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1.1 Introduction 
Movement of an organism is a fundamental characteristic of life, defined as 
a change across many spatial and temporal scales (Baker, 1978; Berg, 1993; 
Nathan et al., 2008). It is a ubiquitous ecological process influencing most 
facets of individuals' life: the structure and dynamics of populations, 
communities, and ecosystems (Holloway and Miller, 2017). The organismal 
movement and environmental changes have been illuminated by research on 
anthropogenic habitat fragmentation, changes in land-use patterns and 
climate, and the introduction of alien (Nathan et al., 2008). A more coherent 
comprehension of reasons, mechanisms, patterns, and outcomes of 
organismal movement may assist in restoration of degraded habitats and 
controlling the spread of pests, invasive alien species and infectious diseases 
(Wiens et al., 1993; Debinski, Ray and Saveraid, 2001; Holyoak et al., 
2008). 

Recent advances in movement research have inspired a shift from the 
Eulerian approach to the Lagrangian approach. The Eulerian approach 
quantifies population redistribution while the Lagrangian approach quantifies 
the movement of individuals (Turchin, 1998; Yamada et al., 2003; Smouse 
et al., 2010). It is essential to differentiate between Eulerian (population), 
and Lagrangian (individual) approaches, as species distribution models 
(SDMs) incorporating movement are getting more complex (Holloway and 
Miller, 2017). In spite of substantial impacts of the geographical distribution 
of species on movement processes and ecological significance, the 
incorporation of movement has lagged behind other methodological 
advancements, particularly in species distribution modelling (Franklin, 
2010a; Miller and Holloway, 2015). In the context of SDMs, the 
accessibility of habitats by species or populations has been considered rather 
than underlying the process of individuals' movement (Guisan and Thuiller, 
2005; Elith et al., 2006; Datry, Bonada and Heino, 2016). Movements of 
individuals incorporate the most detail concerning movement patterns and 
environmental interactions, but the focus of SDMs is usually on emergent 
population or species-level patterns (Tang and Bennett, 2010).  
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SDMs are still focusing solely on environment-species relationships to 
predict the occurrence of species and provide a robust spatial ecological 
framework for studying the geographic distribution of a wide range of 
organisms. These models are frequently used to address questions on 
ecological processes involving climate change, invasion risk and 
biogeographic hypotheses (Peterson et al., 2011). In addition, the range 
shifts, responding to changing climate or tracking the spread of invasive 
species, have been addressed by SDM researchers with terms such as 
'dispersal limitations', 'dispersal capacities', 'migration rates', and 'spread 
rates'. These are used interchangeably to refer to the cumulative movement 
of a species or a population across a broad temporal scale and often across 
multiple generations (Alagador, Cerdeira and Araújo, 2014; Holloway, 
Miller and Gillings, 2016). When dispersal has been considered in SDMs, it 
has usually referred to one of the two simple approaches: unlimited dispersal 
or no dispersal (Araújo, Thuiller and Pearson, 2006). Ultimate dispersal 
assumes that movement has no barriers, and distance is not a limiting factor. 
Thus, any suitable habitat which is present in the study area can become 
occupied by species. Inversely, no dispersal assumes that suitable habitat is 
restricted to locations that overlap with the original distribution (Holloway, 
Miller and Gillings, 2016).  

 

1.2 Movement of individuals 
The movement ecology is a prominent paradigm for studying the how and 
why of movements, along with its repercussions for individuals, 
communities and ecosystems (Nathan et at., 2008). Ever since the paradigm 
was presented, the definitions of movement behaviour have been intensely 
debated throughout the ecological studies (Dingle and Drake, 2007); the 
terms such as 'dispersal' or 'migration' have created highly controversial 
discussions across both the scientific and public realms (Milner-Gulland, 
Fryxell and Sinclair, 2011). Notwithstanding the ongoing debates in 
ecological studies, there is an increasing interest in grasping and modelling 
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species movement (Nathan et al., 2008), as it is critical in the understanding 
of other phenomena such as climate change, anthropogenic activities or 
spread of invasive alien species (Bowler and Benton, 2005).  

The term dispersal is frequently used instead of movement in the context of 
SDMs. The reason mainly is that the accessibility of habitat by species or 
population has been considered instead of determining process of the 
movement itself (Bruneel et al., 2018). The movement of individuals 
consists of the fine-scale displacements and environmental interactions, but 
the emergent population or species-level patterns are the major focus of 
SDMs. For SDMs, if include movement, broad-scale movement, like 
migration or dispersal, has mainly conceptualised (Franklin, 2010b; Bateman 
et al., 2013; Miller and Holloway, 2015). Despite the differences, dispersal 
and migration have been frequently and interchangeably used to refer to the 
same movement behaviour, specifically in response to climate change 
(Holloway and Miller, 2017).  

Detailed movement data, retrieved from telemetry techniques, have enabled 
researchers to track an individual through time and space. Animal tracking 
technologies have provided the opportunity to depict free-ranging animals' 
occurrence at an ever-increasing accuracy (Tomkiewicz et al., 2010).  The 
techniques for studying animal movement have been advanced and flourished 
since earliest attempts (Roy and Hart, 1963) by using radar (Konrad, Hicks 
and Dobson, 1968), radio (Schemnitz and Owen, 1969), satellite and global 
positioning system (GPS) tracking (Nowak, Berthold and Querner, 1990; 
Biro et al., 2002; Weimerskirch et al., 2002). The relatively recent evolution 
in biological data acquisition techniques, such as extensive use of the 
biologgers with GPS, have led to enhanced spatial and temporal resolutions 
and a better understanding of individuals' movement (Tomkiewicz et al., 
2010). Telemetry data are potentially able to reveal unique intuitions in how 
individuals utilise their overall environment.   

Levin (1992) noted that patterns at one level of an organisation could be 
often understood as the collective behaviour of aggregates of smaller units. 
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It can be a matter of interest for researchers to record different levels of 
organisation in the meta-analysis as the focus of SDMs is targeted on 
population or species-level pattern (Holloway and Miller, 2017). Even so, 
questions related to dispersal and colonisation pertain to population-level 
processes, and many of the factors responsible for animal movement operate 
on an individual scale (Jønsson et al., 2016).  

Before incorporating individual movement data to distribution models, it 
entails to present a general description of SDMs.  

 

1.3 Species distribution models 
The distribution of species and communities in space and time has been 
vigorously studied in ecological research, and so far comprehensive reviews 
on this topic have been published (Guisan and Thuiller, 2005; Elith and 
Leathwick, 2009). SDMs have recently thrived in literature and practice 
(Franklin, 2010b; Bruneel et al., 2018).  

Habitat suitability, as an outcome of SDM, is derived from environment-
species relationships (Franklin, 2010a). The modelling process can be 
complex, because of several reasons such as the size of datasets, geographical 
extent, data quality, sample design, assembly and derivation of mapped 
environmental predictors, modelling methods, model parameterisation and 
selection, assessment of model performance, and evaluation of spatial 
predictions (Wintle, Elith and Potts, 2005; Elith and Leathwick, 2009b; 
Franklin, 2010a). SDMs have been recently used to make two types of 
predictions; a) where the species may occur, but there is no record of it or 
where they might exist if human activities had not wiped them out 
(Anderson et al., 2009), and b) where species may be found in the future 
while environment changes (Parmesan and Yohe, 2003). In recent years, 
researchers in the field of biogeography urged that SDMs need to be dynamic 
and movement, as one of the dynamic factors, is required to be considered 
into the modelling to depict vivid and accurate habitat suitability (Guisan and 
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Thuiller, 2005; Araujo and Guisan, 2006; Holloway and Miller, 2017; 
Bruneel et al., 2018). In the past, the effects of movement were neglected, 
because there was no inducement to incorporate geographical influences to 
SDMs and only environmental space was considered to predict geographical 
distributions of species (Bruneel et al., 2018). 

 

1.4 From individuals to species 
Availability of three conditions is imperative for presence of a species. These 
conditions addressed in the BAM framework (Figure 1.1) developed by 
Soberón and Peterson (2005). Abiotic (A) and biotic (B) conditions in an 
area must be suitable for a species, as well as accessibility to the area where 
the species exist, without barriers to movement and colonization (M). The 
suitable abiotic conditions such as aspects of climate, physical environment, 
edaphic attributes, etc. coerce physiological limits on species’ ability to 
remain in an area. The biotic factors represent the interactions with other 
species (e.g. competition or predation). The regions are accessible to move 
by the species from some original area within a proper timeframe (e.g. via 
dispersal or migration) (Niamir, 2014). For further information, please see 
Soberón & Peterson (2005) and Soberón & Nakamura (2009). 

 
Figure 1. 1 BAM diagram (adopted from Soberón & Peterson 2005). 
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It is a fundamental question in ecological research that how and why 
organisms change their spatial position within a certain time (Nathan, 2008). 
In SDMs, these two attributes are major components, to wit:  time and space 
(Oindo, Skidmore and De Salvo, 2003). But, when movement is considered, 
it is usually referred to a broad time scale, often across multiple generations 
(Holloway et al., 2017).  

The scale is inherently linked to time and space (Song et al., 2013). The 
spatial scale can be divided into two types: the grain size or resolution which 
represents a unit of analysis, and the extent which is the scope of analysis 
(Seo et al., 2008). The selection of both temporal and spatial scales is 
motivated by data availability rather than environmental and biological 
processes and their associated range of influence (Yackulic and Ginsberg, 
2016). The importance of scale becomes apparent when the movement of 
individuals and biotic interactions are considered. This is illustrated in Figure 
1.2 as the movement pattern is depicted as different levels of organisation 
changes from species to individual. 

 

1.5 Research objectives 
The overall objective of this dissertation is to improve the performance and 
transferability of species distribution models by incorporating individuals' 
movement information, also to further explore transferability of knowledge 
from the individual level to species level and vice versa. Specifically, this 
dissertation aims to evaluate the potentials of animal tracking data across 
spatial and temporal scales, while exploring another dimension across the 
level of organisation; from individual to species. 

This dissertation addresses several underlying ecological theories and recent 
advancements in methodological approaches that are linked in various ways 
to assess the applicability of the methods to conservation problems from 
invasive alien species to collision risk with wind turbines, meaning this 
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dissertation demonstrates the applicability of different compellability in data 
sources, working at species level data to extreme high-tech individual data. 

We hypothesised that understanding the individuals' movement of alien 
species and accounting for their potential dispersal, along with 
environmental dynamics improves the accuracy and credibility of models to 
predict the potential distribution of species over time under climate change 
(see Chapter 2). 

 We further expanded our work to assess whether individuals' preferences 
of landscape correlate with the suitable habitat at species level. The 
hypothesis underlying this work was whether SDMs, with the use of 
movement data, can characterise habitat suitability (see Chapter 3).  

Having these aspects explored, we realised that often species distributions 
are being modelled in two dimensions. In contrast, for species with vertical 
movement ability such as birds and fish, this would impose biases. We 
hypothesised that considering the vertical movement of individuals improves 
the accuracy and credibility of individual’s range maps. 
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Figure 1. 2 Levels of organization as a new dimension to the BAM diagram; 
as movement (M) occurs across such spatio-temporal scales, it is depicted 
that both biotic (B) and abiotic (A) factors are time-dependent. Time is an 
important construct of shifting both A and B beyond locations deemed 
accessible to the species.  

 

Thus, we aimed to develop a new approach of 3D modelling which 
ultimately can provide more reliable guidance for conservation manages (see 
Chapter 4). To complete our work with movement data, we test a 
hypothesis on whether movement patterns (i.e. flight types) can be identified 
using the high-resolution tracking data. This chapter provides evidence that 
such data contains of sufficient information for the classification which has be 
neglected (see Chapter 5). 
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1.6 Outline of the dissertation 
This thesis consists of four core chapters. All core chapters have been 
accepted, are under review or in preparation to be submitted to scientific 
peer-reviewed journals. Each paper has been presented as a stand-alone 
Chapter and deals with one specific research question. The structure and 
content of the manuscripts are largely retained for the purpose of this 
dissertation.  

• Chapter 2: Individuals’ dispersal information to delimit prediction of 
future species geographical range 

• Chapter 3: Individuals’ movement data to delineate suitable habitats 

• Chapter 4: Individual’s movement data to estimate space use in 
volumetric analysis 

• Chapter 5: Individual’s movement data to identify flight types  

While the current chapter sets the scene and provides an overview to the 
dissertation, Chapter 6, the Synthesis, summarizes and discusses the main 
findings, and outlines perspectives for future research. 



 

 
 

 
Chapter 2  

Individuals’ Dispersal Information to Delimit 

Prediction of Future Species Geographical Range*

 
* This chapter appeared in : 

- Khosravifard, S, Skidmore, A.K., Toxopeus, A.G. and Niamir, A. Potential invasion of 
raccoon in Iran under climate change. European Journal of Wildlife Research (In review, 
after revision). 

- Khosravifard S. and Niamir, A. (2015) Predicting the Potential Invasive Distribution of 
Raccoon in Iran, in the proceedings of Internationale Congress for Conservation Biology 
ICCB2015, Montpellier, France (DOI:10.13140/RG.2.1.1782.8326). 

- Khosravifard S. (2014) Raccoon: The Intrusive Guest in Iran, a documentary in Farsi 
(https://youtu.be/G-IpJHJIGng). 
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Preface 

This chapter aims to explore the first hypothesis of the thesis: understanding 
of the individuals’ movement and potential dispersal, along with 
environmental dynamics improves the accuracy and credibility of models 
predicting the potential distribution of species under future scenarios. This 
chapter also intends to support the concepts behind Figure 1.2 (page 9), 
specifically by addressing  the x-axis (space) and the z-axis (organisation) at 
the same time. 
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Abstract 
Dispersal is a repose to environmental conditions. Climate change might 
facilitate dispersal and establishment of species, and creates new 
opportunities for them to become invasive. Growing global evidence 
demonstrates that not only the invasion of alien species has imposed serious 
threats to native biodiversity, but it also threatens health and economics. The 
raccoon (Procyon lotor), medium-sized mammal, native to North America, as 
a result of escapes or deliberate introductions in the mid-20th century, is 
now distributed across much of mainland Europe and the Caucasus and 
known as an alien invasive species. The raccoon was observed and reported 
for the first time in 1991 in the Caspian Hyrcanian mixed forests ecoregion 
in Iran, near the border of Azerbaijan. Although it has been almost three 
decades since the first report in the northwest of the country, there are not 
many official reports nor scientific research on its dispersal and adaptive 
behaviour. In this study, we provide new evidence on the current 
distribution range, and predict the potential distribution range and thus 
invasion risk of the raccoon under climate change in Iran. We trained an 
ensemble of species distribution models trained in native and European 
invaded range and transferred it over space and time to Iran in 6 future 
climate scenarios. We also calculated the potential dispersal range of the 
raccoon per year and explored potential invasion corridors. Our results 
show that the raccoon inclines to expand in the forests and rangelands near 
the Caspian Sea and towards west Iran. Our work provides evidence to 
conservationists and decision-makers to further focus on the areas where the 
species will most likely expand, under the future scenarios of the climate 
change in 2050. 

 

2.1 Introduction 
Dispersal, defined as non-regular trips, one-way movements of an individual 
to a new home range and non-overlapping with the previous one (Santini et 
al., 2013), is a response to environmental conditions (Holloway and Miller, 
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2017). Climate change might facilitate dispersal and establishment of 
species, and creates new opportunities for them to become invasive, or 
hinder the process and reduce the suitability thus invasion range of the 
species. The response of invasive species to climate change will have 
ecological and economic implications, too (Hellmann et al. 2008). Due to 
potential impacts of alien species on environmental changes, early detection 
and rapid response initiatives are suggested a crucial ingredient of integrated 
programs for dealing with invasive species (Pyšek & Richardson 2010). 
Therefore, it is essential to understand and predict the impacts of climate 
change on invasive species. 

Reliable information on dispersal and distribution of alien species is crucial 
for biodiversity monitoring and conservation management (Dornelas et al. 
2014). Knowledge about the potential distribution of the alien species is also 
required by conservation managers for better planning in the decision-
making of tasks such as bio-security (Catford et al. 2012), the identification 
of entry points (Seebens et al., 2013), the quantification of impacts posed by 
invasive alien species (Blackburn et al. 2014) or the assessment of the 
ecological degradation of habitats (Vandekerkhove et al. 2013). Growing 
global evidence demonstrates that not only the invasion of alien species has 
imposed serious threats to native biodiversity (Usher 1988, Westman 1990, 
Groom et al. 2006, Sinkins & Otfinowski 2012), it also threats health and 
economics (Scalera et al, 2012). 

The raccoon (Procyon lotor), medium-sized mammal, native to North 
America, as a result of escapes or deliberate introductions in the mid-20th 
century, is now distributed across much of mainland Europe and Caucasus 
(Sherman 1954, Aliev & Sanderson 1966, Michler & Hohmann 2005, 
Gateway 2008). Although most unintentional introductions of the raccoon 
in eastern Europe did not reach a viable population in the past (Bartoszewicz 
et al, 2008), the recent investigations showed that the species had a trend of 
range expansion towards the south and east of the continent. Also, in the 
western and middle regions of Europe, this carnivore successfully increased 
in population size (Frantz et al. 2005, Canova & Rossi 2009). Today, the 
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population growth and dispersal of the raccoon has become a real concern in 
the new regions (Ikeda et al. 2004, Biedrzycka et al. 2014). Although little is 
known about the potential environmental impacts of the raccoon 
introduction into Europe (Beltrán-Beck et al. 2012), anecdotal evidence 
suggests that the species may threaten reptiles and amphibians, and may, 
therefore, impact conservation projects (Kauhala 1996, Frantz et al. 2005).  

In 1991, for the first time, the raccoon was observed and reported, in the 
Caspian Hyrcanian mixed forests ecoregion in Iran, near the border of 
Azerbaijan (Farashi et al. 2013). Since then, scattered observation records of 
this species indicated that the distribution of raccoon is not only confined to 
the forests and woodlands, but has been extended toward Elburz Range 
forest-steppe and urban areas in the south and in the east of the ecoregion.  

Although it has been a long time since the raccoon was observed and 
recorded in northwest of Iran, there are not many official reports or 
scientific research on its adaptive behaviour. In addition, it has been 
speculated that the raccoon had migrated from Azerbaijan (Farashi & Naderi 
2017) and is expanding from west to east. Apart from frequent local media 
reports, there are few reports or confirmed evidence of the raccoon direct 
damages to the croplands to the agriculture insurance companies.  

The capability of raccoon coping with a variety of environmental conditions 
due to its opportunistic habits may make another extensive invasion success 
in Iran too. The old deciduous forests close to watercourses, wetlands or 
lakes are the raccoon's preferred habitats (Kaufmann 1982). However, this 
species may also survive and settle in diverse habitats ranging from partly 
open and marshy ground to urbanized areas where food is available 
(Sanderson 1987, Zeveloff & Dewitte 2002). The raccoon's adaptability and 
the food availability (e.g. domestic wastes) in populated and dense rural and 
urban areas in northern regions of Iran may march up the invasion rate.  

In this study, we aim to provide reliable information on the potential invasive 
dispersal of raccoon in Iran. Therefore, we trained a global ensemble of 
trained models based on the available species data in native North America 
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and invaded European ranges, and then transferred it over time and space to 
predict potential invasion range of the raccoon in the mainland of Iran under 
different climate change scenarios. 

 

2.2 Materials and methods 
2.2.1 Study area 

Iran is a heterogeneous country with a diverse climate ranging from arid and 
semi-arid to subtropical along the Caspian Hyrcanian mixed forests, which 
rarely experience freezing nights and remains humid for the rest of the year. 
To the west, the Zagros Mountains forest steppe ecoregion supporting Oak-
dominant deciduous and Pistachio-Almond forests, experience relatively 
lower temperature, severe winters with heavy snowfall. The coastal plains 
of the Persian Gulf and the Gulf of Oman are the Nubo-Sindian desert and 
semi-desert dominated by Xeric Shrublands with mild winters and very 
humid and hot summers.  

We set 3 geographical extents for the modelling practices; Iran which we 
obtained the country border from GADM (https://gadm.org/ version 3.6), 
the native habitat of raccoon in North America (hereinafter called NA), and 
the invaded range in Europe (hereinafter called EU). 

  

2.2.2 Environmental predictors 

To allow for projections over time, the selection of the environmental 
predictors as input for the SDMs was limited to climatic variables. We 
obtained the 19 bioclimatic variables for current climate from the 
WorldClim (Hijmans et al. 2005) database averaged over the years 1950–
2000 and the future climate averaged over the years 2041–2060. Altogether, 
6 different climate scenarios were considered, including the three 
Generalized Circulation Models (GCM) CCSM4, HadGEM2-AO, and MPI-
ESM-LR, and the three Representative Concentration Pathways (RCP) 
RCP2.6 (i.e. low concentration), and RCP8.5 (i.e. high concentration), 
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representing an anthropogenic radiative forcing of 2.6, and 8.5 watts per 
square meter across the planet, respectively.  

To avoid potential problems that the multicollinearity issue may cause model 
parameterisation and inference (Naimi & Araújo 2016), all predictors were 
checked for multicollinearity by calculating the Variance Inflation Factor 
(VIF). While there is an ongoing debate about the threshold above which 
correction for multi-collinearity ought to be considered, we took 10 as the 
threshold value to be considered for multicollinearity (Hair Jr et al. 1995, 
Menard 2002). 

 

2.2.3 Species occurrence data 

Since the early 90s that the raccoon was first recorded in Iran, a few official 
(i.e. confirmed) records were reported by the authorities. However, there 
are several unofficial records being reported by locals either killed or 
photographed. With a systematic web search in social networks, news, and 
media in Farsi and English, we collected over 100 fragmented records of the 
raccoon in Iran. We took records with solid evidence (e.g. photos and 
videos), or from locations with multiple records, or with a report by an 
expert. We also compared our observation list with the previous efforts 
(Farashi et al. 2013, Farashi & Naderi 2017). In the end, we used 48 records 
of raccoon in Iran in our modelling practices.  

We obtained a dataset for occurrence records of raccoon within the native 
habitat range (i.e. NA), as well as its invaded range in Europe from the 
Global Biodiversity Information Facility. The North America dataset is 
consist of more than 10000 occurrence records (GBIF 2020) and the Europe 
dataset (i.e. EU) contains 7500 occurrences (GBIF 2020). Since the species 
occurrence records included species presences only and most of the 
modelling methods required a binary, absence-presence, data structure, 
pseudo-absence occurrences were generated randomly in the extent of the 
training data.  
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Figure 2. 1 Distribution of Observation Records A) in the Native Habitat 
North America (NA), B) in the European Invaded Habitat (EU), and C) in 
Iran. 

 

2.2.4 Species distribution models 

The diversity of species distribution models has been constantly growing 
over the last few decades. While there has been considerable praise for each 
of them (Drake et al. 2006, Elith et al. 2006, Merow et al. 2014) the selection 
of an appropriate method for studies on distribution modelling requires 
extra attention which might result in a significantly different outcome, and 
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often not possible to judge which of the algorithms will perform best. There 
are, however, recommendations on how to employ multiple modelling 
methods (i.e., a model ensemble) which combine different models and 
provide information about the overall output and the uncertainty around it 
(Seoane et al. 2005, Araújo & New 2007). To this end, we set up an 
ensemble approach consist of 4 modelling methods; Generalized Linear 
Models (GLM; McCullagh & Nelder 1989, Beale & Lennon 2012), 
Generalized Additive Models (GAM; Hasties & Tibshirani 1990), Boosted 
Regression Trees (BRT; Friedman 2001), and Random Forests (RF; 
Breiman 2001). To identify the current realized distribution range of 
raccoon in Iran, we employed MaxEnt (Phillips et al. 2006). We keep the 
parameters of the MaxEnt as default, except the regularization multiplier 
were set to 3 to further increase the fit to the current presence occurrences. 

 

2.2.5 Model evaluation 

We evaluated performance of the SDMs with their discrimination power. 
The discrimination power of an SDM is its ability to recognize a distinction 
between ‘presence’ versus ‘absence’ (Hosmer & Lemeshow 2000). The area 
under the curve (AUC) of the receiver operating characteristic (ROC) plot 
was computed in order to assess the discrimination power of the models for 
each data set. A ROC curve plots sensitivity values (i.e. a true positive 

fraction) on the y‐axis against 1 − specificity values (i.e. a false positive 

fraction) for all the thresholds on the x‐axis. Sensitivity is the probability that 
the model correctly predicts an observation while, specificity is the 
probability that a known absence site is correctly predicted. The plot in ROC 
space of sensitivity versus specificity displays how well an algorithm classifies 
instances as the threshold changes. The AUC is a single measure of a model's 

discrimination power, which provides a threshold‐independent measure 
across all the possible classification thresholds for each model (Fielding & 
Bell, 1997). We randomly split the data, 70% of which were used to train 
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the models and the remaining 30% of which were used to measure their 
discrimination power.  

We assessed the calibration (Hosmer & Lameshow, 2000) of the models 
using Miller’s calibration statistic (Miller et al., 1991; Pearce & Ferrier, 
2000) for the global ensemble of the trained models. Miller's calibration 
statistic evaluates the ability of a distribution model to correctly predict the 
proportion of species occurrences with a given environmental profile. It is 
based on the hypothesis that the calibration line – perfect calibration – has 
an intercept of zero and a slope of one. The calibration plot shows the 
model’s estimated probability (x-axis) against the mean observed proportion 
of positive cases (y-axis) for equally sized probability intervals (number of 
intervals = 10). We then calculated the Root Mean Square Error (RMSE) of 
the calibration plot (Armstrong & Collopy, 1992) for the ensemble using 
calibration function in Naimi & Araújo (2016). 

 

2.2.6 Species dispersal 

We estimated an annual dispersal range for the raccoon using the empirical 
model developed by Santini et al (2013). They proposed a linear model for 
applicative purposes representing the relationship between dispersal 
distance and body size or home range area (Santini et al. 2013); 

Mean dispersal = 5.78 u B^-0.03 u H^0.19 

(Equation 2-1) 

where B is the body size in kilogram and H is home range.  

There is a wide range of values reported for the body size and the home range 
of the raccoon in their native and invaded area. We assumed the home range 
area of 0.4 square kilometre based on IUCN red list of threated species 
(Timm et al 2016), and the body size of 3 kilogram following the Atlas of 
Mammals of Iran (Karami et al. 2016). The annual dispersal range of 4.38 
kilometre is a conservative estimate as our inputs were. This means that we 
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assumed expansion of about 43 kilometres in every decade around the 
current geographical range through the potential habitat corridors. 

   

2.2.7 Experimental settings 

Our aim was to train a reliable ensemble model based on the native and the 
invaded range (i.e. NA + EU) for the current climatic condition that can 
predict the potentially suitable habitat of raccoon in Iran. Then to transfer 
the trained model over time to investigate the potential suitable habitat of 
raccoon in the near future under climate change. Finally, by comparing the 
current realized suitable habitat and the future potential habitat, considering 
the land cover and accessibility, and taking into account the dispersal (i.e. 
invasion) speed, we prepared an invasion path and discussed priorities of 
conservation actions for raccoons in Iran. The procedure to implement our 
work was as follows: 

1. Accounting for multicollinearity. We first calculated the VIF, and 9 out of 
19 bioclimatic variables had values less than 10 and were taken into the 
modelling procedure (Table 2.1).  

2. Train and evaluate SDMs in NA. We set up an ensemble based on a set of 
trained models using occurrence records obtained from GBIF as presences, 
and pseudo-absences sampled randomly from NA. We trained and evaluated 
them through 100 runs of subsampling, each draws 30% of training data as 
test dataset. We set our ensemble based on a weighted averaging, using AUC 
statistic with threshold criterion maximum sensitivity plus specificity.  

3. Transfer the NA model to EU. We used the points obtained from GFIB for 
the invaded range in Europe to evaluate the performance of the ensemble 
trained in the native extent (i.e. NA) in the invaded extent (i.e. EU). We 
further investigated the extremes in the bioclimatic variables in EU that the 
NA model were unable to discriminate. We evaluated the performance of 
the ensemble with its discrimination capacity. 
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4. Train a global model. We used the observations from the native (i.e. NA) 
and the invaded (i.e. EU) extents to train a “global ensemble of trained 
models” for the raccoon and evaluated the performance of the ensemble with 
its discrimination capacity and calibration. 

5. Transfer the ensemble to IR. The global ensemble of trained models of 
raccoon was transferred to IR to predict potentially suitable habitat of the 
raccoon in Iran. We used independently collected observation records to 
evaluate the prediction of the model. 

6. Transfer over Time. We also transferred the ensemble of trained models in 
IR over time to predict potentially suitable habitat of the raccoon in Iran 
under climate change scenarios. We calculated the maximum and minimum 
invasion potential map for Iran in 2050. 

7. Realized distribution in Iran. We trained MaxEnt (i.e. presence-only) 
models using the collected observation records to predict the realized 
distribution (i.e. current geographical range) of the raccoon in Iran. We used 
the maximum sum of sensitivity and specificity as the threshold to generate 
a binary map of realized distribution (Liu et al. 2013). Then we cropped the 
potential distribution with the binary map.  

8. Estimated dispersal range in 2050. We calculate 4.38 km as the potential 
dispersal range per year and therefor draw a buffer of 175 kilometres (i.e. 
4.38 km/yr in 40 years) around the current realized distribution of the 
raccoon to identify and discuss the potential invasion paths. 

All models were executed in the R environment v.3.4.4 (R Development 
Core Team, 2018) using the sdm (Naimi & Araújo 2016), dismo (Hijmans et 
al. 2013), raster (Hijmans et al. 2015), sp (Pebesma & Bivand 2005), 
maptools (Bivand & Lewin-Koh 2013) and, usdm (Naimi 2015) packages. 
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2.3. Results 
2.3.1 SDMs for the native habitat  

We built an ensemble of distribution models for raccoon in its native habitat 
with about 10000 observation records and 9 bioclimatic variables; Mean 
Diurnal Range, Temperature Annual Range, Mean Temperature of Wettest 
Quarter, Mean Temperature of Driest Quarter, Mean Temperature of 
Warmest Quarter, Precipitation of Driest Month, Precipitation Seasonality, 
Precipitation of Warmest Quarter, and Precipitation of Coldest Quarter. 
See Table 2.1 for predictors details and Figure 2.1A for the distribution 
points. 

Among all of the 4 models that we employed in our ensemble approach, the 
RF models overperformed others with the mean AUC of 0.97 (StDev=0.08) 
followed by the GAM and the BRT with mean AUC of 0.87 (StDev=0.11) 
and 0.78 (StDev=0.07), and the GLM models were performed with the 
lowest mean AUC of 0.75 (StDev=0.14). The ensemble model performed 
with the mean AUC of 0.94 (StDev=0.01) discriminating the suitable from 
the unsuitable habitat of the raccoon in NA (i.e the native habitat in North 
America). See Figure 2.2A. When we transferred the NA model over space 
to EU (i.e. the invaded extent in Europe) it performed slightly better than a 
random model with mean AUC 0.59 (StDev=0.08) mainly due to low 
sensitivity. But when we set up another ensemble of distribution models for 
raccoon using the occurrences in NA plus occurrences in EU (n=8000) the 
discrimination capacity improved to mean AUC value of 0.84 
(StDev=0.05). Thereafter, we will refer to this model as our “global model” 
(see Figure 2.2B). The calibration plot of the global model stretched the 
completed extent of the suitability range revealing the goodness of fit of the 
model to correctly predict the proportion of species occurrences over time 
and space. The root mean square error (RMSE) of the global model was 
0.09, slightly underestimating the suitability of habitat in low suitability 
values and slightly overestimating the high suitability values. 
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2.3.2 Transfer the global model over space and time 

We transferred the global model over space to predict the habitat suitability 
of raccoon in Iran using 9 climatic predictors. On average the AUC of the 
global model in IR was 0.69 (StDev=0.18). The global model was successful 
to predict higher probability value to locations with observation records (i.e. 
high specificity) but failed to discriminate areas with no records of the 
raccoon (i.e. low sensitivity). This might be due to the fact that the climate 
condition in the other areas is still suitable for the raccoon but due to lack of 
access or biotic conditions has not been invaded yet. The potential 
distribution of raccoon in Iran shows that the tiny line of Hyrcanian mixed 
forest in the south of the Caspian Sea has the highest climate suitability, 
followed the Zagros mountain forest-steppe (see Figure 2.2C). We also 
transferred the global model over time to predict the habitat suitability of 
the raccoon in 2050 over a variety of climate scenarios and calculate the 
changes in the probability values (Figure 2.3). 

 

2.3.3. Realized geographical range and dispersal corridors 

To model the realized distribution, the area that raccoon actually lives, we 
trained MaxEnt models using all of the 48 observation records as described 
in the “experimental settings”. To convert the gradient of occurrence to a 
binary map of realized distribution range, we calculated the threshold of 
Maximum Sensitivity plus Specificity and assumed area with values above the 
threshold, as the current realized geographical range of raccoon in Iran 
(Figure 2.2D). Comparing the geographical range with the potential habitat 
suitability under climate change revealed that climatic suitability in the 
realized distribution of raccoon in Iran decreases over all of the Generalized 
Circulation Models (GCM) and Representative Concentration Pathways 
(RCP).  In contrast, the suitability of habitat for the raccoon in the Zagros 
Mountain Forest Steppe increased in all GCMs and over all RCPs.  

We cropped the future potential distribution habitat suitability maps in the 
buffer of 175 kilometres, assuming the maximum range of dispersal by 2050.  
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Table 2.1 Environmental variables used in SDMs 

Predictors 
Code 

Predictors 
Name 

VIF 
Value 
in NA 

Range 
in NA 

Range 
in EU 

Range 
in EU 

not 
covered 
in NA 

Range 
in 

EU+NA 

Range 
in IR 

Range 
in IR 
not 

covered 
in 

EU+NA 

Bio 2 Mean Diurnal 
Range 2.55 60 - 

213 
43 - 
107 

43 - 60 
* 43 - 213 64 - 

175 
all 

covered 

Bio 7 

Temperature 
Annual 
Range 
(BIO5-BIO6) 

3.57 11.9 – 
50.8 

18.4 – 
32.4 

all 
covered 

11.9 – 
50.8 

19.3 – 
44.8 

all 
covered 

Bio 8 

Mean 
Temperature 
of Wettest 
Quarter 

3.87 -11.5 – 
33.1 

-10.1 
– 20.6 

all 
covered 

-11.5 – 
33.1 

-6.7 – 
25.4 

all 
covered 

Bio 9 

Mean 
Temperature 
of Driest 
Quarter 

5.63 -16.1 – 
32.2 

-10.2 
– 22.8 

all 
covered 

-16.1 – 
32.2 

-9.7 – 
36.5 

32.2 – 
36.5 

Bio 10 

Mean 
Temperature 
of Warmest 
Quarter 

4.12 5.0 – 
35.7 

0.9 – 
23.4 

0.9 - 50 
* 

0.9 – 
35.7 

7.1 – 
36.5 

35.7 – 
36.5 

Bio 13 
Precipitation 
of Wettest 
Month 

3.25 7 - 551 52 - 
225 

all 
covered 

0.7 – 
55.1 

1.1- 
27.1 

all 
covered 

Bio 14 
Precipitation 
of Driest 
Month 

7.47 0 - 152 19 - 
166 

152 - 
166 * 0 - 166 0 - 42 all 

covered 

Bio 15 Precipitation 
Seasonality 5.29 6 - 133 7 - 47 all 

covered 6 - 133 29 - 
137 

13.3 – 
13.7 

Bio 18 
 

Precipitation 
of Warmest 
Quarter 

4.65 1 -728 135 - 
575 

all 
covered 1 - 728 0 - 

261 0 - 1 
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Figure 2. 2 Potential distribution of Raccoon; A) in NA (i.e. the native 
habitat in North America) based on the SDMs trained by species occurrence 
records in NA, B) in EU (i.e. the invaded European habitat) based on the 
SDMs trained by species occurrence records in NA + EU, and C) in IR (i.e. 
the invaded habitat in Iran) based on the SDMs trained by species occurrence 
records in NA + EU.  The dark orange illustrates relatively most suitable 
and the dark blue illustrated relatively least suitable habitats. The panel D 
shows the current realized distribution range of Raccoon in Iran in dark 
orange. 
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Then, we compare the suitability of habitat in future with the present 
conditions and removed areas that either are not suitable or the habitat 
suitability will significantly decrease by 2050, thus remains areas that could 
act as potential dispersal corridors. 

 

2.4 Discussions 
Our work provided new evidence on the current and future status of 
geographical range of the raccoon in Iran. The predictions successfully 
identified the worldwide occurrence records of the raccoon, including 
native (i.e. North America) and invaded regions (Europe), used in this study 
and demonstrated high probability values of areas predicted by previous 
studies such as Italy, Austria and Germany (Fischer et al. 2015, Mori et al. 
2015, Farashi & Naderi 2017, Duscher et al. 2018). In addition, our realised 
distribution model illuminated the current distribution of this species, which 
is in line with the previous research carried out by Farashi et. al (2017), 
explaining the raccoon's population inclined to expand in the forests and 
rangelands near the Caspian Sea and some parts of west Iran. However, 
unlike the previous study, our realised model showed no signal of the 
raccoon's distribution in the central parts of the country, this might be due 
to complementary calibration of our models for the European extent. 

Hellmann et al., 2008 argued that a species, to become invasive, needs to 
overcome new conditions. First, a species must pass major geographical 
obstacles to reach to a new location. Then, the species must survive in and 
adapt to the new environmental conditions at the arrival site. Third, a species 
must obtain critical resources, remain alive in interaction with natural 
enemies, and likely form mutualistic relationships at the new location. 
Finally, the species must extent geographical distribution, establishing 
populations in new sites. This scenario will less likely being applicable for 
the raccoon in Iran under the current climate conditions. Although the 
habitat conditions (i.e. old deciduous forests close to water) and food 
resources availability (i.e. wild plants, fruits berries, small rodents, frogs, 
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eggs and domestic wastes in rural and urban areas) may provide advantages 
for the raccoon's distribution in the northern parts of Iran, the Elburz 
Mountain, at the southern edge of the current raccoon's range, is a great 
geographical obstacle for the species to pass and reach to new sites. 
However, the anthropogenic assistance (e.g. trade or unintentional 
transportation) may enable the raccoon to stretch out its distribution.  

The “Animal Rights activists” and press have been alerted the increasing 
population size and the growth of trades and interests to keep the species as 
a pet (Khosravifard 2007, Animal Rights Watch 2015). This may alter the 
current distribution of this alien species in Iran. 

The raccoon’s habitat suitability calculated over the variety of climate 
scenarios in the year of 2050, illustrated that from north to south of the 
Zagros mountains may become a destination and new location for the 
species. This new scenario along with the deliberate or undeliberate 
introduction of the raccoon should be considered in conservation and 
management plans.   

Despite the anecdotal evidence suggests that climate change is most likely to 
substantially increase the impact of current invasive species since many of 
them already spread a range of environmental conditions (Qian & Ricklefs 
2006), our study illustrated that the future climate change scenarios are not 
in favour of the raccoon's distribution expansion. Considering the abiotic 
variables (i.e. temperature and precipitation), which influence the raccoon's 
potential distribution, may slow down the future expansion of raccoon's 
range. This might provide conditions to have the population increased or 
maybe overpopulated in human settlements due to accessibility and 
abundance of food.   

In Europe, the population growth of the raccoon is out of control because of 
increasing population trends, range expansion and no efficient management 
strategy. However, no ecological impacts have still been reported through 
an evidence based approach (Salgado 2018). Although negative impacts of 
raccoon on native biodiversity is not yet reported and unknown in Iran, 
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management and conservation plans are needed to prevent any possible or 
unforeseen threats. The prevention through legislation on pet trade, 
education and awareness raising campaigns are suggested as the most 
efficient strategy for the raccoon's geographically expansion (Tollington et 
al. 2017). 

To eradicate newly established population, early detection (using sign 
surveys and camera trapping) and rapid response (by trapping) may be 
carried out as measurable objectives (e.g. keeping the raccoon's population 
at low density) are considered. Control is a long-term management strategy, 
expensive and requiring stable funding. Our study would assist 
conservationists and managers to focus on the areas where the species would 
most likely occur. This may ultimately lead to a thrift for developing and 
executing management plans.  

 

 

 



Individuals’ Dispersal Information to Delimit Prediction of Future Species Geographical Range 
 

30 
 

 

Figure 2. 3 Changes in the potential habitat suitability of Raccoon in Iran 
under climate change scenarios. The gradient from light to dark orange 
illustrates increased relative habitat suitability and the gradient from light to 
dark blue illustrated decreased relative habitat suitability. 
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Figure 2. 4 Potential invasion corridors (in dark blue) of Raccoon in Iran 
under climate change. The current realized distribution range of Raccoon in 
Iran in red. The panels show the extent of the potential dispersal range 
(~175 kilometres) in year 2050. The grey areas are either not suitable or the 
habitat suitability will a significant decrease over time. 
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Postface 

The chapter demonstrated when accounting for individual’s movement 
capacity and their dispersal range, it could improve the understanding of 
potential distribution of the species over time and under climate change and 
guide conservation actions. In the next chapter, we go one step further to 
using individual movement data to inform species distribution models. 
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 This chapter is based on: 
Khosravifard, S., Skidmore, A.K., Venus, V., Munoz, A.R., Toxopeus, A.G., & Naimi, 
B. Using Individuals’ Movement Data to Characterize Species Distribution (in 
preparation to submitted to Diversity and Distributions journal). 
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Preface 

This chapter is an expansion of the previous one exploring whether the 
individual’s movement data can characterize habitat suitability for species 
distribution. Also, this chapter demonstrates the capacity of individuals’ 
movement data addressed the third hypothesis of this thesis; whether SDMs 
with the use of movement data can characterise habitat suitability.   
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Abstract 
Many studies have endeavoured to reveal the relationships between species 
movement and environmental variables. Despite some increasing efforts to 
monitor and collect species movement data, the incorporation of these data 
in species distribution models (SDMs) has lagged. SDMs are used as powerful 
tools for conservation biogeography and known as a robust spatial and 
ecological framework for studying and evaluating the relationship between 
environmental features and the distribution of organisms. In the past, the 
effects of movement were neglected. Only  spatial locations of species and 
environmental variables were considered to predict geographical 
distributions. The availability of high-resolution tracking data allows ongoing 
monitoring of individual species and potentially provides opportunities to 
divulge how the individuals utilize their overall environment at a higher level 
of precision. This study examines how SDMs, with the use of movement 
data, can characterize habitat suitability and how they are comparable with 
the commonly used data sources. This chapter shows that the spatial 
concordance between the outcomes of SDMs, derived from static (i.e. GBIF) 
and movement data (i.e. Movebank) which the latter can be considered as a 
reliable source for SDMs. 

 

3.1. Introduction 
SDMs are known as a powerful spatial and ecological framework for studying 
and evaluating the relationship between environmental features and 
distribution of organisms or biological phenomena (Franklin 2010b) such as 
invasion risk of undesired species or vector-borne disease (Franklin, 2010a; 
Holloway et al., 2017). In addition to being frequently used to address 
questions regarding ecological processes involving climate change and 
biogeographical hypotheses, SDMs have been also utilized to test conceptual 
issues related to their effective implementation, such as uncertainty (Naimi 
et al., 2011), effects of scale (Elith and Leathwick, 2009a), and semantics 
(McInerny and Etienne, 2012; Peterson and Soberón, 2012). Although the 
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impact of movement on geographic distribution has been known for a long 
time, incorporation of movement data into SDMs has been considered 
(Gschweng et al., 2012; D’Elia et al., 2015; Pinto et al., 2016). In the past, 
the effects of movement were neglected, as most SDMs have still focused on 
environmental-species relationships. Only spatial locations of species and 
environmental variables were considered to predict the geographical 
distributions of species (Bruneel et al., 2018). 

The movement of organisms is an essential element of almost any ecological 
and evolutionary process that operates across various spatial and temporal 
scales, influencing most forms of organisms’ lives (Nathan et al., 2008). With 
the emergence of tracking and GPS devices, the animal movement has 
become a focal point of many studies and been increasingly investigated 
(Careau et al., 2006; Holyoak et al., 2008; Alarcón and Lambertucci, 2018). 
Some of these studies have endeavoured to reveal the relationships between 
species movement and environmental variables (Hooten et al., 2014). 
Notwithstanding the attempts along with the ecological importance, the 
incorporation of movement in species distribution models (SDMs) has 
lagged (Holloway and Miller, 2017; Bruneel et al., 2018).  

The availability of high-resolution tracking data allows ongoing monitoring 
of individual species (Dambach and Rödder, 2011), which potentially 
provides opportunities to divulge how the individuals utilize their overall 
environment at an ever-increasing accuracy (Nathan et al., 2008). The 
movement data, retrieved from recently advanced telemetry techniques, are 
reliable as the accuracy is generally high (Frair et al., 2010; Tomkiewicz et 
al., 2010). Thus, high-resolution telemetry data can be considered as a 
source for SDMs. Furthermore, the online and often free available animal 
tracking data, even in high temporal and spatial resolution, provide the 
possibility to model the distribution of mobile species in dynamic 
environments (Franklin 2010b).  

The diversity of species distribution models has been constantly growing 
over the last few decades. While there has been considerable praise for each 
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of them (Drake, Randin and Guisan, 2006; Elith et al., 2006; Duan et al., 
2014; Merow et al., 2014), the selection of an appropriate method for 
studies on distribution modelling requires extra attention which might result 
in a significantly different outcome.  

The distributional area of a species is a complex expression of its ecology and 
evolutionary history (Brown, 1995). To overcome this complexity, Soberón 
and Peterson (2005) developed a heuristic scheme illustrating three factors 
deemed prominent in defining species distribution: Biotic (B), Abiotic (A) 
and Movement (M) (BAM diagram, Figure 3.1). Abiotic factors refer to 
physiological tolerances regarding aspects of climate, physical environment, 
edaphic conditions, etc., where a species can survive. Appropriate biotic 
factors represent the interactions of a species with other species (e.g. 
competition, predation). Movement is defined as a specific area in time 
accessed by a species (Soberón and Peterson, 2005; Soberón and Nakamura, 
2009). The influence of abiotic and biotic factors has been established in 
SDMs, but more research is required to employ movement for projection 
the current or future distribution of a species (Holloway, Miller and Gillings, 
2016). Until now, the movement has been mainly conceived as temporally 
and spatially coarse-scale processes like migration or dispersal (Miller and 
Holloway, 2015). Although 'migration' is defined as a movement between 
two habitats (or destinations) on a predictable basis (Hansson, Akesson and 
Åkesson, 2014), in SDM studies both migration and dispersal have been 
often used interchangeably referring to the same behaviour which is a 
response to changes in the environment (Holloway and Miller, 2017).  
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Figure 3. 1 BAM diagram (adopted from Soberón & Peterson 2005) 

 

Combining SDM with other approaches and data like fossil record and of 
modern genetic studies has been suggested to improve methods for 
forecasting species distribution and evaluating the impact of environmental 
changes on the distribution at large spatial scales (Botkin et al., 2007).  This 
study examines how SDMs with the use of movement data can characterize 
habitat suitability and how they are comparable with the commonly used data 
sources. The key question of this study is how and to what extent SDMs can 
benefit by incorporating the movement data into the modelling procedure.  

 

3.2 Material and methods  
3.2.1 Data acquisition  

This study was mainly conducted with the use of two different and freely 
available species data sources: Movebank and GBIF. Movebank is a free, 
online database of animal tracking data hosted by the Max Planck Institute 
for Ornithology. It is an international project with over 11,000 users, 
including researchers and conservationists around the globe 
(https://www.movebank.org/). Also, different sensor types of data 
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including natural marks, bird ring, GPS, radio transmitter, solar geolocator 
and Argos doppler shift are available from the Movebank repository.  

GBIF (the Global Biodiversity Information Facility) is an open-source data 
research platform funded by the world’s governments. The aim of this 
platform is to provide anyone access to data about all types of life on Earth. 
Common standards and open-source tools, provided by GBIF, enable data-
holding institutions around the world to share information about when and 
where species have been recorded. This information obtained from many 
sources, including everything from museum specimens collected in the 18th 
and 19th centuries to geotagged smartphone photos shared by amateur 
naturalists in recent days and weeks (https://www.GBIF.org/).  

From both repositories, we retrieved data of the following species: Wild 
Turkey (Meleagris gallopavo) (GBIF, 2019a; Margadant, 2019), Montagu’s 
Harrier (Circus pygargus) (Trierweiler et al., 2014; GBIF, 2019b), and 
Great White Pelican (Pelecanus onocrotalus) (GBIF, 2019c; Efrat, Hatzofe 
and Nathan, 2019). We downloaded about 978,000 and 25811 occurrence 
records of Wild Turkey from GBIF and Movebank datasets, respectively. 
Also from GBIF and Movebank repositories, we downloaded 158,600 and 
45,400 occurrence records of Montagu’s Harrier, and nearly 41,000 and 
188,000 occurrence records of Great White Pelican, respectively.  

The major concern in data acquisition was related to the movement data 
derived from Movebank. We downloaded the datasets containing a 
minimum of 20,000 GPS fixes with at least 15 individuals for each of the 
three species. We generated pseudo-absence records distributed randomly 
over the entire study area. 

 We delineated the study area for each species by selecting the regions that 
are likely to be accessible for the species. To do so, we used the avian 
biogeographical regions dataset (Rahbek et al., 2012) and selected the 
regions where the occurrence of species where located.  
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3.2.2 Environmental predictors  

We obtained the widely used 19 bioclimatic variables as predictors in SDMs 
from the CHELSA dataset Version 1.2 with a spatial resolution of 2.5 arc 
minutes (Karger et al., 2017). These variables that represent the current 
climate (averaged over the years 1970–2000) were resampled, aggregated, 
and harmonized to the same spatial resolution.  

 

3.2.3 Species distribution models  
There are some recommendations recently to employ multiple modelling 
methods (i.e., a model ensemble) to increase model robustness (Guisan and 
Thuiller, 2005; Araújo and New, 2007). To this end, we set up an ensemble 
approach (Araújo and New 2007), consisting of 7 modelling methods: 
Generalized Linear Models (GLM; McCullagh 1989), Boosted Regression 
Trees (BRT; Friedman 2001), Random Forests (RF; Breiman 2001), 
Multivariate Adaptive Regression Splines (MARS; Friedman 1991), 
MAXENT (Csiszár 1985, Phillips et al. 2006), Bioclim (Busby 1991; Naimi 
and Araújo, 2016) and Maxlike (Royle et al., 2012).  

 

3.2.4 Experimental design 
The procedure to implement our work was as follow:  

1. To avoid the issue of multicollinearity between two and more 
variables, we used the variance inflation factor (VIF) to detect 
collinearity (Naimi et al., 2014). We took 10 as the threshold which 
a greater value of that is a signal showing the model has a collinearity 
problem (Hair Jr et al., 1995; Menard, 2002). The variables had values 
greater than 10 were taken out from the modelling procedure 

2. We trained an ensemble model using occurrence records obtained 
from GBIF as presences and the generated pseudo-absences. We 
used a subsampling procedure (with 10 replications) to draw 30 
percent of records randomly as the test dataset. For each replication, 
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we trained 7 models (GLM, BRT, RF, MARS, MAXENT, Bioclim 
and Maxlike), and evaluated their performance on the test dataset, 
using area under the receiver operating characteristic curve (AUC) 
(Fielding & Bell, 1997) and true skill statistics (TSS) (Allouche et al., 
2006). We generated the ensemble of species distribution models by 
averaging the predicted values from the individual models, weighted 
by AUC statistic. We repeated the same procedure using the 
Movebank dataset.  

3. We compared the species distribution maps, generated separately 
using GBIF and Movebank data and binarized using a threshold that 
maximised TSS by calculating the similarities (agreement) and 
differences including the total proportion of suitable and unsuitable 
habitats derived from both datasets for each species. The results were 
illustrated as the map to visualise the consistency and difference 
between the outputs of the models based on the two datasets.  

All analysis were implemented in the R environment v.3.4.4 (R 
Development Core Team, 2018) using the packages of sdm (Naimi & 
Araújo 2016), dismo (Hijmans et al. 2013), raster (Hijmans et al. 2015), 
sp (Pebesma & Bivand 2005), maptools (Bivand & Lewin-Koh 2013), 
and usdm (Naimi 2015).  

 

3.3. Results 
We built ensembles of the 7 distribution models for Wild Turkey, 
Montagu’s Harrier and Great White Pelican using GBIF and Movebank 
datasets. The ensemble models for these species depicted in Figure 3.2. 
After VIF calculation, to generate the models, 9, 10 and 11 bioclimatic 
variables were used for Wild Turkey, Montagu’s Harrier and Great White 
Pelican, respectively. The predictor codes and names along with relevant 
values are summarized in the Table 3.1.  
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For Wild Turkey, the RF model using GBIF data overperformed others with 
AUC, followed by Maxent, MARS, BRT, GLM, Bioclim, and Maxlike. 
Moreover, the highest value of TSS showed by RF, followed by Maxent, 
MARS, BIOCLIM, BRT, GLM, and MAXLIKE.  

For Movebank dataset, the AUC of GLM, RF, MARS, and Maxent models 
showed perfect discrimination by a score of 1. These models outperformed 
BRT, Bioclim, and Maxlike. RF, MARS, and Maxent had the highest value 
of TSS and then GLM, MAXLIKE, BRT, and BICLIM. For Montagu’s 
Harrier, the AUC and TSS values of models incorporating GBIF data are 
close to the models using Movebank data.  

Finally, for the Great White Pelican, the maximum of AUC and TSS were 
0.94 and 0.92 obtained from Maxent and RF models using the GBIF dataset 
while the minimum value of AUC and TSS showed by MAXLIKE and BRT, 
respectively. The maximum of AUC and TSS using Movebank data for great 
white pelican showed by RF and MAXLIKE had the minimum of AUC and 
TSS (see details in table 3.2 and 3.3, and Figure 3.3). 

The ensembles derived from GBIF and Movebank datasets were in 0.92 of 
the total agreement for wild turkey meaning the total suitable and unsuitable 
habitats predicted as such with the use of both datasets are the same, 
comparable (Figure 3.4 a). The agreement index for Montagu’s harrier on 
suitable and unsuitable habitats derived from GBIF and Movebank datasets 
was 0.87. Also, the utmost areas predicted as unsuitable habitats from the 
GBIF dataset, were identified as such when the Movebank dataset 
incorporated (Figure 3.4 b). For great white pelican, comparing ensembles 
of the 7 models showed a total agreement of 0.83 between suitable and 

unsuitable habitats derived from GBIF and Movebank datasets (Figure 3.4c).   
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Table 3.1 Environmental variables used in SDMs 

 
Predictor 

Code 

 
Predictor name 

Wild  
turkey 

Montagu's 
harrier 

Great white 
pelican  

VIF  
GBIF 

VIF 
Move 

VIF  
GBIF 

VIF 
Move 

VIF 
GBIF 

VIF 
Move 

Bio2  Mean diurnal range 0.06 0.0008 0.04 0.07 0.04 0.05 

Bio4   Temperature 
seasonality 0.1 0.01 0.07 0.3 0.24 0.13 

Bio7 Temperature Annual 
Range - - 0.24 0.12 - - 

Bio8 Mean temperature of 
wettest quarter 0.01 0.051 0.05 0.05 0.01 0.03 

Bio9   Mean temperature of 
driest quarter 0.04 0.08 0.15 0.06 0.17 0.10 

Bio10   Mean temperature of 
warmest quarter 0.15 0.07 -  -  0.07  0.13 

Bio13 Precipitation of wettest 
month 0.04 0.002 0.02 0.03 0.02 0.05 

Bio14 Precipitation of Driest 
Month - - 0.01 0.02 0.02 0.18 

Bio15 Precipitation 
seasonality 0.04 0.007  0.03 0.03 0.02 0.004 

Bio17 Precipitation of Driest 
Quarter - - - - 0.03 0.3 

Bio18  Precipitation of the 
warmest quarter 0.05 0.01 0.02 0.12 0.02 0.11 

Bio 19 Precipitation of coldest 
quarter 0.02 0.12 0.24 0.02 0.02 0.008 
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3.4 Discussion  
Our study explored the capacity of movement data in characterizing the 
habitat suitability. The spatial concordance between the outcomes of SDMs, 
derived from static (i.e. GBIF) and movement data (i.e. Movebank) 
demonstrated that the latter can be considered as a reliable source for SDMs. 
However, the results varied among the models and species.   

The selection of statistical methods was one of the most substantial facets of 
this study. The difference in outputs derived from the statistical methods has 
long been noted as an important issue (Guisan and Zimmermann, 2000) and 
uncertainties have been identified in the results of different statistical 
methods (Graham et al., 2008; Elith and Graham, 2009; Naimi et al., 2014). 

We tested several statistical models (GLM, BRT, RF, MARS, MAXENT, 
Bioclim, and Maxlike) incorporating presence/pseudo-absence data to 
compare whether the results varied. The discrimination power (i.e. AUC) 
did not show substantial differences in the models incorporated static and 
movement 

data. It may relate to the nature of absence data which characterized 
environments in the study region (Hijmans and Elith, 2017). 

Additionally, we compared ensembles incorporated static and movement 
data by outcome agreement index, and in general the concordance is 
substantial for each species. However, visual comparison between ensembles 
shows utmost areas predicted as unsuitable habitats with the use of static 
data, were identified as such when movement data incorporated (Figure 
3.4). This might be interpreted as the effect of pseudo-absence data, but it 
can be biased and incomplete as discussed in the literature on detectability 
(e.g. Kéry, Gardner and Monnerat, 2010).  

As a non-migratory bird and native in North America, wild turkey has a 
limited distribution. Its movement data also is confined to a portion of the 
native habitat. However, habitat suitability derived from GBIF dataset shows 
a vast range of distribution, which may be due to presence data of the birds 
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escaped from captivity or introduced to other parts of the world. The 
constraint in geographical range of movement data can be perceived the 
reason of the vastness of false negative areas (Figure 3.4a).  However, the 
extent of true negative areas showing considerable similarity between the 
outcomes of both datasets might be an effect of non-presence data generated 
in the models. 

 
Table 3.2 The AUC of 7 SDMs incorporated static and movement data  

Models 

 

Species GLM BRT RF MARS MAXENT BIOCLIM MAX-
LIKE 

Wild 
Turkey 

GBIF 0.85 0.89 0.98 0.94 0.94 0.91 0.81 
Movebank 1 0.99 1 1 1 0.94 0.98 

Montagu’s 
harrier 

GBIF 0.89 0.90 0.99 0.95 0.96 0.93 0.77 
Movebank 0.88 0.89 0.99 0.94 0.95 0.92 0.84 

Great 
white 
pelican 

GBIF 0.84 0.85 0.99 0.92 0.94 0.87 0.82 
Movebank 0.98 0.97 1 0.99 0.99 0.98 0.91 

 

Table 3.3 The TSS of 7 SDMs incorporated static and movement data  

Models 

 

Species 
GLM BRT RF MARS MAXENT BIOCLIM MAX-

LIKE 

Wild 
Turkey 

GBIF 0.63 0.66 0.91 0.78 0.79 0.68 0.62 

Movebank 0.99 0.94 1 1 1 0.88 0.97 

Montagu’s 
harrier 

GBIF 0.64 0.68 0.93 0.77 0.80 0.71 0.61 

Movebank 0.65 0.70 0.93 0.78 0.81 0.73 0.63 

Great 
white 
pelican 

GBIF 0.59 0.58 0.92 0.70 0.74 0.63 0.61 
Movebank 0.94 0.89 0.99 0.95 0.95 0.94 0.79 
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Figure 3. 2 Habitat suitability for three species derived from GBIF (a, c, and 
e) and Movebank (b, d, and f) datasets. 
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Figure 3. 3 Comparing AUC and TSS between SDMs incorporated GBIF 
and Movebank data for wild turkey (green), Montagu's harrier (red), and 
great white pelican (blue). 

 

 

The high value of agreement also occurred in the ensembles of Montagu's 
harrier (Figure 3.3 b): showing a great portion of true negative areas from 
both datasets. On the other hand, the false negative areas depicts a failure in 
discrimination of suitable habitat by movement-derived models. 
Furthermore, the unsuitable areas derived from static-ensemble is 
discriminated as opposite by movement data, as there are coordinate 
positions showing the presence of the species in the region. Finally, 
comparison of the predicted suitable habitats (true positive areas) for great 
white pelican shows limited similarity in geographical distribution (Figure 
3.4.c). This may be because the GBIF dataset lacks presence data of that 
migratory bird, but Movebank includes it. Therefore, the movement data 
can be also considered as a complementary independent source in SDMs.  
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It should be considered that 'movement' used here reflects its usage in recent 
SDM applications and refers to cumulative and collective movement of the 
three bird species across a broad time scale, not to the daily movement of a 
single individual. In addition, incorporating movement data in SDMs is 
essential to identify changes in collective distribution over time, especially 
in the context of climate change.  

Our study is one step forward to have more insight into incorporating 
movement data in distribution modelling. The 'BAM' framework within the 
SDM concept is becoming increasingly popular to identify the factors 
impacting the geographic distribution of species (Holloway, Miller and 
Gillings, 2016). Through this framework, movement, which enables species 
to access the potential habitats (e.g. via dispersal or migration), is important, 
but understudied yet. The importance of incorporating movement data in 
SDMs predicting habitat suitability cannot be overstated, as the results of 
SDMs which disregard movement is subject to high levels of uncertainty. 
More studies are needed to focus on uncertainty for future refinement of 
models. In addition, it is noteworthy that areas beyond the dispersal capacity 
may be projected as a low habitat suitability caused by the lack of presence 
observations instead of unsuitable abiotic and biotic conditions (Barve et al., 
2011). Therefore, more telemetry data of a species would ultimately lead to 
more realistic estimate of suitable habitat. It may provide opportunity to 
investigate how using movement paths can be incorporated in SDM 
(Holloway, Miller and Gillings, 2016). This is the first study that has 
compared the discrimination capacity of the methods of incorporating 
movement data in SDM, and as such should serve as a foundation for studies 
aimed at predicting dispersal alongside species’ future distributions under 
climate change scenarios.  

Understanding the environmental preferences of species and movement in a 
suitable habitat or in a new landscape is important for conservation policy 
and practices (Doherty and Driscoll, 2018). The spatial dynamics of a species 
in the context of conservation planning and practices underline areas of use 
and connectivity (Baguette et al., 2013). However, this line of study in SDM  
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Figure 3. 4 Comparison between suitable and unsuitable habitats derived 
from GBIF and Movebank data for a) wild turkey, b) Montagu's harrier, and 
c) great white pelican. Dark green (true positive): SDMs predicted suitable 
habitats using both datasets. Light green (true negative): unsuitable habitats 
derived from GBIF datasets, recognized as such when Movebank datasets 
were incorporated. Yellow (false negative): SDMs discriminated suitable 
habitats incorporating GBIF datasets, but unsuitable from Movebank 
datasets. Red (false positive): areas predicted as unsuitable habitats from 
GBIF and suitable from Movebank dataset. 

 

a 

b 

c 



Individuals’ Movement Data to Delineate Suitable Habitats 
 

50 

has lagged behind the availability of technology (Holloway and Miller, 
2017). Considering the rocketing volumes of movement data collected at 
the individual levels (Block et al., 2011; Bruneel et al., 2018), the 
development of methods to integrate independent and different sources of 
data is of high value in wildlife management and conservation.  

Birds, like other mobile species, inhabit dynamic three-dimensional spaces 
rather than fixed, point-based and spatially well-aligned habitats. Thus, all 
physically accessible space should be considered as potential habitat (Bruneel 
et al., 2018). To develop efficient conservation practices, it is crucial to 
know the position and time of species presence, especially when a threat may 
occur (Wilcove 2010). This will be further discussed in the next chapter.  
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Postface 

This chapter explained the capacity of individuals’ movement data for 
characterizing habitat suitability. It also discussed the importance of knowing 
where a species might occur for conservation purposes. The next chapter 
further develops this work by using individual movement data to understand 
better an individual’s use of space in volumetric analysis.



 

 
 



 

 
 

 

Chapter 4  

Individual’s Movement Data to Estimate Space 

Use in Volumetric Analysis* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* This chapter is based on: 
Khosravifard, S. Skidmore, A.K., Naimi, B., Venus, V., Munoz, A.R. & Toxopeus, A.G. 
2020. Identifying Birds' Collision Risk with Wind Turbines Using a Multidimensional 
Utilization Distribution Method Wildlife Society Bulletin. 44(1), pp.191–199. 



Individual’s Movement Data to Estimate Space Use in Volumetric Analysis 

54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preface 

This chapter explores the fourth hypothesis of the thesis related to the use of 
individual movement data to estimate the utilization distribution in three-
dimensional space. It hypothesises that vertical movement data can improve 
the accuracy and credibility of the home range estimation.  
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Abstract  
Renewable energy now plays a key role in reducing greenhouse gas 
emissions. However, the expansion of wind farms has raised concerns about 
risks of bird collisions. We have therefore studied different methods used to 
understand if birds’ flight occurs over wind turbines and found kernel 
density estimators outperform other methods. Previous studies using kernel 
utilization distribution (KUD) have considered only the two horizontal 
dimensions (2D). However, if altitude is ignored, an unrealistic depiction of 
the situation may result because birds move in three dimensions (3D). We 
have quantified the 3D space use of the Griffon vulture (Gyps fulvus) and, 
for the first time, their risk of collision with wind turbines in an area in the 
south of Spain. The 2D KUD showed a substantial overlap of the birds’ flight 
paths with the wind turbines in the study area, whereas the 3D kernel 
estimate did not show such overlap.  

Our aim was to develop a new approach using 3D kernel estimation to 
understand the space use of soaring birds; these are killed by collision with 
wind turbines more often than any other bird types in southern Spain. We 
determined the probability of bird collision with an obstacle within its range. 
Other potential application areas include air fields, plane flight paths and tall 
buildings. 

 

4.1 Introduction  
Wind farms have received public and government support as a clean source 
of renewable energy because they do not cause air pollution as does the 
burning of fossil fuels (Stigka et al. 2014, Yuan et al. 2015). The use of wind 
energy is therefore expanding rapidly worldwide. The Global Wind Energy 
Council reported that 2015 was another record-breaking year for the wind 
energy industry (Global Wind Energy Council, 2016).However, wind farms 
may be causing a large numbers of fatalities to flying animals (De Lucas et al. 
2012a, Zimmerling & Francis 2016), affecting a large area of potentially 
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suitable soaring-habitat around them (Marques et al. 2019). Therefore, the 
expansion of wind farms has raised concerns about their negative impact on 
habitats and wildlife populations.  

Relatively high collision fatality rates have been recorded at several large 
wind farms in locations with many birds and show that turbines pose a risk, 
especially to large raptors and other soaring birds. The Griffon vulture is one 
of the raptors frequently killed by collision with wind turbines in southern 

Spain (Olea and Mateo‐Tomás 2014, De Lucas et al. 2012a , De Lucas et al. 
2008, Barrios and Rodríguez 2004). For instance, Carrete et al. (2012) found 
342 dead Griffon vultures during a 10-year period (January 1998–March 
2008) in an area of 34 wind farms with 799 turbines in the province of Cádiz, 
southern Spain. 

To develop efficient conservation practices, it is necessary to know where 
and when a threat of collision may occur (Wilcove 2010). The two most 
common approaches, namely home range and utilization distribution, have 
been used to depict and portray animal movements and their space use (Kie 
et al. 2010, Monsarrat et al. 2013, Rutz & Hays 2009, Tomkiewicz et al. 
2010). The home range is the area “traversed by an individual [animal] in its 
normal activities of food gathering, mating and caring for young” (Burt 
1943), whereas the utilization distribution reflects the animal’s spatial use 
probability density (Van Winkle 1975). Recently, the home range has been 
viewed as one attribute of the animal’s utilization distribution. Animal space 
use has been quantified using different methods such as minimum convex 
polygon (Mohr 1947), bivariate normal method (Jennrich & Turner 1969), 
grid square method (Macdonald, Ball & Hough 1980, Siniff & Tester 1965), 
population utilization distribution (Ford & Krumme 1979), and kernel 
density (Worton 1995). Several methods have recently been developed for 
the time-explicit estimation of animal space use, such as the dynamic 
Brownian bridge movement model (Kranstauber et al. 2012) and bivariate 
Gaussian bridges (Kranstauber et al. 2014). The kernel density estimator 
method has low bias (Seaman & Powell 1996, Worton 1995), and greater 
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flexibility in handling complex location patterns (Worton 1989) and in 
assuming location independence (Benhamou & Cornélis 2010, Fieberg 
2007).  

So far, most studies estimating animal home ranges or utilization 
distributions have only considered the two horizontal dimensions (Cagnacci 
et al. 2010, Fleming et al. 2015, Katajisto and Moilanen 2006, Powell and 
Mitchell 2012). If altitude—the third dimension—is neglected, an 
unrealistic depiction of reality may be attained for species moving in three-
dimensional (3D) space, such as birds, bats, fish, or climbing species (Belant 
et al. 2012, Monterroso et al. 2013). However, few studies have quantified 
space use patterns in 3D. For instance, Koeppl et al. (1977) presented a 
model based on an ellipsoid of a particular size, shape, and orientation in 
space. It was one of the first models used to compute home range in 3D. 
Hindell et al. (2011) quantified the 3D space use of five different species (two 
mammals and three bird species). They highlighted that the highest 
concentrations of locations of southern elephant seals occurred within the 
1000 m bathymetric contour.  

Simpfendorfer et al. (2012) calculated the utilization distribution of 
European eels (Anguilla anguilla) using 2D and 3D kernel density. They 
emphasized that the 2D analysis overestimated the amount of movement 
overlap between individuals by 13-20%. Recently, Cooper et al. (2014) 
studied the 3D space use and overlap of American Redstarts (Setophaga 
ruticilla) using a direct observation method for data collection and kernel 
density estimator. Their study was confined to observing focal territories 
throughout each sampling period, with birds located visually and the altitude 
estimated by observers. The number of locations for each observed bird was 
also limited. Nevertheless, their findings concurred with a former study on 
the overestimation by 2D analysis compared to the 3D method. They also 
found that American Redstarts may avoid areas of overlap, presumably to 
limit interactions with neighbours. 
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Here we describe how we collected locations of an individual Griffon vulture 
with the use of a bio-logger, quantified the bird’s 2D and 3D utilization 
distributions, and, for the first time, its collision risk with wind turbines 
using KUD. We demonstrate that volumetric analysis (3D) is more 
informative than planar analysis (2D) in utilization distributions. We show 
that neglecting the third dimension would provide incomplete depiction of 
the aerial species’ space use, whereas 3D kernel estimators can not only be 
used to improve our understanding of the bird’s movements, but they can 
also be considered as a way to determine wildlife collision risk with an 
obstacle in the territory or home ranges in conservation plans. 

 

4. 2 Materials and methods 
4.2.1 Study area  

The study area was located in the natural park of El Estrecho, in Tarifa 
(southern Spain); it lies on the northern shore of the Strait of Gibraltar 
(Figure 4.1); 36°07´-36°06´ N, 5°45´-5°46´ W). This area is the most 
southern protected area in Europe. It is a maritime-terrestrial park along 54 
km of coastline in Andalusia and it is an Important Bird Area (BirdLife 
International 2017, Guerra García et al. 2009). In this area, Ferrer et al. 
(2012) reported the highest collision rates ever published for birds 
(1.33/turbine/year) with the Griffon vulture being the most frequently 
killed species (0.41 deaths/turbine/year). There are several Griffon vulture 
colonies in the area, consisting of approximately 320 breeding pairs in total. 
We focused on colony at an escarpment running north-south, 4 km from the 
Strait of Gibraltar; with approximately 65 breeding pairs (Del Moral 2009). 
Our analysis is constrained to the space used by one tagged Griffon vulture; 
the space encompassed an area of 152 km2 and included 20 wind farms with 
269 operational turbines. The turbine specifications are shown in table 4.1.  
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Table 4.1 Wind turbine data: model name, ID-number, hub height, blade 
length and total height (in meters) 

 

 

Model Colour 
on 

 

ID-number 
of turbine 

Hub 
height 

Blade 
length 

Total 
height 

ECOTECNIA ECO-
74 

 3
4 

70 35.5 105.5 

ENERCON E-70 

 

2
0 

84 33.5 117.5 

GAMESA G-80 

 

3
0 

67 40 107 

GAMESA G-87 

 

1
1 

78 42.3 120.3 

MADE AE-56 

 

4
3 

60 27.25 87.25 

MADE AE-59 

 

5
5 

60 28.75 88.75 

VESTAS V-72 

 

4 78 36 114 

VESTAS V-80 

 

6 78 40 118 

VESTAS V-90 

 

6
6 

80 44 124 
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4.2.2 The species and tracking system  

A Griffon vulture was captured using a foot-snare trap. The bio-logger was 
attached as a backpack using a harness made of teflon ribbon with one strap 
fitted across each wing and another strap below the crop (Kenward 2000). 
The capture and release took place on September 11, 2010. Distinctive 
yellow patagial markers, with a unique combination of numbers and letters 
(i.e. 9FJ) were also attached to both wings. This method was shown to be 
harmless to the bird and led to no detectable changes from its normal 
behaviour (Reading et al. 2014). Our Griffon vulture was a male, sub-adult, 
and with a body mass of about 7 kg. 

We used the Bird Tracking System developed at the University of 
Amsterdam (Bouten et al. 2013). The key features of this bio-logger are solar 
rechargeable batteries, light weight (45 grams, <0.6% of body mass), two-
way data-communication, four-megabyte flash memory (capable of storing 
60,000 GPS fixes), and a GPS tag with high resolution temporal intervals 
from 3 to 7,200 seconds. This bio-logger had a biometric pressure sensor 
and it transferred the GPS data (with 3D coordinate positions) to a base 
station. It could be programmed remotely using the BirdTracking software 
(http://www.uva-bits.nl/). The positional and altitude mean errors were 
1.13 m and 1.42 m as shown by a test of stationary bio-loggers GPS in open 
space (Bouten et al. 2013). We used the GPS fixes and their properties to 
quantify the Griffon vulture’s 3D movement in order to determine the 
overlap of air space use between the bird and the wind turbines.  

We retrieved the GPS fixes of our Griffon vulture for 18 months (February 
2012–July 2013). This data comprised 169,778 locations at 5-minute 
intervals. 

The procedures of this research, including the bird trapping and bio-logger 
tagging were conducted with permission from the Consejería de Medio 
Ambiente of the Junta de Andalucía (Regional Council for the 
Environment). 

 

http://www.uva-bits.nl/
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4.2.3 Data analysis  

As the Griffon vulture is a diurnal species, only data points during daytime 
(i.e. from dawn till dusk) were considered and stationary locations (speed < 
4 m/s) were filtered out. The remaining 12,611 locations were used to 
quantify KUDs (50% and 95%) in 3D. 50% KUDs are most commonly 
calculated to depict the core activity space, while 95% KUDs are used to 
describe its extent (e.g. Benhamou & Cornélis 2010). The multivariate 
kernel density estimate is defined by:  

 

𝑓ℎ(𝑥) =  𝑛−1 ∑ ℎ−𝑑𝐾
𝑛

𝑖=1

(
𝑥1 − 𝑋𝑖1

ℎ1
, … ,

𝑥𝑑 − 𝑋𝑖𝑑

ℎ𝑑
) 

 

 

(Equation 4-1) 

where x = (x1, x2, ..., xd) is an independent and identically distributed 
sample of a random variable X, h is the bandwidth, and K is the kernel 
function of dimensions d.  

We used a plug-in bandwidth selector to estimate the smoothing factor 
matrix. This method provides adequate results in the utilization distribution 
estimation and requires less intensive computation compared to other 
methods, such as least squares cross-validation (LSCV) or the reference 
method. 

We quantified monthly 2D and 3D KUDs (50% and 95%) for the Griffon 
Vulture using the “ks” package (Duong 2007) in R Statistical environment 
(version 3.2.3, www.r-project.org, accessed 5 September 2016). At the 
location of each turbine, we extracted the value of probability density 
generated by the 2D kernel function. In a similar fashion, we extracted the 
density values generated by the 3D kernel, but this time the total height of a 
turbine (i.e. turbine height plus blade length) was considered. This is the 
sum of the turbine’s height, the length of a blade, and the land elevation 
determined using a digital elevation model (DEM).  
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In addition, we consider the value for the probability density in both 2D and 
3D KUD as a proxy of the plausible collision risk. Then we used the Mann-
Whitney-Wilcoxon test to examine any significant differences in the 
extracted values. In 2D and 3D KUD, values above the third quartile (i.e. 
the highest 25% of the values) were selected as a proxy for plausible collision 
with high risk. The frequency distribution of plausible risk pertaining to the 
turbines was calculated to determine which turbines might be relatively 
dangerous in the course of data gathering. 

 

4.3 Results 
The 2D KUD of our tagged Griffon vulture showed that all the wind turbines 
are located in the core and extended home range, where the KUD values 
were relatively high and may explain the birds’ relatively frequent collisions 
with the turbines (Figure 4.2). The values extracted from the 2D KUD were 
significantly higher than for the 3D model at the turbine locations (Mann-
Whitney-Wilcoxon Test p < 0.001).  

The 3D kernel estimation of the Griffon vulture’s occurrence covered a large 
space use (Figure 4.3): 50% and 95% KUD were estimated to be 476 km3 
and 11120 km3, respectively. The values extracted from the 3D kernel 
estimation showed a high probability density in the winter and early spring 
of 2012 and of 2013.The results showed that there was no sign of collision 
risk in May and June in both years because the Griffon vulture was not then 
in the vicinity of the turbines. However, the concentration of collision risk 
increased in March and April of both years (Figure 4.4). 

In 3D space, just three turbines had a relatively high risk (i.e. above the third 
quartile) in 12 out of 17 months, whereas seven turbines appeared to have 
such a risk in 2D space. The maximum number of turbines that had a 
relatively high risk in 3D and 2D space were 55 and 62, respectively.  
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Figure 4. 1 The study area is part of the El Estrecho natural park in Tarifa 
(southern Spain) and lies on the northern shore of the Strait of Gibraltar. The 
Griffon vulture colony (red square) is located at an escarpment close to wind 
turbines (colourful circles with numbers, each colour represents a group of 
identical turbines). 
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The high risk occurred in one month for 3D and in three months for 2D 
space use (Figure 4.5). The turbines located in the southern part of the study 
area, in the vicinity of the Griffon vulture colony, had a relatively high risk 
of collision in both the 3D and 2D analyses (Figure 4.6).  

 

 

 

Figure 4. 2 The activity space of our tagged Griffon vulture estimated by 
2D kernel utilization distribution (KUD) for 17 months (February 2012 to 
July 2013). Panel (a) demonstrates the bird’s entire activity space use, while 
panel (b) depicts the portion where wind turbines are located (black circles 
represent a portion of entire turbines). 
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Figure 4. 3 (a) Representation of 3D KUD of a Griffon vulture for 17 
months (February 2012 to July 2013). The green and purple shapes indicate 
50% and 95% KUDs. The digital elevation model DEM) is illustrative. Panel 
(b) reveals that, in 3D space use, there is no overlap between the birds’ space 
use and the wind turbines. 
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4.4 Discussion 
We have used kernel utilization distribution (KUD), for the first time, to 
understand the plausible collision risk between wind turbines and bird 
occurrence. Our results demonstrate the advantage of 3D KUD for 
modelling the birds’ 3D space use and, in particular, the comparative risk of 
a bird colliding with a turbine. Although 2D analyses are useful to summarize 
information on the location of individuals (Simpfendorfer et al. 2012), 
volumetric analyses (i.e. with altitude added as a third dimension) provide a 
more detailed depiction of species occurrence. Using a 3D KUD, we show 
that the most dangerous times and highest risk turbines can be identified. 
This information can be used to reduce the mortality rate caused by bird 
collisions with turbines and offers leads to wildlife managers on how to 
minimize the probability of such collisions (Belant et al. 2012).  

So far, the probability of collision has been studied by analysing a range of 
complex factors such as the species’ flight behaviour, topography, and 
weather (De Lucas et al. 2008). Those studies were conducted with the aim 
of reducing the birds’ mortality rate at wind farms, particularly of raptors 
(Barrios and Rodríguez 2004, Bellebaum et al. 2013, DeVault et al. 2005, 
Drewitt and Langston 2008, Tellería 2009).  

However, 3D space use was not considered so far and we show that this has 
a major impact on the results. A trial mitigation measure was instigated by 
Regional Council for the Environment in 2008-2009, that power companies 
selectively stopped some wind turbines when raptors were observed in their 
vicinity. This measure reduced the Griffon vulture fatality rate by 50% (De 
Lucas et al. 2012a). The trial also demonstrated that the distribution of 
Griffon vulture mortality was not uniform, which is consistent with our 
results from the 3D KUD approach.  

In Europe, an environmental impact assessment (EIA) is required prior to 
the construction of new wind farms. The anticipated impact of the 
development on a site’s bird population is included in the EIA 
(Environmental Impact Assessment Directive 97/11/EC). Ferrer et al. 
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(2012) ascertained that risk assessment studies had erroneously assumed a 
linear relationship between the frequency of observed birds and fatalities. 
They concluded that the correlation between predicted and actual fatalities 
can be improved by changing the scale of studies and concentrating on the 
location of each proposed turbine. Our findings, with the focus on the 
location of the turbines, support this conclusion and offer a new tool for 
performing such calculations. Specifically, the proxy of plausible collision 
risk per turbine can be estimated by deriving the values generated by 3D 
KUD. This 3D model can assist wind farm developers to calculate the risk 

 

 

Figure 4. 4 The value of probability density extracted from 3D KUD at the 
location of the wind turbines shows a relatively high space activity in the 
winter and early spring of 2012 and 2013. 
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Figure 4. 5 Distribution of the number of turbines and relative months of 
plausible collision with a relatively high risk in 2D- (above) and 3D-space 
(below).  

 

of installing a turbine at a specific location. Our 3D approach could also be 
used during the post-construction and operational phases of wind farms, 
helping management to predict periods of high risk and reduce the number 
of bird collisions by selectively curtailing certain wind turbines. 

We purposely used recorded movement data for a tagged Griffon vulture 
rather than simulated data to depict the real situation. Since Griffon vultures 
have similar flight and foraging behaviour (Bosè and Sarrazin 2007, Mateo-
Tomás & Olea 2011, Xirouchakis and Andreou 2009), the results may be 
generalized to other individuals. Although this new application of 3D KUD, 
as presented here, can be used for identifying collision risk between obstacles 
and species in 3D space, some aspects of the method need to be investigated 
further. For example, more research into producing easily interpretable 
results with confidence measures is needed. In addition, spatiotemporal  
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Figure 4. 6 Location of the turbines and the number of months with a high 
collision risk in 2D (above) and 3D space use (below). 
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autocorrelation in movement data is an important issue since this yields an 
underestimation of an individual’s space use (Fleming et al. 2015). So far, in 
animal movement research, many studies have focused on autocorrelated 
data in 2D (Fieberg 2007, Fleming et al. 2017), whereas 3D data studies 
might well be required. We expect this new application of 3D KUD to offer 
exciting opportunities for exploring the process of volumetric analysis in 
animal movement research, such as spatial autocorrelation in estimating risk 
and the need to develop methods for 3D kernel density estimators. 
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Postface 

The chapter showed that incorporating the vertical movement data to space 
use analysis improves the accuracy and credibility of home range maps. It 
also proved that the 3D volumetric analysis a realistic depiction of species 
occurrence. This chapter discussed that the approach could be used for 
conservation purposes to reduce the collision rate of species with a human-
made obstacle.  The next chapter explores movement (i.e. flight) types with 
the use of high-resolution data.
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Preface 

This chapter aims to complete our work with movement data. It explores 
the last hypothesis of this thesis testing whether movement patterns (i.e. 
flight types of a soaring bird) can be classified using the movement data. This 
chapter provides further insight into movement and flight behaviour.  
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Abstract 
Being one of the most frequently killed raptors by collision with wind 
turbines, little is known about the Griffon vulture’s flight strategies and 
behaviour in a fine scale. In this study, we used high-resolution tracking data 
to differentiate between the most frequently observed flight types of the 
Griffon, and evaluated the performance of our proposed approach by an 
independent observation during a period of 4 weeks of fieldwork. Five 
passive flight types including three types of soaring and two types of gliding 
were discriminated using the patterns of measured GPS locations. Of all 

flight patterns, gliding was classified precisely (precision = 88%), followed 
by linear and thermal soaring with precision of 83 and 75%, respectively. 
The overall accuracy of our classification was 70%. Our study contributes a 
baseline technique using high-resolution tracking data for the classification 
of flight types, and is one step forward towards the collision management of 
this species. 

  

5.1 Introduction  
Flight and foraging behaviour, and migration of the Griffon vulture (Gyps 
fulvus, Hablizl, 1783) have been well studied (Bildstein et al., 2009; Duriez 
et al. 2014, García-Ripollés, et al., 2011; Houston, 1974) (see appendix). 
However, little is known about the fine-scale flight and motion capacity of 
this species, which is on the top list of most frequently killed raptors by 
collision with wind turbines in southern Spain (Barrios & Rodríguez, 2004).  

Flight type plays an important role in collision risk with wind turbines, 
especially when associated with hunting and foraging strategies of big raptors 
(Marques et al., 2014). Hoover and Morrison (2015) highlighted that soaring 
flight, which needs strong wind and occurs in rotor swept zone of wind farm, 
is a factor explaining the high collision rate of raptors. 

The motion capacity of an individual is its ability to move in various ways or 
modes either by its own locomotion or by externally vectored via physical 
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means (e.g. winds, water flow, etc.) or by other organisms (e.g. wingless 
flower mites traveling on foraging bees) (Holyoak et al., 2008). Generally, 
a movement paradigm was introduced as the interplay amongst the four basic 
mechanistic components: external factors affecting movement, internal state 
(i.e. why move?), navigation capacity (i.e. where and when to move?) and 
motion capacity (i.e. how to move?) (Holyoak et al., 2008; Nathan et al., 
2008). A more detailed understanding of the motion capacity of flying birds 
has been developed in many ornithological studies (Cone, 1962; Dhawan, 
1991; Pennycuick, 1971, 1972; Tucker, 1998; Videler, 2005). Soaring and 
gliding are the two most common types of flight among raptors and have 
been at the centre of many studies since the first attempt to understand 
raptors’ flight behaviour in 1913 (Dhawan, 1991). However, a major 
challenge underlying studies of movement type is of a methodological 
nature, related to data collection and the methods used to classify the 
movement patterns.  

With respect to data collection, researchers have traditionally used direct 
observation as a method to monitor birds, as well as to elucidate and describe 
flight phenomena (C J Pennycuick & Scholey, 1984). Bildstein and 
colleagues (2009), for example, used this method during the autumns of 
2004 to 2007 to determine Griffon vultures’ flight types during migration. 
Not losing sight of an animal is the most challenging part of this traditional 
type of research (Pennycuick, 1973), but this has now been solved by 
telemetry techniques. These methods provide practical insight into wildlife 
movements (for instance see Harel et al., 2010, Bouten et al. 2013 and 
López-López et al. 2013).  

Techniques for studying free-living birds’ behaviour have advanced and 
flourished since these earlier attempts (Roy & Hart, 1963). Since then, 
technologies including radar (Konrad, Hicks, & Dobson, 1968), radio 
(Schemnitz & Owen, 1969), satellite and Global Positioning System (GPS) 
tracking (Biro et al., 2002; Nowak et al., 1990; Weimerskirch et al., 2002) 
have been deployed. Recent advances in telemetry techniques, such as 
extensive use of bio-loggers with GPS, have enabled spatiotemporal data to 
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be collected on vertebrates with ever-increasing accuracy as well as density 
of data points (Tomkiewicz et al., 2010).  

Much research has been conducted via the classification of movement 
patterns to solve the difficulties of dealing with large datasets and their 
interpretation (e.g. Guting et al., 2010). These methods, however, have 
been used mainly to analyse movement in two dimensions (i.e. x and y) 
(Giannotti and Pedreschi 2008; Güting & Schneider, 2005; Long & Nelson, 
2013)and mostly at coarse temporal resolution (i.e. daily or hourly 
movements) to determine home range, dispersal and migration routes 
(Calenge et al., 2009; Kranstauber et al., 2012; López-López et al., 2013; 
Mandel et al. , 2008; Smouse et al., 2010). 

Research to date indicates that the Griffon vulture exhibits mainly passive 
flight types (i.e. various kinds of soaring and gliding) by using air currents, 
as well as occasional flapping when necessary (Bildstein et al., 2009; 
Dhawan, 1991). Moreover, using accelerometer data, Halsey et al. (2009) 
proved that the species rarely flaps except during take-off or landings in non-
migratory movement. Since soaring birds such as the Griffon vulture are not 
capable of maintaining constant altitude by flapping flight alone (Newton, 
2010; Shepard et al., 2011) and it has also been shown by Bildstein et al. 
(2009) that the flapping rate in the Griffon vulture is very low (i.e. mean of 
1.2 flaps per 30 seconds), we made a basic assumption in this study that the 
flapping rate during daily flights can be considered negligible in non-
migratory movement. 

Our study utilised collection methods using GPS-logger technology. Based 
on the high-resolution tracking data only, we developed and tested a baseline 
method to differentiate passive flight in three spatial dimensions (i.e. x, y 
and z) to classify these flight types of the Griffon vulture. This study is one 
step forward to have more insight into flight behaviour which may play a role 
in collision risk.  
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5.2 Materials and methods 
5.2.1 Study area and species 

Our study area in southern Spain is part of the natural park El Estrecho, in 
Tarifa, Andalucía region, and is located on the northern side of the Strait of 
Gibraltar (36°07´ – 36°06´ N, 5°45´ – 5°46´ W). The Strait of Gibraltar is 
the shortest sea crossing between Europe and Africa and is a well-known 
migratory bottleneck for soaring birds (Bildstein & Zalles 2000). In this area, 
Ferrer et al. (2011) reported the highest collision rates ever published for 
birds (1.33 deaths/turbine/year) with the Griffon vulture being the most 
frequently killed species (0.41 deaths/turbine/year). An escarpment with 
north-south direction, 4 km away from the Strait of Gibraltar, is a location 
of Griffon vulture’s colony, consisting of approximately 65 breeding pairs 
(Del Moral, 2009) The population is surrounded by several other breeding 
colonies, consisting of approximately 320 pairs so the area is persistently 
used by vulture during their local movements (De Lucas et al., 2012) and is 
encompassed by 25 wind farms, consisting of 491 operating turbines. Figure 
5.1 shows the study area, location of wind turbines and the colony.  

A Griffon vulture was captured using a foot snare. The bio-logger was 
attached to it as a backpack using a harness made of teflon ribbons with one 
strap fitting across each wing and another strap below the crop (Kenward, 
2000). The capture and release took place on September 11, 2010. Also, 
distinctive yellow patagial markers, with unique combination of numbers 
and letters (i.e. 9FJ) were attached to both wings. This method was proved 
to be harmless to the bird with no changes in its normal behaviour (Reading 
et al.  2014). The captured Griffon vulture was a male, sub-adult, and with 
a body mass of about 7 kg. 

Collison risk may also be influenced by behaviour associated with a specific 
sex or age. Although it is reported that young vultures were not especially 
vulnerable to collisions compared with the other age classes (Barrios & 
Rodríguez. 2004; Marques et al. 2014), de Lucas et al., 2012 demonstrated 
that among 117 killed vultures by collision with turbines, 74.36% (87) were 
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juveniles and 25.64% (30) were matures and adults. Additionally, to the best 
of our knowledge, no information has been published about correlation 
between sex and collision rate of the Griffon vulture.  

 

5.2.2 Tracking device  

We used the Bird Tracking System developed at the University of 
Amsterdam (Bouten et al., 2013). The key features of its bio-logger are 
rechargeable solar batteries, low weight style (45 grams, <0.6% of a Griffon 
vulture’s body mass), two way data-communication, four megabytes flash 
memory (capable of sorting 60,000 GPS fixes) and the GPS tag with high 
resolution temporal intervals from 3 seconds up to 7,200 seconds (see 
http://www.uva-bits.nl for more information). In this study, we used GPS 
fixes and their properties to differentiate between the flight types.  

 

5.2.3 Collecting data from a free-ranging vulture 

Tracking data were retrieved for 27 days between May and July 2013. This 
period was a part of breeding season of the bird. During this time, we also 
undertook fieldwork observations independent of the tracking dataset. We 
used a camera recorder synchronized to Universal Time Coordinated (UTC) 
time with Garmine eTrex Summit GPS along with direct visual observations 
to note the times and flight types simultaneously. The observations were 
made by two observers during daylight hours with the aid of 10x42 
binoculars and a 20-60X telescope spot. We conducted a filed survey to 
select the observation locations with a wide angle of view in almost centre 
of the escarpment: one up and the other down on the cliff with almost 360˚ 
and 270˚ angle of view, respectively. To motivate the Griffon vulture to fly, 
carrion was dumped on the ground. Additionally, observation points were 
selected to provide a wide field of view of the tagged bird with the yellow 
patagial markers on the dorsal and ventral surfaces of wings. 

 

http://www.uva-bits.nl/
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Figure 5. 1 The Study Area in province of Cádiz, south Spain: the grey 
polygon (bottom) is the location of colony site and the asterisk symbols show 
the location of observers. The observers’ angle of view is shown in solid and 
dashed line. 

 

5.2.4 Data preparation  

Although we had set the measurement interval of the GPS tracker to three-
seconds, the retrieved datasets consisted of various intervals. Therefore, to 
prepare the final dataset, we extracted 11 days of collection data with a 
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three-second interval, yielding 66,766 data points. The instrument recorded 
several properties for each point including time, geographic coordinates, 
altitude, and instantaneous velocity in three directions (x, y and z). Based on 
this raw data we calculated the distance, cumulative distance, average 
altitude, altitude difference and direction of motion between all successive 
GPS fixes. To discriminate between flying and non-flying modes, we 
considered speed of movement and calculated the first non-static points with 
a speed >4 m/sec (Nathan et al., 2012).   

 

5.2.5 Flight types 

This paper focuses on five different types of passive flights namely: thermal 
soaring, linear soaring, slope soaring, gliding, and spiral gliding. Figure 5.2 
illustrates all the flight types.  

Thermal soaring is characterized by a circular flight in the course of which 
birds gain altitude in thermal columns using tight curves as close as possible 
to the centre (Pennycuick, 1973; Pennycuick, 2008; Videler, 2005). The 
term linear soaring was introduced by Pennycuick (1972). It refers to an 
almost straight flight without circling when thermal currents are strong and 
abundant (Videler, 2005). Although this term was introduced to describe 
long distance flight, we have here applied the term to straight flight with a 
minimum length of 350m in order to discriminate it from slope soaring. 
Slope soaring is a flight type often exhibited by Griffon vultures along their 
nesting or roosting cliffs. Generally, slope soaring takes place at low altitude. 
Birds repeat this type of flight parallel to the cliff. This type of flight lasts 
until they detect a thermal or other air current (Barrios & Rodríguez, 2004; 
Pennycuick, 1972). It is performed in a shape that can be likened to a figure 
of eight. Gliding refers to flight with wings spread (or folded) in a downward 
or straight direction (Dhawan, 1991; Pennycuick, 1971; Pennycuick, 2008). 
Spiral gliding is used to reduce altitude in an almost spiral-like pattern, and 
in slow downward motion towards the ground or to the nesting site. The 
term spiral gliding is not commonly used in the ornithology literature; it was 
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borrowed from a study that focused on the flight behaviour of seeds 
dispersed by the wind (see: Minami and Azuma, 2003). 

 

5.2.6 Flight classification 

To discriminate between linear flight patterns (i.e. linear soaring and 
gliding) and non-straight flight patterns (i.e. thermal soaring, slope soaring 
and spiral gliding), we calculated the radius of curvature parameter by using 
a minimum of three successive GPS fixes. To further differentiate patterns 
within each flying type, we applied the laws of motion, as defined in physics, 
based on the following parameters: distance, altitude, speed and angle of 
direction.  

For the space curve (like a non-straight flight pattern), the radius of 
curvature is the length of the curvature vector. To calculate the radius of 
curvature, we combined the flight distance and speed within non-straight 
flight patterns. In this regard, speed was smoothed with a running mean over 
three successive GPS fixes. 

  The curvature k is defined as: 

𝑘 = Δ𝜙
Δ𝑠

=  𝜙𝑖+1−𝜙𝑖
𝑠𝑖+1−𝑠𝑖

                                                           (Equation 5-1) 

 

Where ϕ denotes the tangential angle and s is the arc length. In three-

dimensional space, the space curve r(t) for the tangent vector �̂� is defined as:  

�̂� =̅  
Δ𝒓
Δ𝑡

|Δ𝒓
Δ𝑡|

=  
Δ𝒓
Δ𝑡
Δ𝑠
Δ𝑡

= Δ𝒓
Δ𝑠

                                                              (Equation 5-2) 

According to the Frenet-Serret formula, in differential geometry, keeping �̂� 

as the tangent vector and �̂� is the normal vector (Coxeter, 1969) then we 
have: 

�̂̇� = �̂�                                                                                      (Equation 5-3) 
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�̂̈� = 𝑘�̂�                                                                                   (Equation 5-4)  

When �̂̈� changes constantly, it will show a circular flight (such as thermal 

soaring). However, if �̂̈� fluctuates by showing increasing and decreasing 
magnitude, the flight can be considered to be slope soaring with its radius of 
curvature going up and down. 

Another parameter that assisted in discriminating between non-straight 
flights was altitude, which constantly increases in thermal soaring and 
decreases in spiral gliding. However, it remains almost steady during the 
slope-soaring movement (z ~ 0).  

 

Flights with a radius of curvature > 350m were considered straight flights. 
To determine whether a flight pattern was soaring or gliding, regardless of 
whether it was straight or non-straight, the altitude of five successive GPS 
fixes (over a period of 15 seconds) were also considered. In this regard, 
soaring or gliding were characterized when the majority of the fixes (n ≥ 3) 
were either ascending or descending, respectively. Figure 5.3 shows the 
steps we took in building and evaluating our differentiation of Griffon 
vulture flight types.  
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Figure 5. 2 Thematic illustration of the Griffon vulture’s different flight 
patterns (a) thermal soaring, (b) spiral gliding, (c) linear soaring, (d) gliding, 
(e) slope soaring.  
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5.2.7 Evaluation of flight pattern differentiation 

An independent observation dataset was gathered during the fieldwork and 
used to evaluate predicted flight patterns. For this purpose, we collated and 
compared records based on the field observations and extracted 1146 
seconds of flight synchronized with the final dataset. Considering each 
interval between two successive GPS points is 3 seconds, the length of 
recording consisted of 382 segments in total, matched with the dataset. It 
consisted of 54, 104, 109, 23 and 92 segments for linear soaring, gliding, 
thermal soaring, spiral gliding and slope soaring respectively.  

Validated results are presented in the form of a confusion matrix, (for 
example see: Kohavi and Provost, 1998) giving the number of cases that 
were correctly classified as positive (i.e. predicted flight pattern), as well as 
the number correctly identified as negative (other flight patterns). The cases 
where a negative sample was misclassified as positive, and vice versa, are 
called false positive and false negative, respectively. The performance of the 
identified flight patterns was evaluated based on indicators, namely 
precision, true positive rate, true negative rate, the accuracy of each flight 
pattern, and the overall accuracy, as well as the kappa value (Weiss and 
Provost, 2001) (see below for definitions).  

Precision is defined as the proportion of the predicted cases that were 
correct. The true positive rate indicates that the percentage of a flight pattern 
matches  
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Figure 5. 3 Study workflow of the Griffon vulture’s flight patterns and 
evaluation of the classification. 
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what is also observed from the data, while the true negative rate expresses 
the proportion of other flight patterns that are correctly predicted as that 
class. The accuracy of each flight pattern is the proportion of predictions 
(positive or negative) that are correct. Overall accuracy is calculated by the 
total number of correct classifications divided by the total number of 
samples. Finally, the kappa value is used to measure the agreement between 
predicted and observed classes, while correcting for an agreement that might 
occur by chance (Stehman, 1997; Viera & Garrett, 2005). The confusion 
matrix (Table 5.1, above) shows the number of segments belonging to each 
flight pattern. For instance, in the first row, 41, 0, 7 and 6 are number of 
segments corresponding to each flight pattern classified as linear soring, 
gliding, thermal soaring, spiral gliding and slope soaring, respectively. The 
numbers in diagonal line (in bold) are those segments that were correctly 
classified as positive. 

 

5.3 Results  
The evaluation method indicated a substantial agreement between the 
predicted and observed Griffon vulture’s flight types (Table 5.1, below). 
The estimated kappa value (0.61±0.06) is intended to illustrate the 
agreement between two groups of predicted and actual flights. The overall 
classification accuracy was 70%. Of all flight patterns, gliding had the highest 
precision (88%), while linear and thermal soaring had a precision of 83% 
and 75%, respectively. The lowest values of precision were present for spiral 
gliding (34%) and slope soaring (53%). 

The flying and stationary modes were clearly distinguished. The variation of 
instantaneous speed > 4 m/s, as a main proxy of the flying mode, is 
demonstrated in figure 5.4. This figure also shows that the stationary mode 
is more frequent than flying mode in the period of our study. 

 

 



Individual’s Movement Data to Identify Flight Types  

88 

Table 5.1 Summary statistics of confusion matrix for Griffon vulture’s flight 
patterns. The columns and rows (top) show the predicted and observed flight 
patterns, respectively. Numbers are representatives of segment. The 
numbers in bold are corresponding segments of each flight pattern which 
were correctly classified as positive. Summary statistics of the classification’s 
performance (bottom) for all flight classes, overall performance of the 
classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observed 

Flight pattern 

Predicted flight pattern 
 Total 

Observation Linear 
Soaring Gliding Thermal 

Soaring 
Spiral 

Gliding 
Slope 

Soaring 

Linear Soaring 41 0 7 0 6 54 

Gliding 0 81 0 12 11 104 

Thermal 
Soaring 5 0 89 0 15 109 

Spiral Gliding 3 0 0 16 4 23 

Slope Soaring 0 11 22 18 41 92 

Total 
predicated 49 92 118 46 77 382 

  Classification’s performance indicators 

Behaviour Precision True positive 
rate 

True 
negative 

rate 
Accuracy Kappa Overall 

Accuracy 

Linear 
Soaring 83.67% 75.92% 97.56% 92.73%     

Gliding 88.04% 77.88% 90.04% 88.74%     

Thermal 
Soaring 75.42% 81.60% 89.37% 85.50%     

Spiral 
Gliding 34.78% 69.56% 91.64% 87.86%     

Slope 
Soaring 53.24% 44.56% 87.58% 75.41%     

       0.61 70.15% 
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Although, thermal and linear soaring, as well as gliding, were classified 
correctly to a high degree of the estimated precision, some misclassifications 
of flights also occurred. Linear soaring was mostly misclassified as thermal 
soaring. Gliding was also misidentified as slope soaring, while spiral gliding 
was misclassified as either gliding or slope soaring. Finally, slope soaring was 
mixed up with thermal soaring, gliding, and linear soaring. Slope soaring and 
spiral gliding had the lowest values of the true positive rate. The highest true 
positive rate (81%) was achieved for thermal soaring at 81% and was slightly 
better than that for linear soaring or gliding. The true negative rates were 
excellent for all flight patterns. 

The lowest and highest values of true negative rate were achieved for slope 
soaring (85%) and linear soaring (97%) respectively. The predicted accuracy 
measures, and the proportion of positives or negatives were excellent for all 
flight patterns. Linear soaring (92%) and slope soaring (75%) were the most 
and least accurate flight types, respectively. 

Examples of the different flight types in three dimensions are visualized in 
Figure 5.5 a and b, demonstrating variation of flight behaviour in different 
altitude and with the use of thermal soaring the bird reached up to 1400 m 
above sea level. Additionally, Figure 5.5 c and d shows a scheme of radius 
changes as the bird flew along the curve. 
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Figure 5. 4 Variation and frequency of instant speed in the dataset: (a) 
instantaneous speed > 4 m/s (red dashed line) is the main proxy to identify 
flying mode, and (b) frequency of flying and static modes in the dataset.  

 

5.4 Discussion  
Our study differentiated five passive flight types of the Griffon vulture 
including linear soaring, thermal soaring, slope soaring, gliding and spiral 
gliding. To our knowledge, this is the first reported differentiation of a 
raptor’s flight patterns by using tracking data. Our results show differences 
between flight patterns in terms of accuracy, precision, true positive rate, 
and true negative rate. Each class shows over 75% performance in accuracy. 
Due to the unbalanced structure (the ratio of positive and negative cases, the 
predicted flight and other flight pattern) in most of the observed data, other 
measures of the classification’s performance, such as precision and true 
positive rate, are more informative (Kubat et al., 1998; Martiskainen et al., 
2009). The classification precision was high for linear and thermal soaring as 
well as for gliding.  
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The lower precision values seen for spiral gliding and slope soaring indicate 
that the classification method can be problematic in predicting positive cases 
(predicted flight pattern) correctly. Most cases of confusion involved slope 
soaring. This may be because it could be the most complex flight pattern, or 
because it closely resembles other patterns. Part of the difficulty could lie in 
the sampling rate of the flight type, which might have been too low to 
discriminate slope soaring well enough. This is in fact supported by the 
Nyquist Theorem (also known as the sampling theorem), according to which 
the minimum sampling rate must be twice the highest frequency contained 
in the flight pattern (Grenander 1959). 

Our results reveal the highest percentage of misclassification is seen for spiral 
gliding, due to the inadequate number of samples (Bohrer et al., 2012; Kubat 
et al., 1998; Mellone et al., 2015) in our current dataset. Since only two 
fieldworkers were assigned to collect the observational dataset in a limited 
time, there may also have been some human error during sightings or 
recording the bird’s flight behaviour and this might have affected the dataset. 

The true positive rate was high in the three flight patterns of linear soaring, 
thermal soaring and gliding. This implies that fewer negative cases (predicted 
other flight pattern) were falsely classified in those flight patterns; in other 
words, the true positive rate shows these three flight types were more often 
correctly identified than slope soaring and spiral gliding. The excellent 
values (85% and higher) of the true negative rate in all the flight types also 
shows that the negative cases were correctly classified for those flight 
patterns. The value of kappa (0.61±0.06) shows a substantial classification 
agreement, which could be interpreted as demonstrating the method’s 
success.  

For the above flight types, data with finer temporal resolution (e.g. a one 
second interval) of GPS fixes might be useful for making a more precise and 
accurate classification. In this experiment, although we set the measurement 
interval of the GPS tracker to three seconds, the retrieved dataset consisted 
of unequal intervals. By filtering out the coarse temporal resolution, some 
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gaps in the dataset decreased the consistency of the data. Due to the varying 
success in classifying the flight types, it might be worthwhile to include 
various parameters (e.g. time window) in the classification process. More 
specifically, including other parameters (e.g. aspect ratio or wing loading) 
would entail considering the traits of each flight pattern. Another point that 
could improve classification performance is the further optimization of 
different flight characteristics (e.g. horizontal vs. vertical speed).  

Since we can assume birds’ flight types are affected by the environmental 
conditions (Shamoun-Baranes et al., 2004) when gathering data in different 
seasons, there may be an opportunity to observe and digitally capture more 
flight types, particularly those that were seen less often during the period of 
this study. We speculate that the Griffon vulture spent more time in non-
flight mode, because we performed the study during the breeding season; 
the birds would have been in parental mode and more vigilant than at other 
times of the year in order to protect their chicks from bad weather and 
predators (Xirouchakis & Mylonas, 2007). 

 

5.5. Conclusion  
This study investigated the flight types of the Griffon vulture using high 
resolution GPS data and we provide evidence that such data contains 
sufficient information to recognize Griffon vulture’s flight types. In 
movement ecology research, our study makes a useful contribution by 
providing a new baseline technique using GPS sensor data to classify a bird’s 
flight type as a part of its motion capacity. However, more studies are 
needed to refine the properties employed in this classification method, 
including the testing of other types of sensory data (e.g. accelerometer data) 
or the use of different analytical parameters. Collision risk of the Griffon 
vulture was mediated by flight behaviour and it is suggested that a detailed 
research on flight behaviour is needed at precise location where the turbines 
are installed (Barrios & Rodríguez, 2004), so our study is one step forward 
to solve the collision dilemma. 
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Figure 5. 5 Scheme of the Griffon vultures flight patterns in three-
dimensions, and (b) in two-dimensions segregated using the concept of 
motion in physics. (c) Scheme of the Griffon vulture’s flight patterns in 
three-dimensions, and (d) its relative radius of curvature (red line) and 
altitude (green line) during the flight. 



Individual’s Movement Data to Identify Flight Types  

94 

5.6 Acknowledgement  
This manuscript is part of the PhD research of SK funded by the European 
Union Erasmus Mundus programme External Cooperation Windows. It 
supported by the UvA-BiTS virtual lab, with contributions from the 
Netherlands eScience Center, SURF Foundation, and LifeWatch-NL. We 
thank members of the Migres Foundation, especially Miguel González for 
their technical support during the fieldwork. Farhad Vishkaee, Babak Naimi 
and Ali Naeimi provided valuable technical support. The manuscript has 
been edited by Jakie Senior. 

 

5.7 Ethical Approval 
The experimental procedures of this study, including bird trapping and GPS 
tagging, were approved by the Consejería de Medio Ambiente of the Junta 
de Andalucía, who provided permissions for this research through the licence 
to capture and mark raptors to Antonio-Román Muñoz (Regional Licence: 
65029 Consejería de Agricultura, Pesca y Medio Ambiente, Junta de 
Andalucía; National Licence 650038, Ministerio de Agricultura, 
Alimentation y Medio Ambiente). 

 

 

 

 

 

 

 

 

 



Chapter 5 
 

95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Postface 

This chapter demonstrated that movement pattern could be derived from 
high resolution tracking data.  It further developed understanding of 
movement (i.e. flight) with the use of movement data. It was one step 
forward to have more insight regarding flight behaviour which may play a 
role in conservation plans and practices. 
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Appendix  
 

Details of studies pertaining to movement and foraging of Griffon vulture.

Subject Method Major findings References 

Fl
ig

ht
 a

nd
 fo

ra
gi

ng
 b

eh
av

io
ur

 

Electrocardiog
ram, GPS and 
accelerometers 

Heart rate increased three-fold during take-off and 
landing compared to baseline level. 10 minutes after 

initial flapping phase, home range in soaring and 
gliding dropped to the baseline level that was lower 

than theoretically possible. 
(Duriez et al., 

2014) 

GPS tracking 
Change in size of home range in different seasons 

and also amongst individuals. Vultures prefer a 
feeding station compared to the rest of the habitat 

with unpredictable food resources. 

(Monsarrat et al., 
2013) 

GPS and 
accelerometers 

Despite high variability in food deprivation periods, 
flight speed, straightness of flight and the proportion 

of active flights do not vary in relation to food 
deprivation. 

(Spiegel et al., 
2013) 

GPS and tri-
axial 

accelerometer 

Classifying behavioural modes using machine 
learning classifiers with 80- 90% accuracy. (Ran Nathan et 

al., 2012) 

GPS satellite 
telemetry 

Traditional stock-raising areas are the Griffon 
vultures’ main range. Overall foraging rage is 1719 
km2 as Minimum Convex Polygon, with 4078 km2 

and 489 km2 as 95% and 50% kernel contours 
respectively. 

(García-Ripollés, 
et al., 2011) 

GPS and tri-
axial 

accelerometer 

Hungry individuals (fasted > 4 days) spent more 
time flying, travelled longer distances, and their 

paths were less straight than well-fed ones. 
(Harel et al.,  

2010) 

Radio 
telemetry and 

direct 
observation 

Griffon vultures spend 7.6 hour/day on food 
searching, mean distance from colony to feeding 
area is 8.4 km, mean foraging radius is 15 km, 

foraging ranges, based on direct observations are 
206-851 km2 and 195-527 km2 using the adaptive 

kernel method. The range based on radio tracking is 
390-1300 km2. 

(Xirouchakis & 
Andreou, 2009) 

Tri-axial 
accelerometer 

Griffon vultures use legs before taking off and after 
landing. Mean overall dynamic body acceleration 

for flying up and down a hill were 1.396±0.114 and 
0.889±0.123 respectively. 

(Halsey et al., 
2009) 

Direct 
observation 

Finding food directly or relying on following other 
birds, food searching is concentrated on large 

ungulate herds, gaining altitude with lower density 
of ungulates in a herd. 

(Houston, 1974) 

M
ig

ra
tio

n 
fly

in
g 

ch
ar

ac
te

ris
tic

s 

Direct 
observation 

Higher rate of flapping when crossing water than 
land, flapping rate and attempts to cross water are 

influenced by time and weather conditions, passage 
over a water body is limited by Griffon vulture’s 

over-water flapping-flight abilities. 
(Bildstein et al., 

2009) 

Satellite 
tracking 

A Griffon vulture changed migration direction from 
south to north and its longest flight distance in a day 

was 80 km. 
(Berthold et al., 

1991) 
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6.1 Introduction 
Biodiversity is undergoing significant and often rapid changes worldwide.  
Understanding the species dynamic underlying such a quick change would 
bring a better insight for decision-makers and conservation managers. In this 
thesis, we mainly focused on this concept that the species shifts and 
individual movements are inherently linked. We argued that similar to time 
and space, the organization has a continuous and interlinked range from 
individuals to species. See Figure 1.2, Chapter 1.  

In this thesis, we conducted four studies supporting our proposed concept. 
We demonstrated that invasion is a well-known concept at the species level, 
but it roots to the capacity of individuals’ movement and habitat preferences 
(see Chapter 2). In the next chapters of this thesis, we tackled a 
methodological approach to inform species distribution models with 
individual movement data (Chapter 3), and to accommodate the three 
dimensions of space in habitat studies (see Chapter 4). We also focused on 
movement types of an individual in response to their physical environment 
(see Chapter 5). In this chapter, we summarized our findings and provide 
some suggestions for future studies. 

It is well-studied that movement of species, a complex and continuous 
ecological process (Long and Nelson, 2013), is often in response to short-
term goals such as reproduction, maintenance, feeding, survival and escaping 
threats (Holyoak et al., 2008). Rather than fixed and well-aligned habitats, 
mobile specie occupy dynamic and three dimensional spaces (Belant et al., 
2012). Hence, all physical and reachable spaces might be potential habitats, 
as it is inherently assumed in the telemetry technique that tagged organisms 
use the spaces between sampling locations  (Bruneel et al., 2018). Since 
movement is a time-dependent and essential process in shaping the 
distributions of species, it should be considered as a compulsory aspect of 
any studies projecting the current or future distributions of species 
(Holloway and Miller, 2017). 
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Also, movement can be a confounding parameter to estimate when future 
distribution and invasion rate of an alien species is considered (Miller and 
Holloway, 2015). Invasive movements violate the standard assumption of 
SDMs which is species are in equilibrium with their environment (Holloway 
and Miller, 2017). The occurrence data of invasive species including native 
and invaded regions (or post-established areas if there are any) can be 
advantageous for modelling new distributional areas. This was applied, 
tested and discussed in chapter 2. 

The scale of movement is usually limited to spatial or temporal attributes, 
but levels of organization  (i.e. individual, population or species) should be 
included (Oindo et al., 2003; Franklin, 2010; Song et al., 2013).Considering 
the availability of movement data and recent advances in movement research 
(Turchin, 1998; Smouse et al., 2010), it has been an opportunity for 
researchers to incorporate fine-scale temporal and spatial movement of 
individuals in species distribution modelling. Although a number of studies 
have been conducted using the individuals' locations retrieved from 
telemetry as the response in SDM (Edrén et al., 2010; Gschweng et al., 
2012; D’Elia et al., 2015), integrating multiple scales of movement within 
SDM needs to be continued (Bruneel et al., 2018). The incorporation of 
movement has been further discussed in Chapter 3.  

Species movements are often modelled in two dimensions (2D)(Long and 
Nelson, 2013; Khosravifard et al., 2018) while this approach would impose 
biases for species moving in three dimensions (3D) such as birds and fish 
(Belant et al., 2012). Recently, some studies have started to provide 3D 
analysis of species movement. For example, Simpfendorfer et al. (2012) 
calculated the utilization distribution of European eels (Anguilla anguilla) 
using 2D and 3D kernel density. Three-dimensional movement modelling 
has also been used to track burrowing behaviours of worms (Bastardie et al., 
2003) and movement paths of captive fish (Zhu and Weng, 2007) (please see 
Chapter 4 for further info).  
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Moreover, classification of movement patterns have been often considered 
in 2D (see Chapter 5) and mostly at coarse temporal resolution (i.e., daily 
or hourly movements) to determine home range, dispersal and migration 
routes (Mandel et al., 2008; Calenge et al., 2009; Smouse et al., 2010; 
Kranstauber et al., 2012; López-López et al., 2013). Using high-resolution 
spatiotemporal movement data may assist researchers to differentiate 
movement patterns. This has been further discussed in Chapter 5.  

 

6.2. Dealing with data scarcity  
It is crucial for biodiversity monitoring and conservation management to 
have reliable information on the distribution of alien species (Dornelas et al. 
2014). However, they are often non-existent, unavailable or challenging to 
gather. The approach presented in Chapter 2 is a technique to predict 
distribution of species when the data are limited.   

In such cases when little is known about the distribution of an alien species 
and the available data are insufficient, information of its native range and 
post-established region may be of assistance. It was explored the current and 
future distribution of an alien species in a new distributional region, based 
on the extensive information on the native and invaded ranges (Chapter 2). 

By using the information of native and post-established region, we went 
through a procedure to illuminate and explain the distribution of raccoon, a 
non-native species, in Iran. Unlike the native habitat range in North America 
and post-established region in Europe, the occurrence data of raccoon in Iran 
were limited to some observations and reports. Thus, the three geographical 
ranges, namely native, post-established and newly invaded habitats (i.e. Iran) 
were set for the modelling. 

 The predictions successfully identified high probability values of the 
raccoon’s distribution in the current climate condition. As hypothesized in 
Chapter 2, individual’s movement and dispersal capacity, along with 
environmental dynamics enhanced the accuracy and credibility of models 
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predicting the potential distribution over time. By transferring the trained 
model over time, we investigated the potentially suitable habitat of the 
species in Iran under climate change scenarios in the future. Considering the 
land cover and dispersal speed, we compared the current realised habitat to 
the future potential habitat. As a result, the raccoon may access from north 
to south of the Zagros mountains in the year of 2050. That would be a new 
area for the species. This prediction may turn to an undeniable fact in the 
future when occurrence data of the raccoon would be scientifically gathered 
and documented.  

Having access to new areas is the first obstacle for alien species, but it doesn’t 
necessarily mean that the species is already or becomes invasive in the future. 
The existence of some conditions is needed to make an alien species invasive; 
survival, adaptability and acquiring resources are other challenges that an 
alien species should overcome to establish a population in new sites 
(Hellmann et al., 2008). In the future, it should be studied whether the 
conditions exist or not for the raccoon. Although the raccoon population 
growth is out of control in Europe since the earlier reports in the 1950s, just 
anecdotal evidence suggests the species may threaten reptiles and amphibians 
(Kauhala 1996, Frantz et al. 2005). Hence, we can infer that it is too early 
to have consolidated judgment about the status of raccoon in Iran whether it 
becomes an invasive or not. However, the outcome of Chapter 2 may be 
used in conservation plans and would assist conservationists to consider the 
areas where the alien species would most probably occur.  

 

6.3. Species movement data fulfil the occurrence gap   
A number of studies have tried to determine the relationships between 
species movement and environmental predictors (Hooten et al., 2014). In 
spite of substantial impacts of geographical distribution of species on 
movement process and ecological significance, the incorporation of 
movement has lagged behind other methodological and conceptual 
advancement, particularly, in species distribution modelling (Franklin, 
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2010a; Miller and Holloway, 2015). Since the movement data are available, 
shouldn’t they be used in SDMs? Do SDMs incorporated movement data of 
individuals define geographical distribution of species? And how well the 
outcome might be? These questions were answered in Chapter 3. We used 
three birds’ datasets from two different and freely available sources: GBIF, 
the commonly-used data source, and movement data from Movebank. 
Although, the results varied among the models, they showed a spatial 
concordance between the outcomes of SDMs, derived from static and 
movement data. 

This was a clear response to the aforementioned questions: movement data 
can be potentially used as a source to estimate habitat suitability. The results 
were promising and one step forward to consider and use the movement 
data in SDMs. It should be mentioned that the outcome of this chapter was 
limited to the three datasets of three different species: one native and non-
migratory, and two migratory birds. More telemetry data of a species would 
ultimately lead to more realistic estimate of suitable habitats. It may provide 
opportunity to investigate how using movement paths can be incorporated 
in SDMs. More studies are needed to focus on a variety of species, as well as 
uncertainty for future refinement of models. 

Since having insight of the environmental preferences of species and 
movement in a suitable habitat or a new landscape is important for 
conservation policy and practices (Doherty and Driscoll, 2018), this chapter 
is one step forward to consider different and independent sources of data, 
instead of commonly used ones, in habitat modelling.  

 

6.4. Species space use in three dimensions 
Animal movement in the context of modelling usually is considered in 2D. 
Like SDMs, home range and utilization distribution are two other methods 
often quantified by researchers in 2D (Fleming et al., 2015; Holloway and 
Miller, 2017). If we estimate home range or utilization distribution ignoring 
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the altitude, the results would consist of bias; an unrealistic depiction may 
be attained for the mobile species living in 3-dimensional space, such as 
birds, bats, fish or climbing species (Belant et al., 2012).  

To have a better understanding of space use of those species, volumetric 
analysis is more informative than planer analysis. This was tested in Chapter 
4 by estimating space use of a soaring bird (i.e. Griffon vulture). We 
estimated a 3D kernel utilization distribution (KUD) presenting a better 
insight of plausible collision risk between wind turbines and the bird. The 
results showed that 3D KUD was beneficial method for quantifying the space 
use (Khosravifard et al., 2020). Therefore, this method can be considered as 
an assistance for wind farm developers to calculate the relative risk of 
installing turbines. However, more studies are needed to quantify the actual 
risk of turbines. 

To calculate the risk, pre-construction data of target species is a must-have. 
It is suggested that data gathering and monitoring would continue after pre-
construction period and last during the post-construction, and operational 
phases of wind farms. The 3D KUD could be used and helping management 
to forecast periods of high risk and decrease the number of bird collisions by 
selectively ceasing certain wind turbines.  

One important issue, which was not included in the scope of Chapter 4, is 
spatiotemporal autocorrelation in movement data. It might provide an 
underestimation of individual’s space use (Fieberg, 2007; Fleming et al., 
2015) and should be considered for future studies.   

 

6.5. Classification of flight movement types  
The classification methods of movement patterns have been often considered 
in 2D  (Giannotti and Pedreschi, 2008; Güting, Behr and Düntgen, 2010) 
like SMD (Holloway and Miller, 2017), home range and utilization 
distribution (Katajisto and Moilanen, 2006; Powell and Mitchell, 2012). 
Mostly, those classification methods have focused on at coarse temporal 
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resolution (e.g. daily or hourly movement) (Calenge et al., 2009; 
Kranstauber et al., 2012).  

The high-resolution tracking data can provide opportunity to have a better 
understanding of movement patterns. As hypothesized in Chapter 5, that 
kind of data are sufficient enough to differentiate flight types of a soaring 
bird. It was classified and tested five passive flight types of the Griffon vulture 
in the Chapter 5. Although this Chapter was one step forward to have more 
intuition regarding flight behavior which may play a role in analysis the 
collision risk (Khosravifard et al, 2018), it relied solely on GPS tracking data 
set measurement interval to three seconds. However, unequal intervals 
were retrieved which constructed a disadvantage of some gap in the dataset. 
The disadvantage might be reduced or eliminated in future studies by 
including various parameters such as time window, aspect ratio, wind 
loading or other types of sensory data into the classification method.  

Nevertheless, Chapter 5 provided the evidence that high-resolution tracking 
data consists of sufficient information to differentiate passive flight types of 
soaring birds.  

 

6.6. Management implications   
Movement of animals has always intrigued humans since hunting was a 
chance of survival. In the modern era, this curiosity shifted towards a better 
understanding and knowledge for managing and protecting wildlife 
populations. Minimization in size and weight, as well as growth in the use of 
new tracking devices, not only have made movement research glamorous, 
enabled researchers to investigate across a variety of scales. In the 
contemporary epoch of the “golden age of bio-logging” (Wilmers et al., 
2015) and biotelemetry, it is possible to gather estimates of movement at 
ever-increasing accuracy even for small and cryptic species. Concurrently, 
human activities change natural areas that ultimately cause reducing natural 
habitats and inducing range shifts. Therefore, it entails acquiring baseline 
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data and knowledge on movement patterns, new ranges, and space uses for 
management and policy decisions. The absence of basic data, information or 
knowledge on distribution, foraging, dispersal and migration, as well as 
home range and space use of wildlife can be serious obstacles to status 
assessment, conservation plans, reintroduction and restoration projects. We 
have presented new information on the distribution of a species (Chapter 2), 
different approaches to use data (Chapter 3 and 5) and the method (Chapter 
4) that may be of interests to wildlife managers, conservation practitioners 
and decision-makers.  

New distributional areas, where native and non-native species exist, may 
need special consideration for protection or rehabilitation to keep the new 
populations under control. In the case of non-native species, it may forge 
more concerns that require a multi-faceted approach to deal with the new 
situation caused by the presence of the species. For instance, the impacts of 
the non-native species on native species, habitat, economy, and health may 
raise a red flag for local people, decision-makers and conservationists. 
Predictions of new ranges where non-native species may occur is an 
advantage for conservation planners and practitioners to be prepared before 
the species reach to the new areas. It may require protection of native 
animals and plants, humans, farms, buildings, and constructions against the 
non-native species. The geographical distribution of the raccoon in Iran 
predicted in Chapter 2 can be a notification that Zagros, the mountainous 
region, may be a destination of the species. It should be studied whether the 
raccoon is a threat to the Luristan newt (Neurergus kaiseri), an endemic and 
vulnerable species to the central Zagros mountains (IUCN SSC Amphibian, 
2016). Also, the impact of the raccoon population on agriculture requires 
intensive investigation.    

As the field of movement ecology seeks increasingly detailed information on 
the spatiotemporal movement of mobile species, novel approaches on 
tracking data would open new windows for wildlife managers and 
conservationists. Data at individual level may inform conservation 
assessments for dynamic management or to increase protected areas for 
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better enclose the range and extent of animal movement. Our outcome in 
Chapter 3 provides the opportunity to develop efficient and dynamic 
conservation practices, as animals are tracked. In other words, tracking 
animals and predicting new distributional areas can be executed 
concurrently. It gives the conservation planners an insight of location and 
time that a target species may occur.  

Having a false understanding of species occurrence may lead to a wrong 
conservation decision. To estimate utilization distribution and home range, 
usually, two horizontal dimensions are considered and the vertical aspect is 
neglected. Therefore, an unrealistic image of reality may be obtained for 
species like birds that move in three-dimensional space. We have 
demonstrated that considering the vertical movement of individuals can 
improve the credibility of utilization distribution. This approach would give 
a better intuition to conservationists and wildlife managers while developing 
or practising conservation plans. 

Additionally, relatively high-risk obstacles can be identified through a 
volumetric analysis when the target species move in three-dimensional 
space. In the matter of wind turbine, relatively high-risk turbines can be 
selectively stopped to reduce the probability of collision between birds, 
especially raptors, and turbines. This new approach also was presented in 
Chapter 4. 

A range of methods is available to aid conservation planning and 
environmental decision-making. Still, plans and decisions concerning 
species’ movement require detailed information and a specific way of 
thinking. A complex phenomenon like movement involving uncertainties 
may create confusion for managers. The new approach we presented in 
Chapter 5 described another form of the use of data. Based on the high-
resolution tracking data only, baseline method showed to differentiate 
passive flight in three spatial dimensions. It is asserted that collision risk 
between birds and wind turbines and mortality was attributed by flight 
behaviour (Barrios et al., 2008). Our new approach is one step forward to 
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have more insight into flight behaviour and how they vary in details. Also, it 
can be useful for developing bird avoidance strategies which need a real 
perception of the movement of individuals. 

 
6.7. Conclusion and recommendation 
So far, a number of studies have commenced using the locations retrieved 
from telemetry techniques (e.g. Pinto 2016 et al.). However, the concept of 
movement used in recent distribution modelling applications often refers to 
the cumulative, collective movement of species or populations across a broad 
time scale, not to the daily movement of a single individual. With the 
emergence of high temporal resolution movement data from advanced 
tracking devices, daily or hourly movement of individuals should be 
(re)considered in SDM. This may provide a better insight into the interaction 
of the target species with others and with the environment accessible for the 
species within a relevant timeframe. At a finer scale, integration of classified 
movement (i.e. locomotion) into distribution modelling may also provide 
more informative results which ultimately assist with a better understanding 
of biotic factors to have a more accurate estimation of habitat suitability. As 
the BAM concept presented in Chapter 1, determination and delineation of 
the biotic interaction is one of the essential requirements for the presence of 
a species. Movement data, therefore, can be used to describe the distribution 
and configuration of suitable areas. Moreover, the assumption of abiotic and 
abiotic homogeneity behind the BAM concept may be revisited when 
movement data is incorporated in the distribution modelling, as species 
move in an inhomogeneous environment.    

Although movement data creates a new avenue in the SDM framework, new 
conceptual issues related to this data structure, such as precision, 
autocorrelation, and idiosyncratic preferences should be considered. 
Moreover, movement doubtlessly occurs across fine and broad spatial and 
temporal scales, then the integration of multiple ‘’’’scales of movement into 
SDM can be considered for further studies.  



Synthesis 

108 

Another issue that should be addressed in future research is to delineate the 
definition of movement and to differentiate between dispersal and 
migration. These terms, as described before, are used interchangeably in 
distribution modelling (Alagador, Cerdeira and Araújo, 2014; Miller and 
Holloway, 2015).  

Also, spatial dynamics of a species are crucial in conservation planning and 
management, as they underline regions including habitats, migration 
corridors and connections areas (Pinto et al., 2016). Therefore, moving 
beyond static distributional modelling is imperative as demonstrated in this 
thesis. The realization of suitable spatial distribution of species is not the final 
step of spatial conservation, but is a fundamental step towards it. Hence, the 
approach proposed here, which is using different data sources including 
native and invaded range to predict invasion rate (Chapter 2), movement in 
SDMs (Chapter 3), the vertical position (i.e. z dimension) in home range 
(Chapter 4) and high spatiotemporal tracking data to delineate movement 
(Chapter 5), offers considerable promise for increasing the reliability of 
model outputs used to inform conservation management. 
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Summary 
Movement is a fundamental characteristic of life that has been defined as a 
change across many spatial and temporal scales. It is also a ubiquitous 
ecological process which influences the structure and dynamics of 
populations, communities, and ecosystems. Movement has always been at 
the center of many observations, investigations and studies since the very 
first attempt to understand where a species may go. Naturalists have 
investigated the mysteries of movement since the writings of Aristotle (4th 
century B.C.) searched for common features unifying animal movements. 
He tried to explain movement such as flight through air and motion of 
animals in water in general terms on the basis of casual observations. Since 
then, researchers have traditionally used direct observation as a method to 
monitor wildlife. The direct observation has also been used to elucidate and 
describe movement phenomena. Not losing sight of an animal is the most 
challenging part of this traditional type of research, but this has now been 
solved by deploying telemetry techniques radar, radio, satellite and Global 
Positioning System (GPS) tracking. Recent advances in telemetry 
techniques, such as extensive use of bio-loggers with GPS, have enabled 
spatiotemporal data to be collected on animals with ever-increasing 
accuracy. Also, recent advances in movement research have inspired a shift 
in the study at species-level or population-level patterns to individual-level 
patterns.  

 

This dissertation aims to contribute to the understanding of the movement 
phenomenon at individual-level pattern. The availability of movement data 
and recent advances in movement research are key factors to improve our 
understanding of animals' movement at individual levels.  

 

Although the techniques for studying animal movement have been advanced 
and flourished since earliest attempts, the incorporation of movement 
studies in other methodological advancements, particularly in species 
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distribution modelling (SDM) has lagged behind. In the context of SDMs, 
the accessibility of habitats by species or populations has been considered 
rather than underlying the process of individuals' movement.  

Part of my dissertation is dedicated to providing evidence that including the 
individuals' movement of a species and accounting for their potential 
dispersal, along with environmental dynamics improves the accuracy and 
credibility of models to predict the potential distribution of species over time 
under climate change. Also, I illustrate the capacity of individuals’ 
movement data which can be considered as a reliable source for species 
distribution modelling.  

 

A common hypothesis is that when including the vertical movement of 
individuals improves the accuracy and credibility of the individual’s range 
maps. Another part of this dissertation provides evidence for this hypothesis 
and puts it to use in the utilization distribution model. I incorporated the 
vertical movement data to the 2D space use analysis and proved that the 3D 
volumetric analysis is a realistic depiction of species occurrence. To develop 
efficient nature conservation practices, it is necessary to know where and 
when wildlife may occur. This approach would give a better information to 
conservationists and wildlife managers while developing or practising 
conservation plans. 

 

A complex phenomenon like movement involving uncertainties may create 
confusion for managers. In this dissertation, I also presented the use of 
movement data to classify different types of movement (i.e. flight). I am 
confident that application of movement data in wildlife management and 
conservation practices will continue to expand and improve.



Samenvatting 

129 

Samenvatting 
Beweging is een fundamenteel kenmerk van het leven dat is gedefinieerd als 
een verandering over vele ruimtelijke en temporele schalen. Het is ook een 
alomtegenwoordig ecologisch proces dat de structuur en dynamiek van 
populaties, gemeenschappen en ecosystemen beïnvloedt. Sinds de 
allereerste poging om te begrijpen waar een soort naartoe kan gaan, heeft 
beweging of verplaatsing van een dier altijd centraal gestaan bij veel 
waarnemingen, onderzoeken en studies. Naturalisten hebben de mysteries 
van beweging onderzocht sinds de geschriften van Aristoteles (4e eeuw voor 
Christus) waarin hij zocht naar gemeenschappelijke kenmerken die de 
bewegingen van dieren verenigden. Hij probeerde bewegingen zoals door 
de lucht vliegen en de beweging van dieren in het water in algemene termen 
uit te leggen op basis van terloopse observaties. Sindsdien gebruiken 
onderzoekers van oudsher directe observatie als een methode om dieren in 
het wild te volgen, en om hun  bewegings- of verplaatsingsgedrag op te 
helderen en te beschrijven. Het niet uit het oog verliezen van een dier is het 
meest uitdagende onderdeel van dit traditionele type onderzoek, maar dit is 
nu opgelost door telemetrietechnieken in te zetten zoals radar, radio, 
satelliet en Global Positioning System (GPS) tracking. Recente 
ontwikkelingen in telemetrietechnieken, zoals het uitgebreid gebruik van 
bio-loggers met GPS, hebben het mogelijk gemaakt om ruimtelijk-
temporele gegevens over dieren te verzamelen met een steeds grotere 
nauwkeurigheid. Ook hebben recente ontwikkelingen in het bestuderen van 
bewegingspatronen geleid tot een verschuiving in onderzoek op soort- of 
populatieniveau naar patronen op individueel niveau. 

 

Dit proefschrift heeft tot doel om inzicht in de toepasbaarheid van 
verschillende formaten in databronnen te verbeteren, voor zowel data op 
soortniveau als ook extreem hightech data op individueel niveau. De 
toenemende beschikbaarheid van bewegingsgegevens en de recente 
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ontwikkelingen in bewegingsonderzoek zijn sleutelfactoren om onze kennis 
in het bewegingsgedrag van dieren op individueel niveau te verbeteren.  

Hoewel de technieken voor het bestuderen van de beweging van dieren sinds 
de eerste pogingen veel verder zijn ontwikkeld en toegenomen, is de 
integratie van bewegingsstudies met andere methodologische 
ontwikkelingen, met name het modelleren van soortenverspreiding (SDM), 
achtergebleven. In de context van SDM's  is de toegankelijkheid of 
bereikbaarheid van het leefgebied van een soort of populatie belangrijker 
gevonden dan het proces van individuele bewegingen.  

 

Een deel van mijn proefschrift is gewijd aan het leveren van bewijs dat 
incorporatie van de bewegingsgedrag van een soort door individuen en het 
verklaren van hun potentiële verspreiding, samen met de 
omgevingsdynamiek, de nauwkeurigheid verbetert en geloofwaardigheid 
vergroot van modellen om de potentiële verspreiding van soorten in de tijd 
te voorspellen, ook onder klimatologische verandering. Ook toon ik aan, dat 
bewegingsgegevens van individuele dieren kunnen worden beschouwd als 
een betrouwbare data bron voor het modelleren van de verspreiding van 
soorten.  

 

Een veel voorkomende hypothese is dat wanneer de verticale beweging van 
individuen is inbegrepen, het de nauwkeurigheid en geloofwaardigheid van 
de verspreidingskaarten van het individu verbetert. Een ander deel van dit 
proefschrift levert bewijs voor deze hypothese en gebruikt het in het 
modelleren van de verspreiding van dieren. Ik heb de verticale 
bewegingsdata verwerkt in de 2D analyse van ruimtelijk gebruik en heb 
bewezen dat de 3D-volumetrische analyse een realistische weergave is van 
het voorkomen van soorten. In dit proefschrift presenteerde ik ook een 
methode om het gebruik van bewegingsgegevens om verschillende soorten 
bewegingen (d.w.z. vluchten) te classificeren. Om efficiënte 
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natuurbeschermingspraktijken te ontwikkelen, is het noodzakelijk om te 
weten waar en wanneer dieren in het wild kunnen voorkomen. De 
benadering zoals beschreven in dit proefschrift zal natuurbeschermers en 
natuurbeheerders betere informatie kunnen geven bij het ontwikkelen of 
toepassen van natuurbeschermingsplannen.  

 

Een complex fenomeen zoals beweging of verplaatsing bij dieren met hun 
onzekerheden kan voor managers verwarring scheppen. Ik ben er daarom 
van overtuigd dat het toepassen van bewegingsgegevens bij het beheren van 
wild en natuurbehoud in het algemeen zal blijven groeien en verbeteren. 
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