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1Introduction

1.1 Background

Computer vision is an interdisciplinary field dating back to the 1960s, whereby com-
puters acquire high-level understanding from digital images and videos. The goal
is to make computers perceive and understand the world as humans do through the
visual system, including describing the world and reconstructing its properties [174].
Scene understanding is a part of computer vision as it makes computers under-
stand scenes in images and videos. A scene is a view of a real world environment
that contains multiple objects, which are organized in a meaningful way. Scene
understanding finds out which objects are in the scene, where they are, and their
relationship. It also includes logic reasoning, to establish what is happening, why it
is happening, and what will happen. Based on this information, scene understanding
tries to assess how to react and what to do next [82]. The main objective of scene
understanding is to make computers understand the world autonomously. Scene
understanding incorporates numerous tasks including identifying objects in a scene,
finding where the objects are localized in the real world[157], and determining
attributes of objects of interest[127]. The spatial and semantic relationships between
objects can also be characterized and described[211].

Scene understanding is also an important task in the field of earth observation,
which serves as the foundation of complicated higher level tasks, such as hazard
detection[147], traffic surveillance[46] and environment management[30]. Both
computer vision and remote sensing researchers have been propelling researches in
the field of scene understanding forward.

Compared to the static image data, video data contains time sequence inform-
ation, which supports even more applications. Many real time applications, such
as surveillance and monitoring[10], often require video data for anomaly detection.
Video data also provides additional data consistency. As video frames are collected
in sequence, subsequent frames have large overlaps with each other. The information
captured in one frame can be propagated into subsequent frames to enhance the
information, e.g., semi-supervised tracking relies on such facts. For other scene
understanding tasks, such as detection and semantic segmentation, time sequence
information could also help to boost the robustness of the algorithm.

1



1. Introduction

1.2 The Advance of Deep Learning

Deep learning is currently the most effective tool for scene understanding. "Deep"
refers to deep hierarchical concepts learned by computers [70], which are achieved
most effectively by deep neural networks.

The deep neural network is a powerful non-convex regressor or classifier, which
originated some time ago, but it had not received much attention as a result of limited
computational power, lack of effective training methods and training data.

On the contrary, many other models are favoured, such as support vector ma-
chine, boosting algorithm and random forest algorithm. These models are carefully
designed and deals more effectively with problems of small scale data, which was
the typical setting in earlier research.

However, with the development of the algorithm, the improvement of computa-
tion power, and collection of more and more data, it was inevitable that deep learning
started to thrive. For the first time deep learning achieved record-breaking results
in both classification and localization tasks in the world’s greatest computer vision
competition, namely, the Large Scale Visual Recognition Challenge in 2012. This
proved the capability of deep learning to extract semantic information from a large
quantity of data. From then on, deep learning started to sweep all the first places in
various scene understanding competitions, including object detection, segmentation,
tracking. The success of deep learning can be attributed to its ability to learn rich
feature representations automatically as opposed to hand-designed features used in
traditional methods.

More and more research has arrived at the same conclusion: provided with
enough training data, with enough computation resources, under the guidance of an
effective training method, deep learning has the power to interpret complex semantic
information, which is of great use for scene understanding.

At present, apart from being able to understand a single image, deep learning
has also been wired to gain memory ability to infer object properties based on early
information that has been acquired. Deep learning has the power to use memory to
infer the context of a sentence and to infer information in a video frame based on
previous frames to retrieve temporarily occluded objects. Time domain information
of video is also exploited by deep learning models.

1.3 Fundamental Research Tasks

Scene understanding has a broad scope, and this dissertation only focuses on part
of the fundamental tasks, which are object detection, semantic segmentation, and
tracking in images and videos.

Detection is the union of object recognition and localization in the scene. Re-
cognition differentiates the categories and properties of different objects, which are
represented as labels for objects, while localization acquires the position and size
of different objects, which are normally represented as bounding boxes. Examples
of object detection are shown in Figure 1.1. The object detection could potentially
support other tasks that are instance specific. As shown in Figure 1.2, object masks
are determined in the instance segmentation task, and human keypoints can be
inferred according to the humans detected.

2



1.3. Fundamental Research Tasks

Figure 1.1 Examples of object detection from Pascal VOC benchmark [61]. Object
detection simultaneously localizes and classifies the objects in images or videos.

Semantic segmentation, as another part of scene understanding, tries to classify
the categories of each pixel in the image. Semantic segmentation complements the
object detection and instance segmentation as not all things in a scene are objects
that are countable, e.g., sky and ground. Semantic segmentation is normally a more
spatially accurate recognition, but the limitation of semantic segmentation is that it
cannot differentiate different objects of the same category if they are adjacent. An
example of this limitation is shown in Figure 1.5.

Panoptic segmentation is a newly proposed task compared with semantic
segmentation and instance segmentation. The limitations for semantic segmentation
and instance segmentation are obvious. Semantic segmentation cannot differentiate
overlapped objects of the same classes, while instance segmentation cannot handle
amorphous background regions, such as sky and grass. Panoptic segmentation is
brought out to tackle these problems. The goal of panoptic segmentation is to unify
the instance segmentation and semantic segmentation as the two tasks are mutually
complimentary. Examples of panoptic segmentation are shown in Figure1.4. The
objects such as cars and pedestrians are marked in different colors as different
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(a)Instance segmentation challenge

(b)Keypoint challenge

Figure 1.2 Examples of the instance segmentation challenge and the keypoint
challenge from COCO benchmark [122]. The instance segmentation challenge is to
retrieve the detailed mask of its individual object in the scene. The keypoint challenge
is to infer the key points of the object, which describe the poses of the objects.

objects need to be differentiated.
Tracking extends the static scene understanding into dynamic scene understand-

ing, which finds the correspondences at object level or pixel level between frames
in a video. Single object tracking and multiple object tracking have been actively
researched. They mainly focus on bounding box level tracking. In order to further
boost the performance of tracking with more accurate object localization, it has
been extended to pixel level tracking, upgrading the single object tracking (SOT)
and multiple object tracking (MOT) to the video object segmentation (VOS) task
and multi-object tracking and segmentation (MOTS) task. Tracking is more than
an independent research task, as it could also help in other scene understanding
tasks. For example, tracking could potentially improve the object localization and
recognition for object detection in videos, or it could assist with the performance of
the video instance segmentation task. Examples of tracking related tasks are shown
in Figure 1.6.

My research is about dynamic scene understanding, which covers semantic
segmentation, object detection, and tracking at both pixel level and object level. It
covers different dynamic scene types, ranging from urban scenes captured by an un-
manned aerial vehicle (UAV), common scenes where common objects are observed
in daily life, and traffic scenes where cars and pedestrians are the main focus. The
goal of the research is to explore the possibility of making the computer possess the
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(a) COCO stuff segmentation challenge

(b) ADE20K semantic scene parsing challenge

(c) Cityscapes semantic labeling challenge

Figure 1.3 Examples of semantic segmentation. Semantic segmentation is to label
each pixel with the object category it belongs to in an image. (a)(b)(c) are examples
from COCO [122], ADE20K [226], and Cityscapes [47] datasets, respectively.

high level interpretation ability to understand the world, and to provide humans with
insightful information, knowledge and guidance to make better decisions.

1.4 Scene Understanding with Consistency

In the last section, some fundamental scene understanding tasks have been intro-
duced. Compared to a single image, video captures more information. Consecutive
frames from a video have very strong correlations, most area show the same objects,
and there is valuable time consistent information that should be well employed.

Frame-by-frame recognition, ignoring temporal information, often yields jit-
tering across frames, especially at object boundaries. As a result, it is preferable
to utilize a batch of frames to achieve consistent semantic segmentation in time
sequence. Consistency will boost the stability and accuracy of the algorithm.

To leverage on temporal information, conditional random field(CRF) and deep
neural network(DNN) based methods are often used to gain temporal consistency.
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(a) Panoptic segmentation from Cityscapes (b) Panoptic segmentation from ADE20K

Figure 1.4 Examples of panoptic segmentation. Panoptic segmentation is to unify
the semantic segmentation task and the instance segmentation task. The two images
on the left are from the Cityscapes benchmark [47]. The three images on the right
are from the ADE20k benchmark [226].

Figure 1.5 Example of the limitation of the semantic segmentation. Semantic
segmentation cannot differentiate different objects when they are adjacent.

There are three common ways to ensure consistency across frames.

1) Matching. Consistency may come from correspondences of low level features.
A straight forward way is to learn optical flow [42], which provides pixel to pixel
matching. Feature propagation [93] or probabilistic graphical model [94], such as
markov random field, could also refine the segmentation prediction by smoothing
pixel predictions that are close in low level feature space, such as color, texture, and
location. Matching of objects through object tracking could also be used to improve
the object recognition.

2) Evolution. Another way to preserve time consistency is through online
learning, which could be understood as evolution of the deep neural networks.
The model is fine-tuned based on the confident prediction in order to adapt to the
upcoming frames. Some good results have been reported on the DAVIS video object
segmentation benchmark [148, 24, 136, 183].

3) Memory. Memory modules have been successfully used to model sequential
data [81, 44]. It should be beneficial for video related tasks since their sequential
property. In order to handle 2D image data, convolutional gated recurrent unit
(Conv-GRU) [8] and convolutional long short term memory (Conv-LSTM) [203]
have been proposed, it would be promising to apply these memory modules in order
to achieve consistent prediction. [177] is an example, which uses Conv-GRU to
handle the video object segmentation task.
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(a) Video object segmentation

(b) Video object detection

(c) Video instance segmentation

(d) Multiple object tracking and segmentation

Figure 1.6 Examples of tracking related tasks. Video object segmentation task
tackles object tracking at pixel level, example images are from DAVIS dataset [151].
Video object detection, video instance segmentation, and multi-object tracking and
segmentation need to detect objects first, so tracking could be used to link objects
across frames and improve the performance of object recognition. Example images
for the video object detection, video instance segmentation, and multi-object tracking
and segmentation are from ImageNet VID dataset [165], Youtube VIS dataset [208],
and KITTI MOTS dataset [67], respectively.

1.5 Research Gap

For dynamic urban scene understanding, there is still no light-weighted aerial drone
based solution, which uses images with very high spatial resolutions in oblique view.
A new semantic segmentation dataset for the UAV imagery is needed serving as one
fundamental benchmark. As oblique viewing brings larger object scale variation,
better models that are adaptive to different object scales need to be designed. In
order to bridge the gap between static scene understanding and dynamic scene
understanding, research investigating the relations between object recognition and
object tracking could be explored. Specifically, we will explore feature sharing and
multi-task learning that combine both object recognition and object tracking. The
aim is to simplify the pipeline for enhanced speed while maintaining performance.
These directions still lack research as most works explore object recognition and
object tracking independently.

1.6 Research Objectives

This Ph.D. thesis focuses on research for dynamic scene understanding based on
deep learning methods. Both segmentation and detection in videos are explored. The
relevant research tasks include semantic segmentation, video object segmentation,
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video object detection, and multi-object tracking and segmentation in videos. For
each research task, we have addressed different sub-problems, which all focus on
dynamic scene understanding.

Details of the research objectives are as follows,
(i) Semantic segmentation of UAV images for the dynamic urban scene. In this

objective, we will explore the possibility of dynamic scene understanding
from static images. The static context information could also provide dynamic
information to some degree, e.g., cars in the parking lot are more likely to be
static, while cars in the middle of roads are more likely to be moving. Several
sub-objectives are included. Firstly, establishing the UAV image dataset for
the semantic segmentation task. Secondly, providing baseline methods for
the semantic segmentation benchmark. Finally, exploring novel methods
to extract multi-scale context information from the UAV images. We also
explore how to achieve consistent predictions for semantic segmentation in
videos based on the high correlations of the frames in a video.

(ii) Video object segmentation for common objects. The major objective is
learning to preserve segmentation consistency across multiple frames for
multiple objects simultaneously. We explore how the features learned for
instance segmentation could be adapted for pixel-level video object tracking.

(iii) In the video object detection task, the goal is to maintain consistent detection
results for multiple objects across multiple frames. We explore backbone
feature sharing for object detection and object tracking to speed up the pipeline.
As labeling video data is quite expensive, we also investigate how to tackle
the problem of the lack of training videos by leveraging on a class-agnostic
tracker.

(iv) For the task of multi-object tracking and segmentation in videos, the major
objective is learning to detect, segment, and track multiple objects simultan-
eously. We explore multi-task learning, which unifies detection, segmentation,
and tracking.

Different objectives focus on different tasks. In order to show the relations
between different objectives, relations between different tasks are presented in
Figure 1.7. The connections shown in the figure illustrate the relations between the
tasks, which are only valid in our method design, which may not hold for other
methods.

1.7 Outline

Objectives (i), (ii), (iii), (iv) are addressed in chapters 2, 3, 4, 5, 6. The structure of
the dissertation is as follows,
Chapter1 introduces the research background, the research gap, the research object-
ives, and the outline of this dissertation.
Chapter2 explores how to establish the semantic segmentation benchmark for the
UAV images, which includes data collection, data labeling, dataset construction, and
performance evaluation with baseline deep neural networks, such as fcn8s [128],
U-Net [161] and dilation net [216]. A novel multi-scale dilation net is introduced
serving as an improved baseline method. Conditional random field (CRF) with
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1.7. Outline

Semantic 
segmentation

Video object 
segmentation

Object 
detection

Multi-object 
tracking and 

segmentation

Video object 
tracking

Instance 
segmentation

Pixel level Bounding box level

Video object 
detection

Video related tasksImage related tasks Connection

Video semantic 
segmentation

Figure 1.7 Relations between different tasks. The tasks for different objectives are
high-lighted in orange boxes. The connections between different tasks are shown
with blue arrows, which is only valid in our method design.

feature space optimization (FSO) [107] is used to achieve consistent semantic
segmentation prediction in videos.
Chapter3 explores how to better extract the scene context information for improved
object recognition performance. By proposing the novel bidirectional multi-scale
attention networks, objects could be recognized in proper scales for better perform-
ance.
Chapter4 explores how to simultaneously segment multiple objects across multiple
frames by combining memory modules with instance segmentation networks.
Chapter5 explores how to improve the performance of well-trained object detectors
with a light weighted and efficient plug&play tracker for video object detection.
This chapter also explores how the proposed model performs when lacking video
training data.
Chapter6 explores how to improve the performance of detection, segmentation, and
tracking by jointly considering top-down and bottom-up inference.
Chapter7 synthesizes the work, and draws conclusions for each research objective
with reflections on current research trend and recommendations for future work.
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2UAVid: A Semantic Segmentation
Benchmark for UAV Imagery

Abstract

Semantic segmentation has been one of the leading research interests in
computer vision recently. It serves as a perception foundation for many fields,
such as robotics and autonomous driving. The fast development of semantic
segmentation attributes enormously to the large scale datasets, especially for
the deep learning related methods. There already exist several semantic seg-
mentation datasets for comparison among semantic segmentation methods in
complex urban scenes, such as the Cityscapes and CamVid datasets, where the
side views of the objects are captured with a camera mounted on the driving
car. There also exist semantic labeling datasets for the airborne images and
the satellite images, where the top views of the objects are captured. However,
only a few datasets capture urban scenes from an oblique Unmanned Aerial
Vehicle (UAV) perspective, where both of the top view and the side view of
the objects can be observed, providing more information for object recognition.
In this chapter, we introduce our UAVid dataset, a new high-resolution UAV
semantic segmentation dataset as a complement, which brings new challenges,
including large scale variation, moving object recognition and temporal consist-
ency preservation. Our UAV dataset consists of 30 video sequences capturing
4K high-resolution images in oblique views. In total, 300 images have been
densely labeled with 8 classes for the semantic labeling task. We have provided
several deep learning baseline methods with pre-training, among which the
proposed Multi-Scale-Dilation net performs the best via multi-scale feature
extraction, reaching a mean intersection-over-union (IoU) score around 50%
and outperforming the others by more than 1.6%. We have also explored the
influence of spatial-temporal regularization for sequence data by leveraging
on feature space optimization (FSO) and 3D conditional random field (CRF),
which improves the mean IoU scores by around another 0.5%. Our UAVid
website and the labeling tool have been published 1.

1 https://uavid.nl/
* This chapter is based on:

Y. Lyu, G. Vosselman, G.-S. Xia, A. Yilmaz, and M. Y. Yang. Uavid: A semantic segmentation
dataset for uav imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 165:108 – 119,
2020
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2. UAVid: A Semantic Segmentation Benchmark for UAV Imagery

2.1 Introduction

Visual scene understanding has been advancing in recent years, which serves as a
perception foundation for many fields such as robotics and autonomous driving. The
most effective and successful methods for scene understanding tasks adopt deep
learning as their cornerstone, as it can distill high-level semantic knowledge from
the training data. However, the drawback is that deep learning requires a tremendous
number of samples for training to make it learn useful knowledge instead of noise,
especially for real-world applications. Semantic segmentation, as part of scene
understanding, is to assign labels for each pixel in the image. In order to make
the best of deep learning methods, a large number of densely labeled images are
required.

At present, there are several public semantic segmentation datasets available,
which focus only on common objects in natural images. They all capture images
from the ground. The Ms-COCO [122] and the Pascal VOC [60] datasets provide
semantic segmentation tasks for common object recognition in common scenes.
They focus on classes like person, car, bus, cow, dog, and other objects. In order
to help semantic segmentation models generalize better across different scenes,
the ADE20K dataset [226] spans more diverse scenes. Objects from much more
different categories are labeled, bringing more variability and complexity for object
recognition. The above datasets are often used for common object recognition.

There are more semantic segmentation datasets designed using street scenes for
autonomous driving scenarios [20, 100, 47, 166, 218, 67]. Images are captured with
cameras mounted on vehicles. The objects of interest include pedestrians, cars, roads,
lanes, traffic lights, trees, and other surrounding objects near the streets. Especially,
the CamVid [20] and the Highway Driving [100] datasets provide continuously
labeled driving frames, which can be used for video semantic segmentation with
temporal consistency evaluation. The Cityscapes dataset [47] focuses more on the
data variation. It is larger in the number of images and the size of each image.
Images are collected from 50 cities, making it closer to real-world complexity.

Regarding the remote sensing platforms, the number of datasets for semantic
segmentation is much smaller, and the images are often captured in the nadir view,
in which only the top of the objects can be seen. For the airborne imagery, the
ISPRS 2D semantic labeling benchmarks [162] provide Vaihingen and the Potsdam
datasets targeting on semantic labeling for the urban scenes. There are 6 classes
defined for the semantic segmentation task, including impervious surfaces, building,
low vegetation, tree, car ,and background clutter. The Vaihingen and the Potsdam
datasets are 9 cm and 5 cm resolutions, respectively. Houston dataset [50] provides
hyperspectral images (HSIs) and Light Detection And Ranging (LiDAR) data, both
of which have 2.5m spatial resolutions, for the pixel level region classification.
Zeebruges [27] provides a dataset with 7-tiles. There are 8 classes defined for
both the land cover and the object classification. Besides the same 6 class types
as in the ISPRS 2D semantic labeling datasets, additional boat and water classes
are included. The RGB images are of 5 cm resolutions. For the satellite imagery,
the DeepGlobe benchmarks [51] provide a semantic labeling dataset for the land
cover classification with a pixel resolution of 50 cm. The images are of the sub-
meter resolution, covering 7 classes, i.e., urban, agriculture, rangeland, forest, water,
barren, and unknown. GID dataset [178] offers 4m resolution multispectral (MS)
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2.1. Introduction

satellite images from Gaofen-2 (GF-2) imagery for the land use classification. The
target classes include 15 fine classes belonging to 5 major categories, which are
built-up, farmland, forest, meadow, and water.

All the datasets above have had high impacts on the development of current state-
of-the-art semantic segmentation methods. However, there are few high-resolution
semantic segmentation datasets [92] based on UAV imagery with oblique views,
which is supplemented with our UAVid dataset. The unmanned aerial vehicle (UAV)
platform is more and more utilized for the earth observation. Compact and light-
weighted UAVs are a trend for future data acquisition. The UAVs make image
retrieval in large areas cheaper and more convenient, which allows quick access
to useful information around a certain area. Distinguished from collecting images
by satellites and airplanes, UAVs capture images from the sky with flexible flying
schedules and higher spatial resolution, bringing the possibility to monitor and
analyze landscape at specific locations and time swiftly.

The inherently fundamental applications for UAVs are surveillance [167, 150]
and monitoring [199] in the target area. They have already been used for smart
farming [129], precision agriculture [32], and weed monitoring [138], but few
researches have been done for urban scene analysis. The semantic segmentation
research for urban scenes could be the foundation for applications such as traffic
monitoring, e.g., traffic jams and car accidents, population density monitoring and
urban greenery monitoring, e.g., vegetation growth and damage. Although there are
existing UAV datasets for detection, tracking, and behavior analysis [229, 59, 139,
160], to the best of our knowledge, there exists only one low altitude UAV semantic
segmentation dataset before our UAVid, namely the Aeroscapes [92] dataset. Our
UAVid dataset is comprised of much larger images that capture scenes in much
larger range and with more scene complexity regarding the number of objects and
object configurations, which make our UAVid dataset better for UAV urban scene
understanding than the Aeroscapes dataset.

In this chapter, a new UAVid semantic segmentation dataset with high-resolution
UAV images in oblique views has been brought out, which is designed for the
semantic segmentation of urban scenes. We have brought out several challenges for
the new dataset: the large scale variation between objects in different distances or of
different categories, the moving object (separation of moving cars and static cars)
recognition in the urban street scene and the preservation of the temporal consistency
for better predictions across frames. These challenges mark the uniqueness of
our dataset. In total, 300 high-resolution images from 30 video sequences are
labeled with 8 object classes. The size of our dataset is ten times of the Vaihingen
dataset [162], five times of the CamVid dataset [20] and twice of the Potsdam
dataset [162] regarding the labeled number of pixels. All the labels are acquired
with our in-house video labeler tool. Besides the provided image-label pairs, which
are acquired with 0.2 FPS, unlabeled images are also provided with 20 FPS for
users. The additional images are provided to aid the object recognition potentially.
To provide performance references for the semantic labeling task and to test the
usability of our dataset, several typical deep neural networks (DNNs) are utilized,
including FCN-8s [128], Dilation net [216] and U-Net [161], which are widely used
and stable for semantic segmentation task across different datasets. In addition, we
propose a novel multi-scale-dilation net, which is useful to handle the problem of
large scale variation that is prominent in the UAVid dataset. In order to benefit from
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preserving the consistent prediction across the frames, an existing spatial-temporal
regularization method (FSO [107]) is applied for post-processing. All the DNNs
combined with FSO are evaluated as baselines.

By bringing the urban scene semantic segmentation task for the UAV platform,
researchers could gain more insights for the visual understanding task in the UAV
scenes, which could be the main foundations for higher level smart applications. As
the data from UAVs has its own specialties, semantic segmentation task using UAV
data deserves more attention.

Building Road Static Car Tree
Low

Vegetation
Humans

Moving

Car

Background

Clutter

Figure 2.1 Example images and labels from UAVid dataset. First row shows the
images captured by UAV. Second row shows the corresponding ground truth labels.
Third row shows the prediction results of MS-Dilation net+PRT+FSO model as in
Tab. 2.1.

The rest of the chapter is organized as follows. Section 2.2 details how the
UAVid dataset is built for the urban scene semantic segmentation, including the data
specification, the class definition, the annotation methods, and the dataset splits.
Section 2.3 presents the semantic labeling task for the UAVid dataset. The section
involves the task illustration and the baseline methods for the task. Section 2.4 shows
the corresponding experiment results with the analysis for the baseline methods.
Lastly, section 2.5 provides the concluding remarks and the prospects for the UAVid
dataset.

2.2 Dataset

Designing a UAV dataset requires careful thought about the data acquisition strategy,
UAV flying protocol, and object class selection for annotation. The whole process
is designed considering the usefulness and effectiveness for the UAV semantic
segmentation research. In this section, the way to establish the dataset is illustrated.
Section 2.2.1 shows the data acquisition strategy. Section 2.2.4 and 2.2.5 describe
the classes for the task and the annotation methods respectively. Section 2.2.6
illustrates the data splits for the semantic segmentation task.
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2.2.1 Data Specification

Our data acquisition and annotation methodology is designed for UAV semantic
segmentation in complex urban scenes, featuring on both static and moving object
recognition. In order to capture data that contributes the most towards researches
on UAV scene understanding, the following features for the dataset are taken into
consideration.

• Oblique view. For the UAV platform, it is natural to record images or videos
in an oblique view or a nadir view style. Nadir view is more common for
satellite images as the distance between the camera and the ground is often
far. Nadir view brings invariance to the representation of objects in the image
as only the top can be observed. However, the limited representation may also
bring confusion in recognition among different objects. In contrast, an oblique
view gives a more diverse representation of objects, which can be helpful for
recognition. It also observes a larger area with details when flying close to
the ground, which causes large scale variation across an image. In order to
observe in an oblique view, the camera angle is set to around 45 degrees to
the vertical direction.

• High resolution. We adopt 4K resolution video recording mode with safe
flying height around 50 meters. The image resolution is either 4096×2160 or
3840×2160. In this setting, it is visually clear enough to differentiate most of
the objects. Objects that are horizontally far away could also be detected. In
addition, it is even possible to detect humans that are near to the UAV.

• Consecutive labeling. Our dataset is designed for the semantic segmentation
task. We prefer to label images in a sequence, where the prediction stability
could be evaluated. As it is too expensive to label densely in the temporal
space, we label 10 images with 5 seconds interval in each sequence.

• Complex and dynamic scenes with diverse objects. Our dataset aims at
achieving real-world scene complexity, where there are both static and moving
objects. Scenes near streets are chosen for the UAVid dataset as they are
complex enough with more dynamic human activities. A variety of objects
appear in the scene such as cars, pedestrians, buildings, roads, vegetation,
billboards, light poles, traffic lights, and so on. We fly UAVs with an oblique
view along the streets or across different street blocks to acquire such scenes.

• Data variation. In total, 30 small UAV video sequences are captured in 30
different places to bring variance to the dataset, relieving learning algorithms
from over-fitting. Data acquisition is performed in good weather conditions
with sufficient illumination. We believe that data acquired in dark environ-
ments or other weather conditions like snowing or raining require special
processing techniques, which are not the focus of our current dataset.

DJI phantom3 pro and DJI phantom4 are used for flying, which are light
weighted modern drones. The UAVs fly steadily with a maximum flying speed
of 10 m/s, preventing potential blurry effect caused by motions. The default cameras
mounted on the UAVs are used for video acquisition with only RGB channels (see
Fig. 2.1).
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2.2.2 Scene Complexity

The scene complexity [47] of the new UAVid dataset is higher than the other existing
UAV semantic segmentation dataset [92] regarding the number of objects and the
different object configurations. We should note that both datasets lack the instance
labeling for the quantitative scene complexity calculation [47]. It is still qualitatively
evident that our UAVid dataset has much higher scene complexity. We have, on
average, 9 times more car objects and 3 times more human objects per unit of image
area by manually counting in a random subset of images from the two datasets.
Examples of the street scenes are shown in Fig. 2.2.

Figure 2.2 Comparison between the Aeroscapes dataset [92] and the UAVid data-
set. The first row shows the examples from Aeroscapes dataset. The second row
shows the examples from the UAVid dataset, in which the right column shows an
image crop at the original scale, where detailed object can be clearly seen. Regard-
ing the number of objects and different object configurations, the UAVid dataset has
higher scene complexity.

2.2.3 Dataset Size

Our UAVid dataset has 300 images and each of size 4096×2160 or 3840×2160.
To compare the sizes of different datasets for semantic segmentation fairly, we
should consider not only the number of images, but also the size of each image.
A more fair metric is to compare the number of labeled pixels in total. We select
several well-known semantic segmentation datasets for comparisons. The CamVid
dataset [20] has 701 images of size 960 × 720, which is only one fifth of our
dataset in terms of the number of labeled pixels. The giant Cityscapes dataset [47]
has 5,000 images of size 2048× 1024, which is 4 times the size of our UAVid
dataset. However, many objects in our images are smaller than theirs, providing
more object variance in the same number of pixels, which compensate for the object
recognition task in a degree. Compared to the ISPRS 2D semantic labeling datasets,
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the Vaihingen and the Potsdam datasets [162] have even fewer images, 33 and 38
images respectively, but the size of each image is quite large, e.g., 6000×6000 for
the Potsdam dataset. Regarding the total number of the labeled pixels, the Vaihingen
and the Potsdam datasets are only one tenth and one half the size of our UAVid
dataset, respectively. The state-of-the-art DeepGlobe Land Cover Classification
dataset [51] has 1146 satellite images for rural areas of size 2448×2448, which is
about 2.5 times the size of our dataset. However, the scene complexity of the rural
area is much lower than it is in our UAVid dataset. In conclusion, our UAVid dataset
has a moderate size, and it is bigger than several well-known semantic segmentation
datasets. Section 2.4 has shown that deep learning methods can achieve satisfactory
qualitative and quantitative results for experimental purposes, which further proves
the usability of our UAVid dataset.

2.2.4 Class Definition and Statistical Analysis

Fully label all types of objects in the street scene in a 4K UAV image is very
expensive. As a consequence, only the most common and representative types of
objects are labeled for our current dataset. In total, 8 classes are selected for the
semantic segmentation, i.e., building, road, tree, low vegetation, static car, moving
car, human, and clutter. Example instances from different classes are shown in
Fig. 2.3. The definition of each class is described as follows.

1. building: living houses, garages, skyscrapers, security booths, and buildings
under construction. Freestanding walls and fences are not included.

2. road: road or bridge surface that cars can run on legally. Parking lots are not
included.

3. tree: tall trees that have canopies and main trunks.

4. low vegetation: grass, bushes and shrubs.

5. static car: cars that are not moving, including static buses, trucks, automobiles,
and tractors. Bicycles and motorcycles are not included.

6. moving car: cars that are moving, including moving buses, trucks, automo-
biles, and tractors. Bicycles and motorcycles are not included.

7. human: pedestrians, bikers, and all other humans occupied by different activ-
ities.

8. clutter: all objects not belonging to any of the classes above.
We deliberately divide the car class into moving car and static car classes. Moving
car is such a special class designed for moving object segmentation. Other classes
can be inferred from their appearance and context, while the moving car class may
need additional temporal information in order to be appropriately separated from
static car class. Achieving high accuracy for both static and moving car classes is
one possible research goal for our dataset.

The number of pixels in each of the 8 classes from all 30 sequences is reported
in Fig. 2.4. It clearly shows the unbalanced pixel number distribution of different
classes. Most of the pixels are from classes like building, tree, clutter, road, and
low vegetation. Fewer pixels are from moving car and static car classes, which are
both fewer than 2% of the total pixels. For human class, it is almost zero, fewer
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Figure 2.3 Example instances from different classes. The first row shows the
cropped instances. The second row shows the corresponding labels. From left to
right, the instances are building, road, static car, tree, low vegetation, human and
moving car respectively.
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Figure 2.4 Pixel number histogram.

than 0.2% of the total pixels. Smaller pixel number is not necessarily resulted by
fewer instances, but the size of each instance. A single building can take more
than 10k pixels, while a human instance in the image may only take fewer than 100
pixels. Normally, classes with too small pixel numbers are ignored in both training
and evaluation for semantic segmentation task [47]. However, we believe humans
and cars are important classes that should be kept in street scenes rather than being
ignored.

2.2.5 Annotation Method

We have provided densely labeled fine annotations for high-resolution UAV images.
All the labels are acquired with our own labeler tool. It takes approximately 2 hours
to label all pixels in one image. Pixel level, super-pixel level, and polygon level
annotation methods are provided for annotators, as illustrated in Fig.2.5. For super-
pixel level annotation, our method employs a similar strategy as the COCO-Stuff [25]
dataset. We first apply SLIC method [2] to partition the image into super-pixels,
each of which is a group of pixels that are spatially connected and share similar
characteristics, such as color and texture. The pixels within the same super-pixel
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are labeled with the same class. Super-pixel level annotation can be useful for the
objects with sawtooth boundaries like trees. We offer super-pixel segmentation of 4
different scales for annotators to best adjust to objects of different scales. Polygon
annotation is more useful to annotate objects with straight boundaries like buildings,
while pixel level annotation serves as a basic annotation method. Our tool also
provides video play functionality around certain frames to help to inspect whether
certain objects are moving or not. As there might be overlapping objects, we label
the overlapping pixels to be the class that is closer to the camera.

Figure 2.5 Annotation methods. Left shows pixel level annotation, middle shows
super-pixel level annotation, and right shows polygon level annotation.

2.2.6 Dataset Splits

The whole 30 densely labeled video sequences are divided into training, validation,
and test splits. We do not split the data completely randomly, but in a way that
makes each split to be representative enough for the variability of different scenes.
All three splits should contain all classes. Our data is split at the sequence level, and
each sequence comes from a different scene place. Following this scheme, we get
15 training sequences (150 labeled images) and 5 validation sequences (50 labeled
images) for training and validation splits, respectively, whose annotations will be
made publicly available. The test split consists of the left 10 sequences (100 labeled
images), whose labels are withheld for benchmarking purposes. The size ratios
among training, validation and test splits are 3:1:2.

2.3 Semantic Labeling Task

In this section, the semantic labeling task for our dataset is introduced. The
task details and the evaluation metric for the UAVid dataset are introduced first in
section 2.3.1. The following sections (from 2.3.2 to 2.3.5) introduce the baseline
methods for the task. The baseline methods are presented in company with the
task to offer performance references and to test the usability of the dataset for the
task. Section 2.3.2 and section 2.3.3 introduce the deep neural networks in the
baseline methods. Section 2.3.4 and section 2.3.5 introduce the pre-training and the
spatial-temporal regularization respectively, which boost the performance for all
baseline methods.
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2.3.1 Task and Metric

The task defined on the UAVid dataset is to predict pixel level semantic labeling for
the UAV images. The image-label pairs are provided for each sequence together
with the unlabeled images. Currently, the UAVid dataset only supports image
level semantic labeling without instance level consideration. The semantic labeling
performance is assessed based on the standard mean IoU metric [60]. The goal for
this task is to achieve as a high mean IoU score as possible. For the UAVid dataset,
the clutter class has a relatively large pixel number ratio and consists of meaningful
objects, which is taken as one class for both training and evaluation rather than being
ignored.

2.3.2 Deep neural networks for baselines

In order to offer performance references and to test the usability of our UAVid
dataset for the semantic labeling task, we have tested several deep learning models
for the single image prediction. Although static cars and moving cars cannot be
differentiated by their appearance from only one image, it is still possible to infer
based on their context. The moving cars are more likely to appear in the center
of the road, while the static cars are more likely to be at the parking lots or to the
side of the roads. As the UAVid dataset consists of very complex street scenes, it
requires powerful algorithms like deep neural networks for the semantic labeling
task. We start with 3 widely used deep fully convolutional neural networks, they are
FCN-8s [128], Dilation net [216] and U-Net [161].

FCN-8s [128] has often been a good baseline candidate for semantic segment-
ation. It is a giant model with strong and effective feature extraction ability, but
yet simple in structure. It takes a series of simple 3x3 convolutional layers to form
the main parts for high-level semantic information extraction. This simplicity in
structure also makes FCN-8s popular and widely used for semantic segmentation.

Dilation net [216] has a similar front end structure with FCN-8s, but it removes
the last two pooling layers in VGG16. Instead, convolutions in all following layers
from the conv5 block are dilated by a factor of 2 due to the ablated pooling layers.
Dilation net also applies a multi-scale context aggregation module in the end, which
expands the receptive field to boost the performance for prediction. The module
is achieved by using a series of dilated convolutional layers, whose dilation rate
gradually expands as the layer goes deeper.

U-Net [161] is a typical symmetric encoder-decoder network originally designed
for segmentation on medical images. The encoder extracts features, which are
gradually decoded through the decoder. The features from each convolutional block
in the encoder are concatenated to the corresponding convolutional block in the
decoder to acquire features of higher and higher resolution for prediction gradually.
U-Net is also simple in structure but good at preserving object boundaries.

2.3.3 Multi-Scale-Dilation Net

For a high-resolution image captured by a UAV in an oblique view, the sizes of
objects in different distances can vary dramatically. Figure 2.7 illustrates such a
scale problem in the UAVid dataset. The large scale variation in a UAV image
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Figure 2.6 Structure of the proposed Multi-Scale-Dilation network. Three scales of
images are achieved by Space to Batch operation with rate 2. Standard convolutions
in stream2 and stream3 are equivalent to dilated convolutions in stream1. The main
structure for each stream is FCN-8s [128], which could be replaced by any other
networks. Features are aggregated at conv7 layer for better prediction on finer scales.

can affect the accuracy of prediction. In a network, each output pixel in the final
prediction layer has a fixed receptive field, which is formed by pixels in the original
image that can affect the final prediction of that output pixel. When the objects are
too small, the neural network may learn the noise from the background. When the
objects are too big, the model may not acquire enough information to infer the label
correctly. The above is a long-standing notorious problem in computer vision. To
reduce such a large scale variation effect, we propose a novel multi-scale-dilation
net (MS-Dilation net) as an additional baseline.

One way to expand the receptive field of a network is to use dilated convolu-
tion [216]. Dilated convolution can be implemented in different ways, one of which
is to leverage on space to batch operation (S2B) and batch to space operation (B2S),
which is provided in Tensorflow API. Space to batch operation outputs a copy of
the input tensor where values from the height and width dimensions are moved
to the batch dimension. Batch to space operation does the inverse. A standard
2D convolution on the image after S2B is the same as a dilated convolution on
the original image. A single dilated convolution can be performed as S2B− >
convolution− > B2S. This implementation for dilated convolution is efficient
when there is a cascade of dilated convolutions, where intermediate S2B and B2S
cancel out. For instance, 2 consecutive dilated convolution with the same dilation
rate can be performed as S2B− > convolution− > convolution− > B2S.

Space to batch operation can also be taken as a kind of nearest neighbor down-
sampling operation, where the input is the original image while the outputs are
down-sampled images with slightly different spatial shifts. The nearest neighbor
down-sampling operation is nearly equivalent to space to batch operation, where
the only difference is the number of output batches. With the above illustration, it
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Figure 2.7 Illustration of the scale problem in an UAV image. The scales of the
objects vary greatly from the bottom to the top of the image. The green circles mark
the objects in proper scales while the red circles mark the objects in either too large
or too small scales.

is easy to draw the connection between the dilated convolution and the standard
convolution on down-sampled images.

By utilizing space to batch operation and batch to space operation, semantic
segmentation can be done on different scales. In total, three streams are created for
three scales, as shown in Fig. 2.6. For each stream, a modified FCN-8s is used as
the main structure, where the depth for each convolutional block is reduced due to
the memory limitation. Here, filter depth is sacrificed for more scales. In order to
reduce detail loss in feature extraction, the pooling layer in the fifth convolutional
block is removed to keep a smaller receptive field. Instead, features with larger
receptive fields from other streams are concatenated to higher resolution features
through skip connection in conv7 layers. Note that these skip connections need
batch to space operation to retain spatial and batch number alignment. In this way,
each stream handles feature extraction in its own scale, and features from larger
scales are aggregated to boost prediction for higher resolution streams.

Multiple scales may also be achieved by down-sampling images directly [3].
However, there are 3 advantages to our multi-scale processing. First, every pixel is
assigned to one batch in space to batch operation, and all the labeled pixels shall
be used for each scale with no waste. Second, there is strict alignment between
image-label pairs in each scale as there is no mixture of image pixels nor a mixture
of label pixels. Finally, the concatenated features in the conv7 layer are also strictly
aligned.

For each scale, corresponding ground truth labels can also be generated through
space to batch operation in the same way as the generation for input images in
different streams. With ground truth labels for each scale, deeply supervised training
can be done. The losses in three scales are all cross entropy loss. The loss in stream1
is the target loss, while the losses in stream2 and stream3 are auxiliary. The final
loss to be optimized is the weighted mean of the three losses, shown in the equations
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below. m1,m2,m3 are the numbers of pixels of an image in each stream. n is
the batch index, and t is the pixel index. p is the target probability distribution of a
pixel, while q is the predicted probability distribution.

CE1 =
1
m1

m1∑
t=1

−pt log(qt) (2.1)

CE2 =
1

4m2

4∑
n=1

m2∑
t=1

−pnt log(qnt ) (2.2)

CE3 =
1

16m3

16∑
n=1

m3∑
t=1

−pnt log(qnt ) (2.3)

Loss = w1 × CE1 +w2 × CE2 +w3 × CE3

w1 +w2 +w3
(2.4)

It is also interesting to note that every layer becomes a dilated version for stream2
and stream3, especially for the pooling layer and the transposed convolutional layer,
which turn into a dilated pooling layer and a dilated transposed convolutional layer
respectively. Compared to layers in stream1, layers in stream2 are dilated by rate of
2, and layers in stream3 are dilated by rate of 4. Theses 3 streams together form the
MS-Dilation net.

2.3.4 Fine-tune Pre-trained Networks

Due to the limited size of our UAVid dataset, training from scratch may not be enough
for the networks to learn diverse features for better label prediction. Pre-training a
network has been proved to be very useful for various benchmarks [126, 24, 37, 224],
which boosts the performance by utilizing more data from other datasets. To reduce
the effect of limited training samples, we also explore how much pre-training a
network can boost the score for the UAVid semantic labeling task. We pre-train all
the networks with the cityscapes dataset [47], which comprises many more images
for training.

2.3.5 Spatial-temporal Regularization for Semantic Segmentation

For semantic labeling task, we further explore how a spatial-temporal regularization
can improve the prediction. Taking advantage of temporal information is valuable
for label prediction for sequence data. Normally, deep neural networks trained on
individual images cannot provide completely consistent predictions spanning several
frames. However, different frames provide observations from different viewing
positions, through which multiple clues can be collected for object prediction. To
utilize temporal information in the UAVid dataset, we adopt feature space optimiz-
ation (FSO) [107] method for sequence data prediction. It smooths the final label
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Figure 2.8 The data inputs for the FSO [107] post-processing method. The image,
the edge map, the unary map, the optical flow and tracks are required for the method.
The edge map shows the probability of each pixel to be an edge. The blue points in
the image of optical flow&Tracks mark the points being tracked. The unary map is
the class probabilities for each pixel predicted by the deep neural networks.

prediction for the whole sequence by applying 3D CRF covering both spatial and
temporal domains. The method takes advantage of optical flow and tracks to link
the pixels in the temporal domain. The whole post-processing requires multiple data
inputs, including the image, the unary map from the deep neural networks, the edge
map, the optical flow, and the tracks as shown in Fig. 2.8.

2.4 Experiments

Our experiments are divided into 3 parts. Firstly, we compare semantic segmentation
results by training deep neural networks from scratch. These results serve as the
basic baselines. Secondly, we analyze how pre-trained models can be useful for
the UAVid semantic labeling task. We fine-tune deep neural networks with UAVid
dataset after they are pre-trained on the cityscapes dataset [47]. Finally, we explore
the influence of spatial-temporal regulation by using the FSO method for semantic
video segmentation.

The size of our UAV images is very large, which requires too much GPU memory
for intermediate feature storage in deep neural networks. As a result, we crop each
UAV image into 9 evenly distributed smaller overlapped images that cover the whole
image for training. Each cropped image is of size 2048×1024. We keep such a
moderate image size in order to reduce the ratio between the zero padding area and
the valid image area. Bigger image size also resembles a larger batch size when each
pixel is taken as a training sample. During testing, the average prediction scores are
used for the overlapped area. Fig. 2.9 illustrates the way of cropping.
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2048x1024

Figure 2.9 Image cropping illustration. The 4K image is cropped to 9 evenly
distributed smaller overlapped images before processing.

Table 2.1 IoU scores for different models. IoU scores are reported in percentage
and best results are shown in bold. PRT stands for pre-train and FSO stands for
feature space optimization [107].

Model Building Tree Clutter Road Low Vegetation Static Car Moving Car Human mean IoU
FCN-8s 64.3 63.8 33.5 57.6 28.1 8.4 29.1 0.0 35.6
Dilation Net 72.8 66.9 38.5 62.4 34.4 1.2 36.8 0.0 39.1
U-Net 70.7 67.2 36.1 61.9 32.8 11.2 47.5 0.0 40.9
MS-Dilation (ours) 74.3 68.1 40.3 63.5 35.5 11.9 42.6 0.0 42.0
FCN-8s+PRT 77.4 72.7 44.0 63.8 45.0 19.1 49.5 0.6 46.5
Dilation Net+PRT 79.8 73.6 44.5 64.4 44.6 24.1 53.6 0.0 48.1
U-Net+PRT 77.5 73.3 44.8 64.2 42.3 25.8 57.8 0.0 48.2
MS-Dilation (ours)+PRT 79.7 74.6 44.9 65.9 46.1 21.8 57.2 8.0 49.8
FCN-8s+PRT+FSO 78.6 73.3 45.3 64.7 46.0 19.7 49.8 0.1 47.2
Dilation Net+PRT+FSO 80.7 74.0 45.4 65.1 45.5 24.5 53.6 0.0 48.6
U-Net+PRT+FSO 79.0 73.8 46.4 65.3 43.5 26.8 56.6 0.0 48.9
MS-Dilation (ours)+PRT+FSO 80.9 75.5 46.3 66.7 47.9 22.3 56.9 4.2 50.1

2.4.1 Train from Scratch

To have a fair comparison among different networks, we re-implement all the
networks with Tensorflow [1], and all networks are trained with an Nvidia Titan
X GPU. In order to accommodate the networks into 12G GPU memory, depth of
some layers in the Dilation net, U-Net, and MS-Dilation net are reduced to fit into
the memory maximally. The model configuration details of different networks are
shown in Fig. 2.10.

The neural networks share similar hyper-parameters for training from scratch.
All models are trained with the Adam optimizer for 27K iterations (20 epochs).
The base learning rate is set to 10−4 exponentially decaying to 10−7. Weight
decay for all weights in convolutional kernels is set to 10−5. Training is done
with one image per batch. For data augmentation in training, we apply left-to-right
flip randomly. We also apply a series of color augmentation, including random
hue operation, random contrast operation, random brightness operation, random
saturation operation.

Auxiliary losses are used for our MS-Dilation net. The loss weights for three
streams are set to 1.8, 0.8, and 0.4 empirically. The loss weights for stream2 and
stream3 are set smaller than stream1 as the main goal is to minimize the loss in
stream1. For the Dilation net, the basic context aggregation module is used and
initialized as it is in [216]. All networks are trained end-to-end, and their mean IoU
scores are reported in percentage, as shown in Tab. 2.1.
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Figure 2.10 The configuration of different models. The blue blocks are the feature
extraction part, while the orange blocks are the context aggregation and the prediction
part for the corresponding 8 classes in UAVid dataset.

For all the four networks, they are better at discriminating building, road, and tree
classes, achieving IoU scores higher than 50%. The scores for car, vegetation, and
clutter classes are relatively lower. All four networks completely fail to discriminate
human class. Normally, classes with larger pixel number have relatively higher IoU
scores. However, the IoU score for the moving car class is much higher than the
static car class, even though the two classes have similar pixel numbers. The reason
may be that static cars may appear in various contexts like parking lots, garages,
sidewalks, or partially blocked under the trees, while moving cars often run in the
middle of roads with a very clear view.

The Dilation net and the U-Net perform similarly, and they both outperform
the FCN-8s. The FCN-8s extracts features on a single scale, while the Dilation
net and U-Net benefit from features in better scales from the context blocks and
multiple decoders in multiple scales, respectively. Our Multi-Scale-Dilation net
differs as it extracts features in multiple scales from very early and shallow layers,
and it achieves the best mean IoU score and the best IoU scores for most of the
classes among the four networks. It shows the effectiveness of multi-scale feature
extraction.

2.4.2 Fine-tune Pre-trained Models

For fine-tuning, all the networks are pre-trained with cityscapes dataset [47]. Finely
annotated data from both training and validation splits are used, which is of 3,450
densely labeled images in total. Hyper-parameters and data augmentation are set the
same as they are in section 2.4.1, except that the iteration is set to 52K. Next, all
the networks are fine-tuned with data from the UAVid dataset. As there is still large
heterogeneity between these two datasets, all layers are trained for all networks.
We only initialize feature extraction parts of the networks with pre-trained models,
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Table 2.2 IoU scores for different training strategies. IoU scores are reported in
percentage and best results are shown in bold. w stands for with and w/o stands for
without.

Model Building Tree Clutter Road Low Vegetation Static Car Moving Car Human mean IoU
fine-tune w/o auxiliary loss 78.5 72.2 44.0 65.3 43.5 17.4 51.5 1.2 46.7
fine-tune w auxiliary loss 79.2 72.5 44.8 64.6 44.3 17.0 52.8 3.4 47.3
fine-tune w+w/o auxiliary loss 79.4 73.1 43.7 65.5 45.3 21.3 55.8 6.3 48.8

while the prediction parts are initialized the same as training from scratch. The
learning rate is set to 10−5 exponentially decaying to 10−7 for FCN-8s, and 10−4

exponentially decaying to 10−7 for other 3 networks as they are more easily stuck
at a local minimum with initial learning rate to be 10−5 during training. The rest of
the hyper-parameters are set the same as training from scratch. The performance is
also shown in Tab. 2.1.

To find out whether auxiliary losses are important, we have fine-tuned MS-
Dilation net with 3 different training plans. For the first plan, we fine-tune the
MS-Dilation net without auxiliary losses for 30 epochs by setting loss weights to
0 in stream2 and stream3. For the second plan, we fine-tune the MS-Dilation net
with auxiliary losses for 30 epochs. For the final plan, we fine-tune the MS-Dilation
net with auxiliary losses for 20 epochs and without auxiliary losses for another 10
epochs. The IoU scores for three plans are shown in Tab. 2.2. As it is shown, the
best mean IoU score is achieved by the third plan. The better result for MS-Dilation
net+PRT in Tab. 2.1 is achieved by fine-tuning 20 epochs without auxiliary losses
after fine-tuning 20 epochs with auxiliary losses.

Clearly, auxiliary losses are very important for the MS-Dilation net. However,
neither purely fine-tuning the MS-Dilation net with auxiliary losses nor without
achieves the best score. It is the combination of these two fine-tuning processes
that brings the best score. Auxiliary losses are important as they can guide the
multi-scale feature learning process, but the network needs to be further fine-tuned
without auxiliary losses to get the best multi-scale filters for prediction.

By fine-tuning the pre-trained models, the performance boost is huge for all
networks across all classes except human class. The networks still struggle to
differentiate human class. Nevertheless, the improvement is evident for the MS-
Dilation net with 8% improvement. Decoupling the filters with different scales can
be beneficial when objects appear in large scale variation.

In order to see the effect of multiple-scale processing, the qualitative perform-
ance comparisons among FCN-8s, Dilation net, U-Net, and MS-Dilation Net are
presented in Fig. 2.11. By utilizing features in multiple scales, the MS-Dilation
Net gives relatively better prediction for the roundabout. Locally, the road may be
wrongly classified to be building due to the simple texture. However, by aggregating
information from multiple scales in MS-Dilation Net, the relatively better label can
be predicted.

2.4.3 Spatial-temporal Regularization for Semantic Segmentation

For spatial-temporal regularization, we apply methods used in feature space optim-
ization (FSO) [107]. As FSO process a block of images simultaneously, a block of
5 consecutive frames with a gap of 10 frames are extracted from the provided video
files, and the test image is located at the center in each block. The gap between
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Figure 2.11 Prediction example of FCN8s (top left), Dilation Net (top right), U-Net
(bottom left) and MS-Dilation Net (bottom right).

consecutive frames is not too big in order to get good flow extraction. It is better to
have longer sequences to gain longer temporal regularization, but due to memory
limitation, it is not possible to support more than 5 images in a 30G memory without
sacrificing the image size.

The FSO process in each block requires several ingredients. Contour strength for
each image is calculated according to [56]. The unary for each image is set as the
softmax layer output from each fine-tuned network. Forward flows and backward
flows are calculated according to [22, 23]. As the computation speed for optical
flow at the original image scale is extremely low, the images to be processed are
downsized by 8 times for both width and height, and the final flows at the original
scale are calculated through bicubic interpolation and magnification. Then, points
trajectories can be calculated according to [173] with the forward and backward
flows. Finally, a dense 3D CRF is applied after feature space optimization as
described in [107].

The IoU scores for FSO post-processing with unaries from different fine-tuned
networks are reported in Tab. 2.1. For each model, there is around 1% IoU score
improvement for each individual class except for human and moving car classes.
FSO favors more for the class whose instance covers more image pixels. The IoU
score improves less for the class with smaller instances like static car class, and it
drops for moving car class and human class. The IoU score of the human class for
MS-Dilation net drops by a large margin, nearly 4%. An example of refinement is
shown in Fig. 2.12.

In addition, qualitative prediction examples of different configurations across
different time index are shown in Fig.2.13. Temporal consistency can be evaluated
by viewing one row of the figure. Different model settings can be evaluated by
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Figure 2.12 Examples of spatial-temporal regularization for UAVid image semantic
segmentation. The left column shows the prediction without FSO plus 3D CRF
refinement. The right column shows the corresponding refined prediction with FSO
plus 3D CRF refinement. The most obvious improvements are high-lighted with
circles. The spatial-temporal regularization achieves a more coherent prediction for
different objects.

viewing one column of the figure.

2.5 Conclusions

In this chapter, we have presented a new UAVid dataset to advance the development
of semantic segmentation in urban street scenes from UAV images. Our dataset
has brought out several challenges for the semantic segmentation task, including
the large scale variation for different objects, the moving object recognition in the
street scenes, and the temporal consistency across multiple frames. Eight classes
for the semantic labeling task have been defined and labeled. The usability of our
UAVid dataset has also been proved with several deep convolutional neural networks,
among which the proposed Multi-Scale-Dilation net performs the best via multi-
scale feature extraction. It has also been shown that pre-training the network and
applying the spatial-temporal regularization are beneficial for the UAVid semantic
labeling task. Although the UAVid dataset has some limitations in the size and the
number of classes compared to the biggest dataset in the computer vision community,
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(a)
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Figure 2.13 Example prediction for sequence images. The 1st row block (a)
presents the original images in sequential order from left to right. The last row block
(f) presents the ground truth label for the test image located in the middle of the
sequence. The 2nd, 3rd, 4th and 5th row blocks (b,c,d,e) present the prediction
results of different models as it is in Tab. 2.1. Two rows from block (b) present
prediction of FCN-8s+PRT and FCN-8s+PRT+FSO respectively. Two rows from block
(c) present prediction of Dilation Net+PRT and Dilation Net+PRT+FSO respectively.
Two rows from block (d) present prediction of U-Net+PRT and U-Net+PRT+FSO
respectively. Two rows from block (e) present prediction of MS-Dilation Net+PRT and
MS-Dilation Net+PRT+FSO respectively. PRT and FSO are defined the same as in
Tab. 2.1.
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the UAVid dataset can already be used for benchmark purposes. In the future, we
would like to further expand the dataset in size and the number of categories to make
it more challenging and useful to advance the semantic segmentation research for
the UAV imagery.
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3Bidirectional Multi-scale Attention
Networks for Semantic
Segmentation

Abstract

Semantic segmentation for aerial platforms has been one of the fundamental
scene understanding task for the earth observation. Most of the semantic
segmentation research focused on scenes captured in nadir view, in which
objects have relatively smaller scale variation compared with scenes captured
in oblique view. The huge scale variation of objects in oblique images limits
the performance of deep neural networks (DNN) that process images in a single
scale fashion. In order to tackle the scale variation issue, in this chapter, we
propose the novel bidirectional multi-scale attention networks, which fuse
features from multiple scales bidirectionally for more adaptive and effective
feature extraction. The experiments are conducted on the UAVid2020 dataset
and have shown the effectiveness of our method. Our model achieved the
state-of-the-art (SOTA) result with a mean intersection over union (mIoU) score
of 70.80%.

3.1 Introduction

Semantic segmentation has been one of the most fundamental research tasks for
scene understanding. It is to assign each pixel within an image with the class label it
belongs to. There have been many works for semantic segmentation on the remote
sensing images and the aerial images [51, 162], which are captured in nadir view
style. The spatial resolutions in such images are approximately the same for all
pixels. Oblique views have a much larger land coverage if the platforms are at
the same flight height. For example, the unmanned aerial vehicle (UAV) platform
has been used to for urban scene observation [133, 92]. The images of different
viewing directions are shown in Figure 3.1. The left image of nadir view is from
the Vaihingen dataset [162], while the right image of oblique view is from the

* This chapter is based on:

Y. Lyu, G. Vosselman, G.-S. Xia, and M. Y. Yang. Bidirectional multi-scale attention networks for
semantic segmentation of oblique uav imagery. In ISPRS Congress, 2021
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UAVid2020 dataset [133]. Compared with the images in nadir view style, the images
in oblique view have very large spatial resolution variation across the entire image.

The state-of-the-art methods for semantic segmentation all rely on powerful
deep neural networks, which can effectively extract high-level semantic information
to determine the class types for all pixels. Deep neural networks serve as non-linear
functions, which map an image input to a label output. Due to its non-linear property,
the label output will not scale linearly as the image input scales. When designing the
deep neural networks, there is usually a performance trade-off for objects in different
scales. For example, the semantic segmentation of a small car in a remote sensing
image is better handled in higher resolution where finer details can be observed,
such as wheels. For larger objects like roads and buildings, it is better to have more
global context to recognize the objects since their whole shapes can be observed for
semantic segmentation.

Figure 3.1 Example of images in different viewing style. The left image from
Vaihingen dataset[162] is captured in nadir view. The right image from UAVid2020
dataset[133] is captured in oblique view.

When objects in an image dataset have very large scale variation, the semantic
segmentation performance of deep neural networks will drop if this multi-scale
problem is not considered in the network design. A simple strategy is to apply
multi-scale inference [224], i.e., a well-trained deep neural networks predict the
score maps of the same image in multiple different scales, and the score maps are
averaged to determine the final label prediction. Such strategy generally provides
better performance. However, a good prediction from a proper scale could be
undermined by those worse predictions from other scales, which limits the model
performance. Max-pooling selects one score map prediction of multiple scales for
each pixel, but the optimal output could be the interpolation of the prediction of
multiple scales. A smarter way of fusing the output score maps is to leverage on an
attention model [36], which determines the weights when fusing the score maps of
different scales. The strategy has been extended to a hierarchical structure for better
performance [175].

With respect to the design of deep neural networks, there are several strategies
to relieve the multi-scale problem. The first strategy is to gradually refine features
from coarse scales to fine scales [128, 161, 133]. The second strategy is to design a
multi-scale feature extractor module in the middle of the deep neural networks [224,
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35, 37, 220]. Self-attention [66, 90, 219] and graph networks [118, 117] have also
been applied to aggregate information globally to reinforce the features for each
pixel.

In this chapter, we propose the bidirectional multi-scale attention networks
(BiMSANet) to address the multi-scale problem in the semantic segmentation task.
Our method is inspired by the multi-scale attention strategy [36, 175] and the feature
level fusion strategy [35, 224], and jointly fuses the features guided by the attention
of different scales in bidirectional pathways, i.e, coarse-to-fine and fine-to-coarse.
Our method is tested on the new UAVid2020 dataset [133]. One of its challenges
is the huge inter-class and intra-class scale variance for different objects due to its
oblique viewing style. Our method achieves a new state-of-the-art result with a
mIoU score of 70.8%. Compared with the currently top ranked method [175], which
features on handling the multi-scale problem, our methods outperforms by almost
0.8%.

The contributions of this chapter are summarized as follows,
• We have proposed a novel bidirectional multi-scale attention networks (BiM-

SANet) to handle the multi-scale problem for the semantic segmentation
task.

• We have visualized in multiple perspectives and analyzed the bidirectional
multi-scale attentions in details.

• We have achieved state-of-the-art result on the UAVid2020 benchmark, and
the code will be made public.

3.2 Related Work

In this section, we will discuss other works that are related to our work. In order to
handle the multi-scale problem for the semantic segmentation, a number of deep
neural networks have been designed.

Multi-scale feature fusion. The first basic type of method is to aggregate
features of multiple scales from deep neural networks. FCN [128] and U-Net [161]
have adopted skip connections between encoder and decoder to gradually fuse the
information from multiple scales. MSDNet [133] has extended the connection across
scales to further increase the performance. ZipZagNet [55] uses a more complex zip-
zag architecture between the backbone and the decoder for intermediate multi-scale
feature aggregation. HRNet [188] proposes a multi-scale backbone to exchange
information between branches of coarse scale and fine scale. BiSeNet [215] pro-
poses a dual branch structure for better performance, one branch for higher spatial
resolution, while the other for richer semantic features.

Multi-scale context extraction. Another method is to aggregate multi-scale
context from the same feature maps with a module. PSPNet [224] has adopted
pyramid pooling module, which has pooling modules of multiple scales to pool
context features for the object recognition. DeepLabv3 [35, 37] has utilized atrous
spatial pyramid pooling module, which assembles multi-scale features with con-
volutions of multiple atrous rates. OCNet [220] proposes pyramid object context
(Pyramid-OC) module and atrous spatial pyramid object context (ASP-OC) module
to extract object context in multiple scales.
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Context by relations. With the creation of self-attention mechanism [180]
for natural language processing, better semantic segmentation results have also
been achieved when self-attention is applied to reason the relation between pixels.
Self-attention refines the features in a non-local style, which aggregates information
for each pixel globally. DANet [66] has utilized dual attention module, position
attention and channel attention, to extract information globally. CCNet [90] has
applied the criss-cross attention module to reduce the computational complexity
of the self-attention. OCRNet [219] has used explicit class attention to reinforce
the features. However, these types of methods are normally intensive in memory
and computation as there are too many pixels, resulting in very dense connections
between them. Graph reasoning is another way to include relations among objects.
Instead of adopting dense pixel relations, sparse graph structure makes the context
relation reasoning less intensive in memory and computation. [118] proposes the
symbolic graph reasoning (SGR) layer for context information aggregation through
knowledge graph. [117] transforms a 2D image into a graph structure, whose
vertices are clusters of pixels. Context information is propagated across all vertices
on the graph.

Inference in multi-scale. Multi-scale inference is widely used to provide more
robust prediction, which is orthogonal to previously discussed methods as those
networks can be regarded as a trunk for multi-scale inference. Average pooling and
max pooling on score maps are mostly used, but they limit the performance. [36]
propose to apply attentions for fusing score maps across multiple scales. The method
is more adaptive to objects in different scales as the weights for fusing score maps
across multiple scales can vary. [175] further improve the multi-scale attention
method by introducing a hierarchical structure, which allows different network
structures during training and testing to improve the model design. Our work also
focuses on the multi-scale inference. We have further improved the multi-scale
attention mechanism by introducing feature level bidirectional fusion.

3.3 Preliminary

In this section, we first go through some network architecture design to better help
understand the newly proposed bidirectional multi-scale attention networks.

3.3.1 Multi-Scale-Dilation Net

The multi-scale-dilation net [133] is proposed as the first attempt to tackle the
multi-scale problem for the UAVid dataset. The basic idea shares the philosophy of
multi-scale image inputs, where the input images are scaled by the scale to batch
operation and batch to scale operation. The intermediate features are concatenated
from coarse to fine scales, which are used to output the final semantic segmentation
output. The structure is shown in Figure 3.2. The feature extraction part is named as
trunk in the following figures.
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Trunk Feat

Trunk

Trunk

Output

Feat

Seg

Feat

Concat

Concat

Figure 3.2 Architecture of the multi-scale dilation net. Features are aggregated
from coarse to fine scales with concatenation.

3.3.2 Hierarchical Multi-Scale Attention Net

The hierarchical multi-scale attention net [175] is proposed to learn to fuse semantic
segmentation outputs of adjacent scales by a hierarchical attention mechanism. The
deep neural networks learn to segment the images while predicting the weighting
masks for fusing the score maps. This method ranks as the top method in the
Cityscapes pixel-level semantic labeling task [47], which focuses on the multi-
scale problem. The hierarchical mechanism allows different network structures
during training and inference, e.g., the networks have only two branches of two
adjacent scales during training, while the networks could have three branches of
three adjacent scales during testing as shown in Figure 3.3.

3.3.3 Feature Level Hierarchical Multi-Scale Attention Net

One limitation of the hierarchical multi-scale attention networks is that the fused
score maps are the linear interpolation of the score maps in adjacent scales, whereas
the best score maps could be acquired with the interpolated features instead. A
simple solution that we propose is to move the segmentation head to the end of the
fused features as shown in Figure 3.4.

3.4 Bidirectional Multi-scale Attention Networks

In this section, the structure of the proposed bidirectional multi-scale attention
networks will be introduced.
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Figure 3.3 Architecture of the hierarchical multi-scale attention networks. In addition
to the predicted score maps, extra weighting masks are predicted from the attention
sub-networks for fusing the score maps of adjacent scales. ⊕,ç stand for element-
wise addition and multiplication, respectively.
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Figure 3.4 Architecture of the hierarchical multi-scale attention networks with
feature level fusion. Segmentation head is moved to the end of the fused features.
⊕,ç stand for element-wise addition and multiplication, respectively.

3.4.1 Overall Architecture

Our design also takes the hierarchical attention mechanism and the feature level
fusion into account. The overall architecture is shown in Figure 3.5. For the input
image I of size H ×W , the image pyramid is built by adding two extra images I2×
and I0.5×, which are acquired by bi-linear up-sampling I to size of 2H × 2W and
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Figure 3.5 Architecture of the bidirectional multi-scale attention networks. The
structure is the combination of two feature level hierarchical multi-scale attention
nets corresponding to two pathways, where they share the same trunks. The coarse
to fine pathway and the fine to coarse pathway are marked with the yellow and the
blue arrows, respectively. ⊕,ç stand for element-wise addition and multiplication,
respectively. � stands for concatenation in channel dimension.

bi-linear down-sampling I to 1
2H ×

1
2W . The bidirectional multi-scale attention

networks have two pathways for feature fusing in a hierarchical manner. For each
pathway, the structure is the same as the feature level hierarchical multi-scale
attention nets. The design of the two pathways allows the feature fusion from both
directions, and the fusion weights can be better determined in a better scale. The
reason to use feature level fusion is that we need distinct features for two pathways.
If the score maps are used for fusion, the feat1 and the feat2 in the two pathways
would be the same, which limits the representation power of the two pathways. The
two pathways take advantage of their own attention branches and features. Attn1
branch and Feat1 are for the coarse to fine pathway, while Attn2 branch and Feat2
are for the fine to coarse pathway. The Feat1 and the Feat2 from two pathways are
fused hierarchically across scales, and the final feature is the concatenation of the
features from the two pathways.

The Feat1 and Feat2 are reduced to the half number of channels as the Feat in
feature level hierarchical multi-scale attention net. This setting is to provide fair
comparisons between these two types of networks, since it leads to features with the
same number of channels before the segmentation head.

The parameter sharing is also applied in the design. Three branches correspond-
ing to the three scales share the same network parameters for Trunk, Attn1 and
Attn2. Feat1 and Feat2 in the three branches are different as they are the output of
different image inputs through the same trunk.

3.4.2 Module Details

In this section, we will illustrate the details of each component we applies.
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Trunk. In order to effectively extract information from each single scale,
we have adopted the deeplabv3+ [37] as the trunk. We apply the wide residual
networks [222] as the backbone, namely the WRN-38, which has been pre-trained on
the imagenet dataset [165]. The ASPP module in the deeplabv3+ has convolutions
with atrous rate of 1,6,12, and 18. The features fb from the deeplabv3+ are
further refined with a sequence of modules as follows, Conv3 × 3(256)− >
BN− > ReLU− > Conv3×3(256)− > BN− > ReLU− > Conv1×1(nc)
(numbers in the brackets are the numbers of output channels), which corresponds to
the feature transformation in the Seg of the hierarchical multi-scale attention net
before the final classification.

The trunk T transforms an image input I into feature maps f with nc channels,
i.e., f = T(I). nc = nclass × d, where nclass is the total number of classes for
the semantic segmentation task. d is the expansion rate for the channels. d is set
to 4 in our case. The first 1

2nc channels are for the Feat1, while the second 1
2nc

channels are for the Feat2.
Attention head. The Attn1 and the Attn2 share the same structure, but with

different parameters. The attention heads map the features fb from the deeplabv3+
to the attention weights α,β (ranging from 0.0 to 1.0 with 1

2nc channels) for the
two pathways. For each attention head, the structure is comprised of a sequence
of modules as follows, Conv3 × 3(256)− > BN− > ReLU− > Conv3 ×
3(256)− > BN− > ReLU− > Conv1× 1(1

2nc)− > Sigmoid (numbers in
the brackets are the output channels).

Segmentation head. The segmentation head Seg converts the fused input
feature maps ffused into score maps l (8channels for the UAVid2020 dataset),
which correspond to the class probabilities for all the pixels, i.e., l = Seg(ffused).
The segmentation head is simply a 1×1 convolution, Conv1×1(nclass). Argmax
operation along the channel dimension outputs the final class labels for all the pixels.

Auxiliary semantic head. As in [175], we apply auxiliary semantic segmenta-
tion heads for each branch during training, which consists of only a 1×1 convolution,
Conv1× 1(nclass).

3.4.3 Training and inference

As our model follows the hierarchical inference mechanism, it allows our model to
be trained with only 2 scales, while to infer with 3 scales (0.5×,1×,2×). Such
design makes it possible for our network to adopt a large trunk such as deeplabv3+
with WRN-38 backbone for better performance. We use RMI loss [225] for the
main semantic segmentation head and cross entropy loss for the auxiliary semantic
head.

3.5 Experiments

In this section, we will illustrates the implementation details for the experiments and
compare the performance of different models on the UAVid2020 dataset.
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3.5.1 Dataset and Metric

Our experiments are conducted on the public UAVid2020 dataset2 [133]. The
UAVid2020 dataset focuses on the complex urban scene semantic segmentation
task for 8 classes. The images are captured in oblique views with large spatial
resolution variation. There are 420 high quality images of 4K resolutions (4096×
2160 or 3840× 2160) in total, split into training, validation and testing sets with
200, 70 and 150 images, respectively. The performance of different models are
evaluated on the test set of the UAVid2020 benchmark. The performance for the
semantic segmentation task is assessed based on the standard mean intersection-
over-union(mIoU) metric [60].

Table 3.1 Performance comparisons in intersection-over-union (IoU) metric for
different models. The top ranked scores are marked in colors. Red for the 1st place,
green for the 2nd place, and blue for the 3rd place.

Methods mIoU(%) Clutter Building Road Tree Vegetation Moving Car Static Car Human
MSDNet 56.97 57.04 79.82 73.98 74.44 55.86 62.89 32.07 19.69
DeepLabv3+ 67.36 66.68 87.61 80.04 79.49 62.00 71.69 68.58 22.76
HMSANet 70.03 69.32 88.14 82.12 79.42 61.21 77.33 72.52 30.17
FHMSANet 70.33 69.36 87.95 82.69 80.06 62.66 76.88 72.90 30.12
BiMSANet 70.80 69.94 88.63 81.60 80.38 61.64 77.22 75.62 31.34

Original Image

Overlapped Output

DeepLabv3+ HMSANet

FHMSANet BiMSANet

Figure 3.6 Qualitative comparisons of different models on the UAVid2020 test set.
The example image is from the test set (seq30, 000400). Bottom left image shows
the overlapped result of the BiMSANet output and the original image. Three example
regions for comparisons are marked in red, orange, and white boxes.

3.5.2 Implementation

Training. All the models in the experiments are implemented with pytorch [146],
and trained on a single Tesla V100 GPU of 16G memory with a batch of 2 images.
Mixed precision and synchronous batch normalization are applied for the model.
Stochastic gradient decent with a momentum 0.9 and weight decay of 5e−4 is
applied as the optimizer for training. "Polynomial" learning rate policy is adop-
ted [125] with a poly exponent of 2.0. The initial learning rate is set to 5e−3. The

2 https://uavid.nl/
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model is trained for 175 epochs by random image selection. We apply random
scaling for the images from 0.5× to 2.0×. Random cropping is applied to acquire
image patches of size of 896× 896.

Testing. As the 4K image is too large to fit into the GPU, we apply cropping
during testing as well. The image is partitioned into overlapped patches for evalu-
ation as in [133] and the average of the score maps are used for the final output in
the overlapped regions. The crop size is set to 896× 896 with an overlap of 512
pixels in both horizontal and vertical directions.

3.5.3 Model Comparisons

In this section, we will presents the semantic segmentation results on the test set of
UAVid2020 dataset for multi-scale-dilation net (MSDNet) [133], deeplabv3+ [37],
hierarchical multi-scale attention net (HMSANet) [175], feature level hierarchical
multi-scale attention net (FHMSANet), and our proposed bidirectional multi-scale
attention networks (BiMSANet). MSDNet is included as reference, which uses
an old trunk FCN-8s [128] in each scale. The major comparisons are among
DeepLabv3+, HMSANet, FHMSANet, and BiMSANet.

The mIoU scores and the IoU scores for each individual class are shown in
Table 3.1. Among all the compared models, the BiMSANet performs the best
regarding the mIoU metric. Our BiMSANet has a more balanced prediction ability
for both large and small objects.

For the evaluation of each individual class, the BiMSANet ranks the first for
classes of clutter, building, tree, static car, and human. The most distinct improve-
ment is for the static car, which is 2.72% higher than the second best score. With
only the context information, our method could achieve decent scores for classes of
both moving car and static car.

For human class, the scores of HMSANet, FHMSANet and BiMSANet are all
significantly higher than the DeepLabv3+, which shows the superiority of multi-
scale attention mechanism in handling the small objects. Thanks to the bidirectional
multi-scale attention design, BiMSANet achieves the best performance for the
human class.

Qualitative comparisons are shown in Figure 3.6. The example image is selected
from the test set (seq30, 000400). As the ground truth label is reserved for benchmark
evaluation, the overlapped output is shown instead in Figure 3.6. Three example
regions are marked in red, orange, and white boxes.

In the red box region, it could be seen that the deeplabv3+ struggles to give
coherent predictions for cars in the middle of the road, while the other three models
have better results due to the multi-scale attention. The HMSANet and the FHM-
SANet wrongly classify part of the sidewalks, which is outside the road, as road
class. BiMSANet handles better in this area. However, part of the road near the
lane-mark are wrongly classified as clutter by the BiMSANet. In the orange box
region, the parking lot, which belongs to the clutter class, is predicted as the road by
all four models, and the BiMSANet makes the least error. In the white box region,
the ground in front of the entrance door is wrongly classified as building by all
models except the BiMSANet. This is benefited from the bidirectional multi-scale
attention design.
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We have also shown the performance for human class segmentation in Figure 3.7.
The example image is from the test set (seq22, 000900). The zoomed in images in
the middle and the right columns correspond to the patches in the white boxes of
the overlapped output. The four patches are from different context, which is very
complex in some local regions. Even though the humans in the image are quite
small and in many different poses, such as standing, sitting, and riding, our model
can still effectively detect and segment most of the humans in the image.

Original Image

Overlapped Output Dining Area

Crossing Square1

Square2

Figure 3.7 Qualitative example of human class segmentation by the BiMSANet.
The example image is from the test set (seq22, 000900). The left column shows
the original full image and the overlapped output. The middle and the right columns
show the image patches cropped from the overlapped output (marked by white
boxes), which all focus on the human class. The red circles mark some missing
segmentation.

Table 3.2 Ablation study for models. The performance gains could be observed by
gradually adding components.

Methods mIoU(%) mIoU Gains(%) Trunk Multi-Scale Attention Feature Level Fusion Bidirection
DeepLabv3+ 67.36 - 3 - - -
HMSANet 70.03 +2.67 3 3 - -
FHMSANet 70.33 +0.30 3 3 3 -
BiMSANet 70.80 +0.47 3 3 3 3

3.5.4 Ablation Study

In this section, we will compare the performance gains by gradually adding the
components. The corresponding results are shown in Table 3.2. It is easy to see
that the multi-scale processing is useful for the oblique view UAV images. The
mIoU score has increased by 2.67% by including the multi-scale attention into the
networks. The feature level fusion is also proved to be useful as it helps the networks
to improve the mIoU score by 0.3%. By further adding the bidirectional attention
mechanism, the networks improve the mIoU score by another 0.47%.

3.5.5 Analysis of Learned Multi-Scale Attentions

In this section, we will analyze the learned multi-scale attentions from the BiM-
SANet to better understand how the attentions work. We explore from mainly
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three perspectives: attentions of different channels, different scales, and different
directions. The example image is from the test set (seq25,000400). Attentions from
both Attn1 branch and Attn2 branch are used, noted as α and β in Figure 3.5. α is
for the fine to coarse pathway, while β is for the coarse to fine pathway.

1th 3th

5th 9th7th

13th 15th11th

Image

Figure 3.8 Attention analysis of different channels. Example attentions are of 1×
scale from Attn1 branch. The image on the top left shows the image adopted. The
other 8 images are the attention maps from different channels. Channel indices are
presented below the images. Brighter color means higher value. Best visualized with
zoom in.

3.5.5.1 Attention of different channels

The multi-scale attentions in our BiMSANet have 1
2nc channels (16 in our case),

which is different from the HMSANet [175], whose attention has only one single
channel for all classes. The attentions guide the fusion of features across scales.
Example attentions of different channels in 1× scale branch are shown in Figure 3.8.
Different channels have different attentions focusing on different parts of the image.
It is obvious that different channels have different focus for different classes, e.g.,
1th channel more focus on trees, 3th channel less focus on roads, and 7th channel
have the most focus on moving cars.

3.5.5.2 Attention of different scales

In order to analyze the difference of attentions in different scales, we have selected 4
attentions from each of the Attn1 branch and the Attn2 branch as shown in Figure 3.9.
The superscripts are the channel index of the attentions. By comparing the α1 with
α2, which are predicted in 1× and 0.5× scales, we could see that attentions in
different scales have different focus. The difference of the same channel between
α1 and α2 are more worth of comparisons. The same applies for β1 and β2.

From α1
1 and α1

2, it could be noted that the recognition of cars in closer distance
are more based on context, since the values ofα1

2 are larger thanα1
1. The recognition

44



3.5. Experiments

𝛂𝟐
𝟏 𝜶𝟐

𝟗

𝛂𝟏
𝟏 𝛂𝟏

𝟗 𝛃𝟏
𝟐𝛃𝟏

𝟏

𝛃𝟐
𝟐𝛃𝟐

𝟏

Figure 3.9 Attention analysis of different scales. We select 4 attentions from each of
the Attn1 branch and the Attn2 branch. α,β are of the same meaning as in Figure 3.5.
The superscripts are the channel index of the attentions. α2, β2 correspond to the
attentions predicted in the 0.5× scale and the 2× scale. α1, β1 are predicted in 1×
scale. Brighter color means higher value. Best visualized with zoom in.
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Figure 3.10 Attention analysis of different directions. The figure shows the atten-
tions for fusing features of scale 0.5× and scale 1×. α2 is for the fine to coarse
pathway, while 1− β1 is for the coarse to fine pathway. Brighter color means higher
value. Best visualized with zoom in.

of road that are closer to the camera also relies more on the coarser level features,
which is reasonable as the road area is large and requires more context for recognition.
It is also interesting to note that the middle lane-marks is even brighter than other
parts of the road in α1

2, which means the recognition requires more context. It is
reasonable as the color and the texture of the lane-marks are quite different compared
to other parts of the road. The distant buildings near the horizon relies more on the
coarser level features as well.

We have also noticed that the α2 (0.5× scale) and β2 (2× scale) have larger
values on average compared with α1 and β1 (1× scale), which means that features
with context information and fine details are both valuable for object recognition.

3.5.5.3 Attention of different directions

In our bidirectional design, both the coarse to fine pathway and the fine to coarse
pathway fuse the features from three scales (0.5×,1×,2×). In this section, we
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analyze if the feature fusion in two pathways has the same attention pattern. At-
tention examples are shown in Figure 3.10. Attentions α2 and 1 − β1 from two
pathways are both for the feature fusion across scale 0.5× and 1×. Although the
attention values of same pixels can not be directly compared as the feature sources
are different (Feat1 and Feat2), it is still evident that the attention densities on
average are quite different. There are more activation in α2 than 1− β1, showing
that the two pathways play different roles for feature fusion across same scales.

3.6 Conclusion

In this chapter, we have proposed the bidirectional multi-scale attention networks
(BiMSANet) for the semantic segmentation task. The hierarchical design adopted
from [175] allows the usage of larger trunk for better performance. The feature
level fusion and the bidirectional design allows the model to more effectively fuse
the features from both of the adjacent coarser scale and the finer scale. We have
conducted the experiments on the UAVid2020 dataset [133], which have large
variation in spatial resolution. The comparisons among different models have shown
that our BiMSANet achieves better results by balancing the performance of small
objects and large objects. Our BiMSANet achieves the state-of-art result with a
mIoU score of 70.80% for the UAVid2020 benchmark.
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4Learning Instance Propagation for
Video Object Segmentation

Abstract

In recent years, the task of segmenting foreground objects from background
in a video, i.e., video object segmentation (VOS), has received considerable
attention. In this chapter, we propose a single end-to-end trainable deep neural
network, convolutional gated recurrent Mask-RCNN, for tackling the semi-
supervised VOS task. We take advantage of both the instance segmentation
network (Mask-RCNN) and the visual memory module (Conv-GRU) to tackle
the VOS task. The instance segmentation network predicts masks for instances,
while the visual memory module learns to selectively propagate information for
multiple instances simultaneously, which handles the appearance change, the
variation of scale and pose and the occlusions between objects. After offline
and online training under purely instance segmentation losses, our approach
is able to achieve satisfactory results without any post-processing or synthetic
video data augmentation. Experimental results on DAVIS 2016 dataset and
DAVIS 2017 dataset have demonstrated the effectiveness of our method for
video object segmentation task.

4.1 Introduction

Video object segmentation (VOS) aims at segmenting foreground objects from
background in a video with coherent object identities. Such visual object tracking
task serves for many applications including video analysis and editing, robotics and
autonomous cars. Compared to the video object tracking task in bounding box level,
this task is more challenging as pixel level segmentation is more detailed description
of an object.

The VOS task is defined as a semi-supervised problem if ground truth annotations
are given for the first several frames. It is otherwise an unsupervised problem if
no annotation is provided. The ground truth annotations are masks that mark the
objects that need to be tracked through the whole video. In our work, we focus on

* This chapter is based on:

Y. Lyu, G. Vosselman, G.-S. Xia, and M. Ying Yang. Lip: Learning instance propagation for video
object segmentation. In ICCVw, Oct 2019
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Figure 4.1 Example predictions by our method from DAVIS [151, 149] dataset. Top
row: Parkour sequence. An example of large appearance change over time. One
every 20 frames shown of 100 in total. Middle row: Drift-straight sequence. An
example of large scale and pose variation over time. One every 10 frames shown of
50 in total. Bottom row: Dogs-jump sequence. An example of occlusions between
objects. One every 5 frames shown of first 20.

semi-supervised video object segmentation task, where the ground truth annotations
are provided only for the first frame.

There are several challenges that make VOS a difficult task. First, both the
appearance of the target objects and the background surroundings may change
significantly over time. Second, there could be a large pose and scale variation
over time. Third, there could be occlusions between different objects, which hinder
the performance of tracking. Examples of the above three challenges are shown in
Fig. 4.1. A notable and challenging dataset for the VOS task is the DAVIS 2016
dataset [149], which is designed for single-object video segmentation. Later the
DAVIS 2017[151] is brought out focusing on segmentation of multiple video objects.
Both of the datasets are provided with mask annotations of extremely high accuracy.

Most of the current methods for the VOS task, such as VPN [93], MSK [148]
and RGMP [198], are based on the pixel level mask propagation. However, those
methods fail to give a coherent label within an instance. In this chapter, we introduce
a single end-to-end trainable network to predict masks on instance level, namely
the convolutional gated recurrent Mask-RCNN. It integrates instance segmentation
network (Mask-RCNN [76]) with visual memory module (Conv-GRU [8]). Instance
segmentation network is designed for foreground object segmentation, which is
extended with visual memory for foreground object segmentation in a video. The
incorporated visual memory helps to propagate information across frames to handle
the appearance change, the pose and scale variation and the occlusions between
objects. Our network gives a coherent label to a detected instance and assigns one
label to only one detected instance. The model structure is shown in Fig. 4.2.

Our Contributions are:

• We propose a novel convolutional gated recurrent Mask-RCNN to learn
instance propagation (LIP) for video object segmentation (VOS) task. Our
model simultaneously segments all the target objects in the images.

• We design a single end-to-end trainable network for VOS task, enabling both
mask propagation in the long term and bottom-up path augmentation.

48



4.2. Related work

• A strategy to successfully train the model for VOS task has been brought out.
All the training processes are guided by the instance segmentation losses only.

4.2 Related work

In this section, we will discuss some relevant work.
Object detectors. Object detection starts with box level prediction and has a great
improvement over the years. Single-stage detectors [156, 157, 124, 65, 121] have
faster running speed while two-stage networks [69, 159] are more accurate in general.
Later, Mask-RCNN [76] merges object detection with semantic segmentation by
combining Faster-RCNN [159] and FCN [128], which form a conceptually simple,
flexible yet effective network for instance segmentation task. Mask-RCNN network
is suitable for instance segmentation on static images, but lacks the ability for
temporal inference. Our work is to further extend Mask-RCNN with Conv-GRU
module to solve video object segmentation task.
Recurrent neural networks (RNNs). RNNs [83, 164] are widely used for tasks
with sequential data, such as image captioning [97], image generation [72] and
speech recognition [71]. The key for RNNs is the hidden state, which selectively
accumulates information from current input and the previous hidden state over time.
However, RNN has its limitation as it fails to propagate information for a long
sequence due to the problem of gradient vanishing or explosion in training [80, 145].
Two RNN variants, LSTM [81] and GRU [44] are more effective for the long
term prediction by taking advantage of gating mechanism. To further encode spatial
information, they are extended to Conv-LSTM [203] and Conv-GRU [8] respectively
and have been used for video prediction [64] and action recognition [8].
Methods for VOS. Conv-GRU has already been used for video object segmentation.
It serves as visual memory in [177] and has been proved to boost the performance
for VOS task. However, their model performs binary semantic segmentation only,
which is not suitable for video object segmentation task with multiple objects.

VPN [93], MSK [148] and RGMP [198] learn to propagate mask for the VOS
task. VPN utilizes learnable bilateral filters to achieve video-adaptive information
propagation across frames. MSK learns to utilize both current frame and mask
estimation from the previous frame for mask prediction. RGMP utilizes the first
frame and mask as reference for instant information propagation besides the usage
of current frame and previous mask estimation. Both MSK and RGMP achieve good
results, but they can only propagate information for instances one by one.

Specially, OSVOS [24], OSVOS+ [136] and OnAVOS [183] tackle video object
segmentation from static images, achieving temporal consistency as a by-product.
They learn a general object segmentation model from image segmentation datasets
and transfer the knowledge for video object segmentation. They all rely on additional
post processing for better segmentation result. OnAVOS further applies online
adaptation to continuously fine-tune the model, which is very time consuming.

[98] explores the benefits from in-domain training data synthesis with the la-
belled frames of the test sequences. [198] synthesizes video training data from
static image dataset to add to limited video training samples. [88, 170] explore
fast prediction without online training through matching based method. CINM [9]
achieves good prediction by spatial-temporal post-processing based on results from
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Figure 4.2 Overall model structure. The backbone network distills useful features
from each input image. The features are then sent to Conv-GRU module (visual
memory) for feature propagation. The output features from Conv-GRU module are
utilized by region proposal network for proposal generation. Multiple heads finally
take the ROI aligned features for video object segmentation. An example output is
shown on the right, including bounding boxes, id predictions and object segments.
The class of an instance is named by video sequence name plus object index.

OSVOS [24]. To handle the problem of long term occlusion, [116, 114] apply
re-identification network to retrieve the missing objects, which complements their
mask propagation methods. Recently, there are still many researches focusing on
single-object video segmentation [201, 86, 45], which are not easily transformed
for video segmentation of multiple objects. MaskRNN [87] is another method for
instance level segmentation, but it only predicts for one instance at a time. The best
results are achieved by ensemble of multiple specialized networks. PReMVOS [131]
takes the 1st place of recent DAVIS2018 semi-supervised VOS task by utilizing
complex pipeline with multiple specialized networks trained on multiple datasets.

4.3 Method

In this section, we first introduce the structure of our convolutional gated recurrent
Mask-RCNN, which extracts and propagates information for multiple objects in a
video. It is comprised of mainly three parts. They are the feature extraction backbone,
the visual memory module and the prediction heads. The backbone network extracts
features that are forwarded to visual memory module. The visual memory module
then selectively remembers the new input features and forgets the old hidden states.
On top of Conv-GRU, region proposal network (RPN), bounding box regression
head, id classification head and mask segmentation head are constructed to solve the
VOS task. The whole network is end-to-end trainable under the guidance of instance
segmentation losses.

4.3.1 Mask-RCNN

Mask-RCNN [76] is one of the most popular framework designed for instance
segmentation task. It is used for instance-wise object detection, classification and
mask segmentation, which makes it naturally suitable for multiple video objects
segmentation. Roles of different components in Mask-RCNN directly shift to fit
VOS task as illustrated below.
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Figure 4.3 Model structure details. The left black dashed box shows the ResNet101-
FPN backbone structure. The right black dashed box shows the Conv-GRU module.
Our network brings bottom-up path augmentation for output features in Conv-GRU
module. The augmented output features are used for both RPN and the prediction
heads. All 5 layers are utilized for multi-level RPN, but only 4 bottom layers are used
for multi-level ROIs.

Backbone: The backbone network still serves to extract features from images,
but more focused on generating useful features adaptively for gates of Conv-GRU
module. ResNet101-FPN [77, 120] with group normalization [197] is used as our
backbone network. Detailed structure is shown in Fig.4.3.

RPN: Mask-RCNN is known as a two stage instance segmentation network.
Bounding boxes of general objects are proposed in the first stage, while classes and
masks are predicted instance-wisely in the second stage. Such two stage framework
adopts the same philosophy as the training stages of OSVOS [24]. For OSVOS, the
network first learns to segment binary mask for general objects in a class-agnostic
manner. Then it learns to segment specific objects during online training. In Mask-
RCNN, RPN learns to reject background objects and to propose foreground objects
in the first stage, which is also class-agnostic. It is in the second stage that classes
and masks of different objects are determined.

Bounding box regression head: This branch is used to refine the bounding box
proposals. Each predicted box contains one object. The boxes serve to separate
different objects in an image.

Classification head: This branch is used to assign the object a correct class
label. However, class type is unknown for VOS task. Instead, different objects
are associated with different ids, which need to be predicted coherently in a video
sequence. Classification branch is naturally transformed into an id classification
branch.

Mask segmentation head: This branch is used to extract a mask for each
foreground object in the image, which is the main target of VOS task.

Clearly, for the components in Mask-RCNN, there is a direct responsibility
mapping from instance segmentation task to VOS task.

4.3.2 Convolutional gated recurrent unit

One difficulty for video object segmentation is the problem of long term dependency.
The ground truth is provided only for the first frame, but the objects still need to be
predicted after tens or hundreds of frames based on the ground truth from the first
frame. The appearance of different objects in the videos may vary greatly and the
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objects sometimes get partially or even completely occluded, which makes coherent
prediction more difficult.

In order to handle the above problem, we utilize the convolutional gated recurrent
unit, serving as a visual memory to handle appearance morphing and occlusion.
The memory module learns to selectively propagate the memorized features and to
merge them with the newly observed ones. The key role for Conv-GRU module is
to maintain a good feature over time for prediction of region proposal, bounding
box regression, id classification and mask segmentation.

Compared to the instance segmentation task, where each training batch is com-
prised of multiple randomly sampled images, the batch in temporal training has less
variation as consecutive images from one sequence are highly correlated. This is
similar to the problem of small batch size. To relieve such effect, we further replace
the bias term in Conv-GRU with the group normalization (GN) layer, which are
proved to give consistent performance across different batch sizes [197]:

zt = σ(GN(Whz ∗ ht−1 +Wxz ∗ xt)) (4.1a)
rt = σ(GN(Whr ∗ ht−1 +Wxr ∗ xt)) (4.1b)

ĥt = Φ(GN(Wh ∗ (rt � ht−1)+Wx ∗ xt)) (4.1c)

ht = (1− zt)� ht−1 + zt � ĥt , (4.1d)

where xt is the input feature of time t, ht is the hidden state of time t. zt , rt
are update gate and reset gate respectively. W are convolutional filter parameters.
σ and Φ are sigmoid function and tanh function respectively.∗ and � denote the
convolution operation and element-wise multiplication respectively.

For each level of the feature pyramid network [120] (FPN), we create a corres-
ponding Conv-GRU layer. The layers at different levels learn different transition
functions for the hidden states. As bottom up path augmentation has been proved to
be useful for instance segmentation [123], we easily achieve it by down-sampling
and addition operation with output features from multi-level Conv-GRU module.
The structure is shown in Fig. 4.3. The output features after path augmentation
are used for RPN and prediction heads. Conv-GRU module is deliberately directly
inserted after backbone network. In this way, information for both region proposal
and instance prediction can be propagated through time.

4.3.3 Online inference

As our model predicts mask for each unique instance, there naturally exist constraints
for prediction.

One maximum constraint. For each instance, there should be at most one
object detected. This constraint is achieved by selecting highest id prediction score.

Location continuity constraint. If an instance is detected in the previous frame
with high enough id prediction score, the location of the current detection should
not be far from its previous location. To achieve this constraint, we suppress the
prediction for the instance, whose boxes iou between consecutive frames is low.

As probability for id prediction decays over time, we further apply a very light
weighted fine-tuning process for the last linear layer of the id head during online
prediction. If there exists a target object detected with a high enough id prediction
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score, its predicted bounding box is set as ground truth for fine-tuning the id head
only. By saving and reusing intermediate tensors, the speed for fine-tuning is fast.

4.4 Training the network

In this section, we will describe our training strategy in detail. The training mod-
ality for video object segmentation can be divided into offline training and online
training [98, 148]. During offline training, the model is trained with the training
set only. During online training, the model is fine-tuned with the first frame from
the test set. As the class types of the test set are not known and objects may never
be seen during offline training, online fine-tuning is necessary to help the model to
generalize better for test set.

Our network needs both offline training and online training. During offline
training stage, our network learns the features to differentiate all the object instances
and learns to predict class-agnostic boxes and masks. During online training stage,
our network is fine-tuned to differentiate objects for each test sequence and trained
with boxes and masks in a class-specific manner.

4.4.1 Class-agnostic offline training

To provide our model with as much generality as possible, we apply class-agnostic
training for bounding box and mask through the whole offline training process.
Offline training for our model can be divided into two steps. First, our model is
trained with instance segmentation dataset. This step is to provide our model with
general object detection ability. Then, we train the model with video dataset to learn
to propagate information over time for video object segmentation.

4.4.1.1 Pre-train on instance segmentation dataset

Pre-training on additional dataset is a common practice [183, 24, 136, 114]. We
initialize our model by pre-training on Microsoft COCO dataset [122]. Ms-COCO
dataset has been widely used for object detection task. It targets common objects in
context with annotations including boxes, classes and masks. By first training on
Ms-COCO dataset, our model learns to extract useful features for general object
detection. As the training is on static images, we set hidden states to be zeros without
update for Conv-GRU module.

After this step, our model gains general region proposal ability, general bounding
box prediction ability and general object segmentation ability. Our model also learns
to differentiate general objects by classes defined on Ms-COCO dataset.

4.4.1.2 Fine-tune on VOS dataset

In this stage, we train all the modules except the backbone network. By fine-tuning
our model on video object segmentation dataset, the Conv-GRU module learns
to tune its gates to best propagate information. It should be noted that the class
number has changed as the video object segmentation dataset does not share the
class definition with instance segmentation dataset. Instead, we replace the last
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Figure 4.4 Shortcut in prediction head. In order to let output from Conv-GRU
module have more direct influence towards final prediction, we add a shortcut
connection between ROI aligned feature and head logits by simple addition operation.
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Figure 4.5 Transforming class-agnostic weights to class-specific weights. During
online fine-tuning, the class-agnostic bounding box and mask predictions are altered
to class-specific. The rectangles are weights in the last linear layer of bbox head
or the last convolutional layer of mask head. The grey color marks weights for
background and the blue for foreground. Foreground weights are copied for each
foreground instance to be fine-tuned uniquely.

linear layer right before softmax layer in the class prediction head with a new one,
which now predicts the ids in the dataset. The class prediction head turns into an id
prediction head.

The network is trained purely with instance segmentation losses. The different
losses guide our model to have different abilities. The mask loss helps our model
to propagate mask segmentation. The losses from id head and bbox head help our
model to propagate information differently for each instance. Although the mask
head and bbox head are trained in a class-agnostic manner, the id head and bbox
head provide a chance to learn to propagate class-specific information.

To facilitate the information propagation, we further add a shortcut connection
between the ROI aligned feature and the head logits as shown in Fig. 4.4.
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Figure 4.6 Qualitative results comparison of OnAVOS [183], OSVOS [24], FA-
VOS [41], OSMN [209] and LIP on DAVIS 2016 dataset [149]. The index of each
image in a sequence is shown on the top.

4.4.2 Class-specific online fine-tuning

As the instances in test sequences are not the same as in training sequences, the last
linear layer in id head needs to be re-initialized and trained to differentiate instances
in the current sequence. We replace the last linear layer in the same way as in
section 4.4.1.2. We also adopt focal loss [121] for id head to balance the training for
multiple instances.

During online fine-tuning, the parameters in backbone network and Conv-GRU
module are frozen to keep the learned propagation property. All other parts are
fine-tuned for the new objects in test image. The class-agnostic prediction in mask
head and bbox head are altered to be class-specific in order to have less competition
for different instances. The process is illustrated in Fig. 4.5.

4.5 Experiments

To test how our model learns to propagate instance information in a long term
sequence, we evaluate our model on both DAVIS 2016 [149] and DAVIS 2017 [151]
datasets, which contain video sequences of high quality and accurate mask annota-
tions of objects. DAVIS 2016 dataset focuses on single-object video segmentation.
It has 30 training and 20 validation videos. As an extension to DAVIS 2016 dataset,
DAVIS 2017 dataset brings 30 more video sequences for training set and 10 more
for validation set. It also provides another 30 sequences for testing. As DAVIS 2017
dataset focuses on multiple object segmentation, it has been re-annotated for each
individual target object.

4.5.1 Implementation Details

Our model is implemented with PyTorch [146] library. A Nvidia Titan X (Pascal)
GPU with 12GB memory is used for experiments. Details of convolutional gated
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recurrent Mask-RCNN are shown below.
Model structure. Our backbone network is a ResNet101-FPN [77, 120] with
group normalization [197]. ResNet101 is initialized with weights pre-trained on
Imagenet [165]. In Conv-GRU module, the channel number of each hidden state
is 256. Kernels of all convolutions in Conv-GRU are of size 3× 3 with 256 filters.
We apply multi-level RPN and multi-level ROIs for the network. 5 RPN heads are
created for 5 levels of the Conv-GRU module. Each RPN head proposes boxes for
1 scale of all 5 scales. ROI aligned features are extracted from 1 of the 4 bottom
levels of the Conv-GRU module based on box scales (< 1122, 1122 − 2242,
2242 − 4482, > 4482). The ROI aligned feature resolution is 28× 28 for mask
head, and 7 × 7 for bbox head and id head. In all cases, we adopt image centric
training [69].

Method OnAVOS FAVOS OSVOS LIP(Ours) MSK PML SFL OSMN CTN VPN
J&F Mean↑ 85.5 81.0 80.2 78.5 77.6 77.4 76.1 73.5 71.4 67.9

J Mean↑ 86.1 82.4 79.8 78.0 79.7 75.5 76.1 74.0 73.5 70.2
J Recall↑ 96.1 96.5 93.6 88.6 93.1 89.6 90.6 87.6 87.4 82.3
J Decay↓ 5.2 4.5 14.9 0.05 8.9 8.5 12.1 9.0 15.6 12.4
F Mean↑ 84.9 79.5 80.6 79.0 75.4 79.3 76.0 72.9 69.3 65.5

F Recall↑ 89.7 89.4 92.6 86.8 87.1 93.4 85.5 84.0 79.6 69.0
F Decay↓ 5.8 5.5 15.0 0.06 9.0 7.8 10.4 10.6 12.9 14.4

Table 4.1 Results on DAVIS 2016 [149]. Left column shows different metrics.
Up-arrow↑ means the higher the better. Down-arrow↓ means the lower the better.
Methods are in descent order according to J&F mean from left to right.

Figure 4.7 Qualitative results comparison of OnAVOS [183], OSVOS [24], FA-
VOS [41], OSMN [209] and LIP on DAVIS 2017 dataset [151]. The index of each
image in a sequence is shown on the top.

Pre-train on Ms-COCO dataset. For each image, we randomly scale it to have its
shorter side equal to 1 of 11 different lengths: 640, 608, 576, 544, 512, 480, 448,
416, 384, 352, 320 and its longer size to be maximumly 1333. We sample 512 ROIs
with foreground-to-background ratio 1:3. RPN adopts 5 aspect ratios (0.2, 0.5, 1, 2,
5) and 5 scales (322, 642, 1282, 2562, 5122). The model is trained with stochastic
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gradient descent (SGD) for 270K iterations. We fix input hidden states to be zeros
for Conv-GRU module, weight decay 0.0001, momentum 0.9. The initial learning
rate is 0.02 and dropped by a factor of 10 at 210K and 250K. In the following cases,
the configuration is kept the same unless otherwise stated.

Fine-tune on DAVIS dataset. We generate ground truth (GT) bounding boxes from
GT masks of DAVIS dataset. The width and height of the boxes are expanded by
10% to prevent incomplete mask prediction caused by inaccurate box prediction.
The sequences are randomly shuffled and scaled as in pre-training stage. As there is
no causal reasoning in the task, we reverse each sequence for more training data.
The backbone network is not trained to prevent over-fitting for DAVIS dataset. 128
ROIs are sampled from each image. The model is trained for 12K iterations with an
initial learning rate of 0.002 and dropped by a factor of 10 at 8K and 10K. Due to
the GPU memory limitation, it only allows to train with maximum recurrence of 4.
We extend the length to 8 by stopping gradient back propagation between 4th and
5th frames.

Online fine-tuning. The network is fine-tuned with the GT of the first image for
maximally 1000 iterations with early stopping. If the loss for a prediction head
is smaller than an empirically chosen threshold, the loss is ignored. If all the
losses are ignored, we stop the training. The thresholds for bbox regression loss, id
cross-entropy loss and mask binary cross-entropy loss are 0.015, 0.010 and 0.15
respectively. We also stop the loss back-propagation in id head at its last fully
connected layer, so the features to distinguish ids will not be affected by the newly
initialized head. Focal loss [121] is used to balance id training, its hyper-parameters
are set the same as in [121].

Online inference. For each id, we select 10 detected objects that have id score
above 0.2 and apply one maximum constraint to select the best candidate. For the
location continuity constraint, we suppress the object instance that has IOU lower
than 0.3 with the detection from previous frame if the previous id score is higher
than 0.4. To relieve the id score from decaying over time, we apply fine-tuning for
id head for maximally 500 iterations with early stopping, and the early stopping
threshold for id cross-entropy loss is set to 0.015.

Method OnAVOS LIP(Ours) OSVOS FAVOS OSMN
J&F Mean↑ 65.4 61.1 60.3 58.2 54.8

J Mean↑ 61.6 59.0 56.6 54.6 52.5
J Recall↑ 67.4 69.0 63.8 61.1 60.9
J Decay↓ 27.9 16.0 26.1 14.1 21.5
F Mean↑ 69.1 63.2 63.9 61.8 57.1

F Recall↑ 75.4 72.6 73.8 72.3 66.1
F Decay↓ 26.6 20.1 27.0 18.0 24.3

Table 4.2 Results on DAVIS 2017 [151]. Left column shows different metrics.
Up-arrow↑ means the higher the better. Down-arrow↓ means the lower the better.
Methods are in descent order according to J&F mean from left to right.
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4.5.2 Comparison with other methods

We compare our method with some state-of-the-art methods on both the DAVIS
2016 benchmark and the DAVIS 2017 benchmark 2 by using standard evaluation
metrics J and F [149, 151]. The evaluation on DAVIS 2016 benchmark shows the
performance for single-object video segmentation, while the evaluation on DAVIS
2017 benchmark shows the performance for video segmentation of multiple objects.
It should be noted that our method does not apply any post-processing, but has been
pre-trained on Ms-COCO dataset [122]. Among the several top methods, we remove
CINM [9] and RGMP [198] to avoid unfair comparison. CINM [9] is built upon
OSVOS [24] and further adopts a refinement CNN and MRF for post-processing.
The better initial prediction, the better its result. RGMP [198] cannot be successfully
trained with static image dataset and DAVIS dataset alone for mask propagation. It
has created a large number of synthetic video training data from Pascal VOC [61, 61],
ECSSD [169] and MSRA10K [43] datasets. It is not fair to compare with RGMP
as the quality of video training data are not the same and cannot be controlled. For
DAVIS 2017 benchmark, we exclude PReMVOS [131] and OSVOS+ [136] as they
both use multiple specialized networks in multiple processes to refine their results.

For DAVIS 2016, we compare with OnAVOS [183], FAVOS [41], OSVOS [24],
MSK [148], PML [39], SFL [42], OSMN [209], CTN [94] and VPN [93]. We detect
multiple objects and evaluate in the way for single-object. Our method ranks the
4th among the compared methods as shown in Table 4.1. It should be noted that
our results are better than FAVOS and OSVOS if they are without post-processing.
FAVOS achieves J mean and F mean of 77.9% and 76% respectively without
tracker and CRF [41]. OSVOS achieves J mean and F mean of 77.4% and 78.1%
respectively without boundary snapping post-processing [24]. OnAVOS achieves J
mean of 82.8% without CRF post-processing [183]. In addition, we compare our
method with another visual memory (Conv-GRU) based VOS method [177]. Both
of the methods are trained with additional image dataset, but we achieve 4.5% gain
in J&F mean without optical flow and CRF post-processing.

For DAVIS 2017, we compare LIP with OnAVOS [183], OSVOS [24], FA-
VOS [41] and OSMN [209] as shown in Table 4.2. LIP has relatively better per-
formance as it is better at separating different instances and keeping coherent label
within an instance.

Qualitative results on DAVIS 2016 and DAVIS 2017 are shown in Fig. 4.6 and
Fig. 4.7, respectively. Fig. 4.6 shows that our LIP can track single object well on
instance level and preserve good mask extent for an instance. OSMN [209] and
OSVOS [24] fail to keep the mask within an instance.

In Fig. 4.7, it is obvious that the information of an instance in our LIP helps
segment multiple objects. All the other methods either assign one label to multiple
objects or assign multiple labels to one object, while LIP handles those issues better.

4.5.3 More qualitative results comparison

Here we show more qualitative results comparison of OnAVOS [183], OSVOS [24],
FAVOS [41], OSMN [209] and LIP on DAVIS 2016 and DAVIS 2017 datasets in
Fig. 4.8, 4.9 and Fig. 4.10, 4.11.

2 https://davischallenge.org/
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Figure 4.8 Qualitative results comparison of OnAVOS [183], OSVOS [24], FA-
VOS [41], OSMN [209] and LIP on DAVIS 2016 dataset. The index of each image in
a sequence is shown on the top.

4.5.4 Compare with visual memory based method

In addition, we compare our method with another visual memory (Conv-GRU)
based video object segmentation method [177] on DAVIS 2016 dataset. Both of
the methods are trained with additional image dataset, but we achieve better result
without optical flow and CRF post-processing, as shown in Table 4.3. The result
shows the value of the learned concept of instances.

Method VisualMem [177] LIP(Ours)
Additional dataset PASCAL VOC Ms COCO

Additional aid CRF&Optical Flow -
J&F Mean↑ 74.0 78.5

J Mean↑ 75.9 78.0
F Mean↑ 72.1 79.0

Table 4.3 Comparison with another visual memory based method [177]. Results
reported on DAVIS 2016.
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Figure 4.9 Qualitative results comparison of OnAVOS [183], OSVOS [24], FA-
VOS [41], OSMN [209] and LIP on DAVIS 2016 dataset. The index of each image in
a sequence is shown on the top.

4.5.5 Ablation study

We perform ablation study on DAVIS 2017 dataset by comparing the model with and
without dynamic visual memory as shown in Table 4.4. We first evaluate the static
model by fixing input hidden states (ht−1) to zeros for Conv-GRU module. This
is Mask-RCNN with static Conv-GRU module and bottom up path augmentation.
Fine-tuning on video dataset is done by training with static images only. The J&F
mean score is 59.2%, which is 1 percent lower than the performance of OSVOS [24]
with post-processing. The full version of our model is trained with dynamic video
images. It reaches the best J&F mean score of 61.1%. The dynamic visual memory
contributes as it learns to propagate masks. The static model lacks such property to
handle large appearance change, as shown in Fig. 4.12.

Mask-RCNN Conv-GRU J Mean F Mean J&F Mean
3 input zero 56.9 61.5 59.2

hidden states
3 3 59.0 63.2 61.1

Table 4.4 Ablation study results on DAVIS 2017 dataset.
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Figure 4.10 Qualitative results comparison of OnAVOS [183], OSVOS [24], FA-
VOS [41], OSMN [209] and LIP on DAVIS 2017 dataset. The index of each image in
a sequence is shown on the top.

We further examine the prediction without one maximum constraint and online
fine-tuning during inference to see the behavior of the learned model. Example is
shown in Fig. 4.13. Most of the detected boxes are around the target objects, except
a few boxes covering similar objects nearby. It shows that our model is able to track
multiple target objects. It could also be seen that there is decay for probability over
time even though the maximum probability is correctly matched to target objects.
Such limitation is caused by the fact that the id classifier is learned from the first
image, which does not generalize for all images and requires online fine-tuning to
preserve probability.

4.5.6 Failed cases and limitation

During online inference, we find two failed cases that are most relevant to our
method. Although long-term visual memory is included in our model, it still fails
to handle some occlusions as shown in Fig. 4.14. Our model also finds it difficult
to infer for multiple instances with large bounding box overlaps as it is difficult to
predict the correct ids for all bounding boxes. Example is shown in Fig. 4.15.
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Figure 4.11 Qualitative results comparison of OnAVOS [183], OSVOS [24], FA-
VOS [41], OSMN [209] and LIP on DAVIS 2017 dataset. The index of each image in
a sequence is shown on the top.

Figure 4.12 A qualitative example of prediction with (top row) and without (bottom
row) dynamic visual memory.
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Figure 4.13 A qualitative example of prediction without one maximum constraint
and online fine-tuning for id head.

Figure 4.14 Example of failed cases due to occlusions.

Figure 4.15 Example of failed cases due to large overlaps between target objects.

4.6 Conclusions

We have presented a single end-to-end trainable neural network for video segmenta-
tion of multiple objects. We extend the powerful instance segmentation network with
visual memory for inference ability across time. Such design serves as an instance
segmentation based baseline for VOS task. The newly designed convolutional gated
recurrent Mask-RCNN learns to extract and propagate information for multiple
instances simultaneously and achieves the state of the art results.
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5Video object detection with a
convolutional regression tracker

Abstract

Video object detection is a fundamental research task for scene understand-
ing. Compared with object detection in images, object detection in videos has
been less researched due to shortage of labelled video datasets. As frames in
a video clip are highly correlated, a larger quantity of video labels are needed
to have good data variation, which are not always available as the labels are
much more expensive to attain. Regarding the above-mentioned problem, it
is easy to train an image object detector, but not always possible to train a
video object detector if there are insufficient video labels for certain classes.
In order to deal with this problem and improve the performance of an image
object detector for the classes without video labels, we propose to augment a
well-trained image object detector with an efficient and effective class-agnostic
convolutional regression tracker for the video object detection task. The tracker
learns to track objects by reusing the features from the image object detector,
which is a light-weighted increment to the detector, with only a slight speed
drop for the video object detection task. The performance of our model is
evaluated on the large-scale ImageNet VID dataset. Our strategy improves the
mean average precision (mAP) score for the image object detector by around
5% and around 3% for the image object detector plus Seq-NMS post-processing.

5.1 Introduction

The last several years have witnessed the rapid development of scene understanding
in the field of computer vision, especially the fundamental object detection task.
The object detection task is to simultaneously localize the bounding boxes of objects
and identify their categories in an image. Video object detection extends this task
to video sequences, which requires detectors to utilize multiple frames in a video
to detect objects over time, which is another emerging topic in computer vision.
Compared with the ImageNet object detection (DET) challenge [165], designed for
the static image object detection task, the ImageNet video object detection (VID)

* This chapter is based on:

Y. Lyu, M. Y. Yang, G. Vosselman, and G.-S. Xia. Video object detection with a convolutional
regression tracker. ISPRS Journal of Photogrammetry and Remote Sensing, 2021
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5. Video object detection with a convolutional regression tracker

challenge [165], designed for the video object detection task, brings additional
challenges into focus. The appearance of objects might deteriorate significantly in
some frames of a video, which could be caused by motion blur, video defocus, part
occlusion, or rare poses. Examples of images in good quality and bad quality are
shown in Fig. 5.1. However, rich context information in temporal domain provides
clues and opportunities to improve the performance of the object detection in videos.
Both of the tasks have received much attention since the introduction of the ImageNet
DET challenge and the ImageNet VID challenge in ILSVRC 2015 [165].

Figure 5.1 Examples of images in good and bad quality are marked by the green
box and the red box, respectively. Images with good quality are better for training
the object classifier in an object detector. Images with bad quality are handled by a
tracker for better object localization and object re-identification. Examples of video
object detection results by our method, which unifies object detection and object
tracking, are shown on the right. The class scores are consistent over long time even
if image quality decays, or objects are in rare poses or partially occluded.

There are more datasets for the image object detection task than for the video
object detection task. It is much more expensive to collect labels for video datasets
as there are more frames to label as the frames in a video clip are highly correlated.
In this chapter, we explore the possibility of augmenting a well-trained image object
detector for the video object detection task. Suppose that video labels for certain
classes are not available, is it still possible to boost the performance for an image
object detector? Our solution is to design a class-agnostic plug&play tracker for the
object detector.

Without the image quality deterioration problem on the ImageNet VID bench-
mark [165], a well-trained image object detector should perform well for the video
data. However, the existing image quality deterioration problem undermines its
performance greatly, and various methods have been brought out to best utilize the
video data to handle the quality deterioration problem.

Feature aggregation has been a widely used idea for the video object detection
task [200, 13, 232, 190, 196, 53, 172, 38, 74].However, feature aggregation is not
applicable if there are no annotated labels for certain classes in the video datasets.

Unifying object detection and object tracking is one possible direction worth
attention. As tracking searches for similarity between images, it is generally easier
to track than to detect an object with deteriorated appearance between consecut-
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ive frames. Tracking methods could keep track of each individual instance in a
class-agnostic way and they are designed to perform robustly when image quality
deteriorates. The class-agnostic property could be the key to tackle the missing label
problem for the video object detection task, as it allows the tracker to be successfully
trained for tracking objects in a class-agnostic way.

There are mainly two solutions for the object tracking task. The first one is to
directly localize each object in consecutive images [111, 14, 110], and the second
one is to compare and match object candidates between consecutive images [223, 4].
Our focus is on the first solution, and it should provide better object localization
when image quality deteriorates. Tracked objects and newly detected objects could
be linked based on the IoU scores of their bounding boxes.

It should be noted that the goals for object detectors and object trackers are
different. Object detectors need to be trained for better object recognition ability,
while object trackers should be trained for better re-identification and object local-
ization abilities. Such difference requires different training data supply. An object
detector is better to be trained with images of relatively good quality, since blurred
foreground objects in deteriorate images would misguide and undermine the object
classifier. In contrast, deteriorate images are preferred for an object tracker, since
the tracker needs to be trained to maintain the precision for object localization even
if the image quality deteriorates.

Image

Dataset

(full classes)

Image object 

detector

Video

Dataset

(missing classes)

Video 

object 

detector

Detector

training

Tracker
Tracker

training

Feature

reusing

Plug&Play

Figure 5.2 Model design for the video object detection task. Firstly, an image object
detector is trained with image dataset with full classes. Then, the newly proposed
tracker is trained with video dataset by reusing the features from the detector. Lastly,
the learned tracker is plugged into the image object detector forming the video object
detector.

The tracker design for the video object detection task is different from it is for
the video object tracking task, therefore, there are several points that need to be
taken into consideration. First, as object detection networks require more powerful
recognition ability, the features extracted are often heavier than those in object
tracking networks. It would be preferable if a tracker could re-use the features from
an object detection network for better efficiency. However, such deep features may
not be compatible with some state-of-the-art object trackers, e.g., siamese region
proposal networks [111, 110]. The zero paddings during feature extraction in the
object detector are not preferred for the siamese region proposal networks as they
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5. Video object detection with a convolutional regression tracker

affect differently to different anchors in different spatial positions, and the tracking
performance would be heavily undermined. Such zero padding problem requires a
different tracker design. Another common practice for the single-object tracking task
is to crop and resize objects in the original images, which ensures that the template
and the target inputs are in pre-defined sizes [111, 110]. Such practice makes the
features extracted scale invariant to different sizes of an object in a video. However,
this is also not preferred in the video object detection task as an input image needs
to be resized to different scales for different objects, which is not preferred for the
object detection.

In order to tackle the problem discussed above and improve the combination
of object detection and object tracking, we propose a novel siamese convolutional
regression tracker for the video object detection task, which takes feature sharing,
efficiency, and varied object sizes into account. The design outline is shown in
Fig. 5.2.

The main contributions of this chapter are the following:
• We have created an object tracker for the video object detection task, which

can be easily inserted into a well trained image object detector. Without
harming the performance of an object detector, the tracking functionality can
be implanted into the model.

• Our tracker is light-weighted, memory efficient, and computationally efficient,
as it re-uses the features from an object detector. Our tracker is compatible
with the deep features extracted for the object detection purpose.

• Our new tracker performs in adaptive scales according to the sizes of different
objects being tracked, which could cope with large object size variation in a
video.

• We have designed a new video object detection pipeline to combine the ad-
vantages from both object detection and object tracking. With better bounding
box proposals and linkages through time, we improve the performance with
better effectiveness and efficiency.

5.2 Related work

In this section, methods for the video object detection task and methods related to
our work will be introduced.

5.2.1 Video object detection by linking and re-scoring

Object detection in images is one of the fundamental tasks in computer vision, and
a number of one-stage and two-stage image object detectors have been proposed
recently [159, 26, 123, 121, 156, 124, 48]. One natural solution for the video
object detection task is to first detect objects from individual images with image
object detectors, and apply post-processing to link and re-score the detection results
of all images in a video [75, 96]. Both the image detection part and the linking
post-processing part can be fast and efficient. Seq-NMS [75] is a widely used
post-processing method. Detected objects are linked by finding max score paths
between boxes in consecutive frames under 0.5 IoU constraint. Such constraint is
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not optimal as it may not hold for objects with fast movement. Linked detection
results are re-scored afterwards by averaging their detection scores. [4] proposes a
learning based object linking method for post-processing, which does not rely on
the IoU constraint for linking and improves the linking for objects in fast movement.

Object tracking is another option to handle the linking problem. Many methods
have been proposed to bring in trackers, but very few methods achieve real integra-
tion of detection and tracking in one network. Instead, external trackers [96], optical
flows [233, 232, 190], or alternatives for tracking are required [17].

T-CNN [96] proposes a deep learning framework that incorporates an external
independent tracker [189] to link the detection results, which makes the pipeline
slow and less favored as separate pipelines require twice the time and memory for
feature extraction. A smarter way is to share the feature extraction part for both the
object detection networks and the object tracking networks, e.g., [223] learns an
additional feature embedding to help link the detected objects to the corresponding
tracklets. Our model design also adopts the feature sharing strategy.

In [95] tubelet proposal network is utilized to propose tubelet boxes for multiple
frames simultaneously, boxes in the same tubelet are linked.

5.2.2 Video object detection by feature aggregation

Another direction to improve the detection results in deteriorate images for the video
object detection task is through feature aggregation, which is to use features from
multiple frames simultaneously to acquire more temporally coherent augmented
features. The short-term feature aggregation [200, 13, 232, 190] methods pre-define
a limited range of frames for the feature augmentation, while the long-term feature
aggregation achieves longer consistency with better performance [196, 53, 172, 38,
74].

DFF [233], FGFA [232], MANet [190] adopt optical flows to warp the fea-
tures for alignment. Modern deep learning based optical flow models, such as
FlowNet [58] and LiteFlowNet [91], can process images in a very fast speed. How-
ever, optical flow models are normally trained with synthetic data and the perform-
ance is limited by the domain discrepancy. STMN [200] aggregates the spatial-
temporal memory from multiple frames according to the MatchTrans module, which
is guided by the feature similarity between consecutive frames. STSN [13] directly
extracts the spatially aligned features by using deformable convolutions [49]. [73]
adopt progressive sparse local attentions to propagate the features across frames,
while [52] utilizes explicit external memory to accumulate information over time.
[172, 53, 196] use more powerful attention based relation modules to distill semantic
information from longer sequences for object recognition in a video. [38] improves
the long-term relation modeling with memory enhanced global-local aggregation.
[74] further extends the intra-video relation reasoning with the inter-video relation
reasoning to achieve a higher score.

Feature aggregation costs more memory and time during inference as features
from multiple frames are used. Feature aggregation does not re-identify and keep
track of different object instances either. However, this problem is ignored by the
standard performance evaluation method for the ImageNet VID dataset [165], which
evaluates in the same way as the image object detection task.
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Figure 5.3 Architecture of our video object detection network. Our Plug&Play
tracker reuses the features of the detection networks from both branches. The
regional features within RoIs are pooled and sent to the tracker. The regional
features from the two branches are convolved with each other for bounding box and
IoU regression. (Details illustrated in Sec. 5.3).

5.2.3 Methods for the object tracking task

For the video object tracking task, the siamese networks have received much atten-
tion recently. GOTURN [79] adopts the fully connected layers to merge features
from the siamese network for bounding box regression. [14, 179] score the locations
of objects by using feature correlation through a convolution operation between
the template patch and the target patch. The idea is extended by [111, 110] with
region proposal networks, which infer the object scores and the box regression
simultaneously for improved box localization.

5.2.4 Unify object detection and object tracking

D&T [63] brings the tracking into the detection network, which is the most relevant
work to ours. By utilizing the feature map correlations between the frames under
several pre-defined spatial translations, the model learns a box regression model
from one frame to another. D&T is inefficient in memory and speed as it computes
the feature map correlations across the whole feature maps with multiple translations.
Besides, the tracked boxes are not used for improved object localization, they are
used to link the detected objects only.

5.3 Architecture Overview

In this section, we will introduce an overview of our model structure. The goal
of our model is to plug the tracking network into the detection network without
harming the performance of the image object detector.

The architecture design is shown in Fig. 5.3. Our model takes two consecutive
frames with a gap of τ (1 for testing) as inputs It , It+τ ∈ RH×W×3, followed by a
siamese network for backbone feature extraction. The two branches share the same
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resize concatenate

Figure 5.4 Input feature extraction for the tracker in the light model. The features
from the HRNet-w32 backbone are used for tracking. The features from all 4 stages
are spatially resized to the size of the features in the second stage before concatena-
tion.

weights to keep the feature extractors identical. In order to satisfy the need for object
detection in complex scenes, we exploit powerful feature extraction backbones such
as HRNet [188] and ResNeXt [77, 202]. The two models correspond to a light
model and a heavy model. We further enhance the heavy model with the deformable
convolutional networks (DCN) to test the compatibility between the tracker and the
deformed features.

The extracted backbone features from the siamese network are sent to the two
detection branches and the tracking branch. In the detection branches, regions of
interest (RoIs) are proposed by the Region Proposal Network (RPN) [159]. The
RoI-wise features are pooled for object classification and bounding box regression,
which is the same as the mask-rcnn [76]. One branch of the siamese network plus
one detection branch forms a standard two-stage object detector.

In the tracking branch, the novel scale-adaptive siamese convolutional regression
tracker is utilized to predict the bounding box transformation from one frame to
another. The tracker utilizes regional features from the siamese network, based
on the RoIs to be tracked. During training, the RoIs for tracking are generated
from the perturbed ground truth bounding boxes, while in the testing phase, the
RoIs are the detected objects. Besides the bounding box regression, the tracker has
another tracking confidence evaluation branch, which is to evaluate the bounding
box regression quality. This is achieved by predicting the IoU scores between the
tracked boxes and the ground truth boxes.

The backbone features from the light model, i.e., features from all 4 stages in
the last layer of HRNet-w32 [188], and features from the middle 3 stages in the
feature pyramid networks(FPN) [120] from the heavy model are utilized as the input
for the tracker. Features are resized and concatenated as shown in Fig. 5.4 5.5.

5.4 Scale-adaptive convolutional regression tracker

Many trackers used for the video object tracking task crop and resize the image
patches according to the sizes of the objects to be tracked [111, 110, 14]. Such
standard sizes for the network input makes feature extraction invariant to the sizes
of objects. However, image patch cropping and resizing are not applicable to the
detection network as there may be multiple objects of different sizes. Instead of
regularizing the size of the network input, we aim to extract scale-adaptive features
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resize concatenate

Figure 5.5 Input feature extraction for the tracker in the heavy model. The features
from the FPN are used for tracking. The features from the middle 3 stages are ex-
tracted and resized to the size of the features in the third stage before concatenation.
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Figure 5.6 Illustration of the depth-wise feature correlation in our tracker. The
bounding box of an object determines the location where the tracker acquires the
local features. The features of each channel from the first branch are convolved with
the features of the same channel from the second branch. Convolutional blocks are
inserted to adjust the features, each of which is comprised of a convolutional layer, a
batch normalization layer and a relu layer.

for tracking by reusing features from the shared backbone, which augments the
detector in a Plug & Play style.

In order to infer object translation from one frame to another, we rely on the
feature correlations under a set of different translations. We extract regional features
from both of the two branches based on the RoIs to be tracked. The RoI for the
first branch marks the bounding box extent of an object. The width and height of
the RoI bounding box is expanded k times for the second branch with the center
point and the aspect ratio fixed, which marks the local area of interest to search
for the object in the second frame. k is set to 3, indicating one object space to
each side of the center object, and the pooled feature sizes for the two branches are
21× 21 and 7× 7, respectively. RoIAlign [76] is adopted to pool the features from
the two branches of the siamese network. In order to keep the same scale of the
pooled features, the pooled feature size from the second branch is also k times the
size of the first branch, as shown in Fig. 5.7. The features pooled from outside the
range of the image are set to zero. We adopt the backbone features from multiple
stages for the RoIAlign pooling. Features from different stages are resized to the
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5.4. Scale-adaptive convolutional regression tracker

Figure 5.7 A real example of scale-adaptive tracking feature extraction. 7 × 7
features are pooled within the object bounding boxes from the first image, and
21× 21 features are pooled in the searching area from the second image.

same intermediate size as in [144]. Instead of averaging, we concatenate the resized
features. For HRNet-W32 [188] backbone in the light model, all stages are adopted.
For ResNeXt101 [202] backbone in the heavy model, features from the middle 3
stages are applied.

Our scale-adaptive tracker calculates feature correlation with a depth-wise con-
volution operation [110] between the two feature patches from the two branches of
the siamese network. Fig. 5.6 illustrates the process. For our scale-adaptive tracker,
convolutional blocks are inserted before and after the correlation operation for better
feature adjustment, each of which consists of a convolution layer with 256 channels,
a batch normalization layer and a relu layer. The head of the tracker has a bounding
box regression branch and an IoU score (confidence) regression branch, which are
two fully connected layers attached to a shared 2D convolution layer with 256 filters.
Sigmoid function is applied to normalize the IoU score prediction. As we adopt a
class-agnostic regression tracking, the output dimensions are 4 and 1 respectively
for each object. Class scores of the tracked objects are assigned by the detection
sub-network. The different instances are differentiated according to the translation
variant features after RoI pooling. Smooth L1 loss is utilized for regression [69].
Our tracker learns to predict the target bounding boxes directly, and it can rectify
the object localization during tracking.

The memory cost for the tracker is linear to the number of objects being tracked.
Each object takes about 3.75MB memory, and the total memory cost can be calcu-
lated as Nobj × 3.75MB, where the Nobj is the number of objects being tracked.
As we track the objects proposed by the R-CNN rather than the RPN, there are
limited objects to be tracked, ranging from 1 to 50. Compared to the memory
consumption for the detection network (More than 1GB), the tracker is a very light
weighted increment.

An example of extra memory cost derivation for the tracker in the heavy model
is shown in Table 5.1. For the features in the convolutional block before and after
the correlation in Table 5.1, ×3 means the number of features due to convolution,
batchnorm and relu layers. We add up all the memory cost and multiply it by 4
as we use 32 bit precision for the network. The total memory cost is 3,932,180,
which equals 3.75 MB.

For our tracker design, the feature correlations of different translations are
naturally encoded into different spatial positions in the output features. In contrast,
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Feature source Feature size derivation Feature size
Pooled features in two branches 7× 7× 768+ 21× 21× 768 376,320

Features in the convolutional block before correlation (7××7× 256+ 21× 21× 256)× 3 376,320
Features after correlation 15× 15× 256 57,600

Features in the convolutional block after correlation 15× 15× 256× 3 172,800
Features for bounding box regression and confidence prediction 4+ 1 5

Table 5.1 Example of feature size derivation for the tracker in the heavy model.

D&T [63] encodes them into different channels. For D&T [63], the translations
are predefined within a fixed square window, which is invariant to the object being
tracked. In our method, the translations are defined within a rectangle, which scales
with the object size. Larger translations are applied for larger objects. The intuition
is that if an object is closer to the camera, it would be larger in size and move faster
in image.

The learning targets are defined by the bounding boxes to be tracked bt =
(btx, bty , btw , b

t
h) in time t, the predicted bounding boxespt+τ = (pt+τx , pt+τy , pt+τw ,

pt+τh ) in t + τ and the corresponding ground truth bounding boxes gt+τ =
(gt+τx , gt+τy , gt+τw , gt+τh ) in t + τ. The targets for bounding box regression∆t+τ = (∆t+τx ,∆t+τy ,∆t+τw ,∆t+τh ) are:

∆t+τx = g
t+τ
x − btx
btw

∆t+τy =
gt+τy − bty
bth

∆t+τw = ln
gt+τw

btw

∆t+τh = ln
gt+τh

bth

(5.1)

The target for predicted IoU scorept+τscore is calculated by bt+τscore = IoU(pt+τ , gt+τ),
bt+τscore ∈ [0,1]. The predicted bounding box pt+τ are inferred through predicted
bounding box regression ∆̂t+τ = (∆̂t+τx , ∆̂t+τy , ∆̂t+τw , ∆̂t+τh ) as following,

pt+τx = ∆̂t+τx btw + btx
pt+τy = ∆̂t+τy bth + bty
pt+τw = exp(∆̂t+τw )btw
pt+τh = exp(∆̂t+τh )bth

(5.2)

Our feature extraction design for tracking has several advantages. First, only
resized local features are utilized, which makes the tracker memory efficient. Second,
features extracted from the two branches are of the same spatial resolution and the
translations for feature correlation are adaptive to the scale of an object. It should be
noted that the learning target ∆t+τ of the bounding box regression for tracking is
scale-normalized, which aligns with the scale-adaptive feature convolution operation.
Finally, the tracker is light-weighted as it reuses the features from the backbone
network.
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Figure 5.8 Strategy for the bounding box selection. Bounding boxes can be in-
ferred from both the object detection and the object tracking. We choose the object
according to confidence in tracking.

5.5 Unify detection and tracking

Our model has functionalities for both detection and tracking. In this section, we
will introduce how detection and tracking interact with each other in our model. The
aim of the detection is to find the newly appeared objects in an image, while the
tracking is to better localize objects across frames if the tracking is reliable.

Detect to track. The two-stage object detection network has two object proposal
stages, the RoI proposals by the RPN and the detected objects by the R-CNN. We
base our tracking on top of the detected objects instead of the RoI proposals, as
the R-CNN provides fewer, cleaner, and more accurate objects for tracking. The
design of RPN is to provide proposals with high enough recall rate and it is not
time or memory efficient to track hundreds of RoIs. Setting a score threshold for
the foreground proposal selection would not be proper either, as the scores and
the bounding boxes would not be accurate enough due to the anchor based design.
The detection results from R-CNN is more robust. If an object is identified in an
image with a high enough class score (0.03 in our case), it would be a candidate for
tracking in the next image.

Track to detect. Tracking could aid the detection by offering better object
localization, which could also be achieved by the detection network. We choose
the object adaptively according to the confidence for the object tracking. We first
filter out the tracked objects with low confidence scores. If the predicted tracking
confidence score is lower than a threshold θconf (0.5 in our case), indicating bad
tracking results for an object, the tracked object is discarded. As multiple objects
may occlude each other during tracking, we apply a non-maximum suppression
(0.7 IoU threshold in our case) to the tracked boxes based on the IoU scores. The
confidence score can also help select the front objects in tracking. The selected
tracked objects are combined with the newly detected objects for the video object
detection in the new frame. When an object is identified by both the detection
network and the tracking network, i.e., objects proposed by the detection network
and the tracking network, have large enough IoU, we choose the tracked one over
the detected one, as shown in Fig. 5.8. We call it the tracking-first detection (TFD)
strategy as the tracked objects are preferred if they are with good enough confidence.
The TFD strategy is preferred due to the fact that non-maximum suppression in the
object detection process favors the objects with higher class scores, shown within the
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blue dashed box, instead of the objects with more accurate bounding boxes, shown
within the yellow box. We prefer better bounding boxes by the TFD strategy to help
acquire improved object linking across frames. Only newly detected objects that
have IoUs with the tracked ones lower than a threshold Tnmsmerge are reserved. During
the inference across all frames in a video, the tracked boxes are saved, and the
detection results are refined by average re-scoring and non-maximum suppression
as in [75].

5.6 Experiments

The experiments are designed to answer two fundamental questions in our model
design. First, whether the features from image object detectors can be re-used by
the tracker. Second, how does the model perform if certain classes are missing in
the video dataset. We show the effectiveness of feature re-using by training on video
dataset with full classes. The performance with missing classes in the video dataset
are reported by training the tracker with only the first half of all the classes.

5.6.1 Dataset and evaluation

Our method is evaluated on the ImageNet [165] video object detection (VID) dataset.
There are 3862 training and 555 validation videos with objects from 30 classes
labelled for the task. The ground truth annotations contain the bounding box, the
class ID and the track ID for each object. The performance of the algorithm is
measured with mean average precision (mAP) score over the 30 classes on the
validation set as it is in [232, 190, 63, 96, 95, 200, 13]. In addition to the ImageNet
VID datset, the ImageNet object detection (DET) dataset has 200 classes, which
include all the 30 classes in the ImageNet VID dataset as well. We follow the
common practice by utilizing data from both the DET and the VID datasets [232,
190, 63, 96, 95, 200, 13]. Compared with the VID dataset, the DET dataset contains
static images with better quality. The training is separated into an image training
stage and a video training stage. The image training stage focuses on training
the object detector with better image qualities (relatively less data from the VID
dataset), while the video training stage aims at training the object tracker with more
deteriorate images (more data from the VID dataset).

5.6.2 Configurations

Image training stage. In the first stage, we train the detection parts of our video
object detector in the same way as a standard object detector. The training samples
are selected from both the DET and the VID dataset. To balance the classes in the
DET dataset, we sample at most 2K images from each of the 30 categories to get
our DET image set (53K images). To balance the VID videos, which have large
sequence length variations, we evenly sample 15 frames from each of the video
sequence to get our VID image set (57K images). The combined DET+VID image
set is used for detector training.
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The anchors in RPN have 3 aspect ratios (0.5,1,2) spanning 5 scales, which are
(32,64,128,256,512). For the ResNeXt model with FPN, 5 scales are distributed
to the 5 stages in the FPN pyramid.

In the detector, the RoIAlign pooling extracts features to be of size 7× 7. The
pooled features are the average features of the 4 nearest points, which offers higher
classification accuracy. For the tracker, the pooled features are of sizes 7× 7 and
21× 21, which is neither too large nor too small to balance the speed and accuracy
tradeoff. The pooled features are the average of the features in the corresponding
bin, which makes the features for correlation less sensitive to scales.

The R-CNN has a bounding box regression branch and a logistic regression
branch for classification. The two branches have 2 shared fully connected layers
with 1024 filters, attached with 1 fully connected layer in each branch for their own
prediction.

In ResNeXt [202], the DCN [49] with 32 groups and modulation [230] is applied
for stage 3,4,5, which has been a standard configuration in ResNeXt [230].

We apply SGD optimizer with a learning rate of 10−3 for the first 90K iterations
and 10−4 for the last 45K iterations. Online hard example mining (OHEM) [171]
is utilized for R-CNN training to acquire better detection performance.

The training batch is set to 8 images that are distributed among 4 gpus. In both
training and testing, we apply a single scale with the shorter dimension of the images
to be 600 pixels, which offers a balanced scale for different objects in the dataset,
and is of the same setting as in [63, 232]. During training, only random left-to-right
flip is used for data augmentation.

Video training stage. In this stage, we train our tracking parts with the image
pairs from the ImageNet VID dataset. We randomly select two consecutive images
with a random temporal gap from 1 to 9 frames, so that the objects in the image
pairs have various relative positions, while not being too far for tracking. As there is
no causal reasoning involved, we randomly reverse the sequence order to gain more
variety of translations. The RoIs for tracking R = (Rx, Ry , Rw , Rh) are generated
by resizing and shifting the ground truth bounding boxes g = (gx, gy , gw , gh)
as in Eq. 5.3. The noise is added as data augmentation to simulate the imperfect
localization for the input objects. The coefficients δ = (δx, δy , δw , δh) are
sampled from uniform distributions U . δx, δy ∈ U[−1.0,1.0] and δw , δh ∈
U[0.5,1.5]. For each ground truth object, we sample 256 RoIs and randomly
select 128 RoIs from those satisfying the constraint of IoU(R,g) > 0.5, which
ensures proper quality for the inputs during training.

Rx = δxgw + gx
Ry = δygh + gy
Rw = δwgw
Rh = δhgh

(5.3)

We freeze the backbone parts to train the tracking parts only in order to retain
accuracy for detection. RPN and R-CNN are not included either. The model is
trained with SGD optimizer with a learning rate of 10−3 for the first 80K iterations
and 10−4 for the next 40K iterations. We apply a batch of 16 image pairs for
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training that are distributed among 4 gpus. The images are resized to the same single
scale as the image training step.

Testing. In the testing stage, we select the detected objects with the class scores
higher than 0.01 for tracking, which provides object candidates with a high recall
rate. An IoU threshold of 0.45 is applied for the non-maximum suppression on the
final detection output, which balances the precision and recall as in [53]. Single
scale testing is used with the shorter side of images resized to 600 pixels as in
training.

Implementations. Our model is implemented with pytorch [146] and integrated
with MMDetection [34]. The source code will be released.

5.6.3 Results

We compare several major competitive video object detection algorithms in Tab. 5.2.
FGFA [232] and MANet [190] utilize optical flow to guide linking between frames,
but they cannot achieve a good balance between the mAP score and the speed.
The extra optical flow limits their speed to 1.15 FPS and 4.96 FPS respectively.
STMN [200] and STSN [13] aggregate pixel level information from multiple frames,
which limits their speed greatly (1.2 FPS for STMN and not reported for STSN).
More recent PSLA [73] and EMN [52] have comparable performances, which
adopt attention or memory for temporal linking, but they cannot preserve object
identities in tracking. D&T [63] has strong performance, but we have better memory
efficiency and speed for tracking, which is explained in the ablation study. The long-
term feature aggregation methods are in the leading places of the ImageNet VID
benchmark, including RDN [53], SELSA [196], MEGA [38], and HVR-Net [74],
which all have mAP scores more than 83%. However, these methods cannot be used
when there is no annotated labels for certain classes in the video object detection
task. RDN [53] and MEGA [38] only report the speed of their lighter version
models without post-processing, which are around 10 and 9 FPS evaluated on more
powerful GPUs, Tesla V100 and RTX 2080ti, respectively. The speed for the top
scores shown in Table 5.2 should be much slower. With the novel light-weighted
tracker, our light and heavy models achieve performance of 78.6% and 81.1%
respectively, which is comparable to some of the state-of-the-art methods. It should
be noted that only our model handles the problem of missing classes in the video
dataset, as the detector trained from the image dataset is fixed. When half of the
classes are trained, the performance only drops by 0.4% compared to training all
classes in the video dataset. More details are shown in the ablation study.

5.6.4 Ablation study

To test the effectiveness of bringing the tracker into the model, we perform ablation
study by gradually adding the components. We start with the per-image detection
model. The faster-RCNN with HRNet backbone is adopted as the basic model.
We first test the standard detection result without any aid from tracking. The
performance score is shown in Tab. 5.3. The per-image detection achieves a decent
mAP score of 73.2%. We further add Seq-NMS [75] to see the performance of
linking and re-scoring based solely on the detection results. As in [75], we set the
IoU threshold for boxes linking constraint to be 0.5 and IoU threshold for detection
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Methods Temporal linking mAP (%) FPS
FGFA [232] optical flow 78.4 1.15
FGFA+ [232] optical flow 80.1 1.05
MANet [190] optical flow 78.1 4.96
MANet+ [190] optical flow 80.3 -
STMN [200] STMM 80.5 1.2
STSN [13] DCN 78.9 -
STSN+ [13] DCN 80.4 -
D&T [63] box regression 79.8 7.09
PSLA [73] attention 77.1 18.7
PSLA+ [73] attention 81.4 5.13
EMN [52] memory 79.3 8.9
EMN+ [52] memory 81.6 -
RDN [53] attention 83.2 -
RDN+ [53] attention 83.9 -
SELSA [196] attention 84.3 -
SELSA+ [196] attention 83.7 -
MEGA+BLR [38] attention+memory 85.4 -
HVR-Net [74] attention 84.8 -
HVR-Net+ [74] attention 85.5 -
Ours(HRNet-w32)[full] box regression 78.6 11
Ours(ResNeXt101*)[full] box regression 81.1 6
Ours(ResNeXt101*)[half] box regression 80.7 6

Table 5.2 Comparisons among different video object detection methods. + stands
for Seq-NMS [75]. * means with FPN [120] and DCN [49]. [full] means full classes
training on the video dataset. [half] means first half classes (15 classes) training on
the video dataset.

NMS to be 0.45. The average precision scores improve for all categories and the
mAP score has increased by 2.3%. We further add tracking into our model by
adopting our TFD video object detection strategy. During the training of the tracking
modules, we freeze the parameters of the feature extraction backbone, the RPN
and the R-CNN in order to control the performance of the object detector. We
compare two values for merging NMS IoU threshold Tnmsmerge, 0.3 and 0.7 (marked
as TFD(0.3) and TFD(0.7) in Tab. 5.3). The mAP scores have increased another
2.3% and 3.1% respectively. The mAP score is higher with Tnmsmerge = 0.7, showing
that the video object detector still benefits more from the denser object proposals.
The TFD strategy is very effective in helping to improve the quality of linking and
re-scoring. By now, we have improved the performance of the object detector by a
large margin (+5.4% mAP) without modifying any parameters of an object detector.
With heavier ResNeXt101 [202] backbone plus FPN [120] and DCN [49], the direct
object linking with Seq-NMS from the detection results only achieve 77.2% mAP,
improving by only 1.0%. With the tracker, TFD+Seq-NMS improves the detector
by a large margin (+4.2% mAP) from 76.2% to 80.4%.

Seq-NMS links boxes across frames under constraint IoU(bt , bt+1) > 0.5,
which fails if there is large position translation between consecutive frames. We
improve the constraint to be IoU(pt+1, bt+1) > 0.5, where pt+1 is the predicted
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Table 5.3 Ablation study of our method. TFD stands for tracking-first detection. *
stands for with FPN [120] and DCN [49]. [half] means first half classes (15 classes)
training on the video dataset.

box from bt by the tracker. The improved re-scoring method (Seq-Track-NMS)
provides another 0.7% mAP score boost. Seq-Track-NMS for the light model does
not improve or degrade further for the mAP score. The reason is that the tracking
performance for the light model is not as strong as the heavy model.

When the tracker is trained with only the first 15 classes, there is only a 0.4%
performance drop resulting in a mAP score of 80.7%. If we only consider the
second half of the 15 classes for evaluation, the full classes training has a mAP
score of 78.75%, while the half classes training has a mAP score of 78.22%, which
is only 0.53% lower but still much higher than the mAP score of 74.97% by the
ResNeXt101* plus Seq-NMS model. This shows that our class-agnostic tracker,
which reuses the features from the detector, could generalize for different classes.

5.6.5 Visualization of the correlation features

Since the template branch has informative features for object localization, it is
possible that only one branch is needed for tracking. To ensure that the tracker
utilizes the features from both branches rather than being dominated by one branch,
we randomly sample 20 channels from the features before and after the correlation
operation for visualization, as shown in Fig. 5.9. The examples are air-plane,
elephant and motorcycles. The two motorcycle examples are from two consecutive
images, where the second one shows an inverse sequence order for tracking. For
each image, the upper two rows are the correlation features from the two branches
while the bottom row shows the correlation output. The randomly selected 20
channels are ordered in 20 columns. The center of a feature map is marked with
a red dot for spatial reference. It should be noted that the template and the target
patches are encoded in the same scale, but of different sizes. It is interesting to notice
that the center of mass of the template features are shifted to different positions.
The features of different objects are distinctive and the correlation output is greatly
affected by both branches. By examining the examples of the two motorcycles,
which have opposite moving patterns, it could be seen that the features from the
target branch determine the tracking prediction, while the features from the template
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Figure 5.9 Correlation feature visualization. Images on the left show the objects
being tracked. Feature maps on the right are the correlation features and the output
features. For feature maps of each image (3 rows in total), the upper two rows are
the correlation features from the two branches, while the bottom row shows the
convolution output. The randomly selected 20 channels are ordered in 20 columns.
The center of a feature map is marked with a red dot for spatial reference.

branch are more similar. In conclusion, the tracking prediction is mainly affected by
the relative position of an object. The template features of different objects would
be encoded differently. And the features from both branches affect the tracking
prediction at the same time.

5.6.6 Computational efficiency

The aim of our tracker design is to be light-weighted in both time and memory. In
this section, the computational efficiency for the tracker is examined. We analyze
for both the light model and the heavy model. All the experiments are conducted
with a single Titan X (Pascal) GPU during testing stage with a supported driver
version of CUDA8.0. The CPU is of type Intel(R) Xeon(R) CPU E5-1650 v4.

We test the running time of different components in our models with the same
image resolution (1000× 600) as in [63]. The approximate time costs are reported
in Tab. 5.4 with ratios of different components marked. Our tracker is very efficient
and only takes an extra time of 3 ms for the light model, and 4 ms for the heavy
model, which is lighter than the RPN or the R-CNN. It is also much faster than the
tracker in D&T [63], which takes 14 ms to run.

For the video object detection, we examine the running speed of our pipeline
and analyze the effect of different components. The speed is measured in frames
per second (FPS). The detector with HRNet-w32 backbone runs at 15 FPS and our
tracker embedded pipeline runs at 12 FPS. The additional Seq-NMS slows down
our pipeline slightly to 11 FPS. As our detector with ResNeXt101 backbone is
combined with FPN [120] and DCN [49], it runs relatively slower but still much
faster than methods like FGFA+ [232], STMN [200] and MANet+ [190], which run
at speed below 5 FPS.
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Model HRNet-w32 ResNeXt101*
Backbone 43 (66.2%) 54 (52.4%)
RPN 12 (18.5%) 32 (31.1%)
R-CNN 7 (10.8%) 13 (12.6%)
Tracker 3 (4.6%) 4 (3.9%)

Table 5.4 Time cost comparison of different components meas-
ured in milliseconds (ms). * stands for with FPN [120] and DCN [49].

Backbone Detector TFD Seq-NMS FPS
HRNet-w32 3 7 7 15
HRNet-w32 3 3 7 12
HRNet-w32 3 3 3 11

ResNeXt101* 3 7 7 7
ResNeXt101* 3 3 3 6

Table 5.5 Time efficiency comparison of the pipelines. * stands for
with FPN [120] and DCN [49].

Figure 5.10 Tracking examples by our Plug & Play tracker. Our tracker can track
single or multiple objects and can handle problems like motion blur, partial occlusion
and rare object poses. The objects are labelled with IoU regression scores.
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5.6.7 Qualitative results

Our tracker learns to track single or multiple objects and can handle problems such
as motion blur, partial occlusion and rare object poses, as shown in Fig. 5.10. By in-
corporating tracking networks into the detection networks, our video object detector
can achieve very long term detection consistency across frames. Fig. 5.11 5.12 5.13
are examples that show how the detector and the tracker collaborate. The detector
finds new objects, while the tracker follows the objects and provides better boxes for
linking and re-scoring. Without re-scoring, the detection results could be incorrect or
weak. After re-scoring, the long term consistency can be achieved. In the third row
of Fig. 5.11 5.12, the dog is wrongly classified as a bird or a fox before re-scoring,
and the lizard is wrongly classified as an elephant or a squirrel. After re-scoring, the
wrong classifications are corrected with long term score consistency preserved. In
the third row of Fig. 5.13, the tree in the background could be wrongly classified as
monkey, which is rectified to be background after re-scoring. Thanks to the tracking,
a long term object linking with good quality can be achieved, which benefits both
background and foreground objects.

Figure 5.11 Example of dog. The first row shows the proposed objects from the
detector. The second row shows the proposed objects from the tracker. The third
row shows the tracking-first detection (TFD) results based on the proposed objects
from both the detector and the tracker. The fourth row shows the re-scored detection
results. Only the objects with scores above 0.2 are shown. The false bird and fox
detection results, and the missing dog detection result shown in the third row are
rectified as shown in the fourth row.

5.7 Conclusion

We have proposed a Plug & Play convolutional regression tracker that augments
image object detectors for the video object detection task. The tracker utilizes the
deep features from image object detectors for tracking with very little extra memory
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Figure 5.12 Example of lizard. The four row image layout is the same as in Fig. 5.11.
The false elephant and squirrel detection results are rectified to correct lizard.

Figure 5.13 Example of red panda. The four row image layout is the same as in
Fig. 5.11. The false monkey detection result in the background is rectified.
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and time cost. The light-weighted tracker can track a single object or multiple
objects, and handle the problem of image deterioration. With our tracking-first
detection strategy for better object localization and linking, the performance of the
detector improves by a large margin. 5% mAP boost for the image object detector
or around 3% mAP boost for the image object detector plus the Seq-NMS post-
processing. Our model design can also effectively improve the performance of an
image object detector for the video object detection task even if some classes are
not available in the video dataset.
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6Joint Inference for Multi-Object
Tracking and Segmentation

Abstract

In this chapter, we propose a new deep neural networks (UMotsNet) for the
multi-object tracking and segmentation (MOTS) task. The UMotsNet combines
the cues from both of the bottom-up and the top-down branches for the instance
segmentation and the object tracking. The top-down and the bottom-up cues
are mutually complementary and both offer useful features for the MOTS task.
The top-down branch provides instance level information, while the bottom-up
branch aggregates local information for instance segmentation and tracking.
The unified inference allows us to take advantage of the mask refinement module
and the relation guided unified instance association for better performance. Our
model operates in an online fashion with a speed of 7 fps on a Titan X(Pascal)
GPU and achieves a high score of 76.5% (car) and 57.1% (pedestrian) for the
sMOTSA metric on the KITTI MOTS benchmark testset, which exceeds the
baseline (Track-RCNN) by a large margin without any auxiliary data such as
depth maps or optical flows.

6.1 Introduction

The focus of this chapter is on multi-object tracking and segmentation (MOTS) [182],
which has been one of the fundamental research field for video scene understanding
in computer vision. Previous results [137] have shown that performance of bounding
box level multi-object tracking (MOT) [68] has been saturating. In addition to MOT
task, MOTS task further brings the pixel level labels in order to improve the overall
performance. The MOTS task incorporates three sub-tasks: detection, segmentation
and tracking. The challenges of the MOTS task are that objects enter or leave the
scene at any time, while the appearances change over time and often with long-time
occlusion among objects. Preserving the consistency of the instance identities and
the masks across frames is the major objective.

The combination of the first two sub-tasks, i.e., detection and segmentation, is
also known as the instance segmentation task. There are two major approaches for
the instance segmentation task, the bottom-up [5, 7, 141] and the top-down [76, 18]
approaches, both of which have been actively researched. Recent research [33]
also explores a joint approach for instance segmentation. The top-down approaches
gather the instance level information and predict object masks based on the instance
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Figure 6.1 Example predictions of UMotsNet for the KITTI MOTS dataset. The
goal of the MOTS task is to provide accurate and consistent instance identities and
masks over time.

level features. The bottom-up approaches predict semantic class for each pixel and
group them into meaningful objects based on certain heuristics. For example, in-
stances are separated by edge [104] or grouped by distance of pixel embedding [141]
or by the distance of predicted object centers for each pixel [40]. Segmentation
quality can be improved by taking advantage of both of the bottom-up approach and
the top-down approach [221, 33]. Our idea is inspired by this observation, and we
take advantage of the complementary top-down cues and the bottom-up cues for
object recognition.

One strategy for the MOTS task is tracking-by-detection. There are two steps
involved, the detection step and the association step. Objects are detected and
segmented in each frame in the detection step and linked across frames according
to the features of objects in the association step [152, 182]. This strategy has been
dominating in the MOT [137] task. Features of the detected objects are mapped to
instance embedding and certain measures of distance, e.g., inner product [193] or
euclidean distance [152], are used to guide the association of the objects.

Previous work has either tackle the problem in the tracking-by-detection paradigm
from either the bottom-up approach [206, 207] or the top-down approach [152, 182,
130]. We argue that combining both of the top-down and the bottom-up cues are
beneficial for both of the instance segmentation and the tracking performance in
the MOTS task. In this chapter, we therefore introduce UMotsNet, which unifies
the cues from both of the bounding box level and the pixel level, to simultaneously
detect, segment and track multiple objects. We explore the usability of the newly
designed mask refinement module for better instance segmentation and the relation
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guided top-down and bottom-up unified instance association. In summary, the
contributions of this chapter are following:

• We present a novel network for the multi-object tracking and segmentation
task, which utilizes both of the bottom-up and the top-down cues for better
instance segmentation and association.

• We propose the novel mask refinement module for segmentation improvement
and the relation guided unified instance association method for better tracking.

• We have achieved a high score for the KITTI MOTS benchmark [182] without
using any additional auxiliary data such as optical flow or depth map.

6.2 Related Works

In this section, we review tasks and methods that are related to the MOTS task and
our method.
Multi-Object Tracking and Segmentation. The Track-RCNN [182] is proposed
with the KITTI MOTS dataset, serving as a baseline for the MOTS task [182]. It
extends the Mask R-CNN [76] with additional 3D convolutions for temporal context
integration and an extra association embedding head for object re-identification.
MOTSNet [152] is extended from the Mask R-CNN with mask-pooling in the
association embedding head for better association features, which is trained on auto-
matically harvested training data [152]. Mask R-CNN has also been extended with
variational autoencoder in [119], which learns embedded spatial interdependence
and motion continuity in video data, to reduce false negative in detection.

In addition to the top-down approaches above, which detect, segment and track
objects in instance level. There are methods tackling the MOTS task with bottom-up
approaches. STEm-Seg [6] and STE [84] directly group pixels in spatial-temporal
domain into instances with coherent identities across frames according to their
embedding. Such approaches simplify the pipeline as the instance segmentation
and the object identities are jointly inferred. PointTrack [206, 207] relies on the
state-of-the-art bottom-up instance segmentation [141], which effectively detects
and segments objects in crowded scenes. With its tracking-by-point paradigm, it has
won the CVPR2020 MOTS Challenge.

Multi-modality is also explored for the MOTS task. Including 3D information
is beneficial to tracking. MOTSFusion [130] utilizes optical flow and depth maps
to complement the image input of videos. Bepix [168] utilizes 3D position and
orientation information for more accurate tracking. The 3D information helps to
recognize objects under occlusions, which improves the overall performance for the
MOTS task. However, methods with 3D modalities are often slower than methods
with 2D modalities only.
Video Instance Segmentation. Video instance segmentation (VIS) task [208] is
similar to the MOTS task, where objects need to be detected in pixel level with
coherent identity across frames. It focuses on general objects and is evaluated with
average precision (AP) and average recall (AR) metrics in sequence level instead.
Tracking-by-detection paradigm is also used for the VIS task, e.g., MaskTrack
R-CNN [208] and SipMask [28] re-identify objects with learned object association
embedding. Mask propagation is utilized in [12] to propagate instance masks across
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frames. The propagated masks are adopted to improve the quality of the instance
segmentation and the object association.
Multi-Object Tracking. Multi-Object Tracking (MOT) task is the predecessor of
the MOTS task. It only focuses on bounding box level object detection and associ-
ation. DeepSORT [195, 194] brings deep appearance descriptor for the SORT [15]
tracking algorithm, which applies Hungarian algorithm [105] for object matching in
an online fashion. Graph networks are used globally to handle the difficult cases
with occlusions [112, 19]. Although methods with separate object detector and
tracker provide good performance [227, 217, 62], recent work has shown that a joint
detector and tracker optimization is beneficial [193] to the performance and the
running speed.
Panoptic segmentation. Panoptic segmentation [103] is introduced to unify the
instance segmentation and the semantic segmentation task, which has been actively
researched [102, 221, 40, 154, 186]. The UPSNet [221] is the most relevant method
to ours, which unifies the segmentation from both of the semantic segmentation
branch and the instance segmentation branch with the panoptic head.
Relation networks. Relations among objects offer context information for object
recognition. [85] applies relation networks for the image object detection. Relation
networks are further extended into spatial-temporal domain for video object detec-
tion [53] and MOT task [204]. Our network also utilizes the relation networks to
acquire better features for object association in tracking.
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Figure 6.2 Architecture overview. Our UMotsNet is mainly comprised of three
parts, i.e., feature extractor, instance segmentation and tracking. The bottom-up
semantic segmentation and the top-down instance segmentation jointly refine the final
segmentation results. The top-down instance embedding, the bottom-up semantic
embedding and the mask embedding are jointly used for instance association.

6.3 Method

In this section, we present the proposed method UMotsNet in detail. The MOTS task
performance is mainly affected by two major factors. The first is the performance of
instance segmentation and the second is the performance of object tracking. Our
UMotsNet is built upon the Mask R-CNN [76] by considering the above two aspects.
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6.3.1 Architecture Overview

The architecture of our UMotsNet is illustrated in Fig. 6.2. The whole pipeline
can be divided into three parts, i.e., feature extractor, instance segmentation, and
tracking. We first illustrate the architecture design overview, and then the details of
each major component.
Feature Extractor. For a video {It|t = 1...T} with T frames, the feature ex-
tractor F extracts features for each frame It . The feature extractor F is comprised
of the backbone feature extractor Fb, the instance feature extractor Finst and the
semantic feature extractor Fsem. The backbone feature extractor Fb consists of
ResNet101 [77] and feature pyramid networks [120] (FPN). The extracted back-
bone features fb from FPN are adopted by the instance feature extractor Finst and
the semantic feature extractorFsem. Instance feature extractor Finst first proposes
object candidates {Ci|i = 1...Nc} with region proposal networks [159]. Each
candidate Ci consists of a bounding box Cboxi and an objectness score Cscorei .
The position sensitive roialign [48, 76] operator is then adopted to pool the fea-
tures fCi from fb for each candidate Ci. Similar to UPSNet [221], we acquire
bottom-up semantic features fsem with the semantic feature extractor Fsem. Fsem
transforms the backbone features fb into fsem with consecutive operations, i.e.,
deformable convolutions [49], bilinear sampling (to 1

8 image height and width) and
concatenation in the channel dimension.
Instance segmentation. Instance segmentation is the unity of object detection
and segmentation. Bounding boxes {f boxi |i = 1...Nc}, class scores {f clsi |i =
1...Nc} and instance masks {fmaski |i = 1...Nc} for the object candidates {Ci|i =
1...Nc} are inferred from the instance logits {fCi|i = 1...Nc} by the bounding
box regression head Hbox , the classification head Hcls and the mask head Hmask
respectively. We additionally extract instance association embedding {embtopi |i =
1...Nc} with the association embedding head Hemb for the tracking part. In the
bottom-up branch, the semantic category (car, pedestrian and background) for
each pixel is inferred by the semantic segmentation head Hsem. The semantic
segmentation logits logitssem from the semantic segmentation head Hsem will
be used jointly with the instance mask logits logitsinst and the semantic features
fsem, which are acquired from the mask head Hmask and the feature extractor F
respectively, to refine the final instance segmentation in the mask refinement head
Hmrf .

The objects in the scene are often occluded, as shown in Fig. 6.3. The car in the
green box is occluded by the car in the orange box, resulting in poor appearance
condition. However, the cars in the front and nearby provide cues to identify the
occluded car. We therefore exploit the relation networks [85] to augment the instance
logits fCi before they are sent to different heads. Considering the stability of the
networks, we augment the pooled instance features fCi in the relation distillation
networks [53] with a fixed number of relations for each object.

We select top Np candidates from the object candidates {Ci|i = 1...Nc} as the
support candidates {Csupi |i = 1...Np} based on their objectness scores Cscorei .
The corresponding pooled logits fCi form the support logits f supCi , which are used to
augment the instance logits fCi . The intuition behind the candidates selection with
high objectness scores is that those candidates are normally in better appearance
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Figure 6.3 An example of object occlusion in the scene. Car in the green box has
a large appearance change between two different time, which is more difficult to re-
identify. The foreground object in the orange box has a relatively stable appearance,
which is easier to re-identify. The relations between the two objects can be exploited
for better recognition.

Figure 6.4 Illustration of the segmentation error caused by inaccurate bounding
boxes in UPSNet [221]. Left image shows an example of segmentation of a car.
Mask outside the bounding box is missing (FN). Missing parts are marked with red
circles. Right image shows the refined mask output.

quality, which are more distinguishable references. Np is determined through the
ablation study in Sec. 6.4.5. The augmentation process can be expressed as follows,

faugCi = Frdn(fCi , {f
sup
Cj |j = 1...Np}) (6.1)

Tracking. We follow the tracking-by-detection paradigm. The association embed-
ding embinsti of each detected object Ci is extracted from both of the top-down
branch and the bottom-up branch as shown in Fig. 6.2. We jointly utilize the top-
down association embedding embtopi (blue color) and the bottom-up association
embedding embboti (orange color), which characterize the appearance of the in-
stances. We further utilize position and shape information by transforming the binary
mask of each instancemaskbi into mask embedding embmaski . We associate the
objects through the score map, calculated by the inner product of the association
embedding between the instances embinsti and the tracks embtrackj [208], and a
larger value implies a higher probability for matching. Zero values are added to the
score map for no-match cases [208]. As there is chance that multiple objects are
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matched to one track or that multiple tracks are matched to one object, the hungarian
algorithm [105] is used to resolve the matching confliction.
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Figure 6.5 Illustrator of the mask refinement head. The mask refinement head
utilizes the semantic features, the normalized semantic segmentation logits and the
normalized instance mask logits.

6.3.2 Mask Refinement

The top-down instance segmentation and the bottom-up semantic segmentation are
mutually complementary. We observe that instance segmentation has better quality
for small objects, while semantic segmentation is more accurate for large objects.
The main reason is that the top-down instance segmentation has a fixed sampling grid
(28×28 in our case), which limits the spatial resolution for large objects. Semantic
segmentation has higher spatial resolution for large objects, but the receptive field
is too large for small objects, causing lower accuracy. Combining the cues from
both of the instance segmentation and the semantic segmentation is beneficial. We
acquire the instance mask logits logitsinsti and the semantic segementation logits
logitssemi from the mask head Hmask and the sementic segmentation head Hsem
respectively based on the instance class prediction f clsi as in [221]. UPSNet [221]
directly fuses the instance mask logits logitsinsti and the semantic segmentation
logits logitssemi through addition, but this limits the accuracy if either branch is
not accurate. Another source of inaccuracy is caused by the inaccurate bounding
box prediction f boxi . Since logits are cropped by the bounding boxes, the instance
mask and the semantic segmentation mask outside the bounding box will be missed,
resulting in false negative (FN) prediction as shown in Fig. 6.4. We instead adopt
logitssemi and logitsinsti as cues for the mask refinement as shown in Fig. 6.5.

A separable Conv-GRU (SCG) module is adopted for the mask refinement pro-
cess, which has also been used for optical flow estimation [176]. The inputs for the
SCG module are the semantic features fsem, the normalized semantic segmentation
logits logitssemnorm

i and the normalized instance mask logits logitsinstnormi . Se-
mantic features fsem are first reduced to 128 channels with 1× 1 convolution, and
then concatenated to logitssemnorm

i and logitsinstnormi forming the input features

fmrf ini for the mask refinement head Hmrf . logitssemnorm
i and logitsinstnormi
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are acquired through the following normalization,

logitsinstnormi = Sigmoid(logitsinsti )× 2− 1

logitssemnorm
i = Softmax(logitssemi )

(6.2)

logitsinst are normalized to [−1,1], and pixels with value above 0 are foreground.
Pixels outside the bounding box are assigned −1. logitssem are normalized to
[0,1] with softmax operator, which is the class probability for the pixels. Pixels
outside the bounding box are assigned 0. We initialize the SCG module with the
semantic feature maps fsem and zero hidden states as input. The refinement process
can be expressed as,

maskref inei = Hmrf (f
mrf in
i ) (6.3)

The effectiveness of such design is shown in the ablation study (Sec. 6.4.5).
Multi-instances refinement. The mask refinement module process multiple in-
stances individually and in parallel. Instances having overlapped bounding boxes
share features within the overlapped area. Pixel assignment in the overlapped area
can be resolved with joint learning [221]. We concatenate the refined instance
logits {maskref inei |i = 1...Nc} in the channel dimension with an additional back-
ground semantic logits logitssembg from the semantic segmentation. The instance
identity for each pixel can be determined with argmax operation along the channel
dimension.

6.3.3 Relation Distillation

Relations among objects provide useful cues for object recognition, and we adopt
relation distillation networks [53] for the instance feature augmentation. The detailed
structure is shown in Fig. 6.6. The support logits f supCi and the instance logits fCi
are the two inputs for the relation distillation networks Frdn. The cascades of two
relation modules [85] interleaved with the fully connected layers form the relation
distillation networks Frdn, which effectively augment the instance logits fCi with
the support logits f supCi according to their relations that are guided by the relative
positions and the instance features.

6.3.4 Embedding for Association

The design of the association embedding also takes advantage of the bottom-up
cues and the top-down cues. The top-down cues come from the association em-
bedding head Hemb, which provides instance level embedding embtopi , while the
bottom-up cues embboti come from the pooled semantic features guided by the
instance segmentation. The association embedding head Hemb is comprised of 2

fully connected layers, which outputs top-down embedding embtopi of 128 dimen-
sions. For the bottom-up embedding embboti , we use the average of the semantic
features fsem weighted by the positive instance mask logits, which can be acquired
with ReLU operator as ReLU(logitsinsti ). The pooled features are converted
to 128 dimensions by another fully connected layer. In order to incorporate the
global position and the shape of the instance, the binary mask maskbi of each
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Figure 6.6 Illustrator of the relation distillation networks. The instance logits are
recursively refined through two relation modules, and the augmented instance logits
are used for down stream tasks.

instance is encoded into mask embedding. We binarize the instance mask logits
logitsinsti into the hard maskmaskbi with a threshold of 0, which separates the
foreground from the background area. As the whole binary mask has a large spatial
dimensions, we resize the mask into a square shape of 32 × 32 by the adaptive
average pooling operator. The resized binary mask is flattened and converted to an
embedding embmaski of 64 dimensions with a fully connected layer. The above
top-down embedding embtopi , bottom-up embedding embboti and mask embed-
ding embmaski are concatenated to form the final instance embedding embinsti
for tracking.

6.3.5 Tracking Pipeline

Our model runs instance segmentation and tracking in an online fashion. New
tracks will be created if the detected objects have no matched tracks, otherwise
the embedding of the matched tracks are updated. The embedding of the tracks
embtracki are updated to the corresponding latest instance embedding embinsti .
If an active track is not updated for α frames, it is ended and removed from the
matching process. We set a similarity threshold β to the score map, and only the
scores higher than β can be considered as potential valid matches. In the experiments,
α and β are set to 10 and −10, respectively.

6.3.6 Losses

Our model is trained end-to-end with multi-task losses, including losses for detectionLdet ,
segmentationLsegm and trackingLtrack, as follows,

L = Ldet + Lsegm + Ltrack (6.4)

Detection losses. Ldet includes losses from the RPN and the R-CNN, which is the
same as the Mask R-CNN [76], shown in the following,

Ldet = Lrpnbox + Lrpncls + Lrcnnbox + Lrcnncls (6.5)

Segmentation losses. Lsegm contains multiple losses, including top-down instance
segmentation loss Lmaskinst , bottom-up semantic segmentation loss Lmasksem and
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unified mask refinement loss Lmaskref ine (cross entropy loss) as follows,
Lsegm = Lmaskinst + Lmasksem + Lmaskref ine (6.6)

Online hard example mining [171] is applied for semantic segmentation and mask
refinement during training.
Tracking loss. Ltrack is the categorical cross entropy loss on the score map with
object IDs as the target [208].

6.4 Experiments

Our experiments have two parts. Firstly, our UMotsNet is evaluated on the KITTI
MOTS dataset [182]. Secondly, we conduct thorough ablation study for the model.
Dataset. KITTI MOTS dataset [182] is designed for the urban driving scenes,
where there are complex street scenes and heavy occlusions. There are two object
categories for evaluation, i.e., the cars and the pedestrians. KITTI MOTS dataset
consists of 8,008 frames in 21 sequences, 12 for training and 9 for validation.
Another 29 sequences consisting of 11,095 images are collected as the test set for
the MOTS benchmark.
Metric. The metrics for evaluation are adapted from the well-established CLEAR
MOT metrics, which are used for multi-object tracking [11]. By additionally consid-
ering the segmentation, the mask version metrics are introduced [182], including
sMOTSA, MOTSA, MOTSP and IDS, which form the mostly used metrics for
performance comparisons.

6.4.1 Implementation Details

Association Embedding Head. The top-down association embedding head consists
of 2 fully connected layers with 256 channels. The number of channels of the
output is 128.
Relation Modules. The settings of the attention module [180] in the relation
modules, which are used by the relation distillation networks, are as follows. Number
of channels for the keys and queries are set to 256 and 1024 respectively. The
number of attention group is set to 16.
Average Feature Pooling within Mask Area. The average feature pooling for
the bottom-up tracking embedding can be very easily acquired with inner product.
We first flatten the last 2 dimensions of fsem of size c × h×w into f c×hwsem . We
also flatten the last 2 dimensions of the positive instance mask logits (instance
mask logits after ReLU operator) of all instances into fn×hwinst , where n is the
number of instances. We normalize the logits with element-wise division (with
broadcasting [146]) by the number of foreground pixels fn×hwnorm = fn×hwinst /Nn×1

fg .
Nn×1
fg is the number of foreground pixels for the n instances. The average pooling

within mask area can be calculated with matrix multiplication as favesem = fn×hwnorm ×
(f c×hwsem )T , where favesem is of shape n× c.
Region Proposal Networks (RPN). The anchors for the RPN have 4 scales and 3
aspect ratios (1 : 2, 1 : 1, 2 : 1) as in [221]. The RPN outputs 2,000 rois during
training and 1,000 rois during testing.
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Position Sensitive ROI Pooling (PSROIPooling). The PSROIPooling requires a
different number of input feature channels compared with Mask R-CNN [76]. The
features from FPN (128 channels) are first converted to 490 channels before the
pooling operation. The pooling size for the detection branch and the mask branch
are 7× 7 and 14× 14 respectively and both with groups of 7.
Non-maximum Suppression (NMS). The IoU threshold for bounding box non-
maximum suppression is 0.7 and 0.6 for the RPN proposals and the detection boxes
respectively.
Online Hard Example Mining (OHEM). We apply OHEM [171] for the semantic
segmentation loss and the mask refinement loss. We select pixels set Psel = {pi|i =
1, ...,Nsel} with the smallest 1

16 losses of all pixels. If the maximum loss in Psel
is below a threshold γ (0.7 in our case), only pixels in Psel are used for training.
Otherwise, standard cross entropy loss is applied.

6.4.2 Experimental Setup

We implement the model with PyTorch. The training and testing are performed with
1 Titan X(Pascal) GPU only.
Training. Following previous work [182, 152, 206, 119, 84], we apply a pre-
training step first as the number of training images in the KITTI MOTS dataset
is limited. Inspired by [182, 206, 207, 152, 119, 130], we firstly pre-train our
model with instance segmentation datasets that focus on driving scenes, including
Cityscapes [47], Mapillary Vistas [140] and KINS [153] datasets. The detection,
segmentation and tracking parts are jointly trained. For the pre-training stage, the
focus is more on improving the detection results, we therefore set a loss weight of
0.1 to the segmentation loss Lsegm and the tracking loss Ltrack except the detection
loss Ldet . SGD [163] optimizer is adopted with a learning rate of 1e−3 for 240K
iterations. For the video dataset training, pairs of images with a random frame gap
ranging from 1 to 10 are used for training. The model is trained with a learning
rate of 1e−4 for 40K iterations and reduced to 1e−5 for another 10K iterations.
Random scaling is utilized for data augmentation, with the image short side ranging
from 416 to 608.

As there are many objects in the scene, it is not always possible to apply mask
refinement for all instances during training due to the limited GPU memory (12GB
in our case). We therefore randomly select 16 instances for joint refinement. The
pixels within the unselected instances are ignored for training.
Testing. For testing, we keep track of all the objects in the scene. Only the detected
objects with scores higher than 0.7 are considered as valid detection for the instance
segmentation and tracking.

6.4.3 Results

In this part, we compare the performance of our model with other methods. The
results of different methods on the KITTI MOTS dataset are listed in Table 6.1. Our
model utilizes 2D data only, and methods with 3D modality are also included for ref-
erence. Our method outperforms all other 2D methods except the PointTrack [206]
regarding the sMOTSA metric. PointTrack takes advantage of the state-of-the-art
bottom-up instance segmentation methods [141], which is more suitable for scenes
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with heavy occlusions. Compared with PointTrack without optical flow support,
there is a smaller gap between our methods. Among all the anchor based object de-
tection methods, i.e., TRCNN [182], MOTSNet [152] and VAE Mask R-CNN [119],
our UMotsNet performs the best. Methods with 3D modality have stronger perform-
ance on average. The BePix [168] and MOTSFusion [130] adopt heavy network
design by using RRC [158] for detection and BB2SegNet [131] for segmentation.
The overall model speed for these 3D methods are much slower compared to the 2D
methods.

Table 6.1 Results on the KITTI MOTS validation set. Both 2D methods and 3D
methods are listed for comparisons with sMOTSA, MOTSA and IDS metrics. ↑ stands
for the higher the better. ↓ stands for the lower the better. w. stands for with and w/o
stands for without.

Type Method Base Detector Speed Cars Pedestrians
sMOTSA(%) ↑ MOTSA(%) ↑ IDS ↓ sMOTSA(%) ↑ MOTSA(%) ↑ IDS ↓

2D TRCNN [182] TRCNN [182] 0.5 76.2 87.8 93 46.8 65.1 78
2D MOTSNet [152] MOTSNet [152] - 78.1 87.2 - 54.6 69.3 -
2D VAE Mask R-CNN [119] VAE Mask R-CNN [119] - 77.6 88.8 - 49.7 67.6 -
2D STEm-Seg [6] STEm-Seg [6] - 76.2 87.8 93 48.9 64.8 15
2D PointTrack w. optical flow [206] SpatialEmbedding [141] 0.045 85.5 94.9 22 62.4 77.3 19
2D PointTrack w/o optical flow [206] SpatialEmbedding [141] 0.045 82.9 92.7 25 61.4 76.8 21
3D BePix [168] RRC [158]+TRCNN [182] 3.96 76.9 89.7 88 - - -
3D BePix [168] RRC [158]+BB2SegNet [131] 3.96 84.9 93.8 97 - - -
3D MOTSFusion [130] TRCNN [182]+BB2SegNet [131] 0.84 82.6 90.2 51 58.9 71.9 36
3D MOTSFusion [130] RRC [158]+BB2SegNet [131] 4.04 85.5 94.9 22 62.4 77.3 19
2D UMotsNet(Ours) UMotsNet 0.14 81.8 93.2 77 55.7 74.3 46

We also report our results on the KITTI MOTS test set, the results are shown in
Table 6.2. It should be noted that the performance gap between our method and the
state-of-the-art methods is narrowed. Our UMotsNet is comparable to MOTSFu-
sion [130], behind PointTrack [206] and significantly better than MOTSNet [152]
and TRCNN [182]. The comparison is fairer due to the very limited number of
times for test set evaluation.

Table 6.2 Results on the KITTI MOTS test set. ↑ means the higher the better.

Method Cars Pedestrians
sMOTSA(%) ↑ MOTSA(%) ↑ sMOTSA(%) ↑ MOTSA(%) ↑

TRCNN [182] 67.0 79.6 47.3 66.1
MOTSNet [152] 71.0 81.7 48.7 62.0

MOTSFusion [130] 75.0 84.1 58.7 72.9
PointTrack [206] 78.5 90.9 61.5 76.5
UMotsNet(Ours) 76.5 88.5 57.1 75.7

We also compare the segmentation quality with STEm-Seg [6] and VAE Mask
R-CNN [119], which have strong segmentation design. MOTSP metric [182] is
reported in Table 6.3 for comparisons. Our method performs the best for car and
second best for pedestrians. On average, our model outperforms STEm-Seg [6] and
VAE Mask R-CNN [119].

6.4.4 Qualitative Results

More qualitative examples for cars and pedestrians of the KITTI MOTS benchmark
are shown in Fig. 6.7, Fig. 6.8, Fig. 6.9, and Fig. 6.10.
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Figure 6.7 Qualitative example of KITTI MOTS test sequence 0012. Frame index
is shown on the left side of each image.
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Figure 6.8 Qualitative example of KITTI MOTS test sequence 0013. Frame index
is shown on the left side of each image.
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Figure 6.9 Qualitative example of KITTI MOTS test sequence 0026. Frame index
is shown on the left side of each image.
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Figure 6.10 Qualitative example of KITTI MOTS test sequence 0028. Frame index
is shown on the left side of each image.
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Table 6.3 Mask Accuracy Comparisons on the KITTI MOTS validation set. ↑ means
the higher the better.

Method MOTSP(car)(%) ↑ MOTSP(ped.)(%) ↑
TRCNN [182] 87.2 75.7
STEm-Seg [6] 87.2 77.7

VAE Mask R-CNN [119] 87.7 77.0
UMotsNet(ours) 88.0 77.2

6.4.5 Ablation Study

In the ablation study, we investigate the usefulness of the bottom-up and the top-
down cues for the mask refinement and the tracking, as well as the best number of
support proposals used for relation distillation networks.
Different Cues for Mask Refinement Module Our mask refinement module takes
advantage of different cues, which include bottom-up semantic segmentation logits
and top-down instance mask logits. We investigate the usefulness of different cues
by removing each individual one. The results for different settings are shown in
Table 6.4. The first column shows the performance of the full model, which performs
the best in all metrics. By removing the top-down logits, the sMOTSA score for
car drops by 4.3 percent, which is much larger than the 0.7 percent by removing
the bottom-up logits. This makes sense as top-down logits help to distinguish the
overlapping objects. The 77.5% sMOTSA score is still higher than TRCNN [182].
Removing the bottom-up cues improve the sMOTSA score for pedestrian. It is
caused by the fact that the pedestrians are often small, the bottom-up logits have
large receptive field causing slight drop in accuracy. On average, the bottom-up
logits are beneficial to the mask refinement.

Qualitative examples are shown in Fig. 6.11. It could be noted that the bottom-up
cues and the top-down cues are mutually complementary, and joining both cues
give the best performance. The top-down instance mask logits help to differentiate
different objects in the overlapped bounding box area, which is marked by the
red arrow in the first row, where part of the car is assigned wrong identity. The
bottom-up logits contribute to a more complete instance segmentation. As shown in
the bottom left image, the pedestrian is divided into two objects, which is resulted
by the incomplete instance segmentation from the top-down branch. The bottom-up
semantic segmentation complete the segmentation as shown in the bottom right
image.
Different Cues for ReID In order to show the effectiveness of different cues for
the object re-identification in tracking, we remove each individual component and
compare models of different settings with the full model. The results are shown in
the Table 6.5. The full model gives the best performance in all metrics. Removing
the top-down embedding causes significant drop for the sMOTSA metric, which
shows that the top-down cue is important for object re-identification. Removing the
bottom-up embedding or the mask embedding would both cause smaller performance
drop, which shows that the bottom-up cues and the shape and location cues are
complementary to the top-down cues for the object re-identification.

The qualitative examples are shown in Fig. 6.12. It could be noted that the full
model gives the best performance, and the top-down embedding is the most critical
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Table 6.4 Ablation study on cues for mask refinement.

Top-down logits 3 - 3

Bottom-up logits 3 3 -
sMOTSA(%)(car) 81.8 77.5 81.1
MOTSA(%)(car) 93.2 89.2 92.7
MOTSP(%)(car) 88.0 87.7 87.9

IDS(car) 77 327 92
sMOTSA(%)(ped.) 55.7 42.1 56.2
MOTSA(%)(ped.) 74.3 60.7 74.8
MOTSP(%)(ped.) 77.2 76.8 77.0

IDS(ped.) 46 513 52

one for the object re-identification.
Relation Distillation Network The top-down instance logits are augmented by
considering the relations among the detected objects. We experiment with different
numbers of object proposals to determine the best number (Np) of support logits.

Figure 6.11 Qualitative examples of removing different cues for the mask refinement
module. The two images on the right column show the predictions of the full model.
The top left image shows the prediction without top-down cues (instance mask
logits). The bottom left image shows the prediction without bottom-up cues (semantic
segmentation logits). The red arrows mark the places for comparisons.
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Figure 6.12 Qualitative examples of removing different cues for the association
embedding. Consecutive images are shown horizontally. Each row corresponds to
one model setting. The first row shows the prediction without top-down embedding.
The second row shows the prediction without bottom-up embedding. The third row
shows the prediction without mask embedding. The last row shows the prediction of
the full model. The identity switches are marked with red arrows.

Table 6.5 Ablation study on cues for object ReID.

Top-down embedding 3 - 3 3

Bottom-up embedding 3 3 - 3

Mask feat. 3 3 3 -
sMOTSA(%)(car) 81.8 74.3 81.4 81.4
MOTSA(%)(car) 93.2 85.8 92.8 92.8

IDS(car) 77 614 85 90
sMOTSA(%)(ped.) 55.7 32.8 54.5 54.9
MOTSA(%)(ped.) 74.3 51.7 72.9 73.5

IDS(ped.) 46 830 48 61

We also compare with the model without the relation support. The performance of
different model settings are listed in Table 6.6. We notice that an improper number
of object relations would not be beneficial to all classes. Without the relation support,
the sMOTSA scores for cars and pedestrians are 81.1 and 55.4 respectively. With
the relation support, the performances for car and pedestrian reach peaks with
different Np, 75 and 125 respectively. Too many or too few support objects will
result in incomplete or over-complete relations causing performance drop. 125
proposals provide a good performance balance for the two classes, and the score is
better than model without relation support.
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Table 6.6 Ablation study on number of proposals for relation distillation network. -
means without relation support.

No. Prop.(Np) - 25 50 75 100 125 150
sMOTSA (%)(car) 81.1 81.4 81.2 82.1 81.4 81.8 81.0
MOTSA (%)(car) 93.0 93.0 92.8 93.8 93.0 93.2 92.4
sMOTSA (%)(ped.) 55.4 54.0 54.4 54.6 55.3 55.7 54.7
MOTSA (%)(ped.) 73.4 72.4 73.1 73.0 73.8 74.3 73.5

6.5 Conclusion

We have introduced the UMotsNet, which combines the top-down and bottom-up
features for joint object detection, segmentation and tracking. By incorporating the
novel mask refinement module and the relation guided joint association embedding
design, the performance is significantly boosted. The experiments are conducted on
the KITTI MOTS dataset and the results have shown the effectiveness of our model
for the multi-object tracking and segmentation task. In the future work, we would
boost the system with better detector as the anchor based detection has limited the
performance for the MOTS task.
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7Synthesis

In this synthesis chapter, the conclusions, reflections and outlook are discussed
by reviewing the previous chapters and contemporaneous or more recent related
publications.

7.1 Conclusions per Objective

Semantic segmentation of UAV images.
This objective is addressed in chapter 2 and chapter 3. We have created a new
semantic segmentation benchmark for oblique view UAV imagery. We have also
brought out the multi-scale dilation net and bidirectional multi-scale attention net
to better handle the multi-scale problem introduced by the UAVid dataset. The
multi-scale dilation net circumvents the need for an image pyramid by applying
multiple dilated convolutions, which allows intermediate feature fusion instead of
class probability fusion. The bidirectional multi-scale attention net achieves better
performance than hierarchical multi-scale attention net [175] by inferring features
and weights from both higher level and lower level branches.

The multi-scale dilation net transforms the spatial dimensions to the batch
dimension or vice versa. A similar strategy has been used to transform the spatial
dimensions to the channel dimension [187] for upsampling, or the channel dimension
to the spatial dimension for positional sensitive pooling [48] for object recognition.
Such similar information routing could be used for different purposes.

The multi-scale attention design has significantly improved the recognition of
small objects, such as humans. But it is still far from perfect as the mIoU score
for human class is just over 30%, which means that small object recognition still
remains a challenge. For differentiating static cars and moving cars, we have mostly
leveraged on the context of objects. More accurate recognition could be achieved by
using sequence input.
Video object segmentation.
This objective is addressed in chapter 4. We have proposed a model that combines the
Mask R-CNN [76] and the Conv-GRU [8] module for the video object segmentation
task. Our method learns to propagate the target object labels without auxiliary
data, such as optical flow, which simplifies the model. By utilizing instance level
segmentation, our model can restrict the mask prediction to the range of an object,
which is better than semantic segmentation based methods that easily propagate the
masks to other objects.
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In order to speed up the overall performance, online learning is not an effective
solution. Instead, better design choices could be used, such as pixel matching [181,
213, 142] and meta learning [16]. However, current state-of-the-art methods still
run at low speed. E.g., 6 FPS for LWL [16], 6 FPS for STM [142], and 5 FPS for
[213].
Video object detection.
This objective is addressed in chapter 5. We have proposed a model that unifies the
object detection networks and the object tracking networks by sharing their feature
extraction component. The proposed siamese convolutional regression tracker is
a very light-weighted increment to the object detection network, but effective to
track objects when their appearances deteriorate. Its class-agnostic property and the
design to re-use the features from the object detector enable it to handle the problem
of missing video labels for some classes. The limitation of the current design is that
the proposed model would not handle long-term tracking. If an object is occluded
for a long time, it may be out of the target patch and fail to be tracked. The design
could be improved with methods for the task of multi-object tracking [68, 137].

Contemporary work SiamFC++ [205] has designed a similar convolution plus
regression tracking model to boost the tracking performance for the task of single
object tracking. The difference is that our model re-uses features from an object
detector. Another design choice for object tracking in siamese style is introduced
by Siam-RCNN [184] for video object segmentation task, which uses a similar
strategy. Instead of using convolution between pooled template and target patches,
Siam-RCNN concatenates them as input features for regression branches.
Multi-object tracking and segmentation.
This objective is addressed in chapter 6. In this objective, object detection, segmenta-
tion, and tracking are unified. The whole pipeline follows the multi-task design, i.e.,
a single feature extraction backbone with multiple heads for different sub-tasks. In
order to improve the performance for object detection, segmentation, and tracking,
the two branches design, i.e., bottom-up branch and top-down branch, is utilized. By
combining the bottom-up and the top-down inference for all sub-tasks, the overall
performance improves. The task of multi-object tracking and segmentation is just
introduced in [182], there is still a lot of room for performance improvement in
tracking. From the most recent research, multi-modality seems to be the best solu-
tion for robust tracking. ViP-DeepLab [155] jointly uses images and point clouds to
achieve the state-of-the-art result. EagerMot [99] has also applied 3D information
to achieve good results. Our future work could also leverage on multi-modality to
improve the overall performance.

7.2 Reflections and Outlook

In this section, reflections and outlook regarding the related tasks in this thesis will
be discussed.

7.2.1 Range of Object Context Matters

In chapter 2 and chapter 3, we have designed novel deep neural networks to handle
object recognition of different scales. Objects of different scales are better recog-
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nized in different ranges of context. The context provides important information for
object recognition. Such contextual information is even critical in certain circum-
stances, for example, when the distant object is too small, the recognition would rely
heavily on the context. Taking the oblique view UAV images as an example, where
there is large scale variance for different objects, recognition of distant cars greatly
relies on the road context. This makes sense as the objects lack sufficient details for
recognition. From the semantic segmentation experiments with bidirectional multi-
scale attention in the model, it could be noted that an adaptive context scale selection
for different objects is preferred. With respect to the deep neural networks, the object
context relates to the receptive field of the deep neural networks. Larger receptive
fields result in larger context ranges. Besides the solutions used in chapter 2 and
chapter 3, there are additional methods. Deformable convolution [49, 230] could
also adaptively adjust the receptive field for different objects to a certain degree, but
the extra computation makes it relatively slow. Self-attention [180] has been more
popular recently, as it could enlarge the receptive field of the deep neural networks to
the entire image [66]. However, such design undermines the performance if a large
amount of unrelated context is included, or a very long training time is required for
the deep neural networks to learn to reject unnecessary context noise. In order to
achieve proper scale of context, self-attention with a full image receptive field may
not be a good option if the objects are small compared with the size of the input
images.

7.2.2 Quality of Video Data Matters

Chapter 4, chapter 5, and chapter 6 all deal with tasks related to videos, but the video
qualities are quite different resulting in different research problems. For real-world
applications, the quality of videos would affect the model design. Another example
is as follows, video instance segmentation (VIS) and multi-object tracking and
segmentation (MOTS) both require object detection, segmentation and tracking.
From this perspective, there is not much difference. However, the quality of the
datasets designed for these two tasks have different features as shown in Table 7.1.
Compared with MOTS datasets (e.g., KITTI MOTS dataset), VIS datasets (e.g.,
Youtube VIS dataset) have more class types, making it more difficult for object
recognition. But there are also much fewer objects in one image, making tracking
easier than it is in MOTS datasets. The challenge for the VIS dataset is that the
objects are often in rare pose and heavy occlusion, resulting in difficulty for correct
detection. The MOTS datasets have more emphasis on the object re-identification.
Object detection is relatively easy as there are normally only one or two classes, but
there are many more objects in one image. The challenge is to differentiate objects of
the same class type that are similar in appearance, and to preserve long-term tracking
after occlusion. The Quality of the dataset determines how the task should be solved.
The best approach for the VIS task is to combine instance segmentation with mask
propagation, which focuses on more accurate detection and more complete mask
segmentation, while the best practice for the MOTS task is in the tracking-by-
detection paradigm, where detection serves as a preliminary, and more research tries
to improve the tracking part only.
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Table 7.1 Comparisons between datasets designed for VIS task and MOTS task.

Dataset type VIS dataset MOTS dataset
Number of objects in a scene Small Large

Number of categories in the dataset Many Few
Object detection difficulty High Low
Object tracking difficulty Low High

7.2.3 Relation Between Detection and Tracking

As discussed in chapter 5, there is quite a close relation between detection and track-
ing. These two tasks could improve each other in certain circumstances. Tracking
has been used in video object detection, and detection has also been used for tracking
purposes. For example, for the multi-object tracking task, the tracking-by-detection
paradigm is still the dominant strategy for multi-object tracking. The tracking is
based on the detection results, where the detected objects are linked based on simil-
arity comparisons. For single object tracking, the detection paradigm has also been
used for tracking purposes. Several works [184, 185, 89] have achieved competitive
performance for multiple tracking benchmarks, showing that the detection paradigm
is also effective for tracking. Tracking has also been useful for object recognition in
videos as illustrated in chapter 5. One of the weakness for the Imagenet video object
detection benchmark is that its evaluation does not consider the identity consistency
of the objects detected. The evaluation metric only takes the mean average precision
into account for the object detection in images. For the Youtube video instance
segmentation benchmark, the evaluation takes object identities into account, but
compared to other multi-object tracking benchmark datasets, the cases for tracking
are too simple. For the tracking datasets, e.g., MOT16, MOT17, there is no need for
strong detection models compared with those models used for detection datasets.
A more powerful system would require the model to detect and track objects sim-
ultaneously and robustly in different circumstances, however, exploration in such
direction is still lacking due to the missing benchmark dataset that requires the model
to perform competitively in both detection and tracking. Fusing the paradigm of
detection and tracking is still an interesting direction, and improved feature sharing
methodology for detection and tracking could be explored in the future.

7.2.4 Unified Dynamic Scene Understanding

In chapter 2 and chapter 3, we have developed models for semantic segmentation,
which is bottom-up scene understanding as object recognition is based on pixel level.
In chapter 4 and chapter 5, we have designed models for top-down scene under-
standing as objects are recognized at instance level. In chapter 6, we have designed
a model that unifies bottom-up and top-down inference, which is inspired by the
UPSNet [221] designed for panoptic segmentation [103]. Semantic segmentation
(bottom-up) and instance segmentation (top-down) complement each other. Instance
segmentation requires detection and segmentation of different objects, whilst dis-
tinguishing them even if they are of the same category. Semantic segmentation
could handle uncountable objects, such as sky, road and so on, but would fail to
differentiate overlapped objects of same classes. The panoptic segmentation task has
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been developed to unify instance segmentation and semantic segmentation, whereby
both of their advantages can be incorporated. The research in this field has been
developing rapidly. The model design for panoptic segmentation has transited from
the heuristic combination of semantic segmentation and instance segmentation [102],
which are independently inferred from different heads and merged, to unified infer-
ence [40, 221]. The unified approach is favored as it enables the networks to resolve
conflicts between outputs of the semantic segmentation branch and the instance
segmentation branch.

Panoptic segmentation has also been extended from static images to dynamic
videos, which is known as the video panoptic segmentation task [101]. The model
needs to segment the scene, whilst being able to differentiate different objects
and track them. The newly proposed VIPER dataset [101] has a great number of
labeled video to support this task, and lays a good dataset foundation. It propels the
development of spatial-temporal unified full scene dynamic scene understanding,
which combines detection, segmentation, and tracking.

7.2.5 Is Attention All You Need for Dynamic Scene Understanding?

In chapter 5 and chapter 6, we have developed models that combine detection and
tracking through multi-task learning. However, multi-task learning through multiple
heads may not be the best solution as they might compete for shared features. One
possible solution is to leverage on transformer [180], which has been used for
processing data of multiple modalities [113, 212, 228]. The transformer is a more
general computation unit in deep neural networks compared with convolutions [180].
In the design of a transformer, self-attention plays an important role in extracting
semantic features. BERT [54] and GPT [21], which are built upon the transformer,
have attained world striking results for a number of natural language processing
(NLP) tasks, such as question answering and language inference. The huge success
of the NLP has inspired the researchers to apply the modules in vision tasks such as
classification, detection, segmentation and tracking. There has been great success
in importing the self-attention mechanism, many new state-of-the-art results have
been achieved. One of the advantages is that the self-attention mechanism enlarges
the receptive field of the neural networks selectively according to the correlation
of key-query pairs. The dual attention network [66] has brought in a position
attention module and a channel attention module for better semantic segmentation
performance. Axial deeplab [186] has obtained the fully attentional networks
for the semantic segmentation task by restricting the attention to local regions.
Convolutional neural networks have been combined with transformers in DETR [29,
231] to achieve state-of-the-art results for object detection. More recent research
has been exploring whether the whole convolutional neural networks (CNN) can be
replaced by transformers only. The vision transformer [57] is one such pioneering
work that replaces CNNs completely with transformers, and achieves state-of-the-art
results for the classification task.

The most valuable point for the transformer is that it is a general computation unit,
it could fit to many different tasks, and ease the interaction between different tasks.
For example, NLP and vision tasks, e.g., visual question answering [212, 113].The
transformer makes it possible to formulate power models purely based on it for
different tasks. Not only for the object detection, but also in the field of tracking,
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TransReID [78] has been proposed for object re-identification. All these innovations
have shown the promising future of unified model design for different tasks related
to dynamic scene understanding.

7.2.6 Learning with Self-Supervision

In chapter 5, we have introduced one possible way to relieve the problem of lacking
video labels, which could happen since dense labels are expensive to acquire. In
contrast, video data collection is much easier and cheaper, especially when compared
with dense labeling for segmentation related tasks, e.g., video semantic segmentation,
video object segmentation, and video instance segmentation. A better solution is
required to relieve this problem for dynamic scene understanding. Self-supervised
learning should be one of the promising research directions.

Self-supervised learning has been a hot research trend recently. It has been used
as a pretext task for scene understanding. In the self-supervised learning, the neural
networks are trained with supervisions from augmented data itself, e.g., predicting
how each input image is rotated. Through such made-up tasks, the networks could
learn useful intermediate semantic representation. The actual scores for the made-up
tasks are not important, but the quality of the learned latent information matters.
Deep neural networks could be fine-tuned in the down stream tasks to achieve better
results with less data. As a result, if good intermediate features could be learned
properly, it could potentially greatly reduce the cost of human labor. For static
images, data augmentation is normally needed for the made-up supervision, e.g.,
image resizing, random coloring, and so on, but the specialty of video data is that
the data itself already contains supervision signals, and there is less need for image
data augmentation.

One important feature of the video data is the high correlation in consecutive
images, there is large scene overlap between consecutive images, which makes
self-supervised learning for correspondences between video frames possible. For
video data, self-supervised learning does not even require any human labeling
involvement as the supervision comes from the data itself, e.g., pixel color for
image reconstruction. Recently, there have been more and more deep learning
based works [109, 191, 115, 108] applying self-supervision learning for the video
object segmentation tasks, which have received much attention since they have
continuously improved the results and the performance is on par with some of the
supervised learning methods. This direction is quite exciting and promising, and
self-supervised learning should be the key to very large scale learning in order to
tackle real-world video related applications. The combination of deep learning and
self-supervised excel as deep neural networks are data hungry, and there is unlimited
free video data online.

7.2.7 Need for Speed

For dynamic scene understanding, speed is one of the important factors that needs
to be taken into consideration, especially for driving scenes since they change
drastically in a few seconds. In real-time applications, the response time of deep
neural networks is even more critical. Example research tasks are the semantic
segmentation task on the cityscapes dataset [47] and the multi-object tracking and
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segmentation task on the KITTI MOTS dataset [182] (used in chapter 6). For
the cityscapes benchmark, several models are proposed for real-time semantic
segmentation. The methods that have the most competitive performance are listed in
Table 7.2, including U-HarDNet-70 [31], SwiftNetRN-18 [143], ShelfNet18 [234],
and BiseNet V2 [214]. The speed of the models are measured on powerful GPUs,
such as Titan Xp. There should be even more delay when on-board computing
hardware is utilized for real-world applications. For example, a model running on
the Jetson Xavier NX is 10× slower than the same model running on a NVIDIA
RTX 2080Ti GPU. In addition, there is still a large performance gap compared
with top ranked models that are not real-time, e.g., [175] has a mIoU score of
85.4%, defeating the state-of-the-art real-time model by around 9%, which is a huge
difference.

Table 7.2 Performance of the top ranked models for real-time semantic segmenta-
tion on Cityscapes benchmark.

Method U-HarDNet-70 SwiftNetRN-18 ShelfNet18 BiseNet V2-Large BiseNet V2
mIoU(%) 75.9 75.5 74.8 75.3 72.6

FPS 53 39.9 59.2 47.3 156

For the task of multi-object tracking and segmentation, the models designed [206,
207, 152, 182] normally require more time to run compared with models for real-
time semantic segmentation. This is due to the fact that models for MOTS task are
normally not end-to-end, and sequential CPU time is required in the detection and
tracking parts. The speed of the state-of-the-art methods are reported in Table 7.3,
which is far from real-time.

Table 7.3 Performance of the top ranked models for KITTI MOTS benchmark of car
class.

Method PointTrack UMotsNet MOTSFusion TRCNN
sMOTSA(%) 78.5 76.5 75.0 67.0

FPS 22 7 2.27 2

It is clear that there is still a large gap for real-world, real-time applications and
more research could be conducted in this direction.

In conclusion, for future works, unified dynamic scene understanding, i.e., a
combination of detection, segmentation, tracking, and other sub-tasks, could be a
trend. A transformer plus self-supervised learning is a promising research direction.
Real-time processing for dynamic scene understanding requires further research in
order to put the methods into usage for real-world applications.
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Summary

Scene understanding is an important and fundamental research field in computer
vision, which is quite useful for many applications in photogrammetry and remote
sensing. It focuses on locating and classifying objects in images, understanding the
relationships between them. The higher goal is to interpret what event happens in
the scene, when it happens and why it happens, and what should we do based on
the information. Dynamic scene understanding is to use information from different
time to interpret scenes and answer the above related questions.

For modern scene understanding technology, deep learning has shown great
potential for such task. "Deep" in deep learning refers to the use of multiple layers in
the neural networks. Deep neural networks are powerful as they are highly non-linear
function that possess the ability to map from one domain to another quite different
domain after proper training. It is the best solution for many fundamental research
tasks regarding scene understanding. This ph.D. research also takes advantage of
deep learning for dynamic scene understanding.

Temporal information plays an important role for dynamic scene understanding.
Compared with static scene understanding from images, information distilled from
the time dimension provides values in many different ways. Images across consecut-
ive frames have very high correlation, i.e., objects observed in one frame have very
high chance to be observed and identified in nearby frames as well. Such redundancy
in observation could potentially reduce the uncertainty for object recognition with
deep learning based methods, resulting in more consistent inference. High correla-
tion across frames could also improve the chance for recognizing objects correctly.
If the camera or the object moves, the object could be observed in multiple different
views with different poses and appearance. The information captured for object
recognition would be more diverse and complementary, which could be aggregated
to jointly inference the categories and the properties of objects.

This ph.D. research involves several tasks related to the dynamic scene under-
standing in computer vision, including semantic segmentation for aerial platform
images (chapter 2, 3), video object segmentation and video object detection for
common objects in natural scenes (chapter 4, 5), and multi-object tracking and
segmentation for cars and pedestrians in driving scenes(chapter 6).

Chapter2 investigates how to establish the semantic segmentation benchmark for
the UAV images, which includes data collection, data labeling, dataset construction,
and performance evaluation with baseline deep neural networks and the proposed
multi-scale dilation net. Conditional random field with feature space optimization is
used to achieve consistent semantic segmentation prediction in videos.
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Chapter3 investigates how to better extract the scene context information for
better object recognition performance by proposing the novel bidirectional multi-
scale attention networks. It achieves better performance by inferring features and
attention weights for feature fusing from both higher level and lower level branches.

Chapter4 investigates how to simultaneously segment multiple objects across
multiple frames by combining memory modules with instance segmentation net-
works. Our method learns to propagate the target object labels without auxiliary
data, such as optical flow, which simplifies the model.

Chapter5 investigates how to improve the performance of well-trained object
detectors with a light weighted and efficient plug&play tracker for object detection
in video. This chapter also investigates how the proposed model performs when
lacking video training data.

Chapter6 investigates how to improve the performance of detection, segmenta-
tion, and tracking by jointly considering top-down and bottom-up inference. The
whole pipeline follows the multi-task design, i.e., a single feature extraction back-
bone with multiple heads for different sub-tasks.

Overall, this manuscript has delved into several different computer vision tasks,
which share fundamental research problems, including detection, segmentation, and
tracking. Based on the research experiments and knowledge from literature review,
several reflections regarding dynamic scene understanding have been discussed: The
range of object context influence the quality for object recognition; The quality of
video data affect the method choice for specific computer vision task; Detection
and tracking are complementary for each other. For future work, unified dynamic
scene understanding task could be a trend, and transformer plus self-supervised
learning is one promising research direction. Real-time processing for dynamic
scene understanding requires further researches in order to put the methods into
usage for real-world applications.
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Samenvatting

Scene understanding is een belangrijk en fundamenteel onderzoeksgebied in com-
puter vision, dat zeer nuttig is voor vele toepassingen in fotogrammetrie en remote
sensing. Het richt zich op het lokaliseren en classificeren van objecten in beelden
en het begrijpen van de relaties tussen objecten. Het hogere doel is te interpreteren
welke gebeurtenis in de scène plaatsvindt, wanneer en waarom dit gebeurt en wat
we op basis van deze informatie moeten doen. Dynamische scene understanding is
het gebruiken van informatie van verschillende tijden om scènes te interpreteren en
de bovenstaande vragen te beantwoorden.

Voor moderne technologie voor het begrijpen van scènes heeft deep learning
aangetoond over een groot potentieel voor dergelijke taken te beschikken. "Deep" in
deep learning verwijst naar het gebruik van meerdere lagen in de neurale netwerken.
Diepe neurale netwerken zijn krachtig omdat het sterk niet-lineaire functies zijn
die het vermogen bezitten om na de juiste training van het ene domein naar een
heel ander domein te gaan. Het is de beste oplossing voor veel fundamentele on-
derzoekstaken met betrekking tot het begrijpen van scènes. Dit promotieonderzoek
maakt ook gebruik van deep learning voor het begrijpen van dynamische scènes.

Temporele informatie speelt een belangrijke rol in het begrijpen van dynamische
scènes. Vergeleken met statisch begrip van scènes op basis van beelden, is informatie
die op verschillende momenten is waargenomen op veel verschillende manieren
waardevol. Beelden in opeenvolgende frames hebben een zeer hoge correlatie, d.w.z.
dat objecten die in één frame worden waargenomen een zeer hoge kans hebben
om ook in nabije frames te worden waargenomen en geïdentificeerd. Dergelijke
redundantie in de waarnemingen kan mogelijk de onzekerheid voor objectherken-
ning met deep learning gebaseerde methoden verminderen, wat resulteert in meer
consistente gevolgtrekking. Hoge correlatie tussen frames kan ook de kans op het
correct herkennen van objecten verbeteren. Als de camera of het object beweegt, kan
het object worden waargenomen in meerdere beelden met verschillende poses en
verschijningsvormen. De informatie die wordt verzameld voor objectherkenning is
dan meer divers en complementair en kan worden samengevoegd om de categorieën
en de eigenschappen van meerdere objecten in samenhang af te leiden.

Dit promotieonderzoek omvat verschillende taken gerelateerd aan het dynamis-
che scene understanding in computer vision, waaronder semantische segmentatie
voor luchtfoto’s (hoofdstuk 2, 3), video objectsegmentatie en video-objectdetectie
voor objecten in natuurlijke scènes (hoofdstuk 4, 5), en het volgen en segmenteren
van meerdere objecten zoals auto’s en voetgangers in verkeersscènes (hoofdstuk 6).

Hoofdstuk2 onderzoekt hoe een semantische segmentatie benchmark voor
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UAV beelden tot stand kan worden gebracht. Dit omvat dataverzameling, data
labelling, datasetconstructie, en de evaluatie van twee netwerken die als referentie
(baseline) dienen, waaronder het voorgestelde multi-scale dilatatienetwerk. Condi-
tional random fields met optimalisatie van kenmerken wordt gebruikt om consistente
semantische segmentatie in video’s te bereiken.

Hoofdstuk3 onderzoekt hoe de contextinformatie van de scène beter kan worden
geëxtraheerd voor betere objectherkenning door een nieuw tweezijdig meerschalig
attention netwerk voor te stellen. Het bereikt betere prestaties door het afleiden en
fuseren van kenmerken gericht op verschillende beeldschalen.

Hoofdstuk4 onderzoekt hoe je tegelijkertijd meerdere objecten kunt segmenteren
over meerdere frames door geheugenmodules te combineren met instantie-segmentatienetwerken.
Onze methode leert om de labels te propageren zonder hulpdata, zoals optical flow,
wat het model vereenvoudigt.

Hoofdstuk5 onderzoekt hoe de prestaties van goed getrainde objectdetectoren
verbeterd kunnen worden met een efficiënte plug & play volger voor objectdetectie
in video. Dit hoofdstuk onderzoekt ook hoe het voorgestelde model presteert bij
gebrek aan videotrainingsdata.

Hoofdstuk6 onderzoekt hoe de prestaties van detectie, segmentatie en tracking
verbeterd kunnen worden door gezamenlijk top-down en bottom-up inferentie te
beschouwen. De gehele pijplijn volgt het multi-task ontwerp, d.w.z. een basis voor
kenmerkextractie met meerdere deelnetwerken voor verschillende taken.

In het algemeen heeft dit manuscript zich verdiept in verschillende computer vis-
ion taken, die fundamentele onderzoekstaken delen, waaronder detectie, segmentatie
en tracking. Gebaseerd op de experimenten en kennis uit literatuuronderzoek, zijn
verschillende beschouwingen met betrekking tot dynamische scene understanding
besproken: Het bereik van objectcontext beïnvloedt de kwaliteit van objectherken-
ning; De kwaliteit van videogegevens beïnvloedt de methodekeuze voor specifieke
computer vision taken; Detectie en tracking zijn complementair aan elkaar. Voor
toekomstig werk zou integrale dynamische scene understanding, d.w.z. een com-
binatie van detectie, segmentatie, volgen en andere taken, een trend kunnen zijn.
Een transformator plus zelf-ondersteund leren is een veelbelovende onderzoeks-
richting. Real-time verwerking voor dynamische scene understanding vereist verder
onderzoek om de methoden in gebruik te kunnen nemen voor grootschalige toep-
assingen.
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