
 
 

DEVELOPING A SLAM-BASED BACKPACK MOBILE 
MAPPING SYSTEM FOR INDOOR MAPPING 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Samer Karam 
  



 
 

 
 



 
 

DEVELOPING A SLAM-BASED BACKPACK MOBILE 
MAPPING SYSTEM FOR INDOOR MAPPING 

 
 
 
 
 
 
 
 
 

DISSERTATION 
 
 
 
 
 
 
 

to obtain 
the degree of doctor at the University of Twente, 

on the authority of the rector magnificus, 
prof.dr.ir. A. Veldkamp, 

on account of the decision of the Doctorate Board, 
to be publicly defended 

on Wednesday, October 27, 2021 at 14:45 
 
 
 
 
 
 
 
 

by 
 
 

Samer Karam 
 
 

born on the 1st of January, 1989 
in Idleb, Syrian Arab Republic 



 
 

 
 

This thesis has been approved by 
 
 
Prof.dr.ir. M.G. Vosselman, supervisor 
 
Dr. V.V. Lehtola, co-supervisor 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ITC dissertation number 404 
ITC, P.O. Box 217, 7500 AE Enschede, The Netherlands 
 
 
ISBN 978-90-365-5256-1 
DOI 10.3990/1.9789036552561 
 
Cover designed by Job Duim and Samer Karam 
Printed by CTRL-P, Hengelo 
 
© 2021 Samer Karam, The Netherlands. All rights reserved. No parts of this thesis may 
be reproduced, stored in a retrieval system or transmitted in any form or by any means 
without permission of the author. Alle rechten voorbehouden. Niets uit deze uitgave mag 
worden vermenigvuldigd, in enige vorm of op enige wijze, zonder voorafgaande 
schriftelijke toestemming van de auteur. 
 

 
 
 



 
 

Graduation committee: 
 
Chairman/Secretary 
 Prof.dr. F.D. van der Meer  
 
Supervisor(s) 
 Prof.dr.ir. M.G. Vosselman                        University of Twente / ITC 
 
Co-supervisor(s) 
 Dr. V.V. Lehtola                                       University of Twente / ITC 
 
Members 
  
 Prof.dr. M.J. Kraak                                      University of Twente / ITC-GIP 
 Dr. F.C. Nex                                               University of Twente / ITC-EOS  
 Prof.dr. J. Li                                            University of Waterloo, Canada 
 Prof.dr. A. Kukko                                 Aalto University, Finland 
 
 
  



 
 

 
 

 
 
 



i 
 

Summary 
Indoor mobile mapping is important for a wide range of applications such as 
indoor navigation and positioning, mapping hazardous sites, facility 
management, virtual tourism and interior design. State-of-the-art indoor 
mobile mapping systems use a combination of light detection and ranging 
(LIDAR) scanners, cameras and/or inertial measurement units (IMUs) mounted 
on movable platforms and allow for capturing 3D data of buildings’ interiors. 
As global navigation satellite system (GNSS) positioning does not work inside 
buildings, the extensively investigated simultaneous localisation and mapping 
(SLAM) algorithms seem to offer a suitable solution for the problem. 
 
In this dissertation, a SLAM-based backpack mobile mapping system (ITC-
Backpack) was developed for mapping buildings’ interiors. The configuration of 
the ITC-Backpack consists of three 2D LIDAR scanners and an IMU. The 
employed SLAM is planar feature-based SLAM algorithm that exploits the 
LIDAR scanners and the IMU to estimate the 3D pose and plane parameters. 
 
Representing the SLAM map by planes is advantageous for multiple reasons. 
First, the planar features are typically large and spatially distinct and therefore 
distinguishable from one another. Second, they are abundant in indoor man-
made environments. Third, storing planar features takes less data space than 
storing the captured point clouds. Finally, the representation by planar shapes 
is a popular format for the state-of-the-art indoor 3D reconstruction methods. 
 
The developed SLAM in this dissertation performs loop closure detection and 
correction using these planar features. This enables the backpack system to 
recognize an already visited place and correct for the accumulated drift. 
 
The outputs of ITC-Backpack are reconstructed 3D planes, 3D point clouds as 
well as a trajectory of the system’s motion in a local coordinate system. A 
combination of the point cloud and the trajectory represents an advantageous 
supplementary information for some indoor modelling problems such as 
semantic interpretation and space partitioning. 
 
The ITC-Backpack system is validated on various indoor environments that 
differ in terms of geometry, architecture and clutter. Moreover, we evaluate 
the performance of the system by comparing the obtained point clouds against 
those obtained from a commercial indoor mobile mapping system, Viametris1  
iMS3D, and ground truth obtained from a terrestrial laser scanner (TLS). 
 
 

 
1 www.viametris.com 

http://www.viametris.com/
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Samenvatting 
Indoor mobile mapping is belangrijk voor een breed scala aan toepassingen, 
zoals indoor navigatie en positionering, het in kaart brengen van gevaarlijke 
locaties, facility management, virtueel toerisme en interieurontwerp. 
Geavanceerde mobiele karteringssystemen voor binnenshuis maken gebruik 
van een combinatie van lichtdetectie- en afstandsscanners (LIDAR), camera's 
en/of traagheidsnavigatiesystemen (IMU's) die op verplaatsbare platforms zijn 
gemonteerd en maken het mogelijk om 3D-gegevens van het interieur van 
gebouwen vast te leggen. Omdat plaatsbepaling met het Global Navigation 
Satellite System (GNSS) niet werkt binnen gebouwen, lijken de uitgebreid 
onderzochte algoritmen voor simultaneous localisation and mapping (SLAM) 
een geschikte oplossing te bieden voor het probleem. 
 
In dit proefschrift is een op SLAM gebaseerd mobiel karteringssysteem voor 
een rugzak (ITC-rugzak) ontwikkeld voor het in kaart brengen van interieurs 
van gebouwen. De configuratie van de ITC-rugzak bestaat uit drie 2D LIDAR 
scanners en een IMU. De gebruikte SLAM is een op vlakken gebaseerd SLAM-
algoritme dat gebruik maakt van de LIDAR-scanners en de IMU om de 3D 
positie en stand van de rugzak en de parameters van de vlakken in het interieur 
te schatten. 
 
De weergave van de SLAM-kaart door vlakken heeft verschillende voordelen. 
Ten eerste zijn de vlakken meestal groot en ruimtelijk gescheiden en dus goed 
van elkaar te onderscheiden. Ten tweede zijn ze in ruime mate aanwezig in 
binnenruimten. Ten derde neemt het opslaan van vlakken minder dataruimte 
in beslag dan het opslaan van de vastgelegde puntenwolken. Tenslotte is de 
representatie door vlakken een populair formaat voor de state-of-the-art 
indoor 3D reconstructiemethoden. 
 
De ontwikkelde SLAM in dit proefschrift voert lusdetectie en -correctie uit met 
behulp van deze vlakken. Dit stelt het rugzaksysteem in staat om een reeds 
bezochte plaats te herkennen en de opgelopen drift te corrigeren. 
 
De uitvoer van de ITC-rugzak zijn gereconstrueerde 3D vlakken, 3D 
puntenwolken en het afgelegde traject van het systeem in een lokaal 
coördinatenstelsel. De combinatie van de puntenwolk en het traject vormt 
waardevolle informatie voor sommige indoor modelleringsproblemen zoals 
semantische interpretatie en ruimte-indeling. 
 
Het ITC-Backpack systeem is gevalideerd op verschillende binnenomgevingen 
die verschillen in geometrie, architectuur en de hoeveelheid meubilair. 
Bovendien evalueren we de prestaties van het systeem door de verkregen 
puntenwolken te vergelijken met die verkregen met een commercieel mobiel 
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karteringssysteem voor gebruik binnenshuis, Viametris iMS3D, en 
referentiemetingen verkregen met een terrestrische laserscanner (TLS).
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1.1  Background and Motivation 

During the last years, the scope of indoor mapping has widened to many 
important applications such as mapping hazardous sites, indoor navigation, 
and virtual tourism. Since digital maps of public buildings (airports, hospitals, 
train stations, etc.) are a prerequisite for several location-based services and 
applications such as navigation and facility management, there will be a trend 
towards the development of indoor applications using geospatial data (Norris, 
2013). This importance for the mapping of building interiors has encouraged 
scientists to focus on improving the mapping techniques for such 
environments. Traditional methods to map building interiors fundamentally 
depended on total stations (TS) or terrestrial laser scanning (TLS) (Thomson 
et al., 2013).  
 
However, those techniques are no more applicable when we deal with complex 
indoor environments since they would require setting up the TS/TLS at many 
different positions, which is time-consuming and makes data collection 
laborious (Maboudi et al., 2018; Salgues et al., 2020). In order to map such 
environments, indoor mobile mapping systems (IMMSs) are needed. While 
outdoor mobile mapping systems are widely available, indoor mobile mapping 
has remained a challenge as global navigation satellite systems (GNSSs) do 
not work indoors. Simultaneous localisation and mapping (SLAM) algorithms 
offer reasonable positioning estimates in environments where satellite 
positioning is not available (Salgues et al., 2020). Therefore, group of SLAM 
algorithms are extensively investigated for indoor map generation. 
 
The IMMS is generally a kinematic platform that is composed of sensors 
suitable to localize the system and map the environment simultaneously. 
Commonly used sensors can be classified into navigation sensors such as 
Inertial Measurement Units (IMUs) and sensors that collect information of the 
system’s environment such as light detection and ranging (LIDAR) scanners 
and cameras. The usual outputs of IMMSs are images and/or 3D point clouds 
as well as a trajectory of the system’s motion in a local coordinate system. In 
order to retrieve the location of the platform, IMMSs primarily make use of 
some SLAM algorithm for the purpose. 
 
A wide range of indoor mobile mapping systems have been developed in recent 
years. These systems can be categorized into: hand-held systems such as 
ZEB1 (Bosse et al., 2012) and ZEB REVO1, trolley-based systems such as 

 
1 www.geoslam.com 

http://www.geoslam.com/
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Trimble1 TIMMS, NavVis2 M6, Viametris3 i-MMS and iMS3D and wearable – 
mostly backpack-based – systems (Cinaz & Kenn, 2008; Filgueira et al., 2016; 
Kim, 2013; Liu et al., 2010; Naikal et al.,  2009; Wen et al., 2016; Blaser et 
al., 2019). 
 
Although a lot of efforts have been exerted in designing indoor mobile mapping 
systems and developing localization and mapping algorithms, designing an 
accurate and versatile SLAM-based IMMS has still remained a challenge. The 
trolley-based systems are often more accurate than the other two categories, 
but they are more expensive (Otero et al., 2020). Furthermore, the trolley-
based systems do not have the ability to access the entirety of interior areas 
such as staircases. Therefore, they need an alignment process of the point 
clouds from different floors, and this requires more effort. The advantage of 
hand-held and wearable mapping systems over other IMMSs is that they can 
move in a more flexible way and are faster for data acquisition.  
 
Most mapping systems that depend on SLAM for localization instead of GNSS 
and IMU cannot be operated in all types of buildings. For instance, Viametris i-
MMS is only able to map in an environment with a small variance in height 
because of its reliance on 2D SLAM in positioning. Furthermore, assumptions 
that SLAM algorithms are built on can constrain them. For instance, some 
algorithms require the floor to be planar (Chen et al., 2010). Other SLAM 
algorithms can only work in buildings with a Manhattan world architecture (Flint 
et al., 2011). 
 
On the hardware side, SLAMs that employ one type of sensor (camera, LIDAR, 
or IMU) for indoor navigation have limitations. For instance, camera-based 
SLAM (Visual SLAM) searches for similar features in consecutive images. 
Consequently, Visual SLAM is prone to failure if the environment lacks visual 
features. Moreover, the camera-based IMMSs need to move slowly in order to 
avoid blurred images. Also, the light conditions in indoor environments may 
not be good enough to capture high-quality images. Therefore, it is better to 
use an active sensing-based mapping system for indoor environments. The 
laser scanner-based SLAM (LIDAR SLAM) depends basically on the association 
between the successive scans, where scan here refers to the set of points that 
is captured by the LIDAR scanner each sweep. However, LIDAR SLAM fails if 
the geometry of LIDAR observations is not strong enough to reliably estimate 
the 3D pose of the mapping system. IMU sensor suffers from accumulated 
errors over time, which makes it undesirable as a stand-alone sensor for 
navigation. 

 
1 www.trimble.com 
2 www.navvis.com 
3 www.viametris.com 

http://www.trimble.com/
http://www.navvis.com/
http://www.viametris.com/
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One of the fundamental steps in any SLAM algorithm is to determine the 
correspondences between the recently observed data by sensors and the up-
to-date built map in SLAM, the so-called data association process. Moreover, 
loop closure is one of the key difficulties hampering SLAM because recognizing 
previously visited places requires searching through all the collected data, 
which becomes computationally expensive over time. 
 

1.2  Research Objectives 
In the light of the above information, the main objective of this research is to 
design a wearable indoor mobile mapping system (IMMS) – ITC-Backpack – 
that utilizes a combination of laser range-finders (LRFs) – 2D scanners – and 
an IMU to fully recover a 3D point cloud of building interiors based on a feature-
based SLAM algorithm. Specifically, we use planar features, which are 
advantageous due to their large size and dominant existence in indoor man-
made environments. Moreover, the outcome of this research will be a SLAM 
system that inherently performs loop closure detection and correction using 
planar features. Furthermore, we try to keep the system design as inexpensive 
as possible by making use of simple LRFs and a relatively low-cost IMU. 
 
Sub-objectives are: 

1) To find the optimal configuration of the LRFs of the designed system 
to avoid occlusion and acquire sufficient geometrical information of 
buildings. 
 

2) To integrate the IMU with LIDAR into SLAM so that we exploit the 
strength of the scanning geometry for accurate positioning in 3D and 
the strength of the IMU in measuring short-term pose changes.  
 

3) To develop a hypothesis generation of arbitrarily oriented planar 
structures. This enables the backpack system to map some complex 
spaces such as staircases and fancy architecture (e.g., slanted walls, 
sloping floor, ..etc). 

 
4) To develop a reliable data association that defines the correspondences 

between the recently observed data by sensors and the up-to-date 
built map in SLAM. 

 
5) To integrate a loop closure detection and correction technique with the 

LIDAR-IMU SLAM system so that the system becomes able to recognize 
an already visited place and correct the accumulated drift by then. 

 
6) To develop an evaluation pipeline for indoor laser scanning point 

clouds. 
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1.3  Research Questions 
The research questions, which the methodology should be able to answer, are 
derived and classified based on the objectives of this research. 
 
System design 
 

1) What is the optimal configuration for the scanners in terms of the 
success of SLAM, completeness of the resulting point cloud and the 
reconstruction accuracy? 
 

Integrating IMU with the LIDAR SLAM 
 

1) What is the best method for pose prediction? 
 

2) How good is the performance of IMU and how long can the system rely 
on it for positioning? 
 

3) How to combine the IMU and LIDAR in order to participate in 3D pose 
estimation? 
 

4) What is the optimal strategy for IMU-LIDAR SLAM integration? 
 
Hypothesis of planar structures 

 
1) How to make a hypothesis for an arbitrarily oriented plane? 

 
2) How can the IMU be utilized to generate a reliable hypothesis of planar 

structures? 
 
Data association 

 
1) What is the most efficient and reliable way for data association? 

 
2) How can the points, which do not belong to a segment, e.g., plane, be 

exploited? 
 
Loop closure 
 

1) How can the mapping system recognize a revisited place after visiting 
large unknown areas? 
 

2) How big is the accumulated drift at the end of a loop? 
 

3) To what extent can the proposed SLAM handle the loop closure? 
 

4) How to correct the accumulated drift and relocalize the mapping 
system in the SLAM map? 
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Analysis and evaluation of the point cloud 
 

1) How to check the internal consistency of the reconstructed map? 
 

2) How to evaluate the quality of the acquired point cloud? 
 

3) How can this evaluation be done in the absence of any ground truth 
model? 
 

4) How to get an overall impression of the reconstruction accuracy? 
 

5) What is the performance of the developed IMMS compared to a 
commercial IMMS and a TLS? 
 

1.4  Dissertation Outline 
This dissertation consists of seven chapters (Figure 1.1), including an 
introduction, a literature review, four core chapters and a synthesis. The 
dissertation from Chapter 3 to Chapter 6 shows the progress in the 
development of the ITC-Backpack mobile mapping system. These chapters are 
based on publications (see the first page of each chapter) and cover the 
literature review on SLAM, sometimes with a bit of overlap. A complementary 
overview of the indoor mobile mapping systems (IMMSs) is provided in Chapter 
2.  
 
Chapter 1: introduces the background and the motivation of the research, in 
addition to the research objectives and questions. This chapter also describes 
the dissertation outline. 
 
Chapter 2: presents an overview of the state-of-the-art IMMSs. The state-of-
the-art SLAM algorithms are discussed in the subsequent chapters. 
 
Chapter 3: presents the design of the ITC-Backpack and the employed planar 
feature-based LIDAR Graph SLAM algorithm that utilizes a combination of three 
laser range-finders (LRFs) to fully recover the 3D building map. The calibration 
process of the mounted LRFs is explained in this chapter. Moreover, this 
chapter introduces an evaluation pipeline for indoor laser scanning point 
clouds. 
 
Chapter 4: investigates the benefits that the integration of a low-cost 
microelectromechanical system (MEMS) IMU can bring to the planar feature-
based LIDAR Graph SLAM. Specifically, we utilize IMU data to predict the pose 
of our backpack indoor mobile mapping system to improve the SLAM algorithm. 
The performance of the proposed IMU integration method is tested on a dataset 
acquired in a distinct office environment at the Institute of Geodesy and 
Photogrammetry building at the University of Braunschweig, Germany. 
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Chapter 5: proposes further strategies that utilize the benefits of the IMU in 
the pose estimation and support the LIDAR SLAM in overcoming some 
pathological pose configurations. The proposed strategies are again tested 
using different datasets collected at the Institute of Geodesy and 
Photogrammetry building at the University of Braunschweig, Germany. 
 
Chapter 6:  presents a loop-closing LIDAR-IMU Graph SLAM for indoor 
environments. The design of the proposed SLAM is based on locally-generated 
planar features that can be matched against one another to perform local but 
also global optimization. Hence, this design allows for a simple global loop 
closing technique – a main contribution of this work. This chapter presents also 
how the IMU is exploited to predict the pose of a few successive LIDAR scans. 
This allows for the generation of a reliable hypothesis of planar structures, 
which in turn allows SLAM to handle indoor environments with arbitrarily 
oriented planes such as staircases. The proposed method is validated on the 
ITC-Backpack system and the generated point clouds are compared against 
ones obtained from a commercial mobile mapping system (Viametris iMS3D) 
and a terrestrial laser scanner (RIEGL VZ-400). The data is collected from two 
buildings that differ in terms of geometry, architecture and cluttering in 
general.  
 
Chapter 7: discusses the research contributions, connections between 
chapters, to what extent the objectives were achieved, the main conclusions 
of the carried out research and recommendations for future research.   
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Figure 1.1. Dissertation outline 
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Chapter 2 - State-of-the-art indoor mobile 
mapping systems 
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2.1 Review of the state-of-the-art indoor mobile 
mapping systems   
Indoor data acquisition systems have a dramatic progress in the past few 
years. Besides the existing static devices such as terrestrial laser scanners 
(TLS), a wide range of indoor mobile mapping systems (IMMSs) have been 
developed. Some of them are research systems and others are commercial 
with limited information of the solutions and performance published. In this 
chapter, we will provide a brief description of a selection of the state-of-the-
art IMMSs (commercial and research prototypes) as related works to the 
current research. Three types of these IMMSs have prevailed so far: hand-
held, trolley-based and wearable. 
 
2.1.1 Trolley-based Systems 
Trolley-based systems provide a stable platform and avoid placing the burden 
of carrying the weight of the sensors onto the operator (Figure 2.1). This gives 
manufacturers more freedom to mount sensors disregarding their weight. For 
instance, the Slammer platform carries two terrestrial laser scanners (TLSs) 
and utilizes freely available simultaneous localization and mapping (SLAM) 
algorithm for indoor localization (Kaijaluoto et al., 2015). The Leica Proscan1 
trolley (Figure 2.1a) carries one TLS as a mapping sensor and weighs 40 kg 
(Otero et al., 2020). Although Proscan looks similar to Trimble TIMMS2 (49.5 
kg), it can not work with the same models of TLS. Proscan works with Leica 
ScanStation TLSs, while TIMMS works with different models of FARO TLS. 
However, both systems utilize an inertial measurement unit (IMU) sensor for 
positioning (Otero et al., 2020).  

 
While Slammer, Proscan and TIMMS use 3D light detection and ranging 
(LIDAR) scanner (i.e., TLS), Viametris3 developed two versions of mapping 
trolley, i-MMS and iMS3D, in which 2D LIDAR scanners are used. The recent 
version iMS3D (12 kg) integrates three Hokuyo4 LIDAR scanners (single-layer) 
and a Ladybug panoramic camera (spherical pictures). Figure 2.1c clarifies the 
configuration of the three scanners with respect to each other. The Hokuyo 
scanner with an orange head (UTM-30LX) is mounted horizontally while the 
other two with blue heads (UTM-30LX-EW) are vertical and to the right and left 
of the horizontal one. Viametris utilizes the combination of LIDAR-based SLAM 
algorithm and an IMU for positioning and generating the point cloud of the 
surrounding environment (Viametris, 2021). In this research, we intend to 
compare point clouds generated by our developed backpack IMMS against ones 
obtained from iMS3D (see Chapter 6).   
 
 

 
1 www.leica-geosystems.com 
2 www.trimble.com 
3 www.viametris.com 
4 www.hokuyo.com 

http://www.leica-geosystems.com/
http://www.trimble.com/
http://www.viametris.com/
http://www.hokuyo.com/
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(a) Leica Proscan1 

 
      (b) Trimble TIMMS2 

 
      (c) Viametris iMS3D3 

 
(d) NavVis M34 

 
(e) NavVis M64 

Figure 2.1. state-of-the-art trolley-based IMMSs 

 
1 www.leica-geosystems.com 
2 www.trimble.com 
3 www.viametris.com 
4 www.navvis.com 

http://www.leica-geosystems.com/
http://www.trimble.com/
http://www.viametris.com/
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NavVis1 has also released two versions of a mapping trolley, M3 and M6, similar 
to Viametris trolley. The M3 Trolley is constructed from three Hokuyo (UTM-
30LX) scanners, an IMU, six cameras (Figure 2.1d). Two of the scanners are 
mounted vertically for capturing the data on both sides of the system, while 
the third scanner is horizontal on the head unit and used for 2D localization 
and mapping. The six cameras also are mounted on the head unit to get a 360ᵒ 
coverage of the surrounding area during data collection. 
 
Compared to the M3, the recent version M6 (40 kg) has four scanners with 
different configuration as shown in Figure 2.1e. The Hokuyo scanners are tilted 
and distributed differently on the platform compared to the M3. The horizontal 
single-layer Hokuyo scanner on the head unit is replaced by a multi-layer 
Velodyne scanner. The M3 and M6 also apply SLAM for positioning and 
generating point cloud of the scanned area.       
 
2.1.2 Hand-held Systems 
To avoid placing the burden of carrying the system on to the operator’s arm, 
hand-held scanning systems are usually constructed from a 2D LIDAR sensor 
which is lighter than a 3D one. Several hand-held IMMSs are available in the 
market nowadays. The world’s first hand-held IMMS is ZEB1 (Bosse et al., 
2012) launched by GeoSLAM2. ZEB1 consists of a Hokuyo (UTM-30LX) and an 
IMU mounted on a spring platform as shown in Figure 2.2a. Later, GeoSLAM 
developed several versions of the hand-held ZEB-scanner such as ZEB-REVO, 
ZEB-REVO RT (1 kg), and ZEB Horizon. In these later versions, they use a 
revolving scanner and the Hokuyo scanner is replaced by a Velodyne in ZEB 
Horizon (Figure 2.2c). The hand-held ZEB systems are based on SLAM for 3D 
mapping. In addition, Kaarta Stencil3 is a hand-held system that utilizes 
Velodyne VLP-16 and an IMU for localization and mapping. 
 

 
(a) ZEB11 

 
(b) ZEB REVO1 

 
(c) ZEB Horizon1 

Figure 2.2. state-of-the-art hand-held IMMSs 

 
1 www.navvis.com 
2 www.geoslam.com 
3 www.kaarta.com 

http://www.navvis.com/
http://www.geoslam.com/
http://www.kaarta.com/
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2.1.3 Wearable Systems 
The wearable mapping systems are platforms that are carried by a human 
operator as backpack systems. Thus, the lightness is an important 
characteristic here as well, but these systems can be heavier than the hand-
held ones. A variety of backpack IMMSs have been proposed recently, and they 
mainly use LIDAR scanners (Otero et al., 2020). Similar to trolley-based 
IMMSs, these backpacks integrate several scanners with different orientation 
for 3D mapping. 
 
Naikal et al. (2009) mounted three Hokuyo (URG-04LX) scanners orthogonally 
to each other together with a camera on a backpack platform. In later work by 
the same group, Chen et al. (2010) added one more LIDAR scanner and two 
IMUs (HG9900 and InterSense) to the backpack system. The overall goal of 
their work was to estimate the trajectory the system follows during mapping. 
To achieve this goal, they developed four algorithms, which depend mainly on 
scan-matching, to retrieve the 3D pose translation of the system over time. 
The proposed framework is quite similar to that of the scan-matching process 
in the SLAM approach of (Borrmann et al., 2008). In other work by the same 
group, Liu et al. (2010) replaced the yaw scanner (Hokuyo URG-04LX) with 
the Hokuyo UTM-30LX and added three cameras to the backpack platform. 
They used the previously developed algorithms in (Chen et al., 2010) to 
estimate the system’s trajectory based on integrating the LIDAR and IMU data.  
 
Kim (2013) presented an approach for 3D positioning of a previously developed 
backpack system (Naikal et al., 2009) in an indoor environment, which also 
generates point clouds of this environment using a SLAM algorithm. The 
system consists of five Hokuyo (UTM-30LX) scanners, two IMUs (HG9900 and 
InterSense) and two fisheye cameras (GRAS-14S5C) as shown in Figure 2.3a. 
In contrast to the other approaches, which use all the data, Kim’s approach 
identifies and incorporates the most credible data from each LIDAR scanner. 
For localizing the system in an indoor environment, the cumulative shifts of 
the system over time are computed from yaw and pitch scanners using scan-
matching techniques. Next, the point cloud is generated from roll scanners and 
textured using captured images. To avoid an expected misalignment in the 
case of the complex indoor environment, two 2D SLAM algorithms are proposed 
and integrated. The first one is to localize the system in the z-axis direction, 
and the second one for xy localization. The HG9900 IMU serves as ground truth 
and the role of InterSense IMU is to measure roll and pitch angles to correct 
the measurements of the pitch and roll scanners and thus increase the 
accuracy of the scanner-based localization method. 
 
Lauterbach et al. (2015) presented a backpack mapping system equipped with 
2D (SICK LMS 100) and 3D (Riegl VZ-400) laser scanners, and an IMU 
(Phidgets 1044). Two SLAM algorithms (2D HectorSLAM and 3D semi-rigid 
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SLAM) execute successively, with the output of one being the input for the 
other. The first one, HectorSLAM, uses the data of SICK scanner and an IMU 
for initial trajectory estimation. The semi-rigid SLtAM exploits this initial pose 
estimation to align point clouds captured by the 3D scanner. The integration of 
IMU data can also be utilised to increase the degrees of freedom (DOF) of a 
mobile system. 
 
Wen et al. (2016) developed an indoor backpack mobile mapping system 
(Figure 2.3b) consisting of three Hokuyo (UTM-30LX) scanners and one IMU 
(Xsens MTi-10). The system configuration consists of one scanner mounted 
horizontally while the other two are vertical. A 2D map of the building is 
constructed by a 2D SLAM using data from the horizontal scanner and then 
applying the rotations captured by the IMU to obtain a 3D pose of the system 
and thus a 3D map of the building. At the same time, the two vertical scanners 
are responsible for creating 3D point clouds. 
 
Filgueira et al. (2016) presented a backpack mapping system constructed from 
a 3D LIDAR and an IMU for indoor data acquisition. The LIDAR is Velodyne 
VLP-16 that provides 360˚ horizontal and 30˚ vertical field of view. The SLAM 
algorithm utilizes a combination of two algorithms proposed in (Zhang & Singh, 
2014) for indoor and outdoor positioning and mapping adapted for handling 
Velodyne’s data. They used the iterative closest point algorithm (ICP) for data 
association. The system is tested using the Faro Focus 3D scanner as ground 
truth in two indoor environments with different characteristics. In a later work 
by the same group, Lagüela et al. (2018) made some adjustments in the design 
of the system such as increasing the height of the Velodyne to avoid occlusions 
that might occur because of the operator’s body (Figure 2.3c). Moreover, they 
mounted two webcams in the system for inspection purposes. Recently, Velas 
et al. (2019) proposed another mobile backpack solution that combines a pair 
of Velodyne scanners with IMU for 3D mapping (Figure 2.3d). 
 
In addition to the backpack prototypes addressed above, in 2015, Leica1 
released their commercial backpack system, Leica Pegasus (13 kg), which 
integrates a dual Velodyne VLP-16 scanner with a high precision IMU and a set 
of five high-resolution cameras for 3D mapping (Figure 2.3e). Similar to Leica 
Pegasus, the bMS3D backpack (13.5 kg), released by Viametris, uses a dual 
Velodyne scanner and an IMU for SLAM-based mapping (Figure 2.3f). Recently, 
NavVis launched the VLX backpack (9.3 kg) that is also equipped with two 
Velodyne scanners (Figure 2.3g) to generate 3D point cloud of the mapped 
area using SLAM technology. 

 
1 www.leica-geosystems.com 

http://www.leica-geosystems.com/
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(a) (Kim, 2013) 

 
(b) (Wen et al., 2016) 

 
(c) (Lagüela et al., 2018) 

 
(d) (Velas et al., 2019) 

 
(e) Leica Pegasus 

backpack1 

 
(f) Viametris bMS3D2 

 
(g) NavVis VLX3 

Figure 2.3. Wearable IMMSs 

 
1 www.leica-geosystems.com 
2 www.viametris.com 
3 www.navvis.com 

http://www.leica-geosystems.com/
http://www.viametris.com/
http://www.navvis.com/
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2.2 Discussion and Conclusion 
The literature presented above shows that a lot of efforts, in both academia 
and industry, have been exerted in designing IMMSs for 3D mapping. However, 
there are still some challenges that need to be considered in the current 
research. 
 
Trolley-based IMMSs provide the most stable platforms and have less limited 
weight constrain than the carriable platforms; hand-held and wearable. This 
gives freedom in the selection of the LIDAR scanner, which in turn makes 
trolley-based IMMSs often more accurate than others. However, these IMMSs 
are more expensive (Otero et al., 2020) and do not have the ability to access 
the entirety of interior areas such as staircases. Also, the industrial plants 
usually have confined places and obstacles preventing trolley operations to be 
practical. Therefore, they need an alignment process of the point clouds from 
different floors, and this requires more effort and usually leads to registration 
errors.  
 
Hand-held and wearable IMMSs offer more flexibility as theoretically the IMMS 
can access anywhere the operator can walk. This means areas that are 
impossible to scan with a trolley, such as staircases, can be captured relatively 
easily and faster than with a trolley. Therefore, these carriable IMMSs are 
better for indoor mapping (Otero et al., 2020). Hand-held systems place the 
burden of carrying the system on to the operator’s arm. This limits the features 
of the mounted scanner and often prevents the integration of complementary 
sensors (Otero et al., 2020). GeoSLAM tried to compensate for this drawback 
by incorporating a spring-loaded swinging scanner (ZEB1) or a revolving 
scanner (ZEB REVO, ZEB REVO RT, ZEB Horizon) in their hand-held products. 
However, to operate, the ZEB1 must be gently oscillated by the operator 
towards and away to provide a solution. Moreover, Thomson et al. (2013) 
found that the results of the i-MMS trolley are better in agreement with the 
FARO TLS point cloud than those of ZEB1. 
 
Consequently, compared to the hand-held platform, the backpack platform is 
more comfortable, provides more freedom in the selection of the mounted 
scanner and allows the use of complementary sensors. A lot of efforts have 
been exerted in designing a backpack mobile system for 3D indoor mapping. 
However, the existing commercial backpacks are expensive and relatively 
heavy, for instance, the Leica Pegasus Backpack costs 150k€ (Velas et al., 
2019) and weighs 13 kg (Otero et al., 2020). The high cost makes them 
inaccessible for small businesses. Moreover, the Pegasus Backpack is highly 
dependent on global navigation satellite systems (GNSSs), thereby its 
performance degrades in satellite-denied environments such as indoor spaces 
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(Velas et al., 2019). According to the Pegasus Backpack specifications1, the 
achieved absolute position accuracy by Pegasus Backpack indoors is 5-50 cm 
for 10 minutes walking, and several factors can decrease the positioning 
accuracy such as small rooms or corridors, a need to pivot while scanning, 
stairs, uneven pavement and surfaces too far from the backpack. 
 
The proposed algorithms in (Naikal et al., 2009; Chen et al., 2010) have trade-
offs in terms of performance depending on building environment. For instance, 
those algorithms that rely on planar floor assumptions provide more precise 
results only in the case of planar floor availability in the captured area. In (Liu 
et al., 2010) the sensor rotation is determined independently for each of the 
three axes and not in an integrated manner, thereby they need to assume that 
each scanner keeps scanning in the same plane over time, but that is 
unrealistic because of human operator motion. Therefore, this assumption will 
reflect negatively on the accuracy in the case of backpack rotation. In (Kim, 
2013), the yaw scanner scans in a plane parallel to the floor and helps to 
determine the xy location and the pitch scanner scans in a plane perpendicular 
to the floor and provides the third dimension (z) of the location. Thus, the 
localization algorithm may fail in case of discontinuities between consecutive 
walls or transparent objects, such as windows. Moreover, only data from the 
roll scanner is used to generate the point cloud. The proposed backpack IMMS 
in (Wen et al., 2016) uses only the horizontal scanner for pose estimation. 
 
We intend in this research to develop a backpack IMMS that relies on three 
Hokuyo (UTM-30LX) LIDAR scanners and a low-cost IMU for 3D indoor 
mapping. The total cost of our backpack sensors is around 12k€, which is 
significantly cheaper than all the commercial backpacks addressed above. This 
makes the system accessible for a wide segment of users. In addition, it will 
be a light system to be carried by a human operator. Our main goal is to 
combine the proven accuracy of trolley systems with the flexibility of backpack 
systems by utilizing the strength of combining 2D LIDAR scanners with the 
IMU. In this research, all scanners will contribute to the 3D pose estimation 
instead of one. The effort is to keep the system free of assumptions, such as 
2D workspace restriction, or planar floor, such that it can map unknown indoor 
environments. All relevant research problems will be tackled in the next 
chapters to achieve the main goal and objectives addressed in the first chapter. 
 
 
 
 
 

 
1 https://www.gefos-leica.cz/data/original/skenery/mobilni-
mapovani/backpack/leica_pegasusbackpack_ds.pdf 

https://www.gefos-leica.cz/data/original/skenery/mobilni-mapovani/backpack/leica_pegasusbackpack_ds.pdf
https://www.gefos-leica.cz/data/original/skenery/mobilni-mapovani/backpack/leica_pegasusbackpack_ds.pdf
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Chapter 3 - Design, Calibration, and Evaluation 
of a Backpack Indoor Mobile Mapping System 
* 

 
 
 

 
 
1 

 
* This chapter is based: 
 

1. mainly on: Karam, S., Vosselman, G., Peter, M., Hosseinyalamdary, 
S., Lehtola, V., 2019. Design, calibration, and evaluation of a backpack 
indoor mobile mapping system. Remote Sens. 11. 
 

2. partly on: Karam, S., Peter, M., Hosseinyalamdary, S., Vosselman, 
G., 2018. An evaluation pipeline for indoor laser scanning point 
clouds. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. IV-1, 
85–92. 
 

Notes: 
1. Sections 3.4 & 3.5 are written and implemented by Vosselman, G. 
2. Sections 3.2.1 & 3.2.2 can be skipped if you read Chapter 2. 
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Abstract 
Indoor mobile mapping systems are important for a wide range of applications 
starting from disaster management to straightforward indoor navigation. This 
chapter presents the design and performance of a low-cost backpack indoor 
mobile mapping system (ITC- Backpack) that utilizes a combination of laser 
range-finders (LRFs) to fully recover the 3D building model based on a feature-
based SLAM algorithm. Specifically, we use robust planar features. These are 
advantageous, because oftentimes the final representation of the indoor 
environment is wanted in a planar form, and oftentimes the walls in an indoor 
environment physically have planar shapes. In order to understand the 
potential accuracy of our indoor models and to assess the system’s ability to 
capture the geometry of indoor environments, we develop novel evaluation 
techniques. In contrast to the state-of-the-art evaluation methods that rely on 
ground truth data, our evaluation methods can check the internal consistency 
of the reconstructed map in the absence of any ground truth data. Additionally, 
the external consistency can be verified with the often available as-planned 
state map of the building. The results demonstrate that our backpack system 
can capture the geometry of the test areas with angle errors typically below 
1.5˚ and errors in wall thickness around 1 cm. An optimal configuration for the 
sensors is determined through a set of experiments that makes use of the 
developed evaluation techniques.  
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3.1 Introduction 
Accurate measurement and representation of indoor environments has 
obtained a great scientific interest because of a multitude of potential 
applications (Biber et al., 2004; Borrmann et al.; 2008; Henry et al., 2014, 
Lehtola et al., 2017) such as disaster management, facility management, and 
indoor navigation. In particular, the use of indoor mobile mapping systems 
(IMMS) has shown promise in indoor data collection. Indoor spaces are 
satellite-denied environments, so it is an obvious choice to map them using 
relative positioning techniques, i.e., simultaneous localization and mapping 
(SLAM). A typical IMMS utilizes multiple sensors, e.g., laser scanners, inertial 
measurement units (IMU) and/or cameras, to capture the indoor environment. 
The sensors are attached onto a mobile platform that can be a pushcart, a 
robot, or human-carriable equipment (Blaser et al., 2018; Bosse et al., 2012; 
Trimble TIMMS1; Viametris iMS3D2; Wen et al., 2016). Laser scanners are used 
to measure the geometry, cameras are used to measure the texturing, and 
IMUs are used to estimate the changes in orientation of the scanner for SLAM 
purposes. The reason behind this use of the sensors is that RGB camera-based 
visual SLAM algorithms are extremely sensitive to lighting conditions, and fail 
in textureless spots, which are common in indoor environments. In turn, depth 
cameras (or RGB-D cameras) employed to alleviate for this shortcoming have 
a very short range, which is insufficient for large indoor spaces.  
 
Multiple human-carriable systems that employ laser scanners have been 
developed (Blaser et al., 2018; Chen et al., 2010; Lehtola et al., 2016; Naikal 
et al., 2009). This is not surprising, as easily carriable equipment is widely 
applicable. E.g., unlike pushcarts, it can be taken up and down the stairs, and 
because laser scanners are widely used sensors in capturing indoor geometry 
(Otero et al., 2020) as discussed earlier. This group of mobile mapping systems 
is further divided into hand-held and backpack systems. Lehtola et al. (2017) 
identify the state-of-the-art of these types. For hand-held commercial systems, 
Kaarta Stencil3 and ZEB1 REVO4 arguably present the current best in the 
market. For backpack systems, there are Leica Pegasus backpack5 and Gexcel 
Heron6. 
 
The IMMS implementations are quite different from each other. This is because 
when using relative positioning, the physical scanner platform and the 

 
1 www.trimble.com 
2 www.viametris.com 
3 www.kaarta.com 
4 www.geoslam.com 
5 www.leica-geosystems.com 
6 www.gexcel.it 

http://www.trimble.com/
http://www.viametris.com/
http://www.kaarta.com/
http://www.geoslam.com/
http://www.leica-geosystems.com/
http://www.gexcel.it/
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employed data association method are intertwined. Therefore, advances 
oftentimes cannot be and are not incremental, since changing the hardware 
has an impact on the software and vice versa, and it can sometimes be 
advantageous if both the hardware and the software are re-designed.  
 
In this chapter, therefore, we introduce the design and the performance of our 
triple-2D-LRF (laser range finder) backpack system that is capable of 
outputting 3D indoor models from a 6 degree-of-freedom (6DOF) trajectory. 
Notably, this work differs from the previous triple-2D-LRF configuration state-
of-the-art (Chen et al., 2010; Liu et al., 2010; Naikal et al. 2009) by employing 
two LRFs in slanted angles. Using slanted angles appears as a minor detail but 
turns out to be a quite fundamental. Specifically, it allows for combining the 
scan lines from the three 2D LRFs to form a quasi-3D point subset in the local 
platform coordinates that can then be robustly matched against a planar 
feature in the world coordinates. In other words, slanting the LRFs enables the 
use of robust planar features for SLAM-based data association and 
measurements of all three LRFs are used simultaneously for an integral 
estimation of the backpack pose, planes, calibration and relative sensor 
orientations. Investigating the use of planar features is advantageous for two 
reasons. First, oftentimes the final representation of the indoor environment is 
wanted in a planar form and formulating the use of planes already into the 
SLAM-algorithm is therefore motivated. Second, a typical wall in an indoor 
environment physically has a planar shape.  
 
As a second contribution, we present alternative evaluation techniques for 
assessing the performance of IMMSs. The proposed evaluation techniques 
estimate the reconstruction accuracy and quality even in the absence of a 
ground truth model. Here, in contrast to previous works (Lehtola et al., 2017; 
Liu et al., 2010; Maboudi et al., 2017, 2018; Thomson et al., 2013; Tran et 
al., 2019) that employ 3D ground truth data, the proposed methods uses 2D 
information in form of architectural constraints, i.e., the perpendicularity and 
parallelism of walls, or if available, floor plans. Furthermore, the proposed 
evaluation methods are utilized to find practical optima for the slanted LRFs 
angles. 
 
This chapter is organized as follows. Section 3.2 presents an overview of the 
previously developed human-carriable IMMSs and the state-of-the-art for 
evaluation methods on generated maps. Section 3.3 describes the design of 
our backpack system and the planar-feature SLAM method, based on the 
earlier works in (Karam et al., 2018) and (Vosselman, 2014). The calibration 
process of the mounted LRF is explained in Section 3.4. We elaborate the 
strategy of the registration process for LRFs in Section 3.5. We also present 
the proposed techniques to evaluate the system performance in Section 3.6, 
as partly introduced in (Karam et al., 2018). In Section 3.7, we show all 
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implemented experiments that lead to the optimal configuration of the system. 
Section 3.8 is the conclusion. 
 

3.2 Related Work 
Human-carriable systems can be divided into two categories: hand-held 
systems and backpack systems. After discussing the literature on these, we 
shall outline the literate on evaluation methods. 
 

 3.2.1 Hand-Held Systems 
Hand-held systems offer more flexibility because theoretically anywhere the 
operator can walk, the system can map. Examples of hand-held systems 
include ZEB1 from 3D Laser Mapping/CSIRO and Viametris1 iMS2D. 
 
ZEB1 consists of a laser range-finder (Hokuyo2 UTM-30LX with 30m range) 
and an inertial measurement unit (IMU, a MicroStrain 3DM-GX2) mounted on 
a passive linkage mechanism (Bosse et al., 2012). The system is based on the 
6DOF SLAM algorithm that was developed to work with the capricious 
movement of the sensor. To operate ZEB1, it must be gently oscillated back 
and forth by the operator with a connection to the IMU to provide a solution. 
 
In comparison with other IMMS systems, ZEB1 has accessibility characteristics 
that allows it to map most of the areas in indoor environments, including 
stairwells. On the other hand, the performance of the device is acceptable only 
under specific conditions. For example, ZEB1 is not suitable for some 
environments in which the motion is not observable because the areas are 
featureless, large or open. Furthermore, the proposed SLAM algorithm will 
struggle if the oscillation of the sensor head stops for more than a few seconds.  
In the recent years, GeoSLAM3 has developed the mobile kinematic laser 
scanner ZEB-REVO as a commercial system for the measurement and mapping 
of multi-level 3D environments. It is also handheld, but the LRF is rotated on 
a fixed pole instead of irregular motion on a spring. 
 
iMS2D is a handheld scanner released by Viametris in 2016 for 2D indoor 
scanning. It comprises simply a 2D Hokuyo laser range-finder and fisheye 
camera. Another commercial hand-held system is Kaarta Stencil4 that is based 
on scientific work (Zhang et al., 2017). Stencil exploits LIDAR and IMU sensors 
for localization. 

 
1 www.viametris.com 
2 www.hokuyo.com 
3 www.geoslam.com 
4 www.kaarta.com 

http://www.viametris.com/
http://www.hokuyo.com/
http://www.geoslam.com/
http://www.kaarta.com/
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 3.2.2 Backpack Mapping Systems 
These are instruments that are carried by a human operator. The key 
characteristic of this kind of system is that they have a non-zero pitch and roll. 
Naikal et al. (2009) mounted three LRFs (Hokuyo URG-04LX) orthogonally to 
each other together with a camera on a backpack platform. They aim to 
retrieve 6DOF localization in 3D space by integrating two processes. In the 
first, the transformation is estimated by applying the visual odometry 
technique and in the second, the rotation angles are estimated from the three 
scanners by applying the scan-matching algorithm. In later work by the same 
group, (Chen et al., 2010) added one more 2D scanner and two IMUs (HG9900 
and InterSense) to the backpack system. 
 
The overall goal of their work was to estimate the trajectory the system follows 
during mapping. To achieve this goal, they developed four algorithms, which 
depend mainly on scan-matching, to retrieve the 6DOF pose translation of the 
system over time. The proposed framework is quite similar to that of the 6DOF 
scan-matching process in the SLAM approach of (Borrmann et al., 2008). 
 
The proposed algorithms have tradeoffs in terms of performance depending on 
the environment. For instance, algorithms that rely on planar floor assumptions 
provide more precise results only in the case of planar floor availability in the 
captured area. In addition, the algorithms lack a systematic filter that optimally 
combines the sensors’ measurements, such as a Kalman filter. 
 
In other work by the same group, Liu et al. (2010) replaced the yaw scanner 
(Hokuyo URG-04LX) by the Hokuyo UTM-30LX and added three cameras to the 
backpack platform. They used the previously developed algorithms (Chen et 
al., 2010) to estimate the system’s trajectory based on integrating the laser 
and IMU data. Each of the sensors is used independently to estimate one or 
more parameters of the system’s pose (x, y, z, roll, pitch, yaw) over time. E.g., 
the z value is estimated from the pitch scanner while x, y, and yaw values are 
estimated from the yaw scanner. The remaining pose parameters, namely roll 
and pitch, are estimated using the InterSense IMU. Since the camera is 
approximately synchronized with the scanners, Liu et al. estimate the pose of 
each image by nearest-neighbor interpolation of the pose parameters in order 
to texture the 3D model. Since the sensor rotation is determined independently 
for each of the three axes and not in an integrated manner, they need to 
assume that each scanner keeps scanning in the same plane over time, but 
that is unrealistic because of human operator motion. Therefore, this 
assumption will reflect negatively on the accuracy in the case of backpack 
rotation. 
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Kim, (2013) presented an approach for 3D positioning of a previously 
developed backpack system (Naikal et al., 2009) in an indoor environment. 
The system consists of five LRFs (Hokuyo UTM-30LX), two IMUs (HG9900 and 
InterSense) and two fisheye cameras (GRAS-14S5C). In contrast to the other 
approaches, which use all the data, Kim’s approach identifies and incorporates 
the most credible data from each range finder. For localizing the system in an 
indoor environment, the cumulative shifts of the system over time are 
computed from yaw and pitch range finders using scan-matching techniques. 
Next, the point cloud is generated from roll range finders, restructured using a 
plane reconstruction algorithm, and textured using captured images. To avoid 
an expected misalignment in the case of the complex indoor environment, two 
2D SLAM algorithms are proposed and integrated. The first one is to localize 
the system in the z-axis direction, and the second one for xy localization. The 
role of orientation sensor (InterSense IMU) is to measure roll and pitch angles 
to correct the measurements of the pitch and roll scanners and thus increase 
the accuracy of the scanner-based localization method. Only data from the roll 
scanner is used to generate the point cloud, while the pitch and yaw scanners 
will be responsible for 3D localization. In contrast to the yaw scanner, which 
scans in a plane parallel to the floor and helps to determine the xy location, a 
pitch scanner scans in a plane perpendicular to the floor and provides the third 
dimension (z) of the location. Thus, the localization algorithm may fail in case 
of discontinuities between consecutive walls or transparent objects, such as 
windows.  
 
Wen et al., (2016) developed an indoor backpack mobile mapping system 
consisting of three 2D LRFs (Hokuyo UTM-30LX) and an IMU (Xsens MTi-10). 
The system configuration consists of one LRF mounted horizontally while the 
other two are vertical. A 2D map of the building is constructed by a 2D SLAM 
using data from the horizontal range finder and then applying the rotations 
captured by the IMU to obtain a 3D pose of the system and thus a 3D map of 
the building. At the same time, the two vertical LRFs are responsible for 
creating 3D point clouds. 
 
Filgueira et al. (2016) presented a backpack mapping system constructed from 
a 3D LIDAR and an IMU for indoor data acquisition. The LIDAR is Velodyne 
VLP-16 that provides 360˚ horizontal and 30˚ vertical field of view. The SLAM 
algorithm utilizes the combination of two algorithms proposed in (Zhang & 
Singh, 2014) for indoor and outdoor positioning and mapping adapted for 
handling Velodyne’s data. They used the iterative closest point algorithm (ICP) 
for data association. The system was tested using the Faro Focus 3D scanner 
as a ground truth in two indoor environments with different characteristics. In 
later work by the same group, Lagüela et al. (2018) made some adjustments 
in the design of the system such as increasing the height of the scanner to 
avoid the occlusions that might occur because of the operator’s body. 
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Moreover, they mounted two webcams in the system for inspection purposes. 
In order to analyze the performance of the recent version of their backpack 
system, they did a comparison not only with the static scanner (Faro Focus 
3D) as before, but also with the ZEB-REVO scanner.  
 
Blaser et al. (2018) proposed a wearable indoor mapping platform (BIMAGE) 
to provide 3D image-based data for indoor infrastructure management. The 
platform is mounted by a panoramic camera (FLIR Ladybug5), IMU and two 
Velodyne VLP-16 scanners (horizontal, vertical). A subsequent camera-based 
georeferencing was used to improve the camera positions provided by LIDAR 
SLAM. 
 

 3.2.3 Evaluation Methods 
Various evaluation strategies have been proposed to investigate the 
performance of the state-of-the-art IMMSs and quantify the quality of resulting 
point clouds. The most common strategy is a point cloud to point cloud (pc2pc 
or C2C) comparison after registering both clouds to the ground truth coordinate 
system, typically using CloudCompare software (Sirmacek et al., 2016; 
Thomson et al., 2013; Wen et al., 2016). While Thomson et al. (2013) 
investigated the earlier Viametris i-MMS and ZEB1 systems using TLS (Faro 
Focus3D) as ground truth, Maboudi et al. (2017) tested the later generations 
of Zebedee and Viametris (iMS3D and ZEB-Revo) using TLS (Leica P20) as 
ground truth. In addition to the pc2pc comparison, they compared the building 
information model’s (BIM) geometry derived from the tested systems to that 
derived from TLS. In later work (Maboudi et al., 2018), three additional 
analyses are proposed, namely points-to-planes distance, target-to-target 
distance and model-based evaluation. In a broader assessment process, 
Lehtola et al. (2017) proposed metrics to evaluate the full point cloud of eight 
state-of-the-art IMMSs against the point cloud of two TLSs (Leica P40, Faro 
Focus3D). Tran et al. (2019) provided comparison metrics for the evaluation 
of 3D planar representations of indoor environments. Specifically, if a 3D 
planar reference model is given, the completeness, correctness, and accuracy 
of the obtained model can be estimated against it. 
 
3.3 Backpack System ITC-Backpack 
3.3.1 System Description 
Due to the limited use and problems experienced by the previous indoor 
mapping systems, we developed our own indoor mobile mapping system 
shown in Figure 3.1. Our aim is to combine the proven performance of 2D 
SLAM-based trajectory estimates of push-cart systems with the flexibility of 3D 
hand-held or backpack systems. The system design has been proposed in 
(Vosselman, 2014) and is now implemented, optimised, calibrated, and 
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evaluated. This backpack system consists of three LRFs (Hokuyo UTM-30LX), 
which are all utilized for a 3D (6 DOF) SLAM. In contrast to available 3D laser 
scanners, we try to keep the system design less expensive by only making use 
of these simple LRFs. 
  
The ranging noise according to our LRF’s specifications is ±30mm for [0.1 10]m 
range and ±50mm for [10 30]m range. This gives the Hokuyo UTM-30LX a key 
advantage over the range camera (Kinect) in capturing data inside large 
buildings such as airports where the dimensions of interior areas usually 
exceed 10 m.  
 
The top LRF (here referred to as 𝑆𝑆0) is mounted on the top of backpack system 
and it is approximately horizontal while the other two LRFs (𝑆𝑆1, 𝑆𝑆2) are mounted 
to the right and left of the 𝑆𝑆0 and are rotated around the moving direction (as 
in the i-MMS) as well as around the operator’s shoulder axis. These two rotation 
axes are perpendicular to each other as shown in Figure 3.1.  
 
To find the optimal values for the rotation angles, we conducted experiments 
that will be described in Section 3.7. There are two objectives for the rotation 
of the range finders: First, scanner configuration is purposed to cover  surfaces 
perpendicular to the moving direction e.g., walls both behind and in front of 
the system, and second, it should allow for the association of points on new 
scan lines to previously seen walls. In case the scan lines would intersect walls 
vertically, this is not guaranteed when walking around corners or through 
doors. The field of view of the LRFs is limited to 270˚, and accordingly, there 
will be a 90˚ gap in each scanline. In order to cover all walls as good as 
possible, the two range finders (𝑆𝑆1, 𝑆𝑆2) are rotated around their axes such that 
their gaps (shadow areas) are directed towards the floor and the ceiling, 
respectively (Vosselman, 2014). A laptop running Ubuntu 16.04.X and the 
robot operation system (ROS) is used to communicate with all mounted 
sensors during data capture. 
 

3.3.2 Coordinate Systems 
The proposed mapping system is a multi-sensor system and each one of the 
three mounted sensors has its own coordinate system. Next to the 
aforementioned sensor’s coordinate system, there are two additional 
coordinate systems: the frame (backpack) and model (local world) coordinate 
system.  
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Figure 3.1. The laptop used and the backpack system mounted by three LRFs 𝑆𝑆0(Top), 𝑆𝑆1(left), and 
𝑆𝑆2(right) fitted with markers. 

To integrate the data of the three LRF sensors, coordinates in their individual 
coordinate systems must be transformed into a unified coordinate system, 
which is termed the “frame coordinate system (f)”. We adopt the sensor 
coordinate system of 𝑆𝑆0 as the frame coordinate system. Assuming all sensors 
are rigidly mounted on the frame, the sensor coordinate systems of 𝑆𝑆1 and 𝑆𝑆2 
are registered in this frame coordinate system using six transformation 
parameters, namely three rotation parameters (ω𝑠𝑠𝑖𝑖 ,ϕ𝑠𝑠𝑖𝑖 , κ𝑠𝑠𝑖𝑖) and three 

translation parameters (𝑑𝑑𝑑𝑑𝑠𝑠𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑠𝑠𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑠𝑠𝑖𝑖). These parameters are determined in the 
registration process described in Section 3.5. 
 
Since the frame coordinate system is attached to a moving backpack system, 
a fixed coordinate system should be defined as a reference and a space in 
which the final indoor model will be described. This fixed coordinate system is 
termed the “model coordinate system (m)”. This model coordinate system is 
assumed to be the frame coordinate system at the start point of the trajectory. 
As long as the frame coordinate system is moving in 3D space, it is registered 
in the model coordinate system using six transformation parameters over time 
(t), namely three rotation parameters (ω𝑓𝑓(𝑡𝑡),ϕ𝑓𝑓(𝑡𝑡), κ𝑓𝑓(𝑡𝑡)) and three translation 
parameters (𝑑𝑑𝑑𝑑𝑓𝑓(𝑡𝑡),𝑑𝑑𝑑𝑑𝑓𝑓(𝑡𝑡),𝑑𝑑𝑑𝑑𝑓𝑓(𝑡𝑡)). Those changing parameters originate from 
the 6DOF SLAM algorithm explained to more detail in the next section. 
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3.3.3 6DOF SLAM  
We defined a feature-based SLAM algorithm in which the range observations 
of all three scanners contribute to the integral estimation of all six pose 
parameters. Starting point for the SLAM is the association of newly measured 
points to already estimated planes in the indoor environment. The six pose 
parameters are modeled as a function over time using B-splines. The planes 
are simply defined by a normal vector (𝑛𝑛) and distance to the origin (𝑑𝑑) in the 
model coordinate system. For a point 𝑑𝑑𝑚𝑚 in the model coordinate system it 
should therefore hold: 
                                    

𝑛𝑛𝑑𝑑𝑚𝑚 − 𝑑𝑑 = 0, (3.1) 

                                   
As the laser scanners after registration provide point coordinates 𝑑𝑑𝑓𝑓 in the 
frame coordinate system, we write 𝑑𝑑𝑚𝑚 = 𝑅𝑅(𝑡𝑡) 𝑑𝑑𝑓𝑓 + 𝑣𝑣(𝑡𝑡) to transform a point 𝑑𝑑𝑓𝑓 in 
the frame coordinate system to point 𝑑𝑑𝑚𝑚 in the model coordinate system by a 
rotation 𝑅𝑅(𝑡𝑡) and a translation 𝑣𝑣(𝑡𝑡). Substituting 𝑑𝑑𝑚𝑚 in Eq. (3.1) provides the 
observation equation  
 

𝐸𝐸{𝑛𝑛�𝑅𝑅(𝑡𝑡)𝑑𝑑𝑓𝑓 + 𝑣𝑣(𝑡𝑡)� − 𝑑𝑑} = 0, (3.2) 

                                                         
The trajectory of the frame, as well as the rotations, are modelled by B-splines 
as a function of time (𝑡𝑡). For instance, roll ω is formulated as follow: 

 

𝜔𝜔(𝑡𝑡) = ∑ 𝛼𝛼𝜔𝜔,𝑖𝑖 .𝐵𝐵𝑖𝑖(𝑡𝑡)𝑖𝑖 , (3.3) 

 
where 𝛼𝛼𝜔𝜔,𝑖𝑖 is the spline coefficient for 𝜔𝜔 to be estimated on interval 𝑖𝑖.  
 
The model coordinate system is defined based on the first scans of the three 
scanners. Since there is no information about the system speed yet, the 
rotation and translation defined during establishing the model coordinate 
system are used to predict the orientation and translation of the system over 
the time interval of the first two scanlines using a constant local spline. Later, 
more data will be captured by the LRFs. Then, for pose parameters prediction, 
the local spline estimation is implemented using the data of only three to four 
scanlines of each of the laser scanners. The locally estimated splines are 
linearly extrapolated to obtain a prediction of the frame pose over the time 
interval of the next scanline acquisition. 
 
After segmenting the next scanline using a line segmentation procedure (Peter 
et al., 2017), a test on a distance threshold is used to decide whether a 
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segment should be associated to an already reconstructed plane or be used to 
instantiate a new plane need. Currently, only horizontal and vertical planes are 
used. After setting up the corresponding observation equations the pose 
parameters are estimated for the next time interval. After processing the whole 
dataset with locally defined spline functions, one integral adjustment estimates 
spline coefficients for the whole trajectory as well as all parameters of planes 
in the model coordinate system.  
 

3.4 Calibration Process 
In this research the term “calibration” refers to the estimation of biases in the 
raw range data acquired by every single LRF, in our case the Hokuyo UTM-
30LX. The calibration of the laser range finders is needed to optimise the 
quality of the reconstructed point cloud. 
 

3.4.1 Calibration Facility 
For carrying out the calibration process, a classroom in ITC faculty building was 
selected as a calibration facility. The room has an almost rectangular shape 
with white walls and is of a suitable size. The reference data was captured by 
tape measurements. 
 
3.4.2 Calibration 
Eq. (3.4) formulates the relationship between the coordinates in the LRF sensor 
system (𝑑𝑑𝑠𝑠 ,𝑑𝑑𝑠𝑠), and the model system (𝑑𝑑𝑚𝑚,𝑑𝑑𝑚𝑚), and Eq. (3.5) describes the 
known location of a wall in the model system (distance 𝑑𝑑, orientation 𝜃𝜃). All 
relationships are in 2D as we assume the LRF to be scanning perpendicular to 
the walls. 
 

�𝑑𝑑𝑚𝑚𝑑𝑑𝑚𝑚
� = � 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 𝑐𝑐𝑖𝑖𝑛𝑛 𝛽𝛽

−𝑐𝑐𝑖𝑖𝑛𝑛 𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽� �
𝑑𝑑𝑠𝑠
𝑑𝑑𝑠𝑠
� + �𝑑𝑑0𝑑𝑑0

�,      (3.4) 

 

𝑑𝑑𝑚𝑚 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑑𝑑𝑚𝑚 ∗ 𝑐𝑐𝑖𝑖𝑛𝑛 𝜃𝜃 − 𝑑𝑑 = 0,      (3.5) 

 
where 𝛽𝛽 is the rotation of the LRF, and (𝑑𝑑0,𝑑𝑑0) represent the location of the LRF 
in the local model coordinate system. 
 
Each indoor environment is decorated differently, and the surface materials 
are different, e.g., on walls. The surface material properties, e.g., color, 
brightness, and smoothness, each impact the range measurements to a small 
degree (Park et al., 2010). This change in surface properties to the range 
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measurements is compensated with the calibration of Eq. (3.6). In our 
calibration model we use a scale factor (𝜆𝜆𝑟𝑟) and offset (Δ𝑟𝑟) for the range 
measurements as well as a scale factor (𝜆𝜆𝛼𝛼) for the scanning direction. The 
coordinates in LRF sensor system are obtained from the observed polar 
coordinates (range 𝑟𝑟, scanning direction 𝛼𝛼). 

�̂�𝑟 = 𝜆𝜆𝑟𝑟𝑟𝑟 + Δ𝑟𝑟, (3.6) 

�𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠
� = � 𝑐𝑐𝑐𝑐𝑐𝑐 𝜆𝜆𝛼𝛼𝛼𝛼 𝑐𝑐𝑖𝑖𝑛𝑛 𝜆𝜆𝛼𝛼𝛼𝛼

−𝑐𝑐𝑖𝑖𝑛𝑛 𝜆𝜆𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝜆𝜆𝛼𝛼𝛼𝛼
� ��̂�𝑟0�, (3.7) 

                                                       
Equations 3.4-3.7 are combined to obtain a single equation with the pose of 
the LRF (𝑑𝑑0, 𝑑𝑑0, 𝛽𝛽) and the calibration parameters (𝜆𝜆𝑟𝑟, Δ𝑟𝑟, 𝜆𝜆𝛼𝛼) as the unknown 
parameters. The LRF to be calibrated is put on different locations in the 
calibration room with different rotations to optimise the estimability of the 
calibration parameters. After a warming up period, the data of a few scan lines 
per pose are used to estimate all pose and calibration parameters. Points of 
those scan lines were manually labelled with the index number of the 
corresponding wall. Estimated range offsets and range scale factors were 
typically below 4 cm and 0.8% respectively, whereas the estimated angle scale 
error was usually below 0.7%. After calibration the remaining residuals 
between the points and the wall planes show a root mean square value below 
1 cm. This is clearly better than the noise level specified by the manufacturer 
(3 cm). 
 
3.4.3 Self-Calibrations 
Similar to self-calibration in the photogrammetric bundle adjustment, it is 
feasible to include the estimation of the sensor calibration parameters of all 
three LRFs in the SLAM process. In absence of a reference (tape) measurement 
in the SLAM procedure, we can, however, not estimate the range scale factors 
of all LRFs as the scale of the resulting point cloud would then be undetermined. 
Hence, we fix the range scale of the top LRF (𝑆𝑆0) to the value obtained in the 
calibration room and include the remaining eight calibration parameters as 
additional unknowns to the SLAM equations. 
 
3.5 Relative Sensor Registration 
To accurately fuse data from the three LRF sensors, their coordinate systems 
must be registered to a common reference system. This requires the estimation 
of the relative pose of the LRFs with respect to each other. We adopt the sensor 
coordinate system of the horizontal LRF as the backpack frame coordinate 
system and register as accurately as possible the two slanted LRFs with respect 
to this system. The registration is performed in two steps: marker registration 
and fine registration. These processes do not require a room with known 
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dimensions, but the data should be captured in a specific way as described in 
the following two paragraphs. 
 
3.5.1 Initial Registration 
The registration method is based on 3D tracking technology for markers (see 
Figure 3.1) attached to the heads of the mounted LRFs to achieve an 
approximate registration. We make use of the ‘ar_track_alvar’ package1, which 
is a robot operation system (ROS) wrapper for Alvar, an open source library 
for virtual and augmented reality (AR) marker tracking. As the laptop’s webcam 
is involved in the registration process, it also needs to be calibrated using 
another ROS package. As the rotation and translation between the markers 
and the LRF sensor coordinate systems can be determined to a few mm and 
degree, the relative marker positions estimated with the ROS package can be 
used to infer approximate values for the parameters of the relative registration 
of the three LRFs. 
 
3.5.2 Fine Registration 
The goal of this process is to refine the approximate values for the registration 
parameters obtained during the previous approach and assumed to be 
acceptably accurate. This fine registration imposes two constraints on the 
captured sensor data. As the indoor environment usually contains large planes, 
the first constraint used is co-planarity of three line segments on the same 
plane simultaneously scanned by the three LRFs (Choi et al., 2014; Fernández-
Moral et al., 2015). The second constraint is inferred from the perpendicularity 
of two observed planes (Choi et al., 2014). 
 
The data collection is carried out with the backpack (ITC-Backpack) on the 
back of the operator. In order to estimate all registration parameters, the 
planar surfaces should be observed by the backpack system with different 
orientations. Therefore, first the operator stands inside a suitable area, in 
which the previous constraints are applicable, and starts capturing data while 
bending forward and sideward (right and left). Then, the operator rotates by 
90˚ and bends again in the same way. These rotation and bending steps are 
repeated until the operator is back at the initial orientation. 
 
The captured data pass through a series of processing steps before being 
subject to the registration’s constraints. Firstly, the scanlines from each LRF 
are segmented by a line segmentation algorithm (Peter et al., 2017) and 

 
1 http://wiki.ros.org/ar_track_alvar 
 
 

http://wiki.ros.org/ar_track_alvar
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transformed to a frame system using the approximated parameters. Next, all 
the pairs of nearly co-planar line segments captured by two different LRFs are 
collected. 
 
To define the aforementioned constraints, two types of observation equations 
are formulated, namely perpendicularity and coplanarity. Let’s denote 𝑙𝑙𝑗𝑗𝑖𝑖 as the 
direction vector of a segment, where i refers to a plane (A, B) and j refers to 
one of the LRFs (0, 1, 2). The relative transformations of 𝑆𝑆1and 𝑆𝑆2 with respect 
to 𝑆𝑆0 are described by 12 parameters, a 3D rotation (𝑅𝑅1(𝜔𝜔1,𝜙𝜙1, 𝜅𝜅1) and 
𝑅𝑅2(𝜔𝜔2,𝜙𝜙2,𝜅𝜅2)) and a 3D translation (𝑇𝑇1 and 𝑇𝑇2) for each.  
 
If two planes A and B are perpendicular it will hold that: 
 

(𝑙𝑙0𝐴𝐴 × 𝑅𝑅1𝑙𝑙1𝐴𝐴) ∙ (𝑙𝑙0𝐵𝐵 × 𝑅𝑅1𝑙𝑙1𝐵𝐵) = 0, (3.8) 
 
where: 𝑙𝑙0𝐴𝐴 × 𝑅𝑅1𝑙𝑙1𝐴𝐴 is the normal vector of plane A expressed in the coordinate 
system of 𝑆𝑆0, and 𝑙𝑙0𝐵𝐵 × 𝑅𝑅1𝑙𝑙1𝐵𝐵 is the normal vector of plane B expressed in the 
coordinate system of 𝑆𝑆0. The unknowns in this equation are the rotation angles 
of 𝑆𝑆1 in 𝑅𝑅1. 
 
In a common coordinate system, the two direction vectors of the line segments 
as well as the vector connecting the midpoints (𝑝𝑝0𝑖𝑖 , 𝑝𝑝1𝑖𝑖 , 𝑝𝑝2𝑖𝑖 ) must be coplanar. 
Taking the coordinate system of 𝑆𝑆0, the coplanarity equation for plane A can 
be formulated as follows: 
 

(𝑙𝑙0𝐴𝐴 × 𝑅𝑅1𝑙𝑙1𝐴𝐴) ∙ (𝑝𝑝0𝐴𝐴 − 𝑅𝑅1𝑝𝑝1𝐴𝐴 − 𝑇𝑇1) = 0, (3.9) 
 
As three-line segments could be recorded with three different LRFs in each of 
three perpendicular planes already the data captured at a single pose of the 
mapping system would yield nine independent coplanarity equations and three 
independent perpendicularity equations. Thus, this would already provide 
sufficient observations to estimate all 12 registration parameters. However, to 
increase the reliability of the estimation we use a much larger number of 
equations with data of different poses of the backpack captured according to 
the described bending procedure. The scanning frequency of the Hokuyo used 
is 40 HZ; therefore, after one minute, each LRF records 2400 scanlines thereby 
leading to a very large number of observation equations. 
Using the available approximated values from marker registration and after 
linearizing the formulated equations, an accurate estimate of the 
transformation parameters can be obtained by applying a least-squares 
estimation. The standard deviations of the estimated parameters are around 1 
mm for the translations and around 0.05˚ for the rotation angles. 
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3.5.3 Self-Registration 
In analogy to the self-calibration for the intrinsic sensor parameters of the 
LRFs, we can also extend the SLAM equations with the parameters describing 
the relative poses of the LRFs. We refer to this registration approach as the 
self-registration. Approximate values of the 12 registration parameters are 
obtained from either the initial registration or fine registration described above. 
When the sensor data is captured with a good variation in the rotations of the 
backpack with respect to the surrounding walls, ceiling and floor, as realized 
by the bending procedure, all 12 self-registration parameters can be estimated 
well as part of the overall estimation of all pose spline coefficients and plane 
parameters. This is not the case when the backpack IMMS is used in a normal 
mode when the operator walks upright through a building. In that case the top 
LRF, scanning in an approximately horizontal plane, will only capture vertical 
walls. As a consequence, the vertical offset between this LRF and the other two 
cannot be estimated. In this scenario the self-registration is restricted to 11 
parameters. 
 

3.6 SLAM Performance Measurements and Results 
This section elaborates the methodology to evaluate indoor laser scanning 
point clouds described in (Karam et al., 2018) with some additions. Moreover, 
the measurements taken by our mapping system (ITC-Backpack) are 
processed by applying this methodology to investigate the performance of the 
6DOF SLAM and assess the capability of ITC- Backpack of capturing the true 
geometry of building interiors and preserve an accurate positioning when 
moving from one room to another. 
 
3.6.1 Dataset 
The dataset used is collected by ITC-Backpack at the University of 
Braunschweig, Germany. The scanned area shows a distinct office environment 
that has many windows and doors leading to rooms. Due to renovation work, 
the rooms were nearly empty. On the one hand, this allows an easier 
identification of planar surfaces. On the other hand, the number of surfaces is 
relatively small and a missed surface may have a larger impact on the 
estimability of the pose spline coefficients. The generated point cloud and the 
reconstructed planes are shown in Figure 3.2. About 73 million points were 
captured during a 9 minute walk through the rooms. 
 
Point to Plane Association (Data association): The point is assigned to 
the closest plane if its distance to this plane is shorter than 20 cm. Of the 73 
million points, 53 million points were associated to 503 planes during the SLAM 
and used to estimate a total of 27880 pose spline coefficients and plane 
parameters. The distribution of the residual distance from the point to its 
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associated plane is shown in Figure 3.2. 97% of the points have residuals below 
3 cm and the RMS value of these residuals is only 1.3 cm. This means that the 
method is self-consistent. The RMS value, however, does not represent well 
the overall quality of the dataset. Further quality measures are therefore 
developed and used in the next section. 
 
Figure 3.3 shows a top view of the generated point cloud, where points are 
colored based on their respective residuals. The data association rule, which 
assigns points to planes, experiences problems, when two distinct planes are 
too close to each other. For example, a door that is wide open and thus close 
to the wall, or a door that is only slightly open and thus close to the other wall 
are typical causes for such behaviour. Moreover, there can be dynamic noise, 
for instance, if a door is opening while the data is being captured. Clear 
examples of both problematic cases are highlighted in Figure 3.3. The problem 
resulting from merging a door with a nearby wall, can be seen inside the orange 
dashed rectangle. 
 

3.6.2 Evaluation Techniques 
As SLAM-based point clouds usually suffer from registration errors because of 
the dead-reckoning nature of SLAM algorithms, the performance of the 
mapping system and the accuracy of the provided results needs to be analyzed. 
While most current evaluation methods rely on the availability of reference 
data, we develop several techniques to investigate the mapping system in the 
absence of an accurate ground truth model. The proposed techniques take 
advantage of regularities in wall configurations to check how well the rooms 
are connected, and thus how well the environment is reconstructed. 
 
Since most buildings have a floor plan (though often outdated), we utilize that 
as an external information source to check the quality of the generated indoor 
model, but without relying on an accurate registration of the point cloud to the 
floor plan. We classify the developed techniques into three independent 
groups: (1) techniques using architectural constraints; (2) techniques using a 
floor plan; and (3) completeness techniques. 
 
To simplify the process and because the indoor environments mainly consists 
of planar and vertical structures, the first two groups make use of 2D edges 
derived from such structures. As our feature-based SLAM outputs both point 
clouds and 3D reconstructed planes, the 2D edges are derived from the 
projection of the vertical planes onto the XY-plane, as presented in (Karam et 
al., 2018). We address the third group of evaluation techniques in the study of 
the optimal sensor configuration described in Section 3.7.   
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(a) 

 

 
(b) 

Figure 3.2. ITC- Backpack outputs. (a) The generated point cloud (colors show plane association) 
with the trajectory followed (white). (b) the reconstructed planes. 

3.6.2.1 Evaluation Using Architectural Constraints 
We make use of the predominant characteristics in indoor environments, 
namely perpendicularity and parallelism of walls, to investigate the ability of 
our mapping system to reconstruct the true geometry of the mapped 
environment. Two sides of a particular wall are parallel and two neighbouring 
walls in a room are usually perpendicular. Thus, the corresponding 
reconstructed pairs of planes resulting from the indoor mapping should be both 
parallel or perpendicular as well. Nearly perpendicular pairs of planes with 
nearby endpoints are labelled as perpendicular edges. Nearly parallel planes at 
a short distance and with opposite normal vector directions are labelled as 
parallel edges. Moreover, we make a histogram of the estimated wall thickness. 
As most walls will have the same thickness in reality, we expect a clear peak 
in this histogram. The angles between the planes at opposite sides of the wall  
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(a) 

 
(b) 

Figure 3.3. The residuals between the points and the estimated planes. (a) Frequency of the residuals 
with a logarithmic scale for the y-axis and a linear scale for the x-axis. (b) Top view of the generated 
point cloud. All white points have residuals below 3 cm and points with larger residuals are marked 
with either red or blue colour, depending on the sign. The orange dashed rectangle marks an 
example of a plane representing a door being merged with another plane, which represents a wall 
that is near the door. The orange dashed oval surrounds an opening door.  

and the wall thickness histogram provide a good impression of the ability of 
the mapping system to maintain an accurate positioning when moving from a 
room to another. 
 
We assume two walls to be perpendicular when the angle between their 2D 
edges in the XY plane is between 85˚ and 95˚ and their end points, that are 
close to the intersection point and should represent the corner point, are within 
30 cm. Furthermore, the angle between the parallel edges should be in the 
range [0˚ ±5˚] with the distance between them not exceeding 30 cm. The 
results of the plane pairing on the Braunschweig data are shown in Figure 3.4a-
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b. In addition, we compute the angle error as the deviation from the perfect 
parallelism (0˚) and perpendicularity (90˚) and build histograms of these 
errors as shown in Figure 3.4c-d. In reality walls are, of course, never 
constructed perfectly parallel or perpendicular to other walls, but the deviation 
from this is expected to be an order of magnitude smaller than the deviations 
observed in the reconstructed model. 
 
The results show that the angle between two sides of a wall is determined less 
accurately than that between two perpendicular planes in the same room. This 
is consistent with the expected performance of SLAM algorithms, as the two 
walls sides are not seen at the same point of time. Moreover, we note high 
percentages in the above histograms in bins where the angles deviate by more 
than 2.5˚ from their expected values of 0˚ and 90˚. By tracking the source of 
these high percentages, we found that they mainly originate from incorrectly 
reconstructed planes, such as open doors. In addition, the measurements of 
walls' thickness demonstrate that there are two standard types of walls in the 
building and the standard deviation of the thickness is around 1 cm.  
 
 
3.6.2.2 Evaluation Using a Floor Plan 
Nowadays, many buildings have 2D floor plans reflecting the as-planned state 
from before construction. We investigate the feasibility of using a simple 2D 
floor plan in analyzing the accuracy of the reconstructed model. 
 
Transformation: As the 2D edges derived from our SLAM-based point clouds 
and those in the floor plan (see Figure 3.5) are in two different coordinate 
systems, we have to register them in the same coordinate system for valid 
comparison. We use a 2D similarity transform and estimate the transformation 
parameters based on a number of manually selected corresponding points. The 
main goal of this transformation is to identify correspondences between the 
edges extracted from the point cloud and those in the floor plan. We do not 
estimate residual distances or angles between an edge in the point cloud and 
an edge in the floor plan, because we want to keep the comparison process 
independent of the chosen coordinate systems and quality of the registration. 
Therefore, we only compare the angles and distances between edges or points 
extracted from the point cloud to the angles and distances between the 
corresponding edges or points in the floor plan. The left image in Figure 3.5 
shows the digitized floor plan of the scanned floor. 
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Figure 3.4. The results of the architectural constraints method. (a) all pairs of parallel edges. (b) all 
pairs of perpendicular edges. (c) Percentages of angle errors between parallel edges within the range 
[0˚ 5˚]. (d) Percentages of angle errors between parallel edges within the range [85˚ 95˚]. 

  
Figure 3.5. The digitized floor plan (left) and point cloud-based edges for Braunschweig data (right) 

Edge Matching: When both sets of edges are registered in the same 
coordinate system, we start matching the corresponding edges. Firstly, we 
detect all point cloud-based edges that are expected to belong to a room in the 
floor plan using a buffer around the room polygon, termed a polygon-buffer. 
Secondly, we choose which of the detected edges most probably represents 
the side of a wall in that room using another buffer (30 cm width) around each 
of the room’s edges, termed an edge-buffer as well as the normal vector 
direction to avoid confusion with edges of the opposite side of the wall. 
 
In contrast to other objects, walls usually are the dominant uniform features 
present in buildings and as such provide possibility to reconstruct large and 
reliable plane features for the SLAM process. Therefore, a further selection 
based on height information is implemented to keep only edges that most 
probably belong to walls. We implement a filtering process room by room in 
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order to estimate the floor and ceiling height for each room separately and 
exclude non-wall edges based on their height. An edge is classified as a 
window-edge and removed if the corresponding plane is not connected to 
either the floor or ceiling, and if its height is less than 2 m. Similarly, an edge 
is classified as a door-edge and removed if the corresponding plane is 
connected to the floor and its height is less than 2.2 m. Thus, the remaining 
edges 𝑬𝑬𝑷𝑷𝑷𝑷, that most probably represent walls in the building, form what we 
term the PC-based map. Figure 3.6 shows the resulting PC-based map consists 
of 144 edges matched to the floor plan edges 𝑬𝑬𝑭𝑭. 

 

 
Figure 3.6. The final point cloud edges 𝑬𝑬𝑷𝑷𝑷𝑷 (blue) that match the floor plan edges 𝑬𝑬𝑭𝑭 (red) 

Analysis: The final step is to pair edges from both edge sets (𝑬𝑬𝑷𝑷𝑷𝑷 ,  𝑬𝑬𝑭𝑭) and 
form a set of tuples of matched edges. Based on these set of edges, we perform 
the statistical computations needed to check the accuracy of the PC-based 
map, and thus the accuracy of generated point clouds. 
 

a) Error in angle in relation to distance 
 

We want to study the impact of distance on the angle errors. Let 𝑬𝑬𝑷𝑷𝑷𝑷 and 𝑬𝑬𝑭𝑭 
be edge sets extracted from the point cloud and floor plan, respectively. Let 
(𝑒𝑒𝑝𝑝𝑝𝑝 , 𝑒𝑒𝐹𝐹)𝑖𝑖 be pairs of matched edges where 𝑖𝑖 = 1,2, … . ,𝑛𝑛 and 𝑛𝑛 is the number of 
pairs. We pick the 𝑖𝑖𝑡𝑡ℎ pair of edges (𝑒𝑒𝑝𝑝𝑝𝑝 ,  𝑒𝑒𝐹𝐹)𝑖𝑖 and compute the angles (𝛼𝛼𝑝𝑝𝑝𝑝 , 𝛼𝛼𝐹𝐹)𝑖𝑖𝑗𝑗 
and distances (𝑑𝑑𝑚𝑚𝑓𝑓)𝑖𝑖𝑗𝑗 with respect to all other pairs of edges (𝑒𝑒𝑝𝑝𝑝𝑝 , 𝑒𝑒𝐹𝐹)𝑗𝑗 where 
(𝛼𝛼𝐹𝐹)𝑖𝑖𝑗𝑗 is the angle between (𝑒𝑒𝐹𝐹)𝑖𝑖 and (𝑒𝑒𝐹𝐹)𝑗𝑗, (𝛼𝛼𝑝𝑝𝑝𝑝)𝑖𝑖𝑗𝑗 is the angle between (𝑒𝑒𝑝𝑝𝑝𝑝)𝑖𝑖 
and (𝑒𝑒𝑝𝑝𝑝𝑝)𝑗𝑗, (𝑑𝑑𝑚𝑚𝑓𝑓)𝑖𝑖𝑗𝑗 is the distance between midpoints of (𝑒𝑒𝐹𝐹)𝑖𝑖 and (𝑒𝑒𝐹𝐹)𝑗𝑗, and 𝑗𝑗 =
𝑖𝑖 + 1, 𝑖𝑖 + 2, … . ,𝑛𝑛 . For each pair of edges, we compute the difference between 
the angle in the point cloud and angle in the floor plan: (𝛥𝛥𝛼𝛼 = 𝛼𝛼𝑝𝑝𝑝𝑝 −  𝛼𝛼𝐹𝐹)𝑖𝑖𝑗𝑗. Hence, 
we obtain 𝑛𝑛(𝑛𝑛 − 1)/2 angle differences and the corresponding distances 
between the edges (𝛥𝛥𝛼𝛼,  𝑑𝑑𝑚𝑚𝑓𝑓) . We compute these values for the Braunschweig 
data where 10296 pairs of edges are examined to obtain the results displayed 
in Figure 3.7.  
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The results presented in Figure 3.7a-b demonstrate that the errors in the angle 
between point cloud edges are small; approximately 81% are in the range [-
1˚ 1˚]. The two noticeable small peaks in Figure 3.7b around ±3˚ refer to 
some larger errors, which may belong to only a few poorly reconstructed 
planes. Overall, as can be seen in Figure 3.7a, the distance between edges has 
no impact on the error in the angle between them.  
 
To identify the poorly estimated outlier edges, we construct Figure 3.8 in which 
all edge pairs that have an angle error of 3˚ or more are presented. The pattern 
in this figure clearly indicates which edges are mostly involved in edge pairs 
with large angle errors. We observed five outlier edges and excluded them 
from the computations in order to obtain a better picture of the potential 
quality of the system; see Figure 3.7c-d. Table 3.1 shows standard deviation 
values and the number of edge pairs that are involved in the computations for 
both cases, both before and after excluding outlier edges. We can see that the 
removal of the outlier edges leads to a 25% decrease in the estimated standard 
deviation. 

 
(a) 

 
(c) 

 
(b) 

 
(d) 

Figure 3.7. (a) Errors in angle as relation of distance. (b) Histogram of the percentages of errors. 
(c) Errors in angle as relation of distance after excluding outlier edges. (d) Histogram of the 
percentages of errors after excluding outlier edges. 
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Figure 3.8. All edge pairs that have an angle error of 3˚ or more. 

Table 3.1. Values of mean, standard deviation, and the number of edges pairs that are involved in 
the computations for both cases, before and after excluding outlier edges 

 Before After 
Mean 0.01˚  0.00˚  

Std Dev. 1.14˚  0.85˚  
Edge-Pairs Nr 10296 9591 

 
Since the perpendicular and parallel edges are already labelled (Section 3.6.2), 
we also computed these values for each type of edge separately. We found 
that the error in angle over distance is not related to the attitude of one edge 
to other. Moreover, we investigated the impact of time on the angle errors as 
the 3D planes are reconstructed over time through applying the SLAM 
algorithm. However, the results show no relation between the time and angle 
errors. The reason for this is that the operator returned to the same corridor 
during the data capturing in Braunschweig, which in turn leads to frequent loop 
closures that prevent the errors from accumulating.  
 

b) Error in distance in relation to distance 
 

Besides the previous computations of angle errors based on the pairs of edges, 
we compute the distance errors based on pairs of edges’ end points. However, 
because the point cloud-based map is usually incomplete, we find corner points 
by intersecting the neighbouring edges. We utilize the topology of the floor 
plan and intersect edges from 𝑬𝑬𝑷𝑷𝑷𝑷 if their matched floor plan edges 𝑒𝑒𝐹𝐹 are 
connected.  
 
Let 𝑃𝑃𝑝𝑝𝑝𝑝 and 𝑃𝑃𝐹𝐹 be intersection points obtained from the floor plan and the point 
cloud, respectively. Let (𝑝𝑝𝑝𝑝𝑝𝑝 ,  𝑝𝑝𝐹𝐹)𝑖𝑖 be pairs of points where 𝑖𝑖 = 1,2, … . ,𝑛𝑛 and 𝑛𝑛 is 
the number of pairs. We pick the 𝑖𝑖𝑡𝑡ℎ pair of points (𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑝𝑝𝐹𝐹)𝑖𝑖 and compute the 
distances (𝑑𝑑𝑝𝑝𝑝𝑝 ,  𝑑𝑑𝑓𝑓)𝑖𝑖𝑗𝑗 with respect to all other pairs of points (𝑝𝑝𝑝𝑝𝑝𝑝 ,  𝑝𝑝𝐹𝐹)𝑗𝑗 where (𝑑𝑑𝑓𝑓)𝑖𝑖𝑗𝑗 
is the distance between (𝑝𝑝𝐹𝐹)𝑖𝑖 and (𝑝𝑝𝐹𝐹)𝑗𝑗, (𝑑𝑑𝑝𝑝𝑝𝑝)𝑖𝑖𝑗𝑗 is the distance between (𝑝𝑝𝑝𝑝𝑝𝑝)𝑖𝑖 
and (𝑝𝑝𝑝𝑝𝑝𝑝)𝑗𝑗 , and j= 𝑖𝑖 + 1, 𝑖𝑖 + 2, … ,𝑛𝑛. Next, the error in the distances (𝛥𝛥𝑑𝑑 = 𝑑𝑑𝑓𝑓 −
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𝑑𝑑𝑝𝑝𝑝𝑝)𝑖𝑖𝑗𝑗  will be plotted against the distances (𝑑𝑑𝑓𝑓)𝑖𝑖𝑗𝑗 to check if the error in distance 
depends on the distance between floor plan points. Computing the error in 
distance in this way will remove the systematic error that would otherwise 
result from errors in the transformation. 
 
From the data used, we obtain 128 corner points leading to 8128 pairs of points 
involved in the distance errors computation as a function of distance. Figure 
3.9 shows that the errors in distance are sometimes quite large (~40 cm). The 
source for such an error is not necessarily the mapping system or the proposed 
SLAM algorithm, but it could be also the outdated floor plan used. We noted 
some differences in the width of some walls between the floor plan and the 
realised construction. 
 

 

 

Figure 3.9. Errors in distance in relation to the distance (left) and Histogram of the percentages of 
errors (right). 

We carried out an analysis similar to that shown in Figure 3.8 to identify the 
poorly reconstructed corners (outlier points) using the distance between 𝑝𝑝𝑝𝑝𝑝𝑝 
and 𝑝𝑝𝐹𝐹. The comparison of the results before and after excluding these outlier 
points does not show a significant improvement. However, it is not possible to 
draw the conclusion whether these errors are caused by the ground truth 
model used or the mapping system. 
 
3.7 Determining Optimal Configuration 
As our system is equipped with several sensors, we utilize the proposed 
evaluation techniques in the previous section to find the optimal configuration. 
 
3.7.1 Studied Configurations 
It is important to avoid occlusion in the data and to acquire sufficient 
geometrical information of the building to be mapped. As our mapping system 
is composed of three 2D sensors, we seek for the optimal mounting 
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configuration of these sensors (LRFs) on the backpack by making use of the 
proposed evaluation methods above in Section 3.6.2. The optimal sensor 
configuration is defined through an experimental comparison of different 
configurations.  
 
The experiments were conducted in an indoor office environment at our 
university. The three selected rooms, with a corridor in-between, were 
captured by the system for several possible configurations. A set of criteria was 
used to select the experimented configurations.  
 
In order to see all the walls around the system, 𝑆𝑆0 is always be horizontal and 
above the operator’s head, and only rotatable around its rotational axis. As the 
Hokuyo LRF has a 270˚ field of view, we rotate 𝑆𝑆0 around its axis in such a way 
that the shadow area (gap) points to the left or right side of the operator in 
order to achieve a good coverage of the surfaces both behind and in front of 
the system. 
 
In contrast to the top LRF, the left and right LRFs (𝑆𝑆1, 𝑆𝑆2) have three rotational 
degrees of freedom around three axes: the operator’s moving direction (𝑑𝑑𝑓𝑓), 
the operator’s shoulder axis ( 𝑑𝑑𝑓𝑓),  and the LRF’s rotational axis (see Figure 3.1). 
However, some points need to be considered in implementing these rotations. 
For a good data association, it is better to mount 𝑆𝑆1 and 𝑆𝑆2 in a way that they 
scan in two different planes. The oblique scanlines provide a good coverage of 
walls behind and in front of the system and ensure the overlap with old data 
after a short while when passing through doors and corners. Also, this 
geometry of the scanlines provides sufficient observations that strengthen the 
system of equations and make the pose estimation process more robust 
(Vosselman, 2014). 
 
Nevertheless, we found empirically that a small angle of rotation around the 
shoulder axis leads to a better coverage of the surfaces around the system, 
while a wide angle of rotation may lead to a loss of coverage of the floor and 
ceiling. Thus, this reduces the estimability of the system's movement in the z 
direction. To avoid occlusion by the operator’s body, we should have forward-
slanted scanlines.  
 
Based on the aforementioned criteria, a set of orientation configurations for 
the two LRFs, as listed in Table 3.2, was tested. Specifically, the table lists the 
rotations of LRFs 𝑆𝑆1 and 𝑆𝑆2 , namely 𝜃𝜃1 and 𝜃𝜃2, around the moving direction (𝑑𝑑𝑓𝑓) 
and the shoulder axis ( 𝑑𝑑𝑓𝑓), respectively. In addition, the LRFs are rotated 
around their rotation axis to ensure that the gap of one points to the floor and 
the gap of other points to the ceiling. This provides as many observations as 
possible on all surfaces (walls, floor, and ceiling) in order to position the 
backpack. 
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3.7.2 Experimental Comparison of Configurations 
For each suggested configuration, we find the relative orientation of the slanted 
LRFs (𝑆𝑆1, 𝑆𝑆2) with respect to the horizontal LRF (𝑆𝑆0) with the registration 
procedures explained in Section 3.5. Next, we scan the test area with all 
possible configurations and each time, we obtain a dataset of point cloud and 
3D reconstructed planes. 
 

Table 3.2. Tested configurations are defined by the first five columns (explained in Section 3.7.1) 
and the results from the three distinct evaluation techniques are listed in the last five columns 
(explained in Section 3.7.2). The resulting values are highlighted with colors, as follows. For 
RMSE: <0.80˚ green, [0.80˚ 1˚[ yellow, and ≥1˚ red. For λ expressed in percentages: ]85 100] 
green, ]70 85] yellow, and ≤70 red. The last column represents the completeness state of the point 
cloud in three different cases: existence of large gaps, existence of small gaps, or almost no gaps. 

1The LRF is rotated 20˚ around the moving direction and 20˚ is the angle between its scanline plane 
and the horizontal plane (𝑑𝑑𝑑𝑑)𝑓𝑓.  

2 The LRF is rotated 70˚ (90˚-20˚) around the shoulder axis, but 20˚ is the angle between its scanline 
plane and the vertical plane (𝑑𝑑𝑑𝑑)𝑓𝑓. 

3.7.2.1 Accuracy 
Evaluation Using Architectural Constraints: The test area consists of 
rectangular rooms as can be seen in Figure 3.10. Regarding the analysis of the 
perpendicularity, the basic approach explained in Section 3.6.2.1 is extended 
to involve all walls that should be perpendicular to each other in the building 
and not only the neighboring walls in a room. Similarly, the algorithm looks for 
all walls that should be parallel to each other in the building and not only both 
sides of a wall. Next, we compute the Root Mean Square Error (RMSE) of the 
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computed angles to estimate the deviations from the perfect perpendicularity 
and parallelism, respectively.  
 
Evaluation Using the Floor Plan: The floor plan of the test area is available as 
a 2D CAD drawing; see Figure 3.10. The evaluation of errors in angles and 
distances is conducted as described in Section 3.6.2.2 for the Braunschweig 
dataset. 

 
Figure 3.10. Part of the 2D CAD drawing of the 3rd floor in the Citadel building with 
highlighted scanning area (yellow) and the trajectory followed (blue). 

All the resulting statistical values for both the architectural constraints and the 
floor plan cases are listed in Table 3.2. The comparison between the listed 
configurations is done using these values, which reflect the reconstruction 
accuracy. The sixth column presents the sum of RMSE values computed in the 
two evaluation techniques introduced before (perpendicularity, parallelism) for 
each configuration (see Section 3.6.2.1). Also, for each configuration, we count 
the points that have an angle error of less than 1˚ and divide this amount by 
the total number of points, yielding a rate of angle errors λ. We take the 
average rate in these two techniques (perpendicularity, parallelism) and 
present the results in the seventh column. Similarly, the eighth and ninth 
columns in Table 3.2 demonstrate the computed RMSE and λ computed for 
each configuration with the availability of floor plan. These statistical values 
are computed in order to get an overall impression of the reconstruction 
accuracy of each configuration, and thus it helps in decision making on the 
optimal configuration.  
 
The sixth and seventh columns in the Table 3.2 show that the configurations 
(1, 8, 9) have clearly larger deviations than the other configurations, therefore 
being less accurate in capturing the geometry of the building interiors. The 
evaluation using the floor plan, as shown in the eighth and ninth columns, 
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confirms this conclusion. RMSE values for parallelism indicate that the 
configurations (2-7, 10, 11) are the most accurate in maintaining an accurate 
localization when moving from one room to another. The common 
characteristic of these configurations is that they have at least one of the two 
rotation angles in the range of 30˚ to 40˚. 
 

3.7.2.2 Completeness of Data Capturing 
We visually inspect the completeness of the captured data in which walls, floor, 
and ceiling are recorded. The process relies on a simulated point cloud 
representing a scan of a virtual corridor (loop) and generated for each 
configuration. Figure 3.11a shows the 3D model of this virtual area and Figure 
3.11b the point cloud of configuration 6 where the colors relate to the three 
different LRFs and the white polyline represents the followed trajectory. The 
simulated point cloud generating process assumes that the operator walks 
around the corridor in an anti-clockwise direction starting from the middle of 
the corridor. 
 
The analysis process is based on a set of point clouds corresponding to all 
suggested configurations to compare the areas covered by points and find 
which configuration provides the better coverage. We want to investigate 
whether a more accurate configuration in geometry reconstruction could also 
provide a more complete point cloud of the scene. 
 
Overall, configurations (1-8) appear to give good coverage. However, the 
configurations (2, 3, 5, 7) provide the most complete point cloud of the scene, 
while the LRFs with the other configurations miss the lower/upper part of the 
wall in the scanning geometry when the system turns around the corner. An 
example of a configuration (6), which results in an incomplete point cloud, is 
shown in Figure 3.11b. This configuration misses a part of the wall close to the 
corner (see Figure 3.11c). Figure 3.11d shows the data recorded in one scan 
line of each LRF in the configuration 6. The tenth column in Table 3.2 
demonstrate that the configurations (9, 10, 11) present the largest gaps in 
their point clouds. The common characteristic of these configurations is that 
only one of the slanted LRFs is scanning the walls both right and left of the 
system. 
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Figure 3.11. Simulation data. (a) 3D model of the virtual corridor used as a test area with the 
trajectory followed (white). (b) The resulting point cloud of the test area for the configuration 6 
without ceiling’s points. The yellow dashed rectangle shows an example of a gap on the wall around 
the corner (c). (d) The simulated geometry of LRFs’ scanlines for the configuration 6 in which the 
colours relate to the three different LRFs (𝑆𝑆0 𝑔𝑔𝑟𝑟𝑒𝑒𝑒𝑒𝑛𝑛,  𝑆𝑆1 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑙𝑙𝑒𝑒,  𝑆𝑆2 red). 

 
3.7.3 Discussion of Configuration Experiments 
The results of sections 3.7.1. and 3.7.2. lead to the conclusion that the more 
accurate configuration in geometry reconstruction does not necessarily provide 
a more complete point cloud of the scene, and vice versa. Although the 
configurations (10, 11) show a better performance than configurations (2, 8) 
in terms of the reconstruction accuracy, they provide a less complete point 
cloud. 
 
Finally, our system has the top LRF mounted horizontally and on a level that 
the environment is not occluded by the operator’s head. The shadow area of 
this LRF is pointed to the wall either to the left or right of the operator. We 
discovered that the other two LRFs should be scanning the surfaces parallel to 
the moving direction e.g., walls both right and left of the system. Also, we 
found out that these LRFs should be rotated not only about the shoulder axis 
( 𝑑𝑑𝑓𝑓), but at least one of them should also be rotated around the moving 
direction ( 𝑑𝑑𝑓𝑓) by an angle in the range of 30˚ to 40˚. Moreover, the results 
revealed that determining where the LRFs’ data gap is pointing at plays a 
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pivotal role in the completeness of the resulting point clouds. The best 
coverage among the tested configurations was achieved when the gap of one 
slanted LRF was aimed at the floor and the gap of other was aimed at the 
ceiling. 
 
3.8 Conclusions and Future Work 
We presented the design, calibration and registration methods, and 
performance analysis of a multi-sensor backpack indoor mobile mapping 
system (ITC- Backpack). We have proposed and presented several evaluation 
techniques for the investigation of the system’s ability to acquire geometric 
information of an interior environment. Evaluations can also be performed 
when there is no ground truth model or only a floor plan available. If the floor 
plan is outdated, this will usually surface as a large error in the evaluation and 
can therefore be identified as outlier. The results on the Braunschweig data 
showed some differences in the width of some walls between the floor plan and 
the realised construction. Such changed walls can then be removed from the 
analysis. The proposed evaluation methods are not limited to our mapping 
system. 
 
The experimental results showed the ability of ITC-Backpack to map an office 
building with an angle error within 1.5˚between its planar wall surfaces and 
the precision in generating the width of wall was around 1 cm. Although we did 
not consider the errors in the outdated floor plan, the point cloud-based map 
shows a good internal consistency.   
 
We have carried out an experimental comparison of selected configurations to 
find the best configuration by studying the properties of 3D planes and point 
clouds reconstructed with these configurations. The selection of the optimal 
sensor configuration was built in terms of data occlusion, the success of the 
algorithm, and the accuracy and completeness of the resulting map and point 
cloud. In order to see all walls around the system, we left the top LRF mounted 
horizontally in the optimal configuration for the backpack system and on a level 
that the environment cannot be occluded by the operator’s head. To achieve a 
good coverage of the surfaces both behind and in front of the system, it must 
be rotated around its axis to locate the shadow area on the wall either to the 
left or right of the operator. The other two LRFs should be scanning the surfaces 
parallel to the moving direction. Also, they should be rotated not only about 
the shoulder axis, but at least one of them should also be rotated about the 
moving direction by an angle in the range of 30˚ to 40˚. The gap in the sensor's 
field of view of one should be pointed at the floor, while the gap of other should 
be pointed at the ceiling. In this way, the system achieves improved coverage 
of the environment and ensures a good data association when passing through 



Design, Calibration, and Evaluation of a Backpack Indoor Mobile Mapping System 

50 
 

doors and corners, and thus has a robust estimation of the plane and pose 
parameters. 
 
Nevertheless, the analysis of the system’s performance may be slightly 
different in another indoor environment with much larger or smaller spaces. 
For such environments we would then need to repeat the configuration 
optimization experiments presented in Section 3.7, but we do not expect this 
will be necessary for many buildings. 
 
In the near future, we plan to expand the scope of application of the current 
system and SLAM algorithm to include more complex situations such as 
staircases and fancy architecture (e.g., slanted walls, round walls, non-
horizontal floor). To do that, we will integrate IMU data in the local pose 
estimation and as a consequence we can use higher order splines to predict 
future poses. We anticipate that this integration will lead to a better hypothesis 
generation of planar structures and an optimal estimation for the whole 
trajectory. 
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Chapter 4 - Integrating a Low-Cost MEMS IMU 
Into a LIDAR SLAM for Indoor Mobile Mapping 
* 
 

 
1

  

 
* This chapter is based on: 
 

Karam, S., Lehtola, V., Vosselman, G., 2019b. Integrating a low-cost 
MEMS IMU into a laser-based SLAM for indoor mobile mapping. The 
International Archives of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences: 6th International Workshop LowCost 3D 
– Sensors, Algorithms, Applications. editor / P. Grussenmeyer ; A. 
Murtiyoso ; H. Macher ; R. Assi. Vol. XLII-2/W17 Strasbourg: 
International Society for Photogrammetry and Remote Sensing 
(ISPRS). pp. 149-156. 
 

Notes: 
1. Sections 4.3.1-4.3.3 can be skipped if you read Chapter 3. 
2. Due to the overlap with Chapter 5, the introduction and related work 

sections can be skipped in this chapter and read in Chapter 5. 
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Abstract 
Indoor mapping techniques are highly important in many applications, such as 
human navigation and indoor modelling. As satellite positioning systems do not 
work in indoor applications, several alternative navigational sensors and 
methods have been used to provide accurate indoor positioning for mapping 
purposes, such as inertial measurement units (IMUs) and simultaneous 
localisation and mapping algorithms (SLAM). In this chapter, we investigate 
the benefits that the integration of a low-cost microelectromechanical system 
(MEMS) IMU can bring to a feature-based SLAM algorithm. Specifically, we 
utilize IMU data to predict the pose of our backpack indoor mobile mapping 
system to improve the SLAM algorithm. The experimental results show that 
using the proposed IMU integration method leads into a more robust data 
association between the measured points and the model planes.  Notably, the 
number of points that are assigned to the model planes is increased, and the 
root mean square error (RMSE) of the residuals, i.e., distances between these 
measured points and the model planes, is decreased significantly from 1.8 cm 
to 1.3 cm. 
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4.1 Introduction 
There is a need for indoor mapping in many important applications, such as 
the mapping of hazardous sites, indoor navigation, disaster management, 
location-based services, and virtual reality displays. Since digital maps of 
public buildings (airports, hospitals, train stations, and so forth) are a 
prerequisite for navigating their interiors, there is a trend towards the 
development of geospatial indoor applications (Norris, 2013). In order to avoid 
the time-consuming and intense efforts that static mapping systems require to 
map building interiors, there has been increasing interest in indoor mobile 
mapping systems in recent years (Lehtola et al., 2017). As GNSS-based 
systems do not work indoors, several alternative navigational methods and 
sensors have been used to provide accurate indoor positioning for mapping 
purposes, such as simultaneous localisation and mapping algorithms (SLAMs) 
and inertial measurement units (IMUs). The essential solution methods and 
computational complexity of the SLAM problem are described by Durrant-
Whyte and Bailey (2006a, 2006b).  
 
SLAM has become a key technology in indoor mapping applications, and a wide 
variety of different SLAM algorithms have been proposed. These algorithms are 
based on data from cameras (Henry et al., 2014), laser scanners like 
HectorSLAM (Kohlbrecher et al., 2011) and Gmapping (Grisetti et al., 2007), 
(Lehtola et al., 2016; Wen et al., 2016)) or both (Liu et al., 2010; Naikal et 
al., 2009). Surveys, as conducted by Maximov (2013), have shown that the 
integration of multiple sources of navigational information improves the 
accuracy of a navigation system. IMUs are one of the most commonly used 
navigational data sources in attitude (Hyyti et al., 2015; Makni et al., 2014) 
and pose estimation methods (Feliz et al., 2009). In addition to being relatively 
inexpensive, the MEMS-based IMUs are relatively small in size, lightweight, 
and low in power consumption; as such, they are widely integrated into indoor 
navigation systems. For example, an IMU is fused with a Hokuyo scanner on 
unmanned aerial vehicles (UAVs) (Kumar et al., 2017) and with a Velodyne 
scanner and panorama camera on backpack platforms (Blaser et al., 2019).  
 
Many works have integrated visual and inertial sensors within indoor SLAM 
algorithms (Chow et al., 2014; Concha et al., 2016; García et al., 2016; 
Leutenegger et al., 2015; Wang et al., 2018). However, the camera-based 
SLAM algorithms fail in textureless or repetitive environments because those 
algorithms search for similar features in consecutive images. Moreover, the 
light conditions in indoor environments are sometimes not good enough for 
capturing high-quality images.  
 
In our previous work (Karam et al., 2019), we built our feature-based SLAM 
algorithm based on three Hokuyo laser scanners. In this chapter, we 
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investigate the benefits obtained from integrating a low-cost 
microelectromechanical system (MEMS) IMU into this SLAM. Our effort is 
characterized by that we try to keep our system as inexpensive as possible by 
using less expensive LIDAR sensors with the low-cost IMU. All the involved 
sensors are mounted on a backpack platform, which provides more freedom 
than UAVs in terms of the weight of the mounted components. 
 
An IMU has strengths and weaknesses. Using only the IMU to navigate, the so-
called dead reckoning leads to the drift of the predicted position from the 
physical one due to biases in the sensor observations (Jimenez et al., 2010). 
The IMU can provide reliable estimations of positions and attitudes for a short 
while, but its reliability decreases over time. In this work, we seek to exploit 
the strength of the IMU in measuring short-term pose changes and improving 
the pose prediction, thereby improving the data association robustness of the 
SLAM method. 
 
The remainder of this chapter is organized as follows: Section 4.2 presents the 
related works. Section 4.3 describes our backpack mapping system and the 
LIDAR SLAM algorithm. Then we elaborate the strategy used in the IMU-SLAM 
integration. In Section 4.4, we provide a brief overview of the datasets used 
to investigate this mapping technique. The analysis of the IMU performance is 
presented in Section 4.5. Section 4.6 discusses the results obtained from 
integrating the IMU with the LIDAR SLAM. Finally, Section 4.7 presents 
conclusions. 
 
4.2 Related Work 
IMUs are widely used in indoor navigation and mapping systems. In addition 
to the works mentioned in the introduction, there are some specific ones that 
are closely related. For instance, an IMU is combined with one Hokuyo scanner 
and utilized for position estimation in 3D hand-held laser scanning system—
ZEB-REVO1—evolved by GeoSLAM company. Blaser et al. (2019) incorporated 
MEMS IMU with two Velodyne VLP-16 laser scanners and one panorama camera 
in a portable mobile mapping system. The fusion of IMU and scanners in their 
SLAM is exploited to orient the camera in indoor environments. The Leica 
Pegasus backpack2 system also integrates a dual Velodyne VLP-16 scanner 
with a high precision IMU for indoor mapping. In addition, Lauterbach et al. 
(2015) presented a backpack mapping system equipped with 2D (SICK LMS 
100) and 3D (Riegl VZ-400) laser scanners, and an IMU (Phidgets 1044). Two 
SLAM algorithms (3DOF HectorSLAM and 6DOF semi-rigid SLAM) execute 
successively, with the output of one being the input of the other. The first one, 

 
1 www.geoslam.com 
2 www.leica-geosystems.com 

http://www.geoslam.com/
http://www.leica-geosystems.com/
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HectorSLAM, uses the data of SICK scanner and an IMU for initial trajectory 
estimation. The semi-rigid SLAM exploits this initial pose estimation to align 
point clouds captured by the 3D scanner. The integration of IMU data can also 
be utilised to increase the degrees of freedom (DOF) of a mobile system. For 
instance, Wen et al. (2016) extended a horizontal laser-based 2D SLAM using 
rotations captured by an IMU to obtain a 3D (6DOF) pose and improve the 
accuracy of the 3D map. Recently, Velas et al. (2019) proposed another mobile 
backpack solution that combines a pair of Velodyne scanners with IMU and 
satellite positioning. This makes the system capable to work outdoors as well. 
The IMU is utilized in indoor applications to align the horizontal planes, such as 
floor and ceiling, with the XY plane in the 3D model. 
 
4.3 LIDAR SLAM And IMU Integration 
In the following section, we first describe our mobile mapping system and the 
employed LIDAR SLAM algorithm. Then we introduce the methodology used to 
integrate IMU with SLAM. 
 
4.3.1 System Components 
Our backpack indoor mobile mapping system consists of three time-of-flight 
(TOF) scanners (Hokuyo UTM-30LX) and one Xsens MEMS IMU. The top 
scanner is horizontally positioned and mounted on the top of the backpack 
system, while the other two scanners are tilted and mounted to the right and 
left of the top one, as shown in Figure 4.1. The IMU is horizontally positioned 
and mounted underneath the top scanner. A laptop running Ubuntu 16.04.X 
and the robot operation system (ROS) is used to communicate with all the 
mounted sensors and visualize the captured data over time. 
 
4.3.2 Coordinate Systems and Registration Process 
Figure 4.1 shows the various coordinate systems in our backpack mapping 
system. In order to accurately fuse data from multiple sensors, their individual 
coordinate systems must be transformed into a unified coordinate system 
called the frame coordinate system (f). We adopt the coordinate system of the 
top scanner as the frame coordinate system. As described in our previous work 
(Karam et al., 2019), the two tilted scanners are registered in this frame 
coordinate system. For the relative rotation of the IMU with respect to the 
frame coordinate system, the z-axes of both the IMU and frame are assumed 
to be aligned by design. For full alignment, the IMU sensor system (s) need to 
be rotated around the z-axis through a 90˚ angle in a clockwise direction (𝑅𝑅𝑠𝑠

𝑓𝑓).  
 
As the frame system is constantly moving, we need to define a fixed coordinate 
system in which the final 3D model will be defined. Our fixed model system 
(m) is established from the first scans of the three scanners, as described by 
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Vosselman (2014). The moving frame system is registered in this model 
coordinate system over time 𝑡𝑡 using six transformation parameters, namely, 
three rotation parameters (𝜔𝜔𝑓𝑓t

𝑚𝑚, 𝜑𝜑𝑓𝑓t
𝑚𝑚, 𝜅𝜅𝑓𝑓t

𝑚𝑚) form the rotation matrix 𝑅𝑅𝑓𝑓𝑡𝑡
𝑚𝑚 and three 

translation parameters (𝑑𝑑𝑓𝑓t
𝑚𝑚, 𝑑𝑑𝑓𝑓𝑡𝑡

𝑚𝑚, 𝑑𝑑𝑓𝑓t
𝑚𝑚) form the translation vector 𝑇𝑇𝑓𝑓𝑡𝑡

𝑚𝑚. These 
transformation parameters are estimated within the LIDAR SLAM. 
 

 
Figure 4.1. The backpack system with coordinate systems plotted for all four mounted sensors: the 
three scanners S0, S1, and S2, and the Xsens IMU (below S0). 

 
4.3.3 LIDAR SLAM 
LIDAR SLAM is a feature-based SLAM with 6DOF, three position (𝑇𝑇𝑓𝑓𝑡𝑡

𝑚𝑚) and three 
attitude (𝑅𝑅𝑓𝑓𝑡𝑡

𝑚𝑚) parameters. As the scanning frequency of the Hokuyo model used 
is 40 HZ, each scanner records one scanline within a local time window of 25 
ms. Our SLAM senses planar features, horizontal and vertical, in the mapped 
environment through the linear segments that are detected in the single 
scanlines. We model the frame pose parameters as a function of time using B-
splines and define each plane by its normal vector and distance to the origin 
in the model coordinate system. 
 
The solution of SLAM goes through two consecutive laser-based estimation 
processes, a local pose spline estimation involving the data captured during 
only 75-100 ms, and a global adjustment. The methods are explained in detail 
in Karam et al. (2019). In this chapter, we focus on the local spline estimation 
process in which the pose is predicted and the data association is tested. This 
estimation is based on the laser observations of only three to four scanlines 
from each of the scanners. The algorithm tries to establish the association 
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between the linear segments in the three newly captured scanlines within the 
local window and the previously reconstructed planes. This test is based on the 
predicted pose resulting from a linear extrapolation of the locally estimated 
splines. It uses a distance threshold to decide whether a segment should be 
associated with a previously reconstructed plane or whether a new 
horizontal/vertical plane needs to be instantiated. When the whole dataset is 
processed locally, the SLAM runs a final adjustment process that estimates not 
only the trajectory parameters but also the parameters of all the reconstructed 
planes in the model coordinate system. 
 
4.3.4 IMU-based Pose Prediction 
Here, we consider an Xsens MEMS IMU that is a combination of three-axial 
accelerometers used to measure dynamic acceleration and gravity and three-
axial gyroscopes used to measure angular velocity. The accelerations and 
angular velocities are collected with a sampling frequency of 200 HZ; thus, 
there are few IMU measurements taken within each local window of one 
scanline. As an alternative to linear extrapolation, those measurements are 
utilized to provide a more reliable prediction of the system’s position and 
attitude, as described in the following subsections.  
 
We assume that the local window, for which we want to predict the pose, starts 
at 𝑡𝑡start and ends at 𝑡𝑡end. The IMU measurements are the angular velocities 
(�̇�𝜔𝑖𝑖𝑚𝑚𝑖𝑖

𝑠𝑠𝑡𝑡𝑖𝑖 ,  �̇�𝜑𝑖𝑖𝑚𝑚𝑖𝑖
𝑠𝑠𝑡𝑡𝑖𝑖 , �̇�𝜅𝑖𝑖𝑚𝑚𝑖𝑖

𝑠𝑠𝑡𝑡𝑖𝑖 ) and accelerations (�̈�𝑑𝑖𝑖𝑚𝑚𝑖𝑖
𝑠𝑠𝑡𝑡𝑖𝑖 , �̈�𝑑𝑖𝑖𝑚𝑚𝑖𝑖

𝑠𝑠𝑡𝑡𝑖𝑖 , �̈�𝑑𝑖𝑖𝑚𝑚𝑖𝑖
𝑠𝑠𝑡𝑡𝑖𝑖 ) observed at time 𝑡𝑡𝑖𝑖 in the 

IMU sensor system(s), where 𝑖𝑖 =1, 2, … ,n. We select 𝑡𝑡1 as the timestamp of 
the last IMU measurement before 𝑡𝑡start and 𝑡𝑡𝑛𝑛 as the timestamp of the first IMU 
measurement after 𝑡𝑡end. 
 
The following pose parameters are known at 𝑡𝑡1 from the SLAM estimation 
process that ran before: 
 
- The attitude parameters (𝜔𝜔𝑓𝑓𝑡𝑡1,slam

𝑚𝑚 , 𝜑𝜑𝑓𝑓𝑡𝑡1,slam

𝑚𝑚 , 𝜅𝜅𝑓𝑓𝑡𝑡1,slam

𝑚𝑚 ) form the rotation matrix 

𝑅𝑅𝑓𝑓𝑡𝑡1,slam

𝑚𝑚  from the frame coordinate system to the world coordinate system at 𝑡𝑡1. 

 

 𝑅𝑅𝑓𝑓𝑡𝑡1,slam
𝑚𝑚 = 𝑅𝑅1(𝜔𝜔𝑓𝑓𝑡𝑡1,slam

𝑚𝑚 )𝑅𝑅2(𝜑𝜑𝑓𝑓𝑡𝑡1,slam
𝑚𝑚 ) 𝑅𝑅3(𝜅𝜅𝑓𝑓𝑡𝑡1,slam

𝑚𝑚 ) (4.1) 

 
- The position parameters �𝑑𝑑𝑓𝑓𝑡𝑡1,slam

𝑚𝑚 , 𝑑𝑑𝑓𝑓𝑡𝑡1,slam

𝑚𝑚 , 𝑑𝑑𝑓𝑓𝑡𝑡1,slam

𝑚𝑚 � form the translation vector 
𝑇𝑇𝑓𝑓𝑡𝑡1,slam

𝑚𝑚  from the frame coordinate system to the world coordinate system at 𝑡𝑡1. 

                          
 𝑇𝑇𝑓𝑓𝑡𝑡1,slam

𝑚𝑚 = �𝑑𝑑𝑓𝑓𝑡𝑡1,slam
𝑚𝑚 , 𝑑𝑑𝑓𝑓𝑡𝑡1,slam

𝑚𝑚 , 𝑑𝑑𝑓𝑓𝑡𝑡1,slam
𝑚𝑚 �

𝑇𝑇
 (4.2) 
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-  The approximate velocity of the frame in the model coordinate system at 
time 𝑡𝑡1. 
 

        �̇�𝑇𝑓𝑓𝑡𝑡1,slam
𝑚𝑚 = ��̇�𝑑𝑓𝑓𝑡𝑡1,slam

𝑚𝑚 , �̇�𝑑𝑓𝑓𝑡𝑡1,slam
𝑚𝑚 , �̇�𝑑𝑓𝑓𝑡𝑡1,slam

𝑚𝑚 �
𝑇𝑇
         (4.3) 

                   
 
4.3.4.1 Attitude 
The three attitude parameters can be determined by integrating time with the 
angular velocity. Since the IMU observes angular velocities in the IMU sensor 
system (s), they need to be rotated to the frame coordinate system (f) with 
the time-independent rotation matrix 𝑅𝑅𝑠𝑠

𝑓𝑓. 
 

 

⎝

⎜
⎛
�̇�𝜔𝑖𝑖𝑚𝑚𝑖𝑖
𝑓𝑓𝑡𝑡𝑖𝑖

�̇�𝜑𝑖𝑖𝑚𝑚𝑖𝑖
𝑓𝑓𝑡𝑡𝑖𝑖

�̇�𝜅𝑖𝑖𝑚𝑚𝑖𝑖
𝑓𝑓𝑡𝑡𝑖𝑖

⎠

⎟
⎞

= 𝑅𝑅𝑠𝑠
𝑓𝑓

⎝

⎜
⎛
�̇�𝜔𝑖𝑖𝑚𝑚𝑖𝑖
𝑠𝑠𝑡𝑡𝑖𝑖

�̇�𝜑𝑖𝑖𝑚𝑚𝑖𝑖
𝑠𝑠𝑡𝑡𝑖𝑖

�̇�𝜅𝑖𝑖𝑚𝑚𝑖𝑖
𝑠𝑠𝑡𝑡𝑖𝑖

⎠

⎟
⎞

 (4.4) 

 
 

We obtain the incremental angles of the frame rotation from 𝑡𝑡𝑖𝑖 to 𝑡𝑡𝑖𝑖+1. If we 
multiply the angular velocities in the frame coordinate system by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖, 
we arrive at: 
 

 𝑅𝑅𝑓𝑓𝑡𝑡𝑖𝑖
𝑓𝑓𝑡𝑡𝑖𝑖+1 = 𝑅𝑅1 ��̇�𝜔𝑖𝑖𝑚𝑚𝑖𝑖

𝑓𝑓𝑡𝑡𝑖𝑖 Δ𝑡𝑡� 𝑅𝑅2 ��̇�𝜑𝑖𝑖𝑚𝑚𝑖𝑖
𝑓𝑓𝑡𝑡𝑖𝑖 Δ𝑡𝑡� 𝑅𝑅3 ��̇�𝜅𝑖𝑖𝑚𝑚𝑖𝑖

𝑓𝑓𝑡𝑡𝑖𝑖 Δ𝑡𝑡� (4.5) 

 
Then, the rotation matrix 𝑅𝑅𝑓𝑓𝑡𝑡𝑖𝑖+1

𝑚𝑚 from the frame coordinate system to the model 

coordinate system at 𝑡𝑡𝑖𝑖+1 can be computed as follows: 
 

 𝑅𝑅𝑓𝑓𝑡𝑡𝑖𝑖+1
𝑚𝑚 = 𝑅𝑅𝑓𝑓𝑡𝑡𝑖𝑖

𝑚𝑚 (𝑅𝑅𝑓𝑓𝑡𝑡𝑖𝑖
𝑓𝑓𝑡𝑡𝑖𝑖+1)𝑇𝑇 (4.6) 

 
where 𝑅𝑅𝑓𝑓𝑡𝑡𝑖𝑖

𝑚𝑚= 𝑅𝑅𝑓𝑓𝑡𝑡1,slam

𝑚𝑚 , if 𝑖𝑖 = 1,  and 𝑅𝑅𝑓𝑓𝑡𝑡𝑖𝑖
𝑚𝑚= 𝑅𝑅𝑓𝑓𝑡𝑡𝑖𝑖−1

𝑚𝑚 otherwise. 

 
From the resulting rotation matrix 𝑅𝑅𝑓𝑓𝑡𝑡𝑖𝑖+1

𝑚𝑚 , we can infer the predicted attitude 

parameters (rotation angles) at 𝑡𝑡𝑖𝑖+1, 𝜔𝜔𝑓𝑓𝑡𝑡i+1
𝑚𝑚 , 𝜑𝜑𝑓𝑓𝑡𝑡𝑖𝑖+1

𝑚𝑚 , 𝜅𝜅𝑓𝑓𝑡𝑡𝑖𝑖+1
𝑚𝑚 . 

 
4.3.4.2 Position 
The three position parameters can be derived via the double integration of the 
acceleration. The IMU also observes accelerations in its sensor system and can 
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be rotated to the model coordinate system using the 𝑅𝑅𝑠𝑠
𝑓𝑓 and 𝑅𝑅𝑓𝑓𝑡𝑡𝑖𝑖

𝑚𝑚 predicted above 

as follows: 
 

 �
�̈�𝑑𝑖𝑖𝑚𝑚𝑖𝑖_𝑡𝑡𝑖𝑖
𝑚𝑚

�̈�𝑑𝑖𝑖𝑚𝑚𝑖𝑖_𝑡𝑡𝑖𝑖
𝑚𝑚

�̈�𝑑𝑖𝑖𝑚𝑚𝑖𝑖_𝑡𝑡𝑖𝑖
𝑚𝑚

� = 𝑅𝑅𝑓𝑓𝑡𝑡𝑖𝑖
𝑚𝑚  𝑅𝑅𝑠𝑠

𝑓𝑓

⎝

⎜
⎛
�̈�𝑑𝑖𝑖𝑚𝑚𝑖𝑖
𝑠𝑠𝑡𝑡𝑖𝑖

�̈�𝑑𝑖𝑖𝑚𝑚𝑖𝑖
𝑠𝑠𝑡𝑡𝑖𝑖

�̈�𝑑𝑖𝑖𝑚𝑚𝑖𝑖
𝑠𝑠𝑡𝑡𝑖𝑖

⎠

⎟
⎞

 (4.7) 

 
As the accelerations are now resolved in the model system where the z-axis is 
assumed to be vertical, we subtract the average gravity (𝑔𝑔) from the 
acceleration along this axis. 
 

 �̈�𝑇𝑖𝑖𝑚𝑚𝑖𝑖_𝑡𝑡𝑖𝑖
𝑚𝑚 = �

�̈�𝑑𝑖𝑖𝑚𝑚𝑖𝑖_𝑡𝑡𝑖𝑖
𝑚𝑚

�̈�𝑑𝑖𝑖𝑚𝑚𝑖𝑖_𝑡𝑡𝑖𝑖
𝑚𝑚

�̈�𝑑𝑖𝑖𝑚𝑚𝑖𝑖_𝑡𝑡𝑖𝑖
𝑚𝑚 − 𝑔𝑔

� (4.8) 

 
 
Using these accelerations and the known frame position and velocity at 𝑡𝑡𝑖𝑖, we 
can obtain the frame position and velocity at 𝑡𝑡𝑖𝑖+1 as follows: 
 

 𝑇𝑇𝑓𝑓𝑡𝑡𝑖𝑖+1
𝑚𝑚 =  𝑇𝑇𝑓𝑓𝑡𝑡𝑖𝑖

𝑚𝑚 + Δ𝑡𝑡  �̇�𝑇𝑓𝑓𝑡𝑡𝑖𝑖
𝑚𝑚 +

1
2
Δ𝑡𝑡2 �̈�𝑇𝑖𝑖𝑚𝑚𝑖𝑖_𝑡𝑡𝑖𝑖

𝑚𝑚  (4.9) 

 
 �̇�𝑇𝑓𝑓𝑡𝑡𝑖𝑖+1

𝑚𝑚 =   �̇�𝑇𝑓𝑓𝑡𝑡𝑖𝑖
𝑚𝑚 + Δ𝑡𝑡  �̈�𝑇𝑖𝑖𝑚𝑚𝑖𝑖_𝑡𝑡𝑖𝑖

𝑚𝑚  (4.10) 

 
 
where �̇�𝑇𝑓𝑓𝑡𝑡𝑖𝑖

𝑚𝑚= �̇�𝑇𝑓𝑓𝑡𝑡1,slam

𝑚𝑚  and 𝑇𝑇𝑓𝑓𝑡𝑡𝑖𝑖
𝑚𝑚 = 𝑇𝑇𝑓𝑓𝑡𝑡1,slam

𝑚𝑚 , if 𝑖𝑖 = 1, and �̇�𝑇𝑓𝑓𝑡𝑡𝑖𝑖
𝑚𝑚= �̇�𝑇𝑓𝑓𝑡𝑡𝑖𝑖−1

𝑚𝑚  and 𝑇𝑇𝑓𝑓𝑡𝑡𝑖𝑖
𝑚𝑚 =

𝑇𝑇𝑓𝑓𝑡𝑡𝑖𝑖−1
𝑚𝑚 otherwise. 

 
4.3.5 SLAM and IMU Integration 
The IMU fusion with the SLAM system is based mainly on the replacement of 
linear extrapolation by the IMU-based prediction, Eq. (4.6) and Eq. (4.10), to 
test the data association within the local window. Here, we fit cubic splines 
through all the predicted poses (six cubic splines for six pose parameters) and 
used these splines to test the data association. 
 
4.4 Datasets 
Two datasets were captured with the backpack mapping system and used in 
this work. The first dataset is collected in a cube-shaped room with some 
bending movements. Specifically, the operator first stands inside a room with 
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planar and vertical structures, which represents an optimal environment for 
our SLAM. Then the operator starts recording data with the scanners and IMU 
while bending forward and sideward (right and left), then rotating 90˚ to 
perform these bends again. The operator continues the rotation and bending 
steps until he or she is back at the starting orientation. The dataset collected 
in this manner is then utilized for IMU data analysis, as described in Section 
4.5.1. 
 
The second dataset was acquired at the University of Braunschweig, Germany. 
The scanned floor shows a distinct office environment. It is the main dataset 
used in this study and was utilized to investigate the IMU prediction in 
comparison with linear extrapolation and show the benefits of the IMU-SLAM 
integration, as described in Sections 4.5.2 and 4.6. 
 
4.5 Analysis of IMU Performance 
4.5.1 IMU Data Analysis 
In order to analyse the IMU data, we check the consistency of the IMU angular 
velocity with the first-order derivatives of the rotation splines estimated by the 
LIDAR SLAM. We run the SLAM on the first dataset because we have large 
changes in rotation around all three axes, and we want to check if the 
approximate values of rotational rates estimated by SLAM show the same 
pattern as the rotational rates measured by the IMU. The angular velocities 
(�̇�𝜔𝑖𝑖𝑚𝑚𝑖𝑖

s ,  �̇�𝜑𝑖𝑖𝑚𝑚𝑖𝑖s , �̇�𝜅𝑖𝑖𝑚𝑚𝑖𝑖s ) measured by the IMU are observed around the axes of the 
IMU sensor. What we need are the partial derivatives of the rotation angles 
(splines) estimated by SLAM and used to rotate between the model and the 
frame coordinate system, i.e., �̇�𝜔𝑓𝑓,𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚

𝑚𝑚 , �̇�𝜑f,slam𝑚𝑚 , �̇�𝜅𝑓𝑓,𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚
𝑚𝑚 . To determine the 

relationship with the observed angular velocities, we first need to define the 
order and direction of rotation exactly. So far, we have defined 𝑅𝑅f𝑚𝑚 using Eq. 
(4.1); hence, the rotation from the model coordinate system to the frame 
coordinate system 𝑅𝑅𝑚𝑚f  can be defined as: 
 

 𝑅𝑅𝑚𝑚f = (𝑅𝑅f𝑚𝑚)𝑇𝑇 = 𝑅𝑅3�𝜅𝜅𝑓𝑓,𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚
𝑚𝑚 �𝑇𝑇𝑅𝑅2�𝜑𝜑𝑓𝑓,𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚

𝑚𝑚 �𝑇𝑇𝑅𝑅1�ω𝑓𝑓,𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚
𝑚𝑚 �𝑇𝑇 (4.11) 

 
Once the model coordinate system is aligned with the frame coordinate system, 

we can apply the time-independent rotation 𝑅𝑅𝑓𝑓𝑆𝑆 = �𝑅𝑅𝑠𝑠
𝑓𝑓�

𝑇𝑇
 from the frame to the 

IMU sensor coordinate system. Here, the entire rotation from the model 
coordinate system to the IMU sensor coordinate system will be: 
 

 𝑅𝑅𝑚𝑚𝑠𝑠 = 𝑅𝑅𝑓𝑓𝑆𝑆𝑅𝑅𝑚𝑚
𝑓𝑓  (4.12) 
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As κ is the first rotation applied when rotating from the frame to the model 
coordinate system, we do not have to rotate the �̇�𝜅𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚  from the model to the 
frame.  
 
The measured angular velocity  �̇�𝜑𝑖𝑖𝑚𝑚𝑖𝑖s  around the y-axis does not correspond 
directly to the first derivative of 𝜑𝜑𝑓𝑓,𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚

𝑚𝑚  when just rotating (𝑅𝑅𝑓𝑓𝑆𝑆) from the frame 
to the IMU sensor coordinate system because the y-axis has already been 
rotated by −𝜅𝜅𝑓𝑓,𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚

𝑚𝑚  around the z-axis prior to measuring  �̇�𝜑𝑖𝑖𝑚𝑚𝑖𝑖s  in the IMU sensor 
coordinate system. Hence, the derivative of 𝜑𝜑𝑓𝑓,𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚

𝑚𝑚  should also be rotated to 
the frame coordinate system. Similarly, the derivative of 𝜔𝜔𝑓𝑓,𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚

𝑚𝑚  needs to be 
rotated by −𝜑𝜑𝑓𝑓,𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚

𝑚𝑚  around the y-axis and −𝜅𝜅𝑓𝑓,𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚
𝑚𝑚  around the z-axis to obtain 

an angular velocity vector in the frame coordinate system. So, all the rotated 
angular velocity vectors together determine the angular rotation velocities that 
are measured in the frame coordinate system. Hence, after rotating from the 
frame to the IMU coordinate system, we obtain the angular velocities as 
derived by the SLAM in the IMU coordinate system as 
 

�
�̇�𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚
𝑆𝑆

�̇�𝜑𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑆𝑆

�̇�𝜅𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑆𝑆
� = 𝑅𝑅𝑓𝑓𝑆𝑆 �

0
0

�̇�𝜅𝑓𝑓,𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚
𝑚𝑚

� + 

 

𝑅𝑅𝑓𝑓𝑆𝑆𝑅𝑅3�𝜅𝜅𝑓𝑓,𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚
𝑚𝑚 �𝑇𝑇 �

0
�̇�𝜑f,slam𝑚𝑚

0
�𝑅𝑅𝑓𝑓𝑆𝑆𝑅𝑅3�𝜅𝜅𝑓𝑓,𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚
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These angular velocities should be comparable to those measured by the IMU. 
To verify this, the angular velocities (�̇�𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚

s ,  �̇�𝜑𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚s , �̇�𝜅𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚s ) are plotted against 
(�̇�𝜔𝑖𝑖𝑚𝑚𝑖𝑖

s ,  �̇�𝜑𝑖𝑖𝑚𝑚𝑖𝑖s , �̇�𝜅𝑖𝑖𝑚𝑚𝑖𝑖s ) and the differences are computed. Figure 4.2 shows �̇�𝜑𝑓𝑓,𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚
𝑆𝑆  

plotted against �̇�𝜑𝑖𝑖𝑚𝑚𝑖𝑖𝑆𝑆 .  After the burn-off period of 0.2 s, the results are 
promising because both the IMU- and SLAM- based angular velocities exhibit 
the same patterns. The differences between the IMU and SLAM angular 
velocities along all axes are mostly within ±0.05ᵒ-0.1ᵒ/s. 
 

(4.13) 



Integrating a Low-Cost MEMS IMU Into a LIDAR SLAM for Indoor Mobile Mapping 

62 
 

 
Figure 4.2. An example plot for testing the IMU integration. The angular velocities measured by 
the IMU along the y-axis are plotted against the first-order derivatives of the rotation y-splines 
estimated by the LIDAR SLAM. Similar tests were done for all axes of the gyroscope. 

 
4.5.2 IMU Prediction Analysis 
We run the LIDAR SLAM on the second dataset. As an initial analysis of the 
SLAM-IMU combined performance, we use the IMU data to predict the pose of 
the next scan (𝑃𝑃𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖𝑚𝑚𝑖𝑖 ) using the equations introduced in Section 4.3.4 and 
compare the resulting pose with the linearly predicted one (𝑃𝑃𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑛𝑛𝑝𝑝𝑠𝑠𝑟𝑟). As ground 
truth we use the poses (𝑃𝑃𝑝𝑝𝑠𝑠𝑡𝑡) obtained in the optimal global pose estimation of 
the SLAM procedure. Figure 4.3 shows that the predicted rotation angles 
around the X-axis (ω) and Z-axis (κ) by the IMU are closer to the ground truth 
angles than the linearly predicted ones. Table 4.1 lists the RMSE values 
computed using Eq. (4.14) for all the pose parameters, namely, the rotation 
angles (ω, ϕ, κ) and positions (X, Y, Z).  
 

 𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸𝑃𝑃𝑚𝑚𝑝𝑝𝑡𝑡ℎ = �
1
𝑁𝑁
��𝑃𝑃𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝_𝑖𝑖

𝑚𝑚𝑝𝑝𝑡𝑡ℎ − 𝑃𝑃𝑝𝑝𝑠𝑠𝑡𝑡_𝑖𝑖�
2

𝑁𝑁

𝑖𝑖=1

 (4.14) 

 
where P refers to one of the pose parameters {x, y, z, ω, φ, κ} , 𝑃𝑃𝑝𝑝𝑠𝑠𝑡𝑡 is the 
estimated pose parameter by the LIDAR SLAM.  The term “meth” refers to the 
prediction method, “imu” when we rely on IMU for pose prediction and “linear” 
otherwise. 
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Table 4.1. RMSE values of all the predicted pose parameters, rotation angles, and position 
coordinates. 

SLAM 
Rotation Angles 

RMSE (deg) Position RMSE (m) 

ω φ κ X Y Z 

With IMU 0.092 0.106 0.100 0.0054 0.0033 0.0031 

Without IMU 0.166 0.160 0.231 0.0054 0.0032 0.0032 
 
 
The RMSE results indicate that the IMU prediction of orientation is about two 
times more accurate than the linear prediction. As the operator walking speed 
is usually less than 1.4 m/s, the expected translation between two scanlines 
(within 25 ms) is about 3 cm. Thus, the fractions of millimetres improvement 
in position prediction is irrelevant for data association. The most crucial issue 
is the orientation prediction, because the operator can make a large change in 
orientation within 25 ms or an even shorter time span. Moreover, a small error 
in the orientation prediction can have serious effects on the data association 
quality. As a simple example, if there is a point at a distance of 10 m from the 
system, a linear prediction error of the angle κ of one sigma (0.231˚) would 
already result in a 4.0 cm lateral displacement of this point compared to a 1.7 
cm lateral displacement with the IMU prediction. 
 
 

4.6 Integration Results And Discussion 
In order to test the performance of the IMU-SLAM integration, the IMU 
prediction-based SLAM was run on the second dataset. The generated point 
cloud is shown in Figure 4.4. In order to evaluate the benefits of this 
integration, we compare the number of points assigned to the planes and the 
RMSE of the residuals in two cases: SLAM with and without IMU prediction 
(Table 4.2). In this chapter, SLAM without IMU refers to the linear prediction- 
based SLAM. The residuals are the distances of the points to the estimated 
planes. 
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       (a) 

 
      (b) 

Figure 4.3. Part of the rotation angles (ω, κ) trajectories. (a) for ω. (b) for κ. Each blue line connects 
the two estimated angles (ω, κ) at the start and end of one local window (≈ 25 ms). The dashed 
black and red lines are the IMU and linear predictions of angles (ω, κ), respectively. 
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Table 4.2. The number of assigned points and the corresponding RMSEs of the residuals. 

SLAM Without IMU With IMU 

Number of assigned points 24 527 978 24 562 619 

RMSE of the residuals (cm) 1.80 1.31 

 
The table shows that using the IMU data to predict the pose of the next scans 
slightly increases the number of points assigned to the planes. More 
importantly, the RMSE value of the points’ residuals with IMU prediction is quite 
a lot lower than that obtained via linear prediction, meaning that there are 
more correct associations when the IMU is used for pose prediction. 
 
In addition, histograms of the computed distances (residuals) between the 
assigned points and their corresponding reconstructed planes are generated in 
order to provide an overall impression of the data association quality in both 
cases. Each histogram is built with 0.01 m bins, as shown in Figure 4.5, 
demonstrating that approximately 13% of the residuals exceed 3 cm when the 
IMU is not used.  This percentage decreases to less than 4% when the IMU is 
utilized in pose prediction. 
 

 
Figure 4.4. A top view of the generated point cloud by SLAM with IMU. The colours indicate point 
associations to a particular plane. 
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Figure 4.5. Histograms of the points’ residuals in two cases, SLAM with and without IMU. 

Since the perpendicularity and parallelism characteristics are predominant in 
the second indoor environment we scanned, we utilize our evaluation method 
with architectural constraints (Karam et al., 2018) to evaluate the ability of our 
updated mapping system to capture the true geometry of its environment. The 
method is applied with same thresholds on the reconstructed planes by SLAM 
in two cases, with and without IMU. We compute the angles between the 
(perpendicular/parallel) reconstructed planes and derive the deviations of 
these angles from the corresponding expected value (90º / 0º). The computed 
deviations are called angles’ errors. The results of this evaluation process are 
summarized in Tables (4.3, 4.4). 
 
Table 4.3. Percentages of angles’ errors for parallelism and perpendicularity in two cases, SLAM 
with and without IMU. 

SLAM Errors range [0º 0.5º[ [0.5º 1º] >1º 

With IMU 
parallelism 66% 13% 21% 

perpendicularity 70% 23% 7% 

Without IMU 
parallelism 50% 12% 38% 

perpendicularity 58% 26% 16% 
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Table 4.4 RMSE of angles’ errors for parallelism and perpendicularity in two cases, SLAM with 
and without IMU 

SLAM Constraint RMSE 

With IMU 
parallelism 1.39º 

perpendicularity 0.66º 

Without IMU 
parallelism 1.76º 

perpendicularity 1.34º 

 

The results show that IMU-based prediction improves the reconstruction 
accuracy where the percentage of small angles’ errors (<0.5º) increases and 
the percentage of outliers (>1º) decreases.  
 
The level of improvements addressed above is linked directly to the IMU drift 
rate specifications. In other words, if the IMU performance is efficient, larger 
and more sudden rotations can be handled. Hence, we predict the orientation 
and translation of the system using available IMU data within a local window. 
In this study, the width of this local window is selected to cover the time 
interval of one scanline.  
 
In our previous work, we compensated for the low pose update frequency by 
using overly-relaxed data association thresholds (Karam et al., 2019). Now, 
with the IMU prediction, these thresholds can be tightened to create a more 
robust data association process. Consequently, the pose estimation and the 
output planar representation become more accurate.  
 
 
4.7 Conclusions and Future Work 
In this chapter, we presented an improvement of our LIDAR SLAM algorithm 
by integrating an IMU sensor. We show that even a low-cost IMU improves the 
accuracy of the predicted pose within SLAM. Furthermore, this improves also 
the robustness of the data association. 
 
In future work, we intend to deepen the IMU integration by including the IMU 
observations in the pose estimation equations. More observations might enable 
us to use cubic instead of linear splines and increase the robustness in the 
estimation process. Moreover, we plan to test how long we can rely on the IMU 
for prediction. Reliable IMU prediction for a wider local window could lead into 
a better hypothesis generation for the planar structures, thus this enabling the 
SLAM to work in a more complex environment (e.g., with slanted walls). 
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Chapter 5 - Strategies to Integrate IMU and 
LIDAR SLAM for Indoor Mapping * 
 
 
 
 
 
 
 
 
 

 
 
 
  1

 
* This chapter is based on: 
 

Karam, S., Lehtola, V., and Vosselman, G.: Strategies to integrate imu 
and lidar slam for indoor mapping, ISPRS Ann. Photogramm. Remote 
Sens. Spatial Inf. Sci., V-1-2020, 223–230 
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Abstract 
In recent years, the importance of indoor mapping increased in a wide range 
of applications, such as facility management and mapping hazardous sites. The 
essential technique behind indoor mapping is simultaneous localization and 
mapping (SLAM) because SLAM offers suitable positioning estimates in 
environments where satellite positioning is not available. State-of-the-art 
indoor mobile mapping systems employ Visual SLAM or LIDAR SLAM. However, 
Visual SLAM is sensitive to textureless environments and, similarly, LIDAR 
SLAM is sensitive to a number of pose configurations where the geometry of 
laser observations is not strong enough to reliably estimate the six-degree-of-
freedom (6DOF) pose of the system. In this chapter, we present different 
strategies that utilize the benefits of the inertial measurement unit (IMU) in 
the pose estimation and support LIDAR SLAM in overcoming these problems. 
The proposed strategies have been implemented and tested using different 
datasets and our experimental results demonstrate that the proposed methods 
do indeed overcome these problems. We conclude that IMU 
observations increase the robustness of SLAM, which is expected, but also that 
the best reconstruction accuracy is obtained not with a blind use of all 
observations but by filtering the measurements with a proposed reliability 
measure. To this end, our results show promising improvements in the 
reconstruction accuracy. 
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5.1 Introduction 
Indoor mapping is important for a wide range of applications, such as virtual 
tourism, facility management, interior design. Up-to-date 3D indoor maps of 
public buildings (hospitals, shopping malls, stations, airports, etc.) are also a 
prerequisite for navigation within these locales. Rapid advancements in light 
detection and ranging (LIDAR) technology, IMUs, optical instruments 
(cameras) have thus led to the development of many indoor mobile mapping 
systems (IMMSs). 
 
The state-of-the-art IMMS consists of a movable platform equipped with laser 
scanners, IMUs and/or cameras to capture the indoor environment. Based on 
the selected moving platform, the developed IMMSs can be grouped into 
pushcart-based systems, such as Viametris1 i-MMS and iMS3D trolleys, hand-
held systems such as ZEB1 and ZEB REVO (Bosse et al., 2012; GeoSLAM2) and 
backpack-based systems such as BIMAGE Backpack (Blaser et al., 2019) and 
Jafri et al. (2019). All these systems would solve SLAM algorithms for 
positioning indoors. 
 
Unlike human-carried systems, pushcart-based systems do not have the ability 
to access whole interior areas, such as staircases. Thomson et al. (2013) have 
appraised the performance of ZEB1 and Viametris i-MMS by implementing two 
comparisons against a reference scan from the Faro Focus3D laser scanner. 
Through this, he found that ZEB1 is less compatible with the FARO cloud than 
i-MMS. Besides hardware, the software might also restrict the use of the IMMS. 
For example, Visual SLAM will fail in a textureless environment as it is based 
on matching similar features in consecutive images. 
 
Karam et al. (2019a) have presented a backpack mobile mapping system that 
solves planar feature-based SLAM to obtain 3D point clouds of indoor 
environments. The 6DOF pose estimates are constrained by spline functions 
that guarantee a level of smoothness for the trajectory. The system consists 
of three laser range finders (LRFs - Hokuyo UTM-30LX scanners with 30 m 
range) that contribute to the 6DOF pose estimation of the system, and Xsens 
MEMS IMU is used for pose prediction (Karam et al., 2019b). As shown in Figure 
5.1, the system is designed to have one scanner being horizontally positioned 
(S0), while the other two scanners are slanted and positioned to the right and 
left of the horizontal one. The IMU is then mounted under the horizontal 
scanner. The LIDAR SLAM is designed to map indoor environments with planar 
and vertical structures through the linear segments detected in the single 

 
1 www.viametris.com 
2 www.geoslam.com 
 

http://www.viametris.com/
http://www.geoslam.com/
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scanlines (Vosselman, 2014). Each laser point in a linear segment which is 
associated to a plane in the SLAM map forms an observation equation for the 
6DOF pose estimation. 
 

   
Figure 5.1. The used laptop and the current backpack system with four sensors mounted: three 
scanners S0, S1, and S2 and Xsens MEMS IMU (below S0) 

This backpack system does not have multi-line LIDARs and therefore is in need 
of IMU support. This is because it is sensitive to a greater number of pose 
configurations where the geometry of laser observations is not strong or 
sufficient enough to reliably estimate the 6DOF pose of the system. Regardless 
of this sensitivity, the problem itself is generic. Even with multi-line LIDARs, 
pathological pose configurations can easily be found (e.g long homogeneous 
hallways). Hence, this problem is present with all systems, motivating our 
research. 
 
Weighting the balance between the inertial (or motion) measurements and the 
optical measurements is one of the key questions in SLAM post-optimization 
(Thrun & Montemerlo, 2006). Although it is well-known that weighing should 
be done, the exact way on how to do it is situational and often depends on the 
design of the sensor system and the environment. To this end, we shall 
compare two sensor fusion strategies: one that fuses all the data without 
considering the reliability of that data, and one that employs a proposed 
reliability measure to detect individual erroneous poses. 
 
In this chapter, we set out to study the above-mentioned strategies for IMU-
SLAM integration. From Karam et al (2019b), it is obvious that the IMU can be 
used to guide the SLAM algorithm so that the algorithm avoids some pitfalls of 
problematic measurement geometry. In contrast to the ZEB1 (Bosse et al., 
2012) where the IMU is essential for the SLAM workability, the IMU plays a 
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supportive role in our SLAM. However, the big question is whether the IMU 
observations can be used also in the (final) pose estimation so that (1) 
pathological pose configurations are overcome and (2) the effect of IMU’s own 
drift to the pose estimates remains negligible. We answer to these very 
questions by proposing a combination of (1) a reliability measure for pose 
estimates derived from LIDAR observations and (2) coordinate and known-
velocity updates, which reset the IMU drift. This resetting technique does not 
require a specific data capture mode to eliminate the IMU drifts as it is the case 
with the well-known Zero Velocity Updates (ZUPTs) technique (Chow et al., 
2014).  
 
The remainder of this chapter is organized as follows: Section 5.2 presents the 
related works, while Section 5.3 describes our proposed strategies to integrate 
the IMU with LIDAR into SLAM after a short explanation of the IMU-less SLAM. 
In Section 5.4, we present results and discuss limitations of our approaches. 
The chapter ends with conclusions in Section 5.5. 
 
 
5.2 Related Work 
Studies show IMU integration to increase the robustness of SLAM regardless of 
the type of the optical sensor. Many works tend to use LIDAR SLAM algorithms 
that incorporate one or more scanners in the pose estimation. NavVis1, for 
example, provided several solutions to map indoors as a trolley-based mobile 
mapping system that consisted mainly of scanners, IMUs and cameras. 
GeoSLAM company evolved several versions of the hand-held ZEB-scanner 
such as ZEB-REVO, ZEB-REVO RT, and ZEB Horizon. Besides the trolley-based 
and hand-held systems, there are several backpack systems (Lehtola et al., 
2017). The Würzburg Backpack incorporates a 3D scanner (RIEGL VZ400), a 
2D scanner (SICK LMS100) and an IMU that was utilized in the initial trajectory 
estimation (Lauterbach et al., 2015). Their experimental results showed 
maximum error about 7º in orientation and 25 cm in positioning. Zhang et al. 
(2017) attached an IMU to a LIDAR system to estimate odometry in real-time. 
All their walking experiments show that this combination improves the 
accuracy of motion estimation (See Table 3 in Zhang et al., 2017). The MEMS 
IMU in BIMAGE system, a component that combines two Velodyne VLP-16 laser 
scanners and one panorama camera, was exploited to estimate the camera 
orientation (Blaser et al., 2019). They solved 3D LIDAR SLAM for the 
Cartographer that combines the laser and IMU data, and then applied an 
image-based georeferencing approach to improve the camera pose estimation. 
Chow et al. (2014) integrated a MEMS IMU in their stop-and-go mobile 
mapping system (Scannect) to support the vision-based localization in case 

 
1 www.navvis.com 

http://www.navvis.com/
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the scene lacks features to be matched. They captured the data in a stop-and-
go movement mode in order to utilize ZUPTs to eliminate the IMU drifts. 
 
5.3 IMU-SLAM Integration Strategies 
As the backpack system is a mobile and multi-sensor system, we defined two 
main coordinate systems. The frame system (f) which is constantly moving 
and the data of all sensors are registered in it. The model system (m) which is 
a fixed system and used to register the moving frame system over time. The 
final point clouds are defined in this system as well.   
 
In our planar feature-based SLAM, we modelled the frame 6DOF pose 
parameters (X, Y, Z, ω, ϕ, κ)  in the model coordinate system (m) as functions 
of time using splines, and the planes were modelled by the normal vector and 
distance to the origin. The coefficients of the pose splines and the plane 
parameters are estimated simultaneously (Karam et al., 2019a). Thus, the 
adjustment process within SLAM does not only estimate and update the pose 
parameters but also the planes, which goes through different stages, as listed 
below. Figure 5.2 illustrates these stages exemplary. The differences between 
these stages are the splines’ order, parameters to estimate, and the number 
of scans involved. 
 
 • Local adjustment: runs over a few successive scans captured during 0.1 s 
or slightly longer, and relies on the pose predicted by the IMU to check data 
association between the newly captured points and the previously 
reconstructed planes (Karam et al., 2019b). Each assigned point forms a laser 
observation equation and participates in the estimation of pose parameters 
that are modelled using linear splines. The laser observation equation is 
formulated based on the expectation that the distance between a point and its 
associated plane, i.e., plane that the point belongs to, equals zero. See 
Vosselman (2014) for details. The pose parameters are estimated and updated 
in this adjustment, while parameters of earlier instantiated planes are kept 
fixed. 
 
 • IMU-based prediction: runs at the beginning of each local adjustment to 
test the data association as mentioned above. Here, we utilized the strength 
of the IMU in short-term pose prediction and we predicted the pose within a 
time window that covers the time interval of one scan (25 ms). The IMU drifts 
are reset at the start time of each prediction window by using the position and 
the approximate velocity of the system estimated from the previous local 
adjustment at that time. Then, using the IMU data taken within this window, 
we predict the pose of the next scan (Karam et al., 2019b). 
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 • Section adjustment: is executed when a plane has been observed for 0.5 
s and runs over all successive scans that are captured in this period. The 
purpose of this adjustment is to improve the accuracy of the parameters of the 
plane instantiated 0.5 s ago. The increase in the number of laser observations 
enables us to use cubic splines instead of linear ones. The outputs of the local 
adjustment, including the estimated poses and instantiated planes, are inputs 
of this section adjustment as approximates. Consequently, the system poses, 
and planes states are estimated and updated in this stage. 
 
 • Global adjustment: combines all the captured scans in a final integral 
adjustment that provides an optimal estimate of all instantiated planes, along 
with a complete trajectory of the system. The pose splines resulting from this 
adjustment are used to reconstruct the final point cloud in the model 
coordinate system. 
 

 
Figure 5.2. An exemplary representation of the prediction and adjustment processes within SLAM. 

For the purpose of increasing the robustness of these adjustment processes 
against the aforementioned problematic areas, we developed the following 
three strategies for IMU-SLAM integration. They are comparable to Zhang et 
al. (2017) in terms of IMU integration purposes. In these strategies, the IMU 
participates not only in the pose prediction, but also in the pose estimation. 
 
5.3.1 IMU-SLAM Switching 
The principle of the IMU-SLAM switching strategy is based on a replacement of 
the local adjustment-based pose by the IMU-based pose prediction in case the 
local adjustment is considered unreliable. The replacement occurs when the 
local adjustment fails or when the geometry of the laser observations is 
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insufficient to estimate the pose. We decide whether or not to switch to the 
IMU-based estimate based on several indicators that measure the reliability of 
the SLAM-based estimate.  
 
The first indicator is the reciprocal condition number (rcond) of the normal 
matrix, which tells how close/far the normal matrix is to being singular. A very 
small rcond indicates that the normal matrix is close to being singular or badly 
scaled. Another indicator of a poor conditioned equation system is a high 
correlation between the estimated parameters. We determined the correlation 
matrix and check the maximum absolute value of all non-diagonal elements. 
If this value is approaching 1 for any pair of parameters, these parameters are 
highly correlated and it would, therefore, be hard to determine them 
separately. 
 
In addition, we added a well-known scan matching technique, iterative closest 
points (ICP), to the proposed method. This technique is commonly used as a 
pose estimation method to support SLAM by defining the relative 
transformation between successive scans (Lee et al., 2011). We utilized the 
strength and efficiency of 2D ICP in estimating the relative 2D transformation 
(X, Y, κ) when it matches two successive scans of the horizontally mounted 
scanner. As the time interval of one scan is 25 ms, a large rotation between 
two scans in this short period is not expected. However, we would not rely on 
the 3DOF ICP-based pose to move forward in SLAM. Rather, we are simply 
determining the differences in the estimated pose parameters (X, Y, k) 
between the ICP and local adjustment. A big difference would raise the 
suspicion that one of the two methods is wrong, and this is used as an indicator 
to switch to the IMU-based prediction. 
 
5.3.2 IMU-based Pose Estimation 
The difference with the switching technique is that we always use the IMU-
based pose prediction instead of the local adjustment-based pose, no matter 
whether the local adjustment seems reliable or not. The role of the local 
adjustment is limited to instantiate planes and for the checking of data 
association. 
 
5.3.3 IMU-SLAM Joint Estimation 
In this strategy, we deepen the SLAM-IMU integration by including the IMU 
observations in the 6DOF pose estimation besides the laser observations. Our 
Xsens MEMS IMU measures three-dimensional angular velocity and three-
dimensional dynamic acceleration over time. Some of our IMU specifications 
are listed in Table 5.1. Similar to Hussnain et al. (2018), we formulate six IMU 
observation equations at each timestamp, 𝑡𝑡, as described in the following 
subsections. 
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Table 5.1. Key specifications of the Xsens MEMS IMU 

SLAM Gyroscope Accelerometer 

Bias repeatability 0.2º/s 0.03 m/s2 

In-run bias stability 10º/h 40 μg  

 
5.3.3.1 Acceleration Observation Equations 
The IMU accelerometers observe the accelerations �̈�𝑇𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠  = (�̈�𝑑𝑖𝑖𝑚𝑚𝑖𝑖s , �̈�𝑑𝑖𝑖𝑚𝑚𝑖𝑖s , �̈�𝑑𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 ) in 
the sensor coordinate system (s) which needs to be rotated to the frame 
coordinate system (f) with the time-independent rotation matrix 𝑅𝑅𝑠𝑠

𝑓𝑓 = 𝑅𝑅𝑧𝑧(90). 
This will also need to be performed on the model system (m) with the time-
dependent rotation matrix 𝑅𝑅𝑓𝑓𝑚𝑚(𝜔𝜔,𝜑𝜑, 𝜅𝜅). Hence, 

 
 �̈�𝑇𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = 𝑅𝑅f𝑚𝑚 𝑅𝑅𝑠𝑠

𝑓𝑓  �̈�𝑇𝑖𝑖𝑚𝑚𝑖𝑖
𝑠𝑠  (5.1) 

 
As the resulting accelerations (�̈�𝑇𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 ) should correspond to the second-order 
derivative of the backpack’s location (�̈�𝑇𝑓𝑓𝑚𝑚) in the model system, the following 
observation equations are formulated: 
 

 �̈�𝑇𝑓𝑓𝑚𝑚 = 𝑅𝑅𝑓𝑓𝑚𝑚 𝑅𝑅𝑠𝑠
𝑓𝑓  �̈�𝑇𝑖𝑖𝑚𝑚𝑖𝑖

𝑠𝑠 − �
0
0
𝑔𝑔
� (5.2) 

  
where �̈�𝑇𝑓𝑓𝑚𝑚 = (�̈�𝑑𝑓𝑓m, �̈�𝑑𝑓𝑓m, �̈�𝑑𝑓𝑓𝑚𝑚). 
 
Since the z-axis in the model system is assumed to be vertical, we compensate 
for the effect of gravity in the accelerometer reading by subtracting the 
average gravitational acceleration (𝑔𝑔) from the acceleration along this axis. 
 
As the pose parameters are modelled using splines in the laser observation 
equations, we also modelled the accelerations using splines. Splines are 
polynomial functions and it is straightforward to derive the accelerations (�̈�𝑇𝑓𝑓𝑚𝑚) 
as the second-order derivatives of the translations (𝑇𝑇𝑓𝑓𝑚𝑚). For example, for the 
translation 𝑑𝑑 spline 𝑑𝑑(𝑡𝑡) = ∑ 𝛼𝛼𝑥𝑥,𝑖𝑖  𝐵𝐵𝑖𝑖(𝑡𝑡)𝑖𝑖 , the acceleration �̈�𝑑 spline becomes �̈�𝑑(𝑡𝑡) =
∑ 𝛼𝛼𝑥𝑥,𝑖𝑖  �̈�𝐵𝑖𝑖(𝑡𝑡)𝑖𝑖 ,  where 𝛼𝛼𝑥𝑥,𝑖𝑖 is the 𝑑𝑑 spline coefficient to be estimated on interval 𝑖𝑖. 
Hence, both the translations and accelerations are expressed in terms of the 
same to-be-determined spline coefficients. 
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By doing the same for the measured accelerations along other axes, we 
formulated the following linearized acceleration observation equations in which 
the upper index ˚ refers to the approximate values: 
 

 

�̈�𝑇𝑓𝑓𝑚𝑚
0 − 𝑅𝑅𝑓𝑓𝑚𝑚

0𝑅𝑅𝑠𝑠
𝑓𝑓  �̈�𝑇𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 + �

0
0
𝑔𝑔
�

= −

⎝

⎜
⎜
⎜
⎛
�Δ𝛼𝛼𝑥𝑥,𝑖𝑖  �̈�𝐵𝑖𝑖
𝑖𝑖

�Δ𝛼𝛼𝑦𝑦,𝑖𝑖  �̈�𝐵𝑖𝑖
𝑖𝑖

�Δ𝛼𝛼𝑧𝑧,𝑖𝑖  �̈�𝐵𝑖𝑖
𝑖𝑖 ⎠

⎟
⎟
⎟
⎞

+   
𝜕𝜕𝑅𝑅𝑓𝑓𝑚𝑚

0

𝜕𝜕𝜔𝜔
𝑅𝑅𝑠𝑠
𝑓𝑓  �̈�𝑇𝑖𝑖𝑚𝑚𝑖𝑖

𝑠𝑠 �Δ𝛼𝛼𝜔𝜔,𝑖𝑖  𝐵𝐵𝑖𝑖
𝑖𝑖

                                   

+    
𝜕𝜕𝑅𝑅𝑓𝑓𝑚𝑚

0

𝜕𝜕𝜑𝜑
𝑅𝑅𝑠𝑠
𝑓𝑓  �̈�𝑇𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 �Δ𝛼𝛼𝜑𝜑,𝑖𝑖  𝐵𝐵𝑖𝑖

𝑖𝑖

+  
𝜕𝜕𝑅𝑅𝑓𝑓𝑚𝑚

0

𝜕𝜕𝜕𝜕
𝑅𝑅𝑠𝑠
𝑓𝑓  �̈�𝑇𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 �Δ𝛼𝛼𝜅𝜅,𝑖𝑖  𝐵𝐵𝑖𝑖

𝑖𝑖

 

 
 

(5.3) 

where Δ𝛼𝛼𝑥𝑥,𝑖𝑖, Δ𝛼𝛼𝑦𝑦,𝑖𝑖 , Δ𝛼𝛼𝑧𝑧,𝑖𝑖 , Δ𝛼𝛼𝜔𝜔,𝑖𝑖 , Δ𝛼𝛼𝜑𝜑,𝑖𝑖 and Δ𝛼𝛼𝜅𝜅,𝑖𝑖 are the unknown increments of the 
pose splines coefficients.  
 
In the first iteration of the estimation process, �̈�𝑇𝑓𝑓𝑚𝑚

0and 𝑅𝑅𝑓𝑓𝑚𝑚
0 are derived from 

the SLAM as the approximate acceleration and rotation of the system, 
respectively. This will reset the IMU’s accelerometers drift, which helps to 
mitigate the effects of the IMU biases (see Table 5.1) on the pose estimation. 
 
5.3.3.2 Angular Velocity Observation Equations 
Similarly, the angular velocity observation equations were formulated as the 
IMU angular velocities �̇�𝑉𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 = (�̇�𝜔𝑖𝑖𝑚𝑚𝑖𝑖

𝑠𝑠 ,  �̇�𝜑𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 ,  �̇�𝜅𝑖𝑖𝑚𝑚𝑖𝑖s ) should be related to the first-
order derivatives of the backpack’s rotation angles �̇�𝑉𝑓𝑓𝑚𝑚 = (�̇�𝜔𝑓𝑓𝑚𝑚, �̇�𝜑f𝑚𝑚, �̇�𝜅𝑓𝑓𝑚𝑚). 
However, while the IMU gyroscopes observed the angular velocities around the 
axes of the IMU sensor frame, the backpack rotation angles are defined around 
the axes of the model system and are used to rotate from the backpack frame 
to the model system. Therefore, in order to determine the relationship between 
these two groups of angular velocities, we first need to define the direction and 
order of rotation. The rotation from the model system to the IMU sensor frame 
system can simply be defined as the inverse of the rotation (𝑅𝑅𝑓𝑓𝑚𝑚𝑅𝑅𝑠𝑠

𝑓𝑓): 
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𝑅𝑅𝑚𝑚s = (𝑅𝑅f𝑚𝑚𝑅𝑅𝑠𝑠

𝑓𝑓)𝑇𝑇 =  𝑅𝑅𝑓𝑓𝑠𝑠𝑅𝑅𝑚𝑚
𝑓𝑓 = 

𝑅𝑅𝑓𝑓𝑠𝑠 𝑅𝑅3�𝜅𝜅𝑓𝑓𝑚𝑚�
𝑇𝑇𝑅𝑅2�𝜑𝜑𝑓𝑓𝑚𝑚�

𝑇𝑇𝑅𝑅1�ω𝑓𝑓𝑚𝑚�
𝑇𝑇
 

(5.4) 

 
As κ is the first rotation applied when rotating from the backpack frame to the 
model system, the angular velocity around the z-axis (�̇�𝜅𝑓𝑓𝑚𝑚) would not have to 

be rotated by 𝑅𝑅𝑚𝑚
𝑓𝑓  (Karam et al., 2019b). Indeed the IMU angular velocity  �̇�𝜑𝑖𝑖𝑚𝑚𝑖𝑖s  

around the y-axis does not hold a direct correspondence with the first 
derivative of 𝜑𝜑𝑓𝑓𝑚𝑚 when simply rotating (𝑅𝑅𝑓𝑓𝑆𝑆) from the backpack frame to the IMU 
sensor system. This is as the y-axis has already been rotated by −𝜅𝜅𝑓𝑓𝑚𝑚 around 
the z-axis prior to the measuring of  �̇�𝜑𝑖𝑖𝑚𝑚𝑖𝑖s  in the IMU sensor system. As such, 
the derivative of 𝜑𝜑𝑓𝑓𝑚𝑚 should also be rotated to the frame system. Similarly, the 
derivative of 𝜔𝜔𝑓𝑓𝑚𝑚 would need to be rotated by −𝜑𝜑𝑓𝑓𝑚𝑚 around the y-axis, and by 
−𝜅𝜅𝑓𝑓𝑚𝑚 around the z-axis, in order to obtain an angular velocity vector in the 
frame system. Hence, after rotating from the frame system to the IMU system, 
we were able to obtain the angular velocities as defined by the pose splines in 
the IMU system. This leads to the following observation equations: 
 

 

�
�̇�𝜔𝑖𝑖𝑚𝑚𝑖𝑖
𝑠𝑠

�̇�𝜑𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠

�̇�𝜅𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠
� = 𝑅𝑅𝑓𝑓𝑆𝑆 �

0
0
�̇�𝜅𝑓𝑓𝑚𝑚

� + 𝑅𝑅𝑓𝑓𝑆𝑆𝑅𝑅3�𝜅𝜅𝑓𝑓𝑚𝑚�
𝑇𝑇 �

0
�̇�𝜑f𝑚𝑚
0
�

+  𝑅𝑅𝑓𝑓𝑆𝑆𝑅𝑅3�𝜅𝜅𝑓𝑓𝑚𝑚�
𝑇𝑇𝑅𝑅2�𝜑𝜑𝑓𝑓𝑚𝑚�

𝑇𝑇 �
�̇�𝜔𝑓𝑓m

0
0
� 

 

(5.5) 

 
It can be shortened to: 

 �̇�𝑉𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 = 𝑅𝑅𝑓𝑓𝑆𝑆𝑆𝑆𝑚𝑚
𝑓𝑓 �̇�𝑉𝑓𝑓𝑚𝑚 (5.6) 

 

with 𝑆𝑆𝑚𝑚
𝑓𝑓 = �

cos𝜑𝜑 cos𝜅𝜅 sin𝜅𝜅 0
− cos𝜑𝜑 sin𝜅𝜅 cos𝜅𝜅 0

sin𝜑𝜑 0 1
�
𝑚𝑚

𝑓𝑓

 

 
where 𝑆𝑆𝑚𝑚

𝑓𝑓  is the transformation matrix from the model to the frame system. 
 
We model the angular velocities using splines as well by taking first-order 
derivatives of the rotation angles. For instance, for the rotation angle ω spline 
ω(𝑡𝑡) = ∑ 𝛼𝛼𝜔𝜔,𝑖𝑖  𝐵𝐵𝑖𝑖(𝑡𝑡)𝑖𝑖 , the angular velocity �̇�𝜔 spline becomes �̇�𝜔(𝑡𝑡) = ∑ 𝛼𝛼𝜔𝜔,𝑖𝑖  �̇�𝐵𝑖𝑖(𝑡𝑡)𝑖𝑖 ,  
where 𝛼𝛼𝜔𝜔,𝑖𝑖 is the ω spline coefficient to be estimated on interval 𝑖𝑖. 
 
Hence, the linearized angular velocity observation equations become: 
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�̇�𝑉𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 − 𝑅𝑅𝑓𝑓𝑠𝑠𝑆𝑆𝑚𝑚
𝑓𝑓 0�̇�𝑉𝑓𝑓𝑚𝑚

0

= 𝑅𝑅𝑓𝑓𝑠𝑠𝑆𝑆𝑚𝑚
𝑓𝑓 0

⎝

⎜
⎜
⎜
⎛
�Δ𝛼𝛼𝜔𝜔,𝑖𝑖  �̇�𝐵𝑖𝑖(𝑡𝑡)
𝑖𝑖

�Δ𝛼𝛼𝜑𝜑,𝑖𝑖  �̇�𝐵𝑖𝑖(𝑡𝑡)
𝑖𝑖

�Δ𝛼𝛼𝜅𝜅,𝑖𝑖  �̇�𝐵𝑖𝑖(𝑡𝑡)
𝑖𝑖 ⎠

⎟
⎟
⎟
⎞

+  𝑅𝑅𝑓𝑓𝑠𝑠
𝜕𝜕𝑆𝑆𝑚𝑚

𝑓𝑓 0

𝜕𝜕𝜕𝜕
�̇�𝑉𝑓𝑓𝑚𝑚

0�Δ𝛼𝛼𝑘𝑘,𝑖𝑖 𝐵𝐵𝑖𝑖
𝑖𝑖

+  𝑅𝑅𝑓𝑓𝑠𝑠
𝜕𝜕𝑆𝑆𝑚𝑚

𝑓𝑓 0

𝜕𝜕𝜑𝜑
�̇�𝑉𝑓𝑓𝑚𝑚

0�Δ𝛼𝛼𝜑𝜑,𝑖𝑖  𝐵𝐵𝑖𝑖
𝑖𝑖

 

(5.7) 

 
Similar to the acceleration equation, the angular velocities �̇�𝑉𝑓𝑓𝑚𝑚

0 and the 

transformation matrix 𝑆𝑆𝑚𝑚
𝑓𝑓 0 in the first iteration of the estimation process are 

derived from the approximate splines. This helps to reset the IMU’s gyroscope 
drift and this, in turn, eliminates the attitude drift considerably. 
 
5.3.3.3 Joint Estimation 
For the joint estimation method, the IMU observation equations (Eq. (5.3) and 
Eq. (5.7)) are added to the laser observation equations in all adjustment 
processes addressed above: local, section and global. This fusion enables us 
to use cubic splines instead of linear ones in the local adjustment. As our 
backpack system was mounted with three Hokuyo scanners with a scanning 
frequency of 40 Hz and 1080 points per scan line, every 25 ms the system 
records 3240 laser points. The accelerations and angular velocities are 
recorded by the IMU with a sampling frequency of 200 Hz; thus, for a local 
adjustment within 0.1 s, we have 12960 laser points, 60 IMU acceleration 
readings, and 60 IMU angular velocity readings. However, not all laser points 
were assigned to planes and can contribute to the pose estimation, as this is 
based on the data association criteria. 
 
5.4 Experimental Results and Discussion 
In order to test the performance of the three proposed strategies for a SLAM-
IMU integration, several experiments on different indoor environments were 
conducted. Three datasets were collected at the Institute of Geodesy and 
Photogrammetry building at the University of Braunschweig, Germany. They 
are denoted Diemen0, Diemen1, and Diemen2, respectively. The number of 
captured laser points and the walking duration for all test areas are 
approximately 38 million/5-minute, 73 million/9-minute, and 38 million/5-
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minute, respectively. Diemen0 is captured in the relatively cluttered basement, 
while the other two datasets are captured on the ground floor with different 
operators and trajectories. The mapped areas show distinct office 
environments that have plenty of doors and windows. There were also several 
narrow rooms with glass windows and uneven curtains. In order to test for the 
aforementioned weaknesses, some doors were wide open, and others were 
opened by the operator while the data was being captured. As the rooms in 
Diemen1 and Diemen2 were nearly empty due to renovation works, the 
number of planar structures is limited. This, in turn, affected the estimability 
of the system pose using only laser observations. The previously mentioned 
features of the test areas sometimes constitute as obstacles, and this may 
cause some of previously developed LIDAR SLAMs to fail before the mapping 
was completed, see Table 5.3. 
 
We mapped these test areas using our backpack indoor mobile mapping 
system and ran five different versions of SLAM algorithms on each dataset. For 
the IMU-SLAM Switching, the rcond and correlation thresholds are 
experimentally determined and set to 0.02 and 0.7, respectively. The 
differences thresholds with ICP to raise the suspicion in SLAM performance are 
set to 1 cm for (x, y), and 0.5º for k.  
 
For the purpose of simplicity, we use the following terminology for the five 
compared SLAM strategies; 
 
LIDAR SLAM: relies on the linear extrapolation for pose prediction instead of 
the IMU (Karam et al., 2019a). LIDAR SLAM with IMU prediction: takes 
advantage of the IMU to predict the next pose (Karam et al., 2019b). IMU-
SLAM Switching, IMU-based Pose Estimation, and IMU-SLAM Joint 
Estimation are the three IMU-SLAM integration techniques proposed in this 
chapter (see Table 5.2). 
 
Table 5.2. Comparison between the proposed methods in this chapter and previously developed 
methods regarding the data source for pose prediction and estimation. 

SLAM Algorithm 6DOF Pose 
prediction 

6DOF Pose 
estimation 

LIDAR SLAM 
(Karam et al., 2019a) LIDAR LIDAR 

LIDAR SLAM 
(Karam et al., 2019b) LIDAR+IMU LIDAR 

Three methods proposed 
in this chapter LIDAR+IMU LIDAR+IMU 

 
The most crucial aspect in the testing of the proposed methods was to check 
the robustness against poor laser observation geometries. Indeed, the 
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improvement in terms of robustness was evident through the ability to handle 
more datasets. This is particularly evident for the Diemen1 data, which the 
LIDAR SLAM, even with the help of IMU prediction, failed to process, as shown 
in Table 5.3. While for the Diemen0 data, all methods that estimate the pose 
without the use of IMU observations failed. This failure is caused by the 
divergence of the global adjustment because of insufficient laser observations 
in a sequence of five or more intervals. Figure 5.3 shows an obvious case where 
the LIDAR SLAM fails without the support of an IMU. There is an insufficient 
amount of laser observations to estimate the translation along the Y-axis. 
Therefore, the system slides along the Y-axis and leads to an erroneous map. 
One reason for the poor laser observations is that the narrow wall in front of 
the operator has a large transparent object (glass window), which leads to 
missing or incorrect range measurements. Problematic areas also include a 
non-flat panel radiator underneath the window and a winding curtain reflect in 
sparse laser scans in which it is hard to detect linear segments. There are also 
no observations on the wall at the opposite side of the room because of the 
270º opening angle of the Hokuyo scanners. 
In comparison to the other methods, the IMU-SLAM joint estimation is the most 
robust method due to its ability to handle all datasets in this chapter. The 
reliance on IMU allows the SLAM to reconnect to planes seen some longer time 
before; thus, this prevents the system from sliding in any direction and 
supports the SLAM in going ahead. 
 

 
(a) 

 
(b) 

Figure 5.3. An example of a problematic area for the LIDAR SLAM. a) 3D reconstructed planes 
(black) with the assigned laser points from four scans (colours indicate point associations to a 
particular plane) and the points that are not associated to a plane (red). The arrow refers to the Y-
axis direction in the model system. b) The wall is in front of the operator. 

We performed a comparison between the resulting point clouds (Figure 5.4) 
based on several factors, such as the number of points assigned to the 
reconstructed planes and the root mean square error (RMSE) of the residuals, 
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as demonstrated in Table 5.3. In this chapter, the term residuals refers to the 
distances between the model planes and the points associated to them. Table 
5.3 demonstrates that the use of IMU in pose estimation has increased 
significantly the number of assigned points to planes in Diemen2 dataset from 
about 24 million points to 28 million points. Approximately 97% of the assigned 
points have residuals below 3 cm, which is 10% higher than in the case of not 
using the IMU. Also, the RMSE of the residuals decreased from 1.8 cm with 
LIDAR SLAM to about 1.3 cm. Consequently, the proposed strategies for IMU 
integration lead into a more robust data association between the captured 
points and the reconstructed planes. 
 
As the SLAM-IMU joint estimation tries to fit the trajectory to the IMU 
observations, it is slightly sacrificing the minimization of the point-to-plane 
distances. Therefore, Table 5.3 shows that this method is not always the best 
performing method regarding the RMSE of residuals, even if it is the most 
robust method. 
 
Figure 5.5 compares the histograms of the points’ residuals of all resulting 
point clouds for the Diemen2 dataset as it is the only dataset that was 
processed successfully by all methods. It demonstrates that approximately 
57% of the assigned points have residuals below 1 cm when the IMU was not 
used at all. This improved to 61% when the switching technique took place, to 
64% when the IMU was utilized in pose prediction and to about 70% when IMU 
contributes to the pose estimation. On the other hand, approximately 13% of 
the residuals exceeded 3 cm when the IMU was not used. This percentage is 
negligible when the IMU is utilized for pose prediction and estimation. As such, 
this is why the RMSE value of the assigned points’ residuals decreases (Table 
5.3). 
 
However, the previous measurements, the number of assigned points and the 
RMSE of their residuals, do not adequately reflect the overall quality of the 
methods’ performance. The lower RMSE indicates that we do a better fit of 
points to planes, but this does not necessarily mean that we have a better 
model. In addition, the RMSE could be influenced badly by an incorrect merge 
of two planes. 
 
Therefore, we applied further quality measures which utilized the architectural 
constraints of walls (perpendicularity and parallelism) as they are predominant 
characteristics in the scanned areas (Karam et al., 2018). We assessed the 
ability of the system to capture the true geometry of the scanned environment. 
The results in Table 5.4 show the reconstruction accuracy with the IMU 
contribution is much better than without IMU. The percentages of small angles’ 
errors (<0.5º) increase and outliers (>1º) decrease in all the proposed methods 
that utilize the IMU. 
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(a) Diemen0 

 
(b) Diemen2 

 
(c) Diemen1 

Figure 5.4. The generated point cloud of the test areas with colours show plane association and 
trajectory followed (white). For visualization purposes, the points that are not associated to a plane 
and the points on the ceiling are removed from the point clouds. 
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Table 5.3. Comparison between the performance of the proposed method on all datasets regarding 
the number of assigned points (Nr), the corresponding RMSEs of the residuals, and the percentage 
of residuals below 3 cm (Perc). The results of two previously developed methods are also listed at 
the beginning of the table for comparison. The letter “x” refers to the failure of the method to process 
the corresponding dataset. 

                                          Dataset 
SLAM   Diemen0 Diemen1 Diemen2 

LIDAR SLAM 
(Karam et al., 2019a) 

Nr (million)  
x 
 

 
x 
 

24 
RMSE (cm) 1.8 

Perc (%) 87 

LIDAR SLAM 
(Karam et al., 2019b) 

Nr (million)  
x 

 
x 
 

24 
RMSE (cm) 1.3 

Perc (%) 96 

IMU-SLAM switching 
Nr (million)  

x 
 

53  28 
RMSE (cm) 1.5 1.4 

Perc (%) 96 97 

IMU-based Pose 
Estimation 

Nr (million)  
x 
 

53 28 
RMSE (cm) 1.8 1.4 

Perc (%) 96 97 

IMU-SLAM Joint 
Estimation 

Nr (million) 28 53  28 
RMSE (cm) 1.5 1.6 1.3 

Perc (%) 98 96 97 
 
 

 
 

Figure 5.5. Histograms of the points’ residuals of all resulting point clouds for Diemen2 dataset 
and for all methods, LIDAR SLAM (black), with IMU prediction (red), IMU-SLAM switching 
(magenta), IMU-based Pose Estimation (blue), and the joint estimation (green). 
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Table 5.4. Comparison between the performance of the proposed method on all datasets regarding 
the architectural constraints. The percentages of angles’ errors in three different ranges for 
parallelism (par) and perpendicularity (perp) and the corresponding RMSEs. The results of two 
previously developed methods are also listed at the beginning of the table for comparison. The letter 
“x” refers to the failure of the method to process the corresponding dataset. 

              Dataset 
SLAM 

Diemen0 Diemen1 Diemen2 
perp par perp par Perp par 

LIDAR SLAM 
(Karam et al., 2019a) 

[0º 0.5º[ 

x x 

58 50 
[0.5º 1º] 26 12 
[1º 5º] 16 38 

RMSE (deg) 1.34º 1.76º 

LIDAR SLAM 
(Karam et al., 2019b) 

[0º 0.5º[ 

x x 

70 66 
[0.5º 1º] 23 13 
[1º 5º] 7 21 

RMSE (deg) 0.66º 1.39º 

IMU-SLAM 
Switching 

[0º 0.5º[ 

x 

69 62 67 65 
[0.5º 1º] 19 16 23 16 
[1º 5º] 12 22 10 19 

RMSE (deg) 0.54º 1.31º 0.96º 1.50º 

IMU-based Pose 
Estimation 

[0º 0.5º[ 

x 

68 54 70 71 
[0.5º 1º] 17 16 23 11 
[1º 5º] 15 30 7 18 

RMSE (deg) 0.66º 1.36º 0.63º 1.06º 

IMU-SLAM Joint 
Estimation 

[0º 0.5º[ 62 39 67 57 67 61 
[0.5º 1º] 25 30 18 16 23 12 
[1º 5º] 13 31 15 27 10 27 

RMSE (deg) 0.63º 1.34º 0.70º 1.45º 0.82º 1.46º 

 
It also demonstrates that the reliance on the IMU at many locations did not 
negatively affect the internal consistency of walls; thus, it did not impede upon 
the correctness of the final 3D reconstruction. However, Table 5.4 shows that 
the best results were reached when the SLAM kept switching to the IMU. 
 
Overall, we observe an improvement in results when the erroneous poses that 
originate from LIDAR SLAM are replaced by the poses integrated from IMU 
measurements. This goes hand-in-hand with the general understanding that 
the less trustworthy measurements should receive no weight in SLAM 
optimization. 
 
The proposed SLAM strategies are limited to (indoor) environments with planar 
structures. The IMU drift in velocity and heading is reset in each prediction or 
estimation loop (see Section 5.3), but the IMU biases are not auto-calibrated 
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during scanning. This did not cause immediate problems in our experiments 
but should be taken into account with lower quality IMUs. In this case, this 
limitation could be addressed, e.g., for the gyro biases (Hyyti and Visala, 
2015). 
 
 
5.5 Conclusions And Future Work 
We have described several strategies to integrate the IMU with the LIDAR 
SLAM. Here, the IMU participates in the pose prediction and estimation. We 
conclude that the IMU integration improves the robustness of both the data 
association and pose estimation and therefore it is beneficial in the proposed 
SLAM approach. This improvement in the SLAM robustness expands the scope 
of application of our backpack mobile mapping system.  
 
In future works, we intend to investigate whether the IMU is capable to 
generate a reliable prediction for a longer exposure period. Reliable prediction 
for a longer period will help to improve the hypothesis generation for planar 
structures, which in turn, enables the SLAM to sense non-vertical walls or non-
horizontal floors/ceilings. Consequently, this would expand the applicability of 
our system. 
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Chapter 6 - Simple loop closing for continuous 
LIDAR&IMU Planar Graph SLAM for 3D indoor 
environments * 
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Abstract 
Simultaneous localization and mapping (SLAM) is the essential technique in 
mapping environments that are denied to the global navigation satellite 
systems (GNSSs), such as indoor spaces. In this article, we present a loop-
closing continuous-time LIDAR-IMU SLAM for indoor environments. The design 
of the proposed SLAM is based on arbitrarily-oriented planar features that allow 
for point to plane matching for local but also global optimization. Moreover, to 
update the SLAM graph during the optimization, we propose a simple yet 
elegant loop closure method in the form of merging the planes together. 
Representing the SLAM map by planes is advantageous due to the abundant 
existence of planar structures in indoor built environments. The proposed 
method was validated on a specific configuration of three 2D LIDAR scanners 
mounted on a wearable platform (backpack). Scanned point clouds were 
compared against ones obtained from a commercial mobile mapping system 
(Viametris iMS3D) and a terrestrial laser scanner (RIEGL VZ-400). The 
experimental results demonstrate that our SLAM system is capable of mapping 
multi-storey buildings, staircases, cluttered areas and areas with curved walls. 
Furthermore, our SLAM system offers comparable performance to that of the 
commercial system as shown by the low deviation between the point clouds 
generated by both systems. The majority of the cloud-to-cloud absolute 
distances – about 92 % – are less than 3 cm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 6 

91 

6.1 Introduction 
Three-dimensional (3D) digital models of indoor environments can be 
advantageous to professionals from various disciplines such as engineering, 
architecture and archaeology. Indoor mobile mapping systems (IMMSs) digitize 
indoor environments quickly and at high levels of detail (Lehtola et al. 2017; 
Maboudi et al., 2017). Such systems have advantages over terrestrial laser 
scanners (TLS) in terms of time-consumption and labour. The IMMSs rely on 
simultaneous localization and mapping (SLAM) algorithm for positioning in 
spaces and environments inaccessible to the global navigation satellite systems 
(GNSSs). 
 
The core idea of SLAM (Cadena et al., 2016) is to map unknown environments. 
In this task, problems arise from that these environments may contain 
pathological geometries and from that the platform motion may be erratic (Yu 
& Zhang, 2019). Specifically, light detection and ranging (LIDAR) SLAM 
degenerates in those pose configurations where the geometry of LIDAR 
observations is insufficient to estimate the 3D pose of the mapping system. In 
LIDAR-inertial measurement unit (IMU) SLAM (Geneva et al., 2018; Karam et 
al., 2020), the LIDAR provides accurate geometrical data, while the IMU 
prevents the SLAM from degenerating, for example, when the platform 
experiences fast rotations. Although the IMU sensor provides good short-term 
motion estimates (Karam et al., 2019; Yang et al., 2019), it suffers from 
accumulated errors over time due to the dead reckoning-based positioning, 
and therefore obviously is undesirable as a stand-alone sensor for positioning 
purposes. 
 
SLAM can be run online to estimate the current pose of a mapping system or 
offline to optimize an entire trajectory. In the first, only a part of the historic 
data is used to keep the computational load tractable for real time applications, 
see e.g., Kalman filter-based SLAMs (Ji et al., 2020; Lin et al., 2021). This is 
in contrast to the offline SLAM that optimizes the trajectory over the entire 
recorded data such as graph SLAM (Grisetti et al., 2010). Therefore, the offline 
SLAM is usually more accurate than the online SLAM. Accordingly, it is often 
used in mobile mapping where the geometric accuracy of the map is the most 
important factor.  
 
Typically, graph SLAM uses a discrete pose representation, i.e., it consists of 
nodes, representing the mapping system poses, connected by edges 
representing the sensors’ measurements that constrain the connected poses 
(Grisetti et al., 2010). For more accurate and efficient multi-sensor SLAM, 
continuous-time trajectory representation is a necessity (Karam et al., 2020; 
Gentil et al., 2020). Therefore, our graph SLAM uses splines to represent the 
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trajectory as a continuous six degrees of freedom (6DoF) format (Vosselman, 
2014) so that each LIDAR and IMU measurement have their own timestamp. 
 
Loop closure is one of the key challenges in SLAM because recognizing already 
visited places requires searching through all the captured data, which becomes 
computationally intractable as the size of the environment grows. Descriptors 
(Bosse & Zlot, 2013; Guo et al., 2018; He et al., 2016; Steder et al., 2010) 
can be used to reduce the size of to-be-matched information, but the number 
of stored descriptors, i.e., bag of words, still grows as more data is captured. 
The bigger the bag, the more complex descriptors are needed to keep them 
distinguishable from each other. The opposite approach is to use simple 
descriptors (such as plane parameters) on features that are large and spatially 
distinct. In this work, we rely on such, i.e., planar, features. 
 
In this chapter, we propose a loop-closing SLAM system that is capable of 
producing plane-based maps of various indoor environments in the real world. 
Our work is built on (Karam et al., 2019, 2020; Karam et al., 2019; Vosselman, 
2014). The proposed SLAM system has the following six state-of-the-art 
properties. 

 
1. The proposed SLAM method performs loop closure detection and 

correction using planar feature-based matching and merging, which is 
a new contribution (described in Section 6.3.8). 
 

2. We propose a novel way to reduce the degrees of freedom in the graph 
optimization problem via a plane parametrization based on a three-fold 
classification: horizontal, vertical, and slanted rotation (Section 6.3.2). 

 
3. The trajectory is represented with splines forming a continuous-time 

model that allows for individual time stamping of each LIDAR point 
(Vosselman, 2014) without a need to do IMU pre-integration (Geneva 
et al., 2018; Zhou et al., 2020) or upsampling to approximate 
continuous time (Gentil et al., 2019; Gentil et al., 2020). 
 

4. Our SLAM system exploits the IMU to predict the pose of a few 
successive scans (Section 6.3.1), similar to e.g., (Gentil et al., 2019; 
Gentil et al., 2020). Such a scan-combination allows for our data 
association technique to segment arbitrarily oriented planar shapes 
and to allocate them into the SLAM map (Section 6.3.2). Note that, the 
term scan in this chapter refers to a set of three scan lines captured 
simultaneously by three 2D scanners to form a quasi-3D LIDAR point 
subset. 
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5. The local SLAM is 3D and fuses LIDAR and IMU observations (Karam 
et al., 2020), briefly introduced in Sections 6.3.1 and 6.3.6. 
 

6. Autocalibration of LIDARs is done exploiting the planar feature 
geometry as in our previous work (Karam et al., 2019), lately adopted 
also in (Gentil et al., 2020). 
 

The chosen map representation (Karam et al., 2019; Vosselman, 2014) allows 
for outputting the scanned environments in planar shapes, which is a popular 
format for the state-of-the-art in indoor 3D reconstruction (Nikoohemat et al., 
2020). This kind of representation is also advantageous because it makes 
storage easier and data association simpler when compared against a point-
based representation, see e.g., (Cadena et al., 2016; Puente et al., 2015). We 
describe experiments in various indoor environments and evaluate the 
performance of our SLAM system by comparing the obtained point clouds 
against those obtained from a commercial MMS (Viametris1 iMS3D) and a TLS 
(RIEGL VZ-400) used as ground truth. 
 
The data used in our case study is scanned with a specific configuration of 
three single-layer LIDAR scanners (Hokuyo) that have a limited field of view –
270ᵒ– i.e., the same one used in the original LOAM method (Zhang & Singh, 
2014). The scanners are mounted on a wearable platform (backpack).   
 
The remainder of this chapter is structured as follows: In the following section, 
we present the related works. In Section 6.3, we introduce the overall concept 
of the proposed SLAM system including planar segments extraction, 
parametrization, data association and the loop closure technique. Section 6.4 
presents the mobile mapping system used for data collection, the study areas, 
and the experimental results. Finally, the chapter draws conclusions in Section 
6.5. 
 

6.2 Related Works 
The closest works to ours in respect of planar SLAM are IN2LAAMA (Gentil et 
al., 2020), LIPS (Geneva et al., 2018) and planar bundle adjustment (PBA) 
(Zhou et al., 2020). All these works utilize planar segments extracted from 
LIDAR data using slightly different segmentation methods. The least squares 
problem in LIPS seeks to minimize the plane-to-plane residuals. In contrast, 
our SLAM, IN2LAAMA and PBA utilize point-to-plane residuals. Compared to 
the plane-to-plane based minimization, experiments in (Zhou et al., 2020) 
show that the point-to-plane based minimization leads to more accurate 
results. In contrast to LIPS and PBA, we have, similar to IN2LAAMA, a 

 
1 www.viametris.com 

http://www.viametris.com/
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continuous-time trajectory representation, which is necessary to output high-
accuracy maps. However, IN2LAAMA (Gentil et al., 2020) upsamples IMU 
preintegration, which uses a lot more memory compared to our continuous 
spline formulation of the trajectory, while still containing a discretization 
residual. Also, IN2LAAMA performs a loop closure detection based on iterative 
closest point (ICP)-like pose proximity of individual LIDAR observations, which 
leads to redundant loop closures without a given time threshold, and is similar 
to what we use for local SLAM (Section 6.3.6). In contrast, our global loop 
closure detection analyzes the relationship between the large and spatially 
distinct planes in the global SLAM map (Section 6.3.8). This loop closure 
technique is one of the main contributions in this work. Another contribution is 
the reduction in the degrees of freedom of the planes based on the LIDAR 
observations. 
 
Other works include 2D methods, e.g., (Puente et al., 2015), methods 
assuming vertical walls, e.g., (Cinaz & Kenn, 2008)  and a planar feature-based 
SLAM system  experimenting with dividing and projecting the 3D LIDAR data 
onto three image planes before applying planar segmentation (Lenac et al., 
2017).  
 

6.3 Methodology 
The proposed SLAM system is a planar feature-based SLAM algorithm that is 
designed to map building interiors with arbitrarily oriented planes and 
inherently performs loop closure. The overall concept, with its key components, 
is shown in Figure 6.1. After initialization (Section 6.3.1) we extract planar 
segments from LIDAR data (Section 6.3.2), assign these segments to planar 
features (Section 6.3.2), present the trajectory optimization problem (Sections 
6.3.3-6.3.7), and our loop closure technique (Section 6.3.8).  The final outputs 
of the introduced SLAM system are reconstructed 3D planes, a 3D point cloud 
and the 3D trajectory that the mapping system followed while scanning (Figure 
6.6). The generated point cloud, together with trajectory information, can be 
used for the semantic interpretation (Nikoohemat et al., 2018) or space 
partitioning (Elseicy et al., 2018). Moreover, the normal vectors of the 
reconstructed planes point towards the system’s trajectory, which makes our 
SLAM beneficial for 3D reconstruction. 
 

6.3.1 Initialization 
The model coordinate system (𝒎𝒎) (or the world coordinate system) in which 
the final indoor model will be described is established based on a few 
independent planes extracted from the first few LIDAR scans, as explained in 
(Vosselman, 2014). These planes form the initial state of the Local map and 
the start point of the platform trajectory is defined as the origin of the model 
system. The Local-SLAM phase starts by predicting the pose of a few 
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successive scans in the model system using the IMU data, thereby forming 
what we term scan-combination as a collection of the predicted successive 
scans.  Here, a scan-combination consists of 10 scan lines captured during 0.25 
sec. Such scan-combination is largely hardware-independent, i.e., it can be 
formed from almost any type of LIDAR and inertial combination. Similar 
approach is used also in (Gentil et al., 2019; Gentil et al., 2020). 
 

 
Figure 6.1. The overall concept of the loop-closing LIDAR-IMU SLAM system 

6.3.2 Planar Segment Extraction and Local SLAM 
Map Updating 
To extract planes from the scan-combination (defined in Section 6.3.1), we run 
a surface growing segmentation (Vosselman et al., 2004) and fit a plane to the 
points of each segment. Figure 6.2 shows the extracted planes from a scan-
combination captured on a staircase. A 2D oriented bounding box that 
represents the extent of the plane is extracted from its points.  
 
In order to limit the amount of free plane parameters, we classify the fitted 
planes to the planar segments into horizontal, vertical and slanted planes, 
described by respectively 1, 2, and 3 parameters. Planes are instantiated as 
slanted when insufficient data is available (relatively narrow segments) to 
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reliably classify them as horizontal or vertical. As the SLAM progresses, more 
scan line points are assigned to the same plane (as described below). This then 
may allow to better understand the plane’s orientation. If that is the case the 
parameterization of the plane is updated accordingly. 
 
Furthermore, to increase the robustness of the hypothesis generation, we filter 
out those planes that have a standard deviation of plane fitting residuals 𝜎𝜎𝑝𝑝−𝑃𝑃𝑠𝑠 
higher than max_𝜎𝜎𝑝𝑝−𝑃𝑃𝑠𝑠 or  a number of points 𝑁𝑁𝑝𝑝 lower than min_𝑁𝑁𝑝𝑝. Moreover, 
only planes that were extracted from more than one scan are included in the 
estimation process.  
 
This plane extraction allows for the LIDAR data to be robustly matched against 
the up-to-date version of the local map in SLAM. Specifically, our data 
association technique seeks to find correspondences between two groups of 
planes: (i) these planar segments (plane hypotheses) extracted recently at 𝑡𝑡𝑟𝑟 
(𝑟𝑟 = n + 1, … , N ) from the scan-combination captured in 𝑁𝑁 − n = 10 time steps, 
i.e., 0.25 sec; and (ii) SLAM map planes (plane features) estimated in the 
previous time steps 𝑡𝑡𝑝𝑝, 𝑝𝑝 = 1,2, … ,𝑛𝑛. 
 

  
Figure 6.2. Planar segment extraction. Left: a scan-combination consists of a few successive scans 
(10) captured on a staircase. Right: surface growing segmentation with the fitted planes shown as 
2D bounding boxes. For visualisation purposes, the planes for ceiling and floor’s segments are not 
shown. 

A hypothesis and a feature may represent the same planar structure; thus, 
they will be matched if their 2D bounding boxes overlap and if the distance and 
angle between them are within a certain limit. Consequently, the planar 
segment’s points are added to the matched plane in the Local-SLAM map; this 
requires an update of its 2D bounding box if the added points are outside the 
already seen part of that plane. The rest of the extracted planes – those that 
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have not been matched with any of the previously estimated planes – are 
added to the SLAM map as new planes. 
 
However, closely aligned scan lines not spanning a large area do not allow for 
a robust estimation of a normal vector of a plane. Therefore, they are not used 
to generate a new plane hypothesis. The points in such scan lines are, however, 
still used if they can be associated to an already existing plane feature. 
Additionally, each point that was not part of a planar segment (i.e., is still un-
associated) is associated to its closest plane feature in the map, if that point is 
located within the 2D bounding box of that plane and within a certain distance. 
  
After these steps, the SLAM map is updated. Some planes may have been 
extended and new planes may have been instantiated. As a consequence, 2D 
bounding boxes of nearby planes with similar normal may  now overlap. 
Therefore, we perform a further association check between all planes in the 
map. The association check is similar to the plane-to-plane association step 
above with the only difference that here we always merge the plane with fewer 
points into the plane with a larger number of points as that is considered to be 
more reliable. This association helps to avoid multiple instantiations of the 
same planar structure and decreases the number of planes, which in turn 
reduces the complexity of the SLAM model and speeds up the mapping process. 
 

6.3.3 State definition and Plane and Trajectory 
Parametrization  
The extracted planes are defined in the model coordinate system by the 
Hessian plane model: 
 

 𝑛𝑛𝑝𝑝 −  𝑑𝑑 = 0 (6.1) 
 
 where 𝑛𝑛 = (𝑛𝑛𝑥𝑥 , 𝑛𝑛𝑦𝑦, 𝑛𝑛𝑧𝑧) is the plane's normal vector, 𝑝𝑝 is a point lying in the 
plane and 𝑑𝑑 is the signed distance to the plane (from the origin along the 
normal vector). Hence, plane ℎ can be expressed with angular parameters 
(𝜃𝜃ℎ ,𝜙𝜙ℎ,𝑑𝑑ℎ)𝑇𝑇 with an identical amount of free parameters. Note that, in our 
SLAM,  the normal vector of a plane (𝑛𝑛) always points towards the system’s 
trajectory. Additionally, the area of a plane is represented by a 2D oriented 
bounding box (Figure 6.2), which grows as additional observations are added 
from the scanning, and this bounding plays an important role in the data 
association as described in Section 6.3.2. 
 
The platform pose parameters (x, y, z,ω,ϕ, κ) are modelled as continuous 
functions over time using cubic splines (Karam et al., 2019), which guarantees 
a level of smoothness for the final trajectory and allows for a continuous time 
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representation for individual measurements. For instance, roll ω is formulated 
as follows: 

𝜔𝜔(𝑡𝑡) = ∑ 𝛼𝛼𝜔𝜔,𝑖𝑖 .𝐵𝐵𝑖𝑖(𝑡𝑡)𝑖𝑖 , (6.2) 

where 𝛼𝛼𝜔𝜔,𝑖𝑖 is the spline coefficient for 𝜔𝜔 to be estimated on interval 𝑖𝑖 and 𝐵𝐵𝑖𝑖(𝑡𝑡) 
is the B-spline value at time 𝑡𝑡 on interval 𝑖𝑖.  

 
Our SLAM is an optimization-based method that combines the LIDAR and IMU 
measurements together to estimate the state of the system and the SLAM 
map. Instead of defining state vectors for the trajectory, we define them for 
the observations. Adding together all LIDAR and IMU observations, the total 
state to be estimated 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠 consists of spline coefficients for each node interval 
𝑖𝑖, where 𝑖𝑖 indexes the M spline intervals, and parameters of all planes, as 
follows:  

 
 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠 = [𝛼𝛼1, 𝛼𝛼2, … …𝛼𝛼𝑀𝑀,    𝑃𝑃1, 𝑃𝑃2, … …  𝑃𝑃𝐻𝐻  ] (6.3) 

 
where 𝑗𝑗 refers to the number of LIDAR observation, 𝑗𝑗 =  1,2, … K,  𝛼𝛼𝑖𝑖 =
[𝛼𝛼𝜔𝜔,𝑖𝑖 ,𝛼𝛼ϕ,𝑖𝑖 ,𝛼𝛼κ,𝑖𝑖 ,𝛼𝛼𝑥𝑥,𝑖𝑖 ,𝛼𝛼𝑦𝑦,𝑖𝑖 ,𝛼𝛼𝑧𝑧,𝑖𝑖] spline coefficients on interval 𝑖𝑖 and 𝑃𝑃ℎ = (𝜃𝜃ℎ ,𝜙𝜙ℎ,𝑑𝑑ℎ) is 
the parametrization of plane ℎ, ℎ = 1,2, … ,𝐻𝐻. 

 
Here, we include the map features into the state because our purpose is to 
build accurate maps for mapping purposes using graph SLAM. We first 
formulate the LIDAR (Section 6.3.4) and IMU (Section 6.3.5) observation 
equations that form the equation system for Local_SLAM (Section 6.3.6) and 
Global_SLAM (Section 6.3.7). 
 

6.3.4 LIDAR observation equation  
The LIDAR observation equation is formulated based on the expectation that 
the distance between a point 𝑝𝑝 and its assigned plane 𝑃𝑃ℎ = (𝑛𝑛ℎ,𝑑𝑑ℎ) equal zero 
(Karam et al., 2019; Vosselman, 2014). Due to the sensor noise and estimation 
errors, this distance is not necessarily zero, but a residual 𝑟𝑟𝑝𝑝.  
 
Consequently, for a point 𝑝𝑝j𝑚𝑚 = (𝑥𝑥𝑗𝑗𝑚𝑚,𝑦𝑦𝑗𝑗𝑚𝑚, 𝑧𝑧𝑗𝑗𝑚𝑚) in the model coordinate system (𝑚𝑚), 
the equation can be formulated as follows:                                    
 

𝑟𝑟𝑝𝑝j𝑚𝑚 = 𝑛𝑛ℎ 𝑝𝑝j𝑚𝑚 − 𝑑𝑑ℎ, (6.4) 
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The normal vector of a plane can be parametrized using the spherical 
coordinates (azimuth 𝜃𝜃, inclination 𝜙𝜙) and the observation equation can be 
rewritten as 

 

𝑟𝑟𝑝𝑝j𝑚𝑚 = 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃ℎ  𝑥𝑥𝑗𝑗𝑚𝑚 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙ℎ 𝑐𝑐𝑖𝑖𝑛𝑛𝜃𝜃ℎ 𝑦𝑦𝑗𝑗𝑚𝑚 + 𝑐𝑐𝑖𝑖𝑛𝑛𝜙𝜙ℎ  𝑧𝑧𝑗𝑗𝑚𝑚 − 𝑑𝑑ℎ, (6.5) 

 
Accordingly, the plane 𝑃𝑃ℎ is represented as 𝑃𝑃ℎ  = (𝜃𝜃ℎ ,   𝜙𝜙ℎ, 𝑑𝑑ℎ , 𝑂𝑂𝐵𝐵𝐵𝐵ℎ), where 𝑂𝑂𝐵𝐵𝐵𝐵ℎ 
contains information about the 2D bounding box extents. The mapping system 
records the point 𝑝𝑝𝑗𝑗 at time 𝑡𝑡𝑗𝑗 in its platform coordinate system (𝑓𝑓), which is 
later transformed to the model system by: 
 

𝑝𝑝j𝑚𝑚 = 𝑅𝑅𝑓𝑓𝑚𝑚�𝑡𝑡𝑗𝑗�  𝑝𝑝j
𝑓𝑓 + 𝑣𝑣�𝑡𝑡𝑗𝑗�, (6.6) 

 
where 𝑅𝑅𝑓𝑓𝑚𝑚�𝑡𝑡𝑗𝑗� and 𝑣𝑣�𝑡𝑡𝑗𝑗� are the time-dependent rotation matrix and translation 
from the platform system (𝑓𝑓) to the model system (𝑚𝑚), respectively. 
 
The continuous representation of the trajectory using splines allows the pose 
parameters to be derived at any time. As each recorded LIDAR point  𝑝𝑝j

𝑓𝑓 has 

its own timestamp 𝑡𝑡𝑗𝑗, our SLAM transforms the point 𝑝𝑝j
𝑓𝑓 to the model system 

with rotation 𝑅𝑅𝑓𝑓𝑚𝑚�𝑡𝑡𝑗𝑗� and translation 𝑣𝑣�𝑡𝑡𝑗𝑗� parameters derived from the pose 
splines at its timestamp 𝑡𝑡𝑗𝑗 as follows: 

 

 
𝑅𝑅𝑓𝑓𝑚𝑚�𝑡𝑡𝑗𝑗�

= 𝑅𝑅(�𝛼𝛼𝜔𝜔,𝑖𝑖 .𝐵𝐵𝑖𝑖�𝑡𝑡𝑗𝑗�
𝑖𝑖

 ,� 𝛼𝛼ϕ,𝑖𝑖 .𝐵𝐵𝑖𝑖�𝑡𝑡𝑗𝑗�
𝑖𝑖

,�𝛼𝛼κ,𝑖𝑖
𝑖𝑖

.𝐵𝐵𝑖𝑖(𝑡𝑡𝑗𝑗)) 
(6.7) 

                          

               
𝑣𝑣�𝑡𝑡𝑗𝑗�

= (�𝛼𝛼𝑥𝑥,𝑖𝑖 .𝐵𝐵𝑖𝑖�𝑡𝑡𝑗𝑗�
𝑖𝑖

 ,�𝛼𝛼𝑦𝑦,𝑖𝑖.𝐵𝐵𝑖𝑖�𝑡𝑡𝑗𝑗�
𝑖𝑖

,�𝛼𝛼𝑧𝑧,𝑖𝑖
𝑖𝑖

.𝐵𝐵𝑖𝑖(𝑡𝑡𝑗𝑗)) 
(6.8) 

                                                                                                                                                                                                                                                                                 
 

By substituting Eq. (6.6) in Eq. (6.4), we obtain the following observation 
equation: 

𝑟𝑟𝑝𝑝j𝑚𝑚 ≝  𝑛𝑛ℎ�𝑅𝑅𝑓𝑓𝑚𝑚�𝑡𝑡𝑗𝑗�  𝑝𝑝j
𝑓𝑓 + 𝑣𝑣�𝑡𝑡𝑗𝑗�� − 𝑑𝑑ℎ,    (6.9) 

After linearizing Eq. (6.9) with respect to the unknown pose spline coefficients 
and unknown plane parameters (Vosselman, 2014) using Taylor-series 
expansion, the residual 𝑟𝑟𝑝𝑝j𝑚𝑚

0  for LIDAR observations is 
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𝑛𝑛ℎ0 ��𝑅𝑅𝑓𝑓𝑚𝑚
0�𝑡𝑡𝑗𝑗�  𝑝𝑝j

𝑓𝑓 + 𝑣𝑣0�𝑡𝑡𝑗𝑗��� − 𝑑𝑑ℎ
0

�����������������������
𝑟𝑟𝑝𝑝j
𝑚𝑚
0

= 
(6.10) 

−𝑛𝑛ℎ0
𝜕𝜕𝑅𝑅𝑓𝑓𝑚𝑚

0�𝑡𝑡𝑗𝑗�
𝜕𝜕𝜔𝜔

𝑝𝑝j
𝑓𝑓� ∆𝛼𝛼𝜔𝜔,𝑖𝑖 .𝐵𝐵𝑖𝑖�𝑡𝑡𝑗𝑗�

𝑖𝑖
− 

 

𝑛𝑛ℎ0
𝜕𝜕𝑅𝑅𝑓𝑓𝑚𝑚

0�𝑡𝑡𝑗𝑗�
𝜕𝜕ϕ

𝑝𝑝j
𝑓𝑓� ∆𝛼𝛼ϕ,𝑖𝑖 .𝐵𝐵𝑖𝑖�𝑡𝑡𝑗𝑗�

𝑖𝑖
− 

 

𝑛𝑛ℎ0
𝜕𝜕𝑅𝑅𝑓𝑓𝑚𝑚

0�𝑡𝑡𝑗𝑗�
𝜕𝜕κ

𝑝𝑝j
𝑓𝑓� ∆𝛼𝛼κ,𝑖𝑖.𝐵𝐵𝑖𝑖�𝑡𝑡𝑗𝑗�

𝑖𝑖
− 

 

𝑛𝑛ℎ𝑥𝑥
0� ∆𝛼𝛼𝑣𝑣𝑥𝑥,𝑖𝑖.𝐵𝐵𝑖𝑖�𝑡𝑡𝑗𝑗�

𝑖𝑖
−  𝑛𝑛ℎ𝑦𝑦

0 � ∆𝛼𝛼𝑣𝑣𝑦𝑦,𝑖𝑖 .𝐵𝐵𝑖𝑖�𝑡𝑡𝑗𝑗�
𝑖𝑖

−  𝑛𝑛ℎ𝑧𝑧
0� ∆𝛼𝛼𝑣𝑣𝑧𝑧,𝑖𝑖 .𝐵𝐵𝑖𝑖�𝑡𝑡𝑗𝑗�

𝑖𝑖
+ 

 
�𝑐𝑐𝑖𝑖𝑛𝑛 𝜃𝜃ℎ0𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙ℎ0  − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃ℎ0𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙ℎ0  0� �𝑅𝑅𝑓𝑓𝑚𝑚

0�𝑡𝑡𝑗𝑗�𝑝𝑝j
𝑓𝑓 + 𝑣𝑣0�𝑡𝑡𝑗𝑗�� ∆𝜃𝜃ℎ  + 

�𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃ℎ0𝑐𝑐𝑖𝑖𝑛𝑛𝜙𝜙ℎ0  𝑐𝑐𝑖𝑖𝑛𝑛𝜃𝜃ℎ0𝑐𝑐𝑖𝑖𝑛𝑛𝜙𝜙ℎ0  − 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙ℎ0� �𝑅𝑅𝑓𝑓𝑚𝑚
0�𝑡𝑡𝑗𝑗�𝑝𝑝j

𝑓𝑓 + 𝑣𝑣0�𝑡𝑡𝑗𝑗�� ∆𝜙𝜙ℎ   +  ∆𝑑𝑑ℎ  

 
where the upper index 0 denotes the approximate value, ∆𝛼𝛼𝜔𝜔,𝑖𝑖 ,  ∆𝛼𝛼ϕ,𝑖𝑖 , ∆𝛼𝛼κ,𝑖𝑖 ,  
∆𝛼𝛼𝑣𝑣𝑥𝑥,𝑖𝑖 , ∆𝛼𝛼𝑣𝑣𝑦𝑦,𝑖𝑖  ,∆𝛼𝛼𝑣𝑣𝑧𝑧,𝑖𝑖 are the unknown increments of the pose splines coefficients 
on interval 𝑖𝑖 and ∆𝜃𝜃ℎ ,∆𝜙𝜙ℎ,∆𝑑𝑑ℎ are the unknown increments of the parameters 
of plane 𝑃𝑃ℎ. 
 
Eq. (6.10) is written in general form, i.e., for arbitrarily oriented planes for 
which all three increments (∆θ, ∆𝜙𝜙, ∆𝑑𝑑) are estimated. However, we reduce the 
problem by reducing the degrees of freedom of planes, depending on the plane 
type. For horizontal planes, we set 𝜃𝜃 = 0, 𝜙𝜙 = 0. For vertical planes, we set 𝜙𝜙 =
0.  This increases the robustness of the optimization. 
 

6.3.5 IMU observation equation  
The IMU in the proposed SLAM is utilized not only in the pose prediction but 
also in the pose estimation. From several strategies developed by Karam et al. 
(2020) to integrate the IMU with the LiDAR SLAM, this chapter uses the joint 
estimation strategy because it is the most robust of those experimented with. 
The equation system in this strategy consists of two types of observation 
equations: the LiDAR observation equation, Eq. (6.10), that is formulated for 
each point assigned to a plane in the SLAM map; and the IMU observation 
equation that is formulated for each measurement along one of the axes of the 
IMU sensor system (s). As the IMU measures angular velocity �̇�𝑉𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 =
(�̇�𝜔𝑖𝑖𝑚𝑚𝑖𝑖

𝑠𝑠 ,  �̇�𝜑𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 ,  �̇�𝜅𝑖𝑖𝑚𝑚𝑖𝑖s ) and acceleration �̈�𝑇𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠  = (�̈�𝑑𝑖𝑖𝑚𝑚𝑖𝑖s , �̈�𝑑𝑖𝑖𝑚𝑚𝑖𝑖s , �̈�𝑑𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 ) along all three 
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axes over time, we formulate six IMU equations at each IMU timestamp 𝑡𝑡𝑖𝑖, Eq. 
(6.14) and Eq. (6.15). The IMU observation equations have been described in 
(Karam et al., 2020), but for completeness, they are also described here with 
additional details.  
 
The acceleration observation equation is formulated based on the expectation 
that the IMU acceleration, after the rotation to the model system and the 
gravity (𝑔𝑔) compensation, should correspond to the second-order derivative of 
the mapping system’s location �̈�𝑇𝑓𝑓𝑚𝑚 = (�̈�𝑑𝑓𝑓m, �̈�𝑑𝑓𝑓m, �̈�𝑑𝑓𝑓𝑚𝑚). 
 

 �̈�𝑇𝑓𝑓𝑚𝑚(𝑡𝑡𝑖𝑖) = 𝑅𝑅𝑓𝑓𝑚𝑚(𝑡𝑡𝑖𝑖) 𝑅𝑅𝑠𝑠
𝑓𝑓  �̈�𝑇𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 (𝑡𝑡𝑖𝑖) − �

0
0
𝑔𝑔
� (6.11) 

 
where  𝑅𝑅𝑠𝑠

𝑓𝑓 = 𝑅𝑅𝑧𝑧(90ᵒ) is the time-independent rotation matrix from the IMU 
sensor system to the frame system. 
However, both sides of Eq. (6.11) are not necessarily equal and the difference 
is termed acceleration residual 𝑟𝑟�̈�𝑇 in this chapter. 
 

 �̈�𝑇𝑓𝑓𝑚𝑚(𝑡𝑡𝑖𝑖) − 𝑅𝑅𝑓𝑓𝑚𝑚(𝑡𝑡𝑖𝑖) 𝑅𝑅𝑠𝑠
𝑓𝑓 �̈�𝑇𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 (𝑡𝑡𝑖𝑖) + �

0
0
𝑔𝑔
� = 𝑟𝑟�̈�𝑇 (6.12) 

 
Similarly, the following angular velocity observation equation is formulated 
based on the expectation that the IMU angular velocity should correspond to 
the first-order derivatives of the mapping system’s rotation angles �̇�𝑉𝑓𝑓𝑚𝑚 =
(�̇�𝜔𝑓𝑓𝑚𝑚, �̇�𝜑f𝑚𝑚, �̇�𝜅𝑓𝑓𝑚𝑚) after the rotation to the IMU sensor system.  
 

 �̇�𝑉𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 (𝑡𝑡𝑖𝑖) − 𝑅𝑅𝑓𝑓𝑆𝑆(𝑡𝑡𝑖𝑖)𝑆𝑆𝑚𝑚
𝑓𝑓 (𝑡𝑡𝑖𝑖)�̇�𝑉𝑓𝑓𝑚𝑚(𝑡𝑡𝑖𝑖) =  𝑟𝑟�̇�𝑉 (6.13) 

 
 

where 𝑟𝑟�̇�𝑉 is the angular velocity residual at 𝑡𝑡𝑖𝑖, 𝑅𝑅𝑓𝑓𝑆𝑆= �𝑅𝑅𝑠𝑠
𝑓𝑓�

𝑇𝑇
and 

 𝑆𝑆𝑚𝑚
𝑓𝑓 = �

cos𝜑𝜑 cos𝜅𝜅 sin𝜅𝜅 0
− cos𝜑𝜑 sin𝜅𝜅 cos 𝜅𝜅 0

sin𝜑𝜑 0 1
�
𝑚𝑚

𝑓𝑓

 is the transformation matrix from the model 

system to the frame system; see (Karam et al., 2020) for more detail.  
 

As the pose parameters in Eq. (6.10) are modelled using splines, the IMU 
measurements (acceleration and angular velocity) in the IMU equations are 
also modelled using splines. Although the IMU has a different (usually higher) 
sensing frequency than the LIDAR scanner, the use of splines enables SLAM to 
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derive the mapping system’s location and orientation at any point of time and 
forms Eq. (6.12) and Eq. (6.13). As splines are polynomial functions, it is 
straightforward to derive the accelerations (�̈�𝑇𝑓𝑓𝑚𝑚) as the second-order 
derivatives of the translation splines (𝑇𝑇𝑓𝑓𝑚𝑚) and the angular velocities (�̇�𝑉𝑓𝑓𝑚𝑚) as 
the first-order derivatives of the rotation splines.  
 
For example, for the translation 𝑑𝑑 spline 𝑑𝑑(𝑡𝑡) = ∑ 𝛼𝛼𝑥𝑥,𝑖𝑖  𝐵𝐵𝑖𝑖(𝑡𝑡)𝑖𝑖 , the acceleration �̈�𝑑 
spline becomes �̈�𝑑(𝑡𝑡) = ∑ 𝛼𝛼𝑥𝑥,𝑖𝑖  �̈�𝐵𝑖𝑖(𝑡𝑡)𝑖𝑖 ,  where 𝛼𝛼𝑥𝑥,𝑖𝑖 is the 𝑑𝑑 spline coefficient to be 
estimated on interval 𝑖𝑖. For the rotation angle ω spline ω(𝑡𝑡) = ∑ 𝛼𝛼𝜔𝜔,𝑖𝑖  𝐵𝐵𝑖𝑖(𝑡𝑡)𝑖𝑖 , the 
angular velocity �̇�𝜔 spline becomes �̇�𝜔(𝑡𝑡) = ∑ 𝛼𝛼𝜔𝜔,𝑖𝑖  �̇�𝐵𝑖𝑖(𝑡𝑡)𝑖𝑖 ,  where 𝛼𝛼𝜔𝜔,𝑖𝑖 is the ω spline 
coefficient to be estimated on interval 𝑖𝑖.  
 
Hence, both the pose parameters and the IMU measurements are expressed 
in terms of the same to-be-determined spline coefficients. 
 
Similarly to Eq. (6.9), we linearize Eq. (6.12) and Eq. (6.13) with respect to 
the unknown pose spline coefficients. Hence, the linearized acceleration and 
angular velocity observation equations becomes the following Eq. (6.14) and 
Eq. (6.15), respectively. 

 
 

 

�̈�𝑇𝑓𝑓𝑚𝑚
0(𝑡𝑡𝑖𝑖) − 𝑅𝑅𝑓𝑓𝑚𝑚

0(𝑡𝑡𝑖𝑖)𝑅𝑅𝑠𝑠
𝑓𝑓  �̈�𝑇𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 (𝑡𝑡𝑖𝑖) + �

0
0
𝑔𝑔
�

�������������������������
𝑟𝑟�̈�𝑇

0

= −

⎝

⎜
⎜
⎜
⎛
�Δ𝛼𝛼𝑣𝑣𝑥𝑥,𝑖𝑖  �̈�𝐵𝑖𝑖(𝑡𝑡𝑖𝑖)
𝑖𝑖

�Δ𝛼𝛼𝑣𝑣𝑦𝑦,𝑖𝑖  �̈�𝐵𝑖𝑖
𝑖𝑖

(𝑡𝑡𝑖𝑖)

�Δ𝛼𝛼𝑣𝑣𝑧𝑧,𝑖𝑖  �̈�𝐵𝑖𝑖(𝑡𝑡𝑖𝑖)
𝑖𝑖 ⎠

⎟
⎟
⎟
⎞

+
𝜕𝜕𝑅𝑅𝑓𝑓𝑚𝑚

0(𝑡𝑡𝑖𝑖)
𝜕𝜕𝜔𝜔

𝑅𝑅𝑠𝑠
𝑓𝑓 �̈�𝑇𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 (𝑡𝑡𝑖𝑖)�Δ𝛼𝛼𝜔𝜔,𝑖𝑖  𝐵𝐵𝑖𝑖(𝑡𝑡𝑖𝑖)

𝑖𝑖

 

+   
𝜕𝜕𝑅𝑅𝑓𝑓𝑚𝑚

0(𝑡𝑡𝑖𝑖)
𝜕𝜕𝜑𝜑

𝑅𝑅𝑠𝑠
𝑓𝑓  �̈�𝑇𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 (𝑡𝑡𝑖𝑖)�Δ𝛼𝛼𝜑𝜑,𝑖𝑖  𝐵𝐵𝑖𝑖(𝑡𝑡𝑖𝑖)

𝑖𝑖

+  
𝜕𝜕𝑅𝑅𝑓𝑓𝑚𝑚

0(𝑡𝑡𝑖𝑖)
𝜕𝜕𝜕𝜕

𝑅𝑅𝑠𝑠
𝑓𝑓  �̈�𝑇𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 (𝑡𝑡𝑖𝑖)�Δ𝛼𝛼𝜅𝜅,𝑖𝑖  𝐵𝐵𝑖𝑖(𝑡𝑡𝑖𝑖)

𝑖𝑖

 

 
 

(6.14) 
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�̇�𝑉𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 (𝑡𝑡𝑖𝑖) − 𝑅𝑅𝑓𝑓𝑠𝑠𝑆𝑆𝑚𝑚
𝑓𝑓 0(𝑡𝑡𝑖𝑖)�̇�𝑉𝑓𝑓𝑚𝑚

0(𝑡𝑡𝑖𝑖)���������������������
𝑟𝑟�̇�𝑉

0
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(6.15) 

 
Eq. (6.14) and Eq. (6.15) contain only the unknown increments of the pose 
splines coefficients compared to Eq. (6.10), which also contains the unknown 
increments of the plane parameters. The IMU is pre-calibrated, see Section 
6.4.5 for details. 
 

6.3.6 Local_SLAM  
After each data association that associates the extracted segments in the scan-
combination to the local map, Eq. (6.10) is formulated for each point assigned 
to a plane in the local map. As we commented above, Local-SLAM runs within 
a local time window that is longer than the time interval of the scan-
combination. At each IMU timestamp 𝑡𝑡𝑖𝑖 within this time window, Eq. (6.14) 
and Eq. (6.15) are formulated. Consequently, the equation system in the Local-
SLAM consists of Eq. (6.10), Eq. (6.14) and Eq. (6.15) and is solved by a least-
squares solution to estimate the unknown increments 𝛥𝛥𝑑𝑑 containing increments 
of all pose splines coefficients and plane parameters used within the 
Local_SLAM time window. The cost function, Eq. (6.16), that the least squares 
solution seeks to minimize is the sum of squared point-to-plane (𝑟𝑟𝑝𝑝), 
acceleration (𝑟𝑟�̈�𝑇) and angular velocity (𝑟𝑟�̇�𝑉) residuals. 
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where 𝑗𝑗 = 1,2, …𝐾𝐾 and 𝑗𝑗𝑖𝑖𝑚𝑚𝑖𝑖 = 1,2, … 𝐽𝐽𝑖𝑖𝑚𝑚𝑖𝑖 where 𝐾𝐾 and 𝐽𝐽𝑖𝑖𝑚𝑚𝑖𝑖 refer to the number of 
LIDAR points and the number of IMU measurements involved in Local_SLAM, 
respectively. 
 
Using the estimated increments 𝛥𝛥𝑑𝑑, the pose and plane parameters 𝑑𝑑 within 
the Local-SLAM time window are updated, see Eq. (6.17). The update process 
iterates and all splines are updated, to withhold the smoothness of the 
trajectory, until convergence. 
 

 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠,𝑖𝑖𝑡𝑡+1 = 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠,𝑖𝑖𝑡𝑡 +  𝛥𝛥𝑑𝑑 (6.17) 
   

where 𝑖𝑖𝑡𝑡 is the number of iteration. 
  
At the end of each Local-SLAM, we generate a new scan-combination by 
predicting the pose parameters using the IMU data and extract the existing 
planes to be associated with the local map. Thus, the IMU in our SLAM is not 
only used to generate the graph, but it is also used to build the data 
association. The pose and planes parameters within the new time window are 
updated, using Eq. (6.17), in the local map by invoking again the Local-SLAM 
as addressed above. 
 

6.3.7 Global-SLAM and Autocalibration  
Compared to Local_SLAM, Global-SLAM process includes also the estimation of 
the intrinsic sensor calibration parameters of all three scanners (auto-
calibration) and the registration parameters describing the relative poses of 
the scanners (auto-registration). These registration and calibration parameters 
are updated within SLAM process (Karam et al., 2019). Consequently, the total 
state to be estimated 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠 in Global_SLAM becomes 
 

 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠 = [𝛼𝛼1, 𝛼𝛼2, … …𝛼𝛼𝑀𝑀,    𝑃𝑃1  𝑃𝑃2 … …  𝑃𝑃𝐻𝐻   µ   𝛹𝛹] (6.18) 
                          
where µ is 8 x 1 vector containing the intrinsic sensor calibration parameters 
of all three scanners, except the range scale factor of one scanner, and ψ is 11 
x 1 vector containing the parameters describing the relative poses of the 
scanners, except the vertical offset between one scanner and the other two; 
see (Karam et al., 2019) for more detail. 
 
After processing the whole dataset by Local-SLAM, Global-SLAM phase starts 
by invoking a loop closure technique that works as described in the next 
section. Next, one integral adjustment solves the equation system that consists 
of Eq. (6.10), Eq. (6.14) and Eq. (6.15) of all assigned LIDAR points and IMU 
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measurements in the dataset. The least-squares optimization framework 
jointly optimizes the system poses and parameters of planes by minimizing the 
above cost function, Eq. (6.16), overall data. Similar to the Local_SLAM, the 
estimation process updates the total state 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠 iteratively (see Eq. (6.17)) 
until convergence. As a result, we have estimates of the calibration (µ) and 
registration (𝛹𝛹) parameters, the whole trajectory, i.e., all pose spline 
parameters, as well as all parameters of 𝑚𝑚 planes in the model coordinate 
system that form the Global map.  
 

6.3.8 Loop Closure Detection and Correction 
The built map in our SLAM consists of planar features. Therefore, if the system 
has revisited a place and we have a loop closure situation, there will be two 
groups of planes reconstructed in this loop closure place. The first group has 
been reconstructed during the first visit to the place (coloured green in Figure 
6.3) and the second group has been reconstructed during the second visit 
(coloured blue in Figure 6.3). 
 
Therefore, in the Global-SLAM phase (see Figure 6.1), the loop closure 
detection searches in the map for a pair of planes that meet the following 
criteria. First, the normal vectors of the plane-pair are pointing towards the 
same direction. Second, the 2D bounding boxes of the plane-pair overlap. 
Third, the pair of planes are separated in time, i.e., have been captured at 
clearly separate time instances.  
 
If such pairs of planes are detected, they are merged to modify the graph to 
perform loop closure correction. The graph modification is implemented 
through an integral adjustment process, as described in Section 6.3.7. The 
loop closure and update process, which represent the Global-SLAM framework, 
iterates until convergence, as shown in Figure 6.1. 
 
Note that merging planes is our way of modifying the SLAM graph to correct 
misclosure at the end of a loop. As the planar features are large (minimum 
area condition in Section 6.3.2) and spatially distinct, the risk of merging wrong 
planes is almost negligible. The plane parametrization (Section 6.3.3) and 
division into classes (Section 6.3.2) also further prevents the risk of merging 
wrong planes. 
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Figure 6.3. The loop closure schematic shows the detected planes in the loop closure area (room) 
from a top perspective. Left: The misclosure at the start (green)-end (blue) room. Right: After loop 
closure correction. For visualization purposes, the detected planes are shown without merging. 

6.4 Experiments 
In this section, we first briefly describe the mapping system used for data 
collection (Section 6.4.1) and then give an overview of the sites where the 
datasets were collected (Section 6.4.2). Next, we present the experimental 
results which are divided into two parts. First, we present the results of our 
closing-loop SLAM system in various indoor environments (Section 6.4.3). 
Second, we compare the obtained point clouds to ones derived from a 
commercial MMS (Viametris iMS3D) and a TLS (RIEGL VZ-400) (Section 6.4.4). 
 

6.4.1 Mobile Mapping System 
Figure 6.4 shows the equipment used for the data collection. It is our research 
multi-sensor backpack MMS (ITC-Backpack) in which the core is formed by the 
triple-Hokuyo LiDAR scanners (laser range finders) (Karam et al., 2019). The 
system configuration consists of one top scanner mounted horizontally and on 
a level that prevents occlusion problem by the operator, and the other two 
scanners are tilted and mounted to the left and right of the top scanner. 
Furthermore, an Xsens IMU is positioned horizontally underneath the top 
scanner. The selected scanners’ configuration provides a quasi-3D LiDAR point 
subset that consists of three scan lines at each timestamp. 
 

6.4.2 Study Areas and Datasets 
We used two study areas that differ in terms of geometry, architecture and 
cluttering in general. The first study area is the building of ITC faculty at the 
University of Twente, The Netherlands. That building is a non-Manhattan world-
building and has an unusually shaped design featuring slanted planes. The 
second study area is the Fire Brigade building in Haaksbergen, The 
Netherlands. That is composed of two floors and has many small rooms 
(dressing, laundry, showers, toilets, storage spaces) and many rooms have 
several doors. The building’s architecture features rounded walls and a circular 
bar.  
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To verify the ability of the loop-closing SLAM system, experiments were carried 
out in seven indoor application scenarios within these two study areas. That 
generated seven datasets, as shown in Table 1. The data collection duration 
for each dataset is listed in the third column. The fourth column lists the key 
characteristics that were the reasons for capturing each dataset. In other 
words, the listed characteristics sometimes form obstacles making the 
captured datasets challenging and suitable to rigorously test the ability of our 
SLAM system.  
 
We have selected the listed scenarios in a way that the proposed SLAM can be 
tested in: a multi-storey space and an environment with arbitrarily oriented 
planes (ITC_f2f3f2_Loop and ITC_f2f5_StairCase), various staircases 
(ITC_f2f5_StairCase and FB_f0f1_Stairs), long and narrow corridors 
(ITC_f2f3f2_Loop and ITC_f1_LargeLoop) and a cluttered area with curved 
surfaces (FB_f1). 
 
Furthermore, the experiments’ setup aims to demonstrate the ability of the 
proposed SLAM in two different loop scenarios. In the first scenario, we ended 
the loop by revisiting the start place of our scanning (ITC_f1_SmallLoop and 
ITC_f1_LargeLoop), while in the second scenario, we revisited a place that is 
not the start or end place of our scanning (FB_f0). 
 
For the experiments, we used min_𝑁𝑁𝑝𝑝 = 100 for the minimum number of points 
in a planar feature, max_𝜎𝜎𝑝𝑝−𝑃𝑃𝑠𝑠 = 3 𝑐𝑐𝑚𝑚 for the maximum standard deviation of 
plane fitting residuals of points and 𝑂𝑂𝐵𝐵𝐵𝐵𝑝𝑝−𝑡𝑡ℎ𝑟𝑟𝑝𝑝𝑠𝑠ℎ𝑡𝑡𝑠𝑠𝑝𝑝 = 30 𝑐𝑐𝑚𝑚 for the minimum 
bounding box’s extent. The distance and angle thresholds for the association 
between the extracted planar segments and the planes in the SLAM map were 
10 𝑐𝑐𝑚𝑚 and 3ᵒ, respectively. For loop closure detection, these thresholds are set 
to 3 m and 15ᵒ, respectively. The time interval threshold between a pair of 
planes depends on the loop size. For ITC_f1_SmallLoop dataset, this threshold 
is set to 25 𝑐𝑐𝑒𝑒𝑐𝑐, which covers an interval of 1000 scans, while for the other loops 
it is set to 125 𝑐𝑐𝑒𝑒𝑐𝑐, which cover an interval of 5000 scans. 
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Figure 6.4. Mobile mapping system (ITC Backpack) used for the data collection. The Velodyne 
scanner observations have not been used in this work. Left: scanning the central staircase in the 
ITC building. Right: scanning the dressing room in the Fire Brigade building.   

6.4.3 Analysis of SLAM Performance 
As shown in Figures 6.5 and 6.6, our SLAM system could cope with both study 
areas and generate point clouds successfully for all datasets. A 3D animation 
demonstrating these point clouds is available on video1. The final column in 
Table 6.1 lists the number of points in each point cloud. 
 
The proposed hypothesis generation of planar structures allows the SLAM to 
reconstruct arbitrarily oriented planes (slanted). This was evident through the 
ability of SLAM to map two different staircase environments, namely the central 
and emergency exit staircases, in the ITC building where several slanted planes 
are present (Figure 6.5a&c). Figure 6.5c clearly shows the slanted planes in 
the exit staircase. The ability to map stairs and handle the arbitrarily oriented 
planar structures enables our SLAM to map multi-storey spaces in both the ITC 
and Fire Brigade buildings (Figure 6.5a&c and Figure 6.6b). 
 
The benefits of the proposed hypothesis generation were not limited to 
handling slanted planes but also extended to reconstructing the rounded walls 
and circular bar in the Fire Brigade datasets (Figure 6.6c). Furthermore, the 
cluttered first floor in the Fire Brigade building was mapped successfully.  

 
1 
https://www.youtube.com/playlist?list=PLVQwHcKd7n9O_zh_R2NDB
h4-P0aVeY8bA 
 

https://www.youtube.com/playlist?list=PLVQwHcKd7n9O_zh_R2NDBh4-P0aVeY8bA
https://www.youtube.com/playlist?list=PLVQwHcKd7n9O_zh_R2NDBh4-P0aVeY8bA
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The most crucial aspect in the testing of the proposed SLAM was to check the 
robustness in terms of loop closure detection and correction. This was evident 
through the ability to detect and correct the loop closure in all four different 
loops (Figure 6.5a,b&d and Figure 6.6a). We computed the accumulated drift 
at the end of each loop without any loop closure correction. The results show 
that our SLAM accumulates a drift of only 0.08% (0.15 𝑚𝑚) and  0.006ᵒ/𝑚𝑚 (1ᵒ) 
over a 183 𝑚𝑚 long acquisition trajectory on the ground floor in the Fire Brigade 
building. The accumulated drift is only high in the areas that have 
homogeneous, long corridors as is the case for the two large loops in the ITC 
building. However, the drift does not exceed 0.32% (0.80 𝑚𝑚) and 0.013ᵒ/𝑚𝑚 ( 2.6ᵒ) 
over a trajectory length of about 250 𝑚𝑚. 
 
The resulting drifts are mainly on the X and Y axes, which represent the moving 
direction based on the orientation of the scanned area with respect to our 
model system. The drift in the Z-axis direction is negligible and is smaller than 
the threshold used for data association, thus the system still sees the 
previously estimated planes for floor and ceiling in the second visit.  
 
Performing the SLAM algorithm on the first-floor loop (ITC_f1_LargeLoop) and 
the second-third floor loop (f2f3f2_Loop) in the ITC building was particularly 
challenging, mainly because of the large loop and the long narrow corridors. 
This is noticeable as we have the largest misclosure in these two datasets. 
Misclosures are predominantly caused by positioning errors in the direction of 
long corridors. 
 
Figure 6.7 shows the loop closure for the largest loop in our experiments 
(ITC_f1_LargeLoop) both with and without the proposed loop closure 
correction. It can be seen that, without loop closure, reobserving places 
introduces duplicate walls into the map. 
 

6.4.4 Cloud to Cloud Comparison 
To evaluate the performance of our SLAM system, we compared the generated 
point clouds to those derived from a commercial MMS (Viametris iMS3D) and 
a TLS (RIEGL VZ-400).  
 
The point clouds have far-away points that were captured in unvisited areas 
through glass or open doors. As these points will often not be present in both 
clouds, we have discarded these points from the comparison. 
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Table 6.1. General information about captured datasets 

Building 
Datasets 

(the terminology used 
in the chapter) 

Collection 
Time (m) Key characteristics 

Number 
of 

points 

IT
C

 b
ui

ld
in

g 

ITC_f2f3f2_Loop 5 

-Slanted planar 
structures 
-Narrow and long 
corridors 
-Narrow and closed 
staircase 
-Open staircase 
-Multi-storey space 

40 x 106 

ITC_f2f5_StairCase 4 

-Slanted planar 
structures 
-Narrow and closed 
staircase 
-Multi-storey space 

32 x 106 

ITC_f1_LargeLoop 7.5 
-Narrow and long 
corridors 
-Large loop 

58 x 106 

ITC_f1_SmallLoop 1 -Small loop 8 x 106 

Fi
re

 B
ri

ga
de

 b
ui

ld
in

g 

FB_f0 11 

-There is a hall that has 
very large glass walls 
-Three large fire trucks 
were parked in the hall.  
-Small rooms 

84 x 106 

FB_f1 6 
-Curved walls and bar 
-Cluttered 

48 x 106 

FB_f0f1_Stairs 2 
-Straight stairs 
-Multi-storey space 

15 x 106 
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(a) ITC_f2f3f2_Loop 

  
(b) ITC_f1_largeLoop 

  
 
 
 
 
 
 
 
 
 
 

  
(d) ITC_f1_smalLoop 

Figure 6.5. Slanted view of the generated point clouds of the ITC building datasets captured by the 
ITC-Backpack. Colours show plane association. The black 2D bounding boxes in (b) represent the 
reconstructed planes in the Global-map and the dashed red circle represents the detected loop closure 
area after the correction; see Figure 6.7. Parts of the last two point clouds are not shown in order to 
show the interior structure with the trajectory (white).  

(c)  ITC_f2f5f2 
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(a) FB_f0 

 

 

 (b) FB_f0f1_StairCase 

  

 (c) FB_f1 

Figure 6.6. Top view (a & c) and slanted view (b) of the generated point clouds of the Fire Brigade 
building datasets captured by the ITC-Backpack. Colours show plane association. The ceiling points 
in (a) and (b) and parts of the point cloud in (c) are not shown in order to show the interior structure 
with the trajectory (white). The wavy form of the trajectory follows from a natural walking pace. 
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                     (a) Without loop closure                                            (b) With loop closure 

Figure 6.7. The first-floor loop in the ITC building (ITC_f1_largeLoop) which is the largest loop in 
our experiments. (a) Top view of the walls’ points with trajectory (black) at the start (blue) and end 
(red) of the loop without loop closure. (b) The walls’ points and the trajectory after loop closure 
correction. 

6.4.4.1 Comparison against a commercial mobile 
mapping system 
On the same day as our study, the first floor in the Fire Brigade building (FB_f1) 
was scanned by a commercial mobile mapping system, Viametris iMS3D. For 
comparison purposes, both our and Viametris’s point clouds were registered in 
the same coordinate system using rigid transformation. The registration 
process was performed by means of coarse registration and the ICP algorithm 
included in the open-source free software CloudCompare. The difference 
between the clouds was undetectable by eye. To quantify the deviation of our 
point cloud from the Viametris iMS3D cloud, we computed the cloud-to-cloud 
absolute distances (C2C), also using CloudCompare; see Figure 6.8. The 
results show that the majority of the computed distances (about 92%) are less 
than 3 𝑐𝑐𝑚𝑚. 

 

 
 

Figure 6.8. ITC-Backpack and Viametris iMS3D comparison. Left: Our point cloud (red) and 
iMS3D cloud (green) registered in the same coordinate system. Right: Our point cloud coloured 
based on the distances to the iMS3D cloud 
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6.4.4.2 TLS Comparison 
Furthermore, we have scanned the second-third floor loop (ITC_f2f3f2_loop), 
as that is one of the most challenging datasets in the ITC building by RIEGL 
VZ-400 TLS through a series of individual scans (39 scan positions). The 
registration of scan positions to generate a single point cloud was performed 
by means of coarse registration and the ICP algorithm included in the multi-
station adjustment plugin within the RiSCAN PRO software accompanying 
RIEGL TLS. The registration error was less than 1 𝑐𝑐𝑚𝑚. 
 
As in the previous comparison, the point clouds from our system and TLS 
scanner were registered in the same coordinate system. Visual inspection 
shows differences between the clouds. We quantified the deviation of our point 
cloud to the TLS cloud used as ground truth, as shown in Figure 6.9. The 
histogram of C2C distances shows that 86% of the computed distances are less 
than 20 𝑐𝑐𝑚𝑚. 

 

 
 

Figure 6.9. ITC-Backpack and TLS comparison. Left: Our point cloud (red) and TLS cloud (green) 
registered in the same coordinate system. Right: Our point cloud coloured based on the C2C 
distances to the TLS cloud 

6.4.5 Discussion and Limitations 
The proposed method has limitations. The detection of a standard-height 
vertical wall, when observed from far-away e.g., from the other end of a 
corridor, becomes difficult as it can be observed only within a limited tilt angle 
i.e., an almost horizontal scan line. In this case, the farther away the 
observation is made, the more uncertain it is that the observation was made 
from the wall and not from the floor or the ceiling. Moreover, distinguishing 
whether a far-away wall is vertical or slanted is also problematic. Furthermore, 
in some cases, the data on such a wall is thin up to a point that makes the 
plane extraction impossible. In such a pathological environment, e.g., a long 
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homogeneous corridor, the method will start to drift (as its IMU does) along 
the corridor, i.e., the direction along which LiDAR observations do not serve to 
update the pose.  
 
To mitigate this drift and avoid degenerate motions, we slightly relaxed the 
association distance threshold (by a factor of two) for the linear segments that 
are extracted from horizontal scan lines and far away from the system in an 
attempt to assign the segments on the wall at the end of a corridor to the 
nearest plane that had been previously estimated and most probably 
represented this wall. 
 
Another limitation is that the state vector formulation of Eq. (6.18) assumes 
time-independent autocalibration of sensors. Therefore, we chose to pre-
calibrate the IMU and apply fixed biases in pre-processing. The IMU is Xsens 
MTi-100 and, based on our results, is of high enough quality for this approach. 
In future work, however, we will investigate whether map accuracy could be 
improved if the state vector of Eq. (6.18) accounts for time-dependent 
calibration by introducing piece-wise calibration parameters similarly as in 
(Geneva et al., 2018; Gentil et al., 2020; Zhou et al., 2020). 
 
The proposed loop closure technique corrected the misclosure at the end of all 
loops in our datasets (Figure 6.5a,b&d and Figure 6.6a). As is commonly 
known, loop closure reduces errors, but also distributes errors over the whole 
loop to make the data internally consistent. Therefore, we compare against the 
TLS point cloud, where these errors clearly remain visible (Figure 6.9). For 
further investigation of this errors distribution, we separated out the third 
floor’s point cloud from the generated point cloud (ITC_f2f3f2_loop) after loop 
closure (Figure 6.5a). Next, we compared the segmented cloud against the 
corresponding TLS cloud (Figure 6.10a). The C2C distances between these two 
clouds demonstrate that about 89% of the computed distances are less than 
20 𝑐𝑐𝑚𝑚, which is slightly higher than the percentage for the whole loop 
comparison (Figure 6.9). Moreover, we ran SLAM separately just on the third 
floor’s data. The C2C distances between the generated point cloud and the 
corresponding TLS cloud show that about 84%  of computed distances are less 
than 20 𝑐𝑐𝑚𝑚, which means that the percentage of long distances (> 20 𝑐𝑐𝑚𝑚) is 
increased by about 5% if we do not process the whole loop and correct the 
misclosure. We repeated the test above on the second floor’s cloud (Figure 
6.10b) and in contrast to the third floor, the percentage of long distances (> 
20 𝑐𝑐𝑚𝑚) is slightly increased after the loop closure correction. This can be 
explained as a distribution of the larger errors on the third floor over the entire 
loop as a result of the loop closure.    
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(a)  

 
(b) 

Figure 6.10. Point cloud of part of the third (a) and second (b) floor in the ITC building coloured 
based on the distances to the corresponding TLS cloud 

Introducing the scan trajectory along with the point cloud as supplementary 
information is advantageous for semantic interpretation (Nikoohemat et al., 
2018) and space partitioning of the point cloud (Elseicy et al., 2018). 
Expanding this supplementary information to cover also the plane features of 
the SLAM map will likely be also beneficial; and part of our future work. 
Simultaneously, we will then address a limitation in our current work that the 
association of leftover points (Section 6.3.2) may lead to points being 
incorrectly associated onto an existing plane, before enough points are seen to 
instantiate a new plane.  
 

6.5 Conclusions  
This article has introduced a novel loop-closing continuous-time LiDAR-IMU 
Graph-SLAM method to map indoor environments. The SLAM map 
representation is done by a set of planes. The data association technique 
assigns detected planar segments as new or onto existing planes, which both 
can have arbitrary orientations. Regardless of this, a large number of planes 
still remain either horizontal or vertical in built environment; a fact which we 
exploit to reduce the number of free parameters in the joint optimization 
problem, by classifying planes into horizontal, vertical, and slanted classes.  
Loop closure detection and correction is done by pair-wise planar feature 
matching, relying on the fact that the planar features are large and hence 
spatially distinct. 
 
Our results are compared against a commercial mapping system (iMS3D) and 
the ground truth (RIEGL VZ-400 TLS). Results show that our SLAM system 
shows comparable performance with the commercial mobile mapping system 
because 92% of the C2C distances, between the corresponding clouds from 
both systems, are less than 3 cm. While the deviation is larger to the TLS cloud, 
86% of the C2C distances are less than 20 𝑐𝑐𝑚𝑚, due to the presence of long 
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homogenous corridors in the compared cloud. The proposed method was 
verified in various scenarios, including scanning multi-storey space, staircases, 
large and small loops, cluttered areas, and areas surrounded by some rounded 
walls. 
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7.1  Scope of application 

This dissertation contributes to the 3D mapping of unknown indoor 
environments by developing a wearable indoor mobile mapping system 
employing simultaneous localization and mapping (SLAM). The chapters 3 to 6 
showed the progress in this development. 
 
In Chapter 3, the design of our triple-2D-LRF backpack system and the 
employed planar feature-based SLAM were introduced. Representing the SLAM 
map by planes is advantageous due to the large size and the dominant 
existence of planar structures in indoor environments. This chapter presented 
SLAM at an early stage. It only uses the LRFs configuration, i.e., LIDAR SLAM, 
and does not use any additional sensor for pose prediction. Instead, it relies 
on a simple linear extrapolation of the previously estimated trajectory to 
predict the pose of the next LIDAR scan for data association purposes. 
Consequently, the SLAM in this chapter assumes a linear change in position 
and rotation over a period of two LIDAR scans and can not handle a large 
rotation within that period. Moreover, the proposed SLAM was designed to map 
indoor environments with planar and vertical structures with no capability to 
work in more complex environments with slanted planes such as staircases. 
Additionally, this chapter proposed an evaluation pipeline for indoor LIDAR 
point clouds. The pipeline can partly evaluate the quality of the acquired point 
cloud of a Manhattan World building in the absence of any ground truth model. 
Further, this pipeline uses a floor plan (if available) as an external information 
source to check the quality of the generated indoor model (i.e., 3D 
reconstructed planes in our method) and thereby provides an overall 
impression of the reconstruction accuracy. The proposed evaluation pipeline is 
not limited to assess only the point clouds generated by the developed mapping 
system in this research, but provides general means. 
 
In chapter 4, the SLAM was improved by integrating an inertial measurement 
unit (IMU) into the LIDAR SLAM. As an alternative to the linear extrapolation 
used in the previous chapter, the IMU measurements were utilized to provide 
a more reliable prediction of the system’s position and attitude. Thus, the SLAM 
became capable to handle larger and more sudden rotations of the operator 
while scanning, which in turn leads to a more robust data association between 
the measured points and planes in the map. However, since the SLAM was still 
only based on LIDAR observations for the pose estimation, the backpack 
motion may be erratic in environments containing pathological geometries 
such as a long homogeneous corridor or a narrow room with a large glass 
surface in the moving direction. 
 
The LIDAR SLAM and IMU integration was deepened in Chapter 5 by including 
the IMU observations not only in the pose prediction, but also in the pose 
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estimation to support the LIDAR SLAM in overcoming pathological pose 
configurations. This Chapter proposed several strategies for this integration. 
Based on experiments on three indoor environments in the real world, all 
proposed strategies led to a more robust SLAM and a better reconstruction 
accuracy. 
 
Chapter 6 improved SLAM further by adding three more properties that expand 
the scope of application of the backpack system. These added properties are 
the main contributions of this chapter. First, SLAM can inherently perform loop 
closure detection and correction. Second, SLAM exploits the IMU to predict the 
pose of a few successive scans which allows for the generation of a more 
reliable hypothesis of planar segments. This in turn allows SLAM to handle 
indoor environments with arbitrarily oriented planes. Third, a more reliable 
data association technique is based on matching planar segments with planar 
features in the map. The output of this chapter was a 3D LIDAR-IMU SLAM that 
enables the backpack system to map more complex spaces such as staircases, 
fancy architecture (e.g., slanted walls, non-horizontal floor) and multi-storey 
buildings. However, our SLAM system still faces some challenges. The main 
challenge is when the extracted planes do not fully constrain the pose estimate, 
as is the case for the homogenous narrow corridors. Although our SLAM 
managed to map such areas, the drift was relatively large. However, this is a 
common drawback of any LIDAR SLAMs.  
 
 

7.2  Conclusions per objective 
 
1) To find the optimal configuration of the LRFs of the designed 

system to avoid occlusion and acquire sufficient geometrical 
information of the building. 
 
This objective mainly addressed the hardware problem, i.e., backpack 
system design, in the research. The system design has been proposed in 
(Vosselman, 2014) and was implemented, optimised and evaluated in this 
research. The system consists of three single-layer LIDAR scanners that 
have a limited (270°) field of view. Consequently, identifying the optimal 
configuration for indoor mapping purposes is more challenging compared 
to multi-layer 3D scanners-based systems. To do this, an experimental 
comparison of selected configurations was carried out. The selection of the 
optimal sensor configuration was built in terms of the success of the 
algorithm, and the accuracy and completeness of the resulting map and 
point cloud. This comparison utilized our evaluation techniques proposed 
in Chapter 3. As a result, the selected configuration consists of one top 
scanner mounted horizontally on a level that prevents occlusion problems 
by the operator, and the other two scanners are tilted and mounted to the 
left and right of the top scanner. In this way, the system can cover as much 
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as possible of the surrounding environment and ensures a good data 
association when passing through doors and corners. 
 
 

2) To integrate the IMU with LIDAR into SLAM so that we exploit the 
strength of the scanning geometry for accurate positioning in 3D 
and the strength of the IMU in measuring short-term pose changes.  
 
The goal of this objective was to investigate the benefits that the 
integration of a low-cost IMU can bring to a feature-based LIDAR SLAM 
algorithm. The IMU measurements were utilized for pose prediction within 
a short time window in Chapter 4. To benefit from the IMU and avoid the 
drift problem, the IMU drifts are reset at the start time of each prediction 
window by using the position and the approximate velocity of the system 
estimated based on the LIDAR observations at that time. This objective 
was further studied in Chapter 5 in which we investigated whether the IMU 
observations can be used also in the pose estimation so that our SLAM can 
overcome pathological pose configurations and the impact of IMU’s drift 
remains negligible. To do so, we proposed a combination of a reliability 
measure for pose estimates and coordinate and known-velocity updates. 
This allows resetting the IMU drift without the need to a specific data 
capture mode as it is the case with the zero velocity updates (Chow et al., 
2014). As a result, we fused the IMU and LIDAR observations together 
through graph optimization to estimate the state of the system and the 
SLAM map. Unlike recent IMU-LIDAR based graph optimizations that use a 
discrete pose representation (Geneva et al., 2018; Zhou et al., 2020), our 
graph uses splines to have a continuous-time trajectory representation. 
 
 

3) To develop a hypothesis generation of arbitrarily oriented planar 
structures. This enables the backpack system to map some 
complex spaces such as staircases and fancy architecture (e.g., 
slanted walls, non-horizontal floor, ..etc). 
 
Unlike our system, many recently developed indoor mapping systems use 
multi-layer LIDAR scanners (such as Velodyne)(Blaser et al., 2019; Leica 
Pegasus1). At each sweep, the multi-layer scanner provides a 3D scan that 
is wide enough to apply a planar segmentation method and extract planes 
(if present). This does not apply to the single-layer LIDAR scanner that 
provides a single scan line at each sweep. The goal of this objective was to 
build a reliable hypothesis of planes that can be applied even to these 
single-layer scanners. To do so, the IMU was exploited to predict the pose 
of a few successive scans. A collection of these scans allows for the 
generation of a reliable hypothesis of planar structures. This enables a 
mapping system composed of single-layer scanners to handle indoor 
environments with arbitrarily oriented planes. The goal of this objective 
was not limited to the plane extraction but also included a three-fold 

 
1 www.leica-geosystems.com 
 

http://www.leica-geosystems.com/
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classification: horizontal, vertical, and slanted planes. We reduced the 
degrees of freedom of planes, depending on the plane type, which in turn 
increased the robustness of the graph optimization for pose estimation. 

 
4) To develop a more reliable data association that defines the 

correspondences between the recently observed data by sensors 
and the up-to-date built map in SLAM. 
 
The most common data association method in LIDAR SLAM is the well-
known scan matching with the iterative closest point (ICP) method (Besl 
et al., 1992). Some related works, i.e., planar SLAMs, utilize geometric 
elements to find the associations such as linear segment-to-plane 
(Vosselman, 2014) and plane-to-plane (Geneva et al., 2018; Zhou et al., 
2020; Gentil et al., 2020) associations. The use of planes is advantageous 
due to the large size and the abundant existence of planar structures in 
indoor environments. Therefore, this objective utilized the resulting planar 
segments from the previous objective to define the correspondences 
between recently recorded LIDAR data and the planar features in the map. 
The normal vector of planes in our SLAM always points towards the 
system’s trajectory. This increases the robustness as nearby planes with 
opposite normal vector directions can not be matched. 
 
However, the closely aligned scan lines, that are not spanning a large area, 
do not allow for a robust estimation of planar segment parameters in the 
previous objective. Therefore, this objective also utilized the LIDAR points 
in such scan lines and points that were not part of a planar segment (i.e., 
remaining un-associated) by checking their association to an already 
existing plane feature in the map. 
 

5) To integrate a loop closure detection and correction technique with 
the LIDAR-IMU SLAM system so that the system becomes able to 
recognize an already visited place and correct the accumulated 
drift by then. 
 
Many loop closure techniques use descriptors (Steder et al., 2010; Bosse 
& Zlot, 2013; He et al., 2016; Guo et al., 2018;) to search for 
correspondences between two sets of data. The goal of this objective was 
to use simple descriptor on spatially distinct features (planes). To reach 
this goal, our loop closure technique relies on planar feature-based 
matching. In contrast to the closest work to ours (Gentil et al., 2020) that 
relies on the data association check between two LIDAR scans to detect 
the loop, our loop closure analyses the relationship among the whole 
planes in the global SLAM map. This is one of the main contributions of this 
research. 
 
As the planar features are typically large and spatially distinct, the risk of 
merging wrong planes is almost negligible. The plane parametrization and 
division into classes in Chapter 6 also further prevents the risk of merging 
wrong planes and increases the robustness of our loop closure technique. 
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Our loop closure technique showed the ability to handle two different loop 
scenarios in two different indoor environments in terms of geometry, 
architecture and cluttering. In the first scenario, the loop was ended by 
revisiting the start place of the scanning, while in the second scenario, the 
revisited place was not the start or end place of the scanning. 
Experimentally, our loop closure managed to detect and correct an 
accumulated drift up to 80 𝑐𝑐𝑚𝑚 (i.e., 0.32%) and 2.6ᵒ (i.e., 0.013ᵒ/𝑚𝑚) over a 
length trajectory of about 250 𝑚𝑚. This significant drift was accumulated 
after scanning an indoor space that has homogenous narrow corridors. 
 
 

6) To develop an evaluation pipeline for indoor laser scanning point 
clouds. 
The accuracy of indoor mobile mapping point clouds is significantly 
important as SLAM-based point clouds usually suffer from registration 
problems. Therefore, the accuracy of the captured point clouds has to be 
analysed and investigated. Point cloud evaluation techniques usually use 
ground truth data as obtained by TLS or another indoor mobile mapping 
system. The most common technique is a cloud to cloud comparison after 
transforming both clouds to the same coordinate system (Lehtola et al., 
2017; Maboudi et al., 2017, 2018; Sirmacek et al., 2016; Thomson et al., 
2013). Other evaluation methods use ground truth information in the form 
of a CAD/ building information model (BIM) (Maboudi et al., 2018; 
Thomson et al., 2013). Providing such ground truth data is difficult and 
requires a great effort. This objective used architectural constraints to do 
a partial evaluation in the absence of any ground truth model, or utilized 
the benefits of an outdated map, which is available for many buildings 
nowadays, in the accuracy analysis. In particular, our evaluation method 
utilizes the perpendicularity and parallelism characteristics predominant in 
indoor environments to evaluate the ability of the mapping system to 
capture the true geometry of its environment. In addition, the method 
checks the wall thickness that characterises, like parallelism, the ability of 
the mapping system to keep a good localisation when moving from one 
room to another. Although we did not consider the errors in the 
constructions and the outdated map, this evaluation method provided an 
overall impression of the reconstruction accuracy. 
 

 

7.3  Reflections and outlook 

In recent years a lot of efforts have been exerted in designing indoor mobile 
mapping systems and developing localization and mapping algorithms. 
However, most indoor spaces still only have 2D representations, in the shape 
of floor plans, compared to outdoor spaces that most have a 3D model.  
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Our research is complementary to the efforts to model indoor spaces. As a 
result, we developed a wearable mobile system employing SLAM algorithm for 
indoor mapping. Our mapping system outputs the scanned environments in 
planar shapes, which is a popular format for the state-of-the-art methods in 
indoor 3D reconstruction (Nikoohemat et al., 2020). Besides 3D planes, our 
system generates a 3D point cloud of the scanned area and a 3D trajectory. 
Outputting the scan trajectory along with the point cloud as supplementary 
information is advantageous for semantic interpretation (Nikoohemat et al., 
2018) and space partitioning of the point cloud (Elseicy et al., 2018) which are 
known problems in the domain of 3D indoor modelling. This means that our 
system provides the required data for indoor modelling (in a point cloud 
shape), as many other mapping systems do, and facilitates the modelling 
pipeline at the same time. In this regard, our SLAM pipeline can be further 
improved in the future to become a complete 3D indoor mapping pipeline, i.e., 
from scanning to modelling. 
 
Our SLAM is innovative in dealing with relatively complex indoor environments 
with arbitrarily oriented planes based on a single-layer scanner. The 
experimental results in this research show that our mapping system offers 
comparable performance with a commercial mobile mapping system, Viametris 
iMS3D, as proven by the low deviation between the point clouds generated by 
both systems. Consequently, mapping with our backpack with a six degrees of 
freedom (6DoF) SLAM achieves a similar accuracy to that of a trolley-based 
system with 3DoF SLAM, but with more flexibility. 
 
The IMU used in our system, based on our results, is of sufficiently high quality 
and needs no calibration within our SLAM pipeline. Therefore, we did not 
include the IMU biases in the state vector to be estimated. In future work, 
however, we will investigate whether a higher map accuracy can be obtained 
if the state vector accounts for time-dependent calibration by introducing 
piece-wise calibration parameters similarly as in (Geneva et al., 2018; Gentil 
et al., 2020; Zhou et al., 2020). Moreover, future work can investigate the 
integration with visual odometry to address the drawback of LIDAR SLAM in 
some pathological geometries. 
 
The architectural constraints-based evaluation method is limited to evaluate 
point clouds of Manhattan World buildings. Future work in this domain should 
focus on including more constraints thereby expanding the scope of application 
of the evaluation method. Also, consideration of errors in the constructions and 
the outdated map should provide a more reliable evaluation. 
 
Nowadays, more moving objects are present in indoor spaces such as robot 
vacuum cleaners. In addition, there are usually people moving in building 
interiors and it is not reasonable to evacuate a building before each scanning. 
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Thus, the complexity of indoor environments is not only related to geometry 
and architecture. The presence of moving objects and people usually decreases 
the overall quality of the SLAM-based map. Also, the presence of glass surfaces 
(e.g., walls, large windows) leads to missing or incorrect range measurements 
in LIDAR-based mapping systems. Therefore, it is recommended to consider 
including detection and tracking techniques of moving and glass objects within 
SLAM. 
 
In general, the system developed in this research is considered to be versatile 
and the versatility stems from the wide range of applications indoor mapping 
has nowadays such as mapping hazardous sites, indoor navigation and 
positioning, virtual tourism, facility management and interior design. 
Specifically, similar to the state-of-the-art mobile scanning systems, our 
system digitizes building interiors and generates point clouds quickly. 
 
Drones are considered autonomous driving vehicles that do not necessarily 
require a human operator. Future work should focus on building a drone with 
our system configuration to scan areas that are not accessible by an operator 
carrying a backpack such as disaster areas. 
 
Furthermore, after the success of deep learning in many applications, one can 
ask how can deep learning algorithms help in indoor mobile mapping? The 
mobile mapping system and the employed SLAM are designed to map unknown 
environments. Deep learning algorithms require benchmarks for training 
purposes. The available indoor benchmark datasets are not enough to cover 
all types of indoor spaces. Considering the rapid advancements in the indoor 
mapping domain, we expect to have sufficient training datasets soon. However, 
some recent works apply deep learning methods to loop closure detection 
(Chen et al., 2020; Memon et al., 2020). 
 
By looking at the recent advances in the indoor mapping domain, it is very 
soon expected to have digital maps on mobile and desktop devices for 
navigation in the public buildings (e.g., hospitals, shopping malls, airports) 
similar to Google Maps that became indispensable outdoors. The best-case 
scenario is to enrich the outdoor map of an area by maps of buildings existing 
in this area. Having such a map will enable people to effortlessly position 
themselves anywhere, find optimal route and reach a destination located in the 
interior area and not merely at the building’s entrance, thereby making the 
world more accessible. For example, universities usually spread out over a 
large campus that contains countless buildings. New employees and freshman 
students need a map to guide them inside and between these buildings. 
However, as indoor environments are denied to the global navigation satellite 
systems (GNSSs), indoor mobile systems can not localize themselves 
immediately in the global coordinate system, but in local one with respect to 
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the environment. Accordingly, indoor maps are usually defined in local 
coordinate systems compared to outdoor maps that are defined in the global 
system. Thus, integrating indoor and outdoor maps requires efforts to register 
both maps in the same global coordinate system. To avoid such efforts, the 
author recommendation for future work is to focus on indoor-outdoor mobile 
mapping systems that make the transition between outdoors and indoors 
seamless and provide a more comprehensive map of the scanned area.  



128 



129 

Bibliography 
Ajay Kumar, G., Patil, A. K., Patil, R., Park, S. S., & Chai, Y. H. (2017). A LiDAR 

and IMU Integrated Indoor Navigation System for UAVs and Its 
Application in Real-Time Pipeline Classification. Sensors, 17(6), 1268. 
https://doi.org/10.3390/s17061268 

Besl, P., McKay, N. A Method for registration of 3-D shapes. IEEE Trans. on 
Pattern Analalysis and Machine Intelligence (TPAMI), 14(2):239–
256, 1992. 

Biber, P., Andreasson, H., Duckett, T., & Schilling, A. (2004). 3D modeling of 
indoor environments by a mobile robot with a laser scanner and 
panoramic camera. Proc. of the IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS), Vol. 4, 28 September – 2 
October, Pp. 3430-3435. 

Blaser, S., Cavegn, S., & Nebiker, S. (2018). Development of a portable high 
performance mobile mapping system using the robot operation system. 
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences, 4(1), 13–20. https://doi.org/10.5194/isprs-
annals-IV-1-13-2018 

Blaser, S., Nebiker, S., & Wisler, D. (2019). Portable image-based high 
performance mobile mapping system in underground environments - 
system configuration and performance evaluation. ISPRS Annals of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences, 
4(2/W5), 255–262. https://doi.org/10.5194/isprs-annals-IV-2-W5-255-
2019 

Borrmann, D.; Elseberg, J.; Lingemann, K.; Nüchter, A.; Hertzberg, J. (2008). 
Globally consistent 3D mapping with scan matching. Robotics and 
Autonomous Systems, 56(2), 130–142. 

Bosse, M., & Zlot, R. (2013). Place recognition using keypoint voting in large 
3D lidar datasets. Proceedings - IEEE International Conference on 
Robotics and Automation, 2677–2684. 
https://doi.org/10.1109/ICRA.2013.6630945 

Bosse, M., Zlot, R., & Flick, P. (2012). Zebedee: Design of a spring-mounted 
3-D range sensor with application to mobile mapping. IEEE Transactions 
on Robotics, 28(5), 1104–1119. 

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, 
I., & Leonard, J. J. (2016). Past, present, and future of simultaneous 
localization and mapping: Toward the robust-perception age. IEEE 
Transactions on Robotics, 32(6), 1309–1332. 
https://doi.org/10.1109/TRO.2016.2624754 

Celik, K., Soon-Jo Chung, & Somani, A. (2008). Mono-vision corner SLAM for 
indoor navigation. 2008 IEEE International Conference on 
Electro/Information Technology, 343–348. 
https://doi.org/10.1109/EIT.2008.4554326 

Chen, G., Kua, J., Shum, S., & Naikal, N. (2010). Indoor localization algorithms 
for a human-operated backpack system. 3D Data Processing Visualization 
and Transmission, September, 15–17. 

Chen, X., Läbe, T., Milioto, A., Röhling, T., Vysotska, O., Haag, A., Behley, J., 
& Stachniss, C. (2020). OverlapNet: Loop Closing for LiDAR-based SLAM. 
Robotics: Science and Systems XVI, i. 



Bibliography 

130 
 

https://doi.org/10.15607/RSS.2020.XVI.009 
Choi, D. G., Bok, Y., Kim, J. S., & Kweon, I. S. (2014). Extrinsic calibration of 

2D laser sensors. Proceedings - IEEE International Conference on 
Robotics and Automation, 3027–3033. 
https://doi.org/10.1109/ICRA.2014.6907295 

Chow, J. C. K., Lichti, D. D., Hol, J. D., Bellusci, G., & Luinge, H. (2014). IMU 
and multiple RGB-D camera fusion for assisting indoor stop-and-go 3D 
terrestrial laser scanning. Robotics, 3(3), 247–280. 
https://doi.org/10.3390/robotics3030247 

Cinaz, B., & Kenn, H. (2008). “Head SLAM - Simultaneous localization and 
mapping with head-mounted inertial and laser range sensors.” 
Proceedings - International Symposium on Wearable Computers, ISWC, 
February, 3–10. 

Concha, A., Loianno, G., Kumar, V., & Civera, J. (2016). Visual-inertial direct 
SLAM. 2016 IEEE International Conference on Robotics and Automation 
(ICRA), 1331–1338. https://doi.org/10.1109/ICRA.2016.7487266 

Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. (2007). “MonoSLAM: 
Real-time single camera SLAM.” IEEE Transactions on Pattern Analysis 
and Machine Intelligence 29.6 (2007)., 29(6), 1052–1067. 

De La Puente, P., & Rodriguez-Losada, D. (2015). Feature based graph SLAM 
with high level representation using rectangles. Robotics and Autonomous 
Systems, 63(P1), 80–88. https://doi.org/10.1016/j.robot.2014.09.006 

Durrant-Whyte, H., & Bailey, T. (2006a). “Simultaneous localization and 
mapping (SLAM): part I The Essential Algorithms.” Robotics & Automation 
Magazine, 2, 99–110. 

Durrant-Whyte, H., & Bailey, T. (2006b). “Simultaneous Localization and 
Mapping (SLAM): Part II.” IEEE Robotics & Automation Magazine 13.3 : 
108-117. 

Elseicy, A., Nikoohemat, S., Peter, M., & Elberink, S. O. (2018). Space 
subdivision of indoor mobile laser scanning data based on the scanner 
trajectory. Remote Sensing, 10(11), 1–26. 
https://doi.org/10.3390/rs10111815 

Fernández-Moral, E., Arévalo, V., & González-Jiménez, J. (2015). Extrinsic 
calibration of a set of 2D laser rangefinders. Proceedings - IEEE 
International Conference on Robotics and Automation, 2015-June(June), 
2098–2104. https://doi.org/10.1109/ICRA.2015.7139475 

Filgueira, A., Arias, P., & Bueno, M. (2016). Novel inspection system , 
backpack-based , for 3D modelling of indoor scenes. International 
Conference on Indoor Positioning and Indoor Navigation (IPIN), 4-7 
October 2016, Alcalá de Henares, Spain, October, 4–7. 

Flint, A., Murray, D., & Reid, I. (2011). Manhattan Scene Understanding Using 
Monocular, Stereo, and 3D Features. 2228–2235. 

García, S., López, M. E., Barea, R., Bergasa, L. M., Gómez, A., & Molinos, E. J. 
(2016). Indoor SLAM for Micro Aerial Vehicles Control Using Monocular 
Camera and Sensor Fusion. Proceedings - 2016 International Conference 
on Autonomous Robot Systems and Competitions, ICARSC 2016, 
November 2018, 205–210. https://doi.org/10.1109/ICARSC.2016.46 

Geneva, P., Eckenhoff, K., Yang, Y., & Huang, G. (2018). LIPS: LiDAR-Inertial 
3D Plane SLAM. IEEE International Conference on Intelligent Robots and 
Systems, 123–130. https://doi.org/10.1109/IROS.2018.8594463 

Gentil, C. Le, Vidal-Calleja, T., & Huang, S. (2019). IN2LAMA: INertial lidar 



 

131 

localisation and mapping. Proceedings - IEEE International Conference on 
Robotics and Automation, 2019-May, 6388–6394. 
https://doi.org/10.1109/ICRA.2019.8794429 

GeoSLAM Ltd. The ZEB-REVO Solution. (2020). 
https://geoslam.com/solutions/zeb-revo/ 

Grisetti, G, Stachniss, C., & Burgard, W. (2007). “Improved Techniques for 
Grid Mapping.” Robotics, IEEE Transactions On, 23(1), 34–46. 

Grisetti, Giorgio, Kümmerle, R., Stachniss, C., & Burgard, W. (2010). A Tutorial 
on Graph-Based SLAM. IEEE Intelligent Transportation Systems Magazine 
2.4, 31–43. 

Guo, J., Borges, P. V. K., Park, C., & Gawel, A. (2018). Local Descriptor for 
Robust Place Recognition using LiDAR Intensity. ArXiv, 4(2), 1470–1477. 

He, L., Wang, X., & Zhang, H. (2016). M2dp: A novel 3D point cloud descriptor 
and its application in loop closure detection. IEEE International 
Conference on Intelligent Robots and Systems, 2016-Novem, 231–237. 
https://doi.org/10.1109/IROS.2016.7759060 

Henry, P., Krainin, M., Herbst, E., Ren, X., & Fox, D. (2014). RGB-D Mapping: 
Using Depth Cameras for Dense 3D Modeling of Indoor Environments. In 
Experimental Robotics, Springer Tracts in Advanced Robotics, vol. 79 (pp. 
477–491). https://doi.org/10.1007/978-3-642-28572-1_33 

Hussnain, Z., Elberink, S. O., & Vosselman, G. (2018). An automatic procedure 
for mobile laser scanning platform 6Dof trajectory adjustment. 
International Archives of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences - ISPRS Archives, 42(1), 203–209. 
https://doi.org/10.5194/isprs-archives-XLII-1-203-2018 

Hyyti, H., & Visala, A. (2015). A DCM Based Attitude Estimation Algorithm for 
Low-Cost MEMS IMUs. International Journal of Navigation and 
Observation, 2015. https://doi.org/10.1155/2015/503814 

Ji, S., Qin, Z., Shan, J., & Lu, M. (2020). Panoramic SLAM from a multiple 
fisheye camera rig. ISPRS Journal of Photogrammetry and Remote 
Sensing, 159(May 2019), 169–183. 
https://doi.org/10.1016/j.isprsjprs.2019.11.014 

Jimenez, A. R., Seco, F., Prieto, J. C., & Guevara, J. (2010). Indoor Pedestrian 
navigation using an INS/EKF framework for yaw drift reduction and a foot-
mounted IMU. Proceedings of the 2010 7th Workshop on Positioning, 
Navigation and Communication, WPNC’10, 135–143. 
https://doi.org/10.1109/WPNC.2010.5649300 

Kaijaluoto, R., Kukko, A., & Hyyppä, J. (2015). Precise Indoor Localization for 
Mobile Laser Scanner. International Archives of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences - ISPRS Archives, 
40(4W5), 1–6. https://doi.org/10.5194/isprsarchives-XL-4-W5-1-2015 

Karam, S., Lehtola, V., & Vosselman, G. (2019). Integrating a low-cost MEMS 
IMU into a laser-based SLAM for indoor mobile mapping. International 
Archives of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences - ISPRS Archives, 42(2/W17), 149–156. 
https://doi.org/10.5194/isprs-archives-XLII-2-W17-149-2019 

Karam, S., Lehtola, V., & Vosselman, G. (2020). STRATEGIES TO INTEGRATE 
IMU AND LIDAR SLAM FOR INDOOR MAPPING. ISPRS Annals of 
Photogrammetry, Remote Sensing and Spatial Information Sciences, V-



Bibliography 

132 
 

1–2020(1), 223–230. https://doi.org/10.5194/isprs-annals-V-1-2020-
223-2020 

Karam, S., Peter, M., Hosseinyalamdary, S., & Vosselman, G. (2018). an 
Evaluation Pipeline for Indoor Laser Scanning Point Clouds. ISPRS Annals 
of Photogrammetry, Remote Sensing and Spatial Information Sciences, 
IV–1, 85–92. https://doi.org/10.5194/isprs-annals-IV-1-85-2018 

Karam, Samer, Vosselman, G., Peter, M., Hosseinyalamdary, S., & Lehtola, V. 
(2019). Design, calibration, and evaluation of a backpack indoor mobile 
mapping system. Remote Sensing, 11(8). 
https://doi.org/10.3390/rs11080978 

Kim, B. K. (2013). Indoor localization and point cloud generation for building 
interior modeling. Proceedings - IEEE International Workshop on Robot 
and Human Interactive Communication, 186–191. 

Lagüela, S., Dorado, I., Gesto, M., Arias, P., Gonz, D., & Lorenzo, H. (2018). 
Behavior analysis of novel wearable indoor mapping system based on 3D-
SLAM. 1–16. https://doi.org/10.3390/s18030766 

Lauterbach, H. A., Borrmann, D., Heß, R., Eck, D., Schilling, K., & Nüchter, A. 
(2015). Evaluation of a backpack-mounted 3D mobile scanning system. 
Remote Sensing, 7(10), 13753–13781. 
https://doi.org/10.3390/rs71013753 

Le Gentil, C., Vidal-Calleja, T., & Huang, S. (2020). IN2LAAMA: Inertial Lidar 
Localization Autocalibration and Mapping. IEEE Transactions on Robotics, 
37(1), 275–290. https://doi.org/10.1109/TRO.2020.3018641 

Lee, Heon-Cheol,  et al. (2011). Comparison and analysis of scan matching 
techniques for cooperative-SLAM. Ubiquitous Robots and Ambient 
Intelligence (URAI), 8th International Conference on. IEEE., 165–168. 

Lehtola, V. V., Kaartinen, H., Nüchter, A., Kaijaluoto, R., Kukko, A., Litkey, P., 
Honkavaara, E., Rosnell, T., Vaaja, M. T., Virtanen, J. P., Kurkela, M., El 
Issaoui, A., Zhu, L., Jaakkola, A., & Hyyppä, J. (2017a). Comparison of 
the selected state-of-the-art 3D indoor scanning and point cloud 
generation methods. Remote Sensing, 9(8), 1–26. 
https://doi.org/10.3390/rs9080796 

Lehtola, V. V., Kaartinen, H., Nüchter, A., Kaijaluoto, R., Kukko, A., Litkey, P., 
Honkavaara, E., Rosnell, T., Vaaja, M. T., Virtanen, J. P., Kurkela, M., El 
Issaoui, A., Zhu, L., Jaakkola, A., & Hyyppä, J. (2017b). Comparison of 
the selected state-of-the-art 3D indoor scanning and point cloud 
generation methods. Remote Sensing, 9(8), 1–26. 
https://doi.org/10.3390/rs9080796 

Lehtola, V. V., Virtanen, J.-P., Vaaja, M. T., Hyyppä, H., & Nüchter, A. (2016a). 
Localization of a mobile laser scanner via dimensional reduction. ISPRS 
Journal of Photogrammetry and Remote Sensing, 121, 48–59. 
https://doi.org/10.1016/J.ISPRSJPRS.2016.09.004 

Lehtola, V. V., Virtanen, J. P., Vaaja, M. T., Hyyppä, H., & Nüchter, A. (2016b). 
Localization of a mobile laser scanner via dimensional reduction. ISPRS 
Journal of Photogrammetry and Remote Sensing, 121, 48–59. 
https://doi.org/10.1016/j.isprsjprs.2016.09.004 

Leica Geosystems AG. Leica Pegasus: Backpack, Mobile Reality Capture. 
(2017). https://www.gefos-leica.cz/data/original/skenery/mobilni-
mapovani/backpack/leica_%0Apegasusbackpack_ds.pdf 

Lenac, K., Kitanov, A., Cupec, R., & Petrović, I. (2017). Fast planar surface 3D 
SLAM using LIDAR. Robotics and Autonomous Systems, 92, 197–220. 



 

133 

https://doi.org/10.1016/j.robot.2017.03.013 
Leutenegger, S., Furgale, P., Rabaud, V., Chli, M., Konolige, K., & Siegwart, R. 

(2015). Keyframe-Based Visual-Inertial SLAM Using. The International 
Journal of Robotics Research, 34(3), 314–334. 

Lin, J., Zheng, C., Xu, W., & Zhang, F. (2021). R2LIVE: A Robust, Real-time, 
LiDAR-Inertial-Visual tightly-coupled state Estimator and mapping. 
http://arxiv.org/abs/2102.12400 

Liu, T.; Carlberg, M.; Chen, G.; Chen, J.; Kua, J.; Zakhor, A. (2010). Indoor 
localization and visualization using a human-operated backpack system. 
International Conference on Indoor Positioning and Indoor Navigation 
(IPIN), 15-17 September 2010, Zurich, Switzerland, September, 15–17. 

Maboudi, M., Bánhidi, D., & Gerke, M. (2017a). Evaluation of indoor mobile 
mapping systems. GFaI Workshop 3D North East 2017 (20th Application-
Oriented Workshop on Measuring, Modeling, Processing and Analysis of 
3D-Data), 125–134. 

Maboudi, M., Bánhidi, D., & Gerke, M. (2017b). Evaluation of Indoor Mobile 
Mapping Systems. GFaI Workshop 3D North East 2017 (20th Application-
Oriented Workshop on Measuring, Modeling, Processing and Analysis of 
3D-Data), December, 125–134. 

Maboudi, M., Bánhidi, D., & Gerke, M. (2018a). Investigation of geometric 
performance of an indoor mobile mapping system. International Archives 
of the Photogrammetry, Remote Sensing and Spatial Information 
Sciences - ISPRS Archives, 42(2), 637–642. 
https://doi.org/10.5194/isprs-archives-XLII-2-637-2018 

Maboudi, M., Bánhidi, D., & Gerke, M. (2018b). Investigation of geometric 
performance of an indoor mobile mapping system. International Archives 
of the Photogrammetry, Remote Sensing and Spatial Information 
Sciences - ISPRS Archives, 42(2), 637–642. 
https://doi.org/10.5194/isprs-archives-XLII-2-637-2018 

Makni, A., Fourati, H., & Kibangou, A. Y. (2014). Adaptive Kalman filter for 
MEMS-IMU based attitude estimation under external acceleration and 
parsimonious use of gyroscopes. 2014 European Control Conference, ECC 
2014, 1379–1384. https://doi.org/10.1109/ECC.2014.6862535 

Maximov, V. (2013). “Survey of Accuracy Improvement Approaches for Tightly 
Coupled ToA / IMU Personal Indoor Navigation System.” Proceedings of 
International Conference on Indoor Positioning and Indoor Navigation, 
October 2013, Montbeliard, France, October. 

Memon, A. R., Wang, H., & Hussain, A. (2020). Loop closure detection using 
supervised and unsupervised deep neural networks for monocular SLAM 
systems. Robotics and Autonomous Systems, 126, 103470. 
https://doi.org/10.1016/j.robot.2020.103470 

Naikal, N., Kua, J., Chen, G., & Zakhor, A. (2009). Image Augmented Laser 
Scan Matching for Indoor Dead Reckoning. Proc. of the IEEE/RSJ 
International Conference on Intelligent Robots and Systems (IROS), 
4134–4141. 

Nikoohemat, S., Diakité, A. A., Zlatanova, S., & Vosselman, G. (2020). Indoor 
3D reconstruction from point clouds for optimal routing in complex 
buildings to support disaster management. Automation in Construction, 
113(May 2019), 103109. https://doi.org/10.1016/j.autcon.2020.103109 

Nikoohemat, S., Peter, M., Elberink, S. O., & Vosselman, G. (2018). Semantic 
interpretation of mobile laser scanner point clouds in Indoor Scenes using 



Bibliography 

134 
 

trajectories. Remote Sensing, 10(11). 
https://doi.org/10.3390/rs10111754 

Norris, J. (2013). “Future Trends in Geospatial Information Management: the 
five to ten year vision.” Ordnance Survey at the Request of the Secretariat 
for the United Nations Committee of Experts on Global Geospatial 
Information Management (UN-GGIM). Second Edition December (2015). 

Otero, R., Lagüela, S., Garrido, I., & Arias, P. (2020). Mobile indoor mapping 
technologies: A review. Automation in Construction, 120(August). 
https://doi.org/10.1016/j.autcon.2020.103399 

Park, C.-S., Kim, D., You, B.-J., & Oh, S.-R. (2010). Characterization of the 
Hokuyo UBG-04LX-F01 2D laser rangefinder. 19th International 
Symposium in Robot and Human Interactive Communication, 385–390. 
https://doi.org/10.1109/ROMAN.2010.5598672 

Peter, M., Jafri, S. R. U. N., & Vosselman, G. (2017). Line segmentation of 2D 
laser scanner point clouds for indoor SLAM based on a range of residuals. 
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial 
Information Sciences, IV-2/W4, 363–369. https://doi.org/10.5194/isprs-
annals-IV-2-W4-363-2017 

Raúl Feliz, Eduardo Zalama, J. G. G.-B. (2009). Pedestrian tracking using 
inertial sensors. JOURNAL OF PHYSICAL AGENTS, 3(1), 35. 
https://pdfs.semanticscholar.org/19fd/2b360a65fa0f9d26aa30c70580a0
a51aafee.pdf?_ga=2.43549858.688291403.1566824400-
972038305.1566824400 

S. Kohlbrecher, J. Meyer, O. Von Stryk, U. K. (2011). A Flexible and Scalable 
SLAM System with Full 3D Motion Estimation. Int. Symp. on Safety, 
Security and Rescue Robotics (SSRR). 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.302.2579&re
p=rep1&type=pdf 

Salgues, H., Macher, H., & Landes, T. (2020). EVALUATION of MOBILE 
MAPPING SYSTEMS for INDOOR SURVEYS. International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences - 
ISPRS Archives, 44(4/W1), 119–125. https://doi.org/10.5194/isprs-
archives-XLIV-4-W1-2020-119-2020 

Sirmacek, B ;, Shen, Y. ;, Lindenbergh, R. ;, Zlatanova, S. ;, & Diakite, A. 
(2016). Comparison of ZEB1 and Leica C10 indoor laser scanning point 
clouds. ISPRS Annals of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences. 143–149. https://doi.org/10.5194/isprs-
annals-III-1-143-2016 

Sirmacek, Beril, Shen, Y., Lindenbergh, R., Zlatanova, S., & Diakite, A. (2016). 
Comparison of Zeb1 and Leica C10 Indoor Laser Scanning Point Clouds. 
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial 
Information Sciences, III–1, 143–149. 
https://doi.org/10.5194/isprsannals-iii-1-143-2016 

Steder, B., Grisetti, G., & Burgard, W. (2010). Robust place recognition for 3D 
range data based on point features. Proceedings - IEEE International 
Conference on Robotics and Automation, 1400–1405. 
https://doi.org/10.1109/ROBOT.2010.5509401 

Thomson, C., Apostolopoulos, G., Backes, D., & Boehm, J. (2013). Mobile Laser 
Scanning for Indoor Modelling. ISPRS Annals of Photogrammetry, Remote 
Sensing and Spatial Information Sciences, Vol. 2, Part. 5/W2, 11-13 
November, Antalya, Turkey, 289-293. 



 

135 

Thrun, S., & Montemerlo, M. (2006). The Graph SLAM Algorithm with 
Applications to Large-Scale Mapping of Urban Structures. The 
International Journal of Robotics Research, 25(5–6), 403–429. 
https://doi.org/10.1177/0278364906065387 

Tran, H., Khoshelham, K., & Kealy, A. (2019). Geometric comparison and 
quality evaluation of 3D models of indoor environments. ISPRS Journal of 
Photogrammetry and Remote Sensing, 149(July 2018), 29–39. 
https://doi.org/10.1016/j.isprsjprs.2019.01.012 

Trimble. Applanix : TIMMS Indoor Mapping. Retrieved November 20, 2018, 
from https://www.applanix.com/products/timms-indoor-mapping.htm 

Velas, M., Spanel, M., Sleziak, T., Habrovec, J., & Herout, A. (2019). Indoor 
and Outdoor Backpack Mapping with Calibrated Pair of Velodyne LiDARs. 
Sensors, 19(18), 3944. https://doi.org/10.3390/s19183944 

Viametris. iMS3D - VIAMETRIS. Retrieved November 20, 2018, from 
http://www.viametris.com/products/ims3d/ 

Vosselman, G. (2014). Design of an indoor mapping system using three 2D 
laser scanners and 6 DOF SLAM. ISPRS Annals of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences 2.3 (2014): 173. 

Vosselman, George, Gorte, B., Sithole, G., & Rabbani, T. (2004). Recognising 
structure in laser scanner point clouds. International Archives of 
Photogrammetry, Remote Sensing and Spatial Information Sciences, 
46(8), 33–38. 

Wang, Z., Zhu, H., Zhou, J., & Wang, X. (2018). Loose fusion based on SLAM 
and IMU for indoor environment. Ninth International Conference on 
Graphic and Image Processing (ICGIP 2017), 1061545(April 2018), 97. 
https://doi.org/10.1117/12.2302929 

Wen, C., Pan, S., Wang, C., & Li, J. (2016). An Indoor Backpack System for 2-
D and 3-D Mapping of Building Interiors. IEEE Geoscience and Remote 
Sensing Letters, 13(7), 992–996. 

Yang, Y., Geneva, P., Eckenhoff, K., & Huang, G. (2019). Degenerate Motion 
Analysis for Aided INS with Online Spatial and Temporal Sensor 
Calibration. IEEE Robotics and Automation Letters, 4(2), 2070–2077. 
https://doi.org/10.1109/LRA.2019.2893803 

Yu, N., & Zhang, B. (2019). An Improved Hector SLAM Algorithm based on 
Information Fusion for Mobile Robot. Proceedings of 2018 5th IEEE 
International Conference on Cloud Computing and Intelligence Systems, 
CCIS 2018, 279–284. https://doi.org/10.1109/CCIS.2018.8691198 

Zhang, J., & Singh, S. (2014). LOAM : Lidar Odometry and Mapping in Real - 
time. July. https://doi.org/10.15607/RSS.2014.X.007 

Zhang, J., & Singh, S. (2017). Low-drift and real-time lidar odometry and 
mapping. Autonomous Robots, 41(2), 401–416. 
https://doi.org/10.1007/s10514-016-9548-2 

Zhou, L., Koppel, D., Ju, H., Steinbruecker, F., & Kaess, M. (2020). An Efficient 
Planar Bundle Adjustment Algorithm. Proceedings - 2020 IEEE 
International Symposium on Mixed and Augmented Reality, ISMAR 2020, 
136–145. https://doi.org/10.1109/ISMAR50242.2020.00035 

 
 
 
 



Bibliography 

136 
 

 



137 

Author’s Biography 
Samer was born in 1989 in the city of Jisr al-
Shughur, Idlib, Syria where he received his 
primary and secondary education. In 2012, he 
was awarded his Bachelor’s degree (BSc) in 
the field of Geomatics Engineering by Aleppo 
University, Syria. He was top of his class and 
graduated with the highest distinction. As a 
result, he was hired to work as a teaching 
assistant. Next, he moved to Turkey and 
worked as a Geomatics Engineer at the ATILIM 
company. At the end of 2014, he was enrolled 
in the Geomatics Engineering (GEOENGINE) 

Master’s program at the University of Stuttgart in Germany and awarded a 
DAAD scholarship. He completed his Master’s degree (MSc) in 2016. As part of 
his Master’s thesis, he worked at the German Aerospace Center (DLR) as a 
research assistant. Later, he joined the Faculty of Geo-Information Science and 
Earth Observation (ITC) at the University of Twente as a PhD candidate with 
the goal of developing a SLAM-based backpack mobile mapping system for 
indoor mapping. Samer’s research has resulted in the present dissertation. He 
has published his work at various conferences, in symposiums and in journals, 
all within the Remote Sensing and Photogrammetry domain. He presented and 
discussed his research at the following events:  
 

Date Event Place 
Nov, 2017 NCG Symposium TU Delft, The Netherlands 
July, 2018 Indoor Mobile Mapping 

Systems Workshop TU Braunschweig, Germany 

Oct, 2018 
 

 

ISPRS TC I Mid-term 
Symposium 'Innovative 

Sensing' 

Karlsruher Institute of 
Technology (KIT), Germany 

Nov, 2018 
NCG Symposium 

Wageningen University, The 
Netherlands 

Nov, 2019 
NCG Symposium 

Twente University, The 
Netherlands 

Dec, 2019 ISPRS Workshops 
LowCost3D (LC3D) 

INSA Strasbourg, France 

Aug-Sept, 2020 XXIV ISPRS Congress  Nice, France 
Nov, 2020 NCG Symposium TU Delft, The Netherlands 

 
 
 



Samenvatting 

138 
 

During his PhD trajectory at ITC, he was elected by the ITC staff community 
to be a member of the faculty council. Besides, he delivered lectures on the 
Master of Geo-information Science and Earth Observation program and 
reviewed scientific manuscripts for relevant conferences and journals. 
 
As well as the present dissertation, Samer authored the following publications: 
 

1) Karam, S., Peter, M., Hosseinyalamdary, S., Vosselman, G., 2018. An 
evaluation pipeline for indoor laser scanning point clouds. ISPRS Ann. 
Photogramm. Remote Sens. Spat. Inf. Sci. IV-1, 85–92. 
 

2) Karam, S., Vosselman, G., Peter, M., Hosseinyalamdary, S., Lehtola, 
V., 2019. Design, calibration, and evaluation of a backpack indoor 
mobile mapping system. Remote Sens. 11. 

 
3) Karam, S., Lehtola, V., Vosselman, G., 2019b. Integrating a low-cost 

MEMS IMU into a laser-based SLAM for indoor mobile mapping. The 
International Archives of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences: 6th International Workshop LowCost 3D 
– Sensors, Algorithms, Applications. editor / P. Grussenmeyer ; A. 
Murtiyoso ; H. Macher ; R. Assi. Vol. XLII-2/W17 Strasbourg: 
International Society for Photogrammetry and Remote Sensing 
(ISPRS). pp. 149-156. 

 
4) Karam, S., Lehtola, V., and Vosselman, G.: Strategies to integrate imu 

and lidar slam for indoor mapping, ISPRS Ann. Photogramm. Remote 
Sens. Spatial Inf. Sci., V-1-2020, 223–230. 

 
5) Karam, S., Lehtola, V., and Vosselman, G. (2021). Simple loop closing 

for continuous LIDAR&IMU Planar Graph SLAM for 3D indoor 
environments. ISPRS Journal of Photogrammetry and Remote Sensing 
(Accepted) 

 
Invited talks: 
Karam, S., Designing and Developing a Backpack Mobile Mapping System and 
SLAM Algorithm for Indoor Mapping, 2020, invited to talk to the electrical 
engineers and computer scientists in mapping and perception team at NavVis1, 
the leading provider of indoor spatial intelligence solutions. 
 
 
 
 

 
1 www.navvis.com 

http://www.navvis.com/

	Summary
	Samenvatting
	Acknowledgements
	Chapter 1 - Introduction
	1.1  Background and Motivation
	1.2  Research Objectives
	1.3  Research Questions
	1.4  Dissertation Outline

	Chapter 2 - State-of-the-art indoor mobile mapping systems
	2.1 Review of the state-of-the-art indoor mobile mapping systems
	2.1.1 Trolley-based Systems
	2.1.2 Hand-held Systems
	2.1.3 Wearable Systems
	2.2 Discussion and Conclusion

	Chapter 3 - Design, Calibration, and Evaluation of a Backpack Indoor Mobile Mapping System *
	Abstract
	3.1 Introduction
	3.2 Related Work
	3.2.1 Hand-Held Systems
	3.2.2 Backpack Mapping Systems
	3.2.3 Evaluation Methods
	3.3 Backpack System ITC-Backpack
	3.3.1 System Description
	3.3.2 Coordinate Systems
	3.3.3 6DOF SLAM
	3.4 Calibration Process
	3.4.1 Calibration Facility
	3.4.2 Calibration
	3.4.3 Self-Calibrations
	3.5 Relative Sensor Registration
	3.5.1 Initial Registration
	3.5.2 Fine Registration
	3.5.3 Self-Registration
	3.6 SLAM Performance Measurements and Results
	3.6.1 Dataset
	3.6.2 Evaluation Techniques
	3.6.2.1 Evaluation Using Architectural Constraints
	3.6.2.2 Evaluation Using a Floor Plan
	3.7 Determining Optimal Configuration
	3.7.1 Studied Configurations
	3.7.2 Experimental Comparison of Configurations
	3.7.2.1 Accuracy
	3.7.2.2 Completeness of Data Capturing
	3.7.3 Discussion of Configuration Experiments
	3.8 Conclusions and Future Work

	Chapter 4 - Integrating a Low-Cost MEMS IMU Into a LIDAR SLAM for Indoor Mobile Mapping *
	4.1 Introduction
	4.2 Related Work
	4.3 LIDAR SLAM And IMU Integration
	4.3.1 System Components
	4.3.2 Coordinate Systems and Registration Process
	4.3.3 LIDAR SLAM
	4.3.4 IMU-based Pose Prediction
	4.3.4.1 Attitude
	4.3.4.2 Position
	4.3.5 SLAM and IMU Integration
	4.4 Datasets
	4.5 Analysis of IMU Performance
	4.5.1 IMU Data Analysis
	4.5.2 IMU Prediction Analysis
	4.6 Integration Results And Discussion
	4.7 Conclusions and Future Work

	Chapter 5 - Strategies to Integrate IMU and LIDAR SLAM for Indoor Mapping *
	5.1 Introduction
	5.2 Related Work
	5.3 IMU-SLAM Integration Strategies
	5.3.1 IMU-SLAM Switching
	5.3.2 IMU-based Pose Estimation
	5.3.3 IMU-SLAM Joint Estimation
	5.3.3.1 Acceleration Observation Equations
	5.3.3.2 Angular Velocity Observation Equations
	5.3.3.3 Joint Estimation
	5.4 Experimental Results and Discussion
	5.5 Conclusions And Future Work

	Chapter 6 - Simple loop closing for continuous LIDAR&IMU Planar Graph SLAM for 3D indoor environments *
	6.1 Introduction
	6.2 Related Works
	6.3 Methodology
	6.3.1 Initialization
	6.3.2 Planar Segment Extraction and Local SLAM Map Updating
	6.3.3 State definition and Plane and Trajectory Parametrization
	6.3.4 LIDAR observation equation
	6.3.5 IMU observation equation
	6.3.6 Local_SLAM
	6.3.7 Global-SLAM and Autocalibration
	6.3.8 Loop Closure Detection and Correction
	6.4 Experiments
	6.4.1 Mobile Mapping System
	6.4.2 Study Areas and Datasets
	6.4.3 Analysis of SLAM Performance
	6.4.4 Cloud to Cloud Comparison
	6.4.4.1 Comparison against a commercial mobile mapping system
	6.4.4.2 TLS Comparison
	6.4.5 Discussion and Limitations
	6.5 Conclusions

	Chapter 7 - Synthesis
	7.1  Scope of application
	7.2  Conclusions per objective
	7.3  Reflections and outlook

	Bibliography
	Author’s Biography

