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Abstract 

In hazard and disaster areas, successful fact-based risk management 

requires precise geoinformation. Especially in areas that cover a large 

expanse, hazard maps and action plans – generated from high-resolu-

tion remote sensing data – play a key role for decision makers and 

emergency forces. In this context, unmanned aerial vehicles (UAVs) 

are of increasing interest, mainly because of their flexibility and the 

minimized risk to task forces by avoiding risky trespassing. In addition, 

machine learning-based methods on the data processing side enable 

large amounts of collected data to be converted into usable end prod-

ucts quickly and efficiently. 

The first part of this dissertation covers the detection of buried radio-

active waste sites in the Chernobyl Exclusion Zone, which was created 

in the aftermath of the 1986 nuclear catastrophe. In post-disaster re-

mediation work, liquidation materials contaminated by radioactive fall-

out were buried in trenches and clamps. Unfortunately, most of these 

on-site burials were insufficiently documented and have become over-

grown with dense vegetation. For the purpose of risk management, it 

is crucial to know their exact locations and dimensions. To avoid risky 

area trespassing, UAV-based gamma spectrometry surveys were per-

formed in the past, achieving promising results in open areas. How-

ever, the results were inaccurate in forested areas. Known trenches 

and clamps display two major characteristics: terrain height anomalies 

in the decimetre range and vegetation anomalies that tend to appear 

in the immediate vicinity of the burials. Thus, a UAV-based method was 

developed to detect unknown radioactive waste sites in forested areas 

by combining high-resolution lidar data with multispectral (MS) im-

agery. First, a digital terrain model (DTM) was extracted from the lidar 

point cloud. Then, based on datasets from both optical sensors, 3D 

vegetation mapping was performed at the single-tree level. Addition-

ally, tree-based features (e.g., density, height, and species) were de-

rived. Subsequently, these vegetation-related features were combined 

with feature sets compiled from the DTM. The data were processed 

using a reliable feature selection method and a random forest-based 

classifier for the simultaneous detection of both trenches and clamps. 

This approach was tested in densely vegetated and thus challenging 

areas, where historical maps only roughly indicate the existence of ra-

dioactive waste sites. Finally, the detection results were verified by on-

site test drillings that successfully confirmed the existence of previously 

unknown buried nuclear materials in the classified areas. 

As indicated, 3D vegetation mapping can support the detection of ra-

dioactive waste sites. Furthermore, precise vegetation maps at the tree 

level can also assist in forest fire simulations and improve models for 
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estimating workers’ radiation dose uptake. Thus, the second part of 

this PhD thesis focuses on the mapping of single trees. More precisely, 

the combined classification of presegmented single trees with respect 

to tree species and standing dead trees was extensively investigated. 

Therefore, deep learning-based approaches for both 2D and 3D data 

were developed to enable object classification based on automatically 

extracted features. PointNet++ was adapted to the task of classifying 

raw 3D point clouds of presegmented single trees. Aside from the 3D 

geometry, additional point attributes such as lidar echo pulse width, 

surface normals and MS features were also integrated into the classifi-

cation process. In the final study, an image-based 2D convolutional 

neural network (CNN) approach called Silvi-Net was created to gather 

meaningful features from both airborne lidar data and MS images. 

Overall, the network's performance was proven using 2D and 3D da-

tasets from two natural forest areas acquired with different sensor 

models and varying geometric and spectral resolutions. Using pre-

trained weights and recursive retraining of CNN model parameters 

(transfer learning), Silvi-Net showed high generalization capacity, even 

for datasets with a reduced number of samples. Interestingly, multiple 

silhouette-like side-view images rendered from the point clouds of the 

single trees significantly increased the overall accuracy compared to 

experiments only utilizing MS imagery. Using identical data, the Silvi-

Net and PointNet++ results were compared, revealing the advantages 

and disadvantages of the approaches. All in all, Silvi-Net facilitated the 

generation of reliable vegetation maps that are of major importance in 

risk management applications, automated forest inventory and moni-

toring projects.  
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Samenvatting 

In risico- en rampgebieden moet een op feiten gebaseerd risicobeheer 

beschikken over nauwkeurige geo-informatie. Vooral in gebieden met 

een grote omvang spelen gevarenkaarten en actieplannen – gegenere-

erd uit hoge-resolutie remote sensing gegevens – een sleutelrol voor 

besluitvormers en noodhulpdiensten. In deze context zijn onbemande 

luchtvaartuigen (UAV's) van toenemend belang, vooral vanwege hun 

grote flexibiliteit en het geminimaliseerde risico voor de task forces 

door het betreden van gevaarlijke gebieden te vermijden. Bovendien 

maken op machine learning gebaseerde methoden aan de kant van de 

gegevensverwerking het mogelijk om de enorme hoeveelheden ver-

zamelde gegevens snel en efficiënt om te zetten in bruikbare 

eindproducten. 

Het eerste deel van dit proefschrift behandelt de opsporing van onder-

grondse locaties voor radioactief afval in de exclusieve zone van 

Tsjernobyl, die werd gecreëerd in de nasleep van de kernramp in 1986. 

Bij de saneringswerkzaamheden na de ramp werden met radioactieve 

neerslag besmette materialen begraven in greppels en aardwallen. 

Helaas waren de meeste van deze begravingen ter plaatse onvol-

doende gedocumenteerd en zijn ze overwoekerd door dichte begroei-

ing. Voor het risicobeheer is het echter van cruciaal belang hun 

precieze ligging en afmetingen te kennen. Om het betreden van 

riskante gebieden te vermijden, werden in het verleden op UAV ge-

baseerde gammaspectrometrische onderzoeken uitgevoerd, die veel-

belovende resultaten opleverden in open gebieden. In beboste ge-

bieden waren de resultaten echter ongeschikt. Gebleken is dat bekende 

greppels en aardwallen twee belangrijke kenmerken vertonen. Ten 

eerste, hoogte-anomalieën van het terrein in het decimeterbereik en, 

ten tweede, vegetatie-anomalieën die de neiging hebben in de onmid-

dellijke nabijheid van de begravingen te verschijnen. Daarom werd een 

UAV-gebaseerde methode ontwikkeld om onbekende plaatsen met ra-

dioactief afval op te sporen in beboste gebieden, waarbij lidar-

gegevens met hoge resolutie en multispectrale (MS) beelden werden 

samengevoegd. In eerste instantie wordt een digitaal terreinmodel 

(DTM) geëxtraheerd uit de lidar puntenwolk. Vervolgens, gebaseerd op 

datasets van beide optische sensoren, wordt 3D vegetatie kartering 

uitgevoerd. Bovendien worden op bomen gebaseerde kenmerken af-

geleid, zoals boomdichtheid, boomhoogte en boomsoort. Vervolgens 

worden deze vegetatie-gerelateerde kenmerken gecombineerd met 

kenmerkenreeksen die zijn samengesteld uit het DTM. De verdere ver-

werking omvat een betrouwbare kenmerkselectiemethode en een ran-

dom forest-gebaseerde classificator voor de gelijktijdige detectie van 

zowel greppels als aardwallen. De algemene aanpak werd getest in 

dichtbegroeide en dus moeilijke gebieden, waar historische kaarten 
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slechts een ruwe indicatie geven van het bestaan van locaties met ra-

dioactief afval. Tenslotte werden de detectieresultaten geverifieerd 

door proefboringen ter plaatse die met succes het bestaan van voor-

heen onbekend begraven nucleair materiaal in de geclassificeerde ge-

bieden bevestigden. 

Zoals aangegeven kan 3D-vegetatiekartering helpen bij de opsporing 

van locaties met radioactief afval. Bovendien kunnen nauwkeurige veg-

etatiekarteringen op boomniveau ook helpen bij de simulatie van 

bosbranden en de modellen voor de raming van de stralingsdosis die 

werknemers oplopen verbeteren. Het tweede deel van dit proefschrift 

richt zich dan ook op de kartering van individuele bomen. Om precies 

te zijn werd de gecombineerde classificatie van voorgesegmenteerde 

alleenstaande bomen met betrekking tot boomsoorten en staande dode 

bomen uitgebreid onderzocht. Daarom zijn deep learning-gebaseerde 

benaderingen voor zowel 2D als 3D data ontwikkeld, die objectclassifi-

catie op basis van automatisch geëxtraheerde kenmerken mogelijk 

maken. Binnen dit onderwerp werd PointNet++ aangepast voor de taak 

van het classificeren van ruwe 3D puntenwolken van individuele voor-

gesegmenteerde bomen. Naast de 3D geometrie werden ook addi-

tionele puntattributen zoals lidar echopulsbreedte, oppervlaktenor-

malen, en MS kenmerken geïntegreerd in het classificatieproces. In een 

laatste studie wordt een beeldgebaseerde 2D convolutionele neurale 

netwerk (CNN) aanpak, genaamd Silvi-Net, geïntroduceerd voor het 

leren van zinvolle kenmerken van zowel lidar gegevens en MS beelden. 

De prestaties van het netwerk werden bewezen met behulp van 2D en 

3D datasets van twee natuurlijke bosgebieden, verkregen met verschil-

lende sensormodellen, en variërende geometrische en spectrale 

resolutie. Door gebruik te maken van vooraf getrainde gewichten en 

recursieve training van CNN-modelparameters (=transfer learning), 

vertoonde Silvi-Net een hoog generalisatievermogen, zelfs voor da-

tasets met een beperkt aantal samples. Interessant is dat meervoudige 

silhouet-achtige beelden met zijaanzichten, gerenderd uit de punten-

wolken van de afzonderlijke bomen, de algehele nauwkeurigheid sig-

nificant verhoogden in vergelijking met experimenten die alleen ge-

bruik maakten van MS-beelden. Gebruikmakend van identieke data, 

worden de Silvi-Net resultaten vergeleken met die van PointNet++, 

waarbij voor- en nadelen van de benaderingen aan het licht komen. Al 

met al vergemakkelijkt Silvi-Net het genereren van betrouwbare veg-

etatiekaarten die van groot belang zijn in risicobeheersingstoe-

passingen, geautomatiseerde bosinventarisatie en monitoringpro-

jecten.  
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In hazard and disaster areas, precise and reliable geoinformation is of 

major importance for successful risk management. In both pre- and 

post-disaster cases, detailed spatial information plays a key role for 

decision makers and emergency forces. Especially in areas that cover 

a large expanse, high-resolution remote sensing data support the gen-

eration of hazard maps and action plans and, thus, enable fact-based 

and quick decisions. In the past, various studies have been conducted 

using remote sensing data for the mapping and monitoring of natural 

hazards and man-made disasters. Global-scale hazards, such as 

changes in atmospheric composition (e.g., Laj et al., 2009), rising sea 

levels (e.g., Cazenave and Llovel, 2010) and glacier recession (e.g., 

Barry, 2006), have been studied thoroughly. On a more regional scale, 

numerous researchers have explored storm events (e.g., Friedman and 

Li, 2000) and mapped the damage after earthquakes (e.g., Vetrivel, 

2018) or floods (e.g., Smith, 1997). Furthermore, researchers have 

worked on the monitoring of droughts (e.g., Kogan, 1997), coastal ero-

sion (e.g., White and El Asmar, 1999) and landslides (e.g., Metternicht 

et al., 2005). 

This PhD thesis mainly focuses on the aftermath of the 1986 nuclear 

disaster in Chernobyl, located approximately 100 km north of Kiev, 

Ukraine. Specifically, this research addresses the detection of unknown 

radioactive biomass deposits in the Chernobyl Exclusion Zone (ChEZ). 

Extensive investigation was performed on the deep learning (DL)-

based mapping of single trees, especially with respect to the combined 

classification of tree species and standing dead trees. Precise 3D veg-

etation mapping is typically used for automated forest inventory, in-

cluding the estimation of structural parameters at the tree level. In 

terms of risk management, vegetation maps can also support forest 

fire simulations and – as outlined in this PhD thesis – give indirect ev-

idence about contaminated subsoil. 

1.1. Background 
On April 26, 1986, the explosion of Reactor Unit 4 at the Chernobyl 

Nuclear Power Plant (ChNPP) resulted in a nuclear disaster. The Inter-

national Nuclear and Radiological Event Scale recorded this as a major 

accident, which is the highest level for this scale. The spread of radio-

active materials necessitated the evacuation of the surrounding terri-

tory. To re-establish safety, the authorities created the ChEZ, which is 

controlled by the military and remains in effect until today. The main 

radioactive fallout trail (Western Trace, Figure 1) caused extraordinary 

contamination of the 30- to 40-year-old pine forest located 1.5–2.0 km 

west of the ChNPP. Because of the presence of large amounts of mi-

cron-sized nuclear fuel hot particles in this area, the trees turned red-

dish-brown and died. Thus, the area is referred to as the Red Forest 
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(Figure 2). During liquidation measures by the civil defence troops (Fig-

ure 3), the contaminated biomass was cut down and – together with 

the contaminated topsoil layer and construction debris – buried on-site 

in Radioactive Waste Temporary Storage Places (RWTSPs). Covering 

the burials with a clean soil layer of approximately 1 m helped to im-

mediately reduce the dose rate on the surface. Additionally, the area 

was reforested to prevent wind resuspension and water erosion of the 

soil cover layer. 

 

Figure 1: Surface contamination in the ChEZ with Cs-137 (as of 1997); Source: 

Molitor et al., 2018. 

 

Figure 2: Red Forest. Source: chornobyl.in.ua. 
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Figure 3: Remediation works in the ChEZ. © A.P. Yakubchik (chornobyl.in.ua). 
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However, appropriate protection against radiation mobilisation into the 

groundwater was not established. Because radionuclides migrate into 

the environment via water pathways, the RWTSPs represent a serious 

hazard to the surrounding area. While the direct consumption of con-

taminated water by humans can be avoided with appropriate 

measures, the hazard of indirect ingestion is more challenging. Molitor 

et al. (2017) described the possible absorption of contaminated food-

stuffs by humans as a consequence of propagation of radionuclides in 

the food chain. The model assumes that contaminated groundwater is 

absorbed by plants and grass, leading to root and leaf uptake of radi-

onuclides. With domestic animals consuming grass and certain plants, 

radionuclides further migrate into foodstuffs such as meat, eggs, milk 

and dairy products – and can finally end up in the human organism. 

1.2. Detection of radioactive waste sites 
Recently, there has been increasing pressure to make the ChEZ inhab-

itable again. To improve safety during maintenance and facilitate the 

eventual remediation of burials, detailed hazard maps are needed for 

risk management. These maps should ideally include all of the trenches 

and clamps and should indicate their exact number, location, geometry 

and contents. Unfortunately, the liquidation measures in the aftermath 

of the nuclear disaster were performed under extraordinary conditions. 

Therefore, the exact locations of the burials were not sufficiently doc-

umented, and most current information relies on improvised records. 

Nevertheless, more than 700 burials have been identified over the past 

three decades. However, approximately 300 out of 1,000 burials have 

yet to be found (Molitor et al., 2017). The detection of these undiscov-

ered radioactive waste sites in the ChEZ has been investigated using 

different sensor types. Bugai et al. (2005) found that experiments 

based on ground dose rate measurements and electromagnetic soil 

conductivity surveys were not expedient. Thus, the authors subse-

quently utilized the technique of ground-penetrating radar (GPR) and 

successfully elucidated the subsurface geometry of one suspected bur-

ial site in the RWTSP Red Forest. Based on new GPR surveys, Saintenoy 

et al. (2017) refined the position of this trench and detected a new 

trench in its immediate vicinity. However, ground-based methods have 

two major downsides. First, they are often time consuming and limited 

to the exploration of relatively small areas. Second, ground-based 

campaigns can result in considerable radiation exposure for workers. 

Regarding these issues, unmanned airborne solutions are an advanta-

geous option. After the 2011 nuclear reactor explosion in Fukushima, 

Towler et al. (2012) highlighted the need for unmanned aerial vehicle 

(UAV)-based remote sensing applications in disaster areas to map both 

the structural and radiation content of a post-disaster environment. 
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Additionally, the authors argued that their system showed high effi-

ciency in planning operations. Moreover, MacFarlane et al. (2014) pre-

sented a UAV-based solution for the remote detection of radiation 

anomalies with a high spatial resolution of less than 1 m. In the ChEZ, 

Zabulonov et al. (2015) utilized a gamma spectrometer system and 

conducted UAV-based surveys. By analysing the total gamma intensity 

field and its local component along the flight line, local anomalies were 

identified. The authors demonstrated that this local inhomogeneity 

partly indicated conspicuous areas with unknown burials. In contami-

nated areas, the local gamma ray intensity significantly exceeded the 

level of the total background radiation. As a result, burials in non-veg-

etated areas were identified with a detection rate of 90%. Neverthe-

less, in forested areas, the detection rate dropped down to 50% be-

cause the biomass substantially distorted the measurements. 

Interestingly, in-field observations have revealed two major character-

istics that are typical for the burials. Because most of the trenches and 

clamps have been exposed to natural processes such as settlement and 

erosion, they are represented by elevations and settlements in the dec-

imetre range (Figure 4). Furthermore, in some cases, vegetation 

anomalies tend to appear in the immediate vicinity of the waste sites 

(Figure 5) and can be considered possible indirect indicators. 

 

Figure 4: Possible trench in Red Forest 2.5, showing slight height settlements 
in the decimetre range. © Peter Krzystek 
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Figure 5: Vegetation anomalies in trench areas. © Peter Bayer 

1.3. Vegetation mapping 
The impact of radioactive contamination on the vegetation in the ChEZ 

has been studied comprehensively. Undoubtedly, radioactive isotopes 

(mainly Cs-137 and Sr-90) still exist in the soil of contaminated areas 

due to their half-lives of approximately 30 years (Flynn et al., 1965). 

Moreover, the transportation of radionuclides in the groundwater was 

modelled by Bugai et al. (2012), and the biogenic migration of radio-

nuclides from subsurface storage into plants was described by Kashpa-

rov et al. (2012). The absorption of radionuclides differs between tree 

species (Tikhomirov and Shcheglov, 1994), and the absorbed irradia-

tion dose correlates with the tree mortality rate (Arkhipov et al., 1994). 

Interestingly, Thiry et al. (2009) demonstrated that trees growing on 

burial sites accumulated significantly more Cs-137 and Sr-90 in their 

above-ground biomass compared to trees growing a few metres away 

from the burial sites. Furthermore, the level of radioactive contamina-

tion correlates well with certain spectral characteristics of leaves and 

needles (Davids and Tyler, 2003) as well as effects occurring on the 

morphological level (Yoschenko et al., 2011). Overall, these studies 

encourage the assumption that vegetation anomalies (e.g., tree den-

sity, dominant tree species, tree shape and spectral reflectance) can 

be expected in highly contaminated areas such as the vicinity of 

trenches and clamps. More precisely, vegetation anomalies are be-

lieved to be indirect indicators of unmapped radioactive burials. 

Therefore, it is crucial to investigate current remote sensing methods 

for vegetation mapping. In general, the generation of precise and reli-

able vegetation maps from high-resolution remote sensing data is a 
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fundamental task in forestry. For instance, forest attributes such as 

above-ground biomass and growing stock can be estimated based on 

allometric models. Over the past decade, drone-based approaches to 

forest applications have emerged (Guimarães, 2020) – mainly because 

of low material and operational costs, high flexibility regarding spatial 

and temporal resolution and the absence of risk to crews (Tang and 

Shao, 2015). Because drone-based approaches enable precise area-

wide inventory of forest structural variables, tree-level approaches are 

of increasing interest. Furthermore, to investigate the robustness of 

various forest compositions to changing climatic conditions, forest 

managers and nature conservationists require quantitative mapping 

results (Overbeck and Schmidt, 2012). In this context, the classifica-

tion of dead trees has become increasingly important. However, the 

overall performance of approaches for individual tree species classifi-

cation in dense (and thus complex) temperate forests is still insufficient 

for practical use, as an overall accuracy (OA) of at least 90–95% is 

required for multi-class tasks. 

1.4. Key idea and applications 
Detection methods for trenches and clamps based on visual ground 

inspection or GPR measurements are time, effort and radiation dose 

intensive. These disadvantages can typically be surpassed by airborne 

techniques, allowing for quick area-wide mapping and avoiding risky 

trespassing of the study area. In the past, UAV-based gamma spec-

trometry surveys in the ChEZ achieved promising results in open areas. 

However, the results were inaccurate in forested areas. 

As already mentioned, known trenches and clamps display two major 

characteristics: first, digital terrain model (DTM) anomalies in the dec-

imetre range and, second, vegetation anomalies with respect to tree 

height, tree density, crown volume, above-ground biomass and tree 

species composition in their surroundings. Therefore, the key idea of 

this PhD thesis was to utilize UAV-based remote sensing devices in 

combination with machine learning (ML) methods to perform precise 

3D vegetation mapping followed by the classification of areas contain-

ing buried radioactive materials (Figure 6). As sensor technologies, 

light detection and ranging (lidar) and multispectral (MS) imagery were 

identified as promising solutions. Because airborne lidar is able to pen-

etrate vegetation, it has been widely used for DTM extraction – even 

in overgrown areas (Sithole and Vosselman, 2004; Gevaert et al., 

2018). Furthermore, small terrain height anomalies can be detected 

using DTM information and standard ML techniques. For instance, cul-

tural remains have been identified in archaeological investigations 

(Lasaponara et al., 2010; Bollandsås et al., 2012), even when located 
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under dense vegetation (Guyot et al., 2018). Additionally, lidar facili-

tates precise 3D mapping of forests at the tree level (Reitberger et al., 

2008). In combination with MS imagery, lidar has demonstrated prom-

ising potential for the calculation of forest structural variables (Latifi 

and Heurich, 2019). 

In the context of risk management, precise vegetation maps can assist 

in forest fire simulations and help to create action plans to mitigate 

these hazard situations more efficiently. Regarding the ChEZ study 

area, vegetation maps can additionally be utilized to build complex ra-

diation models. For instance, Molitor et al. (2018) simulated workers’ 

radiation dose uptake in the ChEZ. However, until now, their models 

have been rather basic and require improvement to achieve the most 

realistic possible results. By incorporating precise 3D models of the 

vegetation, simulations could even consider the individual radiation 

levels of single trees. 

 

Figure 6: Key idea of this PhD thesis and possible applications for risk man-

agement. 
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1.5. Research background and objectives 
The research reported in this PhD thesis is part of the project GeoFlyer, 

which is funded by the German Federal Ministry of Education and Re-

search (Bundesministerium für Bildung und Forschung). The project 

aims at optimizing an unmanned aircraft system for the mapping of 

remote hazard areas. In accordance with the project goals, this PhD 

thesis covers two distinct subjects. Utilizing UAV-based optical sensors 

and ML algorithms, the detection of radioactive waste sites in the ChEZ 

was investigated. Furthermore, this thesis focuses on the DL-based 

classification of single trees from high-resolution remote sensing data. 

The key objectives are presented in the following paragraphs. For more 

details on the individual studies, please refer to the corresponding 

chapters. 

Initially, a pilot study (see Chapter 2) is performed based on the data 

of a one-week mission conducted in the ChEZ. The main objective is to 

investigate the feasibility of UAV-based detection of unknown radioac-

tive waste sites using lidar data and MS imagery. The area of focus is 

the densely vegetated and thus challenging area in the Red Forest, 

where historical maps have only roughly indicated the existence of 

trenches. Experiments are conducted using a random forest (RF)-

based classifier to explore the effectiveness of different handcrafted 

feature subsets. The goal is to implement an appropriate feature se-

lection method to prevent model overfitting and achieve accurate and 

reliable results. In the following comprehensive study (see Chapter 3), 

the overall objective is to improve the detection of trenches and 

clamps. Therefore, a second mission is performed in the ChEZ, opti-

mizing the experimental setup and the findings obtained in the pilot 

study. Regarding the data collection, simultaneous recording of lidar 

data and MS imagery in the same flight mission is to be enabled. Thus, 

an extension of the sensor setup is used to facilitate the generation of 

overlapping high-resolution datasets. A further goal is the implemen-

tation of a data-driven correction method for the radiometric calibra-

tion of the laser scanner. In terms of classifier performance, one main 

purpose is to optimize the detection process by extending the feature 

set. Based on the enriched feature set, the simultaneous detection of 

both trenches and clamps is tackled. Finally, the classification results 

are to be evaluated by on-site test drillings. 

The second part of this PhD thesis focuses on DL-based methods for 

tree species mapping. To achieve this goal, a preliminary study is per-

formed using raw point clouds (Figure 7) for tree species classification 

(see Chapter 4). Lidar data and MS imagery are used to adapt Point-

Net++ to the classification of presegmented single trees (Figure 8) with 

respect to tree species and standing dead trees. Besides 3D coordi-

nates, the objective is to integrate additional point attributes such as 
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lidar echo pulse width, surface normals and MS features. Additionally, 

data augmentation and hyperparameter tuning are to be incorporated 

into the network training. 

 

Figure 7: Basic principle of 3D deep neural networks (DNNs) such as Point-

Net++, operating directly on 3D point clouds without a prior transformation 
into 2D images or 3D voxel grids (Briechle et al., 2019). 

 

Figure 8: Segmented single trees in oblique (left), bird’s eye (top right), and 

side view (bottom right); random colour rendering. 

As mentioned above, training PointNet++ from scratch requires a huge 

set of training data and is, thus, rather inappropriate for relatively 

small datasets. In contrast, 2D convolutional neural networks (CNNs) 

are widely utilized in combination with transfer learning, enabling quick 

adaptation to new tasks – even on clearly reduced datasets. Thus, the 

idea is to fine tune a CNN model using pretrained weights for network 

initialization and recursive retraining of a subset of network layers. 

Consequently, the objective of the final study of this thesis (see Chap-

ter 5) is to explore the use of 2D CNNs for the combined classification 

of presegmented 3D tree objects with respect to tree species and 

standing dead trees. The study includes experiments focusing on the 

number of samples and varying geometric and spectral resolutions. 

One main objective is the generation of appropriate 2D representations 
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from the lidar point clouds of single trees. Additionally, laser echo char-

acteristics (EC) and MS information are to be integrated. The most im-

portant study aim is designing a network architecture in order to pro-

cess images rendered from both sensor datasets. Finally, using identi-

cal data from two study areas, the 2D- and 3D-based DL approaches 

are verified and compared to reveal their advantages and disad-

vantages. 

1.6. Structure of the thesis 
This dissertation is comprised of six chapters. Enclosed by the intro-

duction and the synthesis, Chapters 2 through 5 present peer-reviewed 

journal and conference papers covering both the detection of radioac-

tive waste sites (Chapters 2 and 3) and DL-based vegetation mapping 

(Chapters 4 and 5). Each of these four chapters is a standalone work 

with its own research objectives, materials, methodology, experiments 

and results, discussions and conclusions. Thus, there is considerable 

overlap between these contributions in terms of the background, da-

tasets and related works. Nevertheless, if a reader is only interested in 

a specific chapter, there is no need to consult another part of this thesis 

for its full comprehension. 
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2 UAV-based detection of unknown ra-

dioactive biomass deposits in Cherno-

byl's Exclusion Zone1 
 

  

                                           
1 This chapter is based on the article: 

Briechle, S., Sizov, A., Tretyak, O., Antropov, V., Molitor, N., Krzystek, 

P.: UAV-based detection of unknown radioactive biomass deposits 

in Chernobyl’s Exclusion Zone. Int. Arch. Photogramm. Remote 

Sens. Spatial Inf. Sci., XLII-2, 163–169, 2018, doi:10.5194/isprs-

archives-XLII-2-163-2018. 

https://doi.org/10.5194/isprs-archives-XLII-2-163-2018
https://doi.org/10.5194/isprs-archives-XLII-2-163-2018
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Abstract 
Shortly after the explosion of the ChNPP in 1986, radioactive fall-out 

and contaminated trees (so-called Red Forest) were buried in the 

ChEZ. These days, exact locations of the buried contaminated material 

are needed. Moreover, 3D vegetation maps are necessary to simulate 

the impact of tornados and forest fires. After 30 years, some of the so-

called trenches and clamps are visible. However, some of them have 

become overgrown and have slightly settled in the centimetre and dec-

imetre range. This chapter presents a pipeline that comprises 3D veg-

etation mapping and ML methods to precisely map trenches and clamps 

from remote sensing data. The dataset for our experiments consists of 

UAV-based lidar data, MS data, and aerial gamma-spectrometry data. 

Depending on the study areas, OA values ranging from 95.6% to 

99.0% were reached for the classification of radioactive deposits. Our 

first results demonstrate an accurate and reliable UAV-based detection 

of unknown radioactive biomass deposits in the ChEZ. 

2.1. Introduction 
In the first months after the Chernobyl accident large parts of contam-

inated material resulting from clean-up operations were buried into 

nine RWTSPs. On the one hand, these clean-up measures resulted in a 

decrease of the external exposure dose rate by a factor of about 10. 

Parts of the RWTSPs were also re-vegetated in order to stabilize the 

surface covers and to reduce the effect of re-suspension of contami-

nated dust particles by wind. On the other hand, however, these clean-

up operations led to a higher risk of groundwater contamination. These 

RWTSPs were created in the vicinity of the ChNPP and contain about 

1,000 excavated trenches and/or clamps in which radioactive material 

was buried and covered with a clean soil layer (Molitor et al., 2017). 

Unfortunately, a comprehensive and complete documentation of the 

volumes, the radionuclide inventories, the exact positions, and the ex-

act total number of trenches and clamps is not available. In order to 

justify and substantiate action plans to mitigate actual and future haz-

ards, it is extremely important to have appropriate up-to-date descrip-

tions and evaluations on the current radiological situation and its evo-

lution. 

Since the explosion of the ChNPP a lot of research investigation from 

different special fields have been carried out in the ChEZ. To name just 

a few: Kashparov et al. (2012) present studies on the radionuclide be-

haviour in the environment after the disposal of radioactive waste into 

shallow subsurface storages. The main results describe the biogenic 

migration of radionuclides from subsurface storages into plants. Bugai 

et al. (2012) focused on the hydrogeological characterization and 
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groundwater transport modelling to describe the migration of radionu-

clides over a 16-year period (1986–2002). Besides these research 

studies, the European Union financed a project called “Support to ra-

dioactive waste management in Ukraine” (EU, 2014–2017). One pur-

pose of this project was the investigation of radioactive waste burial. 

Partially, the RWTSPs have already been well investigated. Though, 

some other RWTSPs do not have such detailed information about the 

location and radioactivity of inventory – these are subject for ongoing 

investigation efforts. In 2015, airborne geophysical surveys proved 

that the mapping of burials, especially in low vegetated areas, is pos-

sible using high-resolution gamma field radiation measurements. The 

results prove that the local gamma ray intensity significantly exceeds 

the level of the total background radiation in contaminated areas. In 

vegetated areas, the biomass significantly distorts the measurements 

because the radiation of the vegetation can not be taken into account 

during the calibration process (Zabulonov et al., 2015). 

The experiments with the gamma spectrometer conducted so far in the 

forested areas of ChEZ revealed that the interpretation of the spec-

trometer measurement signal is difficult and not yet solved. Thus, 

other sensor systems are to be envisaged supplementary to detect 

buried contaminated material. As these deposits can be characterized 

by slight height anomalies of the ground (trenches and clamps) the 

idea is to advantageously use an UAV-based lidar system: On the one 

hand, this measurement technique operates at a sufficient safety dis-

tance, which is of prime importance considering the study area. On the 

other hand, UAV-based lidar permits a precise 3D reconstruction of the 

tree landscape as well as the detection of small terrain height anoma-

lies. It even allows the creation of 3-dimensional contamination maps 

by taking into account the tree specific radiation. In non-forested areas 

some of the known deposits are covered with low vegetation that – 

compared to the neighbourhood – shows anomalies w.r.t the species 

and the green tone. Hence, we also used a UAV-mounted high resolu-

tion MS camera to collect image data in the visible and near-infrared 

(NIR) spectrum that provides additional information for the classifica-

tion process. To sum it up, the key idea of this research is to combine 

UAV-based lidar, MS images and airborne gamma spectrometer meas-

urements to automatically map unknown buried radioactive deposits in 

the ChEZ. 

In the following sections we address (ii) the drone systems, the sensors 

and the preprocessing of the data, (iii) the entire processing pipeline 

including the 3D vegetation mapping and the classification scheme for 

the radioactive burials, (iv) the experiments and results, (v) discuss 

our results and (vi) conclude and give an outlook to potential future 

research topics. 
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2.2. Materials 

2.2.1. UAV systems 

Persuading results from UAV surveys start with the selection of the 

appropriate sensors to perform the requested task. Nevertheless, the 

capability of the carrier system will decide on the performance of the 

survey both in terms of quality and quantity. To achieve our objectives 

we relied on two different UAVs. For the lidar measurements an octo-

copter was available that was developed by a team of the department 

of nuclear physics technologies of the Institute of Environment Geo-

chemistry at the National Academy of Sciences of Ukraine. This octo-

copter was already used for the airborne geophysical surveys men-

tioned above. As carrier for the MS camera we used the Quantum Trin-

ity VTOL (vertical take-off and landing) fixed-wing system. The hybrid 

concept of this VTOL drone combines the advantages of multi-copters 

and fixed-wing drones. Using multiple propeller arrays or tilt rotors, it 

can take off and land like a rotary wing drone. Once airborne, it can 

transition to horizontal flight and work as a fixed-wing drone. 

2.2.2. Lidar data 

As lidar system we used the YellowScan Mapper laser scanner mounted 

on the octocopter carrying the payload of 2.2 kg (excl. copter batteries) 

at a maximum mission time of around 20 minutes. In order to get flight 

trajectories with centimetre precision a Global Navigation Satellite Sys-

tem (GNSS) base station was set up to collect simultaneous measure-

ments that were used in DPGS processing. Seven flights were con-

ducted in four selected areas of ChEZ in November 2017 in leaf-off 

situation. The measurement rate was 18.5 kHz, the flights were real-

ized at a speed of 4–7 m/s and an altitude of 50 m resulting in a nom-

inal point density of 25–40 points/m² (side lap 50%). The boresight 

parameters of the laser scanner provided by the manufacturer were 

checked using data of a special calibration flight over a building and 

were fully verified in the subsequent strip alignment. All the strips of a 

flight mission were aligned to achieve a consistent lidar point cloud 

using the software package BayesStripAlign from BayesMap Solutions. 

At average, the mean discrepancies between the neighbouring strips 

were around 5 cm. This means that the boresight parameters had been 

successfully adjusted and the strip trajectories appropriately mapped. 

An absolute 3D georeferencing was achieved by fitting the lidar point 

clouds to the enclosing polygons of buildings. Finally, ground points 

were filtered from the lidar point clouds and were subsequently inter-

polated into a DTM grid with a grid size of 0.5 m. 
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2.2.3. MS data 

To capture MS data we used the Tetracam ADC Snap camera mounted 

on the Quantum Trinity VTOL system. The ADC Snap camera captures 

light wavelengths in three bands between 520 nm and 920 nm (Green, 

Red, NIR). The flight duration of the Trinity drone was around 50 

minutes at a mean speed of 17 m/s (flying altitude 130 m, side lap 

40%, end lap 80%). All flights were carried out in fully automatic mode 

to avoid the direct trespassing of contaminated areas. Dense photo-

grammetric point clouds (15 points/m²) and orthomosaics (ground 

sampling distance (GSD) 8 cm) were generated from the MS images 

using standard structure-from-motion Software. Due to missing 

ground control points (GCPs) in a few inaccessible areas two photo-

grammetric point clouds were registered to the lidar data by manual 

measurements of GCPs with a standard deviation (std) of 70 cm. 

2.2.4. Gamma spectrometry data 

In addition to the lidar data and the MS images, measurements of an 

aerial gamma-ray spectrometer survey were available as selective 

data. The UAV-based aero-gamma spectrometry system (see Figure 9) 

enables high-resolution mapping of radiation contamination without 

any risk to human health. The spectrometer data were collected by the 

airborne gamma spectrometric complex “ASPEK”. The on-board unit is 

intended to perform geo-referenced measurements of the gamma ra-

diation spectra as well as altitude, pressure and temperature measure-

ments. The spectrometer consists of five blocks of gamma radiation 

detectors based on thallium-doped sodium iodide scintillator crystals 

with a size of 63x63 mm (Zabulonov et al., 2015). These crystals emit 

light as soon as gamma rays interact with the atoms in the crystals. 

The intensity of the produced light can be measured and is proportional 

to the energy deposited by the gamma rays (Melcher, 2000). All blocks 

work synchronously and the signals of all detectors are summarized. 

The measurement system allows real time control over the unit sensi-

tivity by turning on/off single detector blocks – depending on the re-

quired sensitivity. With a total weight of about 7.5 kg (excl. batteries) 

and a dimension of 300 mm x 300 mm the spectrometer can be in-

stalled on an octocopter (Zabulonov et al., 2017). The flights were per-

formed in parallel tracks with a track-to-track distance of 100 m. The 

average altitude was 30 m at an average flight speed of 5 m/s and a 

measurement interval of 1 s. The high payload of the detector array 

does not allow any physical collimation. This fact results in a spectrom-

eter measurement angle of 120 degrees with a footprint of around 100 

m. The preprocessing of the spectrometry data contained the following 

steps: First, the total gamma intensity (gamma_total) was computed. 

In a second step, the background gamma intensity was calculated us-

ing a sliding average method. Finally, the local component of the 
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gamma intensity (gamma_local) was derived as the difference of the 

total gamma intensity and the background gamma intensity (Zabu-

lonov et al., 2015). It needs to be mentioned that the measured signal 

is the sum of different signals, i.e. the natural radiation from space and 

ground, the radiation from close-range contaminated vegetation, the 

radiation from fallout on the ground, and from buried biomass. 

 

Figure 9: UAV-mounted gamma spectrometer (Zabulonov et al., 2017). 

2.2.5. Study areas 

Three different study areas are presented in this chapter (see Figure 

10). Study area “Yanov Station 3.3/3.5/3.7” (size around 1 km²) was 

just captured with the MS camera. Most of the clamps are clearly visible 

because they are not covered with high vegetation. In the second study 

area “Red Forest 2.5” (area size 6 ha), dense vegetation (birches and 

pines with a height up to 21 metres) covers the ground and makes it 

impossible to detect trenches and clamps just using an airborne pho-

togrammetric sensor. In this case, the lidar sensor is superior because 

of the penetration of the laser beams to the ground. Study area “Yanov 

Station 3.3” (area size 15 ha) is the former railway freight terminal, 

which has become partly overgrown with trees with a height up to 27 

metres. In this area, no photogrammetric data are available. 

 

Figure 10: Locations of the three study areas in the ChEZ (source: bing map 
©Microsoft Corporation). 
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2.3. Methods 
Depending on the tree species parts of the contaminated material are 

accumulated in the above-ground biomass. The radioactive deposits 

are characterized by slight ground settlements or elevations, vegeta-

tion anomalies and a higher rate of gamma decays. Thus, the key idea 

is to classify the deposit areas from salient features calculated from the 

bare ground height, the vegetation, the gamma radiation and the re-

flection data acquired in the visible and NIR channels. 

2.3.1. 3D vegetation mapping 

Based on the normalized cut algorithm single trees are automatically 

segmented from the lidar data resulting in tree position, tree height, 

crown volume and crown base height (CBH) for each tree (Reitberger 

et al., 2009). The tree segmentation is evaluated by visual interpreta-

tion to find the best normalized cut threshold since no tree reference 

data are available. Subsequently, the single trees are classified w.r.t. 

to the two main tree species birch (Betula pubescens) and pine (Pinus 

sylvestris) using an RF classifier. The feature set (48 features) com-

prises radiometric and geometric features, e.g. height dependent and 

density dependent features, the crown shape and the mean intensity 

of laser points of a single tree per height layer. 

Since no destructive sampling of reference trees is available we need 

to estimate the tree biomass solely from allometric equations using the 

tree height and tree species. First, we calculate the diameter at breast 

height (DBH) from the tree height (Widlowski et al., 2003). Next, we 

convert the DBH into the total above-ground biomass using the equa-

tions in Repola (2009). 

2.3.2. Detection of trenches and clamps 

In order to automatically detect trenches and clamps it is necessary to 

generate meaningful features from the available data and apply the 

classification based upon a well-defined evaluation strategy. 

2.3.2.1.  Feature description 

A meaningful feature to describe terrain height anomalies is the nor-

malized height. For every DTM grid position, the corresponding abso-

lute terrain height is reduced by the height trend (mean height in a 

surrounding quadratic area of 50 x 50 m). Since contaminated areas 

are supposed to be characterized by vegetation anomalies multiple fea-

tures are calculated to describe the vegetation. One set of features are 

the so-called lidar metrics (LM; Næsset, 2004). These height- and den-

sity-dependant features are calculated for eight different height layers 

(0–1.5 m, 1.5–5 m, 5–12 m, >12 m, >2 m, 0.5–2 m, 0.5–5 m, >0 m) 

for a cell size of 5 x 5 m. Finally, the metrics are resampled to the DTM 
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grid size by bi-linear interpolation. Another feature set describing the 

vegetation comprises 14 so-called tree features (TF; see Table 1), 

which are calculated for every grid point of the DTM. The close-up trees 

in a circular area are detected by applying a range search within a 

radius of 30 m. Available features that characterize the gamma radia-

tion are the total intensity and the local component of the gamma spec-

trometry measurements. These data are available as single measure-

ments (point distance around 5 m) along the UAV flight tracks and are 

bi-linearly interpolated on the NTM grid. Additionally, MS data (ortho-

mosaic) are available for study area 1. The data of the three channels 

(Green, Red, NIR) are also bi-linearly interpolated on the DTM grid. All 

in all, the generated features can be grouped into five feature subsets 

(see Table 2). The total feature sets for the particular experiments are 

individually generated w.r.t. the characteristics of the study areas and 

the availability of remote sensing data. 

Table 1: Definition of TF. 

TF# Definition 

1 Number of trees 

2 Mean tree height [m] 

3 Std of tree height [m] 

4 Mean CB_height [m] 

5 Std of CB_height [m] 

6 Pine tree ratio (# pine trees / # all trees) 

7 Sum of crown volumes [m³] 

8 Mean crown volume [m³] 

9 Std of crown volume [m³] 

10 Mean DBH [cm] 

11 Std of DBH [cm] 

12 Sum of above-ground biomass [kg] 

13 Mean above-ground biomass [kg] 

14 Std of above-ground biomass [kg] 

2.3.2.2.  Classification and evaluation strategy 

Prior to the RF classification, training and test areas are manually de-

fined and labelled according to their classes by visual interpretation of 

the datasets. Partially available RWTSP reference data also support the 

labelling. The training set is balanced and highly correlated redundant 

features are removed from the feature set to avoid a deterioration of 

the classification result. First, we calculate the correlation coefficient 

from the covariance matrix of all features. Second, we eliminate fea-

tures with a correlation coefficient larger than 0.75. An RF classifier is 

trained including a recursive feature elimination (RFE) to optimize the 

feature set by discarding non-important features. The classifier is eval-

uated by the OA and κ values by a repeated five-fold cross-validation 
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(CV). Moreover, the mean decrease in accuracy (proportion of obser-

vations that are incorrectly classified by removing the feature) is used 

to evaluate the relevance of the individual features. The class predic-

tions for the test data are estimated and the prediction quality is 

checked using the OA, precision and recall. Finally, the class probabil-

ities beyond a certain threshold (i.e. 95%) are visualized for the par-

ticular study areas. 

Table 2: Available feature subsets in the study areas. 

Study area 1 2 3 

Normalized height X2 X X 

LM X2 X  

TF  X  

Gamma spectrometry features X X X 

MS features X   

2.4. Experiments 

2.4.1. Vegetation mapping and biomass estimation 

Based on the segmentation of single trees the two tree species (birch, 

pine) were classified using an RF classifier. The classifier was trained 

using a reference dataset in study area 2 consisting of 216 manually 

labelled, well-balanced tree species and a sample ratio of 0.7 (70% for 

training, 30% for test). A five-fold CV showed an OA of 95.4%, a κ 

value of 91.4%, a precision of 94.3%, and a recall of 97.1%. After a 

feature relevance assessment the mean intensity of the tree crowns 

turned out to be the most relevant feature. 

The DBH parameters were estimated from the tree heights using al-

lometric functions and were subsequently used to estimate the total 

above-ground biomass. Figure 11 and Figure 12 show the segmented 

trees for the study area Red Forest 2.5 coloured in dependence on the 

tree species and on their total above-ground biomass, respectively. 

                                           
2 For study area 1 (Yanov Station 3.3/3.5/3.7), the normalized height and the 

LM are calculated from the photogrammetric point cloud due to missing lidar 
data. 
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Figure 11: Study area 2: Tree species classification result. 
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Figure 12: Study area 2: Biomass estimation result. 

2.4.2. Detection of trenches and clamps 

The individual feature subsets in the study areas that were used as 

input for the feature selection process are depicted in Table 2. Table 3 

gives an overview of the number of effectively applied features in the 

classification process (used #feat), the class names, the number of 

training and test samples, the five-fold CV results of the training da-

taset and the results of the class prediction of the test data (prec. = 

precision, rec. = recall). In the following subsections, the results of the 

different study areas are presented in detail. 
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2.4.2.1.  Study area 1: Yanov Station 3.3/3.5/3.7 

During the feature selection the gamma spectrometry features, the 

green channel as well as huge parts of the LM subset were removed. 

The RFE process resulted in 16 remaining features out of 22 uncorre-

lated features. The feature importance depending on the mean de-

crease in accuracy showed that – as expected – the normalized height 

and the NIR channel are by far the most relevant features. Class pre-

dictions and class probabilities were calculated for the test area (Figure 

13, left). The prediction result of class probability values of more than 

95% for the class “clamps” are presented in Figure 13 (right). The de-

tected clamps in this study area have already been known to the ChEZ 

authorities. These relatively high, non-vegetated clamps can partly be 

seen from the non-contaminated roads and even in satellite images. 

Nevertheless, the results (OA=95.6%, κ =89.5%, precision=93.6%, 

recall=91.7%; see Table 3) show that our method is feasible to detect 

this kind of clamps that are solely captured by MS cameras. 

 

Figure 13: Study area 1: Test area (left); Classification result for class “clamp”, 
class probability values >95% (right). 

2.4.2.2.  Study area 2: Red Forest 2.5 

In the area Red Forest 2.5, the RFE dropped 5 of the 17 uncorrelated 

features. Four LM as well as the gamma local component were removed 

during this step. It is not surprising that the normalized height was 

again the most important feature. Besides eight of the LM, three TF 

remained in the feature set. In this study area with dense vegetation, 

two TF are even ranked under the top five. Obviously, vegetation 

anomalies occur in the trench areas since the standard deviations of 

the crown volume, the above-ground biomass, and the DBH turned out 

as prominent features. The classification result showed excellent accu-

racy (OA=99.0%, κ =98.0%, precision=99.4%, recall=98.6%; see Ta-

ble 3). The filtered DTM as well as the prediction result of the study 
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area 2 are presented in Figure 14 and Figure 15. In the area Red Forest 

2.5, four so far unknown trenches overgrown with quite dense vegeta-

tion were detected. The length of these trenches ranges between 50 m 

and 100 m with a width up to 5 m and a depth up to 1.5 m. 

 

Figure 14: Study area 2: Filtered DTM. 
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Figure 15: Study area 2: Classification result for class “trench”, class probabil-

ity values >95%. 

2.4.2.3.  Study area 3: Yanov Station 3.3 

In the area Yanov Station 3.3, an initial visualization showed a potential 

correlation between the terrain height anomalies and the local compo-

nent of the gamma spectrometer measurements. In this study area, 

the fairly sparse vegetation coverage motivates the usage of the bi-

linearly interpolated spectrometer data. The impact of the low vegeta-

tion on the measured radiation signal is assumed to be negligible. In 

other words, we suppose that the gamma spectrometer measurement 
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is a gamma ray superimposition of the buried radioactive material, the 

constant impact of the top soil layer, and the constant impact of the 

background radiation from space. Due to lacking reference data a test 

dataset was manually generated taking into account the information of 

the normalized height map – overlaid with the local component of the 

gamma spectrometer measurements (Figure 16, top). The selection of 

features is not necessary on a feature set consisting of only two fea-

tures (normalized height, gamma_local). The local component of the 

gamma spectrometer measurements turned out as the five times more 

important feature in the RF feature importance assessment using the 

mean decrease in accuracy. The parameters describing the classifica-

tion quality are very satisfying (OA=98.4%, κ=95.5%, preci-

sion=95.9%, recall=97.3%; see Table 3). The prediction result for the 

study area 3 is presented in Figure 16 (bottom), showing class proba-

bility values of more than 99% for the class “contaminated”. In con-

clusion, in the partly overgrown area of Yanov Station 3.3, the contam-

inated areas can be automatically detected using the local component 

of the gamma spectrometer measurements and the normalized height 

as features. 

 

Figure 16: Study area 3: Normalized height map and local component of the 
gamma spectrometer measurements [µSv/h] (top); Normalized height map 
and classification result for class “contaminated”, class probability values 

>99% (bottom). 



UAV-based detection of unknown radioactive biomass deposits 

28 

Table 3: Overview of the RF classification parameters and results. 

Study area 1 2 3 

Used #feat 16 12 2 

Class names 1: clamp 
2: no clamp 

1: trench 
2: no trench 

1: contaminated 
2: non-cont. 

Training samples 83643 2473 86862 

Five-fold CV 
(training data) 

OA = 98.8% 

κ = 94.6% 

OA = 99.8% 

κ = 99.6% 

OA = 98.5% 

κ = 96.6% 

Test samples 52,724 2,446 120,151 

OA [%] 

κ [%] 

precision [%] 
recall [%] 

95.6 
89.5 

93.6 
91.7 

99.0 
98.0 

99.4 
98.6 

98.4 
95.5 

95.9 
97.3 

2.5. Discussion 
The classification accuracy of more than 95% for DTM grid points po-

tentially located in trenches and clamps is fairly high in all study areas 

(see Table 3). Our concept proves that the UAV-based detection of un-

known radioactive biomass deposits in the ChEZ is successful for both 

MS data and lidar data. The normalized height appears to be the most 

important feature for the selected areas. Furthermore, the results in 

study area 2 (Red Forest 2.5) show that the features derived from the 

3D vegetation mapping have also a significant impact on the classifi-

cation result in forested areas. In non-forested areas such as study 

area 1, the MS features (mostly NIR) are important to classify contam-

inated clamps. 

The integration of gamma spectrometry features into the classification 

process is problematic since the measured radiation is a superposition 

of different effects. As to be expected, our results verify that bi-linearly 

interpolated gamma spectrometry data is suitable in study area 3. Sim-

ilar results were expected for study area 1, but it looks like that the 

use of bi-linearly interpolated gamma spectrometry data is not appli-

cable here since the spectrometry features significantly deteriorate the 

classification result. One explanation might be that the deposits are 

shielded by a thick soil coverage. A feature assessment in study area 

2 (Red Forest 2.5) leads to the assumption that gamma spectrometry 

data cannot be utilized as bi-linearly interpolated data. Especially in 

the forested areas, a model with a higher complexity is needed to re-

move the radiation impact of the above-ground biomass from the 

gamma spectrometry data and to isolate the radiation impact gener-

ated by the buried radioactive material. 

An internal technical report about the results of the UAV gamma spec-

trometry surveys in 2015 (Molitor, 2017) states that burials can be 

identified by analysing anomalies of the local component of the gamma 
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intensity. The probability ranges from more than 50% in vegetated ar-

eas to more than 90% in low vegetated areas. Our results demonstrate 

that comparable results can be achieved for low vegetated areas just 

using MS data (study area 1). However, in vegetated areas (study area 

2), considerable improvement was reached – as expected – by taking 

advantage of lidar data. Thus, UAV lidar is mandatory to detect 

trenches and clamps in forested areas because of its capability to pen-

etrate vegetation. 

2.6. Conclusion and outlook 
The experiments prove that the UAV-based lidar and MS image tech-

nology in combination with aerial gamma spectrometry surveys can 

successfully map unknown deposits of buried radioactive biomass in 

the ChEZ. Excellent RF classification results for the detection of 

trenches and clamps were achieved by fusing geometric features, 

newly developed vegetation features, gamma spectrometer measure-

ments and MS image data. To minimize workers’ dose uptake and to 

optimize remediation work, the existing hazard maps were verified and 

upgraded. Future work will focus on the generation of overlapping da-

tasets combining lidar data and MS image data for overgrown and non-

overgrown areas. This data fusion enables the advantages of two sen-

sor technologies in different situations: 

 Lidar data: accurate DTM, LM and TF in forested areas 

 MS data: improved classification results, especially in non-for-

ested areas 

As far as the methodology is concerned, the feature set shall be sup-

ported by adding e.g. point feature histograms (Rusu et al., 2008), 

additional 3D and 2D features (Weinmann et al., 2014) and shape dis-

tributions (Osada et al., 2002) to further improve the classification re-

sult. Above all, research is intended to model the impact of the biomass 

to the gamma spectrometer measurements and to finally dissolve the 

impacts of the different radiation sources. 
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3 Detection of radioactive waste sites in 

the Chernobyl Exclusion Zone using 

UAV-based lidar data and multispectral 

imagery3 
 

                                           
3 This chapter is based on the article: 
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radioactive waste sites in the Chornobyl Exclusion Zone using UAV-
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Abstract 
The severe accident at the ChNPP in 1986 resulted in extraordinary 

contamination of the surrounding territory, which necessitated the cre-

ation of the ChEZ. During the accident, liquidation materials contami-

nated by radioactive fallout (e.g., contaminated soil and trees) were 

buried in RWTSPs. The exact locations of these burials were not always 

sufficiently documented. However, for safety management, including 

eventual remediation works, it is crucial to know their locations and 

rely on precise hazard maps. Over the past 34 years, most of these 

trenches and clamps have been exposed to natural processes. In addi-

tion to settlement and erosion, they have become overgrown with 

dense vegetation. To date, more than 700 burials have been thor-

oughly investigated, but a large number of burial sites (approximately 

300) are still unknown. In the past, numerous burials were identified 

based on settlement or elevation in the decimetre range, and vegeta-

tion anomalies that tend to appear in the immediate vicinity. Never-

theless, conventional detection methods are time, effort and radiation 

dose intensive. Airborne gamma spectrometry and visual ground in-

spection of morphology and vegetation can provide useful complemen-

tary information, but it is insufficient for precisely localizing unknown 

burial sites in many cases. Therefore, sensor technologies, such as 

UAV-based lidar and MS imagery, have been identified as potential al-

ternative solutions. This chapter presents a novel method to detect 

radioactive waste sites based on a set of prominent features generated 

from high-resolution remote sensing data in combination with an RF 

classifier. Initially, we generate a DTM and 3D vegetation map from 

the data and derive tree-based features, including tree density, tree 

height, and tree species. Feature subsets compiled from normalized 

DTM height, fast point feature histograms (FPFH), and LM are then 

incorporated. Next, an RF classifier is trained on reference areas de-

fined by visual interpretation of the DTM grid. A backward feature se-

lection strategy reduces the feature space significantly and avoids 

overfitting. Feature relevance assessment clearly demonstrates that 

the members of all feature subsets represent a final list of the most 

prominent features. For three representative study areas, the mean 

OA is 98.2% when using area-wide test data. Cohens' kappa coefficient 

κ ranges from 0.609 to 0.758. Additionally, we demonstrate the trans-

ferability of a trained classifier to an adjacent study area (OA = 93.6%, 

κ = 0.452). As expected, when utilizing the classifier on geometrically 

incorrect and incomplete reference data, which were generated from 

old maps and orthophotos based on visual inspection, the OA decreases 

significantly to 65.1% (κ = 0.481). Finally, detection is verified through 

38 borings that successfully confirm the existence of previously un-

known buried nuclear materials in classified areas. These results 
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demonstrate that the proposed methodology is applicable to detecting 

area-wide unknown radioactive biomass burials in the ChEZ. 

3.1. Introduction 
On April 26, 1986, an explosion of Reactor Unit 4 at the ChNPP, located 

approximately 100 km north of Kiev, Ukraine, was recorded as a major 

accident according to the International Nuclear and Radiological Event 

Scale. To re-establish safety, the surrounding population was evacu-

ated from severely affected areas, and the ChEZ was created. This zone 

remains in effect today. Based on the extraordinary contamination 

caused by the spread of radioactive materials, the forest in the fallout 

trails adjacent to the ChNPP turned reddish-brown and died (hereafter 

referred to as the Red Forest). During the implementation of liquidation 

measures, the contaminated biomass and topsoil were buried on-site 

in trenches and clamps, then covered by a clean soil layer with a typical 

thickness of approximately 1 m. These burials were created in areas 

called RWTSPs. A total of nine RWTSPs were created in the vicinity of 

the ChNPP, consisting of approximately 1,000 trenches and clamps 

(Molitor et al., 2017). To stabilize the surface cover and reduce re-

suspension of contaminated dust particles by wind, many parts of the 

RWTSPs were re-vegetated. Initially, clean-up actions decreased the 

external exposure dose rate significantly. However, based on the ab-

sence of appropriate barriers, burials in RWTSPs do not provide suffi-

cient protection against radiation mobilization into groundwater. Un-

fortunately, accident liquidation measures were performed under ex-

traordinary boundary conditions. Therefore, no detailed systematic 

documentation of the RWTSPs is available. Most current information 

relies on improvised records that were created during or after the liq-

uidation measures. Thus, a comprehensive overview and precise map-

ping of trenches and clamps (exact number, location, geometry, con-

tents, etc.) are necessary to improve safety during maintenance and 

facilitate the eventual remediation of burials. 

The main objective of this study is to map unknown radioactive bio-

mass burials in the ChEZ automatically and accurately. On-site visual 

inspections of known burials revealed three important facts. First, 

many burials can be identified based on settlement or elevation in the 

decimetre range or more. Second, distinctive vegetation features are 

also characteristic of many burials. Third, based on significant remain-

ing contamination, a remote measurement technique is required to 

avoid risky trespassing of the study areas. Therefore, the key idea of 

this study is to utilize remote sensing devices in combination with ML 

methods to perform precise 3D vegetation mapping followed by the 

classification of areas containing buried radioactive materials. As a sen-
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sor platform, a UAV can be deployed to collect data from a safe dis-

tance. Because it is able to penetrate vegetation, airborne lidar data 

can be utilized to extract precise DTMs, even in overgrown areas (Sit-

hole and Vosselman, 2004; Gevaert et al., 2018). By combining DTM 

information with standard ML techniques, the detection of small terrain 

height anomalies has been performed successfully in the past. By in-

specting small elevation changes, cultural remains can be identified in 

archaeological investigations (Lasaponara et al., 2010; Bollandsås et 

al., 2012), even when they are located under dense vegetation (Guyot 

et al., 2018). Furthermore, lidar facilitates precise 3D mapping of for-

ests at the tree level (Reitberger et al., 2008). Because MS imagery 

can support tree species classification (Holmgren et al., 2008; Trier et 

al., 2018), we supplemented the lidar sensor with two high-resolution 

MS cameras to collect image data in the visible and NIR spectra. 

The current chapter proposes the utilization of terrain-based and veg-

etation-based features in combination with an RF classifier for the area-

wide detection of unknown radioactive waste sites in the ChEZ. Using 

UAV-based lidar data and MS imagery, we conduct a precise 3D vege-

tation mapping at the tree level and introduce novel tree-based fea-

tures. Subsequently, we train an RF classifier to predict the class labels 

for each DTM grid point (“trench”, “clamp”, “non-contaminated”). Ex-

cellent classification results are achieved, and a backward feature se-

lection strategy demonstrates that e.g. TF and FPFH can enhance the 

proposed classifier. Our results are verified by 38 borings that confirm 

the existence and absence of previously unknown buried nuclear ma-

terials in the classified areas (OA = 89.5%). Interestingly, at an aver-

age depth of 1–2 m, the borings hit radioactive material, exhibiting 

dose rates that were up to 30 times greater than those on the terrain 

surface. Finally, the existing hazard maps have been upgraded to min-

imize workers’ radiation dose uptake and optimize accident liquidation. 

In the following sections, we address related work, the study areas, 

reference data, the UAV system, sensors, and data preprocessing. Sub-

sequently, we present the entire processing pipeline for the detection 

of radioactive burials and the conducted experiments, including sensi-

tivity analysis. Finally, we discuss the results and draw conclusions 

from our research. 

3.2. Related work 

3.2.1. Risk management in the ChEZ 

An EU-financed project entitled “Support to radioactive waste manage-

ment in Ukraine” (European Union, 2014–2017) facilitated numerous 

research studies, including the investigation on radioactive waste sites. 
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Some RWTSPs have already been thoroughly investigated, but an es-

timated 300 burial sites remain unknown in terms of their exact loca-

tion and geometry. These sites must be identified and characterized. 

Because ground dose rate measurements and electromagnetic soil con-

ductivity surveys were not expedient, Bugai et al. (2005) successfully 

carried out ground-based geo-radar surveys using GPR. Using this 

technique, the subsurface geometry of one suspected burial site was 

elucidated. Based on a GPR survey, Saintenoy et al. (2017) verified the 

position of a trench in the RWTSP Red Forest. However, such ground-

based methods necessitate considerable radiation exposure for work-

ers. Furthermore, the GPR approach is relatively time consuming for 

the exploration of larger vegetated areas that are difficult to access. 

Zabulonov et al. (2015) conducted UAV-based geophysical surveys us-

ing a gamma spectrometer. By detecting local inhomogeneity in spec-

trometer data, the authors revealed that the accurate mapping of bur-

ials located in non-vegetated areas is possible using high-resolution 

gamma field radiation measurements (detection rate = 90%). The re-

sults demonstrated that local gamma ray intensity significantly ex-

ceeds the level of the total background radiation in contaminated ar-

eas. However, in vegetated areas, biomass substantially distorts meas-

urements and the detection rate drops significantly to 50%. Recently, 

there has been increased pressure to make the ChEZ accessible again. 

To this end, simulations have been carried out to model workers’ radi-

ation dose uptake (Molitor et al., 2018). Nevertheless, improved mod-

els are needed to create action plans for forest maintenance and miti-

gate hazard situations – such as forest fires and tornadoes – more 

efficiently. Therefore, simulations must consider the individual radia-

tion levels of different tree species to achieve the most realistic possible 

results. 

3.2.2. Vegetation anomalies in the ChEZ 

In the ChEZ, various studies have been carried out to explore the im-

pact of radioactive contamination on the vegetation. Because the half-

lives of Cs-137 and Sr-90 are approximately 30 years (Flynn et al., 

1965), these radioactive isotopes still exist in the soil of contaminated 

areas and have been absorbed by the vegetation. Bugai et al. (2012) 

characterized the hydro-geological situation in the ChEZ and modelled 

groundwater transport to describe the migration of radionuclides. Fur-

thermore, Kashparov et al. (2012) presented studies describing the 

biogenic migration of radionuclides from subsurface storage into 

plants. Moreover, Thiry et al. (2009) demonstrated that trees growing 

on burial sites accumulated an average of 1.7 times more Cs-137 and 

5.4 times more Sr-90 in their above-ground biomass compared to trees 

growing off of burial sites. In a long-term observation, Arkhipov et al. 

(1994) explored the forest stands regarding viability and mortality 
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rate, re-establishment and canopy growth, and reproduction anoma-

lies. Their results show that these parameters depend on the absorbed 

irradiation dose, on the age of the tree stand, and on forest composi-

tion. Moreover, Yoschenko et al. (2011) investigated over 1,100 re-

planted Scots pines selected from areas with strongly varying levels of 

radioactive contamination. The authors reported on the effects occur-

ring on the morphological level of trees that were exposed to chronic 

radiation. Based on long-term studies, Tikhomirov and Shcheglov 

(1994) revealed that the migration of radionuclides is highly dependent 

on the tree species. Furthermore, the authors found out that coniferous 

trees are on average an order of magnitude less resistant to radioactive 

contamination than deciduous trees. According to Davids and Tyler 

(2003), spectral reflectance measurements of silver birch and Scots 

pine can be used to detect the effect of radionuclide contamination on 

the vegetation. Particularly, the authors demonstrated that certain 

spectral characteristics of leaves and needles correlate well with the 

level of radioactive contamination. All in all, vegetation anomalies 

(e.g., tree density, dominant tree species, tree shape, spectral reflec-

tance of the vegetation) tend to appear in highly contaminated areas 

such as the vicinity of trenches and clamps. 

3.2.3. Vegetation mapping 

In the past, extensive research has been conducted on vegetation 

mapping using remote sensing data, particularly airborne laser scan-

ning (ALS) point clouds fused with optical imagery (Latifi and Heurich, 

2019). One major research focus was to establish methods that would 

work at the tree level. A delineation of single trees from ALS data was 

either performed based on a previously generated canopy height model 

(Pyysalo and Hyyppä, 2002; Solberg et al., 2006) or on the original 3D 

point cloud (Reitberger et al., 2009; Wu et al., 2016). For the classifi-

cation of individual tree species, a large majority of previous studies 

relied on a two-step approach (Fassnacht et al., 2016). First, hand-

crafted feature sets describing the geometry and radiometry of single 

trees were extracted from the data. Second, appropriate ML classifiers 

were applied to categorize the single trees. For example, Yu et al. 

(2017) classified three tree species using MS ALS data (OA = 86%). 

Moreover, Shi et al. (2018a) categorized five species, fusing ALS data 

and hyperspectral imagery (OA = 84%). Based on the features gener-

ated from ALS data and colour-infrared (CIR) imagery, Kamińska et al. 

(2018) classified six tree classes (OA = 94%). Recently, Amiri et al. 

(2019) reported on a combined classification of tree species and stand-

ing dead trees with crowns (OA = 82%). Overall, these studies moti-

vated the generation of handcrafted features for an RF-based classifi-

cation of individual tree species in the ChEZ. 
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3.3. Materials 

3.3.1. Study areas 

In this chapter, experimental results for three different study areas 

with a total area of 37 ha are presented (Figure 17). Located approxi-

mately 1.5 km west of the ChNPP, these areas are situated in the 

RWTSP Red Forest and RWTSP Yanov Station areas. For these areas, a 

historical map created from the memories of so-called liquidation work-

ers indicated the existence of possible radioactive waste sites (Figure 

18). In a first UAV flight mission conducted in November of 2017, 

area#1 (6 ha) was surveyed using a YellowScan Mapper I laser scanner 

(Briechle et al., 2018). The lidar data were supplemented with MS im-

ages captured in a second mission in April of 2018. At the same time, 

both lidar data and MS images were collected in area#2 (8 ha) and 

area#3 (23 ha). With a tree density of approximately 400 trees/ha, all 

three study areas are densely vegetated. The main tree species are 

Scots pine (Pinus sylvestris), silver birch (Betula pendula), and black 

alder (Alnus glutinosa) with tree heights of up to 30 m (Bonzom et al., 

2016). Overall, the forest stand was found to be dominated by Scots 

pine planted after the nuclear disaster, comprising approximately 50% 

of all trees. Based on visual interpretation of aerial imagery, we roughly 

estimated the distribution of pines, birches, and alders in area#1 

(50/20/30), area#2 (40/30/30), and area#3 (60/20/20). 

 

Figure 17: Overview of the study areas, located ~1.5 km west of Reactor Unit 
4 at the ChNPP; Coordinate system: UTM zone 36N (EPSG 32636); Base map 
source: bing map ©Microsoft Corporation. 
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Figure 18: Scan of a historical map that was created from the memories of 
liquidators, roughly showing positions and extent of burials (Antropov et al., 
2001); outlines of study areas in red. 

3.3.2. Reference data 

3.3.2.1.  Visual interpretation 

For obvious reasons, the ground truth data for tree species classifica-

tion could not be acquired by field measurements. Thus, the reference 

dataset was prepared manually and balanced according to the three 

occurring tree species (pine, birch, alder). Based on visual interpreta-

tion of the generated orthomosaics and 3D geometries of single trees, 

we labelled 684 tree segments (228 per tree species). Thereafter, for 

each study area, these reference datasets were randomly split into 

training and test datasets using a sample ratio of 0.8. 

Reference data for trenches and clamps were only available in area#3, 

using RWTSP vector data. These data were digitized from old maps and 

orthophotos based on visual inspection in the past using a simple office 

scanner and uncalibrated digital cameras. Therefore, the data are ge-

ometrically incomplete and show random position offsets in the order 

of a few metres. This can be clearly observed by overlaying the refer-

ence data and the normalized DTM height, which was generated from 

the ALS data (Figure 19). Nevertheless, we used this rather inappro-

priate dataset in the labelling process for one of our experiments. In 

all other experiments, we relied on manually labelled reference data 

created by visual interpretation of the normalized DTM. In area#1 and 

area#2, the structure of burials was quite obvious and labelling was 

straightforward. However, in area#3, the labelling was more challeng-

ing because of fairly non-systematic DTM structures. Here, the direc-

tions and lengths of the burials were partially unclear. Although the 

labelling was supported by RWTSP vector data, the reference dataset 

in this study area must be considered less reliable. For the labelling of 

DTM grid pixels, we outlined polygons representing 25 trenches and 

eight clamps from all three study areas, covering an area of 9,116 m² 
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and 2,900 m², respectively. Using a 50-cm DTM, more than 48,000 

samples were extracted from these burials. Additionally, samples for 

non-contaminated DTM pixels were selected some metres off the bur-

ials to guarantee the pureness of samples. Then, for each study area, 

we utilized a sample ratio of 0.5 to randomly split the reference data 

into training and test datasets. Subsequently, the particular test da-

tasets were completed by considering all remaining unlabelled pixels in 

the corresponding study areas as non-contaminated. As a conse-

quence, the quality of the classifier was tested area-wide and, espe-

cially in the transition zones from burials to non-contaminated areas. 

 

Figure 19: Available RWTSP reference data and manually labelled reference 
data in area#3, showing possible trenches/clamps and normalized DTM height. 

(base map: bing map ©Microsoft Corporation). 

3.3.2.2.  Ground reference data 

In preceding ground surveys, neither a visual interpretation of the ter-

rain nor anomalies in the equivalent dose rate (EDR) measurements 

on the ground surface (EDRsurface) indicated existing trenches. However, 

a strong evidence was provided based on the detection methods de-

scribed in this chapter. Therefore, during an evaluation campaign con-

ducted in autumn 2018, 20 on-site borings were drilled directly into 

the suspected trenches of area#1 and nine in area#2. For comparison, 

nine additional borings were drilled at a considerable distance of at 
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least 15 m away from the expected trenches of area#1 (Table 6). Bor-

ings C1, C2, C3, C4 and C5 were planned at spots showing unexcep-

tional EDRsurface values. In contrast, the locations for borings C98, 

C206, C208 and C216 were selected in places showing relatively high 

EDRsurface values, thus assuming they were suspicious for buried con-

taminated waste. In area#3, no borings have been conducted so far. 

In general, all borings were performed by the Central Radioactive 

Waste Management Enterprise (CRWME), a state organisation respon-

sible for maintenance and management of the RWTSPs under authority 

of the State Agency of Ukraine for the Exclusion Zone Management. 

The borings were carried out using a gasoline motor drill (up to a depth 

of 1.5 m) and a Geolog-2 hand drill (depth 1.5–2.5 m). The EDR was 

measured on the ground surface and inside the bore holes using an 

MKS-07 “Poshuk” dosimeter-radiometer. Table 4, Table 5 and Table 6 

show EDRsurface values, maximum EDR values (EDRmax) and the corre-

sponding depth for each boring. Ratio EDRmax/EDRsurface is a coefficient 

to demonstrate the degree of contamination inside the borings com-

pared to the ground surface. 

Table 4: Borings in suspected trenches of area#1. 

Boring ID EDRsurface 
[µSv/h] 

EDRmax 
[µSv/h] 

Depth for 
EDRmax [m] 

EDRmax/EDRsurface 

111 

112 
113 
114 
115 

1.5 

1.0 
0.4 
1.9 
1.6 

13.4 

7.2 
13.5 
7.6 

14.6 

1.8 

0.8 
1.4 
0.6 
1.0 

8.9 

7.2 
33.8 
4.0 
9.1 

121 
122 

123 
124 
125 

1.0 
1.6 

1.9 
0.9 
0.8 

20.3 
7.7 

14.3 
26.5 
24.5 

1.4 
1.2 

1.2 
1.4 
1.8 

20.3 
4.8 

7.5 
29.4 
30.6 

131 
132 
133 

134 
135 

1.3 
0.7 
0.9 

2.9 
1.9 

2.4 
7.0 
8.6 

4.1 
8.3 

0.8 
1.0 
1.2 

0.8 
0.8 

1.9 
10.3 
9.2 

1.4 
4.4 

151 
152 
153 

154 
155 

3.8 
1.0 
2.9 

1.3 
1.5 

16.3 
18.6 
17.5 

7.3 
10.3 

1.2 
1.2 
0.6 

1.6 
1.2 

4.3 
18.6 
6.0 

5.6 
6.9 
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Table 5: Borings in suspected trenches of area#2. 

Boring ID EDRsurface 
[µSv/h] 

EDRmax 
[µSv/h] 

Depth for 
EDRmax [m] 

EDRmax/EDRsurface 

211 0.7 6.0 1.6 8.6 

221 
222 

1.5 
1.0 

10.1 
30.2 

1.4 
1.6 

6.7 
30.2 

232 
233 
234 

2.4 
2.9 
0.6 

10.3 
12.3 
12.8 

0.6 
1.0 
1.2 

4.3 
4.2 

21.3 

242 
243 
244 

1.5 
4.7 
1.3 

18.8 
14.9 
20.2 

1.0 
1.4 
1.6 

12.5 
3.2 

15.5 

Table 6: Borings drilled at a considerable distance away from the trenches of 

area#1. 

Boring ID EDRsurface 
[µSv/h] 

EDRmax 
[µSv/h] 

Depth for 
EDRmax [m] 

EDRmax/EDRsurface 

C1 
C2 
C3 
C4 
C5 

1.3 
3.2 
3.9 
1.0 
0.6 

1.3 
3.2 
3.9 
1.0 
0.6 

0.0 
0.0 
0.0 
0.0 
0.0 

1.0 
1.0 
1.0 
1.0 
1.0 

C198 
C206 
C208 
C216 

10.8 
7.5 
8.0 
4.8 

10.8 
7.5 
8.0 
6.7 

0.0 
0.0 
0.0 
0.2 

1.0 
1.0 
1.0 
1.4 

3.3.3. UAV system 

UAV-based sensor systems operate at a sufficient safe distance, which 

is of prime importance considering the high radiation dose rates within 

the study area. For our flight missions, we utilized an octocopter that 

was developed by a team from the Department of Nuclear Physics 

Technologies of the Institute of Environment Geochemistry of the Na-

tional Academy of Sciences of Ukraine. With a maximum payload of 5 

kg, both the lidar system and the MS cameras can be carried by the 

octocopter simultaneously (Figure 20). Nevertheless, we relied on a 

separate configuration, mainly to maximize lidar mission time. Regard-

ing safety issues, the pilots had to ensure a minimum distance from 

the ChNPP of 1 km. Moreover, no power lines were flown over to avoid 

possible electromagnetic interaction with GNSS signals and radio link. 

All flights were carried out in fully automatic mode to avoid the direct 

trespassing of contaminated areas. Advantageously, local authorities 

allowed flying the UAV out of visual line of sight. To avoid collisions, 

the relative altitude in mapping mode was set to at least 50 m in this 

flat terrain, guaranteeing a safety distance of approximately 20 m to 

the highest tree crowns. Furthermore, the safety distance for operator 
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at take-off and landing was approximately 15 m. Finally, all data pre-

sented in this chapter were collected during sunny, partly cloudy 

weather conditions at a mostly constant wind speed (2–3 m/s). 

 

Figure 20: UAV-mounted laser scanner and MS cameras. 

3.3.4. Lidar data 

Lidar data were collected by a YellowScan Mapper I laser scanner (Ta-

ble 7). Flights were conducted at a constant altitude of 50 m and speed 

of 6 m/s. Therefore, the relatively slow speed of the copter enabled a 

high lidar point density, which is important for a sufficient penetration 

rate to the ground to ensure the generation of detailed DTMs. The max-

imum lidar mission time with one battery set was approximately 20 

minutes. GNSS waypoints were defined in the flight plans to guarantee 

parallel flight lines and a constant line-to-line distance of 40 m. During 

a one-week mission in the ChEZ in April of 2018, five leaf-off lidar 

flights were conducted in three selected areas. More flights were not 

possible due to upcoming wind speeds up to 20 m/s. A calibration flight 

over a building was conducted on the first day to check the boresight 

angles provided by the manufacturer. Simultaneously to all UAV flights, 

GNSS measurements were collected by a Trimble R4 base station 

(measurement rate = 1 s). These data were used in a differential GNSS 

postprocessing step using the commercial software Inertial Explorer® 

8.70 (NovAtel Inc., 2017) to ensure flight trajectories with centimetre-

level precision. Following the flight missions, the scan angle range of 

the lidar data was reduced from 100° to 70° to eliminate potentially 

inaccurate long-distance measurements on the edges of strips, result-

ing in a nominal point density of approximately 53 points/m² (effective 

side lap of 43%). 

For the following lidar preprocessing steps, we utilized BayesStripAlign 

1.3 (BayesMap Solutions LLC, 2018). The boresight angle differences 
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were calculated using the “calib” option and the strips of the aforemen-

tioned calibration flight. The residuals amounted to 0.02° (roll), -0.12° 

(pitch), and -0.12° (yaw) and were subsequently used to correct all 

recorded flight strips (“corr” option). Next, all strips were aligned to 

achieve geometrically consistent lidar point clouds. Note that the 

“align” option in BayesStripAlign 1.3 is based on the approach dis-

cussed in Jalobeanu and Gonçalves (2014). Overall, the mean discrep-

ancy between adjacent strips was approximately 5 cm, which is in the 

range of the measurement accuracy of the lidar instrument. By fitting 

the ALS point clouds to the enclosing polygons of nearby buildings 

(“shift” option), absolute 3D georeferencing with an accuracy of a few 

centimetres was achieved. 

Table 7: Technical specifications of the YellowScan Mapper I laser scanner (Yel-
lowScan, 2016). 

Item Value 

Laser wavelength 905 nm 

Pulse rate 18.5 kHz 

Echoes per shot 3 (first, middle, last return) 

Weight 2.1 kg (battery included) 

Range resolution 4 cm 

Precision4 10 cm 

Absolute (XY) accuracy5 0.10 m + 1% of altitude 

Absolute (Z) accuracy 0.10 m + 0.5% of altitude 

3.3.5. MS imagery 

We captured MS images using two MicaSense RedEdge cameras (Table 

8) with a total payload of 500 g, incl. external batteries. These MS 

cameras capture light wavelengths in five spectral bands between 475 

nm and 840 nm. The two cameras were mounted in a twisted configu-

ration with an angle of 22.5°. This setup guaranteed a 50% side over-

lap of the camera foot-prints and a total field of view (FOV) of approx-

imately 70°. Time synchronization of the cameras was realized by re-

cording images with a frame rate of 2 s at each even Global Positioning 

System (GPS) second. During data collection, the altitude was 130 m, 

leading to a ground sample distance of 8.9 cm/pixel. A flight speed of 

9 m/s accounted for a forward overlap of 79%, whereas the lateral 

overlap was set to 50%. To compensate for changing illumination con-

ditions during and between the flights, we utilized both MicaSense's 

calibrated reflectance panel (CRP) and downwelling light sensor (DLS). 

Basically, these accessories are able to provide useful information for 

the subsequent reflectance calibration. In practice, we took close-up 

                                           
4 Also called reproducibility or repeatability (variation of measurements taken 
on the same target). 
5 Degree of conformity of a measured position to its actual (true) value. 
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images of the CRP before and after each flight. Moreover, the DLS was 

installed on top of the UAV, facing upwards with a clear view of the 

sky. Before each flight, we checked the calibration of the DLS magne-

tometer to ensure correct heading and orientation measurements. 

Table 8: Technical specifications of the MicaSense RedEdge camera (MicaSense 

Inc, 2015). 

Item Value 

Focal length 5.5 mm 

FOV 47.2° horizontal, 
69.7° horizontal (double-camera setup), 

35.4° vertical 

Imager size / resolution 4.8 mm x 3.6 mm / 1,280 x 960 pixels 

Spectral bands Blue (475 nm), Green (560 nm), Red (668 nm), 
Red Edge (717 nm), NIR (840 nm) 

Agisoft PhotoScan Professional 1.4.1 (Agisoft LLC, 2018) was used for 

the following postprocessing steps. Initially, all images were aligned 

area-wise in a bundle adjustment (option “highest”). Here, the imple-

mented RedEdge camera model was based on a standard frame cam-

era model. In detail, the model specifies the transformation from point 

coordinates in the local camera coordinate system to the pixel coordi-

nates in the image frame. Overall, the model comprises focal length, 

principal point offsets, two radial and two tangential distortion coeffi-

cients, and two skewness coefficients. In our approach, we estimated 

the master and slave camera models for the first flight and applied it 

to all other flights. The mean reprojection error for all flights was 1.3 

pixels, corroborating our assumption of constant camera parameters 

between flights. Finally, dense photogrammetric 3D point clouds were 

generated with a point density of approximately 80 points/m² (option 

“high”). 

3.4. Methodology 

3.4.1. Outline of the proposed method 

Initially, various preprocessing steps must be performed for detecting 

radioactive waste sites. First, the reflectance of the 2D aerial images 

was calibrated, and Normalized Difference Vegetation Index (NDVI) 

and Red Edge Normalized Difference Vegetation Index (RENDVI) or-

thomosaics were created. Previous studies have proven a positive ef-

fect on the results for tree species classification by normalizing lidar 

intensity values (Höfle and Pfeifer, 2007; Korpela et al., 2010; Ørka et 

al., 2012). Thus, in our approach, the radiometric information of all 

lidar points was adjusted in a data-driven correction step. Based on the 

resulting lidar point cloud, ground points were filtered and a regular 
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DTM grid was computed. Next, the lidar point cloud was segmented 

into 3D clusters representing single trees using the normalized cut al-

gorithm (Reitberger et al., 2009). The convex hulls of the segmented 

trees were then projected onto the orthomosaics to extract NDVI and 

RENDVI features for each segment. To supplement the geometric and 

radiometric features generated from the lidar point clouds of single tree 

segments, tree species classification was conducted based on a stand-

ard RF classifier including a feature selection step. Based on the results 

of tree classification, tree-based features were generated to describe 

possible vegetation anomalies. Next, the normalized DTM height (hnorm) 

was extracted from the DTM grid. In combination with LM and FPFH, 

an RF classifier was trained to distinguish burial sites (trenches and 

clamps) from non-contaminated areas. In an RFE step, the most sig-

nificant features were identified. Finally, probability maps and enclos-

ing 2D polygons for burial sites were generated. The entire processing 

pipeline is illustrated in Figure 21. In the following sections, all im-

portant steps are described in greater detail. 

 

Figure 21: Overview of the proposed method for detecting radioactive waste 

sites. 
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3.4.2. Preprocessing of sensor data 

3.4.2.1.  Reflectance calibration of MS imagery 

MS imagery was captured at changing light conditions over different 

days and times. Therefore, the reflectance must be calibrated to gen-

erate high-quality images. We performed this step in Agisoft PhotoScan 

Professional 1.4.1, integrating the spectral information from both the 

CRP and DLS. Initially, panel-specific absolute reflectance values for 

the spectral range of the camera were introduced. These calibration 

data were provided by the manufacturer in increments of 1 nm for each 

band. In the software, the transformation of raw pixel values into re-

flectance basically follows a two-step approach (MicaSense Inc, 2019). 

First, the raw pixel values of all images were converted to absolute 

spectral radiance using a camera-specific radiometric calibration 

model. Here, sensor-specific characteristics such as sensor black level 

and lens vignette effects were compensated. Second, a factor was es-

timated, allowing for a transformation from radiance to reflectance. At 

this point, the reflectance values from the CRP calibration data and the 

radiance values of the CRP images captured in the field were taken into 

account. Overall, the CRP-based calibration procedure assumes con-

stant lighting conditions over the flight duration. In case CRP images 

were taken before and after the flight, the reflectance of MS imagery 

is calibrated based on linear interpolation of the CRP information. In 

situations with changing conditions in the middle of a flight, the DLS 

can help to improve reflectance calibration by applying additional cor-

rections image-wise. Although the integration of DLS data was suitable 

in area#1 and area#2, the approach reached its limits in area#3. Rap-

idly changing cloud coverage throughout the entire flight impeded an 

accurate calibration of reflectance. In the event of clouds shadowing 

the captured image area but not the DLS, radiometric information of 

the images could not be corrected properly. As a consequence, the MS 

imagery in area#3 was not used for further investigation. Thus, in this 

area, tree species classification was only based on the geometric and 

radiometric features generated from lidar data. 

3.4.2.2.  Orthomosaic generation 

Based on missing GPCs in overflown inaccessible areas, we registered 

the photogrammetric data to the georeferenced lidar data. Therefore, 

different steps in several software packages had to be executed for 

area#1 and area#2. Initially, the georeferenced lidar point cloud was 

transformed to the aforementioned photogrammetric dense point cloud 

via iterative closest point (ICP) algorithm in CloudCompare 2.8 (Cloud-

Compare Development Team, 2019). Here, the root mean squared er-

ror was 0.237 m. Then, we utilized Quick Terrain Modeler (Applied Im-

agery, 2018) to calculate a digital elevation model (DEM) from the 
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transformed lidar point cloud. Next, the resulting 15-cm DEM was ex-

ported as a TIFF image and loaded into Agisoft PhotoScan Professional 

1.4.1. Here, an orthomosaic with a 10-cm resolution was computed. In 

this orthorectification procedure, we relied on the precise lidar DEM 

instead of using a less accurate DEM calculated from a dense photo-

grammetric point cloud. Subsequently, vegetation index (VI) images 

were calculated. In addition to the widely used NDVI images, RENDVI 

images (Sims and Gamon, 2002) were created by utilizing the red edge 

(RE) and NIR channel. The RENDVI (Eq. 1) can be computed as 

RENDVI =
𝑅𝐸 − 𝑁𝐼𝑅

𝑅𝐸 + 𝑁𝐼𝑅
. [1] 

Afterwards, the photogrammetric products must be georeferenced. 

The dense point clouds were transformed in CloudCompare 2.8, utiliz-

ing the particular inverse transformation matrix of the aforementioned 

ICP. Finally, based on the 2D components of these matrices, the or-

thomosaics were shifted in QGIS 2.18 (QGIS Development Team, 

2017). 

3.4.2.3.  Radiometric correction of lidar data 

In addition to the 3D coordinates of each laser point, the YellowScan 

Mapper I provides intensity values. The instrument is equipped with an 

Ibeo LUX 2010® laser unit for generating Gaussian-shaped pulses. Ac-

cording to the technical description, the recorded intensity values are 
equivalent to the widths 𝐸𝑤𝑖 of the echo pulses measured at a fixed 

internal threshold 𝑔0 (Figure 22). In a series of n Gaussian return pulses 

𝑔(𝑡) = Σ𝑖=1
𝑛 𝐴𝑖 ∙ 𝑒𝑥𝑝 (−

(𝑡 − 𝑡𝑖)
2

𝜎𝑖
2 ) , [2] 

the parameter 𝐸𝑤𝑖 theoretically depends on the shape of the return 

pulses, which is defined by the pulse width 𝜎𝑖 and amplitude 𝐴𝑖  (Eq. 2). 

Both of these parameters are influenced by the scan angle. Assuming 

a flat terrain and the Lampertian law for scattering targets, the pulse 
width 𝜎𝑖 is slightly broadened towards the swath edge of a laser strip. 

Additionally, echo width widening leads to a reduction in the amplitude 
𝐴𝑖 with respect to the scan angle, assuming that the emitted laser 

power is constant (Ussyshkin et al., 2009). Furthermore, the amplitude 
𝐴𝑖 itself is dependent on the square of the distance between the sensor 

and target, meaning it also depends on the scan angle. In summary, 

we can theoretically expect a significant change in the shape of the 
return pulse and, the parameter 𝐸𝑤𝑖 toward the swath edge. To the 

best of our knowledge, changes in the parameter 𝐸𝑤𝑖 toward the swath 

edge have not been studied experimentally to date. However, many 
researchers have evaluated the dependency of intensity (= 𝐴𝑖 ∗ 𝜎𝑖) and 

pulse width on the scan angle. Jutzi and Gross (2009) demonstrated 
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that lidar intensity decreases according to the cosine of the scan angle. 

In principle, the experiments conducted by Kaasalainen et al. (2011) 

using terrestrial laser scanners confirm this finding. Reitberger et al. 

(2007) investigated pulse width in forest areas and calculated scan-

angle-dependent increases in pulse width of 15%/20° for laser points 

with well-defined and smooth reflecting areas (i.e., stem points). Ad-

ditionally, the same study confirmed a decrease in intensity of 

13%/20° corrected by the square of the laser distance for ground 

points. 

 

Figure 22: Definition of parameter Ew in YellowScan Mapper I (according to 
Ibeo Automotive Systems GmbH (2010)). 

Figure 23 (left) illustrates the raw 𝐸𝑤𝑖 values for area#1, where dark 

areas are a result of the scan angle effect of the raw parameter 𝐸𝑤𝑖, 

which was not compensated in the individual laser strips. For 3D veg-
etation mapping, raw 𝐸𝑤𝑖 values must be corrected to avoid misclassi-

fication effects. Our data-driven method corrects the parameter 𝐸𝑤𝑖 

based on the incidence angle, which is approximately equal to the sum 

of the scan angle and roll angle. First, we filter single return points 

from the ground points in one reference strip and assume that the for-

est floor has consistent spectral reflectance properties. Second, the raw 
values of 𝐸𝑤𝑖  for the reference strip are divided into bins of size 1° with 

respect to the corresponding incidence angle. Third, the mean and std 

value of 𝐸𝑤𝑖 are calculated for each bin. Subsequently, a parabola (R² 

= 0.95) is fitted to the mean values of 𝐸𝑤𝑖 (see Figure 24, top). The 
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vertex value of the parabola 𝐸𝑤𝑟𝑒𝑓 and 𝑠𝑡𝑑(𝐸𝑤𝑟𝑒𝑓) of the corresponding 

bin are used as constant parameters in the empirical correction func-

tion. The corrected values 𝐸𝑤𝑐𝑜𝑟𝑟
𝑖  are computed as 

𝐸𝑤𝑐𝑜𝑟𝑟
𝑖 = (𝐸𝑤𝑟𝑎𝑤

𝑖 − 𝐸𝑤𝑓𝑖𝑡
𝑖 ) ∗

𝑠𝑡𝑑(𝐸𝑤𝑟𝑒𝑓)

𝑠𝑡𝑑(𝐸𝑤𝑏𝑖𝑛
𝑖 )

+ 𝐸𝑤𝑟𝑒𝑓 , [3] 

where 𝐸𝑤𝑟𝑎𝑤
𝑖  is the raw value of a single point, 𝐸𝑤𝑓𝑖𝑡

𝑖  is the reference 

value of a single point on the parabola, and 𝑠𝑡𝑑(𝐸𝑤𝑏𝑖𝑛
𝑖 ) is the std of the 

corresponding bin (Eq. 3). Note that the correction function is only valid 

for one specific flight height because we did not perform drone flights 

at different altitudes. Figure 24 (bottom) presents the result of correc-

tion for the reference strip in area#1. The fitted red horizontal line 
indicates that the mean values of 𝐸𝑤𝑐𝑜𝑟𝑟

𝑖  are independent of the inci-

dence angle. Figure 23 (right) presents all points in area#1 coloured 

according to their corrected values. Apparently, the edge effects dis-

appear and the parameters 𝐸𝑤𝑐𝑜𝑟𝑟
𝑖  can be used as additional features 

for 3D vegetation mapping. 

 

Figure 23: 𝐸𝑤𝑖 values in area#1, before (left) and after (right) correction; flight 

lines overlay (red). 
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Figure 24: 𝐸𝑤𝑖 values in the reference strip (area#1). 

3.4.2.4.  Tree segmentation 

As a basis for the tree species classification performed at a later stage, 

single trees were segmented from the lidar point cloud utilizing the 

TreeFinder software package (PrimaVision Technologies GbR, 2017). 

The implementation is based on the normalized cut algorithm (Shi and 

Malik, 2000), which is a top-down method for segmenting objects over 
a discrete graph structure 𝐺 = (𝑉, 𝐸). The vertices V represent individual 
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objects and the edges E correspond to neighbourhood topology. The 

input 3D lidar point cloud is split into disjointed segments to minimize 

the normalized cut criterion. A recursive bisection of the graph's verti-

ces V into disjointed segments A and B maximizes the intra-segment 

similarity of objects and minimizes their inter-segment dissimilarity. 

The normalized cut criterion to be minimized is defined as 

𝑁𝐶𝑢𝑡(𝐴, 𝐵) =
𝐶𝑢𝑡(𝐴, 𝐵)

𝐴𝑠𝑠𝑜𝑐(𝐴, 𝑉)
+

𝐶𝑢𝑡(𝐴, 𝐵)

𝐴𝑠𝑠𝑜𝑐(𝐵, 𝑉)
, [4] 

Where 𝐶𝑢𝑡(𝐴, 𝐵) = ∑ 𝑤𝑖𝑗𝑖∈𝐴,𝑗∈𝐵  is defined as the sum of all weights be-

tween A and B segments and 𝐴𝑠𝑠𝑜𝑐(𝐴, 𝑉) = ∑ 𝑤𝑖𝑗𝑖∈𝐴,𝑗∈𝑉  is the sum of the 

weights of all edges ending in A segments (Eq. 4). 

Following the recommendations of Reitberger et al. (2009), we set the 

static stopping criterion of the normalized cut segmentation to 0.16. 

Visual inspection helped to verify that no oversegmentation or under-

segmentation occurred. The result of tree segmentation is a set of pol-

ygons describing the hulls of single trees, as well as characteristic pa-

rameters, such as tree height, CBH, and crown volume. 

3.4.2.5.  DTM generation 

In the next step, we used the ground routine based on Axelsson (2000) 

in the commercial software TerraSolid TerraScan™ (Soininen, 2016) to 

filter ground points from the ALS point cloud. The resulting ground 

points with a point density of approximately five points per m² were 

subsequently interpolated into a 50-cm DTM grid (Polewski et al., 

2015b). The impact of the DTM smoothing coefficient α on detection 

results is discussed in Section 3.5.2. 

3.4.3. Tree species classification 

A classic ML approach using the RF classifier requires a set of hand-

crafted features. These features are typically calculated from the avail-

able datasets, adapting as much as possible to the various tasks being 

addressed. In general, they are engineered manually and are mainly 

based on statistical terms. For tree species classification, we generated 

salient features for each tree segment. In total, the feature set con-

sisted of 65 features (Table 9) derived from both lidar and MS data: 32 

geometry features (GEOM), 14 Ew-based features (EW), and 19 MS 

features (MS), including statistics calculated from the NDVI and 

RENDVI. Thereafter, the feature space was reduced and an RF classifier 

was trained to classify tree segments as species of birch, pine, and 

alder. Note that the detailed classification strategy will be presented in 

Section 3.4.5. 
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Table 9: Feature set for tree species classification (65 features); GEOM#(1–
20) are adopted from Næsset (2004), GEOM#(21–32) and EW#(1–14) from 

Reitberger (2010). 

Features Definition Quantity 

GEOM#(1–10) Density distribution of points per height 
layer6 

10 

GEOM#(11–20) Vertical distribution of the tree substance per 
height layer 

10 

GEOM#(21–30) Mean distance of points to the segment cen-

tre 

10 

GEOM#(31–32) Std of the distance of crown points to the 
segment centre, in x and y direction 

2 

EW#1 Mean Ew of points of a single tree 1 

EW#(2–11) Mean Ew of points of a single tree per height 
layer 

10 

EW#12 (Σ middle / Σ first) reflections 1 

EW#13 (Σ single / Σ first) reflections 1 

EW#14 (Σ first + Σ middle)/( Σ single + Σ last) re-
flections 

1 

MS#(1–8) NDVI max/min/max-min/ mean/std/quar-
tiles7 

8 

MS#(9–16) RENDVI max/min/max-min/ mean/std/quar-

tiles8 

8 

MS#(17–19) Entries of covariance matrix of NDVI and 
RENDVI 

3 

3.4.4. Detection of radioactive waste sites 

The main characteristics of radioactive burials are slight ground settle-

ments (Figure 25) or elevations and vegetation anomalies in the sur-

rounding areas. Therefore, we utilized the results of tree species clas-

sification and DTM extraction to prepare a feature set containing hand-

crafted tree-based features TF, normalized DTM height hnorm, fast point 

feature histograms FPFH and lidar metrics LM (Table 10). 

Table 10: Feature subsets for detection of radioactive waste sites (186 features 
in total). 

Feature subset Definition Quantity 

TF Tree-based features 19 

hnorm Normalized DTM height 1 

FPFH Fast point feature histograms 33 

LM Lidar metrics 133 

                                           
6 Increasing numbering from bottom (1) to top (10). 
7 1st, 2nd, 3rd quartiles. 
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Figure 25: Cross section of lidar point cloud in area#1 showing possible trench. 
Points are coloured according to flight line. 

Vegetation anomalies are supposed to be an indicator for the existence 

of radioactive burials. Therefore, we calculated 19 TF based upon the 

results of prior 3D vegetation mapping (Table 11). In general, the res-

olution of all generated TF was 5x5 m. For each grid point, nearby trees 

were found by applying a range search within a radius rtree describing 

a local neighbourhood. Then, the feature set was derived based on the 

information of these filtered tree segments. Initially, the number of 

neighbouring trees resulted in TF#1. Next, the tree attributes tree 

height, CBH, and crown volume were used to generate features TF#(2–

7) that represent the mean and std of these three attributes within the 

circular neighbourhood. TF#(14–15) were based on the area size of 

the tree polygons. For each filtered tree, the crown diameter Dcr was 

calculated from the crown size by assuming a circular crown shape, 

resulting in TF#(16–17). Moreover, ratios describing the frequencies of 

individual tree species in each neighbourhood were defined as TF#(8–

10). Additionally, for each tree class, tree species classification also 

provided the class probabilities pi for each tree segment. The mean pi 

values of neighbouring trees were used to define the features TF#(11–

13). Finally, we estimated the total above-ground biomass Pa of indi-

vidual trees. To this end, we utilized a transcontinental allometric 

model developed for the main Eurasian tree species using tree height 

H and crown diameter Dcr as regressors. We estimated Pa using the 

allometric function 

𝑙𝑛𝑃𝑎 = 𝑎0 + 𝑎1𝑙𝑛𝐻 + 𝑎2𝑙𝑛𝐷𝑐𝑟 [5] 

to generate features TF#(18–19). Equation 5 and the coefficients a0, 

a1, and a2 for the tree species of pine, birch, and alder were taken from 

Usoltsev et al. (2019). 
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Table 11: Definition of tree-based features TF. 

TF# Feature Definition 

1 tree_amount Number of trees 

2 tree_height_mean Mean tree height [m] 

3 tree_height_std Std of tree height [m] 

4 CBH_mean Mean CBH [m] 

5 CBH_std Std of CBH [m] 

6 crownVol_mean Mean crown volume [m³] 

7 crownVol_std Std of crown volume [m³] 

8 treeClass0_ratio Pine tree ratio (Σ pines/ Σ trees) 

9 treeClass1_ratio Alder tree ratio (Σ alders/ Σ trees) 

10 treeClass2_ratio Birch tree ratio (Σ birches/ Σ trees) 

11 pred0_mean Mean pine probability 

12 pred1_mean Mean alder probability 

13 pred2_mean Mean birch probability 

14 areaSize_mean Mean 2D tree dimension [m²] 

15 areaSize_std Std of 2D tree dimension [m²] 

16 Dcr_mean Mean crown diameter [m] 

17 Dcr_std Std of crown diameter [m] 

18 biomass_mean Mean above-ground biomass [kg] 

19 biomass_std Std of above-ground biomass [kg] 

Prior experiments have demonstrated that the normalized DTM height 

hnorm is a promising feature for describing terrain height anomalies 

(Briechle et al., 2018). This feature was calculated by reducing the 

corresponding absolute terrain height hDTM for each DTM grid position 

by htrend (Eq. 6): 

ℎ𝑛𝑜𝑟𝑚 = ℎ𝐷𝑇𝑀 − ℎ𝑡𝑟𝑒𝑛𝑑 [6] 

htrend is the mean height in a surrounding quadratic area defined by an 

edge length etrend and is calculated for every DTM grid point using a 

sliding window approach. 

Because the shape of trenches and clamps is cylindrical, local shape 

descriptors are a promising feature set because they are able to dis-

tinguish between different geometric shapes (plane, cylinder, sphere, 

etc.). We calculated a set of FPFH (Rusu et al., 2009), an enhanced 

version of point feature histograms (Rusu et al., 2008), which were 

developed for real time robotics applications. Retaining most of the 

power of the point feature histograms, these features are invariant to 

3D translations or rotations and robust to varying point densities and 

noisy datasets. As input data, we utilized filtered ground points from 

the lidar data, with a point density of approximately five points per m² 

in forested areas. Initially, normal vectors were computed for each 

ground point. Here, the neighbourhood size was defined by a radius rN. 

Next, FPFH features were calculated for each point of a synthetic 2x2 

m grid. In detail, geometric properties were estimated by modelling 



Chapter 3 

55 

the relationships between surface normals to characterize the local ge-

ometry in the area around each grid point. This calculation is based on 

the analysis of the eigenvectors and eigenvalues of the covariance ma-

trix formed by points within a circular neighbourhood defined by a ra-

dius rFPFH. Based on the angular differences between each pair of nor-

mals, a normalized multidimensional histogram was computed, leading 

to a total of 33 FPFH features. 

The feature set was completed with 133 height- and density-dependent 

lidar features to characterize vegetation. Based on the raw 3D point 

cloud, these LM (Næsset, 2004) were computed for quadratic cells de-

fined by a cell size ecell. In detail, features were generated for 10 dif-

ferent height layers (0–1.5 m, 0.5–2 m, 0.5–5 m, 1.5–5 m, 5–12 m, 

>-0.5 m, <0 m, >0 m, >2 m, >12 m). 

Note that the decisive control parameters for extracting the overall 

feature set were optimized in a sensitivity analysis (see Section 3.5.2), 

leading to a final list of best-performing parameters. Moreover, the 

complete feature set consisting of 186 individual features was bilinearly 

resampled to a grid of 50 cm resolution, which is congruent to the DTM. 

We used this feature set to train an RF classifier (see Section 3.4.5) for 

categorizing DTM grid points into the classes “trench”, “clamp” or “non-

contaminated”. Next, polygonal objects were generated from DTM grid 

points, which showed a trench or clamp probability of more than 95% 

as concave hulls. Finally, isolated classification errors were eliminated 

using an area threshold of 30 m². 

3.4.5. Classification strategy 

In our study, we utilized RF classifiers for the classification of both tree 

species and radioactive waste sites. This popular supervised ML 

method has proven to achieve high-quality results in typical remote 

sensing tasks such as land cover classification (Pal, 2005; Rodriguez-

Galiano et al., 2012) and tree species classification (Immitzer et al., 

2012; Puissant et al., 2014). By now, this type of classifier has been 

implemented in various programming languages. In our experiments, 

we used the “randomForest” package (Liaw and Wiener, 2002) in R (R 

Core Team, 2018). In the preprocessing procedure, the high-dimen-

sional feature space was gradually reduced to avoid overfitting. At the 

beginning, highly correlated redundant features were deleted from the 

feature set to avoid deterioration of classification accuracy. This pro-

cess was based on the application of a threshold to feature-to-feature 

cross-correlation. First, a covariance matrix was calculated. Second, a 

cross-correlation threshold θ was used to eliminate high pair-wise re-

dundancy. Specifically, one feature of any feature pair with a correla-

tion coefficient exceeding θ was eliminated. Different θ values (0.85, 
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0.90, 0.95, 1.00) were tested to find an optimal threshold. To investi-

gate the capability of the proposed handcrafted feature subsets, RF 

classifiers were trained on these reduced datasets. Next, an RF model 

was built using all feature subsets. Three iterations of five-fold cross-

validation were used to derive average OA and κ values. The number 

of trees was set to 500, with a minimum size for the terminal nodes of 

one. Generally, trees were grown to the maximum depth. The param-

eter controlling size of the samples to be drawn per node was equal to 

the number of training samples. Furthermore, the number of features 

randomly sampled as candidates at each split was set to the square 

root of the number of total features. Finally, the optimal model was 

selected based on the metric “accuracy”. 

In general, irrelevant features can have a negative impact on model 

accuracy. Therefore, it is essential to perform feature selection prior to 

building the final model. On a smaller and more robust dataset, both 

overfitting and training time can be reduced. In the literature, a back-

ward feature selection technique based on the RFE algorithm has been 

recommended quite often (Ma et al., 2017; Gregorutti et al., 2017). At 

the beginning, this algorithm trains an RF model on the overall feature 

set. Thereby, the relevance of individual features can be computed 

based on the mean decrease in accuracy. Then, the least important 

features can be recursively excluded from the feature space until a final 

best performing set is obtained. In the present study, we utilized the 

RFE algorithm from the caret package (Kuhn, 2008) in R and set the 

“rerank” parameter to “false”. Thus, the variable importance was not 

recalculated each time features had to be removed. Based on the cor-

responding OA value, the resulting RFE model was compared to the RF 

model containing all available features. Finally, the RFE model was uti-

lized to calculate class predictions predi and class probabilities probi for 

each sample. 

In all study areas, the quality of the final RFE model was verified by 

comparing the predicted labels and real values of the particular test 

dataset. For quantitative evaluation, a confusion matrix was generated 

and quality metrics (OA, κ, precision, recall, F1 score) were derived. 

Furthermore, we investigated the transferability of the trained classifi-

ers. Therefore, the classifier optimized on study area#1 was applied to 

all labelled data of area#2. 
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3.5. Experiments 

3.5.1. Tree species classification 

RF classifiers (θ = 0.90) using all feature subsets achieved an OA of 

90.2% (κ = 0.853) in area#1, 90.0% (κ = 0.850) in area#2, and 

81.3% (κ = 0.720) in area#3 (Table 12). Using only individual feature 

subsets, the average OA values were 80.6% (geometry features), 

80.1% (Ew-based features), and 86.7% (MS features). Here, κ ranged 

from 0.633 to 0.812. Depending on the study area, backward feature 

selection (RFE) improved the OA by 0.4% (area#3) to 2.6% (area#1, 

see Figure 26). Furthermore, the dimensions of feature spaces were 

significantly reduced (average reduction of 41.1%). On the test da-

tasets, the trained classifiers achieved OA values of 88.9% (area#1), 

88.1% (area#2), and 78.4% (area#3). Here, the mean F1 scores were 

0.90 (pine), 0.81 (birch), and 0.85 (alder). The seven best features for 

each study area were ranked according to the mean decrease in accu-

racy. Features from all three feature subsets were ranked among the 

seven most important features. The most relevant feature was the 

mean Ew value of all laser points for a single tree (EW#1). Other im-

portant Ew-based features were the mean Ew value of points in the 

two top height layers of trees (EW#10, EW#11), as well as the features 

describing penetration (EW#13, EW#14). Geometry features ranked in 

the top seven were related to crown density (GEOM#9), crown shape 

(GEOM#31), or the occurrence of points in the lowest height layer of 

trees (GEOM#11). The most important MS features were the second 

and third quartile of the NDVI values (MS#7, MS#8), as well as the 

second quartile of the RENDVI values (MS#15) inside a tree polygon. 

 

Figure 26: RFE result for tree species classification in area#1. 
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Table 12: Results of tree species classification. 

Study area 1 2 3 

Training samples 180 162 204 

GEOM 
EW 
MS 
All subsets (RF) 

83.4 (0.750)8 
85.9 (0.787) 
87.2 (0.812) 
87.6 (0.814) 

81.7 (0.725) 
75.6 (0.633) 
86.1 (0.792) 
88.5 (0.828) 

76.7 (0.650) 
78.7 (0.681) 

---9 
87.6 (0.814) 

All subsets (RFE) 
Gain in OA 

Feat. reduction 

90.2 (0.853) 
2.6 

35.8% 

90.0 (0.850) 
1.5 

46.3% 

81.3 (0.720) 
0.4 

41.3% 

Top 7 feat. EW#1 
MS#8 

EW#10 
EW#11 

GEOM#9 
GEOM#31 

MS#15 

MS#7 
EW#1 

EW#11 
EW#10 

GEOM#9 
MS#15 

GEOM#31 

EW#1 
EW#11 

EW#10 
GEOM#11 

EW#13 
EW#14 

GEOM#9 

Test samples 45 42 51 

All subsets (RFE) 
Pine 
Birch 
Alder 

88.9 (0.832) 
0.88/0.94/0.9110 
0.88/0.82/0.85 
0.92/0.92/0.92 

88.1 (0.821) 
0.92/0.86/0.89 
0.80/0.86/0.83 
0.93/0.93/0.93 

78.4 (0.677) 
0.89/0.89/0.89 
0.72/0.76/0.74 
0.73/0.69/0.71 

3.5.2. Sensitivity analysis 

The four feature subsets used for the detection of trenches and clamps 

are dependent on six decisive control parameters (Table 13) that must 

be optimized through sensitivity analysis. During this optimization pro-

cess, we used the OA value of the RF classifier as a quality measure. 

Different radii rtree for neighbourhood definition for the selection of 

nearby trees were tested. The value of 5 m yielded the best perfor-

mance. Therefore, the circular area size for the creation of TF was 78.5 

m². The key parameter for the generation of hDTM is the DTM smoothing 

coefficient α (Polewski et al., 2015b). Values ranging from 1 to 10 were 

evaluated and the optimal α value was determined to be three. For the 

computation of htrend, the decisive parameter is the size of the sur-

rounding quadratic area. Areas with a varying side length etrend were 

tested and the best OA was achieved with etrend = 5.5 m. The radii rN 

and rFPFH defining the neighbourhood for the computation of surface 

normals and FPFH generation were also optimized. Fourteen combina-

tions of parameters were tested. The optimal values were rN = 3.0 m 

and rFPFH = 7.0 m. Finally, the cell size ecell for the calculation of LM was 

set to 5x5 m. 

                                           
8 OA in %, κ in brackets. 
9 For area#3, no accurate MS data were available. 
10 Precision / recall / F1 score. 
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Table 13: Control parameters. 

Parameter Definition Tested values Optimal 
value 

rtree Radius to identify close-up 

trees [m] 

3, 5, 10, 20, 30 5 

α DTM smoothing coefficient 1 to 10 
(step size of 1) 

3 

etrend Edge length of quadratic area 
to calculate DTM trend [m] 

0.5 to 45.5 m 
(step size of 5 m) 

5.5 

rN Radius used to compute sur-
face normals [m] 

1.5 to 5.0 m 3.0 

rFPFH Radius used to generate FPFH 

[m] 

2.0 to 10.0 m 7.0 

ecell Cell size for calculation of LM 
[m] 

2x2, 5x5, 10x10 5x5 

3.5.3. Detection of radioactive waste sites 

3.5.3.1.  Classification results 

For the detection of trenches and clamps, the mean OA of the RF clas-

sifiers (θ = 0.90) was 98.9% for the training data and 98.2% for the 

test data (Table 14). In general, the recall and precision for the class 

“non-contaminated” were 0.97 or higher in all study areas, leading to 

excellent F1 scores. Furthermore, the recall values for “trench” were at 

least equal to 0.98, whereas the precision values ranged between 0.37 

and 0.62. Apparently, numerous DTM pixels were predicted as trench 

pixels although labelled as “non-contaminated”. Moreover, in area#3, 

the RF classifier reached an F1 score of 0.80 for the class “clamp” (pre-

cision = 0.66, recall = 1.00). 

A reduction of the feature sets to individual feature subsets led to mean 

OA values of 88.7% (TF), 71.6% (hnorm), 93.9% (FPFH), and 95.3% 

(LM). By including the RFE step, the feature space was considerably 

reduced by an average of 40.2% and the gain in OA was 0.23%. Fea-

ture relevance assessment clearly demonstrated that members of all 

four feature subsets are represented in the final list of the 10 most 

important features. The normalized DTM height hnorm is ranked here, 

as well as the features FPFH#(16–18,27,28). The most important LM 

are features that describe the terrain surface and vegetation below 1.5 

m, namely the mean value of points with a negative height 

LM_mean(h<0m) or a height below 1.5 m LM_mean(h<1.5m) and the 

minimum height of all points LM_min(h). TF utilizing tree height 

(TF#(2,3)), mean CBH (TF#4), and mean crown diameter (TF#16) are 

also contained in this ranking. Furthermore, species-related features, 

namely alder tree ratio (TF#9) and mean alder probability (TF#12), 
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seem to be of importance for the waste site classification. The TF com-

prise approximately 27% of the top 10 features among all areas (eight 

out of 30). 

Table 14: Classification results for detection of radioactive waste sites. 

Study area 1 2 3 

Training samples 6,222 14,310 22,872 

TF 

hnorm 
FPFH 
LM 

All subsets (RF) 

88.5 (0.841)11 

79.7 (0.590) 
96.1 (0.914) 
95.3 (0.910) 

98.9 (0.972) 

90.7 (0.893) 

71.1 (0.422) 
95.4 (0.917) 
95.9 (0.926) 

99.4 (0.987) 

86.9 (0.851) 

64.0 (0.460) 
90.1 (0.852) 
94.6 (0.923) 

97.6 (0.961) 

All subsets (RFE) 
Gain in OA 

Feat. reduction 

99.1 (0.982) 
0.2 

43.4% 

99.6 (0.992) 
0.2 

64.1% 

97.9 (0.968) 
0.3 

13.2% 

Top 10 feat. FPFH#16 
FPFH #18 

LM_mean(h<0m) 
TF#4 

LM_min(h) 

hnorm 
TF#12 

FPFH#27 
FPFH#17 
TF#16 

LM_mean(h<0m) 
FPFH#16 

TF#3 
FPFH#18 

TF#2 

LM_mean(h<1.5m) 
hnorm 

TF#12 
FPFH#28 
FPFH#27 

FPFH#16 
LM_mean(h<0m) 

LM_min(h) 
FPFH#18 

hnorm 

LM_mean(h<1.5m) 
TF#4 

FPFH#28 
FPFH#27 

TF#9 

Test samples 208,704 251,561 1,015,037 

All subsets (RFE) 
Non-cont. 

Trench 
Clamp 

99.1 (0.758) 
1.00/0.99/1.0012 

0.62/0.99/0.76 
--- 

98.2 (0.744) 
1.00/0.98/0.99 

0.61/0.98/0.75 
--- 

97.3 (0.609) 
1.00/0.97/0.99 

0.37/0.98/0.54 
0.66/1.00/0.80 

Besides the estimated class labels, we also calculated the class proba-

bilities for each DTM pixel. From these values, probability maps (Figure 

27, right) were created showing DTM grid points classified with more 

than 95% as “trench”. The results are highly correlated to the DTM 

height (Figure 27, left). In the last step, polygonal objects were gen-

erated from classified DTM pixels as concave hulls. To clean up the 

results, we set an area threshold of 30 m² to remove small objects that 

were obviously generated by clusters of wrongly classified DTM pixels. 

Finally, an overview of all the detected radioactive burials was created 

(Figure 31). 

                                           
11 OA in %, κ in brackets. 
12 Precision / recall / F1 score. 
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Figure 27: Classification result for area#1. 

We now focus more on the spatial distribution of the classification er-

rors. Figure 28 (left) shows the normalized DTM height and the manu-

ally produced polygons that were used to label the DTM pixels in 

area#1. Figure 28 (right) illustrates the classification errors on the test 

dataset (OA = 99.1%, κ = 0.758) and highlights the errors. On the one 

hand, false positives (FPs) appear in the transition zone from trench to 

non-contaminated areas. On the other hand, some accumulated FPs 

occur, and these are not correlated to the normalized DTM height in 

most cases. The results in area#2 (OA = 98.2%, κ = 0.744) are mostly 

comparable to those of area#1. In area#3 (OA = 97.2%, κ = 0.609), 

a large number of non-contaminated pixels were wrongly classified as 

trench pixels (22,491). A closer look at these grouped FPs demon-

strates that they strongly resemble the typical shape of trenches (Fig-

ure 29, left). Moreover, they are correlated to the normalized DTM 

height. Furthermore, we could find a fairly high number of FPs (4,613) 

for the class “clamp”. However, most of these errors are only located 

in the transition zone from clamp to non-contaminated areas (Figure 

29, right). 
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Figure 28: Classification errors for detection of trenches (section of area#1). 

 

Figure 29: Classification errors (section of area#3). 

3.5.3.2.  Classifier generalization 

In addition to classifier evaluation on manually labelled test data in the 

same study area, we conducted an experiment to investigate the gen-

eralization capabilities of the trained classifiers. The classifier trained 

for area#1 was applied to the entire dataset of area#2. If we analyse 

the relevant confusion matrix (Table 15), we can notice a considerable 

high number of false negatives (FNs) (6,440) and FPs (9,719) causing 

a relatively low F1 score for the class “trench” (0.49). Note that the 

extremely high number of true negatives (TNs) (227,752) still led to 

an excellent OA (93.6%). For a section of area#2, Figure 30 (right) 

shows the spatial distribution of the classification errors. Apparently, 

in some areas, numerous FPs were generated in the vicinity of DTM 

pits (Figure 30, left). 
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Figure 30: Generalization capabilities of the classifier (section of area#2). 

Table 15: Results for applying the classifier trained for area#1 to the dataset 

for area#2 (OA = 93.6%). 

r
e
fe

r
e
n

c
e
 

 prediction evaluation metrics 

 non-cont. trench prec. recall F1 

non-cont. 227,752 9,719 0.97 0.96 0.97 

trench 6,440 7,650 0.44 0.54 0.49 

 

3.5.3.3.  Classifier evaluation using ground truths 

First, the classifier trained on area#3 was applied to geometrically in-

correct and incomplete RWTSP reference data from area#3. Here, the 

classification accuracy was relatively low (Table 16). Specifically, 

55.7% (39,328 out of 70,598) of the DTM grid points located in the 

RWTSP trench areas were classified as “non-contaminated”. Note that 

the quality of these reference data is poor because these data are 

based on nonprofessional generation techniques (see Section 3.3.2.1). 

Second, 38 borings (Figure 31) verified the existence (25) or absence 

(9) of buried radioactive biomass and demolition waste in 34 cases (OA 

= 89.5%). In four cases (borings C132, C151, C155 and C221), radi-

oactive waste was found in areas that had been classified as “non-

contaminated”. However, these FNs are located only 3–9 metres off 

the detected trenches. All deposits occurred at an average depth of 1–

2 m, exhibiting EDR values that were up to 30 times greater than those 

on the terrain surface (Table 4 and Table 5). 
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Figure 31: Detected burial sites (trenches and clamps) and conducted borings 
in the study areas; Coordinate system: UTM zone 36N (EPSG 32636); Base 
map source: bing map ©Microsoft Corporation. 
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Table 16: Results for applying the classifier trained for area#3 to the RWTSP 
reference data (OA = 65.1%). 

  
 r

e
fe

r
e
n

c
e
 

 prediction evaluation metrics 

 non-
cont. 

trench clamp prec. recall F1 

non-cont. 39,749 111 16 0.48 1.00 0.65 

trench 39,328 28,535 2,735 0.95 0.40 0.57 

clamp 3,453 1,391 19,439 0.88 0.80 0.84 

3.6. Discussion 

3.6.1. Tree species classification 

3.6.1.1.  Classification results 

In general, the results demonstrate that the three main tree species in 

the ChEZ (birch, alder, and pine) were successfully classified using both 

lidar data and MS imagery. Moreover, the low decrease in classification 

results on the test data compared with training data (1.3–2.9 percent-

age points) indicates a fairly good generalization quality. The best re-

sults were achieved in the case of the available MS data in area#1 and 

area#2 (mean OA = 88.5%, mean κ = 0.827). These results are highly 

comparable to Kamińska et al. (2018), who classified six classes of 

trees with an OA of 88.6% (κ = 0.851) fusing CIR imagery and leaf-off 

ALS data with normalized intensity values. Without MS data (area#3), 

the OA decreased to 78.4% (κ = 0.677). In our experiments, MS fea-

tures generated from five spectral channels clearly increased the clas-

sification result by approximately 10%. This finding corresponds to 

Holmgren et al. (2008) and Ørka et al. (2012), who also demonstrated 

a significant improvement in classification results by including infor-

mation from MS images. Regarding the single tree species, the overall 

F1 score for pine (0.90) was generally better than for the deciduous 

species birch (0.81) and alder (0.85). Even without MS features 

(area#3), pines were classified with an F1 score of 0.89. Obviously, MS 

features primarily improved the classification of birch and alder. This is 

because at the time of data collection, birches had already sprouted. 

Therefore, their characteristic spectral appearance supported the clas-

sification significantly. 

3.6.1.2.  Feature importance 

Furthermore, feature selection led to a significant reduction of the fea-

ture space and improved the OA by 1.5% on average. According to the 
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feature relevance assessment, the mean Ew value of all laser points 

for a single tree was the most relevant feature. This fact substantiates 

the quality of our newly introduced data-driven correction method for 

radiometric lidar data of the YellowScan Mapper I laser scanner. More-

over, geometry- and Ew-based features related to the tree crown and 

penetration of the laser beam to the ground were also among the top 

seven features. This is in full accordance with Shi et al. (2018b) and 

Amiri et al. (2019), showing that these types of features mainly control 

the quality of tree species classification. In our experiments, certain 

quartiles of the NDVI and RENDVI values significantly enhanced the 

classifier. Regarding the feature subsets, the MS features provided bet-

ter results than the lidar-related features (GEOM, EW). A classifier us-

ing only the MS features was only slightly worse than the classifier 

using the complete feature set. 

3.6.2. Detection of radioactive waste sites 

3.6.2.1.  Classification results 

Our results show that the area-wide detection of unknown radioactive 

burial sites in the forested areas of the ChEZ can be performed suc-

cessfully using both UAV-based lidar data and MS imagery. A classifi-

cation accuracy of over 97% for DTM grid points potentially located in 

areas with buried radioactive materials is relatively high for all study 

areas. By including a feature selection technique, we removed redun-

dant and irrelevant features from the dataset and effectively avoided 

overfitting for a standard RF classifier. The OA values of the proposed 

classifiers on the test datasets are comparable to the results of a five-

fold cross validation that we performed during classifier training. How-

ever, FPs in the transition zones from burials to non-contaminated ar-

eas caused a decrease in the precision values for both trenches and 

clamps. Manual generation of reference data based on visual DTM in-

terpretation may certainly affect these errors. 

In area#3, we realized that approximately 30% of the FPs are grouped 

in longish clusters and, thus, strongly resemble the typical shape of 

trenches. Moreover, they are correlated to the normalized DTM height. 

Based on the results for the class “trench” in area#1 (F1 = 0.76) and 

area#2 (F1 = 0.75), we assume that the classification accuracy for 

trench pixels is actually higher. Because of missing ground reference 

data in this study area, we can only speculate that these grouped errors 

are located in trenches that were not considered during manual label-

ling. Theoretically, if these 30% of rather obvious FP samples were 

taken into account in area#3, the F1 score for “trench” would improve 

from 0.54 to approximately 0.72. 

  



Chapter 3 

67 

3.6.2.2.  Feature importance 

A feature relevance assessment supported the classification results and 

demonstrated that handcrafted features from all the subsets appear 

among the most important features. Clearly, local shape descriptors 

are very significant features for modelling the cylindrical shapes of both 

trenches and clamps. Two FPFH features (FPFH#16 and FPFH#18) 

were ranked in the top four features for all study areas. Unsurprisingly, 

the normalized DTM height hnorm is a promising feature in all three 

study areas. Regarding the LM, we observed that the most important 

variables are features describing the terrain surface and low structures. 

In addition to the features describing the terrain geometry, the newly 

developed TF comprise approximately 27% of the top 10 features for 

all study areas, meaning they also had a significant impact on the clas-

sification results. Aside from the features describing the tree geometry 

(TF#(2–4,16)), species-related features such as alder tree ratio (TF#9) 

and mean alder probability (TF#12) are capable of further improving 

the proposed classifier. For example, it appears that alder trees pref-

erably grow in the vicinity of the trenches of area#1 and area#2. In 

summary, tree species classification is beneficial for detecting radioac-

tive waste sites in the ChEZ. 

3.6.2.3.  Transferability between study areas 

To a certain degree, the capabilities of the trained classifier for trench 

detection in area#1 were transferable to adjacent area#2 (OA = 

93.6%). Compared with the results of an RF classifier being trained 

directly in study area#2, the F1 score for non-contaminated DTM pixels 

remained almost unchanged (F1 = 0.97). Nevertheless, a considerable 

high number of misclassified DTM pixels caused clearly worse results 

for the class “trench” (F1 = 0.49). When analysing the spatial distribu-

tion of these errors, we observed that numerous FPs were generated 

in the vicinity of DTM pits. Furthermore, comparing the feature im-

portance of the classifiers trained in area#1 and area#2, it seems that 

some of the TF are disadvantageous for classifier generalization. 

Namely, the mean CBH is ranked 4th in area#1, whereas the mean 

and std of the tree height are in the top five features in area#2. Due 

to different characteristics regarding the tree geometry (crown shape, 

tree height), these TF vary between the study areas. However, these 

differences could not be detected in a visual interpretation of the da-

taset. The importance of features related to the terrain geometry is 

less fluctuating. In other words, these features should be focused on if 

a generalization of the classifier is to be considered. Unsurprisingly, 

when using geometrically incorrect and incomplete RWTSP reference 

data, the OA is relatively low (OA = 65.1%). 
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3.6.2.4.  Verification based on ground truths 

A comparison of detection results and 38 borings clearly shows that 25 

true positives (TPs) and 9 TNs were verified in area#1 and area#2 (OA 

= 89.5%). Only four FNs occurred less than 9 m off the detected 

trenches, meaning the classifier falsely predicted areas as “non-con-

taminated”. In summary, EDR measurements inside the bore holes 

confirmed the existence of suspected trenches that were unknown and 

not identified prior to the application of our methodology. Furthermore, 

EDR measurements revealed that the radioactive waste in the trenches 

was covered with a layer of approximately 0.5 m of “clean” sand. This 

layer shielded the active inventory. Therefore, these radioactive waste 

burials were not detected by standard EDR measurements. 

3.6.2.5.  Comparison to previous studies 

To the best of our knowledge, the detection of radioactive burials using 

remotely sensed optical data has never been performed before. Thus, 

there is a lack of comparable studies. Nevertheless, our task is partially 

similar to certain research in the archaeology community. For example, 

Guyot et al. (2018) detected burial mounds based on the normalized 

height calculated from a 25-cm DTM. Furthermore, Lasaponara et al. 

(2010) demonstrated that micro-elevation changes in lidar-based 

DTMs support the identification of archaeological sites. Interestingly, 

our method significantly outperforms UAV-based gamma spectrometry 

surveys (Zabulonov et al., 2015), which have a detection rate of ap-

proximately 50% in vegetated areas. Moreover, compared with a his-

torical map created from the memories of liquidation workers (Figure 

18), the quality of our precise and reliable mapping approach is enor-

mous. 

3.6.3. Limitations of method 

Despite fairly good results, our methodology has some limitations. 

Needless to say, the detection of radioactive waste sites greatly de-

pends on the resolution of the lidar-based DTM. As stated by other 

studies, ground point density is the most important when detecting 

slight ground settlements or elevations. For example, Bollandsås et al. 

(2012) could show that the lidar-based DTM resolution had a significant 

effect on the detection success of cultural remains. Especially in 

densely vegetated areas, enhanced UAV lidar sensors with pulse repe-

tition frequencies beyond 1 MHz and the realization of flight missions 

with cross-strips could tackle this limiting factor. Another weakness of 

our methodology for tree species classification is the manual prepara-

tion of training and test samples. However, because of understandable 

reasons, the collection of field reference data was not possible in the 

study area. 
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3.7. Conclusion 
Our experiments demonstrated that area-wide detection of unknown 

radioactive waste sites in the ChEZ can be conducted successfully using 

the proposed methodology. Overall, we achieved excellent classifica-

tion results fusing high-resolution UAV-based lidar data and MS im-

agery. A key factor of our approach is the generation of a feature set 

that can describe both the ground surface and nearby vegetation. 

Moreover, we applied an effective feature selection strategy to avoid 

overfitting of the RF models, resulting in remarkable generalization 

properties. Furthermore, we presented an efficient correction method 

for the radiometric data collected by the YellowScan Mapper I laser 

scanner. Based on geometrically and radiometrically consistent data, 

precise 3D vegetation mapping at the tree level enabled the generation 

of meaningful TF that supported the proposed classifier. Our results 

were verified based on 38 borings that confirmed the existence of pre-

viously unknown buried nuclear materials in the classified areas. Com-

pared to the ground surface, EDR measurements revealed values up to 

30 times greater in the soil layers containing buried biomass and dem-

olition waste. Moreover, it is noteworthy that some of the parameters 

from 3D vegetation mapping (i.e. tree height, tree species, stem di-

ameters, tree positions) can be used advantageously in radiologic sim-

ulations. Based on the results in Briechle et al. (2018), Molitor et al. 

(2018) calculated the potential exposure to external irradiation from a 

single tree species for a person working in the ChEZ forest. Therefore, 

more realistic radiologic modelling based on the method proposed in 

this chapter for 3D vegetation mapping should be possible. Finally, ex-

isting hazard maps were upgraded using the proposed method to min-

imize workers’ radiation dose uptake and optimize accident liquidation. 
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4 Classification of tree species and 

standing dead trees by fusing UAV-

based lidar data and multispectral im-

agery in the 3D deep neural network 

PointNet++13 
 

                                           
13 This chapter is based on the article: 

Briechle, S., Krzystek, P., and Vosselman, G.: Classification of tree 

species and standing dead trees by fusing UAV-based lidar data and 

multispectral imagery in the 3D deep neural network PointNet++. 

ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 

203–210, 2020, doi:10.5194/isprs-annals-V-2-2020-203-2020. 

https://doi.org/10.5194/isprs-annals-V-2-2020-203-2020
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Abstract 
Knowledge of tree species mapping and of dead wood in particular is 

fundamental to managing our forests. Although individual tree-based 

approaches using lidar can successfully distinguish between deciduous 

and coniferous trees, the classification of multiple tree species is still 

limited in accuracy. Moreover, the combined mapping of standing dead 

trees after pest infestation is becoming increasingly important. New DL 

methods outperform baseline ML approaches and promise a significant 

accuracy gain for tree mapping. In this study, we performed a classifi-

cation of multiple tree species (pine, birch, alder) and standing dead 

trees with crowns using the 3D DNN PointNet++ along with UAV-based 

lidar data and MS imagery. Aside from 3D geometry, we also integrated 

laser echo pulse width (EW) values and MS features into the classifica-

tion process. In a preprocessing step, we generated the 3D segments 

of single trees using a 3D detection method. Our approach achieved an 

OA of 90.2% and was clearly superior to a baseline method using an 

RF classifier and handcrafted features (OA = 85.3%). All in all, we 

demonstrate that the performance of the 3D DNN is highly promising 

for the classification of multiple tree species and standing dead trees 

in practice. 

4.1. Introduction 
Forest inventories based on remote sensing data, particularly lidar 

point clouds fused with optical imagery, are the most prominent op-

tions for the inventory of forest structural variables (Latifi and Heurich, 

2019). Forest attributes such as above-ground biomass and growing 

stock can be estimated from the spatial distribution of tree species and 

dead wood. Tree-level approaches utilize segmented single trees for 

forest inventory parameter estimations. For forest managers and na-

ture conservationists, information about tree species, especially the 

classification of dead trees, is of increasing importance because forests 

are suffering from changing climatic conditions. 

In the past, extensive research has been conducted to apply appropri-

ate classifiers such as support vector machine (SVM), RF, or logistic 

regression to classify presegmented single trees with respect to tree 

species (Fassnacht et al., 2016) and dead trees (Yao et al., 2012). Most 

methods have been based on handcrafted feature sets extracted from 

ALS data and MS or hyperspectral imagery. Polewski (2017) success-

fully combined single 3D tree segments with MS aerial imagery to de-

tect standing dead trees in a binary classification. The authors incor-

porated MS features generated from the covariance matrix of three 

image channels and classified dead trees with an OA of ~88%. Moreo-

ver, Degerickx et al. (2018) distinguished healthy (precision = 93%, 
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recall = 83%) from unhealthy (precision = 71%, recall = 88%) decid-

uous trees using ALS data and hyperspectral imagery in a regression 

method. Recently, Amiri et al. (2019) reported a combined classifica-

tion of tree species and standing dead trees with crowns. Using a huge 

feature set generated from multi-wavelength lidar point clouds, four 

tree classes were classified with an OA of 82%. Interestingly, dead 

trees were only classified with 76% precision and 73% recall. However, 

all in all, the performance of these approaches for individual tree spe-

cies classification is still not sufficient for practical use. 

Currently, the utilization of high-performance DL methods as a classi-

fication tool for 3D sensed data has gained a large amount of interest 

in the remote sensing community. Various authors have demonstrated 

that standard ML concepts using, for example, SVM or RF, can be out-

performed by DL-based methods (Voulodimos et al., 2018; Liu et al., 

2018). One big advantage of DNNs is the automatic extraction of fea-

tures as part of the training process, or so-called representation learn-

ing (LeCun et al., 2015). Griffiths and Boehm (2019) emphasized four 

general types of DL approaches for scene understanding from 3D 

sensed datasets. To utilize well-proven and efficient 2D CNNs, irregular 

and unordered 3D point clouds can either be transformed into RGB-

depth (RGB-D) images (Zhao et al., 2018) or utilized to render mul-

tiview images (Qi et al., 2016). Furthermore, the authors discussed 

volumetric approaches that discretize raw 3D data, that is, as regular 

3D voxel grids, and that use 3D convolutions to extract meaningful 

information (Zhou and Tuzel, 2018). Finally, powerful network archi-

tectures have been developed to enable a direct input of raw and un-

structured point clouds without the need for a prior rasterization or 

voxelization. These innovative networks such as PointNet (Qi et al., 

2017a), PointNet++ (Qi et al., 2017b), PointCNN (Li et al., 2018), and 

Super Point Graphs (Landrieu and Simonovsky, 2018) allow end-to-

end classification. 

To the best of our knowledge, the application of DNNs for the classifi-

cation of presegmented single trees has been sparsely investigated. In 

urban study areas, Wegner et al. (2016) applied latest CNN-based 

methods to extensive datasets comprising aerial and street view im-

ages. The authors demonstrated that multiview imagery significantly 

improved tree detection and tree species classification, reaching close 

to human performance. Furthermore, Hartling et al. (2019) classified 

eight tree species using DenseNet (Huang et al., 2017), data from sat-

ellite imagery, and lidar data (approximately 1 point/m²) in urban 

study areas (OA = 83%). Moreover, Hamraz et al. (2019) generated 

images from ALS point clouds and made use of a CNN to classify over-

story coniferous and deciduous trees in a natural forest with a cross-

validated classification accuracy of 92% and 87%, respectively. So far, 
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using “real” 3D DNNs for vegetation mapping has not been researched 

sufficiently. Recently, Briechle et al. (2019) achieved promising results 

for adapting PointNet++ to the semantic labelling of extensive ALS 

point clouds, resulting in an OA = 85% for spruces and beeches. 

The key idea of the current study was to adapt a 3D DNN for the clas-

sification of multiple tree species based on presegmented single tree 

objects. Specifically, we applied PointNet++ to a dataset composed of 

UAV-based lidar (including EW) and five-channel MS imagery. All in all, 

PointNet++ achieved excellent classification results at the single-tree 

level and clearly outperformed the baseline method. Furthermore, we 

demonstrated that MS data clearly enhanced the classification result. 

In the following sections, we address the study area, sensors, data 

preprocessing, and reference data. Subsequently, we present the 

methodology for tree species classification using PointNet++ and com-

pare it with the baseline method. Next, we demonstrate the conducted 

experiments and the main outcomes, including a comparison of both 

methods. Finally, we discuss the results referring to previous research 

and draw conclusions. 

4.2. Materials 

4.2.1. Study area 

In two UAV flight missions (November of 2017 and April of 2018), both 

lidar data and MS images were captured in the study area ChEZ, lo-

cated approximately 1.5 km west of the ChNPP (Figure 32). This 

densely vegetated area (37 ha) comprises approximately 400 trees/ha 

with tree heights of up to 30 m (Bonzom et al., 2016). The three main 

tree species are silver birch (Betula pendula), scots pine (Pinus syl-

vestris), and black alder (Alnus glutinosa). Moreover, standing dead 

trees with crowns (solely pines) can be found in the area. 

 

Figure 32: Overview of the study area, located ~1.5 km west of the ChNPP 
(base map source: bing map ©Microsoft Corporation). 
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4.2.2. Sensors and data preprocessing 

During both flight missions, an octocopter was utilized; it was devel-

oped by a team from the Department of Nuclear Physics Technologies 

of the Institute of Environment Geochemistry of the National Academy 

of Sciences of Ukraine. The copter enabled surveys, simultaneously re-

cording with the lidar system and two MS cameras. 

4.2.2.1.  Lidar data 

Lidar data with a nominal point density of 53 points/m² were collected 

in five automatic flights using a YellowScan Mapper I laser scanner at 

a constant altitude of 50 m. To generate a geometrically reliable 3D 

dataset, various postprocessing steps were conducted. First, differen-

tial postprocessing using a GNSS base station resulted in flight trajec-

tories with centimetre-level precision. Second, the boresight angles 

provided by the manufacturer were checked in a calibration flight. 

Third, geometrically consistent lidar point clouds were generated by 

simultaneously aligning the flight strips (Jalobeanu and Gonçalves, 

2014). Fourth, absolute 3D georeferencing was achieved by fitting the 

ALS point cloud to the enclosing polygons of a nearby building. Addi-

tionally, the sensor provided the intensity values for each laser point 

equivalent to the EW measured at a fixed internal sensor threshold. 

Because tree species classification can benefit from these measure-

ments, we performed a data-driven correction step (Briechle et al., 

2020). Finally, we performed single-tree segmentation using a normal-

ized cut algorithm, resulting in single tree point clouds and enclosing 

tree polygons (Reitberger et al., 2009). 

4.2.2.2.  MS imagery 

Five-band MS images (ground sample distance = 8.9 cm) were cap-

tured using two MicaSense RedEdge cameras (spectral range 475–840 

nm) mounted in a twisted configuration with an angle of 22.5° (50% 

side overlap). Guaranteeing an extended camera footprint (FOV = 70°) 

equal to the lidar footprint, this setup allowed for a constant line-to-

line distance for both lidar and MS sensors in a combined survey. For 

postprocessing the five-channel images, we utilized structure-from-

motion software14. The processing steps included bundle adjustment 

(mean reprojection error of 1.3 pixels), calibration of reflectance, and 

the generation of dense photogrammetric 3D point clouds (80 

points/m²) and 10-cm orthomosaics. Because the overflown study area 

is inaccessible, no GCPs were used. Therefore, photogrammetric point 

clouds were registered to georeferenced lidar point clouds using an ITC 

                                           
14 Agisoft PhotoScan Professional 1.4.1. 
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algorithm15, resulting in a root mean squared error of 0.237 m (Briechle 

et al., 2018). 

4.2.3. Reference data 

Because of the high radiation dose rates within the study area, refer-

ence data were generated based on visual interpretation of 3D point 

clouds and MS imagery. In total, we manually labelled 1135 single tree 

segments assigned to the four tree classes “pine” (368 samples), 

“birch” (243 samples), “alder” (283 samples), and “dead tree” (241 

samples), respectively. 

4.3. Methodology 
In the following sections, we describe the baseline method including 

feature engineering, classifier training and feature selection procedure. 

Furthermore, we give a detailed description of the classification process 

with the 3D DNN. Specifically, we address the preparation of dataset 

as well as network training, hereby focusing on hyperparameters and 

data augmentation. 

4.3.1. Baseline method 

4.3.1.1.  Extraction of handcrafted features 

The feature set generated from 3D lidar data (Table 17) comprised 

features based on the tree geometry (GEOM) and the laser echo char-

acteristics (EC). 

Table 17: 32 GEOM and 14 EC features. 

Features Definition 

GEOM(1–10)16 Density distribution of points per height layer. 

GEOM(11–20) Vertical distribution of tree substance per height layer. 

GEOM(21–30) Mean distance of points to segment centre. 

GEOM(31–32) Std of distance from crown points to segment centre, in x 

and y direction. 

EC1 Mean EW of points of a single tree. 

EC(2–11) Mean EW of points of a single tree per height layer. 

EC12 (Σ middle / Σ first) reflections. 

EC13 (Σ single / Σ first) reflections. 

EC14 (Σ first + Σ middle) / (Σ single + Σ last) reflections. 

Moreover, we developed distinctive features from the five-channel or-

thomosaics. For this purpose, we computed five VIs from the available 

spectral channels. First, we calculated the NDVI, a well-known index 

                                           
15 CloudCompare 2.8 [GPL software]. 
16 Increasing numbering from bottom (1) to top (10). 
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sensitive to healthy vegetation rich in chlorophyll and robust over a 

wide range of conditions (Rouse Jr et al., 1973): 

NDVI =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
[7] 

Second, utilizing both RE and NIR channels, the RENDVI (Gitelson and 

Merzlyak, 1994) was computed. This index is a NDVI modification and 

has been developed for applications including forest monitoring and 

vegetation stress detection. RENDVI is capable of detecting small 

changes in canopy foliage content (Sims and Gamon, 2002): 

RENDVI =
𝑁𝐼𝑅 − 𝑅𝐸

𝑁𝐼𝑅 + 𝑅𝐸
[8] 

Third, we introduced a NDVI-inspired index. Instead of the NIR chan-

nel, the RE channel was used to generate Red Edge Difference Vege-

tation Index (REDVI): 

REDVI =
𝑅𝐸 − 𝑅

𝑅𝐸 + 𝑅
[9] 

Fourth, we utilized the Modified Red Edge Simple Ratio (MRESR), which 

is used for forest monitoring and vegetation stress detection, incorpo-

rating a correction for leaf specular reflection (Datt, 1999): 

MRESR =
𝑁𝐼𝑅 − 𝐵

𝑅𝐸 − 𝐵
[10] 

Fifth, we included the Modified Chlorophyll Absorption Ratio Index 

(MCARI), a well-suited index to indicate the relative abundance of chlo-

rophyll. Daughtry et al. (2000) introduced this index, minimizing the 

combined effects of soil and non-photosynthetic surfaces. 

MCARI =
𝑅𝐸

𝑅
∗ (0.8 ∗ 𝑅𝐸 − 𝑅 − 0.2 ∗ 𝐺) [11] 

We superimposed the enclosing tree polygons on the orthomosaic (Fig-

ure 33) to mask VI pixels located within the tree segments. For each 

of these pixels, statistical features were calculated and standardized 

for each object (Table 18). These resulting 60 MS features were com-

plemented with 10 independent interchannel covariance values gener-

ated from the covariance matrix of the five VI channels. Using this 

feature set, an RF classifier was trained on the labelled dataset and 

optimized in a three-times-repeated five-fold cross-validation. Finally, 

we identified the five most important MS features by evaluating the 

feature ranking based on the mean decrease in accuracy. In descend-

ing order, these were NDVI_skewness, MRESR_perc90, NDVI_perc90, 

RENDVI_mode, and MRESR_mode. 
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Figure 33: Superimposed tree polygons on the orthomosaic. 

Table 18: Object-based statistical MS features. 

Features Definition 

max, min, interval Maximum value, minimum value, and range (max-
min). 

mean, std Mean and std value. 

mode Value that appears most often. 

skewness Measure of asymmetry of the probability distribution. 

kurtosis Measure of tailedness of the probability distribution. 

perc(25,50,75,90) 25th ('1st quartile'), 50th ('median'), 75th ('3rd quar-
tile'), and 90th percentile. 

4.3.1.2.  Classifier training 

For the baseline method, the dataset comprised 32 GEOM features and 

14 EC features (see Table 17), as well as the five most important MS 

features generated from the VI orthomosaics. In a preprocessing step, 

highly correlated redundant features were eliminated from the feature 

set, here based on the application of a threshold (0.9) to feature-to-

feature cross-correlation (Briechle et al., 2018). Next, an RF classifier 

was trained, including RFE based on Kuhn (2008) and a feature rele-

vance assessment. Finally, the generalization quality of the RF classi-

fier was verified by calculating classification metrics (OA, κ, precision, 

recall, and F1 score) on the test dataset. 
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4.3.2. Classification using 3D DNN 

PointNet++ is an advanced version of PointNet and incorporates hier-

archical feature learning by extracting features from multiple contex-

tual scales. Therefore, fine-grained local patterns and more general 

global features can be captured. In the following sections, we demon-

strate the methodology for the utilization of PointNet++ to classify 

three tree species (pine, birch, alder) and standing dead trees using 

the PyTorch implementation from Wijmans (2018). 

4.3.2.1.  Preparation of dataset 

Point sampling: For object classification, PointNet++ requires a con-

stant number of 3D points per sample (e.g., NUM_POINT = 1,024; see 

Table 19). In practice, the distribution of points per tree is fairly het-

erogeneous due to the variations in the size, geometry, and species of 

single trees. Thus, an effective approach must meet the following con-

ditions: First, a constant and adequate number of points per tree has 

to be guaranteed, and loss of information during downsampling needs 

to be minimized. Second, deletion of samples containing less points 

than NUM_POINT but still exceeding an acceptable number of points 

should be avoided. Third, synthetic generation of redundant infor-

mation by extensive upsampling is not reasonable. Therefore, we in-

troduced the two thresholds θ1 and θ2 in a combined sampling ap-

proach. θ1 was utilized to randomly reduce the points per tree to a 

certain value. Figure 34 exemplary shows the number of remaining 

samples per class, in dependence of θ1. To preserve the selected ob-

jects comprising less than θ1 points in the dataset, we made use of a 

second threshold, θ2. Trees containing at least θ2 points were sampled 

up to θ1 points using random copies of points. All in all, our procedure 

handled the trade-off between upsampling and downsampling, assum-

ing that both thresholds are chosen appropriately. 

 

Figure 34: Number of remaining samples per tree class in dependence of 
threshold θ1. 
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Dataset generation: Initially, the remaining samples were balanced ac-

cording to the four occurring tree classes. Next, all single point clouds 

were standardized by subtraction of the mean x, y, and z coordinates 

and division by the std of x, y, and z values. Consequently, all objects 

were rescaled and had a mean of 0 and an std of 1. Practically, the 

purpose of standardization is to make the classification results inde-

pendent of the geometry within each tree class, for example, the tree 

height and the crown width. Moreover, the EW values were standard-

ized as well. Subsequently, we calculated surface normals (Figure 35) 

using the estimate_normals function from the open source library 

Open3D (Zhou et al., 2018). The two key arguments of the function, 

radius and max_nn, were set to 0.5 and 30, respectively. The param-

eter radius specifies the search radius for the neighbourhood definition, 

whereas max_nn defines the maximum number of nearest neighbours 

to be considered to save computation time. Next, the top five MS fea-

tures were integrated by assigning the standardized values to each 3D 

point of an object (tree species, dead tree). Note that this procedure 

provides additional point attributes. All in all, we generated a dataset 

comprising raw point clouds, surface normals, echo widths per point, 

and five previously calculated handcrafted MS features. 

 

Figure 35: Samples of 3D point clouds per tree class; for each class, the sam-
ples on the right show surface normals. 

4.3.2.2.  Training and validation 

Hyperparameters: PointNet++ is an off-the-shelf 3D DNN. Neverthe-

less, it is essential to consider various options to optimize network per-

formance for specific classification tasks without model overfitting. To 

get a well-performing network, the most decisive PointNet++ hyperpa-

rameters were adjusted using a combination of manual search and au-

tomated grid search (Table 19). For some parameters, the default val-

ues were convenient and, therefore, remained unchanged. 

Data augmentation: A popular method to avoid model overfitting on a 

small training dataset is the utilization of data augmentation. Further-

more, performing data augmentation during network training helps to 

make the neural network more robust against object variation. Before 
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each training epoch, we shuffled the order of samples to generate ran-

dom batches. Next, we performed random transformations of the 

standardized 3D objects by following common practice including scal-

ing (range = [0.80, 1.25]), rotation around vertical axis (range = [0, 

2*pi]), jittering with Gaussian noise (range = ±0.05 [m]), and 3D 

translation of the entire point cloud (range = ±0.1 [m]). Furthermore, 

we set the random input dropout parameter to MAX_DROPOUT = 50%, 

thereby increasing the robustness to varying point densities and oc-

cluded object parts. Practically, the input points for each instance were 

randomly dropped out, generating subvolumes of the objects. 

Model evaluation: For testing of the trained network, class labels were 

predicted on trees that were not used for the training. We compared 

these class predictions with the reference labels and calculated stand-

ard metrics OA, κ, precision, recall, and F1 score. For final evaluation, 

we used the model showing the lowest validation loss. 

Table 19: Hyperparameters and default / optimized values for PointNet++. 

Hyperparameter Value Declaration 

NUM_CLASSES 4 Number of object categories. 

NUM_POINT 1,024 Number of 3D points per sample. 

MAX_DROPOUT 0.5 Maximal dropout rate. 

BATCH_SIZE 8 Number of samples per batch. 

MAX_EPOCH 30017 Number of training epochs. 

BASE_LR 1e-3 Initial learning rate (LR). 

LR_DECAY 0.7 Initial LR decay. 

BN_MOMENTUM 0.5 Initial batch norm momentum. 

BNM_DECAY 0.5 Batch norm momentum decay. 

OPTIMIZER Adam Optimization algorithm. 

WEIGHT_DECAY 1e-4 L2 regularization coefficient. 

4.4. Experiments and results 

4.4.1. Experimental setup 

The original reference dataset was prepared for object classification, 

performing point sampling (θ1 = 1,024; θ2 = 512) and class balancing 

(see Section 4.3.2.1). The remaining 668 samples (167 per class) were 

divided into 464 training and 204 test samples using a split ratio of 

0.7. Note that for a fair comparison of 3D DNN and baseline method, 

the particular training and test datasets were identical. For network 

training and validation, we used an Intel Xeon Platinum 8160 central 

processing unit (CPU) and an Nvidia Titan V graphics processing unit 

(GPU) (NVIDIA Corporation, 2019) with 12 GB on Ubuntu 18.04, reach-

                                           
17 No early stopping criterion was used. 
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ing a processing time of approximately 10 seconds per epoch. We per-

formed classification with PointNet++ on four different datasets inves-

tigating their impact on the classification result. In more detail, the 

datasets represented geometry (GEOM, see Figure 36), geometry and 

surface normals (GEOM+normals, see Figure 37), geometry and EW 

values (GEOM+EW, see Figure 38), and all data subsets 

(GEOM+EW+MS, see Figure 39). Furthermore, we conducted compar-

ative experiments with the previously described baseline method (RF). 

For validation, we compared both classifier procedures on the same 

test dataset. 

 

Figure 36: Confusion matrices on the test dataset using only geometry infor-

mation. 

 

Figure 37: Confusion matrices on the test dataset using only geometry infor-
mation and PointNet++ exclusive (a) and inclusive of (b) surface normals. 



Chapter 4 

83 

 

Figure 38: Confusion matrices on the test dataset using only geometry infor-
mation and EW values. 

 

Figure 39: Confusion matrices on the test dataset using geometry information, 
EW values, and MS features. 

4.4.2. General classification results 

PointNet++ outperformed the baseline method in all experiments (Ta-

ble 20). Especially, if only geometry information was used, PointNet++ 

and automatically extracted features led to a result that was 17.7% 

better than the baseline method using 32 “standard” handcrafted ge-

ometry features. Adding surface normals improved the DNN result by 

1.4%. Here, no comparison to the baseline was available. Fusing ge-

ometry data with EW data, the OA increased by 1.0% (DNN) and 

14.2% (RF), respectively. Using this feature set generated from lidar 

data, the DNN (OA = 79.4%) was 5.9% better than the baseline 

method (OA = 73.5%). Including five top MS features – namely 

NDVI_skewness, MRESR_perc90, NDVI_perc90, RENDVI_mode, 

MRESR_mode – the OA increased by approximately 11% for both 
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methods. Using all data subsets, PointNet++ (OA = 90.2%) outper-

formed the baseline method (OA = 85.3%) by 4.9%. 

Table 20: Classification results using different data subsets. 

Feature sets PointNet++ RF 

OA [%] κ OA [%] κ 

GEOM 77.0 0.693 59.3 0.458 

GEOM+normals 78.4 0.712 --- --- 

GEOM+EW18 79.4 0.725 73.5 0.647 

GEOM+EW+MS19 90.2 0.869 85.3 0.804 

4.4.3. Analysis of results using baseline method 

The classification of multiple classes with the baseline method utilizing 

only geometry features performed fairly poor (Figure 40). Adding EW 

data increased all F1 scores, with a major improvement of 0.24 for pine. 

Moreover, the top five MS features especially boosted the F1 scores of 

birch by 0.23 and dead tree by 0.22 but could not improve alder clas-

sification. Overall, the F1 scores ranged between 0.76 and 0.93. The 

feature ranking of the RF classifier clearly confirmed the importance of 

MS features for tree species classification, with all five MS features be-

ing ranked in the top 10 of the most important features (Table 21). 

Unsurprisingly, five of the EC features were also ranked in the top 10. 

These features mainly represent the interaction of the laser beam with 

the top layers of the tree (EC10, EC11) and penetration to the ground 

(EC13, EC14). Furthermore, the mean EW value of the laser points of 

a single tree (EC1) was ranked eighth. Finally, none of the geometry 

features was ranked in the top 10. 

Table 21: Top 10 features using RF classifier and all data subsets. 

Feature name Feature importance19 

NDVI_skewness 100.0 

MRESR_perc90 88.6 

NDVI_perc90 85.6 

EC10 59.5 

RENDVI_mode 54.1 

EC11 52.3 

EC14 39.6 

EC1 39.2 

EC13 36.2 

MRESR_mode 33.3 

                                           
18 Due to the architecture of PointNet++, surface normals are mandatory when 
adding extra attributes such as EW values or MS features. 
19 Normalized mean decrease in accuracy. 
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4.4.4. Analysis of results using 3D DNN 

In general, the results demonstrated that PointNet++ is an efficient 3D 

DNN for the classification of three tree species and dead trees using 

point clouds (see Figure 41). In particular, the experiments showed 

that the inclusion of surface normals to the geometry data improved 

the F1 score for standing dead trees by 0.06. Incorporating EW values 

mainly led to a high F1 value for pine (F1 score = 0.90). Nevertheless, 

the F1 score for birch decreased by 0.10 to a relatively low value of 

0.65. Adding the top five MS features enhanced all F1 scores. Interest-

ingly, the F1 score for birch clearly increased by 0.24. When utilizing all 

subsets, the F1 scores ranged between 0.88 and 0.95. 

 

Figure 40: F1 scores per class using RF. 

 

Figure 41: F1 scores per class using PointNet++. 
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4.5. Discussion 
The proposed framework using PointNet++ for the classification of 

three single tree species and standing dead trees performed fairly 

good. Especially, when classification was only conducted based on ge-

ometry information, the results were significantly better than those of 

the baseline method. Obviously, handcrafted geometry features are 

considerably inferior to information automatically extracted in a DNN. 

If we analyse the confusion matrices, we notice a higher confusion be-

tween alder and dead trees. Very likely, the tree geometry and spectral 

appearance of alder is similar to dead pines. Stepwise improvement of 

the results produced by PointNet++ was rather low when we fused 

surface normals and EW values with geometry data (1.5% and 1.0%, 

respectively). Interestingly, adding surface normals particularly in-

creased the classification accuracy for dead trees. Also very important, 

the classification of pine, the only conifer in our study area, profited 

most by the EW values (F1 score = 0.90), thereby confirming the find-

ings of Reitberger et al. (2009). Furthermore, we included five MS fea-

tures that were selected by the RF-based feature assessment. Embed-

ding these features, the overall results were considerably enhanced for 

both methods by approximately 11% (see Table 20). Especially, the 

classification of birch and dead tree benefited from these MS features. 

Note that at the time of data collection, birches had already sprouted. 

Therefore, their characteristic spectral appearance supported the clas-

sification significantly. 

Investigating the related work reveals that our approach achieves very 

promising and competitive results. For the classification of individual 

tree species, most previous studies based on classic ML approaches did 

not reach an acceptable accuracy level of up to 90%. Yu et al. (2017) 

classified three tree species using MS ALS data and an RF classifier (OA 

= 86%). Moreover, Shi et al. (2018a) categorized five species, fusing 

ALS data with hyperspectral imagery (OA = 84%). Kamińska et al. 

(2018) classified three tree species (spruce, pine, deciduous), each of 

them further categorized as “dead” or “alive”. Their approach using an 

RF classifier and features generated from ALS data and CIR imagery 

reached an OA of 94%. Nevertheless, a comprehensive and, thus, fair 

comparison to other studies that have addressed classification of pre-

segmented single trees is challenging. Collecting data using a huge 

variety of sensor platforms and sensor types, utilized datasets strongly 

differ in their spatial, spectral, and temporal resolution. Additionally, 

the type of study area (urban, natural, managed) and number of sam-

ples and classes fluctuate as well. 

We would also like to address some limitations of PointNet++ for clas-

sification tasks. Because PointNet++ can only deal with objects com-
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prising a constant number of points, point sampling including upsam-

pling and downsampling must be performed. Thereby, information loss 

is unavoidable and must be minimized based on reasonable thresholds, 

depending on the specific point density of the dataset. Nevertheless, 

this disadvantage is clearly compensated by the DNN performance with 

its ability to automatically extract meaningful information from 3D da-

tasets. Moreover, 3D DNNs such as PointNet++ need to be trained 

from scratch using a specific and fairly high number of training sam-

ples. Contrary to well-known 2D CNNs, no publicly available databases 

such as ImageNet (Deng et al., 2009) can be used for transfer learning 

and reasonable weight initialization. 

4.6. Conclusion 
Our experiments demonstrated that 3D DNN PointNet++ could suc-

cessfully be applied to the classification of three tree species – pine, 

birch, and alder – and standing dead trees. Fusing UAV-based lidar 

data and features generated from five-channel MS imagery, we 

achieved an OA better than 90% at the single-tree level. Moreover, 

classification with PointNet++ was clearly superior to the described 

baseline method in all cases. All in all, our DL-based approach provided 

detailed and reliable 3D vegetation maps at the tree level in the study 

area ChEZ. In a next step, a large scale experiment in an extended 

forest area is intended to verify the promising results of this current 

study, thereby demonstrating the suitability for practical use. 
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combined classification of tree species 

and standing dead trees from remote 

sensing data20 
 

                                           
20 This chapter is based on the article: 

Briechle, S., Krzystek, P., and Vosselman, G.: Silvi-Net – A dual-CNN 

approach for combined classification of tree species and standing 
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plied Earth Observation and Geoinformation, 98, 2021, 

doi:10.1016/j.jag.2020.102292. 

https://doi.org/10.1016/j.jag.2020.102292


Silvi-Net – CNN-based classification of tree species and standing dead trees 

90 

Abstract 
Forest managers and nature conservationists rely on the precise map-

ping of single trees from remote sensing data for efficient estimation 

of forest attributes. In recent years, additional quantification of dead 

wood in particular has garnered interest. However, tree-level ap-

proaches utilizing segmented single trees are still limited in accuracy 

and their application is therefore mostly restricted to research studies. 

Furthermore, the combined classification of presegmented single trees 

with respect to tree species and health status is important for practical 

use but has been insufficiently investigated so far. Therefore, we intro-

duce Silvi-Net, an approach based on CNNs fusing airborne lidar data 

and MS images for 3D object classification. First, we segment single 

3D trees from the lidar point cloud, render multiple silhouette-like side-

view images, and enrich them with calibrated EC. Second, projected 

outlines of the segmented trees are used to crop and mask the MS 

orthomosaic and to generate MS image patches for each tree. Third, 

we independently train two ResNet-18 networks to learn meaningful 

features from both datasets. This optimization process is based on pre-

trained CNN weights and recursive retraining of model parameters. Fi-

nally, the extracted features are fused for a final classification step 

based on a standard MLP and majority voting. We analysed the net-

work's performance on data captured in two study areas, the ChEZ and 

the Bavarian Forest National Park (BFNP). For both study areas, the 

lidar point density was approximately 55 points/m² and the GSD values 

of the true orthophotos were 10 cm (ChEZ) and 20 cm (BFNP). In gen-

eral, the trained models showed high generalization capacity on inde-

pendent test data, achieving an OA of 96.1% for the classification of 

pines, birches, alders, and dead trees (ChEZ) – and 91.5% for conifer-

ous, deciduous, snags, and dead trees (BFNP). Interestingly, lidar-

based imagery increased the OA by 2.5% (ChEZ) and 5.9% (BFNP) 

compared to experiments only utilizing MS imagery. Moreover, Silvi-

Net also demonstrated superior OA compared to the baseline method 

PointNet++ by 11.3% (ChEZ) and 2.2% (BFNP). Overall, the effective-

ness of our approach was proven using 2D and 3D datasets from two 

natural forest areas (400–530 trees/ha), acquired with different sensor 

models, and varying geometric and spectral resolutions. Using the 

technique of transfer learning, Silvi-Net facilitates fast model conver-

gence, even for datasets with a reduced number of samples. Conse-

quently, operators can generate reliable maps that are of major im-

portance in applications such as automated inventory and monitoring 

projects. 
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5.1. Introduction 
In forestry, the precise and reliable mapping of tree species is a fun-

damental concern. The classification of dead wood in particular is of 

increasing importance because forests are suffering from changing cli-

matic conditions. Furthermore, tree-level approaches are increasingly 

of interest in area-wide forest inventory. For instance, forest attributes 

such as above-ground biomass and growing stock can be estimated 

based on tree-specific allometric models (Chave et al., 2014). Moreo-

ver, forest managers and nature conservationists require quantitative 

mapping results to investigate the robustness and sustainability of var-

ious forest compositions (Overbeck and Schmidt, 2012). Besides these 

conventional applications of vegetation mapping, tree species infor-

mation can also be advantageous in more unusual cases. For example, 

Briechle et al. (2020b) showed that observed vegetation anomalies are 

helpful for the detection of unknown radioactive waste sites in the 

ChEZ. 

5.1.1. Conventional approaches 

Traditionally, forest inventory has been based on manual field meas-

urements. Forest managers have typically relied on sample-based pro-

cedures followed by area-wide extrapolation (McRoberts and Tomppo, 

2007). Nevertheless, in situ inventory is labour intensive and, there-

fore, both time consuming and expensive. For a temperate forest area 

of around 300 km², Latifi et al. (2015) demonstrated that lidar-based 

data collection is 90% less expensive compared to a conventional for-

est inventory. Fassnacht et al. (2016) reviewed the work of various 

researchers who have investigated forest parameter estimation at the 

single-tree level using remote sensing data. Airplanes, helicopters, and 

innovative platforms such as UAVs equipped with lidar sensors and MS 

or hyperspectral cameras enable acquisition of high-resolution data 

from a bird's eye view. In particular, the fusion of lidar point clouds 

and optical multi-channel imagery is the most prominent option for the 

inventory of forest structural variables (Latifi and Heurich, 2019). In a 

preprocessing step, single trees are typically delineated from ALS data. 

This tree segmentation is mostly based on a canopy height model 

(CHM) (Pyysalo and Hyyppä, 2002; Solberg et al., 2006) or on the 

original 3D point cloud (Reitberger et al., 2009; Wu et al., 2016). After 

the segmentation process, extracted single tree objects can be classi-

fied according to tree species. Therefore, the majority of previous stud-

ies typically relied on a two-step approach. First, handcrafted feature 

sets describing the geometry and radiometry of single trees were gen-

erated from the remote sensing data. Second, appropriate ML classifi-

ers, such as SVM or RF, were applied for classification. For example, 

Heinzel and Koch (2012) investigated different feature sets derived 

from full-waveform lidar data, hyperspectral data, and CIR images in 
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a temperate forest. Their SVM-based method could classify pine (Pinus 

sylvestris), spruce (Picea abies), oak (Quercus petraea), and beech 

(Fagus sylvatica) with an OA of 89.7%, 88.7%, 83.1%, and 90.7%, 

respectively. Dalponte et al. (2012) used airborne hyperspectral im-

agery and lidar data from a mountain area in the Southern Alps. They 

investigated the performance of both RF and SVM classifiers on differ-

ent feature subsets generated from data with varying spatial resolu-

tions. Overall, seven species and a “non-forest” class were classified 

with an OA of 83.0%. In a mixed temperate forest, Shi et al. (2018a) 

categorized five species by fusing ALS data with hyperspectral imagery 

(OA = 83.7%). The authors successfully combined plant functional 

traits (e.g., equivalent water thickness, leaf mass per area and leaf 

chlorophyll), spectral features, and LM. 

Recently, the classification of dead trees has become increasingly im-

portant. Most previous studies regarded this task as a binary problem 

and classified tree objects into dead or living. For instance, Yao et al. 

(2012) utilized an SVM classifier and handcrafted features generated 

from full waveform lidar data (25 points/m²) captured in a mixed 

mountain forest in the BFNP. Based on features derived from the 3D 

point cloud, laser intensity and EW, their method classified dead and 

living trees with an OA of 73% for leaf-on trees and 71% for leaf-off 

trees. Polewski et al. (2015a) presented an active learning-based ap-

proach to detect standing dead trees (snags) in the BFNP. Using fea-

tures from ALS point clouds and CIR imagery, manually labelled single 

trees were classified into dead and living with an OA of 89%. Casas et 

al. (2016) proposed a classification model based on single-tree ALS 

metrics and separated snags from living trees with an OA of 92%. In a 

comprehensive study, Kamińska et al. (2018) trained an RF classifier 

using intensity and structural variables from multi-temporal ALS data 

(6 points/m²) and spectral information generated from 20-cm leaf-on 

CIR images. Their method classified three tree species (spruce, pine, 

and deciduous), and further categorized them as “dead” or “alive” (OA 

= 94.3%). More recently, Krzystek et al. (2020) conducted a large-

scale experiment in an area of 924 km² to classify single trees in the 

BFNP. Based on ALS data and CIR imagery, their binary classifier sep-

arated dead from living trees with an OA of 93%. In summary, the 

overall performance of approaches for individual tree species classifi-

cation in dense (and thus complex) temperate forests is still insufficient 

for practical use, requiring an OA of at least 90% for multi-class tasks. 

5.1.2. DL-based approaches 

In recent years, utilizing high-performing DL methods as classification 

tools has garnered a large amount of interest, outperforming standard 

ML approaches in various tasks (Voulodimos et al. 2018). Presumably, 

the biggest advantage of these DNNs is their representation learning, 
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which characterizes the automatic extraction of features as part of the 

training process (LeCun et al., 2004). For scene understanding from 

irregular and unordered 3D point clouds, Griffiths and Boehm (2019) 

outlined four general types of DL approaches. On the one hand, the 

authors reviewed methods that either render multi-view images (Qi et 

al., 2016) or transform input data into RGB-D images (Zhao et al., 

2018). Thus, proven and efficient 2D CNNs such as AlexNet (Krizhev-

sky et al., 2012), VGG (Simonyan and Zisserman, 2015), and ResNet 

(He et al., 2015) can be applied. On the other hand, the authors dis-

cussed volumetric approaches that discretize raw 3D data as regular 

3D voxel grids and subsequently use 3D convolutions to extract mean-

ingful information (Zhou and Tuzel, 2018). Recently, powerful network 

architectures such as PointNet++ (Qi et al., 2017b) and PointCNN (Li 

et al., 2018) have been developed. These 3D DNNs enable direct input 

of raw and unstructured point clouds without the need for prior raster-

ization or voxelization. Therefore, they allow end-to-end classification 

of 3D point clouds. 

So far, the application of DL methods for the classification of preseg-

mented single trees based on lidar data has been rarely investigated. 

Presumably, one reason for this research gap is the lack of large train-

ing datasets. In a natural forest (330 stems/ha), Hamraz et al. (2019) 

utilized a CNN to classify overstory coniferous and deciduous trees. By 

generating images from leaf-off and leaf-on ALS point clouds (50 

points/m²), a cross-validated classification accuracy of 92% for conif-

erous trees and 87% for deciduous trees were reached. Overall, the 

CNN was up to 14% more effective than traditional learning methods 

using handcrafted features. In an urban study area, Hartling et al. 

(2019) fused data from satellite imagery and lidar data. Using Dense-

Net (Huang et al., 2017), an OA of 83% in classifying eight individual 

tree species was achieved. Moreover, their approach was clearly supe-

rior to both RF (OA = 52%) and SVM (OA = 52%) classifiers, even with 

restricted training sample quantities. In a tropical wetland located in 

South China, Sun et al. (2019b) developed a patch-based classification 

algorithm for seven classes, including six individual tree classes (1388 

training samples, 362 test samples). Initially, single trees were seg-

mented by calculating a CHM from the lidar point cloud (5–8 

points/m²). Then, the segment information was utilized to generate 

64x64 image patches by cropping 10-cm aerial RGB images. Their most 

effective model was a modified version of ResNet-50, which classified 

image patches with an OA of 90%. In the same study area, Sun et al. 

(2019a) mapped 18 tree species using ALS data and high-resolution 

RGB images, achieving an OA of 73% at the single-tree level. Their 

approach involved the application of three well-known CNNs (AlexNet, 

VGG-16, and ResNet-50). Recently, Briechle et al. (2020a) classified 

three tree species (pine, birch, and alder) and standing dead pines with 
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crowns using PointNet++ along with UAV-based lidar data and MS im-

agery. Aside from 3D geometry, EW values and MS features were also 

integrated into the classification process. Overall, their DL-based 

method (OA = 90%) successfully used raw 3D data and was superior 

to a baseline method using an RF classifier and handcrafted features 

(OA = 85%). 

5.1.3. Key idea and main issues 

In the present chapter, the objective was to classify presegmented 3D 

single tree objects with respect to tree species and dead trees in a 

combined approach. Therefore, because of its proven outstanding per-

formance, a CNN-based procedure was chosen. Additionally, we ap-

plied the technique of transfer learning to tree species classification. 

Instead of training all model parameters from scratch, this approach is 

based on pretrained parameters that are fine-tuned on the basis of a 

task-specific dataset. Especially for relatively small datasets, this pro-

cedure allows effective model adaptation, even if there is a considera-

ble domain shift between an existing image collection and a new da-

taset (Prabha et al., 2020). Essentially, our approach was supported 

by the idea that a person would likely classify a single tree by looking 

at its silhouette from different angles. Our approach was further sup-

ported by a review of DL methods for 3D data, which found that sys-

tems using discrete 2D representations of 3D data typically outperform 

approaches based on 3D voxel representations (Ioannidou et al., 

2017). We therefore wanted to investigate whether multi-view 2D im-

ages could also exceed point networks. Thus, the key idea of this study 

was to train a CNN fusing MS image patches and multiple side-view 

images generated from UAV-based and helicopter-based lidar data. In 

addition to the geometric information, we also incorporated calibrated 

laser EC into the classification pipeline. The experiments conducted ex-

amined the following research questions: 

 Can this new method successfully be applied to data from two 

regions captured with different lidar sensors and MS cameras? 

 Compared to the baseline approach using PointNet++, is there 

an improvement in classification accuracy when utilizing a CNN 

approach and multiple 2D representations of single trees? 

Furthermore, we investigated some relevant practical issues: 

 Is the masking of MS image patches necessary? 

 Can the incorporation of laser EC improve performance? 

 Which classes can be classified more accurately than others? 

Why are some classes particularly difficult to distinguish? 
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The most innovative contribution of our pipeline for single-tree classi-

fication is the fusion of MS image patches and multi-view images gen-

erated from 3D point clouds in a dual-CNN approach. Furthermore, we 

initialize the CNN models using pretrained weights and optimize the 

network parameters by recursive retraining. To visualize the networks' 

decisions, we use class activation mapping (CAM). 

In the following sections, we address the study areas, sensors, data 

preprocessing, and reference data. Subsequently, we present our 

methodology for tree species classification and the baseline method. 

Then, we outline the conducted experiments and the main outcomes, 

including a comparison of both methods. Finally, we discuss the results 

in relation to previous research and draw conclusions. 

5.2. Materials 

5.2.1. Study areas 

In this chapter, we present experiments building on datasets from two 

study areas. The first study area, ChEZ, is densely vegetated with a 

tree density of approximately 400 trees/ha. The main tree species are 

Scots pine (Pinus sylvestris), silver birch (Betula pendula), and black 

alder (Alnus glutinosa), with tree heights up to 30 m (Bonzom et al., 

2016). Overall, the forest stand is dominated by Scots pine planted 

after the nuclear disaster of 1986 (Yoschenko et al., 2011), comprising 

approximately 50% of all trees. Based on visual interpretation of aerial 

imagery, we roughly estimated the distribution of pines, birches, and 

alders to be 50%, 20%, and 30%, respectively. The second study area, 

BFNP, was established in 1970 and is part of the Natura 2000 network, 

which was founded to protect the most endangered habitats and spe-

cies in Europe. The BFNP contains protected flora and fauna of excep-

tional natural value (Zenáhlíková et al., 2015). The forest area is dom-

inated by Norway spruce (Picea abies), European beech (Fagus syl-

vatica), silver fir (Abies alba), and larch (Larix). Furthermore, other 

tree species appear less frequently, such as silver birch (Betula pen-

dula), sycamore maple (Acer pseudoplatanus), and common rowan 

(Sorbus aucuparia) (Cailleret et al., 2014). Due to bark beetle infesta-

tion, extensive areas are covered with dead wood – fallen dead trees, 

standing dead trees, and standing dead trees without crowns (also 

known as snags). 

5.2.2. Data acquisition and preprocessing 

In the ChEZ, we utilized an octocopter developed by a team from the 

Department of Nuclear Physics Technologies of the Institute of Envi-

ronment Geochemistry of the National Academy of Sciences of Ukraine. 
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All flights were carried out in fully automatic mode using GNSS way-

points. Data collection was performed during sunny and partly cloudy 

weather conditions at a mostly constant wind speed (2–3 m/s). In April 

2018, lidar data were collected by a YellowScan Mapper I laser scanner, 

resulting in a nominal point density of approximately 53 points/m². 

Before the data collection, a calibration flight over a building was con-

ducted to check the boresight angles (BayesMap Solutions LLC, 2018) 

preset by the manufacturer. Differential GNSS postprocessing (NovAtel 

Inc., 2017) incorporating GNSS measurements collected by a Trimble 

R4 base station ensured flight trajectories with centimetre-level preci-

sion. Overall, the mean discrepancy between adjacent lidar strips was 

approximately 5 cm, which is in the range of the measurement accu-

racy of the instrument. Absolute 3D georeferencing with an accuracy 

of a few centimetres was achieved by fitting the ALS point cloud to the 

enclosing polygons of a nearby building. Moreover, the recorded lidar 

data were radiometrically corrected based on the data-driven method 

presented in Briechle et al. (2020b). Additionally, we captured MS im-

ages using two MicaSense RedEdge cameras that were mounted in a 

twisted configuration with an angle of approximately 23°. Compared to 

a FOV of 47° for a single camera setup, this setup guaranteed a 50% 

side overlap of the two camera footprints, thereby increasing the total 

FOV to approximately 70°. To compensate for changing lighting condi-

tions during and between the flights, we utilized MicaSense’s CRP and 

DLS. These accessories provided useful information for the subsequent 

reflectance calibration in Agisoft PhotoScan Professional 1.4.1 (Agisoft 

LLC, 2018). Next, all images were aligned in a bundle adjustment, re-

sulting in a mean reprojection error of 1.3 pixels. Finally, 10-cm MS 

true orthophotos were generated using the lidar-based surface model 

as a reference. 

In the BFNP, airborne full waveform data were acquired in June 2017 

(leaf-on condition) using a Riegl LMS-Q680i instrument carried by a 

helicopter. The resulting average point density was 55 points/m². Ad-

ditionally, a calibration flight was conducted on a nearby airfield and 

enabled the correction of the raw amplitude values with regard to trav-

elling distance of the laser beam (Amiri et al., 2019). Next, georefer-

encing quality was checked based on in-field measurements of vertical 

and planimetric objects, such as flat areas and enclosed building poly-

gons, respectively. On average, the mean 3D displacements of the lidar 

data were less than 10 cm. MS aerial imagery in the BFNP was also 

acquired in June 2017, using a Leica DMC III camera. GNSS data and 

Inertial Navigation System data provided initial values for the exterior 

camera orientation. Using the software package Agisoft PhotoScan Pro-

fessional 1.4.1, the aerotriangulation was performed based on aerial 

images, a camera calibration model, and GCPs, leading to a sigma 

naught of 30% of the GSD. Next, we generated true orthophotos on 
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the basis of the lidar-based digital surface model. Finally, single trees 

were delineated from the lidar point cloud in both study areas utilizing 

the normalized cut algorithm presented by Reitberger et al. (2009). 

Following the authors' recommendations, we set the static stopping 

criterion of the normalized cut segmentation to 0.16. The segmentation 

quality was not tested quantitatively, however visual inspection helped 

to verify that no major oversegmentation or undersegmentation oc-

curred. Aside from individual point clouds, the segmentation also pro-

vided projected 2D polygons for each tree. Table 22 shows an overview 

of study areas, sensor platforms, sensor equipment, and data acquisi-

tion parameters. 

Table 22: Study areas and sensor equipment. 

 ChEZ BFNP 

Location 51°23’N, 30°04’E 49°04’N, 13°18’E 

Size of study area 37 ha 8.3 km² 

Tree density 400 trees/ha 530 trees/ha 

Tree height 15–30 m 15–50 m 

Platform UAV (octocopter) Helicopter D-HFCE/AS350 

Lidar sensor YellowScan Mapper I Riegl LMS-Q680i 

Laser wavelength 905 nm 1550 nm 

Echo characteristics Pulse width Intensity 

Flight altitude 50 m 550 m 

Flight speed 6 m/s 30 m/s 

Point density 53 points/ m² (leaf-
off) 

55 points/m² (leaf on) 

MS camera MicaSense RedEdge Leica DMC III 

Focal length 5.5 mm 92 mm 

MS bands blue (B), green (G), 
red (R), RE, NIR  

B, G, R, NIR 

Flight altitude 130 m 2880 m 

Flight speed 9 m/s 30 m/s 

End lap/side lap (%) 79/50 80/60 

GSD of orthomosaics 10 cm 20 cm 

5.2.3. Reference data 

Based on visual interpretation, single tree segments were manually la-

belled using an interactive tool. Note that incorrect segments were 

generally not considered in the labelling process to make our classifi-

cation results independent of the segmentation quality. In the user in-

terface, randomly chosen tree segments are displayed in 3D. The point 

cloud can be rotated, thereby supporting the annotator in verifying the 

class label. Furthermore, the corresponding 2D polygon for each seg-

ment is superimposed on the aerial image. In detail, the trees in the 

ChEZ were manually subdivided into the classes “pine”, “birch”, “al-
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der”, and “dead tree”. In the BFNP, we labelled the trees with the cat-

egories “coniferous” (mostly spruce), “deciduous” (mostly beech and 

larch), “snag”, and “dead tree” (Figure 42). Here, “snag” refers to a 

partly or completely dead tree missing a crown or most of the smaller 

branches (Yao et al., 2012). In contrast, trees labelled “dead tree” are 

dead trees with crowns. The distinction between “snag” and “dead tree” 

was based on the subjective perception of three different research as-

sistants. Subsequently, the labelled samples were randomly sorted into 

training, validation, and test datasets (see Table 23 and Table 24). 

Note that we also included class balancing for both training and valida-

tion data. 

 

Figure 42: 3D point clouds for selected samples from BFNP dataset, coloured 
by normalized intensity from black (0) to white (1). From left to right: conifer-
ous, deciduous, snag, dead tree. 

Table 23: Number of samples for study area ChEZ; train/val/test split: 
56%/14%/30%. 

Tree class Training 
samples 

Validation 
samples 

Test sam-
ples 

pine 93 23 51 

birch 93 23 51 

alder 93 23 51 

dead tree 93 23 51 

Σ 372 92 204 
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Table 24: Number of samples for study area BFNP; train/val/test split: 
51%/22%/27%. 

Tree class Training 
samples 

Validation 
samples 

Test sam-
ples 

coniferous 345 149 259 

deciduous 345 149 202 

snag 345 149 139 

dead tree 345 149 145 

Σ 1380 596 745 

5.3. Methodology 

5.3.1. Outline of the proposed method 

In general, our network architecture is inspired by DualNet (Hou et al., 

2017), a DNN which includes two parallel CNNs and a subsequent ag-

gregation of complementary features in a final classifier. For a better 

understanding of the overall processing pipeline, important steps of 

Silvi-Net are illustrated in Figure 43. 

 

Figure 43: Outline of the proposed method, Silvi-Netsingle. 
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Initially, 2D representations of the single trees were created in an im-

age generation process. For each tree, an MS image patch was cropped 

to place the tree crown in the image centre. In this step, we utilized 

the polygon outlines generated by the lidar-based tree segmentation. 

To maintain the relative dimensions of the crowns, image patches with 

the same quadratic size were produced. Thus, we ensured that even 

the largest tree crowns were included in the images in their entirety. 

Outlines of the projected 2D tree polygons were used to mask pixels 

not corresponding to the actual tree. In addition to the MS images, we 

rendered multiple side-view images from the segmented 3D lidar point 

clouds of single trees, representing the trees' silhouettes. Optionally, 

these images were enriched with laser EC. Basically, we created two 

types of image sets – one with 12 individual images per tree, and one 

with an image collage comprised of all 12 side-view images per tree. 

In the following sections, the approaches utilizing these datasets are 

referred to as Silvi-Netsingle, and Silvi-Netcollages respectively. After the 

image generation process, features were automatically extracted using 

two independently trained ResNet-18 models, optimized for both the 

MS and side-view images. Here, we applied the idea of transfer learn-

ing and pretrained weights. To visualize the model's decisions, we pro-

duced CAM images and superimposed them on the input images. Over-

all, we generated 512 features per side-view image or image collage, 

and additional 512 features from each MS image. Next, the feature 

vectors were fused and fed into a standard multi-layer perceptron 

(MLP) that was trained to estimate class probabilities for each sample. 

For Silvi-Netsingle, the classification led to 12 predicted labels per tree. 

Therefore, we introduced Silvi-NetmajVot, an additional evaluation strat-

egy applying majority voting to these 12 predictions. The idea was to 

outvote individual, falsely classified side-view images and to obtain one 

label per tree. In the following sections, all of the steps of our approach 

are described in greater detail. 

5.3.2. Generation of image patches 

First, we present the methodology for image generation from MS or-

thomosaics. Because CNN-based image classification supported by 

transfer learning typically utilizes three-channel imagery, we reduced 

the five-channel images in the ChEZ area. More specifically, we trans-

formed the B, G, and R channels into a single grey scale channel by 

calculating the mean value of these three channels for each pixel. Next, 

we added the RE and NIR channels, resulting in a three-channel image. 

Because of the difference in sensors, an alternative procedure was con-

ducted for the BFNP data. In this study area, we removed the blue 

channel from the raw imagery and utilized the resulting CIR images. 

For both study areas, we normalized the three image channels inde-
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pendently to values between 0 and 1. For each tree segment, the cor-

responding polygon was projected onto the orthomosaic. Then, a 

cropped image patch was produced covering a predefined quadratic 

region around the polygon centre. The image size resulted from the 

maximum crown dimension (ChEZ: 10 m x 10 m, BFNP: 12 m x 12 m) 

and the pixel size of the orthomosaics (ChEZ: 10 cm, BFNP: 20 cm). 

Thus, all tree crowns fit within the image dimensions. Ultimately, this 

process led to images sized 100 x 100 pixels for ChEZ and 60 x 60 

pixels for BFNP. Optionally, pixels outside the tree polygon were 

masked out and set equal to 0. Thus, MS_unmasked and MS datasets 

were prepared on the basis of the ChEZ dataset (Figure 44) and the 

BFNP dataset (Figure 45). In total, 668 MS patches were generated in 

the ChEZ area, and 2,721 in the BFNP area – each with a masked and 

an unmasked version. 

 

Figure 44: MS_unmasked images (first row) and MS images (second row) gen-
erated from MS orthomosaics in the ChEZ study area; false-colour images 
(RGB, RE, NIR). Image size corresponds to 10 m × 10 m. 

 

Figure 45: MS_unmasked images (first row) and MS images (second row) gen-
erated from MS orthomosaics in the BFNP study area; CIR images (G, R, NIR). 
Image size corresponds to 12 m × 12 m. 
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Additionally, we prepared two different types of images from the 3D 

lidar point clouds – one with 12 individual images per tree and one with 

an image collage comprised of all 12 side-view images per tree. In a 

first step, the point clouds were rotated in constant steps around the z 

axis to simulate multi-view positions. After visual interpretation, we 

decided to set the rotation angle to multiples of 30°, leading to multi-

view image stacks of 12 images per tree. This was deemed an accepta-

ble balance between information loss and redundancy. Next, we ren-

dered binary silhouette-like images for both study areas (see Figure 46 

a-d and Figure 47 a-d) by projecting the 3D data onto a virtual vertical 

raster. The image resolution was set to 10 cm per pixel. Because the 

images should completely cover even the largest trees, the image size 

– 260 x 260 px in the ChEZ and 500 x 500 px in the BFNP – was 

determined by the maximum tree height in the corresponding study 

area. Note that the image size in the BFNP was much larger than the 

required input size of ResNet-18. The average tree height was 16.5 m 

(std = 1.2 m) in the ChEZ and 28.1 m (std = 6.1 m) in the BFNP, 

respectively. As a consequence, 90% of all trees covered at least half 

of the image height in the ChEZ. With 70%, this ratio was clearly lower 

in the BFNP. In case of working with data from forests with an even 

larger range of tree sizes, we assume that the image size should be 

calculated in a different way. Otherwise, decreasing results are likely 

to appear because of significant loss of detail for the average and 

smaller trees. Furthermore, we wanted to analyse the impact of EC on 

our classification method. Therefore, we included EW values in the 

ChEZ dataset and intensity (INT) values in the BFNP dataset. Incorpo-

rating the normalized EW and INT values, we also generated 8-bit 

grayscale images. These two image datasets are referred to as GEOM 

(binary images) and GEOM_EC (grayscale images), respectively. Over-

all, the preprocessing of samples for Silvi-Netsingle led to 8,016 GEOM 

and GEOM_EC images each in the ChEZ area (training: 4,464; valida-

tion: 1,104; test: 2,448) and 32,652 GEOM and GEOM_EC images each 

in the BFNP (training: 16,560, validation: 7,152, test: 8,940). Subse-

quently, we rendered image collages utilized in the approach Silvi-

Netcollages, including all 12 views per tree in one image. Therefore, as-

suming that only the middle third of the quadratic side-view images 

contains useful information, we cut out these essential image parts. 

Next, we randomly arranged them as matrices comprising two rows 

with six images each (see Figure 46 e-h and Figure 47 e-h). Thus, 

unlike the previously created single-view images, the number of sam-

ples was equivalent to the number of tree objects. 
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Figure 46: GEOM images generated from UAV-based lidar data in the ChEZ 
study area. First row (a-d): single images, image size corresponds to 26 m × 
26 m. Second row: collated multi-view images. Image size corresponds to 52 

m × 52 m. 

 

Figure 47: GEOM images generated from ALS data in study area BFNP; First 

row (a-d): single images, image size is corresponding to 50 m × 50 m; Second 
row: collated multi-view images, image size is corresponding to 100 m × 100 

m. 
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5.3.3. CNN-based feature extraction 

In our approach, automatic extraction of features was performed using 

a standard CNN. Our decision was motivated by the fact that CNNs are 

well-established neural networks for image-based deep supervised 

learning that are capable of achieving excellent results in the fields of 

pattern recognition and ML (Schmidhuber, 2015). Moreover, CNNs are 

especially designed to process sensor data represented as multiple 2D 

arrays. By considering local and global stationary properties, CNNs 

have achieved state-of-the-art results in popular image classification 

tasks, such as the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) (Russakovsky et al., 2015). In general, CNNs are DNNs con-

sisting of numerous stacked layers. The first part, also known as the 

feature extractor, is mainly comprised of convolutional blocks – se-

quences of convolutional layers, activation layers, and pooling layers. 

Thereby, convolutional layers utilize filter kernels to extract low-level 

image features. Moreover, the kernel depth is equal to the number of 

image channels. The output of a convolutional layer is a feature map 

with one channel per filter kernel. Activation layers, such as the recti-

fied linear unit (ReLU), account for non-linear effects. Practically speak-

ing, ReLU sets negative values to the value 0 and reduces the problem 

of vanishing gradients – an effect that occurs with DNNs. Additionally, 

ReLU layers are computationally inexpensive and enable faster model 

convergence. Pooling layers essentially subsample the feature maps, 

using common methods such as average pooling and maximum pool-

ing. The second part of a CNN is the actual classifier. Here, the final 

output feature maps are flattened into a one-dimensional vector, fol-

lowed by fully connected classification layers (LeCun et al., 2015). 

Overall, CNNs include a huge set of model parameters – weights and 

biases – that need to be estimated. To reduce model overfitting, regu-

larization techniques such as dropout and batch normalization are often 

included in typical CNN architectures. By adding dropout layers, co-

adaptation of neurons can be prevented. Moreover, this technique ap-

proximates the idea of ensemble models and allows a higher LR. How-

ever, it also usually leads to slower model training. Additionally, batch 

normalization layers can help improve model stability and quality (Ioffe 

and Szegedy, 2015). Practically speaking, these layers apply channel-

wise normalization of the feature maps and result in faster model con-

vergence. 

5.3.3.1.  CNN architecture 

In our classification pipeline, we utilized two standard ResNet-18 mod-

els (He et al., 2015) implemented with the PyTorch framework, version 

1.1.0 (Paszke et al., 2019), which is an optimized tensor library for DL 

using GPUs and CPUs. With their proposed idea of residual blocks, the 

developers of ResNet successfully minimized the problem of vanishing 
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gradients. At this time, the problem was that the training accuracy of 

multi-layer CNNs dropped as the number of layers increased. There-

fore, the authors proposed to use a reference to the previous layer to 

compute the output at a given layer. As a result of these skip connec-

tions (also termed shortcuts), the training of much deeper CNNs was 

facilitated. Moreover, these deep residual networks can achieve im-

proved accuracy due to considerably increased depth. In 2015, He et 

al. (2015) won the ILSVRC using ResNet ensembles with a depth of up 

to 152 layers. Our decision to use ResNet-18 was motivated by prelim-

inary studies testing different CNN architectures included in the “mod-

els” subpackage of the “torchvision 0.3.0” module in PyTorch. Here, 

both VGG-16 (Simonyan and Zisserman, 2015) and Densenet-121 

(Huang et al., 2017) performed significantly worse than ResNet-18 

when initialized using weights pretrained on the ImageNet dataset 

(Deng et al., 2009). Adopting the deeper version, ResNet-50, did not 

improve the results. Presumably, our dataset was too small to retrain 

all 23.6 million ResNet-50 parameters in an effective way. In contrast, 

we were able to robustly retrain all 11.2 million ResNet-18 parameters 

and optimize the network for our task. In this way, we achieved a suit-

able trade-off between network depth and dataset size. Figure 48 

shows the architecture of ResNet-18 in a simplified way, including di-

mensions of tensors and filters and final feature vector. The feature 

extractor of ResNet-18 consists of four residual blocks. Each block is 

comprised of a stack of two basic blocks of 2–3 convolutional layers, 

followed by batch normalization and ReLU layers. Finally, an average 

pooling layer extracts 512 features per 224 x 224 x 3 input image. 

 

Figure 48: Simplified ResNet-18 architecture, created with a neural network 
drawing tool (LeNail, 2019). 

5.3.3.2.  CNN training 

We utilized two separate ResNet-18 models optimized for the classifi-

cation of GEOM/GEOM_EC images and MS images, respectively. At the 

beginning, all images were loaded and resampled to the required image 

size of 224 x 224 pixels. Next, the images in the range [0, 255] were 

converted to floating tensors in the range [0.0, 1.0]. Then, the three 

channels of these image tensors were standardized separately using 

the mean (0.485, 0.456, 0.406) and std (0.229, 0.224, 0.225) values 

of ImageNet. For each channel, the mean of the data was 0 and the 
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std was 1. Next, data augmentation was performed on the training 

data. This method to artificially increase the number of training sam-

ples is helpful to avoid overfitting and usually results in better gener-

alization properties of the trained model (Goodfellow et al., 2016). In 

our approach, we applied a combination of random affine transfor-

mation and random horizontal flip to both training and validation data. 

Moreover, we randomly flipped the MS images vertically. Note that this 

transformation was not performed for the lidar-based side-view images 

to maintain the vertical orientation of trees. The affine transformation 

of image coordinates x and y into new image coordinates x' and y' can 

be described as a sequence of rotation, shearing, scaling, and transla-

tion (Eq. 12): 

[
𝑥′

𝑦′] = [
𝑡𝑥

𝑡𝑦
] + [

𝑠𝑥 0
0 𝑠𝑦

] ∙ [
1 𝑠
0 1

] ∙ [
cos(∝) sin(∝)

− sin(∝) cos(∝)
] ∙ [

𝑥
𝑦] [12] 

where α is the rotation angle, s is the shearing parameter, sx and sy 

are the scale parameters for both coordinate axes, and tx and ty are 

the components of the 2D translation vector. In or approach, we al-

lowed a relative maximum image translation of ±10% in horizontal and 

vertical directions and scaling parameters sx and sy in the interval of 

[0.80, 1.25]. The shearing parameter s was set to 0. For the rotation 

angle α, the range defining the maximum random value was set de-

pending on the image type: ±20° for GEOM and GEOM_EC images and 

±180° for MS images. 

For model training, we utilized the concept of transfer learning. Nu-

merous researchers have shown that DL-based models are able to 

learn features that – to a certain extent – transfer well across datasets 

(Hu et al., 2015; Shin et al., 2016). Instead of starting with random 

parameter values, models can be initialized with weights optimized for 

extensive and standardized databases such as ImageNet. Although the 

ImageNet dataset includes 1,000 object classes and is clearly different 

from our tree data, we assumed that it would be adaptable for the task 

of tree species classification. Besides relatively quick convergence, ef-

fective fine tuning of DNNs typically requires much less samples com-

pared to training from scratch (Ng et al., 2015). Therefore, we initial-

ized the ResNet-18 models by utilizing pretrained ImageNet weights. 

Moreover, we set the maximum number of epochs to 100 and imple-

mented an early stopping criterion defined as 10 epochs with no im-

provement in validation loss. More precisely, the criterion for model 

evaluation was based on a cross-entropy loss function. For each image 

batch (batch_size = 32), we calculated the loss with shared class 

weights (Eq. 13) and averaged all losses per epoch. 

𝑙𝑜𝑠𝑠(𝑥, 𝑐𝑙𝑎𝑠𝑠) = −𝑙𝑜𝑔
exp(𝑥[𝑐𝑙𝑎𝑠𝑠])

Σ𝑗 exp(𝑥[𝑗])
[13]  
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The model hyperparameters were optimized using an Adam optimizer 

(Kingma and Ba, 2015). Here, we relied on the default values of 

PyTorch implementation. Every seven epochs, an exponential LR 

scheduler decayed the initial LR of 0.001 by a factor of gamma = 0.1 

(Eq. 14): 

𝐿𝑅𝑖+1 = 𝐿𝑅𝑖 ∙ (1 − 𝛾) [14] 

Overall, ResNet-18 is comprised of approximately 11.2 million trainable 

parameters. In our classification pipeline, the crucial factor for the gen-

eralization of well-performing models was a systematic recalculation of 

the model parameters for each dataset. The procedure was as follows: 

First, we set all parameters of the feature extractor to be invariable 

and only retrained the 16,548 parameters of the fully connected layers. 

Second, we iteratively “unfreezed” the trainable parameters of the four 

residual blocks. Starting with the deepest block (8.4 million parame-

ters), the number of trainable parameters increased to 10.5 million, 

11.0 million, and finally 11.2 million. Third, for each dataset, the model 

showing the lowest cross-entropy loss on the validation dataset was 

stored. Finally, this best performing model was set to evaluation mode 

and was subsequently used to extract 512 features per image. Thus, 

the optimized ResNet-18 models were practically utilized as automatic 

feature extractors for the training, validation, and test datasets. In our 

implementation, we registered a so-called “forward hook” to enable 

feature extraction from the average pooling layer. In PyTorch, this step 

was performed utilizing the register_forward_hook function in the “nn” 

(neural network) package. 

5.3.4. MLP-based tree classification 

In our classification pipeline, optimized ResNet-18 models were used 

as automatic feature extractors. To perform tree species classification 

utilizing 2D representations rendered from both airborne lidar and MS 

data, we combined the feature sets generated from the side-view im-

ages (GEOM and GEOM_EC) and MS images. Next, we inputted the 

fused feature vectors comprising 1,024 features and the corresponding 

class labels to a standard MLP classifier. An MLP is a non-parametric 

neural network classifier with shallow structures containing only a few 

feature representation levels. Typically, an MLP is composed of inter-

connected nodes in multiple layers (namely input, hidden, and output 

layers), with each layer fully connected to both the preceding and suc-

ceeding layers (Del Frate et al., 2007). Moreover, the outputs of each 

node are weighted units followed by a nonlinear activation function 

(Pacifici et al., 2009). In summary, in a feed-forward manner, an MLP 

maps a set of input features onto a set of labels (Atkinson and Tatnall, 

1997). In our method, we utilized the “MLPClassifier” class from the 
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“sklearn” module “neural_network” (Pedregosa et al., 2011). More spe-

cifically, we implemented an MLP with three hidden layers composed 

of seven neurons each, and set the hyperparameters to the default 

values. The particular types of feature vectors generated from the MS 

images and side-view images, were weighted 50% each. The MLP clas-

sifier was trained using the combined feature set calculated from the 

training and validation datasets. Finally, we evaluated the MLP on the 

independent test datasets and derived confusion matrices and stand-

ard metrics from the TP, TN, FP, and FN values. We calculated the OA 

(Eq. 15), precision (Eq. 16, recall (Eq. 17), and F1 score (Eq. 18). 

𝑂𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
[15] 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
[16] 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
[17] 

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
[18] 

5.3.5. Baseline method (PointNet++) 

For the classification of 3D objects such as trees, it is unknown whether 

working with rendered multiple 2D images or raw 3D point clouds is 

favourable. Thus, we compared our new CNN-based method to the ap-

proach presented in Briechle et al. (2020a), using a PyTorch imple-

mentation of PointNet++ (Wijmans, 2018) for object classification. In 

the following sections, the most important steps of this baseline 

method will be explained, including data preparation, network training, 

and validation. 

5.3.5.1.  Preparation of dataset 

Before training the network, the 3D dataset had to be prepared appro-

priately. Typically, PointNet++ can only manage a constant number of 

3D points per sample. Therefore, we applied a combined sampling ap-

proach to achieve balance between upsampling and downsampling of 

data, resulting in 1,024 points per tree. Moreover, as generally pro-

posed when working with DNNs, data was standardized. Next, we cal-

culated the surface normals for all 3D points using the “estimate_nor-

mals” function from the open source library Open3D (Zhou et al., 

2018). Then, handcrafted MS features were generated and integrated 

into the dataset. Here, we relied on a selection of statistical MS features 

computed with different VIs. Depending on the available spectral chan-

nels, the number of VIs differed between the study areas. In the BFNP, 

we derived the NDVI (Rouse et al., 1973) from the CIR images. In the 
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ChEZ area, the five-channel orthomosaics also enabled the calculation 

of the RENDVI (Gitelson and Merzlyak, 1994), the REDVI (Briechle et 

al., 2020a), the MRESR (Datt, 1999), and the MCARI (Daughtry et al., 

2000). Projections of the tree polygons were utilized to filter VI pixels 

belonging to a single tree. Subsequently, we computed 12 object-

based statistical features from these pixels for each VI – the maximum 

value (max), minimum value (min), range (max-min), mean value, 

std, mode21, skewness22, kurtosis23, as well as the 25th (“1st quartile”), 

50th (“median”), 75th (“3rd quartile”), and 90th percentile (perc). 

To make the classifier more robust and to avoid overfitting, the feature 

space was reduced to the five most important MS features. Here, we 

relied on an RF-based feature selection technique, which has been rec-

ommended in the literature (Ma et al., 2017; Gregorutti et al., 2017), 

to generate a ranking of all input features according to their relative 

importance on the prediction. Then, for each study area, the five most 

decisive features were selected: NDVI_skewness, MRESR_perc90, 

NDVI_perc90, RENDVI_mode, and MRESR_mode in the ChEZ, and 

NDVI_perc25, NDVI_skewness, NDVI_range, NDVI_mean, and 

NDVI_min in the BFNP. Afterwards, the values of these top five MS 

features were standardized and assigned to each 3D point of each ob-

ject, resulting in additional point attributes. Overall, the final dataset 

comprised 12 attributes per 3D point: the 3D coordinates and surface 

normals, one EC value, and five handcrafted MS features. 

5.3.5.2.  Training and validation 

To successfully adapt PointNet++ for the task of tree species classifi-

cation, we optimized the most decisive hyperparameters of the neural 

network (Table 25). Therefore, we used a combination of manual 

search and automated grid search. During model training, we also per-

formed data augmentation to avoid model overfitting and to build gen-

eralizable models. Because the trained final model should be robust 

against object variation, we implemented random transformations of 

the 3D objects, including scaling in the range [0.80, 1.25], rotation 

around the vertical axis with an angle of the range [0, 2*pi], jittering 

with Gaussian noise (±0.05 m), and 3D translation of the entire point 

cloud by ±0.1 m. Moreover, setting the random input dropout param-

eter MAX_DROPOUT to 50% increased the robustness against varying 

point densities and occluded object parts. Finally, we evaluated the 

model showing the lowest validation loss on the test dataset and gen-

erated classification metrics (OA, precision, recall, F1 score). 

                                           
21 Most frequent value. 
22 Measure of the asymmetry of the probability distribution. 
23 Measure of the tailedness of the probability distribution. 
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Table 25: Hyperparameter settings for PointNet++. 

Hyperparameter Value Declaration 

NUM_CLASSES 4 Number of object categories. 

NUM_POINT 1,024 Number of points per sample. 

BATCH_SIZE 8 Number of samples per batch. 

MAX_EPOCH 100 Maximum number of training epochs. 

MAX_DROPOUT 0.5 Maximum dropout rate. 

OPTIMIZER Adam Optimization algorithm. 

BASE_LR 1e-3 Initial LR. 

LR_DECAY 0.7 Initial learning decay. 

BN_MOMENTUM 0.5 Initial momentum for batch normalization. 

BNM_DECAY 0.5 Decay of batch normalization momentum. 

WEIGHT_DECAY 1e-4 L2 regularization coefficient. 

5.4. Experiments 
For both study areas, we conducted experiments based on different 

input datasets. Initially, we utilized sets of binary side-view images 

only (GEOM). To analyse the impact of laser EC on classification results, 

we trained Silvi-Net with GEOM_EC images. Subsequently, we classi-

fied single tree objects using only masked (MS) and unmasked 

(MS_unmasked) MS images. Finally, we fused automatically extracted 

features from both lidar-based image sets (GEOM, respectively 

GEOM_EC) and MS images for classification (GEOM+MS, respectively 

GEOM_EC+MS). In all experiments, we explored three different evalu-

ation strategies – Silvi-Netsingle, Silvi-Netcollages, and Silvi-NetmajVot. Fur-

thermore, we integrated CAM technique into our pipeline to better un-

derstand the model's decisions on new independent data. Demystifying 

CNNs' status as “black box” systems, CAM can help to highlight class-

specific, distinctive image regions (Zhou et al., 2016). To generate CAM 

images, the predicted class score in the range [0, 1] was mapped back 

to the final convolutional layer. In detail, CAM can be described as the 

dot product of the extracted weights from the final layer and the fea-

ture map. In our ResNet-based approach, the resulting CAM images 

sized 7 x 7 px were bilinearly upsampled and superimposed on the 

input images sized 224 x 224 px. In the following sections, classifica-

tion results are presented for Silvi-Net and compared to those of the 

baseline, PointNet++. 

5.4.1. Masking MS data 

Initially, we investigated whether masking MS image patches would 

improve classification results. Therefore, classification was performed 

with both MS_unmasked images and MS images. In general, we ob-

served a positive impact when masking MS image patches utilizing sin-

gle tree polygons for both study areas. The gain in OA was 1.4% in the 

ChEZ and 2.6% in the BFNP (Table 26). These relative values represent 



Chapter 5 

111 

3 of 204 test samples (ChEZ), respectively 19 of 745 test samples 

(BFNP). Furthermore, MS images yielded F1 scores between 0.90 and 

0.99 in the ChEZ. Here, masking improved the results for pine and 

birch. In particular, pine trees were classified almost perfectly (F1 score 

= 0.99). In our second dataset (BFNP), masking pixels located in the 

surrounding area boosted the classification of snags and dead trees. 

Nevertheless, the F1 scores for snags (0.78) and dead trees (0.76) 

were still relatively low. Remarkably, classification based on CIR im-

agery led to reasonable accuracy for the coniferous (F1 score = 0.90) 

and deciduous (F1 score = 0.92) classes in this study area. By super-

imposing MS_unmasked images with CAM images, it can be observed 

that in most cases the neural network automatically identified the cru-

cial tree crowns in the image centre (Figure 49). However, in some 

cases, neighbouring tree pixels in unmasked images affected the re-

sults. As a consequence, classification errors were produced because 

the CNN occasionally focused on nearby trees from different classes 

(Figure 50). Thus, we relied on masked MS images in the following 

experiments. 

Table 26: Silvi-Net results using only MS image patches (test dataset). 

Study area Image type OA F1 scores per class 

ChEZ 
MS_unmasked 0.922 0.95/0.89/0.91/0.93 

MS 0.936 0.99/0.92/0.90/0.93 

BFNP 
MS_unmasked 0.830 0.90/0.95/0.65/0.71 

MS 0.856 0.90/0.92/0.78/0.76 

 

 

Figure 49: Examples for correct classification of MS_unmasked images in the 
ChEZ (a-d) and BFNP (e-h); CAM overlay. 
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Figure 50: Examples for incorrect classification of MS_unmasked images in the 
BFNP; CAM overlay. 
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5.4.2. Results for ChEZ 

The task of classifying pine, birch, alder, and dead trees in the ChEZ 

was generally performed best by Silvi-NetmajVot (Table 27). Moreover, 

this approach outperformed baseline method PointNet++ (OA = 

84.8%) by 11.3%, reaching an OA of 96.1%. Compared to the results 

based on only MS images (OA = 93.6%; Table 26), incorporating ge-

ometry information and EC improved the results by 2.5% in this study 

area. Note that the discrepancy between results for validation data and 

test data was less than 3% in all experiments. This demonstrates the 

high generalization capacity of Silvi-Net. 

Table 27: Results for Silvi-Net and PointNet++ on ChEZ test dataset. For each 
feature subset, the highest OA is displayed in bold letters, and the highest F1 

scores per class are underlined. 

Method Dataset OA F1 scores per class 

Silvi-Netsingle 

GEOM 0.732 0.81/0.64/0.71/0.77 

GEOM_EC 0.765 0.89/0.69/0.67/0.78 

GEOM + MS 0.912 0.94/0.89/0.90/0.92 

GEOM_EC + MS 0.937 0.98/0.92/0.92/0.93 

Silvi-Netcollages 

GEOM 0.721 0.82/0.60/0.71/0.74 

GEOM_EC 0.716 0.82/0.62/0.71/0.72 

GEOM + MS 0.951 0.96/0.91/0.97/0.96 

GEOM_EC + MS 0.917 0.98/0.87/0.90/0.92 

Silvi-NetmajVot 

GEOM 0.775 0.87/0.71/0.72/0.80 

GEOM_EC 0.804 0.93/0.74/0.71/0.82 

GEOM + MS 0.951 0.97/0.92/0.95/0.96 

GEOM_EC + MS 0.961 0.99/0.93/0.95/0.97 

PointNet++ 

GEOM 0.755 0.83/0.67/0.73/0.79 

GEOM_EC 0.779 0.92/0.69/0.74/0.78 

GEOM + MS 0.821 0.81/0.78/0.81/0.88 

GEOM_EC + MS 0.848 0.89/0.80/0.83/0.87 

Now, we want to focus on more detailed results regarding single data 

subsets. When using only side-view images of the point clouds (GEOM 

images), the classification results (OA = 77.5%) were 2.0% better than 

PointNet++ when classifying raw 3D point clouds of the single trees 

(OA = 75.5%). Although geometric information was partially reduced 

during image generation, the F1 scores were higher for all classes ex-

cept alders. Classification based on GEOM_EC images (OA = 80.4%) 

was superior to GEOM images. By incorporating EC, the gain in OA was 

2.9%. Specifically, pine as the only coniferous tree in the dataset ben-

efited most. For both experiments based on side-view imagery gener-

ated from 3D point clouds, confusion was biggest between birch and 

alder (Figure 51a and Figure 51b). When combining automatically ex-

tracted features from GEOM images and MS images, the classification 
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results clearly increased (OA = 95.1%). By integrating MS information, 

the F1 score raised by more than 0.20 for the two deciduous species 

alder and birch. Consequentially, confusion between these two classes 

was almost completely resolved (Figure 51c). Moreover, Silvi-NetmajVot 

performed 13.0% better than PointNet++ based on raw 3D point 

clouds enriched with the top five handcrafted MS features (OA = 

82.1%). Furthermore, it is noteworthy that for the GEOM+MS experi-

ment, Silvi-Netcollages was equal to Silvi-NetmajVot. Fusing GEOM_EC im-

ages and MS images yielded the best results. Here, the OA for Silvi-

NetmajVot reached 96.1%, with F1 scores ranging between 0.93 (birch) 

and 0.99 (pine), and a minor remaining confusion between birch and 

alder (Figure 51d). 

 

 

Figure 51: Confusion matrices for Silvi-NetmajVot (ChEZ test data). Subfigures 
a-d show results for different feature sets. 
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5.4.3. Results for BFNP 

When studying BFNP, general results for the classification of single 

trees into coniferous, deciduous, snag, and dead tree were partly dif-

ferent from those obtained in the ChEZ. Particularly, in two of four 

experiments, Silvi-NetmajVot was slightly inferior to the baseline Point-

Net++. However, when fusing side-view images and MS imagery, Silvi-

NetmajVot was the method of choice (OA = 91.5%; Table 28), exceeding 

the baseline method (OA = 89.3%) by 2.2%. Furthermore, our exper-

iments show that embedding GEOM_EC images helped improve results 

by 5.9%, in contrast to an OA of 85.6% based on only MS images 

(Table 26). Moreover, the difference between validation data and test 

data was again in the range of a few percentage points, showing that 

Silvi-Net generalized well. 

Table 28: Results for Silvi-Net and PointNet++ on BFNP test dataset. For each 
feature subset, the highest OA is displayed in bold letters, and the highest F1 
scores per class are underlined. 

Method Dataset OA F1 scores per class 

Silvi-Netsingle 

GEOM 0.811 0.80/0.95/0.86/0.60 

GEOM_EC 0.808 0.80/0.96/0.84/0.59 

GEOM + MS 0.911 0.94/0.99/0.86/0.80 

GEOM_EC + MS 0.899 0.93/0.98/0.86/0.76 

Silvi-Netcollages 

GEOM 0.744 0.68/0.96/0.84/0.51 

GEOM_EC 0.800 0.81/0.96/0.81/0.59 

GEOM + MS 0.909 0.95/0.99/0.84/0.79 

GEOM_EC + MS 0.905 0.95/0.99/0.82/0.79 

Silvi-NetmajVot GEOM 0.847 0.86/0.96/0.85/0.67 

GEOM_EC 0.835 0.85/0.97/0.84/0.60 

GEOM + MS 0.911 0.94/0.99/0.85/0.80 

GEOM_EC + MS 0.915 0.96/0.99/0.86/0.79 

PointNet++ GEOM 0.857 0.85/0.97/0.88/0.72 

GEOM_EC 0.867 0.88/0.95/0.87/0.76 

GEOM + MS 0.882 0.90/0.97/0.89/0.77 

GEOM_EC + MS 0.893 0.92/0.97/0.88/0.80 

For a more detailed analysis, we want to draw attention to the experi-

ments examining the impact of single data subsets. Using only geom-

etry data, PointNet++ (OA = 85.7%) performed slightly better than 

our ResNet-based approach and majority voting (OA = 84.7%). Here, 

the results generated by Silvi-NetmajVot showed a considerable confu-

sion between coniferous and dead trees (Figure 52a). In detail, the low 

F1 score for dead trees (0.67) was mainly due to the fact that 16.6% 

(24/145) of dead trees were classified as coniferous, and 13.5% 

(35/259) vice versa. Nevertheless, deciduous trees were classified al-

most perfectly (F1 score = 0.96). Moreover, Silvi-NetmajVot was clearly 
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superior to the approaches based on single or collated imagery. When 

utilizing GEOM_EC images, we observed that the incorporation of EC 

was not advantageous for tree classification in this study area, espe-

cially since the F1 score of dead trees dropped by 0.07 (Figure 52b). 

All other F1 scores remained almost unchanged (±0.01). Surprisingly, 

the baseline method using PointNet++ (OA = 86.7%) benefited from 

EC by 1.0%. When combining geometry data and masked MS data 

(GEOM+MS), Silvi-NetmajVot (OA = 91.1%) performed 2.9% better than 

the baseline method (OA = 88.2%). Here, incorporating MS images 

clearly enhanced the results by 6.4% and especially improved the con-

fusion between coniferous trees and dead trees (Figure 52c). Note that 

the classification of snags was not improved by MS data. Using EC 

(GEOM_EC+MS) slightly improved Silvi-NetmajVot (0.4%), reaching the 

best result in this study area (OA = 91.5%). However, we observed an 

unsolved moderate confusion between dead trees and snags (Figure 

52d), with 13.1% (19/145) of dead trees being classified as snags and 

12.9% (18/139) vice versa. 

 

 

Figure 52: Confusion matrices for Silvi-NetmajVot (BFNP test data). Subfigures 
show results for different feature sets. 
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5.5. Discussion 

5.5.1. Main results 

Overall, the newly introduced methodology for the classification of sin-

gle tree species and standing dead trees was successfully applied in 

two study areas. In general, we achieved an OA of 96.1% using the 

ChEZ dataset (Figure 53) and 91.5% using the BFNP dataset (Figure 

54). Note that the datasets vary in terms of forest types and sensor 

models, as well as geometric and spectral resolution. Therefore, the 

superior results in the ChEZ are mostly due to the fact that both the 

ground resolution and the number of spectral channels in MS images 

are much higher. As a result, MS images in this study area contain 

more extractable information for tree classification. Compared to Point-

Net++, our approach yielded OA values that were 11.3% (ChEZ) and 

2.2% (BFNP) better. Here, the clear lead in the ChEZ was presumably 

an effect of the relatively small dataset. In this study area, the network 

parameters of PointNet++ could not be perfectly trained from scratch. 

In contrast, Silvi-Net was able to deal with a reduced number of sam-

ples. Using transfer learning, model parameters were successfully re-

trained. In summary, the crucial factor for successful performance in 

our approach was the fusion of lidar data and MS images. 

 

Figure 53: F1 scores per class for Silvi-Net_majVot in the ChEZ, using different 
feature sets. 
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Figure 54: F1 scores per class for Silvi-Net_majVot in the BFNP, using different 
feature sets. 

5.5.2. Detailed results 

In total, we pursued three different classification strategies, differing 

in the way of dealing with the 2D representations of the 3D point 

clouds. Overall, the conducted experiments revealed that Silvi-NetmajVot 

generally performed better than Silvi-Netsingle, respectively Silvi-Netcol-

lages. Both Silvi-Netsingle and Silvi-NetmajVot preserved most 3D infor-

mation contained in the point cloud and information loss was limited to 

the subsampling process in the dataloader. In contrast, generating col-

lages produced overall poorer image resolution (Silvi-Netcollages). The 

final size of a single tree in a collated image was 50% smaller than the 

tree size in a single view. Nevertheless, CAM overlays of collated 

GEOM_EC images in the ChEZ (Figure 55) and in the BFNP (Figure 56) 

demonstrate that Silvi-Netcollages still identified most decisive image re-

gions. The advantage of collated images definitely was to process all 

12 views of a single tree in one sample and to enable end-to-end clas-

sification. Finally, Silvi-NetmajVot handled the trade-off between view 

number and image resolution, and single misclassified samples were 

outvoted (see Figure 57 and Figure 58). 

Let us now focus on the different classes. In the ChEZ, classification of 

pine, birch, alder, and dead tree was already high when using only MS 

images (OA = 93.6%). Here, automatically extracted features from the 

10-cm five-channel MS imagery seemed sufficient to classify single 
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trees. Note that the MS-based classification results are still considera-

bly dependent on previously conducted lidar-based tree segmentation. 

When incorporating geometry information and EC, the gain in OA was 

2.5%, resulting in a remarkable OA of 96.1%. When only binary side-

view images of point clouds were available (GEOM images), the OA 

reached a respectable 77.5%. Moreover, incorporating laser EC im-

proved the results (OA = 80.4%) by 2.9%. Apparently, when using 

only lidar-based information, pine as the only conifer in the dataset 

was classified almost perfectly (F1 score = 0.93). Note that confusion 

was biggest between birch and alder without MS imagery. However, by 

integrating MS information, the confusion between these two classes 

was almost completely resolved. Due to their relatively similar shape, 

these two deciduous species were difficult to differentiate when classi-

fication was only based on geometric properties and EC. Finally, it is 

notable that features automatically extracted from the MS images 

clearly improved the classification of dead trees, increasing the F1 score 

from 0.82 to 0.97. Here, the spectral properties included in the infrared 

channels (NIR, RE) enhanced the separation of dead and living trees. 

 

Figure 55: CAM overlays on collated GEOM_EC images in the ChEZ; examples 
for correct classification (a-d) and misclassification (e-f). 

 

Figure 56: CAM overlays on collated GEOM_EC images in the BFNP; examples 
for correct classification (a-d) and misclassification (e-f). 

In the BFNP, the general results for the classification of single trees 

into coniferous, deciduous, snag, and dead were partly different from 

those obtained in the ChEZ. Here, when using only lidar-based data 

(GEOM_EC), PointNet++ (OA = 86.7%) performed 3.2% better than 

Silvi-Net (OA = 83.5%). In this study area, information loss through 

generating multiple 2D representations of raw 3D point clouds ex-

ceeded the advantages of applying pretrained CNNs. The side-view im-

ages were still sufficient to classify deciduous trees almost perfectly (F1 
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score = 0.97). However, confusion between dead trees and coniferous 

trees was considerable because most dead trees with crowns are dead 

coniferous trees. Thus, these two classes do not differ much in their 

geometric shape and, therefore, could not be separated well. Surpris-

ingly, the incorporation of EC in side-view images negatively affected 

the Silvi-Net results, whereas the baseline method profited from this 

information by 1.0%. Specifically, numerous dead trees were classified 

as snags and, hence, the F1 score for dead trees dropped by 0.07. 

When MS information was included in the classification process 

(GEOM_EC+MS), Silvi-Net reached an OA of 91.5%, exceeding Point-

Net++ (OA = 89.3%) by 2.2%. Interestingly, compared to the results 

based on only MS images (OA = 85.6%), the incorporation of lidar-

based side-view images improved the OA by 5.9%. Unsurprisingly, MS 

information reduced the confusion between coniferous and dead trees. 

Presumably, the NIR channel was decisive when differentiating these 

two classes. However, the impact on the F1 score for snags was negli-

gible. A plausible reason for that is that snags were insufficiently rep-

resented from a bird's eye view. We noticed an unsolved moderate 

confusion between dead trees and snags induced by the manual label-

ling process. Since the transition between these two classes represent-

ing different stages of a dying tree is fluent, some dead trees were 

erroneously assigned during visual inspection. Without the subdivision 

into snag and dead trees with crowns, we assume that our approach 

would have generated better results for a combined class of dead trees 

in general. Overall, we want to emphasize that Silvi-Net achieved re-

markable results for the classification of coniferous (F1 score = 0.96) 

and deciduous trees (F1 score = 0.99), and is ready for practical use. 

 

Figure 57: Majority voting of 11 true (a-k) and 1 false (l) predictions leads to 

correct final prediction; CAM overlays on GEOM_EC images for exemplary pine 
tree in the ChEZ. 
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Figure 58: Majority voting of 10 true (a-c, e-i, k-l) and 2 false (d and j) pre-
dictions leads to correct final prediction; CAM overlays on GEOM_EC images 
for exemplary coniferous tree in the BFNP. 

5.5.3. Practical issues 

Our experiments clearly demonstrated that masking MS image patches 

with single tree polygons has a positive impact on network perfor-

mance. The gain in OA for independent test data was 1.4% in the ChEZ 

and 2.6% in the BFNP. In particular, the classification of snags and 

dead trees was clearly improved in the BFNP. Moreover, CAM images 

of falsely classified MS_unmasked samples revealed that, in some 

cases, ResNet-18 ignored the crucial tree crowns in the image centre, 

focusing instead on nearby trees from different classes. Note that these 

misclassifications only occurred in some demanding scenarios with high 

stand density and, thus, complex tree canopies or even crown overlap. 

Consequently, masking of aerial image patches is even more important 

in these challenging situations. In summary, we would definitely rec-

ommend using masked MS images for classification. Nevertheless, 

from a practical point of view, we want to point out that an adequate 

quality of both tree segmentation and data registration is essential for 

successful lidar-based masking. 

We conducted experiments using 2D representations of 3D point clouds 

and found that embedding EC slightly improved the OA of Silvi-Net 

(1.0%) in the ChEZ and in the BFNP (0.4%). However, regarding the 

single tree classes, we did not notice a significant change in results. To 

visualize the network's decisions, we plotted CAM overlays of exem-

plary side-view GEOM_EC images for both correct classification and 

misclassification. Generally, ResNet-18 identified tree crowns as the 

most decisive regions in the ChEZ dataset (Figure 59), but in some 

cases (e.g., Figure 59c), stem information was crucial. Figure 59g 

clearly shows that a protruding branch falsely led to the prediction 

“dead tree”. In the BFNP, Silvi-Net correctly classified 83.5% of the 

trees, with the CAM images demonstrating that the neural network was 
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attentive to either the crown or stem parts. However, for 123 out of 

745 samples (16.5%), the predictions were wrong, such as the conif-

erous sample in Figure 60e being classified as a dead tree due to its 

obvious similarity to one (Figure 60d). When we look at Figure 60g and 

Figure 60h, we can understand the confusion between snags and dead 

trees, but some incorrect predictions were implausible, such as confu-

sion between coniferous and deciduous samples (e.g., Figure 60f). 

 

Figure 59: Examples of correct (a-d) and incorrect (e-h) classification of 
GEOM_EC images in the ChEZ; CAM overlay. 

 

Figure 60: Examples of correct (a-d) and incorrect (e-h) classification of 

GEOM_EC images in the BFNP; CAM overlay. 
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5.5.4. Evaluation of Silvi-Net 

Overall, we can name numerous advantages for our CNN-based ap-

proach to tree species classification, but we want to point out that Silvi-

Net enables a comfortable fusion of 2D and 3D data captured by dif-

ferent sensor types. We successfully combined information comprising 

object geometry, laser EC for each 3D point, and reflectance in the 

visible and NIR spectra. Undeniably, the automatic extraction of mean-

ingful features from previously generated 2D representations is the key 

factor. The technique of transfer learning using pretrained weights also 

facilitates fast model convergence, even for relatively small datasets. 

Despite these clear advantages, we would also like to address the lim-

itations of our approach. When generating multiple side-view images 

by projecting 3D point clouds, some information is lost, and all images 

undergo resolution reduction when placed in the dataloader. Compared 

to PointNet++'s performance with raw 3D point clouds, information 

loss is considerable but unavoidable. Furthermore, we want to make 

clear that a well-performing upstream segmentation of single trees is 

mandatory for Silvi-Net to work well. In our study, we used almost 

perfectly delineated single trees generated by the normalized cut seg-

mentation algorithm by manually labelling optimal segments, thereby 

minimizing the effect of undersegmentation or oversegmentation. 

However, from a practical point of view, many tree segmentation tech-

niques will cause issues in forests with an even higher stand density 

and more complexity of the canopy. 

5.5.5. Comparison to related work 

Investigating related work indicates that Silvi-Net achieves promising 

and competitive results. Yet, it is challenging to provide a comprehen-

sive and fair comparison to other studies that have addressed object-

based classification of individual standing dead trees and snags. On the 

one hand, utilized datasets strongly differ in spatial, spectral, and tem-

poral resolution. On the other hand, the type of study area (urban, 

natural, managed) and number of samples and classes fluctuate. Using 

binary classifiers, Krzystek et al. (2020) classified standing dead trees, 

snags, and living trees in the BFNP. Overall, their approach separated 

standing dead trees (F1 score = 0.92; 310 test samples) from living 

trees (F1 score = 0.89; 761 test samples) with an OA of 93%. Snags 

(76 test samples) were differentiated from living trees (1513 test sam-

ples) with an OA of 96%. Interestingly, living trees were classified with 

an F1 score of 0.97, whereas the F1 score for snags was relatively low 

(0.61). A comparison of multiple classifiers optimized for specific binary 

tasks to our holistic approach is unfeasible. 

To the best of our knowledge, only a few studies have analysed the 

combined classification of single tree species and dead wood. On an 
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imbalanced test dataset, Kamińska et al. (2018) reached an OA of 

94.3% for the classification of three tree species (spruce, pine, decid-

uous), each of them further categorized as “dead” or “alive”. Instead 

of F1 scores, the authors listed producer's accuracy (PA) for the single 

classes, which is equal to recall. In detail, spruce (146 test samples, 

PA = 92.4%), pine (148 test samples, PA = 94.1%), deciduous (209 

test samples, PA = 99.5%), dead spruce (118 test samples, PA = 

90.2%), and dead deciduous (18 test samples, PA = 94%) were clas-

sified with high accuracy. However, the PA for dead pine (13 test sam-

ples) only reached 69.2%. Recently, Amiri et al. (2019) reported a 

combined classification of tree species in the BFNP, namely spruce (F1 

score = 0.94), beech (F1 score = 0.85), fir (F1 score = 0.59), and dead 

spruce (F1 score = 0.74). Based on a huge feature set generated from 

multi-wavelength ALS data (200 points/m²), the classifier obtained an 

OA of 82.1%. In summary, Silvi-Net is clearly better than the RF-based 

approach presented in Amiri et al. (2019). However, a reasonable com-

parison to Kamińska et al. (2018) is not possible, because data reso-

lution and classification task differ too much. This denotes an urgent 

need for objective benchmark forest area datasets comprised of anno-

tated high-resolution lidar data and MS or hyperspectral imagery. 

5.6. Conclusions 
In this work, we have presented Silvi-Net, a dual CNN-based approach 

for the combined classification of presegmented 3D tree objects with 

respect to tree species and dead wood in particular. We achieved re-

sults superior to those of the baseline method, PointNet++, especially 

for datasets with a reduced number of samples. Our approach proved 

to work with data from two natural forests with similar stand density 

(400–530 trees/ha). Furthermore, lidar data and MS imagery were ac-

quired with different sensor models and, thus, varying geometric and 

spectral resolutions. The trained models showed high generalization 

capacity on independent test data. The innovative contribution of our 

study is the fusion of MS image patches and multiple side-view images, 

rendered from 3D lidar data, in a CNN-based approach. Compared to 

experiments conducted using only MS images, the fusion of lidar-based 

side-view images increased the OA by 2.5% in the ChEZ and 5.9% in 

the BFNP. 

We automatically extracted features using two independently trained 

ResNet-18 networks, and utilized a standard MLP and majority voting 

for final object classification. Our optimization process is based on the 

pretrained weights and recursive retraining of CNN model parameters. 

For practice, we suggest a combination of high-density lidar data and 

multi-channel high-resolution MS images. Our results proved that lidar 
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data are of special importance for both the tree segmentation and clas-

sification. Because snags are insufficiently represented in bird's eye 

images, their classification benefited most from the lidar data. By con-

trast, the NIR channels of MS images allow the enhancement of dead 

and living tree definitions as well as tree species classification. Because 

of its positive impact on the network performance, we also recommend 

masking MS image patches and embedding calibrated laser EC into the 

classification process. 

In future work, the challenge will be to reliably classify ten or more 

individual tree species and structurally complex forests. This objective 

can be supported by improved optical sensors providing high-quality 

lidar point clouds and high-resolution multi-channel images. In addi-

tion, off-the-shelf CNNs and transfer learning can be applied to the 

specific task of tree species classification, even for relatively small da-

tasets. An interesting task for future work would be the application of 

panoptic segmentation to forest datasets. This fully DL-based method 

enables combined delineation and classification of single objects, uti-

lizing prominent image-based neural networks, such as Mask R-CNN 

(He et al., 2017). Consequently, precise and reliable mapping results 

could contribute to automatic forest inventory, and support monitoring 

projects investigating the robustness and sustainability of different for-

est compositions. 
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6.1. Overview of the findings 
Initially, a pilot study (see Chapter 2) demonstrated the feasibility of 

the proposed approach for the detection of unknown radioactive bio-

mass deposits in the ChEZ – even in forested areas with considerably 

smaller ground point density. Based on the extracted DTM and the con-

ducted 3D vegetation mapping, appropriate features were handcrafted 

to describe both DTM and vegetation anomalies. Using these feature 

sets, binary RF classifiers were successfully trained and tested for the 

classification of radioactive deposits. A follow-up comprehensive study 

(see Chapter 3) demonstrated the optimization of the approach for de-

tecting radioactive waste sites. Based on improved data collection and 

data preprocessing, the methodology and the experimental setup were 

extended. Regarding data preprocessing, a data-driven method for the 

correction of the radiometric data collected by the laser scanner was 

implemented. Furthermore, the feature set was clearly extended, and 

the feature selection strategy was optimized to avoid overfitting of the 

classifiers. Overall, the results revealed that the proposed methodology 

is applicable for accurately detecting area-wide unknown radioactive 

biomass deposits in the ChEZ. The approach is capable of working in 

forested areas and simultaneously maps both trenches and clamps. 

The trained classifier demonstrated remarkable generalization proper-

ties and enabled the transferability to adjacent study areas. Most im-

portantly, the final results were verified by on-site test drillings that 

successfully confirmed the existence of previously unknown highly ra-

dioactive buried biomass and demolition waste in the classified areas. 

The second part of this PhD thesis focused on the application of 2D and 

3D DL methods for the combined classification of multiple tree species 

and standing dead trees. Using raw point clouds of presegmented sin-

gle trees in the ChEZ, the study referred to in Chapter 4 demonstrated 

that PointNet++ can be adapted to this task. The developed pipeline 

integrates additional point attributes and demonstrated high perfor-

mance classification of three tree species and standing dead trees. In 

a final study (see Chapter 5), a 2D CNN architecture was designed for 

the classification of presegmented 3D tree objects. Basically, Silvi-Net 

is a dual CNN-based approach fusing image tiles rendered from both 

airborne lidar data and MS orthomosaics. Based on transfer learning 

and recursive retraining of model parameters, Silvi-Net generally 

showed fast model convergence, even for relatively small datasets. In 

general, Silvi-Net demonstrated high generalization capacity and is ca-

pable of working with data from different study areas, sensor models 

and geometric and spectral resolutions. In temperate forests, Silvi-Net 

achieved superior results compared to the baseline methods (Point-

Net++ and RF) and is suitable for the combined classification of tree 

species and dead wood in practice. 
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6.2. Scope of application 
For long-term environmental protection, there is a need to reassess 

the hazardous waste burials in the ChEZ. Of a total of 1,000 suspected 

burials, approximately 580 have been investigated, characterised and 

assessed (Molitor et al., 2017). Based on a comprehensive safety as-

sessment, the authors concluded that out of the inspected burials, 30 

represent a safety issue currently (20 mSv/year for a worker) and two 

are expected to in the long-term (1 mSv/year for an inadvertent set-

tler). To localise the as-yet unmapped burials in further suspicious ar-

eas, the UAV-based remote sensing method presented in this PhD the-

sis is planned to be utilized. In general, UAV-based systematic investi-

gation of the ChEZ can provide a solid baseline for long-term manage-

ment to justify restrictions or controlled lifting of burials (Molitor et al., 

2017). For this purpose, the waste management infrastructure in the 

ChEZ includes disposal facilities for low-level waste. Furthermore, 

Molitor et al. (2018) showed that detailed information about radioac-

tive waste sites can support radiologic modelling. Combined with pre-

cise 3D vegetation maps at the single-tree level, workers’ radiation 

dose uptake in the field can be estimated and minimized. 

This PhD thesis demonstrates that detected vegetation anomalies can 

indicate radioactively contaminated subsoil. Due to the extensive de-

velopment of industry and agriculture, a more frequent scenario that 

could be addressed by these results is the contamination of soil via 

chemical substances. For instance, heavy metals can cause dangerous 

environmental conditions for flora and fauna. Thus, capturing the con-

centrations and spatial distribution of the contamination over large ar-

eas is important for risk management. Various studies have shown that 

the degree of soil contamination interrelates with certain spectral prop-

erties of the surrounding vegetation (e.g., Dunagan et al., 2007, Ren 

et al., 2010). Scafutto et al. (2016) even proposed that spectral signa-

tures of the vegetation might be used to map subsurface oil reservoirs 

or indicate damaged pipelines. Overall, researchers have encouraged 

the use of accurate vegetation maps generated from high-resolution 

multi-channel cameras for the detection of chemically contaminated 

soil. 

A visual analysis of studies focusing on the topic of risk management 

published in top remote sensing journals (Figure 61) demonstrated 

that links to terms such as “forest”, “fire” and “drought” are most fre-

quent. In terms of forest fires, previously generated vegetation maps 

are extremely useful. Structural forest parameters at the single-tree 

level – such as tree position, tree height, canopy cover, crown diameter 

and above-ground biomass – are especially useful for fire risk assess-

ment (Morsdorf et al., 2004). Because of the climate change-related 

increase in droughts (Allen et al., 2010) and the existence of large, 
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highly fire-prone patches, Evangeliou et al. (2015) forecasted a high 

risk of Cs-137 displacement through future fire events in the ChEZ. 

Against the background of the 2020 wildfires and the associated con-

cerns about health effects from resuspended radionuclides, the crea-

tion of advanced fire behaviour models in the ChEZ has become a ma-

jor area of focus (Evangeliou and Eckhardt, 2020). 

 

Figure 61: Co-occurrence network of the term “risk management”, constructed 

based on titles and abstracts of 735 scientific publications in top ranked remote 
sensing journals; created with text mining and visualisation software 
VOSviewer (van Eck and Waltman, 2010). 

In general, the most obvious application of vegetation mapping at the 

single-tree level is automated forest inventory. Particularly, the fusion 

of lidar point clouds and MS imagery is the most striking option for the 

inventory of forest structural variables (Latifi and Heurich, 2019). How-

ever, it is still common practice to perform sample-based field meas-

urements followed by an area-wide extrapolation. Obviously, this pro-

cedure is very labour intensive and, therefore, both time consuming 

and expensive. In contrast, DL-based approaches such as Silvi-Net dis-

play enormous potential regarding both effectiveness and accuracy and 

could usher in an era of digital forestry. Furthermore, agile UAVs 
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equipped with lightweight but powerful optical sensors enable compre-

hensive data collection at low operational costs and offer high flexibil-

ity. In the near future, it may even be possible to conduct UAV-based 

forestry operations in real time (Guimarães et al., 2020). 

 

Figure 62: Dead spruces after bark beetle outbreak in the Harz Mountains, 
Germany (Behrens, 2020). 

In recent years, climate change-related effects on forests have become 

a major challenge for forest ecologists and resource managers. For in-

stance, rising temperatures have made certain areas less suitable for 

heat-sensitive species (Netherer and Schopf, 2010). Furthermore, 

drought-related tree mortality (Guarín and Taylor, 2005) and a tem-

perature-correlated increase in infestations of herbivorous insects such 

as bark beetle (Bale et al., 2002) have caused serious environmental 

and economic damage (Figure 62). Here, monitoring projects investi-

gating the robustness and sustainability of different species could help 

to contrive a more resistant forest composition for the future (Churchill 

et al., 2013). Moreover, Overbeck and Schmidt (2012) recommended 

specific forest management strategies such as an admixture of broad-

leaved tree species. In daily practice, pest infestations need to be de-

tected at an early stage to minimize damage. Interestingly, Klouček et 

al. (2019) demonstrated that the detection of various stages of bark 

beetle infestation across seasons is possible. By monitoring infested 

trees using UAV-mounted low-cost RGB and modified NIR sensors, the 

authors achieved OA values of 78%-96%. When assessing the extent 

of tree mortality, the mapping of dead wood at the single-tree level 

can assist in selective logging and forest restoration. Therefore, appro-

priate tree-level approaches are urgently needed. Silvi-Net is suitable 
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for mapping dead trees in forested areas that have been attacked by 

insects. Another issue regarding tree mortality is the potential risk to 

infrastructure and people posed by standing dead trees near commu-

nication and traffic routes (Stereńczak et al., 2017). Here, up-to-date 

vegetation maps can support risk assessment and help to coordinate 

necessary measures in a time and cost effective way. 

6.3. Reflections, open issues and outlook 
For both of the primary tasks addressed in this PhD thesis, the key 

factors were the fusion of high-resolution airborne data, thorough data 

preprocessing – including appropriate calibration – and the subsequent 

application of ML methods. Therefore, combined knowledge from the 

fields of geodesy (e.g., coordinate systems and transformations, sen-

sor accuracies and calibration as well as mission planning), computer 

vision (e.g., processing of 2D and 3D data) and data science (e.g., 

manual feature extraction, feature selection and DL methods) was re-

quired. The highlights of this PhD thesis include the following: 

- Detection of buried radioactive waste sites through DTM and 

vegetation anomalies using optical UAV-based sensors and 

- Combined classification of tree species and standing dead trees 

via a 2D and 3D DL-based approach using automatically ex-

tracted features from airborne lidar data and MS imagery. 

Nevertheless, there are some issues that remain unsolved, especially 

in terms of vegetation mapping. Concerning the delineation of single 

trees from ALS data, the experiments in this thesis relied on the appli-

cation of the “old but gold” normalized cut algorithm. However, this 

graph-cut clustering technique leads to under- or oversegmentation of 

trees in structurally complex forests with overlapping canopies. For 

normalized cut segmentation, Amiri et al. (2018) demonstrated that 

an adaptive stopping criterion is capable of delineating tree crowns 

more accurately than applying a constant threshold value. Further-

more, Dersch et al. (2021) introduced a novel approach for single-tree 

segmentation, integrating automatic stem detection into normalized 

cut segmentation. The authors used high-resolution ALS data (>200 

points/m²) from dense mixed temperate forest plots (~1000 

stems/ha) and showed that their approach clearly improved the OA. 

Just recently, Braga et al. (2020) confirmed that DL-based instance 

segmentation using Mask R-CNN can be utilized to perform single-tree 

crown delineation. Interestingly, due to the lack of a sufficient amount 

of training data, the authors produced synthetic images from a set of 

hand-delineated tree crowns, which included tree crown overlap and 

varying canopy densities. Using patches of 128 x 128 pixels from pan-

sharpened 50-cm RGB WorldView-2 imagery, the authors achieved an 
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F1 score of 0.86 for single-tree detection in tropical forests. Neverthe-

less, a quantitative area-wide evaluation of the trained model was not 

conducted in their study. 

 

Figure 63: RIEGL miniVUX-1UAV® laser scanner (left; laser pulse repetition 
rate: 100 kHz) and MicaSense RedEdge-MX Dual® camera (right; 10 spectral 
channels). 

 

Figure 64: Exemplary point cloud of a single deciduous tree in leaf-off situation, 
comprising approximately 32,000 points, captured using a RIEGL miniVUX-
1UAV® laser scanner; greyscale colouring with respect to the laser intensity. 
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In this work, the research topic of object-based tree species classifica-

tion is covered extensively. However, there are some remaining issues 

that prevent large-scale use of Silvi-Net in practice. Most importantly, 

it should be determined if Silvi-Net can be extended to the task of 

classifying 5 to 10 species in complex mixed forests. Therefore, a more 

adequate database needs to be created in the future. Large-scale aerial 

surveys should be performed to ensure a sufficient number of samples 

from a large variety of species. Using the latest UAV-compatible lidar 

and MS sensors with improved spatial and spectral resolution (Figure 

63), extremely detailed information regarding tree structure (Figure 

64) and spectral response can be captured. 

To make classification results “waterproof”, reliable reference data 

specifying the single tree species should be generated by forestry ex-

perts. Labelling could be realized either by manual annotation in the 

field or, more efficiently, by visual interpretation of the 2D and 3D da-

tasets. This would require a large investment of time and money. Nev-

ertheless, the goal should be to demonstrate that Silvi-Net can be uti-

lized to determine the most common tree species in a specific region. 

This verification would allow it to be widely used in practice. Another 

issue to be addressed in future research is the transferability of trained 

networks between multi-temporal forest datasets. Here, appropriate 

transfer learning and network fine tuning could be the key to success. 

Because understory trees are invisible in the orthomosaics, successful 

application of Silvi-Net is currently limited to dominant trees. This re-

striction could be removed, provided that understory trees are seg-

mented properly. For these smaller trees, the pipeline would have to 

be adapted so that the model's prediction is highly dependent on im-

ages in side view rather than bird's eye view. Note that the successful 

application of Silvi-Net is highly dependent on the quality of the up-

stream segmentation of single trees. Thus, future work should focus 

on the application of DL-based approaches to forest datasets for com-

bined delineation and classification of single trees. It is conceivable that 

the current two-step approach presented in this thesis could be re-

placed by an end-to-end learning approach, for instance based on Mask 

R-CNN (Kattenborn et al., 2021). More precisely, panoptic segmenta-

tion using high-resolution UAV-based imagery and dense airborne lidar 

point clouds in complex heterogeneous forests with dense and over-

lapping canopies presents an interesting and demanding research 

topic. 
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