, if the 

network understands the features of slum properly, then the extracted features from the network 

will closely represent slum features, which will further help to improve the classification result 

when combined with RSI for slum mapping. In our case, slum images on which Places365-

VGG16 was previously trained consist of similar characteristics as of heavy and medium slum, 

i.e., inferior building materials, low-quality roads, high-density housing. Therefore Place365-

VGG16 identifies the heavy and medium slums quite well. Similarly, integrating RSI with extract 

SVI features gives better accuracy for heavy and medium slums than other categories of slums. 
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8. CONCLUSION AND RECOMMENDATIONS 

This research aims to integrate RSI and SVI to map slums using a DL approach. Section 8.1 provides the 

research conclusion by answering the main objective through three sub-objectives with their 

corresponding research questions. Section 8.2 presents the limitations of this research and 

recommendations for future research work. 

8.1. Conclusion 

Slum maps play a significant role in promoting positive changes in national or local upliftment policies. It 

also helps track down the progress of the implemented upliftment policy and also supports the local 

people in negotiations with governments about basic services, and asserts their rights to land on which 

they live. Traditional slum mapping can be labor-intensive and expensive work. We have tried to explore a 

novel way by integrating RSI with SVI for slum mapping by implementing a DL approach. The results 

show that the integration of RSI with SVI can achieve relatively higher accuracy than RSI alone, which 

means that the ground-level information extracted from SVI plays a significant role in identifying slums in 

an urban area. This research opens a new path for exploring future ways to combine RSI with SVI for 

slum mapping to achieve better accuracy. 

In this research, we trained and tested four networks with different datasets, i.e., FCN-DK6 used RSI 

alone, Places365-VGG16 was fine-tuned using SVI, and FCN-DK6-i and Modified FCN-DK6 used a 

combination of RSI and SVI on the subset of Jakarta. We discovered two things: (1) Places365-VGG16 

performs well for identifying heavy and medium categories of slums than RSI alone because heavy and 

medium slum areas have more general ground level characteristics like inferior building materials, low-

quality roads, and open drainages, which makes them easy to identify as compared to other categories of 

slums, and  (2) Modified FCN-DK6 outperforms other FCN networks in slum mapping and shows that 

the combination of RSI and SVI can perform better than RSI alone because SVI consists of useful 

ground-level information used to classify slums in the urban scene.  In contrast, FCN-DK6-i also used the 

combination of RSI and SVI but achieved slightly less accuracy than FCN-DK6. Thus, it can be 

concluded that the way how SVI is combined with RSI is a crucial step because FCN-DK6-i and Modified 

FCN-DK6 used the combination of RSI and SVI. Still, the way of combining SVI with RSI is different in 

both the networks, i.e., the FCN-DK-i used stacked imagery (RSI + SVI) as one input. In contrast, 

Modified FCN-DK6 used two different inputs, i.e., the first input was RSI, and the second input was SVI 

features. The SVI features were combined with RSI at the end of 2nd convolutional block in Modified 

FCN-DK6. 

Research sub-objective and related research questions: 

I. To identify the characteristics of slums versus non-slum in the study area. 

In this research, the characteristics of slums were shortlisted by reviewing the different governmental 

organization documents at global, national (Indonesia), and local (Jakarta) scales, research articles at the 

local level (Jakarta), and discussion with the local expert (Mr. Jati Pratomo). Finally, characteristics were 

selected from the shortlisted characteristics, which can be delineated using RSI or SVI or available 

ancillary data such as road network data, building footprint data, and zoning data in our study area. 

1. What are the physical characteristics of slums in the study area? 

2. Which features should be extracted from RSI to classify slums?  

3. Which visual features should be extracted from SVI to classify slums? 
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Table 8.1 shows the physical characteristics of slums in the study area and which physical characteristics 

can be captured through RSI or SVI or both. 

Physical characteristics of slums in the study area RSI SVI 

Temporary building materials No Yes 

Dense area with lesser roads Yes No 

Unplanned layout Yes No 

Unpaved/Light roads Yes Yes 

Small building size/building footprint Yes No 

Poor roof materials Yes Yes (Partially) 

Proximity to river, railroads, swamps, and shrines Yes Yes 

Near to industrial and warehouse area Yes No 

Less open and green spaces Yes Yes (Partially) 

Open drainages No Yes 

Low-quality roads No Yes 

Table 8.1: The physical characteristics of slums in the study area, which can be captured through RSI or SVI or both 

II. To incorporate SVI with RSI for slum mapping using FCN 

In this research, two different deep learning approaches were used for identifying slums, i.e., FCN and 

CNN, i.e., FCN is a pixel-level classification technique, and CNN is a patch-based classification technique. 

Therefore to do pixel-level classification, FCN was used to incorporate SVI with RSI for slum mapping.  

1. Which FCN architecture is the best fit for using the combination of RSI and SVI to identify 

slums?  

The FCN-DK architecture is used because of three main reasons. First, FCN-DK architecture allows n 

number of input bands. Second,  FCN-DK can accept the input image of any dimension because it uses 

dilated kernel technique, which helps to maintain the output dimension as same as the input. Third, FCN-

DK architecture did not require high computational units compared to other FCN architecture like FCN-

VGG16 or FCN-VGG19. 

2. What is a suitable grid size?  

Different grid sizes were explored during the research with FCN architectures, and it was discovered that 

a 125 x 125 grid size (patch size) works well for slum mapping. 

3. Which technique can be used to interpolate the feature vector of SVI into the 2-dimensional (2D) 

space of RSI?  

Initially, 128 feature vectors from each SVI were extracted using fine-tuned Places365-VGG16, and then 

128 feature vectors of each SVI were reduced to 32 feature vectors using PCA with a variance of 58.35%. 

Finally, 32 feature vectors of each SVI are interpolated into a 2D space with the exact spatial resolution 

(0.4 m) of RSI using the IDW spatial interpolation technique in ArcGIS. 

4. How to deal with the incomplete data of SVI? 

The IDW approach assumes that the influence of the variable being mapped decreases as the distance 

from the sampled location increases. IDW is used to estimate the value of unknown points using the 

points with known values. In this research, the unknown points are those areas where the SVI was 

unavailable and the known points where the SVI is available.  

Some areas were quite far from the available SVI locations, due to which there is a minimal influence of 

the available SVI in those areas. Therefore, as discussed in Section7.2.2, Modified FCN-DK6 performs the 

same as FCN-DK6 because of the lack of added ground-level information. 
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III. To investigate the significance of using SVI for mapping slums 

In this research, different FCN architectures were set up using different datasets, i.e., FCN-DK6 used RSI 

alone, and FCN-DK6-i and Modified FCN-DK6 used a combination of RSI and SVI. Further, FCN 

architectures results were compared to investigate the significance of using SVI with RSI. 

1. What is the added value of combining SVI and RSI for mapping slums? 

The features extracted from SVI were integrated with RSI for mapping slums, and SVI features were 

extracted using fine-tuned Places365-VGG16 network as discussed in Section 5.3.2.3. Thus fine-tuned 

Places365-VGG16 plays a crucial role in integrating RSI with SVI because if the features extracted from 

the SVI closely represent slum features, then there is a high probability of getting better accuracy after 

integrating those features with RSI for slum mapping, discussed in detail in Section 7.3.2 point (II). 

Figure 7.7 and Figure 7.8 compare the outcome of FCN-DK6 and Modified FCN-DK6, and it can be 

concluded that adding SVI with RSI increases the accuracy of the predicted slum map. Thus, ground-level 

information extracted from SVI helps to understand the urban scene better than using RSI alone. In 

contrast, how the RSI is integrated with SVI is also important because not every time the integration of 

RSI with SVI leads to a better result, as shown in Figure 6.8. Thus the result of FCN-DK6-i was slightly 

less than the result of FCN-DK6. 

8.2. Limitations and Recommendations 

This research explores integrating two different datasets, i.e., RSI and SVI, for slum mapping using a DL 

approach. This research put forward some benefits and drawbacks of integrating RSI and SVI for slum 

mapping. Although our method successfully integrated RSI and SVI and got slightly more accuracy than 

RSI alone. Still, the research has certain limitations, and further research is required.  

Limitations of our work are as follows:  

1. The lack of information related to the official slum reference data of 2017, i.e., the exact 

indicators used to delineate the official slum reference map and how the different categories of 

slums were differentiated, was not clearly defined by the local government of Jakarta. 

2. We do not have the ground knowledge of slums in Jakarta in detail, which made delineating the 

tweaked slum reference map difficult. However, we have used the local expert's knowledge to 

understand the context of slums in Jakarta as much as possible. 

3. Due to the limited excess to download the GSV, we couldn't generate an overview of the entire 

study area. If we had a chance to do it for our study area, we could have known how well 

Modified FCN-DK6 understands slums in our study area. It might be possible that the network 

would have mapped some slum areas within the non-slum area (others) because there is always a 

chance of error while generating a slum reference map (tweaked slum reference map) through 

visual interpretation. 

4. While generating the feature maps, we couldn't generate the map of the entire area at once due to 

the limited computational capacity of the laptop processor. Therefore, we have used model 

builder in ArcGIS to generating the feature maps, but it was quite time-consuming. 

Recommendations for further research are as follows: 

1. More ground-level information and ancillary data, such as population density per building 

footprint/area, access to water and sanitation, and hazardous areas, can be incorporated to 

delineate the slum reference map more precisely. 

2. The comparative study can be carried out for concatenating the SVI with RSI at different 

convolutional blocks in Modified FCN-DK6. 



INTEGRATING REMOTE SENSING AND STREET VIEW IMAGES TO MAP SLUMS USING DEEP LEARNING APPROACH 

61 

3. Different interpolation techniques can be explored for generating feature maps from SVI, like 

kriging. 

4. Different FCN architecture can be explored with various fusion methodologies for integrated RSI 

and SVI. 

5. A comparative study can be done between the combination of high-resolution aerial imagery with 

SVI and VHR satellite imagery with SVI  for slum mapping. The motive behind using aerial 

imagery is that it contains much more detailed information than RSI, such as roads' quality, which 

might help the FCN network understand the urban scene better when integrated with SVI. 

6. A comparative study can be done on the transferability of Modified FCN-DK6 to integrate VHR 

imagery from different sensors with SVI for slum mapping. 

7. Places365-VGG16 network can be fine-tuned more precisely for different categories of slums in 

the context of Jakarta to understand the ground-level features on which slum categories can be 

differentiated. 

8. Further, Place365-VGG16 and Modified FCN-DK6 can be fine-tuned on the different regions of 

Jakarta, i.e., by training the networks for varying slums characteristics if they exist within Jakarta. 

Finally, the slum map can be generated for the entire Jakarta by using fine-tuned Modified FCN-

DK6 network. 
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APPENDICES 

Annexure-I: Detailed Model Description  

FCN-DK6 Architecture 

Dks are used to keep the output images with the exact dimension and resolution of the input image 

without the deconvolutional layer (Persello and Stein, 2017). In each convolutional block, DK inserts 

zeros to input before feeding it to the convolutional layer and after the output of the LeakyReLU layer to 

maintain the size of output as same as the input. The number of zeroes to be inserted for each 

convolutional block can be calculated by d-1, where d is the dilation factor. After completing each 

convolutional block, the output kernel dimensions can be calculated using equation (i), where H is kernel 

height and W is kernel width. Thus, the receptive field increased exponentially with each convolutional 

block without increasing the count of learnable parameters. As shown in Figure 1, the receptive field of d 

= 1 and d = 2. 

𝐻′ × 𝑊′ = [𝑑 × (𝐻−1) + 1] × [𝑑 ×( 𝑊−1) +  1]    (i) 

 

Persello and Stein (2017) introduce FCN-DK architecture such as FCN-DK6 with six convolutional 

blocks adopted for this research. Each convolutional block consists of six layers: one zero-padding, one 

convolutional, one batch normalization, one leaky Rectified Linear Units (lReLU), and one max pooling. 

After all six blocks, one dropout layer, one classification layer are present. Different layers in the 

convolutional block have different functions: (i) The zero-padding layer is used to keep the dimension of 

the output image as same as the input image, which makes FCN-DK architecture quite flexible with the 

input image dimensions (Persello & Stein, 2017). (ii) The convolutional layer learns the features from the 

input. (iii) The batch normalization layer normalizes the mini-batch input to avoid the internal variation 

shift problem while training the model. Hence, the input layer's distribution will be changed accordingly 

with the change of the learnable parameter of the previous layer (Sergey Ioffe and Christian Szegedy, 

2015). (iv) IReLU is called an activation function in the network, identifying whether the pixel belongs to 

slum or non-slum class (Xia, Koeva, & Persello, 2019). (v) The max-pooling layer is used to reduce the 

dimensionality of the input layer. Hence, it reduces the number of training parameters, computational cost 

and restricts the model's overfitting problem. (vi) The dropout layer is also used to prevent the overfitting 

Figure 1: Shows receptive filed 
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of the model. (vii) the classification layer consists of an activation function (softmax) that will help to 

classify the input into desired output classes. Figure 2 shows the detailed architecture of FCN-DK6 used 

for this research, and Table 1 presents the structure of FCN-DK6. 

 

Table 1: Present the structure of FCN-DK6 

Block Layer Hyper-Parameter 

1 

ZeroPadding2D Padding: 2x2 

Convolutional2D 

Number of Filters: 16 

Kernel Size: 5x5 

Dilation Rate: 1x1 

Batch Normalization Axis: 3 

leaky Rectified Linear 

Units 
Alpha: 0.1 

ZeroPadding2D Padding: 2x2 

MaxPooling2D 
Pool Size: 5x5 

Strides: 1x1 

2 

ZeroPadding2D Padding: 4x4 

Convolutional2D 

Number of Filters: 32 

Kernel Size: 5x5 

Dilation Rate: 2x2 

Batch Normalization Axis: 3 

leaky Rectified Linear 

Units 
Alpha: 0.1 

ZeroPadding2D Padding: 4x4 

MaxPooling2D 
Pool Size: 9x9 

Strides: 1x1 

3 ZeroPadding2D Padding: 6x6 

Figure 2: The detailed architecture of FCN-DK6 used for this research 
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Convolutional2D 

Number of Filters: 32 

Kernel Size: 5x5 

Dilation Rate: 3x3 

Batch Normalization Axis: 3 

leaky Rectified Linear 

Units 
Alpha: 0.1 

ZeroPadding2D Padding: 6x6 

MaxPooling2D 
Pool Size: 13x13 

Strides: 1x1 

4 

ZeroPadding2D Padding: 8x8 

Convolutional2D 

Number of Filters: 32 

Kernel Size: 5x5 

Dilation Rate: 4x4 

Batch Normalization Axis: 3 

leaky Rectified Linear 

Units 
Alpha: 0.1 

ZeroPadding2D Padding: 8x8 

MaxPooling2D 
Pool Size: 17x17 

Strides: 1x1 

5 

ZeroPadding2D Padding: 10x10 

Convolutional2D 

Number of Filters: 32 

Kernel Size: 5x5 

Dilation Rate: 5x5 

Batch Normalization Axis: 3 

leaky Rectified Linear 

Units 
Alpha: 0.1 

ZeroPadding2D Padding: 10x10 

MaxPooling2D 
Pool Size: 21x21 

Strides: 1x1 

6 

ZeroPadding2D Padding: 12x12 

Convolutional2D 

Number of Filters: 32 

Kernel Size: 5x5 

Dilation Rate: 6x6 

Batch Normalization Axis: 3 

leaky Rectified Linear 

Units 
Alpha: 0.1 

ZeroPadding2D Padding: 12x12 

MaxPooling2D 
Pool Size: 25x25 

Strides: 1x1 

Classification 

Dropout Rate: 0.25 

Convolutional 

Number of Filters: 2 

(number of classes) 

Kernel Size: 1x1 

Activation SoftMax 

 

 

 

 

 



 

70 

 

 

 

VGG16 Architecture 

VGG stands for Visual Geometry Group developed at Oxford University. Two factors make the VGG 

model simple for use. First, the network's extensive use of 3x3 convolutions, and second, the number of 

feature maps is doubled after the max-pooling layer of 2x2 with stride 2, i.e., this arrangement eliminates 

the need for tuning convolutional filter sizes and individual layer sizes (Lundström, 2017). 

The VGG 16 architecture proposed for this research consists of 5 convolutional blocks and one 

classification block. The first two convolutional blocks consist of three layers: two convolutional layers 

and one max-pooling layer. The last three convolutional blocks consist of four layers: three convolutional 

layers and one max-pooling layer. The convolutional block's output is pass-through from the global max-

pooling layer, which further connects to the classification block. The classification block consists of five 

layers: one flatten layer,  two dense layers, one dropout layer, and one classification layer. All of the layers 

mentioned above have different functions: (i) The convolutional layer is the key layer of the network. The 

convolutional layer consists of a different set of filters responsible for extracting features from the input 

image, and each filter will produce a feature map as output (Ke et al., 2018). (ii) The max-pooling layer is 

used to minimize the spatial dimensionality of the feature map and control the overfitting of the model, as 

shown in Figure5.9. (iii) The global max-pooling layer is used to compress the whole image more 

efficiently using strides (stride is used to move the filter over the width and height), as shown in Figure 3. 

(iv) The flatten layer is used to flatten the input. (v) The dense layer is provided along with ReLU 

activation. The dense layer is used to change the dimension of the input. (vi) The dropout layer is also 

used to prevent the overfitting of the model. (vii) the classification layer is used to classify the input into 

desired out classes. Figure 4 shows the detailed architecture of VGG16 used for this research, and Table 2 

presents the structure of VGG16. 

  

 

Figure 3: Show the Max pooling and Global pooling functions 
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Figure 4: Show the detailed architecture of Places365-VGG16 used for this research 

 

 

 

 

 

 

 

Table 2: Presents the structure of Places365-VGG16 

Block Layer Hyper-Parameter 

1 

Convolutional2D 

Number of Filters: 64 

Kernel Size: 3x3 

Stride: 1x1 

Kernel Regularizer: l2 

Padding: 'same' 

Activation: 'relu' 

Convolutional2D 

Number of Filters: 64 

Kernel Size: 3x3 

Stride: 1x1 

Kernel Regularizer: l2 

Padding: 'same' 

Activation: 'relu' 

MaxPooling2D 

Pool Size: 2x2 

Strides: 2x2 

Padding: 'valid' 

2 Convolutional2D 

Number of Filters: 128 

Kernel Size: 3x3 

Stride: 1x1 

Kernel Regularizer: l2 

Padding: 'same' 



 

72 

Activation: 'relu' 

Convolutional2D 

Number of Filters: 128 

Kernel Size: 3x3 

Stride: 1x1 

Kernel Regularizer: l2 

Padding: 'same' 

Activation: 'relu' 

MaxPooling2D 

Pool Size: 2x2 

Strides: 2x2 

Padding: 'valid' 

3 

Convolutional2D 

Number of Filters: 256 

Kernel Size: 3x3 

Stride: 1x1 

Kernel Regularizer: l2 

Padding: 'same' 

Activation: 'relu' 

Convolutional2D 

Number of Filters: 256 

Kernel Size: 3x3 

Stride: 1x1 

Kernel Regularizer: l2 

Padding: 'same' 

Activation: 'relu' 

Convolutional2D 

Number of Filters: 256 

Kernel Size: 3x3 

Stride: 1x1 

Kernel Regularizer: l2 

Padding: 'same' 

Activation: 'relu' 

MaxPooling2D 

Pool Size: 2x2 

Strides: 2x2 

Padding: 'valid' 

4 

Convolutional2D 

Number of Filters: 512 

Kernel Size: 3x3 

Stride: 1x1 

Kernel Regularizer: l2 

Padding: 'same' 

Activation: 'relu' 

Convolutional2D 

Number of Filters: 512 

Kernel Size: 3x3 

Stride: 1x1 

Kernel Regularizer: l2 

Padding: 'same' 

Activation: 'relu' 

Convolutional2D 

Number of Filters: 512 

Kernel Size: 3x3 

Stride: 1x1 

Kernel Regularizer: l2 

Padding: 'same' 

Activation: 'relu' 

MaxPooling2D Pool Size: 2x2 



 

73 

Strides: 2x2 

Padding: 'valid' 

5 

Convolutional2D 

Number of Filters: 512 

Kernel Size: 3x3 

Stride: 1x1 

Kernel Regularizer: l2 

Padding: 'same' 

Activation: 'relu' 

Convolutional2D 

Number of Filters: 512 

Kernel Size: 3x3 

Stride: 1x1 

Kernel Regularizer: l2 

Padding: 'same' 

Activation: 'relu' 

Convolutional2D 

Number of Filters: 512 

Kernel Size: 3x3 

Stride: 1x1 

Kernel Regularizer: l2 

Padding: 'same' 

Activation: 'relu' 

MaxPooling2D 

Pool Size: 2x2 

Strides: 2x2 

Padding: 'valid' 

 GlobalMaxPooling2D  

Classification 

Flatten  

Dense 
Units: 512 

Activation: 'relu' 

Dense 
Units: 128 

Activation: 'relu' 

Dropout Rate: 0.5 

Dense 

Unit: 2 

(number of classes) 

Activation: 'sigmoid' 
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Modified FCN-DK6 Architecture 

Table 4 presents the structure of Modified FCN-DK6. 

Table 4: Presents the structure of Modified FCN-DK6 

Block Layer Hyper-Parameter 

1 

ZeroPadding2D Padding: 2x2 

Convolutional2D 

Number of Filters: 16 

Kernel Size: 5x5 

Dilation Rate: 1x1 

Batch Normalization Axis: 3 

leaky Rectified Linear 

Units 
Alpha: 0.1 

ZeroPadding2D Padding: 2x2 

MaxPooling2D 
Pool Size: 5x5 

Strides: 1x1 

2 

ZeroPadding2D Padding: 4x4 

Convolutional2D 

Number of Filters: 32 

Kernel Size: 5x5 

Dilation Rate: 2x2 

Batch Normalization Axis: 3 

leaky Rectified Linear 

Units 
Alpha: 0.1 

ZeroPadding2D Padding: 4x4 

MaxPooling2D 
Pool Size: 9x9 

Strides: 1x1 

 Concatenate  

3 

ZeroPadding2D Padding: 6x6 

Convolutional2D 

Number of Filters: 32 

Kernel Size: 5x5 

Dilation Rate: 3x3 

Batch Normalization Axis: 3 

leaky Rectified Linear 

Units 
Alpha: 0.1 

ZeroPadding2D Padding: 6x6 

MaxPooling2D 
Pool Size: 13x13 

Strides: 1x1 

4 

ZeroPadding2D Padding: 8x8 

Convolutional2D 

Number of Filters: 32 

Kernel Size: 5x5 

Dilation Rate: 4x4 

Batch Normalization Axis: 3 

leaky Rectified Linear 

Units 
Alpha: 0.1 

ZeroPadding2D Padding: 8x8 

MaxPooling2D 
Pool Size: 17x17 

Strides: 1x1 

5 

ZeroPadding2D Padding: 10x10 

Convolutional2D 
Number of Filters: 32 

Kernel Size: 5x5 
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Dilation Rate: 5x5 

Batch Normalization Axis: 3 

leaky Rectified Linear 

Units 
Alpha: 0.1 

ZeroPadding2D Padding: 10x10 

MaxPooling2D 
Pool Size: 21x21 

Strides: 1x1 

6 

ZeroPadding2D Padding: 12x12 

Convolutional2D 

Number of Filters: 32 

Kernel Size: 5x5 

Dilation Rate: 6x6 

Batch Normalization Axis: 3 

leaky Rectified Linear 

Units 
Alpha: 0.1 

ZeroPadding2D Padding: 12x12 

MaxPooling2D 
Pool Size: 25x25 

Strides: 1x1 

Classification 

Dropout Rate: 0.25 

Convolutional 

Number of Filters: 2 

(number of classes) 

Kernel Size: 1x1 

Activation SoftMax 

 


