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1. Introduction 

1.1 Motivation 
Antimicrobial resistance (AMR) is the most significant threat to modern healthcare. 
It is estimated that 10 million people will die due to AMR by 2050, more than the 
yearly death toll of cancer and road traffic accidents combined [1]. The discovery of 
antibiotics in the early 20th century significantly changed the course of modern 
healthcare. It enabled the treatment of previously deemed fatal infections and made 
numerous lifesaving surgical procedures possible. The use of antimicrobials leads to 
the natural evolution of microbes to become resistant to the newly discovered 
medicine. Due to the generous use of antimicrobials, selection pressure enabled the 
spread of AMR worldwide [2]. New antimicrobials were sought and manufactured, 
but AMR soon followed. Alternatives to antimicrobials have been explored but with 
limited success [3]. To date, there are no major antimicrobial classes for which no 
AMR has been found [4]. The world is facing an ever-growing number of AMR cases, 
and without significant scientific leaps treatment options, the main strategies are to 
detect and limit the occurrence and spread of AMR [3]. 

The World Health Organisation (WHO) has proposed a holistic action plan in response 
to the increasing AMR threat [5]. It was created using the consolidated objectives of 
existing action plans and best practices related to AMR and stretches across 
international sectors, industries and disciplines. A global strategic AMR research 
agenda was proposed to understand AMR at the global level. Knowledge gaps can be 
used to inform AMR research agendas [6–11]. To identify knowledge gaps in a 
research field, a thorough overview and understanding of the available knowledge in 
that research field are needed [12,13]. Knowledge gaps constantly need to be 
assessed for comprehensiveness and relevance. However, with the exponential 
increase in AMR research output, it is increasingly challenging to objectively organise 
and synthesise the current state of AMR research to stay informed about previous 
and most recent scientific contributions [14]. Scalable statistical models for text 
analysis can be used to determine underlying topics in large quantities of literature 
automatically and objectively [15]. In addition to understanding the AMR research 
field, statistical models are essential to address these knowledge gaps. 

Predicting the occurrence and spread of microbes is important to support decision-
making from the perspective of microbiology and epidemiology [16]. These models 
gradually evolved from deterministic models into stochastic models at the end of the 
previous century. Aggregate models neglect to use valuable individual-based data 
but can be less complicated and require less data and computational resources to 
build and maintain [16]. More recently, models started to use individual electronic 
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health records (EHR), pharmaceutical data and laboratory data rather than 
aggregated patient data [17]. The occurrence of surgical site infection (SSI) can be 
modelled using risk factors identified from covariates constructed using these data. 
The methodology used to construct these covariates is frequently determined by 
experts rather than the data, and the effects on the risk factors identified remain 
unclear. Using the standard medical cut-offs is convenient and has the advantage of 
easily comparing the results between studies [18]. Although, this is a form of 
confirmation bias and may lead to the statistical misclassification of risk factors [19]. 

The most effective precautionary measure to reduce the risk of transmitting harmful 
microorganisms in hospitals is adherence to well established and effective hand 
hygiene policies [20]. The lack of hand hygiene compliance (HHC) can result in the 
outbreak of harmful microorganisms in hospitals. The use of spatiotemporal data has 
become more prevalent when modelling the transmission and spread of microbes in 
hospitals. Innovative unobtrusive technology for tracking hospital assets, patients 
and healthcare workers is currently being explored [21–23]. Recently, radio 
frequency identification (RFID) has been progressively implemented in hospitals this 
effect [24]. The output of this technology can also be used to predict the spread of 
harmful microorganisms in hospitals [25]. Although, the spatiotemporal effects of 
varying levels of HHC on the transmission and spread of HMO in hospitals must still 
be quantified. 

Spatiotemporal data in statistical models are essential to accurately model and 
predict the transmission dynamics of harmful microorganisms in hospitals. These 
models typically focus on single hospital wards, while interactions between wards 
and hospitals were later introduces [26]. RFID contact data are most desirable for 
detailed information, but they are typically unavailable for all hospitals [27]. 
Alternatively, a more commonly available source of spatiotemporal data to track 
patient movements in hospitals is the intrahospital movement data captured in the 
EHR. These data can predict the spread of microbes between hospital wards but are 
usually not considered risk factors for the contraction of AMR [28–31]. 

To address the current knowledge gaps in AMR research, this thesis investigates how 
statistical models and novel spatiotemporal data can enrich existing risk factors and 
identify new risk factors to predict the occurrence and spread of harmful 
microorganisms and the complication of AMR. Chapter 2 investigates how a 
bibliometric data-driven methodology can be used to identify knowledge gaps in 
AMR research. Traditional risk factor identification methodology evaluated and 
improved using statistical models in Chapter 3. Chapter 4 and 5 focus on enriching 
statistical models with spatiotemporal data to incorporate the spatiotemporal 
transmission dynamics of harmful microorganisms in hospitals. Chapter 4 describes 
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how the spatiotemporal movements of healthcare workers can identify potential a 
super-spreader occupation group in a hospital using spatiotemporal risk outcomes. 
Chapter 5 determines how the occurrence and spread of VRE can be explained using 
intrahospital patient movements (IPM) and their antibiotic use between hospital 
wards.  

This thesis aims to answer the following research questions: 

1. How can knowledge gaps in AMR research be identified objectively and 
automatically? 

2. What are the risk factors for the occurrence of SSI when using data-driven cut-
off values for continuous variables? 

3. How can the spatiotemporal movements of healthcare workers identify 
potential a super-spreader occupation group of harmful microorganisms in a 
closed healthcare setting? 

4. How can the occurrence of VRE in a hospital be predicted using intrahospital 
patient movements and antibiotic usage? 
 

1.2 Background research project (EurHealth-1Health) 
Due to the broad use of antimicrobials, AMR exists in multiple international sectors 
and across species. To this end, the “One-Health” approach was introduced by the 
Food and Agriculture Organization (FAO), World Organization for Animal Health 
(OIE), and World Health Organization (WHO) to study AMR across national borders 
and industries at a national and global level using the skillset of multiple disciplines 
[32,33]. The INTERREG VA project, EurHealth-1Health, was established to combat 
infections caused by the occurrence and spread of antimicrobial resistance (AMR) 
across the Dutch and German borders and between species. This all-encompassing 
approach was necessary as AMR does not adhere to the societal borders we set. 
Rhine-Westphalia and the Ministry for National and European Affairs and Regional 
Development of Lower Saxony. 

This research was also supported by the INTERREG VA (202085) funded project 
EurHealth-1Health (http://www.eurhealth1health.eu), part of a Dutch-German 
cross-border network supported by the European Commission, the Dutch Ministry of 
Health, Welfare and Sport, the Ministry of Economy, Innovation, Digitalisation and 
Energy of the German Federal State of North. 

1.3 Thesis outline 
This thesis consists of six chapters. Chapters 3-4 are based on journal articles, and 
chapters 2 and 5 are based on articles under revision still to be published. The four 
research questions are addressed in Chapters 2-5, respectively. 
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Chapter 1 provides the background of the research setting and motivates the need 
for the research performed in this thesis. It sets the focus of the subsequent chapters 
and provides an overview of the thesis structure. Chapter 2 is the first research study 
performed in this thesis. Twenty years of AMR research is used to identify the main 
research areas in AMR research and obtain an objective data-driven view of the 
potential knowledge gaps. Examples of knowledge gaps are highlighted, and a 
complete list of potential knowledge gaps in AMR research is provided for the 
community to investigate further. This thesis challenges standard medical cut-off 
values used in modelling techniques to identify risk factors in healthcare in Chapter 
3. Data-driven cut-off values are used instead of standard medical cut-offs to identify 
risk factors for surgical site infection from digestive, thoracic and orthopaedic system 
surgeries. Chapter 4 introduces empirical spatiotemporal data to model the spread 
of harmful microorganisms in an academic medical centre. It shows how indoor 
localisation data collected using RFID sensors can identify potential super spreading 
occupation groups and quantify the effects of varying levels of hand hygiene 
compliance in a healthcare setting. In the final study of this thesis (Chapter 5), 
common hospital data present in most electronic healthcare records are used to 
predict VRE occurrence at the hospital ward level. Patient movement and antibiotic 
use data are transformed into covariates through centrality measures that present 
how patients and antibiotics move to each ward. The results of this study are two 
models which can be used to calculate the probability that at least one patient has 
VRE in a particular ward on a specific day. In Chapter 6, the results of this thesis are 
synthesised and further discussed in terms of implications, limitations and future 
research opportunities. 

In the following sections, more detail is provided about what can be expected in the 
subsequent chapters of this thesis. 

1.4 Identifying knowledge gaps in AMR research 
Knowledge gaps are used to inform research agendas in the AMR research field and 
are often identified using a manual expert method [6–11]. This method is prone to 
selection bias as the identified knowledge gaps and topics might have differed when 
experts from another discipline were involved [34]. It may also lead to 
nonreproducible and dated results [14]. A new scalable data-driven approach is 
needed to determine the knowledge gaps in AMR research. Chapter 2 identifies the 
potential research gaps in the AMR research field using a scalable and data-driven 
methodology. 

Recent advances in scalable statistical models for text analysis made it possible to 
estimate the latent topics which generated the words of an observed body of text. 
Structural topic modelling (STM) is state of the art in unsupervised topic modelling 
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[35]. This thesis identifies the latent topics that generated the text in the AMR using 
STM. The PubMed database was queried using a broad search string related to AMR 
research published over the past 20 years. 

To identify the knowledge gaps between the topics, the AMR topics are clustered 
into larger AMR research areas based on how they are studied together in the AMR 
literature and determine the strength of the relationship between them and the topic 
using Spearman's rank correlation coefficient based on the topic proportions [36]. 
Next, we highlight and discuss knowledge gaps identified using this semi-automated 
data-driven methodology. 

Knowledge gaps are identified in the AMR research field, using a scalable data-driven, 
statistical approach, providing a repeatable and scalable way to identify potential 
knowledge gaps in AMR research. Examples of knowledge gaps are highlighted and 
discussed, and a complete list of potential knowledge gaps is provided for the 
community to investigate further. 

1.5 Data-driven risk factors for surgical site infection 
Surgical site infection (SSI) is the largest category of HAI [37]. The consequences of 
these infections are exacerbated when the infectious bacteria are resistant to the 
antibiotics administered to kill them [38]. Risk factors associated with SSI have 
received much attention in the scientific literature [18]. These factors typically 
include patient demographics and comorbidities and are based on the well-
established categorical groupings and standard medical cut-offs for continuous 
variables rather than data-driven cut-offs, which may be suboptimal [39]. Using 
standard medical cut-offs is convenient and makes for easy comparisons between 
studies [18]. Although, this is a form of confirmation bias and may lead to the 
statistical misclassification of risk factors [19]. It should be determined if the risk 
factors for SSI are different when using data-driven cut-offs compared to if medical 
cut-offs are used. In Chapter 3, risk factors for the occurrence of SSI are identified 
using data-driven cut-off values for continuous variables. 

This study was performed using data from the Erasmus MC University Medical Centre 
in Rotterdam are used, one of the largest university medical hospitals in the 
Netherlands with more than 1 320 beds [21]. A multivariate logistic regression model 
is built using a forward stepwise approach for each of the three groups of surgeries 
[41]. The data-driven cut-off values for the continuous variables are used determined 
using recursive partitioning [42]. Model performance is compared using the Gini 
coefficient and cross-validated using 5-fold cross-validation to estimate how the 
model would perform on new data [43]. The difference between the risk factors 
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identified using the standard medical cut-offs and the data-driven cut-offs are 
reported. 

The results will inform better decision making when determining how to use 
continuous data when identifying risk factors for SSI. 

1.6 Transmission of harmful microorganisms through 
connected HCWs 

Hand transmission of harmful microorganisms (HMO) may lead to infections and 
poses a major threat to patients and HCWs in healthcare settings [44]. The most 
effective countermeasure against these transmissions is the adherence to 
spatiotemporal hand hygiene policies, but adherence rates are relatively low and 
vary over space and time [20]. Although the impact of HHC has been studied, the 
spatiotemporal determinants and potential consequences in healthcare settings 
remain undetermined. Potential super-spreaders occupation groups are identified in 
a closed healthcare setting and the risk of HMO transmission for different levels of 
HHC was quantified using empirical movement data in Chapter 4. 

This study is based on empirical RFID contact data collected at the University Medical 
Center Groningen (UMCG), one of the largest university medical hospitals in the 
Netherlands with more than 10 000 employees almost 1 400 beds. Using the RFID 
contact data, a transition probability matrix 𝑷 is constructed with 𝑝𝑖𝑗, the probability 

of an HCW transitioning from room 𝑅𝑖 to 𝑅𝑗 room 𝑗 (Formula 1.1-1.2).  

𝑝𝑖𝑗 = 𝑃(Next room = 𝑅𝑗|Current room = 𝑅𝑖)  for i, j 

∈ (1, … , n)             Formula 1.1 

𝑷 =

     𝑅1  …  𝑅𝑛

𝑅1

⋮
𝑅𝑛

[

𝑝11 ⋯ 𝑝1𝑛

⋮ ⋱ ⋮
𝑝𝑛1 ⋯ 𝑝𝑛𝑛

]
                                                                                      Formula 1.2 

A custom agent-based model is used to simulate the spread of harmful 
microorganisms in a hospital. Difference levels of assumption are used for microbe 
transmission, hand hygiene compliance and hand hygiene efficacy [45]. The 
sensitivity of the results to the change in the assumptions is quantified using four risk 
outcomes based on the number of minutes spent colonised, number of contacts, 
number of people in contact, number of transitions between rooms and the expected 
number of transmissions of an infection HCW.  

In Chapter 4, a potential super-spreader occupation group is identified based on the 
potential risk of transmitting harmful microorganisms quantified using 
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spatiotemporal movements and social mixing patterns. These results will increase 
our insight into the consequences of varying levels of adherence to spatiotemporally 
specific healthcare policies such as hand hygiene compliance in a closed healthcare 
setting.  

1.7 Predicting the spread of AMR in a hospital 
Vancomycin-resistant enterococci (VRE) was first reported in Europe in 1986 and 
since then has been the cause of severe public health and monetary burdens [46,47]. 
These microorganisms can survive on inanimate surfaces for several months while 
spreading throughout hospital departments within days if the proper infection 
prevention strategies are not in place [48]. Studies have shown a significant 
relationship between intrahospital patient movements IPM and the occurrence of 
HAI infection [28,49]. The effects of IPM and antibiotic usage in hospitals are usually 
studied separately in AMR research. The use of antibiotics is usually included as a 
possible confounding effect to predict VRE in patients, but the antibiotics used by 
patients who may have frequented the same ward as the patient in question is often 
neglected. Since hospitals are dynamic systems with many moving objects that can 
serve as vectors for VRE, the occurrence of VRE should be studied using the 
spatiotemporal patterns of patients and antibiotics in the hospital. The occurrence 
of VRE is predicted at the ward level using conventional spatiotemporal patient and 
antibiotics data in Chapter 5. 

Retrospective patient movement and antibiotic data are used from UMCG. The data 
are used to create a directed graph where the nodes are the wards. The patient 
movements are the directed edges between the nodes. The antibiotic data are used 
to create a binary indicator for each edge based on the patient’s antibiotic use (0 =
𝑛𝑜𝑡 𝑢𝑠𝑖𝑛𝑔 𝑎𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐𝑠, 1 = 𝑢𝑠𝑖𝑛𝑔 𝑎𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐𝑠). Using this indicator, a second 
graph is created using only the edges with antibiotic use. Two daily centrality 
covariates are created using the PageRank algorithm to quantify the flow of patients 
and antibiotics at the ward level [50]. These daily centrality measures are based on 
the graph data over the past 30 days. In addition, two traditional covariates are 
calculated the daily number of patients present in each ward and how many of them 
are using antibiotics. In total, four covariates are calculated to explain the occurrence 
of VRE at the ward level. 

The binary outcome variable 𝑌 is defined such that  

𝑌 =  {
1, number of VRE positive patients in ward > 0
0, otherwise

 

The outcome variable is modelled using decision trees and random forest statistical 
models [39,51]. Decision trees are based on systematically splitting the outcome 
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variables according to covariates considered. The result is a set of simple rules based 
on the covariate values that are easy to implement in practice. The random forest 
model is an ensemble of decision trees. The random forest model will perform better 
than the decision tree but will not result in a simple set of rules like the decision tree. 
The difference in model results is compared using the Gini coefficient, which 
summarises all levels of model sensitivity and specificity [52]. 

In Chapter 5, two daily centrality measures were proposed to summarise the flow of 
patients and antibiotics at the ward level using data present in most electronic 
healthcare records. A simple set of rules was produced that can be used to monitor 
VRE risk in hospital wards. An ensemble model was proposed to improve the 
prediction performance at the cost of simplicity. An early warning system for VRE can 
be developed to test and further develop infection prevention plans and outbreak 
strategies using these results. 
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2. Antimicrobial resistance: Identifying knowledge 
gaps using semi-automated topic modelling 

 

 

Abstract 
Antimicrobial resistance is a multifaceted global problem and a significant threat to 
sustainable modern healthcare. Strategic action plans to tackle the increasing 
international threat of AMR are based upon research agendas that can be informed 
using knowledge gaps in the AMR research field. Currently, these knowledge gaps 
are identified manually and are often subjective. The first objective was to use a data-
driven methodology to identify knowledge gaps in AMR research. To this end, the 
twenty years of AMR related articles were extracted from the PubMed database. We 
identified the topics comprising the AMR research field with structural topic 
modelling, while topic clusters were created using hierarchical clustering on the topic 
proportions. Potential AMR knowledge gaps were obtained using Spearman’s 
correlation between topic clusters and topics and between individual topics. A total 
of 88 topics and seven topic clusters were identified from 158 616 scientific AMR 
research articles. In total, 421 potential knowledge gaps were identified between the 
topic clusters and topics and 2 663 between individual topics. Key knowledge gaps 
between molecular and laboratory AMR research were highlighted. The knowledge 
gaps between AMR research regarding water and the environment and both 
institutional and international surveillance topics were highlighted at the topic level. 
These results provide an innovative, data-driven way to identify knowledge gaps in 
AMR research. Technical advisory groups across sectors and industries can use these 
results to guide future AMR research agendas. 

 

 

This chapter is partially based on Luz C, van Niekerk JM, Keizer J, Beerlage-de Jong N, 
Braakman-Jansen A, Stein A, Sinha B, van Gemert-Pijnen L, Glasner C. Mapping 
twenty years of antimicrobial resistance research trends. Available at SSRN 3792901. 
2021 Jan 1. This article was submitted to Artificial Intelligence In Medicine and is 
undergoing minor revision.  
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2.1 Background 
Antimicrobial resistance (AMR) is a multifaceted global problem and a significant 
threat to sustainable modern healthcare [53]. Current research estimates that 
700 000 people die due to AMR annually and that this number may increase to 10 
million by 2050, even though global estimates remain difficult to determine [54,55]. 
Since AMR microorganisms can occur in and spread between humans, animals and 
the environment, it is also studied as a One Health problem [56]. 

To tackle this problem, the World Health Organisation (WHO) has proposed a holistic 
action plan in response to the increasing AMR threat [5]. It was created using the 
consolidated objectives of existing action plans and best practices related to AMR 
and stretches across international sectors, industries, and disciplines. Governments 
are urged to ensure long-term investment for research and development to counter 
AMR. Healthcare professionals are encouraged to prescribe antimicrobials when 
necessary, practice proper hygiene measures to prevent new infections and 
communicate the dangers of misuse of antimicrobials to their patients. Agriculture is 
encouraged to limit the use of antimicrobials on animals and take preventative 
measures to reduce the need for antimicrobials. In parallel, the pharmaceutical 
sector should develop new antimicrobials and find alternatives. But even with the 
increase in multidisciplinary collaboration, these actions can be disrupted by 
knowledge gaps in and between industries and disciplines [5]. To this end, a global 
strategic AMR research agenda was proposed to understand AMR at the global level 
[5]. 

Knowledge gaps can be used to inform AMR research agendas [6–11]. To identify 
knowledge gaps in a research field, a thorough overview and understanding of the 
available knowledge in that research field are needed [12,13]. Knowledge gaps 
constantly need to be assessed for comprehensiveness and relevance. However, with 
the exponential increase in AMR research output, it is increasingly challenging to 
organise and synthesise the current state of AMR research to stay informed about 
previous and most recent scientific contributions [14]. 

A scoping review presented a thematic overview of knowledge gaps research 
covering research related to preventing antibiotic and antimicrobial resistance [3]. A 
total of 431 225 references from the initial search results was reduced to 622 unique 
references using a two-step process. Potential knowledge gaps were manually 
identified by an expert specialising in epidemiology and global health. However, this 
manual expert method has a possible selection bias as the identified knowledge gaps 
and topics might have been different when experts from another discipline would 
have been involved. 
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To overcome this possible bias, data-driven computational techniques for text 
analysis can be used to determine underlying topics in large quantities of literature 
automatically [15]. Recent advances in statistical models for text analysis made it 
possible to estimate the latent topics which generated the words of an observed 
body of text. Structural topic modelling (STM) is state of the art in unsupervised topic 
modelling [35]. STM is preferred to Latent Semantic Analysis (LSA) and Probabilistic 
Latent Semantic Analysis (PLSA) as it results in a probabilistic instead of a rigid 
classification [35]. While Latent Dirichlet Allocation (LDA) and Correlated Topic 
Model (CTM) offer probabilistic results similar to STM, both use simplistic prior 
distributions, while STM takes full advantage of the covariates at the document level 
[57]. 

To create thematic groups of topics in a systematic way, statistical clustering can be 
used to automatically group the latent topics thematically [58,59]. The relationships 
between thematic clusters and other topics can then be quantified automatically 
using the correlation between topic proportions. In this way, less human interaction 
is required to understand their structure.  

This study aims to identify potential knowledge gaps in the AMR research field using 
a data-driven, statistical approach. As a sub-objective, we determine the underlying 
research topic and groups of topics in the AMR research field. It provides a repeatable 
and scalable way to identify potential knowledge gaps in AMR research. 

2.2 Methods 
An overview of the steps followed to arrive at the potential knowledge gaps in AMR 
research is presented in Figure 2-1. The PubMed database was queried using an AMR 
related search string to extract the scientific research related to AMR. A corpus with 
its associated metadata was extracted from these data. These data were used as 
input for the STM algorithm to identify topics in the corpus. The topics were first 
grouped using expert judgement to obtain thematic groups and then quantitatively 
to obtain thematic clusters. Potential knowledge gaps were identified by assessing 
the correlation between the topics and the thematic clusters and between the topics 
themselves. 
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Figure 2-1: Workflow diagram illustrating the process followed to identify potential knowledge gaps in 
AMR research. 
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2.2.1 Search string and data extraction 
The PubMed database was queried using a combination of free text terms (tiab) and 
medical subject headings (MeSH) in a search string consisting of two parts [60]. The 
following search string was used: 1) ("Anti-Bacterial Agents"[MeSH] OR Anti-
Bacterial* [tiab] OR antibacterial* [tiab] OR antibiotic* [tiab] OR antimicrobial* [tiab] 
OR antimycobacterial* [tiab] OR "Antifungal Agents"[MeSH] OR Antifungal* [tiab] or 
anti-fungal* [tiab]); 2) ("Drug Resistance"[MeSH] OR resistan* [tiab] OR "Microbial 
Sensitivity Tests"[MeSH]). The first part of the search string covers the broad 
research field of antimicrobials, while the second part narrows the search results 
down to antimicrobial resistance. The inclusion criteria were such that all results 
were journal articles with a title and abstract and were published between January 
1, 1999 to December 31, 2018. PubMed identification number, author affiliations, 
title, abstract, year of publication and citations were extracted from the NCBI Entrez 
database. 

2.2.2 Corpus 
Title and abstract were merged to create a text variable for each article. The text was 
cleaned from non-words and short (≤ 2 character) character strings and parsed to 
American Standard Code for Information Interchange (ASCII) encoded characters. 
Using the snowball language for stemming algorithms, a list of generic stopwords 
was created. Those, together with a list of domain-specific stopwords, were excluded 
[61]. The final text variable was created by stemming the resultant article text using 
snowball stemming.  

2.2.3 Metadata 
The article affiliation data were used to determine the affiliation of the first author 
of each article. This country was then used as the country variable, while the Google 
Maps API was used to determine the country of the first author if no country was 
listed but an affiliation was given [62]. The PageRank was added as a centrality 
measure based on the citations between the literature extracted to indicate the 
relative importance of each publication [63]. The metadata variables used for STM 
were: 1) year of publication; 2) country; 3) the total number of citations; 4) PageRank. 

2.2.4 Structural topic modelling 

STM assumes that a probabilistic generative process generated the text in the corpus 
according to a specified process structure, associated parameters and document-
level covariates. Once the process is defined, the observed data are used to estimate 
the parameters defined in the generative process using Bayesian inference [64]. 
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The probabilistic generative process is defined by letting each document 𝑑 in corpus 
with size 𝐷𝑜𝑐𝑠 be generated from 𝑇𝑜𝑝𝑖𝑐𝑠 distinct topics, consisting of a possible 
vocabulary of size 𝑉𝑜𝑐. Let  𝑃_𝑉𝑎𝑟𝑠 be a 𝐷𝑜𝑐𝑠 × 𝑝 matrix containing 𝑝 document-
level topic prevalence covariates as rows 𝒙𝑑. Similarly, let 𝐶_𝑉𝑎𝑟𝑠 be a 𝐷𝑜𝑐𝑠 × 𝑙 
matrix containing 𝑙 document-level topical content variables as rows 𝒚𝑑. 

Let each document have 𝑁_𝑊𝑜𝑟𝑑𝑠𝑑 words indexed by 𝑛 such that 𝑛 ∈
{1, . . . , 𝑁_𝑊𝑜𝑟𝑑𝑠𝑑}. Each 𝑛 is assigned a topic 𝑡𝑜𝑝𝑖𝑐𝑑,𝑛 according to its assumed 
distribution:  

𝑡𝑜𝑝𝑖𝑐𝑑,𝑛|𝜃𝑑 ∼Multinomial(𝜃𝑑)     (Formula 2.1) 

where 0 ≤ 𝜃𝑑 ≥ 1 is defined for each document 𝑑 as 

𝜃𝑑|𝑃_𝑉𝑎𝑟𝑠𝑑𝛾, 𝛴 ∼LogisticNormal(𝜇 = 𝑃_𝑉𝑎𝑟𝑠𝑑𝛾, 𝛴)  (Formula 2.2) 

where 𝛾 is the 𝑝 × 1 coefficient vector such that 𝑃_𝑉𝑎𝑟𝑠𝑑𝛾 is the covariate specific 
prior and 𝛴 the (𝐾 − 1) × (𝐾 − 1) global topic covariance matrix. 

The probability distribution of the words in vocabulary 𝑉𝑜𝑐 for each topic 𝑡𝑜𝑝𝑖𝑐 and 
document 𝑑 with its associated covariates 𝑃_𝑉𝑎𝑟𝑠𝑑 is given by 

𝛽𝑑,𝑘 ∝exp(𝑚 + 𝜅𝑘
(𝑡)

+ 𝜅𝑦𝑑

(𝑐)
+ 𝜅𝑦𝑑,𝑡𝑜𝑝𝑖𝑐

(𝑖)
)     (2.3) 

where exp is the exponential distribution, 𝑚 is the baseline word distribution and 

𝜅𝑘
(𝑡)

 and 𝜅𝑦𝑑

(𝑐)
 are the topic-specific and covariate group deviations respectively  and 

𝜅𝑦𝑑,𝑡𝑜𝑝𝑖𝑐
(𝑖)

 is their interaction. 

For each word 𝑤𝑑,𝑛 in document 𝑑 we sample a word from the multinomial 

distribution with parameter 𝛽𝑑,𝑘 where 𝑘 = 𝑡𝑜𝑝𝑖𝑐𝑑,𝑛 defined as 

𝑤𝑑,𝑛|𝑡𝑜𝑝𝑖𝑐𝑑,𝑛, 𝛽𝑑,𝑘=𝑡𝑜𝑝𝑖𝑐𝑑,𝑛
∼Multinomial(𝛽𝑑,𝑘=𝑡𝑜𝑝𝑖𝑐𝑑,𝑛

)   (2.4) 

The complete generative process is presented graphically in Figure 2-2. 
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Figure 2-2: A graphical illustration of the STM generative process with the observed variables shaded. 

The parameters are estimated using semi-collapsed variational expectation 
maximisation [65]. The joint optimum for topic proportions 𝜃𝑑 and word-level topic 
assignment 𝑡𝑜𝑝𝑖𝑐𝑑,𝑛 are obtained in the E-step by iterating through each document 

and updating the variational posteriors followed by the M-step where the evidence 
lower bound (ELBO) is maximised with respect to the global parameters (𝜅, 𝑦 and 𝛴) 
[64–70]. This process is repeated until the ELBO convergences. The result is the 
estimated multinomial posterior distribution 𝜃𝑑  over the latent topics for each 
document (Formula 2.1) and the multinomial distribution over the vocabulary for 
each of the identified topics (Formula 2.4). 

2.2.5 Implementation 
The problem of obtaining the optimal number of topics assumed to have generated 
the literature is NP-hard [71]. To proceed, we used a grid analysis to identify possible 
optimal values for (𝐾) [72]. Mixed-membership topic models have non-convex 
posteriors, which may result in the convergence to a local optimum when applying 
an expectation maximisation optimisation [69]. Spectral learning can be used to find 
the global maximum in multi-modal models consistently. In the case of STM, it can 
be used to determine a value of 𝐾 which is in a region where the optimal value of 𝐾 
can be found [69,73]. Topic models based on different values of 𝐾 can be compared 
quantitatively in terms of semantic coherence, i.e. how frequently cooccur high 
probability words for a topic, and the exclusivity the topics, i.e. how unique are the 
topics in terms of words with high probability. This study used spectral learning to 
find the initial value for 𝐾∗ and further investigated the semantic coherence and 
exclusivity for topics based on values of  𝐾 in the region of 𝐾∗ to find the optimal 
number for 𝐾 quantitatively. 
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The interpretability of the topics determined the final decision of the number. A 
panel of healthcare professionals compared the interpretability of the topic models, 
which produced the best qualitative fit [72]. They assigned topic names by evaluating 
the ten words most highly associated with each topic and reviewing the five 
documents with the largest associated topic proportions (𝜃𝑑) [74]. Topic names were 
further refined by scanning titles and abstracts of five highly associated documents 
per topic and five important documents per topic by PageRank. No topic name was 
assigned if this process did not converge to a meaningful name. Consensus was 
reached when both researchers differed in their generated topic names. Five 
independent AMR researchers reviewed this process and verified the generated 
topic names. The final model was chosen based on the highest number of topics with 
an assigned topic name. Each document was assigned the topic name of the topic 
comprising the highest proportion of the document’s text. Topics in the final model 
were inductively coded into thematic groups to navigate the results. 

2.2.6 Thematic clusters 
The thematic groups were created using expert judgement and may be prone to bias. 
This possible limitation is overcome by an optimal grouping of topics quantitatively 
as thematic clusters. 

The topic proportions (𝜃𝑑) of each of the articles were used to create a 𝐷𝑜𝑐𝑠 × 𝐾 
topic proportion matrix, where the columns contain the 𝐾 topic proportions. We use 
the topic proportions across the articles to identify larger research areas in AMR 
research. We cluster the identified topics using the degree to which the topic 
proportions are related across the articles. Using the topic proportion matrix, an 
𝐾 × 𝐾 correlation matrix 𝐶 was obtained with elements 𝑐𝑖𝑗, the correlation between 

topic proportions of topics 𝑖 and 𝑗. The degree to which the topics are related was 
quantified using the distance matrix 𝐷𝑖𝑠𝑡 = 1 − 𝐶. 

Topics were clustered into 𝑇 thematic clusters (TC) using 𝐷𝑖𝑠𝑡 and applying the 
complete-linkage algorithm [75]. This algorithm sequentially combines topics nearest 
to each according to the distance matrix 𝐷𝑖𝑠𝑡 until the optimal value 𝑇∗ was reached. 
Using the silhouette width, 𝑇∗ was determined by minimizing the average distance 
between topics in the same cluster and maximizing distance to the topics in the 
nearest other cluster [76]. From manual topic modelling performed on AMR 
literature, we know that at least five TCs exist in the literature [3]. Thus, we apply the 
additional condition that 𝑇∗ ≥ 5 and 𝑇∗ is the largest value before a significant 
decrease in the silhouette width occurs. 
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2.2.7 Thematic cluster focus 
The topics proportion was used to determine the most prominent topics for each TC 
and describe the focus of the content concisely. The number of focus topics for each 
TC was limited to five to make the results tractable. Another criterion of the focus 
topics was that their topic proportion must be at least 15% of the largest topic 
proportion in that TC. For example, if 70% of the topic proportion in TC was assigned 
to the surveillance topic and the second-largest topic proportion was assigned to the 
surgical site infections topic with 10%, then the focus of the TC would be surveillance. 

Since 
10%

70%
= 14.23% ≤ 15%, the TCs only has one topic as the focus. If surgical site 

infections had a topic proportion of 25%, the focus would be surveillance as well as 

surgical site infections, since 
25%

70%
= 35.71% > 15%. 

2.2.8 Knowledge gap identification 
Knowledge gaps are areas in scientific research where the information to support 
answers to the questions asked in those areas is either insufficient or non-existent 
[77]. We assume that the number of knowledge gaps between two research areas is 
negatively correlated with the strength of the relationship between them. Should 
there exist a strong relationship between the two research areas, we assume fewer 
knowledge gaps exist. If the relationship between them is weak, then we assume 
there is less evidence to support the questions asked between them. 

In this context, we use the AMR topics and TCs as research areas. The degree of 
relatedness between these topics and TCs was determined using Spearman's rank 
correlation coefficient based on the topic proportions [36]. Potential knowledge gaps 
can be identified in two ways: 1) between a TC and a topic, which indicates a lesser 
representation of the topic in the larger research area; 2) between individual topics, 
which shows that the two topics are typically not studied together. We first identify 
the potential knowledge gaps between TCs and a topic and then describe the 
knowledge gaps in more detail by considering the potential knowledge gaps between 
topics. Potential knowledge gaps were identified as pairs of TCs and topics or 
between two topics with statically significant negative correlations at the 0.05 
significance level. 

2.2.9 Data availability and interactive user interface 
This study generated substantial amounts of data that enable detailed analyses. The 
results in this manuscript present only selected highlights from these data. An 
interactive web-based application was developed to repeat this study’s analyses and 
enable further analyses (https://topicsinamr.shinyapps.io/amr_topics/). 
Additionally, individual articles can be searched and assessed and the topic model 

https://topicsinamr.shinyapps.io/amr_topics/
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can be leveraged to evaluate texts from new articles not included in this study. 
Moreover, the data used and generated in this study are openly available under 
(https://osf.io/j3d65/). 

2.2.10  Software 
The R statistical programming language was used to perform the analyses in this 
study [78]. The RISmed and easyPubMed packages were used to extract the data 
from the PubMed database [79,80]. In addition, the tidyverse R packages was used 
to clean and structure the data [81]. Structural topic modelling was performed using 
the R stm package [70]. 

2.3 Results 
In total, 158 616 articles were included, showing a steady increase over the past 20 
years (8.5% nominal annual increase). In 2018, 14 547 articles were published, an 
increase of 450% compared to 1999.  

2.3.1 Topic modelling 
The optimal number of topics for the structural topic model was determined to be 
equal to 𝐾∗ =  75. To investigate the sensitivity around 𝐾∗, we determined the 
semantic coherence and exclusivity measures for 𝐾 from 15 to 205 in steps of 10. 
Semantic coherences suggested that the topics are more coherent as the number of 
topics increase beyond 205. The exclusivity measure indicated that the topic fits the 
corpus best between 𝐾 = 95 and 𝐾 = 155. The healthcare experts determined that 
𝐾 = 95 was the best qualitative fit based on the interpretability of the topics 
identified.  

Topic names were manually assigned to each topic as well as one of seven thematic 
group names: 1) Strategy; 2) Methods; 3) Clinical; 4) Pathogen; 5) Compound; 6) 
Structure; 7) Environment. Correlations of the topic proportions and the thematic 
group names are shown in Figure 2-3. 

 

https://osf.io/j3d65/
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Figure 2-3: Topic names weighted by the topic proportion correlations. 

2.3.2 Thematic clusters 
The silhouette width indicated that the optimal number of thematic clusters is 𝑇∗ =
2. The first significant decrease in the average silhouette after 𝑇 = 5 was observed 
from 𝑇 = 7 to 𝑇 = 8. Thus, 𝑇∗ = 7 was used for the optimal number of TCs.  

The seven TCs with their respective foci are shown in Figure 2-4. The sub-figures are 
radar plots with evenly spaces axis leading to the perimeter of the graphs. A radar 
plot of a TC with similarly proportioned foci resembles a regular pentagon, e.g., TC2. 
This resemblance indicates that there is no single strong focus and that the main 
topics in the TC have a similar representation in the article text. In comparison, the 
radar plot of TC1 resembles a sharp triangle as it is the only TC with less than five foci 
with concentrated topic proportions in emerging resistances and diseases and 
stewardship. The focus of TC2 consists of topics related to patient outcomes and 
institutional surveillance. TC3 pertains to laboratory research with a focus on 
resistance testing and new antimicrobial compounds. Topics related to genomic 
resistance patterns in healthcare and agriculture and international surveillance 
topics are the focus of TC4. Treatment outcomes and antimicrobial efficiency is the 
focus of TC5. TC6 is centred around sequencing the human microbiome, and the 
environment. TC7 has its focus in new compounds and novel molecular targets. 
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Figure 2-4: Thematic clusters and their foci. 

2.3.3 Identifying knowledge gaps 
In total, 421 potential knowledge gaps were identified between TCs and topics and 2 
663 between individual topics. We highlight some key results in this section and 
invite the reader to identify more knowledge gaps from the complete set of results. 
The ten topics with the largest negative correlation for each TC are shown in Table 
2-1. All the correlations shown in this table are statistically significant with p-values 
of < 0.001. We highlight potential knowledge gaps in TC3, TC5 and two potential 
knowledge gaps at the topic level. 

Table 2-1: The ten most unrelated topics to each thematic cluster. 

Thematic Cluster Unrelated topic 
Correl
ation p-value 

Th
em

at
ic

 
C

lu
st

e
r 

1
 

MIC testing -17.2% < 0.001 

Typing -13.0% < 0.001 

Bacterial growth conditions -12.3% < 0.001 

Mobile genetic elements -12.2% < 0.001 

Fusidic acid -12.1% < 0.001 
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New compound synthesis -11.9% < 0.001 

Escherichia coli -11.8% < 0.001 
Resistance mechanisms in gram-
positive -10.8% < 0.001 

Protein function in cellular pathways -10.4% < 0.001 

Resistance genes -9.9% < 0.001 

Th
em

at
ic

 C
lu

st
e

r 
2

 

Novel molecular targets -18.0% < 0.001 

New compound synthesis -14.3% < 0.001 
Antimicrobials and microorganism cell 
membrane -14.0% < 0.001 

Gene expression -14.0% < 0.001 
Antimicrobials and molecular 
interactions -13.4% < 0.001 

Bacterial growth conditions -13.1% < 0.001 

Fusidic acid -12.8% < 0.001 

Protein function in cellular pathways -12.1% < 0.001 

Cell response to stress -12.1% < 0.001 

Pre-clinical testing -11.9% < 0.001 

Th
em

at
ic

 C
lu

st
e

r 
3

 

Strategies for emerging resistances and 
diseases -20.7% < 0.001 

Long-term treatment outcome -19.1% < 0.001 

Stewardship -15.2% < 0.001 

Clinical efficacy test -14.3% < 0.001 
Risk factors and outcome in 
bacteraemia -13.0% < 0.001 

Institutional surveillance -12.9% < 0.001 

MDR TB -12.8% < 0.001 

Host microbiota -12.6% < 0.001 

Data modelling and estimation -10.8% < 0.001 

Case reports -10.7% < 0.001 

Th
em

at
ic

 C
lu

st
e

r 
4

 Novel molecular targets -18.7% < 0.001 

Pre-clinical testing -17.9% < 0.001 

New compound synthesis -17.4% < 0.001 
Antimicrobials and microorganism cell 
membrane -15.3% < 0.001 

Cytotoxicity -14.4% < 0.001 

Nanoparticles -14.3% < 0.001 
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Strategies for emerging resistances and 
diseases -14.3% < 0.001 

Cell response to stress -12.8% < 0.001 

Antimicrobial peptides -12.6% < 0.001 
Active compound extraction from 
plants -12.2% < 0.001 

Th
em

at
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 C
lu

st
e

r 
5

 

Typing -14.4% < 0.001 

Mobile genetic elements -11.7% < 0.001 

Sequencing -10.7% < 0.001 

Resistance patterns on hospital level -9.5% < 0.001 

ESBL -8.5% < 0.001 
Antimicrobials and molecular 
interactions -8.4% < 0.001 

Plasmids -8.4% < 0.001 

International surveillance -8.3% < 0.001 

New compound synthesis -8.1% < 0.001 

Escherichia coli -8.1% < 0.001 

Th
em

at
ic

 C
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r 
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Long-term treatment outcome -26.3% < 0.001 

Institutional surveillance -20.8% < 0.001 

Clinical efficacy test -20.0% < 0.001 

Resistance patterns on hospital level -19.4% < 0.001 
Risk factors and outcome in 
bacteraemia -17.5% < 0.001 

MIC testing -17.3% < 0.001 
Microbial identification in blood 
cultures -16.8% < 0.001 

International surveillance -16.3% < 0.001 

Stewardship -15.6% < 0.001 

Case reports -13.2% < 0.001 

Th
em

at
ic

 C
lu

st
e

r 
7

 Long term treatment outcome -19.2% < 0.001 

Institutional surveillance -16.7% < 0.001 

Resistance patterns on hospital level -16.4% < 0.001 

Typing -15.2% < 0.001 
Risk factors and outcome in 
bacteraemia -14.3% < 0.001 

Clinical efficacy test -14.1% < 0.001 

International surveillance -13.7% < 0.001 
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Microbial identification in blood 
cultures -13.3% < 0.001 

Infection control -13.2% < 0.001 
Resistance profiles in livestock and 
humans -13.0% < 0.001 

The knowledge gap analysis revealed that the TC3 is unrelated to Risk factors and 
outcome in bacteraemia (-13.0%), Long term treatment outcome (-19.1%), 
Stewardship (-15.2%) and clinical efficacy test (-14.3%). Comparing the topics that 
make up TC3, Bacterial growth conditions has a relatively large negative correlation 
(-6.5%, -10.0%, -5.8% and -8.0%) while Staphylococcus aureus and Vancomycin 
resistance are positively correlated with the highlighted, unrelated topics except for 
Stewardship (5.2%, 7.2%, -3.4% and 8.8%) (Table 2-2). This result highlights the 
potential knowledge gaps in the research area related to AMR laboratory research 
(TC3) and four topics related to clinical practice. 

Table 2-2: Potential knowledge gaps in TC3. 

Thematic Cluster 3 
topic 

Institutio
nal 
surveillan
ce 

Risk factors 
and outcome 
in 
bacteraemia 

Long term 
treatment 
outcome 

Steward
ship 

Clinical 
efficacy 
test 

Active compound 
extraction from plants -6.4% -5.4% -8.6% -4.4% -6.7% 
Bacterial growth 
conditions -7.7% -6.5% -10.0% -5.8% -8.0% 

CoNS 0.0%* -1.1% -0.5% -2.7% -2.5% 

Essential oils -4.2% -3.5% -5.7% -3.0% -4.4% 
Food contamination 
and preservation -5.1% -4.6% -7.5% -2.9% -5.5% 

Fusidic acid -7.4% -7.2% -10.0% -6.2% -7.1% 

Honey -2.4% -2.3% -3.4% -1.8% -2.5% 
Introduction of new 
antimicrobials 1.3% -2.1% 0.7% -3.2% 8.2% 
Isolation of new 
antimicrobial agents -6.2% -5.4% -8.5% -4.6% -7.0% 

MIC testing -3.8% -6.6% -7.9% -8.0% -6.7% 

Oral flora & anaerobes -3.4% -3.1% 2.4% -1.7% 2.5% 

Probiotics -4.3% -3.6% -5.6% -3.1% -3.8% 
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Purification of 
antimicrobial 
substances -5.4% -4.4% -7.2% -3.7% -4.9% 
Resistance 
mechanisms in gram-
positive -1.4% -3.9% -5.7% -5.4% -6.0% 
Spectroscopy and 
compounds from 
natural resources -5.3% -4.4% -7.2% -3.8% -6.0% 
Staphylococcus 
aureus 6.2% 5.3% 2.8% -4.7% -3.6% 
Vancomycin 
resistance 4.6% 5.2% 7.2% -3.4% 8.8% 

*Correlation is not statistically significant at a 0.05 level of significance. Bold formatting indicates the 
results highlighted. CoNS= Aoagulase-negative staphylococci; MIC=Minimum inhibitory concentration. 

Next, we highlight the potential knowledge gap between TC5 and Typing (-14.4%), 
Mobile genetic elements (-11.7%), Sequencing (-10.7%), Resistance patterns on 
hospital level (-9.5%) and ESBL (-8.5%). The unrelated topics have high negative 
correlations with Clinical efficacy test (-10.0%, -9.0%, -8.1%, -5.4% and -5.6%) and 
Pre-clinical testing (-11.0%, -7.9%, -6.6%, -11.0% and -6.1%). This result highlights 
potential knowledge gaps between the clinical AMR research area (TC5) and topics 
related to molecular AMR research. 

Table 2-3: Potential knowledge gaps in TC5. 

Thematic Cluster 5 topic  Typing 

Mobile 
genetic 
elements Sequencing 

Resistan
ce 
patterns 
on 
hospital 
level ESBL 

Clinical efficacy test -10.0% -9.0% -8.1% -5.4% -5.6% 

Helicobacter eradication -2.7% -2.5% -2.4% -0.8% -2.5% 

Ocular infections -2.8% -2.5% -2.3% 1.3% -2.1% 

PKPD -6.6% -5.2% -5.0% -5.1% -3.5% 

Pre-clinical testing -11.0% -7.9% -6.6% -11.0% -6.1% 
Bold formatting indicates the results highlighted. PKPD=Pharmacokinetic/Pharmacodynamic. 

At the topic level, there exist potential knowledge gaps between Institutional 
surveillance and international surveillance and Water, and environment with a 
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correlation of -3.9% and -2.0%, respectively. Another potential knowledge gap at the 
topic level is Resistance patterns on hospital level and  Data modelling and estimation 
with a correlation of -8.1%. 

We compare the TCs derived using the semi-automated framework introduced in this 
study with the thematic groups that manually group the topics in [15]. The 
comparison shows that most TCs are combinations of two to three thematic groups. 
TC1 only relates to topics associated with the Strategy thematic group, whereas TC3 
and TC4 relate to three thematic groups.  
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Figure 2-5: A comparison between thematic groups and thematic clusters connected by topics. Thematic 
group = names assigned to similar topics [15]. Only topics with a summed topic proportion of 2 000 are 
displayed for conciseness. 

2.4 Discussion 
We identified potential knowledge gaps in published research in the field of 
antimicrobial resistance (AMR) from the past 20 years using a semi-automated 
framework. Seven research areas were identified in the form of thematic clusters 
(TCs) using the 88 identified AMR topics. In total, 421 potential knowledge gaps were 
identified between the TCs and topics and 2 663 between individual topics. We 
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highlighted potential knowledge gaps in two TCs and between two topics and 
provided the complete results for future research. 

2.4.1 Thematic clusters 
The optimal number of clusters explaining the variance in the 88 AMR topics was 
determined as seven. This result is similar to the manual approaches used even 
though the content of the thematic clusters differs [3,15]. Comparing the TCs and the 
intuitive, thematic groups suggested that some of the TCs and thematic groups are 
very similar, such as TC1 and the Strategy thematic group and TC2 and the Clinical 
thematic group. Other TCs were a clear combination of thematic groups, e.g., TC6 
contains topics from the Structure and Environment thematic groups. Using STM, we 
were able to model the complicated nature of how research topics are studied 
together, which would not be possible to do manually. This comparison illustrated 
the difference between manually grouping research based on the perceived topic 
and using a data-driven framework to understand the complexities of how those 
topics are studied together in scientific literature. 

2.4.2 Knowledge gaps 

Thematic cluster 3 

Risk factors and outcome in bacteraemia, Long term treatment outcome, 
Stewardship and clinical efficacy test were identified as knowledge gaps in TC3. These 
topics are closely related to each other and are typically studied in clinical AMR 
research. Since the foci of TC3 are five topics related to AMR laboratory research, we 
conclude that these are the knowledge gaps related to a combination of clinical and 
laboratory AMR research. 

The topics Risk factors and outcome in bacteraemia, Long term treatment outcome, 
and Clinical efficacy test are based on clinical outcomes under existing or potential 
AMR conditions. A limited number of studies have shown how AMR research related 
to Bacterial growth conditions can be studied with these clinical-outcome topics to 
significant effect. One study showed that favourable conditions for the germination 
of clinical Clostridium difficile spores are correlated with disease severity and adverse 
treatment outcomes [82]. Another study found that high levels of heavy metals (lead 
and cadmium) in patient blood is a risk factor for AMR [83]. These studies are an 
example of how technical laboratory analysis can be applied in clinical research. 

Antimicrobial stewardship programmes, defined as a coherent set of actions that 
promote using antimicrobials responsibly, have become mandatory parts of 
institutional healthcare in many countries [84]. Over the last years, the stewardship 
term is also broadly used to incorporate antimicrobial use and other essential aspects 
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in diagnostics and infection prevention (e.g., diagnostic stewardship) [85]. This study 
identifies significant gaps with Staphylococcus aureus, vancomycin resistance, 
isolation of new antimicrobial agents and CoNS that can raise awareness in these 
unique aspects of stewardship.  

Thematic cluster 5 

The top five topic unrelated topics to TC5 are closely linked to each other. Sequencing 
is slowly replacing the role of Typing, although Typing is still widely used as a faster 
and cheaper alternative. These two topics are naturally related to the study of Mobile 
genetic elements, Resistance patterns on hospital level and Extended spectrum beta-
lactamase (ESBL). 

ESBL can be produced by certain bacteria, making them more resistant to beta-
lactam antibiotics [86]. Even though the treatment outcome of patients with ESBL-
producing bacteria are well represented in the scientific literature [87,88], this study 
found a research gap between ESBL and Clinical efficacy test, Pre-clinical testing and 
PKPD. More septically, we found that the Clinical efficacy test and Sequencing are still 
unrelated in the AMR research field. AMR genetic determinants such as the 
production of efflux pumps and enzymes that reduce the effectiveness of 
antimicrobials can be identified using sequencing and typing technologies [89]. These 
technologies remain unrelated to topics that study the efficacy of new antibiotics. 
This knowledge gap could be addressed by research where the efficacy of new 
antibiotics is studied for different strains of bacteria identified through typing or 
sequencing. The results may lead to improved personalised patient treatments 
where the antibiotics prescribed depend on the strain of the bacteria [90]. 

Since the foci of TC5 contain topics related to the clinical study of AMR, we describe 
these knowledge gaps as the gap existing between the clinical and molecular AMR 
research. 

Water and environment and surveillance  

The results showed that Water and environment is unrelated to both international 
and institutional surveillance-related topics. Local, regional and international 
surveillance systems have been set up and used for extensive research, mainly 
focussing on hospitalised patients [91]. AMR can occur in healthy patients, but 
sampling this healthy population remains challenging. The water and environment 
surrounding the healthy population can be used to estimate the current state of AMR 
across the entire population. 
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Recent studies have shown that sewage and wastewater can be sampled to monitor 
the level of AMR at the community level [91,92]. At the institutional level, it was 
shown how AMR fluctuates on the personal mobile devices of nurses in intensive 
care units [93]. Together, these measurements can enrich surveillance reports to 
provide a holistic view of the institutional and international levels of the AMR 
situation. Yet, these topics are still unrelated in AMR research. 

Data modelling and estimation and resistance patterns on hospital level 

The knowledge gap between Data modelling and estimation and Resistance patterns 
on hospital level was highlighted in AMR research. The scientific literature available 
on data modelling and estimation of AMR patterns at the hospital level is limited and 
was confirmed by the results of this study. Combining epidemiological and 
microbiological data is essential to understand the resistance dynamics at the 
genetic, cellular, patient, and population levels. The lack of these data leads to the 
exclusion of essential mechanisms contributing to the uncertainty when modelling 
AMR [94].  

The connectivity between patients, hospital wards and healthcare workers is how 
transmission of AMR occurs inside hospitals [28,30,95]. Few models aim to predict 
the occurrence and spread of AMR using empirical spatiotemporal data [96]. 
Typically, these movements are not tracked due to the lack of technologies, financial 
cost and the sheer complexity of system implementation. In some instances, these 
networks structures are estimated through expert knowledge and anecdotal case 
studies rather than empirical data. The mathematical models in the AMR research 
area remain predominantly deterministic. Some research recognises the critical role 
played by these data in viral epidemiology. For example, Brockmann et al. showed 
how complex spatiotemporal patterns extracted from global air traffic data could 
explain the spread of SARS [97]. No equivalent study could be found for AMR, and 
the gap still exists. 

2.4.3 Limitations 
This study assumed that a negative correlation between two topic proportions is an 
indication that there may exist a gap in the current AMR research. Without human 
intervention, it is not possible to determine if those potential knowledge gaps are  
worth exploring. Some topics may be unrelated for obvious reasons and are not 
worth exploring together. For example, the relationship between the topic cytotoxic 
cell lines and a TC focussing on surveillance may be weak. Even though some 
questions can be formulated in this area, they may not be sensible, relevant, or highly 
important, but they can be considered because of this study. A future research 
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opportunity is to automate and generalise this framework even further by 
introducing methods that understand the topic's contextual nature and their 
relationship to each other. 

Another assumption made in this study was to determine the TC foci. The TC foci give 
the most prominent topics for each TC, but the next or sixth most prominent topic 
could also be essential to determine the context of the TC. Similarly, the 15% rule to 
determine the TC foci was used to create concise results and not to maximise the 
interpretability of the TC. Future research can improve this by using text analysis 
across the topics to extract a coherent contextual summary of each TC. 

2.5 Conclusion 
A semi-automated data-driven approach was used to identify the potential 
knowledge gaps based on 88 topics identified in AMR research published over the 
past 20 years. Examples of knowledge gaps were highlighted, and a complete list of 
potential knowledge gaps was provided for the community to investigate further. 
Technical advisory groups across industries and sectors can use these results to guide 
future AMR research agendas. Future research can use the applied methodology to 
other research fields to enumerate the potential knowledge gaps.  
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3. Risk factors for surgical site infections using a 
data-driven approach 

 

 

Abstract 
Surgical site infections make up 19.6% of healthcare-associated infections in Europe. 
Risk factor identification studies do not usually specify how continuous variable cut-
offs are determined. In most cases, they are not determined by the data. The second 
objective was to identify risk factors for surgical site infection from digestive, thoracic 
and orthopaedic system surgeries using clinical and data-driven cut-off values. 
Retrospective surgery data were used from a tertiary care hospital in The 
Netherlands. Risk factors were identified using a multivariate forward-step logistic 
regression model. Standard medical cut-off values were compared with cut-offs 
determined from the data. For digestive, orthopaedic and thoracic system surgical 
procedures, the risk factors identified were preoperative temperature of 38 oC and 
antibiotics used at the time of surgery. C-reactive protein and the duration of the 
surgery were identified as risk factors for digestive surgical procedures. Being an 
adult (age ≥ 18) was identified as a protective effect for thoracic surgical procedures. 
Data-driven cut-off values identified for temperature, age, and CRP, explained the SSI 
outcome up to 19.5% better than standard medical cut-off values. Future studies 
should investigate if data-driven cut-offs can add value to explaining the modelled 
outcome and not solely rely on standard medical cut-off values to identify risk 
factors. 

 

 

 

 

 

 

This chapter was published as van Niekerk JM, Vos MC, Stein A, Braakman-Jansen 
LM, Voor in ‘t holt AF, van Gemert-Pijnen JE. Risk factors for surgical site infections 
using a data-driven approach. PloS one. 2020 Oct 28;15(10):e0240995.  
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3.1 Background 
Surgical site infections (SSI), as defined by the European Centre for Disease 
Prevention and Control (ECDC), make up 19.6% of the total number of healthcare-
associated infections (HAIs) in Europe [1]. With an estimated 81 089 patients in 
Europe having an HAI on any given day, almost 16 000 people in Europe are suffering 
from some form of SSI at any given time [2]. The burden of SSI can be measured in 
terms of increased length of stay in hospital, additional (surgical) procedures 
required, increased morbidity and mortality, as well as in economic terms [100].  

Risk factors relating to the patient, procedure and the environment alter the odds of 
an SSI occurring. Research has been done to identify risk factors for SSI with the aim 
to identify preventative actions to reduce the incidence rate of SSI [101–107]. 
Patient-related risk factors for SSI, such as obesity, diabetes, surgery duration and 
the American Society of Anaesthesiologists (ASA) score are risk factors for digestive 
system, thoracic and orthopaedic surgical procedures [15], [18–28]. In low-income 
countries, risk factors in low-income countries also include unemployment and level 
of education due to the disparity in socioeconomic status [117]. Risk factors can be 
modifiable or non-modifiable [109]. Modifiable risk factors are the most interesting 
of the two since they can be changed preoperatively to reduce the risk of SSI.  

The Segmentation of surgical procedures into homogenous groups makes it possible 
to find useful and relevant risk factors unique to each segment. Digestive system 
surgical procedures are more prone to SSI as they are generally clean-contaminated 
or dirty surgeries, making deep space SSI more likely. The occurrence of SSI after 
thoracic and orthopaedic surgeries are both relatively low because they are both 
typically clean surgeries, but the probability of attracting a deep space SSI after 
thoracic surgery is much higher compared to orthopaedic surgeries [118]. Because of 
these differences, we focus on digestive system, thoracic and orthopaedic surgical 
procedures for this study.  

Multivariate logistic regression is the most common statistical model used to identify 
risk factors in longitudinal study design data [119]. Not all studies report the 
discriminatory power of the multivariate logistic regression model fitted. Risk factor 
identification studies do not usually specify how continuous variable cut-offs are 
determined. Cut-off values for variables such as age (≥ 18) or patient temperature 
(37 oC ) may seem intuitive or standard for clinical practice, but they may not 
statistically be the best cut-offs values determined by the data [39].  

The objective of this study is to identify risk factors for SSI from digestive, thoracic 
and orthopaedic system surgeries using clinical and data-driven cut-off values. A 
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second objective is to compare the identified risk factors in this study to risk factors 
identified in the literature. 

3.2 Methods 
3.2.1 Literature search 

A literature search was performed to identify known risk factors for SSI associated 
with digestive system surgical procedures, thoracic surgery and orthopaedic 
procedures using the corresponding medical subject headings (MeSH) linked data 
representation and the MEDLINE database.  

Search strings used for MEDLINE literature search: 
1. “Surgical Wound Infection”[Mesh] AND “Risk Factors”[Mesh] AND “Digestive 

System Surgical Procedures”[Mesh] 
2. “Surgical Wound Infection”[Mesh] AND “Risk Factors”[Mesh] AND 

“Orthopaedic Procedures”[Mesh] 
3. “Surgical Wound Infection”[Mesh] AND “Risk Factors”[Mesh] AND “Thoracic 

Surgery”[Mesh] 

The search results were sorted, using the Best Match algorithm developed by 
PubMed [120]. Search results were deemed relevant using title and abstract 
screening. Risk factors were extracted if they were significant in a multivariable 
analysis until data saturation was achieved [121]. Risk factors identified, which were 
common to all three groups of surgeries, were defined as “general risk factors” in this 
study.  

3.2.2 Setting and data collection 
The Erasmus MC University Medical Centre in Rotterdam is one of the largest 
university medical hospitals in the Netherlands with more than 1 320 beds [21]. The 
data used for this study were anonymised in accordance with the Dutch Personal 
Data Protection Act (WBP). Approval from the Medical Ethical Research Committee 
was obtained (MEC-2018-1185). 

A weekly prevalence survey was performed by infection control practitioners (ICP) 
from January 2013 until December 2013 and two-weekly until June 2014 using a 
semi-automated algorithm proposed by Streefkerk et al. [40,122]. This algorithm was 
used to calculate a nosocomial infection index (NII) which was then verified by ICP in 
case of a positive outcome to determine whenever an HAI was present or not. An ICP 
verified all patients with an NII > 7, and a definite SSI outcome was concluded by the 
ICP using the electronic patient data system. This outcome was used in this study as 
the occurrence of SSI outcome variable. 
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Data were extracted from a centralised database, containing cross-departmental 
data, clinical synopsis reports, infectious disease consultation reports, laboratory 
results and imaging reports. Surgeries were included if they were part of the three 
groups of surgeries under investigation in this study and had a point prevalence 
measurement within 30 days after the surgery took place. If a second surgery took 
place within 30 days after an included surgery, then the recent surgery was excluded. 
All emergency surgeries were excluded to avoid possible undesirable confounding 
effects relating to the urgency and necessity of the surgeries. 

3.2.3 Statistical analysis 
The differences in the averages of variables with missing values and those without 
were evaluated using t-tests and were found statistically significant. Little’s missing 
completely at random (MCAR) test was used to determine if the missing values were 
dependent on the data values themselves or not. These tests convinced us that the 
missing values were not completely randomly missing and that we could not make 
use of more simple imputation methods. Therefore, we chose to use conditional 
Markov chain Monte Carlo (MCMC) with multiple imputations for the imputation 
process [23,24]. 

Two methods were used to discretise continuous measurement variables: 1) 
standard medical cut-offs as used by Erasmus MC and 2) recursive partitioning [39]. 
Recursive partitioning is a data-driven, supervised discretisation method, used to 
group continuous values with similar outcomes optimally. The data-driven method 
was used to test and confirm if the standard medical cut-offs were the best way to 
explain the outcome variable for the groups of surgical procedures considered.  

To build a prognostic prediction model for SSI, Hosmer et al. suggest fitting a 
univariate logistic regression model to each variable separately and if the p-value is 
less than a specific p-value, 0.1 is this case, then consider the variable good enough 
to include in the multivariate logistic regression model [125]. A univariate analysis 
was performed for each of the three groups of surgeries using the variables identified 
from the literature search. Significant variables (p<0.1) in the univariate analysis 
were added to the list of variables associated with each group of surgery, together 
with the variables identified from the literature search. This resulted in an extended 
list of general risk factors as more risk factors were common across the three groups 
of surgeries. 

A multivariate logistic regression model was built using a forward stepwise approach 
for each of the three groups of surgeries [41]. The general risk factors were first 
added to the model and then the risk factors unique to each surgery group in the 
order of the Akaike information criterion (AIC) until convergence was reached. In this 
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case, we chose the conversion of the model to imply that there are no additional 
variables which can be added which will be statistically significant with a p-value of 
less than 0.05 or an AIC of 3.8415. Model performance was determined using the 
Gini coefficient after each step of the multivariate model, and the difference is 
reported as the marginal contribution of surgery group-specific risk factors for this 
study [52,121]. Model performance was cross-validated using 5-fold cross-validation 
to estimate how the model would perform on new data [43]. R [126] was used in this 
study together with packages mice (multiple imputation) [127], smbinning (recursive 
partitioning) [128], dplyr (data wrangling) [129], finalfit (formatting of tables) [130] 
and scorecard (cross-validation) [131].  

Approval was obtained from the Medical Ethical Committee of Erasmus MC (MEC-
2018-1185) to perform this study. Data were analysed anonymously, and thus no 
further consent was obtained. 

3.3 Results 
3.3.1 Literature search 

The literature search resulted in 1 422 research papers (as at 5 March 2020) using 
the MeSH headings in the PubMed search engine. We identified 24 research papers, 
published from 2008 until 2019, which contained statistically significant results from 
a multivariate analysis. A total of 79 risk factors were identified for the three groups 
of surgical procedures [108–116,119,132–145]. Age, ASA class, body mass index 
(BMI), preoperative length of stay and diabetes were identified as general risk factors 
from the literature search. In total, 29 risk factors for digestive system surgical 
procedures, 31 for orthopaedic procedures and 19 for thoracic surgeries were 
identified. This amounted to 59 unique risk factors, of which 15 were present in more 
than one group of surgeries. 

3.3.2 Risk factor identification 
A total of 21 of the 59 unique risk factors could be replicated using our own data. The 
variable describing the type of surgery was used to create three homogenous groups 
of surgical procedures. The emergency classification variable was used to exclude 
emergency surgeries from the study such that 19 risk factors remained (Table 1). We 
observed 3 250 surgeries over the study period and excluded 526 (16.2%) emergency 
surgeries to be left with 2 724 surgical observations. CRP and temperature data were 
available for 52.55% (60.47% for in-patients) and 96.88% of all surgeries, 
respectively. 

Table 3-1: Variable names and definitions used to investigate the occurrence of SSI in this study. 
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Variable 
Surgery 
group 

Definition 

Demographic 
  

Gender D,O Gender of patient (Male/Female) 

Age D,O,T Age of patient on the day of surgery (Years) 

ASA class D,O,T ASA class of patient (I-V) 

BMI D,O,T BMI of patient at the time of surgery. 

Behavioural 
  

Alcohol use O Alcohol use of patient at the time of surgery 
(Current/Never/Past). 

Smoking D,O Smoking status of patient at the time of surgery 
(Current/Never/Past). 

Comorbidities 
  

Heart disease O,T Patient has a history of heart disease at the time 
of surgery (Yes/No). 

Liver disease D Patient has a history of liver disease at the time 
of surgery (Yes/No). 

Hypertension O Patient has a history of hypertension (Yes/No). 

Diabetes D,O,T Patient has diabetes Type I or II at the time of 
surgery (Yes/No). 

Measurement 
  

Temperature D Highest temperature of patient in the past 7 days 
before surgery. 

CRP O Highest CRP of patient in the 7 days before 
surgery. 

Leukocyte D Highest leukocyte level of patient in the 7 days 
before surgery. 

Serum total 
protein 

D Highest serum total protein of patient in the 7 
days before surgery. 

Glucose D Highest glucose level of patient in the 7 days 
before surgery. 

Haemoglobin D Highest haemoglobin level of patient in the 7 
days before surgery. 

Operative 
  

Preoperative 
length of stay 

D,O,T Preoperative length of hospital stay of patient at 
the time of surgery (Days). 
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Antibiotic 
use 

T Antibiotic (WHO ATC code J01) use of patient at 
the time of surgery (Yes/No). 

Duration of 
surgery 

D,O Duration of the surgical procedure (Minutes). 

D=Digestive system surgical procedures; O=Orthopaedic system surgical procedures; T=Thoracic system 
surgical procedures; ASA=American Society of Anaesthesiologists; CRP=C-reactive protein; BMI=Body 
Mass Index; SSI=Surgical Site Infection; ATC=Anatomical Therapeutic Chemical; WHO=World Health 
Organization. 

The significant univariate results of digestive system, orthopaedic and thoracic 
surgical procedures are shown in Table 2. Antibiotic use, CRP and temperature were 
added to the list of general risk factors after being found statistically significant in the 
univariate analysis – increasing the number of general risk factors to 8. Diabetes was 
identified as a general risk factor from our literature search but was not found 
significant in any of the three univariate analyses in our own study. For digestive 
system surgical procedure and thoracic procedures, the data-driven cut-off for age 
was obtained as 23 years and both the standard cut-off (18 years) and the data-
driven cut-off were statistically significant with p-values of less than 0.001 which 
resulted in rejecting the null hypothesis that the coefficient associated with the age 
of the patient is zero. For orthopaedic procedures, the data-driven cut-off for the 
temperature (39 degrees) was found statistically significant, but the standard 
medical cut-off not. A data-driven CRP cut-off of 8.1 was identified for orthopaedic 
surgical procedures as opposed to a standard medical CRP cut-off of 10; both cut-offs 
are statistically significant. 

Table 3-2: Digestive system surgical procedures: univariate analysis of risk factors for the future 
occurrence of SSI. 

Variable 
SSI = No 
(2 600) 

SSI = Yes 
(124) 

Univariate OR 
(95%CI, P-value) 

Digestive System Surgical Procedures 

Gender Female 
359 
(43.9)2 24 (33.8) Reference 

 Male 
458 
(56.1) 47 (66.2) 

1.54 (0.93-2.60, 
p=0.099) 

Age1 ≤18 
246 
(30.1) 8 (11.3) Reference 

 >18 
571 
(69.9) 63 (88.7) 

3.39 (1.70-7.77, 
p<0.001) 

Age (data-driven) ≤23 
258 
(31.6) 8 (11.3) Reference 
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 >23 
559 
(68.4) 63 (88.7) 

3.63 (1.82-8.32, 
p<0.001) 

Antibiotic use No 
496 
(60.7) 17 (23.9) Reference 

 Yes 
321 
(39.3) 54 (76.1) 

4.91 (2.85-8.86, 
p<0.001) 

Temperature1 ≤36.5 0 (0.0) 0 (0.0) NA 

 (36.5,37.5] 
98 
(12.0) 2 (2.8) Reference 

 >37.5 
719 
(88.0) 69 (97.2) 

4.70 (1.44-28.91, 
p=0.033) 

Temperature (data-
driven) ≤38 

535 
(65.5) 20 (28.2) Reference 

 (38,39] 
187 
(22.9) 25 (35.2) 

3.58 (1.95-6.66, 
p<0.001) 

 >39 
95 
(11.6) 26 (36.6) 

7.32 (3.94-13.79, 
p<0.001) 

CRP1 ≤10 
397 
(48.6) 21 (29.6) Reference 

 >10 
420 
(51.4) 50 (70.4) 

2.25 (1.35-3.89, 
p=0.003) 

CRP (data-driven) ≤8.1 
365 
(44.7) 18 (25.4) Reference 

 >8.1 
452 
(55.3) 53 (74.6) 

2.38 (1.39-4.24, 
p=0.002) 

Preoperative length 
of stay (Days) 

Mean Days 
(SD) 

6.6 
(24.1) 

12.1 
(37.3) 

1.01 (1.00-1.01, 
p=0.092) 

Duration of surgery  
Mean Minut

es (SD) 
243.6 
(143) 

330.4 
(190.8) 

1.00 (1.00-1.01, 
p<0.001) 

Orthopaedic Procedures 

ASA class ASA CLASS I 
196 
(26.8) 6 (33.3)  

 ASA CLASS II 
339 
(46.4) 6 (33.3) 

0.58 (0.18-1.87, 
p=0.348) 

 ASA CLASS III 
182 
(24.9) 4 (22.2) 

0.72 (0.18-2.55, 
p=0.612) 

 

ASA CLASS ≥
 IV 

13 
(1.8) 2 (11.1) 

5.03 (0.69-24.47, 
p=0.062) 

Alcohol use Current 
327 
(44.8) 6 (33.3) Reference 
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 Never 
339 
(46.4) 8 (44.4) 

1.29 (0.44-3.94, 
p=0.645) 

 Past 
64 
(8.8) 4 (22.2) 

3.41 (0.85-12.26, 
p=0.063) 

Antibiotic use No 
591 
(81.0) 8 (44.4) Reference 

 Yes 
139 
(19.0) 10 (55.6) 

5.31 (2.06-14.16, 
p<0.001) 

Temperature (data-
driven) ≤39 

695 
(95.2) 14 (77.8) Reference 

 >39 
35 
(4.8) 4 (22.2) 

5.67 (1.55-16.79, 
p=0.003) 

Thoracic Surgery 

Age1 ≤18 
232 
(22.0) 16 (45.7) Reference 

 >18 
821 
(78.0) 19 (54.3) 

0.34 (0.17-0.67, 
p=0.002) 

Age (data-driven) ≤23 
226 
(21.5) 16 (45.7) Reference 

 >23 
827 
(78.5) 19 (54.3) 

0.32 (0.16-0.65, 
p=0.001) 

BMI Mean (SD) 
24.5 
(5.3) 22.1 (4.2) 

0.91 (0.85-0.98, 
p=0.010) 

Alcohol use Current 
534 
(50.7) 11 (31.4) Reference 

 Never 
422 
(40.1) 18 (51.4) 

2.07 (0.98-4.57, 
p=0.061) 

 Past 
97 
(9.2) 6 (17.1) 

3.00 (1.01-8.09, 
p=0.034) 

Antibiotic use No 
705 
(67.0) 18 (51.4) Reference 

 Yes 
348 
(33.0) 17 (48.6) 

1.91 (0.97-3.77, 
p=0.060) 

Temperature1 ≤36.5 0 (0.0) 0 (0.0) NA 

 (36.5,37.5] 
302 
(28.7) 3 (8.6) Reference 

 >37.5 
751 
(71.3) 32 (91.4) 

4.29 (1.52-17.94, 
p=0.017) 

Temperature (data-
driven) ≤38 

882 
(83.8) 20 (57.1) Reference 
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 >38 
171 
(16.2) 15 (42.9) 

3.87 (1.91-7.67, 
p<0.001) 

CRP1 ≤10 
684 
(65.0) 17 (48.6) Reference 

 >10 
369 
(35.0) 18 (51.4) 

1.96 (1.00-3.88, 
p=0.050) 

Haemoglobin1 ≤8.6 
665 
(63.2) 21 (60.0) Reference 

 (8.6,10.5] 
358 
(34.0) 11 (31.4) 

0.97 (0.45-2.00, 
p=0.942) 

  >10.5 
30 
(2.8) 3 (8.6) 

3.17 (0.72-9.85, 
p=0.074) 

CRP=C-reactive protein; OR=Odds Ratio; BMI=Body Mass Index; NA=Not Applicable; CI=Confidence 
Interval; SSI=Surgical Site Infection; Data-driven=cut-off values determined using recursive partitioning. 

1Standard Erasmus MC clinical cut-offs. 

2The percentage distribution of the SSI outcome is provided in brackets next to the frequency for each 
variable. 

 

The multivariate results using standard medical cut-offs and data-driven cut-offs are 
shown in Table 3 and Table 4, respectively. The temperature variable was statistically 
significant in the multivariate analysis using the data-driven cut-offs for all three 
groups of surgeries, but not in one of the multivariate analyses using the medical 
standard cut-offs. The duration of the surgery was the only statistically significant 
variable in the multivariate analyses which was not identified as a general risk factor 
to increase the odds of SSI by approximately 6% for every 30 minutes spent in 
surgery. For digestive surgical procedures, the addition of duration of surgery to the 
multivariate model increased the Gini coefficient from 0.46 to 0.52 based on 
standard medical cut-offs and from 0.57 to 0.62 for the multivariate model based on 
the data-driven cut-offs. This increase translates into a 12.5% and 8.8% increase in 
the Gini coefficient, respectively. Neither the orthopaedic nor the thoracic group of 
surgical procedures had any statistically significant risk factors which are not part of 
the general risk factors group of surgeries. The Gini coefficient of the data-driven 
multivariate model is 19.5% (0.62 vs 0.52) higher than the multivariate model based 
on the standard medical cut-offs. The 5-fold cross-validated 95% confidence intervals 
for the Gini coefficients based on the validation samples of the data-driven models 
are (0.49, 0.72) for digestive procedures, (0.21, 0.86) for orthopaedic procedures and 
(0.21,0.70) for thoracic procedures. 
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Table 3-3: Multivariate analysis risk factors for the occurrence of SSI by group of surgeries using standard 
medical cut-offs. 

Risk factor by surgery group1 
Coefficien
t 

Multivariate OR 
(95%CI) 

P-
value 

Digestive System Surgical 
Procedures    

Antibiotic use 1.240 3.455 (1.951-6.384) 
<0.00
1 

Duration of surgery (Minutes) 0.003 1.003 (1.001-1.004) 
<0.00
1 

CRP >10 0.803 2.232 (1.302-3.951) 0.004 

Orthopaedic Surgical Procedures    

Antibiotic use 1.670 5.315 (2.059-14.158) 
<0.00
1 

Thoracic Surgical Procedures    

Age >18 -4.195 0.146 (0.058-0.351) 
<0.00
1 

Antibiotic use 1.311 4.849 (2.035-12.266) 
<0.00
1 

CRP=C-reactive protein; CI=Confidence Interval; OR=Odds ratio. 

1The multivariate analysis was performed using Erasmus MC clinical cut-offs. 

Table 3-4: Multivariate analysis risk factors for the occurrence of SSI by group of surgeries using data-
driven cut-offs. 

Risk factor by surgery group1 
Coefficie
nt 

Multivariate OR 
(95%CI) 

P-
value 

Digestive System Surgical 
Procedures    

Temperature (38,39] 1.067 2.907 (1.556-5.497) 
<0.00
1 

Temperature >39 1.732 5.650 (2.952-10.947) 
<0.00
1 

Antibiotic use 1.201 3.322 (1.856-6.200) 
<0.00
1 

Duration of surgery 
(Minutes) 0.002 1.002 (1.001-1.004) 0.003 

CRP >8.1 0.639 1.894 (1.062-3.510) 0.035 

Orthopaedic Surgical Procedures    

Antibiotic use 1.552 3.665 (1.370-10.006) 0.009 
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Temperature >39 1.224 5.120 (1.316-16.387) 0.009 

Thoracic Surgical Procedures    

Age >17 -1.847 0.158 (0.055-0.426) 
<0.00
1 

Antibiotic use 1.597 4.939 (1.896-14.043) 0.002 

Temperature >38 0.824 2.280 (1.098-4.653) 0.024 
Data-driven=cut-off values determined using recursive partitioning; CRP=C-reactive protein; 
CI=Confidence Interval; OR=Odds ratio. 

1The multivariate analysis was performed using data-driven cut-offs.  

An overview of the study results (Table 5) shows that 10 of the 19 risk factors, 
identified during the literature search, were not statistically significant in the 
univariate or multivariate analysis for any of the surgery groups. BMI and diabetes 
were identified across all three groups of surgeries and multiple studies as risk factors 
for SSI but were not statistically significant in this study. Temperature and the 
duration of the surgery were confirmed as risk factors for digestive system surgeries, 
and similarly, antibiotic use and age were confirmed as risk factors for thoracic 
surgeries. Antibiotic use and CRP were identified as risk factors for digestive surgeries 
from the multivariate analysis, which were identified during the literature search for 
thoracic and orthopaedic surgeries, respectively. Antibiotic use and temperature 
were statistically significant for all three groups of surgeries and were included 
because of two studies regarding thoracic and digestive system surgeries, 
respectively [114,146]. 

Table 3-5: Statistical significance of risk factors and the source which lead them to be considered by 
surgical procedure. 

Risk Factor 
Significa
nce1 Digestive System2 

Orthopaedic
2 

Thorac
ic2 

Age DU,TM [111,112,134,138] [119] [115] 

Alcohol use OU,TU  [142]  

Antibiotic use 

-
DM,OM,T

M   [114] 

ASA Class 
OU [110,113,132,134,145

] 
[119,142,144
] [119] 

BMI None [135] [142–144] [133] 

CRP DM  [119]  

Diabetes 
None 

[111,138,141] 
[119,136,142
,144] [116] 
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Duration of surgery 
DM [108,111,132,134,135,

140,145] 
[119,136,142
,144]  

Gender DU [111,112,134] [119,142]  
Glucose None [138]   

Haemoglobin None [112,135,145]   

Heart Disease None  [142] [115] 

Hypertension None  [142]  
Leukocyte None [146]   

Liver disease None [145]   
Preoperative 
length of stay 

DU 
[132,141] [119,143] 

[114–
116] 

Serum total protein None [108,140]   

Smoking None [140] [142–144]  

Temperature 

-
DM,OM,T

M [146]   
D=Digestive system surgical procedures; O=Orthopaedic system surgical procedures; U=Significant in 
univariate analysis; M=Significant in multivariate analysis; T=Thoracic system surgical procedures; 
ASA=American Society of Anaesthesiologists; CRP=C-reactive protein; SSI=Surgical Site Infection; 
BMI=Body Mass Index. 
1During which part of the analysis the risk factor was found statistically significant. 
2References to the literature which had the risk factor as a multivariate result for each group of 
surgeries.  

3.4 Discussion 
We identified temperature and antibiotics used at the time of surgery as risk factors 
for digestive, orthopaedic and thoracic system surgical procedures in this study. The 
duration of the surgery was identified as a risk factor for digestive surgical 
procedures. Being an adult (age ≥ 18) was identified as a protective effect for 
thoracic surgical procedures. Data-driven cut-offs were identified for temperature, 
CRP and age, which differ from the standard medical cut-offs. Temperature would 
not have been identified as a risk factor if only standard medical cut-offs were 
considered. From our literature search, we identified age, ASA class, BMI, 
preoperative length of stay and diabetes as general risk factors, while CRP, 
temperature and antibiotic use were identified as general risk factors because of this 
study. 

The identified risk factors may be classified as modifiable or non-modifiable, 
depending upon the circumstances of the patient like the complexity of his condition. 
For instance, the temperature of a patient may be high because of an existing 
infection, which is why the surgery is needed in the first place and may not be 
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modifiable before surgery. Age, on the other hand, may be a modifiable risk factor if 
the surgery can be postponed for several years, e.g., due to a heart defect. This study 
revealed that children are more likely to be diagnosed with an SSI after thoracic 
surgery than adults. There are studies which identify risk factors for children after 
thoracic surgeries, but none found that being a child is a risk factor for SSI after 
undergoing thoracic surgery [133,139]. We segmented the thoracic surgeries 
between adults and children and obtained multivariate results for children and adults 
separately. The multivariate model based only on children (age ≤ 18) did not reveal 
any significant results, contrary to the results of the thoracic study which found age 
to be a risk factor for children [115]. This absence could be partly due to the small 
study population size of 248. Antibiotic usage was the only significant factor in the 
multivariate analysis of thoracic surgeries based on adults. The other two groups of 
surgical procedures were consistent in terms of their statistical significance of risk 
factors based on adults.  

The data-driven cut-offs confirmed the existing standard medical cut-offs. On 
average the clinical cut-off for temperature was one degree Celsius lower, while for 
digestive system surgical procedures, the clinical cut-off for CRP (10) was just less 
than two units more than the data-driven cut-off of 8.1. This means that there is a 
greater difference between the occurrence of SSI for patients with a CRP below and 
above 8.1 than below and above 10. The data-driven cut-offs improved the ability of 
the statistical model to explain the occurrence of SSI. The performance of the 
digestive system surgical procedure prediction model increased by 19.5% due to 
using data-driven cut-offs rather than the standard medical cut-offs. Using data-
driven cut-offs, we were able to identify temperature as a risk factor for all three 
groups of surgical procedures. If standard clinical cut-offs were used, temperature 
would not have been significant from the multivariate analysis. This potential 
oversight illustrates the importance of evaluating the cut-offs used for continuous 
variables against the data before identifying risk factors. 

Antibiotic use, temperature and CRP were added to the list of general risk factors by 
incorporating the statistically significant results of the univariate analysis. These risk 
factors might have been overlooked when the focus was on only one type of surgery. 
Temperature was identified as a risk factor in the multivariate results for all three 
groups of surgical procedures, whereas the literature search identified it only for 
digestive surgeries. Antibiotic use was not found during our literature search for 
digestive or orthopaedic surgical procedures but was found significant for both 
groups of surgeries in the multivariate analysis of our study.  

The Centres for Disease Control and Prevention (CDC), the European centre for 
disease prevention and control (ECDC), World Health Organisation (WHO) and 
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Netherlands National Institute for Public Health and the Environment (RIVM) suggest 
maintaining normothermia intraoperatively to prevent undesirable hypothermia 
(during some thoracic and neurosurgeries, hypothermia may be desirable). [147–
149] A lower intraoperative bound for temperature of 35.5 oC to 36 oC is explicitly 
mentioned, and only the RIVM mention an upper bound of 38 oC which is consistent 
with the risk factors identified in our study. An upper limit for preoperative 
temperature should, therefore, be investigated instead of only the lower limit. The 
four health organisations refer to the proper administration and timing of surgical 
antimicrobial prophylaxis, but not to the proper preoperative use of standard 
prescription antibiotics. The proper preoperative use of antibiotics should be well 
defined, and the reason why antibiotic-use was identified as a risk factor for SSI 
should be further investigated.  

3.4.1 Limitations 
This is a retrospective, single-centre study, and therefore the data were not collected 
for the purpose of this study. Even though cross-validation was performed to 
estimate model performance on new data, the models were not externally validated. 
Surgeries were aggregated into three broad groups of surgical procedures which 
serve as a proxy for the reason for surgery but leads to the loss of information 
regarding possible comorbidities. Some measurements, like temperature and CRP, 
were not always present and was partly overcome using imputation. Patient 
information concerning smoking and drinking habits may be understated due to 
incomplete medical records. The literature search used for this study was not 
exhaustive but rather based on the principal on data saturation. We used a 30-day 
outcome period in which we observe if an SSI was present or not, but according to 
the CDC definition, this outcome period should be one year for surgical implantation 
procedures. Since our data only spans over 18 months, it was not possible to use a 
12-month outcome window for all surgical implantation procedures, which is a 
limitation of this study. The administration of prophylaxis and the optimal timing 
thereof is an important risk factor for the occurrence of SSI. However, these data 
were not available. The definition of antimicrobials was limited to the J01 class of the 
Anatomical Therapeutic Chemical (ATC) classification system, which corresponds to 
anti-infectives for systemic use. The occurrence of SSI varies for different times 
between antibiotics prescription and surgery (Figure 3-1), but hypotheses regarding 
this relationship should be evaluated using case-control studies with specific data 
regarding the antimicrobials and the timing of the administration thereof. 
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Figure 3-1: The occurrence of SSI for the time between the J01 antibiotics prescription start time and 
the start time of the surgery by decile. 

m=minutes; h=hours; d=days. 

1The vertical axis starts at 75% to increase visibility. 

2The horizontal axis stipulates the endpoints of the respective deciles of the distribution of the time 
between prescription and surgery. 

3.4.2 Future work 
Future work will investigate the modifiability of the risk factors identified in this study 
in more detail, as the circumstances under which this occurs are hitherto unclear. 
The exact purpose of the use of antibiotics over the time of surgery was not 
investigated in depth, which can be done in future studies. Future research can also 
investigate differences between adults and children, which lead to the occurrence of 
SSI among children. Another opportunity for future research is to investigate which 
risk factors are predictive for the occurrence of SSI over different periods. Doing this 
will enable healthcare workers to identify which risk factors explain the occurrence 
of SSI soon after surgery, towards the end of the 30 days and even later for 



 

47 

 

implantation surgeries. These insights can help set guidelines to determine the 
vigilance necessary to mitigate the risk of SSI on a patient level. 

3.5 Conclusion 
This study shows that data-driven cut-offs can be used to identify risk factors that 
would not have been identified by only using standard medical cut-offs. Preoperative 
temperature and antibiotic use were identified as risk factors for digestive, 
orthopaedic, thoracic system surgeries, while the duration of surgery and age were 
identified as risk factors for orthopaedic and thoracic system surgeries, respectively. 
In contrast with literature, this study found that an SSI is more likely to occur in 
children (age < 18) than in adults after thoracic system surgeries. Statistical 
modelling has been important to quantify important risk factors and indicate their 
significance. Clinical studies using retrospective data are important to carry out, 
despite limitations in the data sets. To this end, future studies should use both 
standard medical cut-offs and data-driven cut-offs to investigate risk factors. 
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4. A spatiotemporal simulation study on the 
transmission of harmful microorganisms 
through connected healthcare workers in a 
hospital ward setting 

 

 

Abstract 
Hand transmission of harmful microorganisms (HMO) poses a major threat to 
patients and healthcare workers in healthcare settings. The most effective 
countermeasure against these transmissions is the adherence to spatiotemporal 
hand hygiene policies, but adherence rates are relatively low and vary over space and 
time. The third objective aimed to identify a healthcare worker occupation group of 
potential super-spreaders and quantify spatiotemporal effects on the hand 
transmission of HMO for varying levels of hand hygiene compliance caused by this 
group. Spatiotemporal data were collected in a hospital ward of a tertiary hospital 
using radio frequency identification technology. The effects of five probability 
distributions of HHC and three harmful microorganism transmission rates were 
simulated using a dynamic agent-based simulation model. The effects of initial 
simulation assumptions on the simulation results were quantified using five risk 
outcomes. Nurses were identified as the potential super-spreader healthcare worker 
occupation group. During lack of HHC (5%) and high transmission rates (5% per 
contact moment), a colonised nurse can transfer microbes to three of the 17 
healthcare workers or patients encountered during the 98.4 minutes of visiting 23 
rooms while colonised. The HMO transmission potential for nurses is higher during 
weeknights (5 pm – 7 am) and weekends as compared to weekdays (7 am – 5 pm). 
Spatiotemporal behaviour and social mixing patterns of healthcare can change the 
expected number of hand transmissions and spread HMO by super-spreaders in a 
closed healthcare setting. These insights can be used to evaluate spatiotemporal 
safety behaviours and develop infection prevention and control strategies. 

 

This chapter was published as Van Niekerk JM, Stein A, Doting MH, Lokate M, 
Braakman-Jansen LM, van Gemert-Pijnen JE. A spatiotemporal simulation study on 
the transmission of harmful microorganisms through connected healthcare workers 
in a hospital ward setting. BMC infectious diseases. 2021 Dec;21(1):1-4.  
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4.1 Background 
The majority of healthcare-associated infections are caused by direct or indirect 
transmission of Enterococcus faecium, Staphylococcus aureus, Klebsiella 
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa or Enterobacter 
spp. (ESKAPE) [150]. These harmful microorganisms (HMO) can survive on human 
skin and hospital surfaces for extended periods and lead to high cross-transmission 
rates between healthcare workers (HCW) and patients [151–153]. The ease of 
transmission of HMO depends upon the features of the microorganism, patient 
characteristics and the behaviour of healthcare workers (HCW), whereas the damage 
caused by the infection that follows ranges from none to potentially fatal [154]. 

The most effective precautionary measure to combat hand transmission and spread 
of harmful microorganisms in closed healthcare settings is the adherence to well 
established and effective hand hygiene policies also known as hand hygiene 
compliance (HHC) [20]. Unfortunately, HHC is often unsatisfactory with highly 
variable levels within and between hospitals. Rates of hand hygiene compliance 
range from 5% to 81%, with average compliance of approximately 40% [44]. With a 
level of 80% adherence seen as high levels of HHC and 95% as very high, it is not 
surprising that the spread of HMO in closed healthcare settings remains a major 
dilemma [44]. Reasons for hand hygiene non-compliance include increased work 
intensity, lack of education and ineffective placement or defective alcohol 
dispensers. For instance, one hour of overtime worked by an HCW can lead to a 3% 
decrease in the level of HHC [155,156]. The result is a highly variable level of HHC 
within closed healthcare settings. Compounding the non-adherence to hand hygiene 
policies is that the medium and method used for hand hygiene are not 100% efficient. 
The efficacy of hand rubbing using alcoholic rub was compared with handwashing 
using antibacterial soap during routine patient care [157]. Some of the patients had 
methicillin-resistant Staphylococcus aureus (MRSA). The study estimated an efficacy 
rate of 83% (interquartile range 78% - 92%) for alcoholic rub compared to 58% 
(interquartile range -58% - 74%) for antibacterial soap.  Even though alcoholic rub 
significantly outperforms antibacterial soap, some HMO may remain on the hands of 
the HCWs and lead to further transmissions.  

The combination of colonised and uncolonized HCWs or patients, who are potentially 
immunocompromised and in a confined space, makes healthcare facilities a high-risk 
environment for the spread of HMO. The term super-spreader is used to categorise 
an individual with a disproportionately high potential to spread HMO. Super-
spreaders were the cause of several super-spreading events (SSE) in the past with 
devastating consequences [158]. Highly connected HCWs can increase the risk of SSE 
in closed healthcare environments. The amount of contact between HCWs and 
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patients and HHC while performing regular duties are critical factors that contribute 
to the extent and severity of an SSE [159]. 

For these reasons, the SSE is affected by the joint spatiotemporal behaviour, i.e., the 
where and when, by the social mixing patterns, i.e., with whom of the HCW or 
patients inside a hospital ward, and by the level of HHC, including its variability. 
Therefore, it is necessary to understand the spatiotemporal effect on the hand 
transmission and spread of HMO for varying levels of HHC for potential super-
spreaders in a closed healthcare setting. 

Healthcare institutes are now adopting automatic contact tracking methods like 
Radio Frequency Identification (RFID) technology by tagging healthcare equipment, 
HCWs and patients to improve logistics and patient safety. There is still a reluctance 
to fully adopt this technology, mainly driven by security and privacy concerns [27]. 
Real contact data between patient and HCWs became more prevalent since 2002 
when data were collected using shadowing. Medical records, surveys and sensors 
became more important for data and contact detection. Assab et al. (2017) showed 
that studies using empirical contact data within closed healthcare settings led to a 
better understanding of the transmission and spread of HMO. Such data can result 
in the development of improved control interventions. Using real-time RFID tracking 
data, it is possible to model the spread of HMO at an individual level rather than using 
a compartmental-based model [154,160]. RFID data have been used to model the 
spread of HMO in different closed healthcare settings and at different proximities 
using a temporal proximity network at schools [161,162], conferences [163], 
households [164], hospitals [165–171] and other healthcare facilities [172]. In 
addition to recent research data collection and modelling innovations are needed to 
implement better control strategies [173]. Studies based upon contact data only are 
unable to determine the effect of spatiotemporal healthcare policies like HHC. A few 
hours of RFID tracking can be sufficient to develop and calibrate a statistical model 
that shows the heterogeneity of spatiotemporal social contact patterns, representing 
how people socially interact in space and time [174].  

The spatiotemporal effects of varying levels HHC on the transmission and spread of 
hand-transmitted HMO in a closed healthcare setting must still be quantified, based 
upon empirical spatiotemporal tracking data. HCWs and policymakers may benefit 
from understanding the impact of spatiotemporal infection control interventions and 
healthcare policies on the transmission and spread of HMO.  

This study’s objectives were to (1) identify an HCW occupancy group of potential 
super-spreaders and (2) quantify the spatiotemporal effects on the transmission and 
spread of HMO for varying levels of hand hygiene compliance caused by this group. 



 

51 

 

4.2 Methods 
We used spatiotemporal data from the University Medical Center Groningen 
(UMCG), one of the largest hospitals in the Netherlands with more than 10 000 
employees and almost 1 400 beds. Between 2 April 2018 and 8 April 2018, data were 
collected in a 32-bed general hospital ward, for stomach, gut and liver patients 
(Figure 4-1: A). The dates were chosen such that they cover a full calendar week from 
Monday to Sunday and all shifts to increase the representativeness of the parameter 
estimates. The ward’s floor plan was divided into 33 rooms of which 14 were patient 
rooms, with between one and four beds, eight storage areas and ten other rooms, 
including a doctor’s office and a medicine room. All facilities are located in the centre 
of the ward to minimise distances to crucial parts of the ward, including the rinsing 
kitchen and medication rooms. Single patient rooms are near the entrance of the 
ward to enable easy isolation of potentially infectious patients. 

Data were collected using RFID sensors worn by the HCWs working in the ward during 
the study period. Seven HCW occupation groups were identified, namely doctor, 
nurse, cleaner, department assistant, department co-assistant, consultant and 
feeding assistant. The RFID tags were assigned to specific occupation groups. HCWs 
randomly selected an RFID tag at the start of their shift according to their occupation. 
The RFID tags (Figure 4-1: B) emit radio signals with unique identifying information 
and RFID readers (Figure 4-1: C), on the ceiling of the rooms, register those signals. 
The RFID reader’s range was set to the size of the rooms and they continuously 
monitored the uniquely identifiable RFID tags in their range. HCWs moving in and out 
of the rooms were registered and the data were generated and stored. The data 
consist of a room ID, an RFID sensor ID and a DateTime stamp corresponding to the 
RFID tag movement into and out of a room. The spatial resolution is at the room level 
and is defined by the set of rooms inside the ward. The temporal resolution equals 
the second at which the observation signal was received. 
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Figure 4-1: Floorplan of the 32-bed general hospital ward for stomach, gut and liver patients. A = 
Floorplan of the 32-bed general hospital ward, for stomach, gut and liver patients where sample data 
were collected using B = RFID tags worn by HCWs during data collection using C = RFID readers placed 
on the ceiling of the rooms inside the ward. 

The sampled data were divided into two subsets. Data in subset 1 contained the 
sampled data collected during weekdays (7 am – 5 pm) and data in subset 2 those 
collected during the evenings (5 pm – 7 am) and over the weekend. 

 



 

53 

 

Table 4-1: Example of data collected using the RFID sensors and readers. 

Room From To Sensor 

54.3.35A 03/04/2018 16:49 03/04/2018 16:50 58007 

54.3.45 03/04/2018 16:51 03/04/2018 17:00 58007 

54.3.14 03/04/2018 17:00 03/04/2018 17:37 58007 

54.3.17 03/04/2018 17:37 03/04/2018 17:41 58007 
 

Contact data were extracted from the empirical spatiotemporal data. They are 
generated by the underlying contact network between HCWs and determines the 
possible pathways over which the spread of HMO occurs over space and time 
[175,176]. Since the spatial resolution of the collected data was at the room level and 
not at the face-to-face level, an assumption was needed for the contact definition. 
Depending upon the data collection context, co-occurrence data can serve as a proxy 
for face-to-face contact data [177]. In this study, co-occurrence can occur inside the 
limited space defined by the ward rooms, increasing the probability of HCWs to enter 
the face-to-face close-range proximity (1.5 m) of other HCW or patients. For this 
reason, we define a contact as the physical co-occurrence of two HCWs or a HCW 
and a patient in a ward room. For example, if an HCW enters a patient room, then 
the HCW and the patient are assumed to be in contact with each other for the time 
over which they co-occur in that room.  

A guideline to identify super-spreaders is to identify the 20% of the people 
contributing to at least 80% of the transmission potential [178]. We define the 
transmission potential as the number of 30-second intervals (contact moment) of 
contact with other HCWs or patients. The transmission potential is estimated for all 
HCW occupation groups and compared to identify disproportionality and thus 
potential super-spreaders. 

We estimated the effect of the transmission and spread of an HMO by a colonised 
HCW from the potential super-spreading occupation group for varying levels of HHC 
defining five risk outcomes. The risk outcomes are defined in five variables: the 
amount of time (minutes) spent colonised (RO1), the amount of time (minutes) spent 
with HCWs or patients (RO2), the number of HCWs or patients encountered (RO3), 
the number of transitions made from one room to another (RO4) and the expected 
number of HMO transmissions to other HCWs or patients before successfully 
performing hand hygiene (RO5).  

To estimate RO1 – RO5, we constructed a dynamic agent-based transition simulation 
model [179]. To simulate the underlying distribution from the sampled data, we first 
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estimated this distribution, followed by resampling to generate more samples. This 
simulation process aids us to explore the consequences of initial simulation 
assumptions. The simulation follows a four-part (A-D) workflow (Figure 4-2). We 
assumed that RO1 – RO5 depend upon the order in which an HCW moves between 
the different rooms in the hospital ward (A), the likelihood of the HCW performing 
hand hygiene and the efficacy of doing so (B), the amount of time an HCW spends in 
each room with other HCWs or patients (C) and the transmission dynamics of the 
HMO (D). Parts A and C are based on statistics from the sampled data, while parts B 
and D are based on assumptions from the literature.  

 

Figure 4-2: The four-part of the simulation workflow. A and C depend upon the sampled data and B and 
D on initial assumptions from literature. The simulation ends when the HCW successfully performs hand 
hygiene in part B. 

For part A in the simulation workflow, we used continuous Markov chains. They 
allowed us to model the movement of HCWs from one of the 𝑛 rooms to the next 
[180]. If 𝑅 is the set of 𝑛 rooms, i.e. 𝑅 =  {𝑅1, 𝑅2, … , 𝑅𝑛}, then the transition 
probability 𝑝𝑖𝑗  (Formula 4.1) in row 𝑖 and column 𝑗 of the 𝑛 × 𝑛 transition probability 

matrix 𝑷 (Formula 4.2) is the probability that an HCW will transit from room 𝑅𝑖 to 
room 𝑅𝑗 during the next transition. Since an HCW will either stay in the same room 

or move to another room after the next transition, the rows of the matrix 𝑷 add up 
to 1 i.e., ∑ 𝑝𝑖𝑗

𝑛
𝑖=1 = 1 for 𝑖 = 1, … , 𝑛. Each element 𝑝𝑖𝑗  is between 0 and 1 inclusively, 

i.e., 0 ≤ 𝑝𝑖𝑗 ≤ 1 for 𝑖, 𝑗 ∈ (1, … , 𝑛). An estimate for 𝑝𝑖𝑗  is obtained by dividing the 

number of transitions from 𝑅𝑖 to 𝑅𝑗 by the total number of transitions from 𝑅𝑖. Using 
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only the transition data of the potential super-spreading occupation group, we 
obtain a transition probability matrix 𝑷. 

𝑝𝑖𝑗 = 𝑃(Next room = 𝑅𝑗|Current room = 𝑅𝑖)  for i, j 

∈ (1, … , n)             Formula 4.1 

𝑷 =

     𝑅1  …  𝑅𝑛

𝑅1

⋮
𝑅𝑛

[

𝑝11 ⋯ 𝑝1𝑛

⋮ ⋱ ⋮
𝑝𝑛1 ⋯ 𝑝𝑛𝑛

]
                                                                                     Formula 4.2 

We assume that the length of time spent in each room (𝜓𝑅𝑖
) is exponentially 

distributed with parameter 𝜂  with mean 1/𝜂 and variance 1/𝜂2 [30]. The estimated 
values of 𝜂 and the average number of HCWs or patients co-occurring inside each 
room, together with the corresponding estimated variance, are obtained at room 
level from the sampled data. We assumed that the number of HCWs or patients co-
occurring within each room follows either a Gaussian distribution or a Poisson 
distribution with mean and standard deviation equal to the estimates obtained from 
the sampled data. Since no patient location data were available, we assumed that all 
patient rooms are occupied. 

The performance and efficacy of hand hygiene (B) compliance and the transmission 
of an HMO (C) are simulated using agent-based modelling and the corresponding 
model assumptions in Table 4-2, based upon a study by Thomas Hornbeck et al. [158]. 

Table 4-2: Agent-based model parameters (Thomas Hornbeck et al.). 

Symbol Definition Range 

𝑃 

Probability of transmission per 30 s of 
contact 0.0005, 0.005 and 0.05 

𝜆 

Hand hygiene efficacy using alcohol 
rub 0.83 

𝛾 Hand hygiene compliance level 𝜇 =  0.05,0.25,0.5,0.75,0.95 

  and 𝜎 = 0.1 

The simulation starts with one colonised HCW from the potential super-spreading 
occupation group in a random room inside the hospital ward. It ends when the HCW 
successfully performed hand hygiene. One thousand simulations were performed for 
the three different rates of transmission (𝑃) for each of the five HHC distributions. 
The result of the simulation consists of 15 (3 × 5) scenarios with outputs RO1 – RO5. 
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The simulations were repeated for the subsets 1 and 2, both separately and 
combined. 

We summarise the simulation assumptions made by the workflow section as follows: 

Workflow A: Movement 

1. Contact definition is based upon HCWs or patients co-occurring in the same 
room. 

2. Patient rooms are always occupied by at least 1 patient , being the reason 
for the HCW to visit the room. 

Workflow B: Hand hygiene 

1. A colonised HCW can perform hand hygiene once during every transition 
between rooms. 

2. For a colonised HCW to be decolonized, hand hygiene needs to be performed 
and it needs to be successful. The former depends upon the action of the 
HCW with probability 𝛾 and the latter on the efficacy of the solution used to 
perform hand hygiene with probability 𝜆. 

Workflow C: Time spent and Number of people 

1. The number of minutes an infected HCW spends in a room 𝑅𝑖 is given by 
𝜓𝑅𝑖

~𝐸𝑥𝑝(𝜂), where η is the sample average of 𝜓𝑅𝑖
. 

2. The number of HCWs or patients co-occurring in room 𝑅𝑖 with the infected 
HCW is given by 𝜔𝑅𝑖

~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜈), where 𝜈 is the average 𝜔𝑅𝑖
 from the 

sampled data. 
Workflow D: Transmission 

1. Only colonised nurses can transmit an HMO. 
2. HCW and patients only have two states: susceptible and colonised. 
3. Number of colonised HCW or patients after co-occurring with a colonised 

HCW for 𝑚 contact moments with a probability of transmission 𝑃 for each 
30 s of co-occurrence is distributed as 𝐼~𝐵𝑖𝑛(𝑚, 𝑃). 

There are two key moments in the model. The first key moment is when the colonised 
HCW enters a room – that is when an opportunity is given to perform hand hygiene 
with probability 𝛾,  corresponding to part B of the simulation workflow. Five 
probability distributions are used to simulate HHC for simulation. A Gaussian 
distribution with mean 0.05 represents very low HHC, while means equal to 0.25 and 
0.5 show the effect of low to average HHC and 0.75 to 0.95 for high to near-perfect 
HHC levels, respectively. Should colonised HCW perform hand hygiene, then the 
probability that the hand hygiene was successfully performed, meaning that all 
traces of the HMO were eradicated, equals 𝜆. The probability of successful use of 
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hand hygiene is based upon Girou et al [157] and the different compliance levels (low, 
medium and high) are based upon Temime et al [159]. 

The second key moment is when more than one HCW or patient co-occurs with 𝑔 in 
the same room. The colonised HCW has a probability of transferring microbes to all 
HCWs or patients in the room every 30 s with probability 𝑃. The probability of 
transmitting an HMO from one person to another, results in a probability equal to 
1.5% - 13.5% of transmission for every 15 minutes spent together. [159] We assume 
that transmissions between all HCWs and patients are equally likely for each contact 
moment in the same room. For example, HCWs or patients in contact with a potential 
super-spreader will be subject to the probability stated in Formula 4.3 during the first 
contact moment. The last two terms in Formula 4.1 decrease the probability of 
transmission because of the chance that the potential super-spreader will effectively 
perform hand hygiene and not carry the HMO anymore. Only the parameter 𝑃 
remains for subsequent contact moment because the potential super-spreader only 
performs hand hygiene when entering the room. 

𝑃[𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 → 𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑|𝑛 = 1] = 𝑃 × 𝛾 ×  (1 − 𝜆)      Formula 4.3 

For successive contact moments, we assume that the probability that a colonised 
HCW transfers microbes to an uncolonized HCW or patient follows a binomial 
distribution with parameter 𝑚 indicating the number of contact moments and 
parameter 𝑃 indicating the probability of transmission. To model this as a binomial 
distribution, we assume that there are only two outcomes, i.e., colonised and 
uncolonized, that each contact moment is independent of the other and that the 
probability of transmission stays constant. 

The effect of 𝑃 is positively correlated with the number of transmissions, meaning 
that more transmissions should take place if the rate of infection increases. However, 
model parameters 𝜆 and 𝛾 have an inverse relationship with the expected number 
of transmissions. Some simulation parameters are positively correlated, and some 
are negatively correlated with the expected number of transmissions. Opposite 
parameter correlations make it possible to create scenarios where the expected 
number of transmissions is mitigated and even entirely off-set. These scenarios 
provide further insight into the effects of the initial simulation assumptions 
propagated through the sampled spatiotemporal data. 

4.3 Results 
During the seven days of data collection, a total of 2 631 observations were recorded 
of which 58 had to be removed because of spurious measurements detected using 
outlier detection and identifying aberrant movement patterns in the collected data. 



 

58 

 

During the seven days, 2 432 co-occurrences were derived from the 2 573 sampled 
observations which equate to 504 hours (30 272 minutes) of contact data. Nurses 
and doctors were together responsible for 81.13% and 80.19% of all contacts and 
time spent in contact, respectively (Table 4-3). Nurses made up 70.68% and 68.06% 
of these percentages, five times more than the second higher HCW occupation 
group, doctor (10.44% and 12.13%). Therefore, a colonised nurse has a 
disproportionately high potential of transmitting and HMO based on the amount of 
contact and time spent with HCWs or patients. For these reasons, we investigate the 
nurse HCW occupation group as potential super-spreaders in this study.  
Table 4-3: The number of contacts and duration of those contacts by occupation group. 

(Occupation) Group 
Number of 
Contacts (% of 
total) 

Number of 
Contact Minutes 
(% of total) 

Average of 
Contact 
Minutes (SD) 

 
Cleaner  71 (2.9%)   443 (1.5%)   6.24 (10.27)   

Co-assistant  29 (1.2%)   290 (1.0%)   10.00 (12.81)   

Consultant  144 (5.9%)   2 230 (7.4%)   15.49 (23.27)   

Department assistant  200 (8.2%)   2 953 (9.8%)   14.77 (16.17)   

Doctor  254 (10.4%)   3 671 (12.1%)   14.45 (20.59)   

Feeding assistant  15 (0.6%)   82 (0.3%)   5.47 (8.26)   

Nurse  1 719 (70.7%)   20 603 (68.1%)   11.99 (20.13)   

Total  2 432 (100.0%)   30 272 (100.0%)   12.45 (19.80)   

Individual percentages may not add up to 100% because they are rounded to the first decimal place. 

The estimated transition probability matrix (𝑷) for nurse summarises the transitions 
of nurse between rooms observed in the sampled data (Figure 4-3). According to 𝑷, 
nurse is most likely to transit to either a patient room, the medicine room or the 
nurse’s office.  
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Figure 4-3: Transition probability matrix 𝑷 for movement of nurse between ward rooms. The 

transmission probabilities are given as 𝑝𝑖𝑗 in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ  column for the movement of nurse 

between rooms. Each element is the estimated probability that a nurse will transition from the room 𝑖 
to room 𝑗 after the next transition. 

Nurses spend the most time (19.39 m) and co-occur with the most HCWs (2.16) per 
visit in the nurse’s office (Table 4-4). For this reason, the relatively high estimated 
probability that a nurse will transit to the nurse’s office implies that an HCW of the 
occupation group nurse spends a large portion of their time here while co-occurring 
with a relatively large number of people. Nurses spend less time in patient rooms 
than the nurse’s office (11.5 m vs. 19.39 m), but the average number of people co-
occurring is almost the same as in nurse’s office (2.09 vs. 2.16). Since we assumed 
that there is at least one patient in the patient room, the expected number of HCW 
and patients in contact in patient rooms is more than two by definition. 
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Table 4-4: Number of HCWs or patients and the time they co-occurred in each room. 

Room 
Average number of 
co-occurrences (SD) 

Average minutes spent 
co-occurring (SD) 

 
Cleaning room  1.45 (0.4)   8.05 (12.5)   

Daycare  1.10 (0.3)   8.55 (11.1)   

Diagnostic room  1.11 (0.6)   27.57 (45.0)   

Doctor room  1.00 (0.0)   4.82 (5.2)   

HCW room  1.04 (0.3)   18.17 (22.7)   

Head nurse's office  1.82 (1.6)   18.64 (33.1)   

Kitchen  1.15 (0.5)   9.51 (10.0)   

Medicine room  1.16 (0.5)   10.02 (15.6)   

Nurse's office  2.16 (1.6)   19.39 (26.7)   

Patient room  2.09 (0.4)   11.55 (19.0)   

Rinsing kitchen  1.00 (0.1)   0.08 (0.2)   

Shower/WC  1.10 (0.4)   10.74 (20.9)   

Storage  1.08 (0.4)   7.73 (13.6)   

Average number of co-occurrences = time weighted average number of people co-occurring in the 
room, Average minutes spent co-occurring = average number of minutes spent co-occurring in the 
room.  

4.3.1 Simulation results 
The (𝑃 = 0.05;  𝜆 = 0.05) scenario in Table 4-5 corresponds to the highest 
probability of transmission (𝑃) and the lowest HHC level (𝜆). For this scenario, a 
colonised nurse can transit through 23 wardrooms (𝑅𝑂4 = 22.03) for more than one 
and a half hours (𝑅𝑂1 = 98.40 ) while making contact with 17.41 HCWs or patients 
(𝑅𝑂3 = 17.41), resulting in 83 contacts opportunities to transmit HMO (𝑅𝑂2 =
83.13). This scenario also resulted in the highest amount of expected transmissions 
(𝑅𝑂5 = 3.36). Reducing the transmission rate results in an exponential decrease in 
the number of expected transmissions as expected. 

In the (𝑃 = 0.005;  𝜆 = 0.75) scenario, where the level of HHC is highest and the 
transmission probability is lowest, the expected time that a colonised NUR would 
spend carrying an HMO is just more than 9 minutes even though the alcohol rub’s 
effectiveness is 83%. Note that the (P = 0.005; 𝜆 = 0.05) scenario results in a similar 
amount of expected number of infections as the scenario where 𝑃 = 0.05 and 𝜆 =
0.5 (0.41 vs. 0.51) even though he transmission probability differs by a factor of ten. 
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Table 4-5: Simulated HMO transmissions potential of a colonised nurse in a hospital ward under various 
assumed transmission rates and hand hygiene compliance levels. 

Transmission 
probability
 (𝑃) 

HHC 
(λ) 

RO1: 
Minutes 
spent 
colonise
d (SD) 

RO2: 
Contac
ts (SD) 

RO3: 
People 
contacted 
(SD) 

RO4: 
Room 
transitio
ns (SD) 

RO5: 
Expected 
transmissio
ns (SD) 

0.05 0.05 
98.40 
(73.43) 

83.13 
(70.69) 

17.41 
(13.65) 

23.09 
(22.03) 

3.36 (2.79) 

0.005 0.05 
101.60 
(76.20) 

83.46 
(69.22) 

17.76 
(13.50) 

24.03 
(22.84) 

0.41 (0.34) 

0.0005 0.05 
98.27 
(75.87) 

80.56 
(69.54) 

17.01 
(13.59) 

22.66 
(21.80) 

0.04 (0.03) 

0.05 0.25 
25.24 
(26.29) 

21.51 
(26.53) 

4.21 (4.30) 4.66 
(4.11) 

0.86 (1.01) 

0.005 0.25 
25.91 
(25.68) 

22.11 
(26.83) 

4.36 (4.27) 4.73 
(4.08) 

0.11 (0.13) 

0.0005 0.25 
25.87 
(26.09) 

22.76 
(28.74) 

4.53 (4.97) 4.78 
(4.40) 

0.01 (0.01) 

0.05 0.5 
13.68 
(13.29) 

12.85 
(17.51) 

2.42 (2.67) 2.50 
(2.00) 

0.51 (0.65) 

0.005 0.5 
13.53 
(12.79) 

12.68 
(17.13) 

2.37 (2.38) 2.41 
(1.76) 

0.06 (0.08) 

0.0005 0.5 
13.01 
(13.73) 

13.08 
(20.20) 

2.37 (2.43) 2.36 
(1.81) 

0.01 (0.01) 

0.05 0.75 
9.16 
(9.06) 

9.43 
(14.00) 

1.75 (1.79) 1.66 
(1.04) 

0.36 (0.49) 

0.005 0.75 
9.12 
(8.97) 

9.38 
(14.08) 

1.68 (1.73) 1.64 
(1.04) 

0.04 (0.07) 

0.0005 0.75 
9.12 
(8.88) 

9.39 
(14.54) 

1.71 (1.73) 1.66 
(1.02) 

0.00 (0.01) 

0.05 0.95 
7.34 
(6.86) 

8.23 
(12.66) 

1.43 (1.47) 1.32 
(0.65) 

0.31 (0.46) 

0.005 0.95 
7.12 
(6.71) 

8.21 
(12.64) 

1.47 (1.50) 1.27 
(0.62) 

0.04 (0.06) 

0.0005 0.95 
7.26 
(6.79) 

8.57 
(13.51) 

1.50 (1.50) 1.29 
(0.64) 

0.00 (0.01) 

Sampled data for three different transmission assumptions and five levels of HHC for one colonised 
nurse starting in a random room in the hospital ward, a hand hygiene efficacy (𝛾) of 0.83. 𝑃 = probability 
of transmission, 𝜆 = HHC level, 𝑅𝑂1 = amount of time spent colonised, 𝑅𝑂2 = number of contact 
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moments, 𝑅𝑂3 = number of HCWs or patients made contact with, 𝑅𝑂4 = number of transitions 
between hospital ward rooms, 𝑅𝑂5 = expected number of HMO transmissions. 

The simulation results based upon subset 1 (Table 4-6) show that, for the (𝑃 =
0.05;  𝜆 = 0.05) scenario, a colonised nurse is expected to spend less time colonised 
while transiting through the wardrooms during weekdays than during weeknights or 
weekends (81.46 vs. 114.30  minutes) even though more HCWs or patients are 
expected to be encountered (19.87 vs. 16.39) by the colonised nurse. Table 4-6 and 
Table 4-7 show that the difference between the expected number of transitions by a 
colonised nurse for subset 1 and 2 is less than 10% for all scenarios. The difference 
in the expected number of transmissions between subset 1 and 2 equals 22.7% for 
the (𝑃 = 0.05, 𝜆 = 0.05 ) scenario and equals 66.7% for the (𝑃 = 0.005, 𝜆 = 0.95 ) 
scenario. These differences result from the change of spatiotemporal and social 
mixing patterns of the HCWs observed during the weekdays and weeknights or 
weekends.  

Table 4-6: Simulated HMO transmissions potential of a colonised nurse in a hospital ward under various 
assumed transmission rates and hand hygiene compliance levels (between 7am-5pm on weekdays). 

Transmissio
n 
probability 

HH
C 

RO1: 
Minutes 
spent 
colonise
d (SD) 

RO2: 
Contact
s (SD) 

RO3: People 
contacted 
(SD) 

RO4: 
Room 
transition
s (SD) 

RO5: 
Expected 
infections 
(SD) 

0.05 
0.0
5 

81.46 
(58.71) 

73.86 
(60.06) 

19.87 
(15.11) 

23.18 
(21.34) 

3.16 
(2.52) 

0.005 
0.0
5 

79.51 
(60.02) 

72.85 
(62.42) 

19.41 
(15.64) 

22.82 
(21.77) 

0.36 
(0.31) 

0.0005 
0.0
5 

81.64 
(59.81) 

75.58 
(61.32) 

20.00 
(15.14) 

23.34 
(21.97) 

0.04 
(0.03) 

0.05 
0.2
5 

21.47 
(20.41) 

20.11 
(23.74) 

4.87 (5.12) 4.76 
(4.24) 

0.83 
(0.96) 

0.005 
0.2
5 

21.13 
(19.93) 

19.87 
(23.43) 

4.96 (5.11) 4.74 
(4.14) 

0.10 
(0.11) 

0.0005 
0.2
5 

20.64 
(19.69) 

18.73 
(22.14) 

4.65 (5.03) 4.65 
(4.30) 

0.01 
(0.01) 

0.05 0.5 
11.54 
(11.53) 

11.00 
(14.90) 

2.45 (2.68) 2.45 
(1.93) 

0.44 
(0.58) 

0.005 0.5 
11.39 
(10.78) 

10.65 
(13.22) 

2.42 (2.50) 2.42 
(1.84) 

0.05 
(0.06) 

0.0005 0.5 
11.48 
(11.28) 

11.60 
(15.69) 

2.49 (2.60) 2.40 
(1.85) 

0.01 
(0.01) 
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0.05 
0.7
5 

7.67 
(7.37) 

8.15 
(11.75) 

1.82 (1.92) 1.61 
(1.03) 

0.32 
(0.45) 

0.005 
0.7
5 

8.05 
(7.62) 

8.62 
(12.58) 

1.83 (1.90) 1.70 
(1.10) 

0.04 
(0.06) 

0.0005 
0.7
5 

7.44 
(7.41) 

7.08 
(10.21) 

1.64 (1.70) 1.61 
(0.99) 

0.00 
(0.01) 

0.05 
0.9
5 

6.25 
(5.60) 

7.07 
(10.29) 

1.45 (1.47) 1.31 
(0.66) 

0.28 
(0.39) 

0.005 
0.9
5 

6.15 
(5.92) 

6.84 
(10.31) 

1.44 (1.46) 1.30 
(0.65) 

0.03 
(0.05) 

0.0005 
0.9
5 

6.01 
(5.76) 

6.39 
(9.69) 

1.44 (1.51) 1.31 
(0.68) 

0.00 
(0.00) 

Sampled data for three different transmission assumptions and five levels of HHC for one colonised 
nurse starting in a random room in the hospital ward, a hand hygiene efficacy (𝛾) of 0.83. 𝑃 = probability 
of transmission, 𝜆 = HHC level, 𝑅𝑂1 = amount of time spent colonised, 𝑅𝑂2 = number of contact 
moments, 𝑅𝑂3 = number of HCWs or patients made contact with, 𝑅𝑂4 = number of transitions 
between hospital ward rooms, 𝑅𝑂5 = expected number of HMO transmissions. 

Table 4-7: Simulated HMO transmissions potential of a colonised nurse in a hospital ward under various 
assumed transmission rates and hand hygiene compliance levels (between 6pm and  6am or on 
weekends). 

Transmission 
probability 

HHC RO1: 
Minutes 
spent 
colonised 
(SD) 

RO2: 
Contacts 
(SD) 

RO3: People 
contacted 
(SD) 

RO4: Room 
transitions 
(SD) 

RO5: 
Expected 
infections 
(SD) 

0.05 0.05 
114.30 
(89.05) 

104.29 
(90.80) 

16.39 (12.52) 23.14 
(21.74) 

3.88 (3.26) 

0.005 0.05 
115.67 
(90.79) 

104.93 
(93.49) 

16.44 (12.95) 23.85 
(22.56) 

0.51 (0.45) 

0.0005 0.05 
110.68 
(87.39) 

98.95 
(88.37) 

15.73 (12.42) 23.11 
(22.72) 

0.05 (0.04) 

0.05 0.25 
26.29 
(27.74) 

27.08 
(34.68) 

4.00 (4.18) 4.56 (3.96) 0.98 (1.21) 

0.005 0.25 
28.14 
(31.78) 

28.35 
(37.61) 

4.30 (4.36) 4.87 (4.27) 0.13 (0.18) 

0.0005 0.25 
26.66 
(27.13) 

26.71 
(32.87) 

4.13 (4.21) 4.71 (4.25) 0.01 (0.02) 

0.05 0.5 
13.69 
(14.25) 

14.73 
(22.87) 

2.24 (2.32) 2.41 (1.83) 0.53 (0.72) 
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0.005 0.5 
13.58 
(14.10) 

14.87 
(23.00) 

2.18 (2.34) 2.42 (1.83) 0.07 (0.11) 

0.0005 0.5 
14.47 
(15.32) 

16.10 
(23.31) 

2.42 (2.56) 2.61 (2.12) 0.01 (0.01) 

0.05 0.75 
9.66 (9.23) 11.81 

(18.08) 
1.68 (1.74) 1.67 (1.06) 0.42 (0.59) 

0.005 0.75 
9.78 (9.31) 11.76 

(18.39) 
1.61 (1.63) 1.58 (0.94) 0.05 (0.09) 

0.0005 0.75 
9.55 (9.24) 12.56 

(21.62) 
1.64 (1.67) 1.58 (0.93) 0.01 (0.01) 

0.05 0.95 
8.27 (7.90) 9.91 

(16.48) 
1.39 (1.44) 1.29 (0.63) 0.35 (0.51) 

0.005 0.95 
8.56 (7.99) 9.94 

(16.90) 
1.32 (1.38) 1.29 (0.65) 0.05 (0.08) 

0.0005 0.95 
8.68 (8.42) 10.29 

(18.04) 
1.32 (1.42) 1.31 (0.69) 0.01 (0.01) 

Sampled data for three different transmission assumptions and five levels of HHC for one colonised 
nurse starting in a random room in the hospital ward, a hand hygiene efficacy (𝛾) of 0.83. 𝑃 = probability 
of transmission, 𝜆 = HHC level, 𝑅𝑂1 = amount of time spent colonised, 𝑅𝑂2 = number of contact 
moments, 𝑅𝑂3 = number of HCWs or patients made contact with, 𝑅𝑂4 = number of transitions 
between hospital ward rooms, 𝑅𝑂5 = expected number of HMO transmissions. 

RO5 is expressed as a percentage RO5 worst-case scenario (𝑃 = 0.05;  𝜆 = 0.05) RO5 
for subset 1 (𝑅𝑂5 = 3.16) and 2 (𝑅𝑂5 = 3.88) and the combination of the two 
(𝑅𝑂5 = 3.36) in Figure 4-4. This pivoted view of RO5 shows similar changes in the 
expected numbers of transmissions for both subsets even though the nominal values 
of RO5 are different. A likely explanation is that during weekdays (Figure 4-4:B) 
increasing hand hygiene from 0.05 to 0.75 has a similar effect as decreasing the 
transmission probability by a factor 10 (0.05 vs 0.005) 

 

Figure 4-4: The expected number of transmissions expressed as a percentage of the worst-case scenario. 
For A, B and C: the highest number of expected transmissions (worst-case scenario) occur for the 
scenario where the transmission probability is 0.05 and hand hygiene compliance is 0.05. The expected 
number of transmissions is expressed as a percentage of the worst-case scenario. 
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4.4 Discussion 
This study identified nurses as a potential super-spreader healthcare worker (HCW) 
occupation group in a healthcare setting. Nurses have a disproportionately high 
potential to transmit hand-transmittable harmful microorganisms (HMO) to other 
HCWs or patients as compared to the other HCW occupation groups. The expected 
number of transmissions caused by a colonised nurse increases exponentially as the 
level of hand hygiene compliance (HHC) deteriorates or the transmission probability 
increases. These results are due to the spatiotemporal behaviour and social mixing 
patterns of HCWs. 

Five risk outcomes were defined to quantify the spatiotemporal effects of varying 
levels of HHC on the transmission and spread of HMO. These were: 1) the time that 
a colonised super-spreader is expected to be colonised; 2) the number of contact 
moments with other HCWs or patients; 3) the number of HCWs or patients 
encountered; 4) the number of ward rooms frequented while colonised and 5) the 
expected number of HCWs or patients a super-spreader will transfer microbes to 
before performing proper hand hygiene. The risk outcomes were quantified for 
various levels of hand hygiene compliance and probabilities of transmission. The 
expected change in the number of transmissions for different levels of HHC may 
encourage approval for healthcare interventions such as increased education and 
awareness about HHC and strategic accessibility to alcohol dispensers in healthcare 
settings.  
 
The simulation results are based upon empirical social mixing patterns of HCWs and 
highlight one colonised nurse’s impact as the super-spreader. These results are 
applicable when an HMO is transmittable by hand and can be eliminated by hand 
hygiene using an alcoholic rub.  Depending upon the HMO, the probability of 
transmission may differ, resulting in a change in the expected number of 
transmissions for various levels of hand hygiene compliance. Such simulations can be 
used in educational materials to emphasize personal control and responsibility to 
perform HHC. Normal HHC levels of 50% may deteriorate to 25% during busy periods 
in a healthcare setting because of reduced healthcare worker capacity or time 
pressure. The simulation results allow for “what if?” questions to be answered under 
different assumed levels of HHC and transmission probabilities in terms of the five 
risk outcomes. HCWs are then able to simulate the impact of the initial assumptions 
on the expected number of transmissions caused by a super-spreader based on 
empirical spatiotemporal behaviour and social mixing patterns of HCWs in a real 
healthcare setting.  
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The results are consistent with other work done on super-spreaders in healthcare 
facilities [168]. Our contribution is that we quantified the potential consequences of 
the spatiotemporal behaviour of HCWs for varying levels of hand hygiene compliance 
and different transmission probabilities. The simulation results showed that, for the 
same transmission rates and HHC levels, the number of transmissions is higher during 
weeknights and weekends. An explanation is that HCWs spent more time with fewer 
HCWs or patients during weeknights and weekends but had more contact moments 
for every minute spent colonised. An increase in the time that a super-spreader 
navigates through the hospital ward results in an increase in the number of 
encountered HCWs or patients, allowing for more opportunity to transmit the HMO. 
HHC may vary over time because of varying ward occupancy levels or different days 
of the week: the simulation results show that for an HMO with a transmission rate of 
0.05 and with the average level of HHC of 50% during the week and 25% over the 
weekend, that the expected number of HCWs and patients to whom a colonised 
nurse transfers microbes will almost double. Simulation scenarios were identified 
with equal risk outcomes for different initial conditions. They illustrate that infection 
prevention and control interventions can use combinations of strategies and bundles 
of interventions to fight the transmission and spread of HMO to achieve the same 
results. 

The expected number of HCWs or patients to whom a super-spreader will transfer 
microbes before performing proper hand hygiene (risk outcome 5) is controlled by 
managing spatiotemporal behaviour (risk outcomes 1 – 4) and the level of HHC. A 
possible intervention based upon these results is to limit the number of room 
transitions, contact and contact duration during periods of low expected levels of 
HHC. If, for example, on busy Friday evenings the levels of HHC change, a possible 
preventative intervention might be to optimise the number of HCWs, as well as their 
routes and logistics according to an algorithm based upon sampled spatiotemporal 
movement data. Such an algorithm should then specifically be designed to minimise 
the potential transmission and spread of harmful microorganisms. Risk outcomes can 
thus be monitored over time, for instance, allowing one to determine the seasonality 
of trends or the effects of spatiotemporal interventions or policy changes. The five 
risk outcomes may then be addressed as spatiotemporal safety behaviours in 
hospital wards and in the formulation of healthcare policy to minimise the 
transmission of hand-transmittable HMOs. 
This study contributes to infection prevention and control by highlighting five risk 
outcomes essential to describing the possible spread of an HMO on an individual 
temporal level and the spatial level in a healthcare setting. These insights apply to 
hand-transmittable HMOs and can be used to develop better informed preventative 
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strategies, for heterogeneous hand hygiene education, feedback, work-place 
reminders and other interventions.  

4.4.1 Limitations and future work 
Our sample is taken over seven days, giving a unique sample with good coverage for 
a single week. Differences may exist, however, with other weeks throughout the year 
and even between years. The data used in this study may further be biased towards 
HCWs who were diligent in wearing the RFID badges. The data were carefully checked 
for any inconsistencies; some loss in data quality caused by incorrect room 
classification because of overlapping RFID reader areas could still be present in the 
data. This study’s hospital ward is similar to hospital wards found in most healthcare 
facilities in most aspects. Our results are based upon the sampled RFID tracking data 
for one specific ward. It is a future challenge to generalise these results to other 
wards in other hospitals.  
The spatial resolution of our data is the room level and an assumption was made 
regarding the proximity and interaction between people, thus adding uncertainty in 
the simulation results. The transmission probability may be different during the day 
than during the evening shifts due to the difference of care provided during different 
times of the day. Future opportunities include collecting data of a higher spatial 
resolution that will allow us to identify the proximity between people, within room 
locations in the hospital and interaction with objects like hand hygiene dispensers 
and mobile (diagnostic) equipment like computers on wheels. An increase in spatial 
resolution will enable a more accurate event classification and result in more 
accurate simulation results. For instance, interaction with a hand hygiene dispenser 
does not require any assumption about the level of HHC, but only on its efficacy. 
Interaction of an HCW with objects and equipment inside different architectural 
designs and room layouts allows one to refine the transmission models, thus 
improving the transmission scenarios. The spatiotemporal risk outcomes defined 
should be further investigated to identify the relationship between them. For 
example, how the expected number of infections change should if the average 
contact duration contact decreases. These relationships can be used to determine 
how the risk outcomes should be addressed to reduce the hand transmission of 
HMOs efficiently. 

4.5 Conclusion  
This study defines five risk outcomes in terms of the number of contact moments, 
the duration of contacts and the number of ward rooms frequented while colonised 
and uses them to quantify the transmission and spread of harmful microorganisms. 
It shows that nurses are potential super-spreaders of harmful microorganisms due to 
their spatiotemporal movement and social mixing patterns in a healthcare setting. 
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The expected number of healthcare workers and patients, to whom a super-spreader 
transfers microbes, increases exponentially as the level of hand hygiene compliance 
deteriorates.  The performed simulations increase our insight into the consequences 
of varying levels of adherence to spatiotemporally specific healthcare policies such 
as hand hygiene compliance. The simulations further show that a change in 
spatiotemporal movement and social mixing patterns of healthcare workers will 
affect the expected number of transmissions in a closed healthcare setting. The risk 
outcomes may be further addressed in terms of spatiotemporal safety behaviour in 
healthcare settings to reduce the spread of HMO. The adherence level is to be further 
investigated to improve the information to policymakers and further educate 
healthcare workers about the risks of their spatiotemporal behaviour. 
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5. Spatiotemporal prediction of the occurrence of 
vancomycin-resistant Enterococcus 

 

 

Abstract 
Vancomycin-resistant enterococci (VRE) is the cause of severe public health and 
monetary burdens. Antibiotic use is usually included as a possible confounding effect 
to predict VRE in patients, but the antibiotic use of patients who may have 
frequented the same ward as the patient in question is often neglected. This study 
investigated how the occurrence and spread of VRE can be explained by intrahospital 
patient movements (IPM) between hospital wards and their antibiotic use. 
Retrospective IPM, antibiotic use and PCR screening data were used from a hospital 
in the Netherlands. A dynamic directed spatiotemporal graph was developed, and 
together with the PageRank algorithm used to calculate two daily centrality 
measures to summarise the flow of patients and antibiotics at the ward level. The 
daily occurrence of VRE for every ward was predicted using a decision tree and 
random forest model. The models’ performance was compared using a 30% test 
sample. The decision tree model produced a simple set of rules that can determine 
the daily probability of VRE occurrence for each hospital ward. The decision tree 
model achieved an acceptable area under the ROC curve (AUC) of 0.755 and the 
random forest model an excellent AUC of 0.883 on the test set. These results confirm 
that the random forest model performs better than a single decision tree for all 
model sensitivity and specificity levels at the cost of model simplicity. An early 
warning system for VRE can be developed and inform infection prevention plans and 
outbreak strategies further using these results. 

 

This chapter was submitted to the BMC Infectious Disease journal and is undergoing 
minor revision. van Niekerk JM, Lokate M, Braakman-Jansen LM, van Gemert-Pijnen 
JE, Stein A. Spatiotemporal Prediction of the Occurrence of Vancomycin-resistant 
Enterococcus. Available at Research Square [https://doi.org/10.21203/rs.3.rs-
860519/v1] 
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5.1 Background 
Vancomycin-resistant enterococci (VRE) was first reported in Europe in 1986 [47] 
and since then has been the cause of severe public health and monetary burdens 
[46]. The prevalence of VRE and VRE outbreaks have increased over the past 20 
years in Europe [181]. Enterococcus faecalis and Enterococcus faecium are the 
Enterococci species typically found in humans’ gastrointestinal tracts, which 
could lead to bacteraemia, endocarditis, intra-abdominal and pelvic infections 
and urinary tract infections [47]. Patients are more than twice as likely to die 
from bloodstream infections caused by VRE as compared to a susceptible strain 
of Enterococcus [182]. Enterococci have properties that make them naturally 
resistant to the most used antimicrobial, and in particular, they can quickly 
become resistant to any new last-resort antimicrobials introduced.  

Enterococci can survive on hospital surfaces and they can spread between 
patients using hands and surfaces as vectors [183]. In addition to direct patient-
patient and HCW-HCW transmission pathways, there are five main transmission 
pathways for VRE inside a hospital: 1) patient to healthcare worker (HCW); 2) 
patient to the environment; 3) HCW to patient; 4) environment to patient; 5) 
environment to HCW [184]. Since the VRE can survive on dry environmental 
surfaces for months, it could be a constant source for new outbreaks [185]. These 
reservoirs may persist despite routine cleaning procedures [186].  

The immediate surroundings of a patient with VRE are likely to contain VRE 
reservoirs [187] and the odds of a patient acquiring VRE increase when prior 
room occupants had VRE [188,189]. The risk of colonization increases as the 
number and proportion of patients with VRE in the same unit increases [190]. 
Patients also face increased odds of VRE colonization the more days they spend 
hospitalized [191]. Antibiotic use and immunosuppressing comorbidities such as 
leukaemia have been identified as risk factors for VRE colonization [182,191].  

When a VRE outbreak occurs in a hospital, positive patients are isolated, the 
extent of the outbreak is estimated and additional control measures are 
implemented if necessary [181]. Estimating the extent of an outbreak involves 
determining the contact group, usually at the ward level. The contact group 
consists of the patients who could potentially have been colonized during the 
outbreak. Contact tracing is typically used to determine the patients at risk. A 
screening process can be carried out to verify which patients were indeed 
colonized, which can be expensive [192]. The benefits of improving the 
estimation accuracy of these contact groups are: 1) control measures are more 
effective, which translates into fewer transmissions and ultimately less 
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infections; 2) fewer patients are burdened by the screening process; 3) less 
testing reduces the financial burden.   

Even though estimation of the extent of an outbreak plays a critical role in 
outbreak management, few studies have investigated the relationship between 
the patient movements between hospital departments and the spread of 
microorganisms. Reasons for patients to move from one department to another 
include deterioration of health; surgery after which they are moved to intensive 
care and afterwards to general care or more specialized care department; 
hospital logistics due to limited capacity. One study used centrality measures of 
intrahospital patient movements to predict the onset of clostridium difficile at 
the ward level [30]. The centrality of hospital antibiotic use, however, was not 
considered. Clostridium difficile can survive on hospital surfaces and patients are 
at risk from environmental vectors. Recent studies have shown that each 
intrahospital transfer increases a patient’s odds of contracting clostridium 
difficile by 7% (95% CI 1.02 – 1.13). To our knowledge, no similar studies exist for 
the VRE. 

The effects of intrahospital patient movements and antibiotic usage in hospitals 
are usually studied separately in antimicrobial resistance (AMR) research. The 
use of antibiotics is usually included as a possible confounding effect to predict 
VRE in patients, but the use of antibiotics of other patients who may have 
frequented the same ward as the patient in question is often neglected. Hospitals 
are dynamic systems with many moving objects and each of those objects has a 
surface that can act as a vector for VRE. Furthermore, antibiotic use can increase 
the number of VRE in patients due to selection pressure which can then spread 
between patients [186,193]. For these reasons, VRE should be studied using 
covariates which include spatiotemporal patterns of patients and antibiotics use 
in the hospital. 

This study investigated how the occurrence and spread of VRE can be explained 
by patient movements and their antibiotic use between hospital wards. We 
estimated the probability of VRE at the ward level using intrahospital movement 
data and antibiotic usage data. We estimated this probability using a decision 
tree model and a random forest model and compared the model performance 
as a sub-objective. This study is important because it allows infection prevention 
and control specialists and outbreak management staff to determine which 
wards are at risk of a VRE outbreak using commonly available data. 



 

72 

 

5.2 Methods 
5.2.1 Patient movement and antibiotic data 

We used retrospective patient movement data from the University Medical Center 
Groningen (UMCG), one of the largest hospitals in the Netherlands with more than 
12 000 employees and almost 1 400 beds. Antibiotic usage and patient movement 
data are stored in an electronic health record (EHR) database. The period under study 
is January 2018 until December 2019. The anonymised data consist of admission and 
discharge dates for each department within the hospital and antibiotic 
administration times during admission. These data were used to calculate two 
covariates for each day during the period of study: 1) the number of patients in each 
ward (pat_num); 2) the number of patients using antibiotics in each ward 
(pat_num_ant). 

5.2.2 Spatiotemporal graph 
The intrahospital patient movements data can be used to construct a dynamic 
directed spatiotemporal graph (DG) [194]. The graph nodes are the wards and the 
edges between the nodes are the patients moving between the wards. The DG is 
spatiotemporal and dynamic since it presents the location of patients using a node 
structure over time. We created two DGs using the patient movement data and the 
antibiotics data. The first graph includes all patient movement between all wards. 
The second graph only includes the movements of patients using antibiotics.  

5.2.3 PageRank algorithm 
The PageRank (PR) algorithm aims to determine the centrality or “importance” of 
nodes given the number of other “important” nodes with vectors directed towards 
it [50]. In the context of this study, the PR algorithm estimates the probability 
distribution of an arbitrary patient ending up in a particular ward. We calculated the 
daily PageRank probabilities for both DGs using a 30-day rolling time window: 1) 
PageRank of patient movements between wards (PR_pat_num) and 2) PageRank of 
patient movements currently using antibiotics (PR_pat_num_ant). The PR_pat_num 
and PR_pat_num_ant represent the centrality of wards in terms of patients and 
antibiotics, respectively. 

5.2.4 VRE screening data 
The number of VRE tests per week fluctuated between 100 to 300 per week during 
the study period. There was a VRE outbreak in the second half of 2018 (Figure 5-1). 
Outbreak procedures were implemented and hospital ward screening continued. 
Between July - December 2018, 141 positive VRE tests were reported, with a peak of 
25 positive tests in one week. In total, 48 patients tested positive for VRE over the 
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study period. These data were used to calculate the binary outcome variable for this 
study (Formula 5-1).  

𝑌 =  {
1, number of VRE positive patients in ward > 0
0, otherwise

            (Formula 5-1) 

 

Figure 5-1: VRE tests and the number of positive VRE test results during 2018 - 2019. 

5.2.5 Modelling 
We estimated the probability that there is at least one patient with VRE in a specific 
ward (Y) given the covariates pat_num, pat_num_ant, PR_pat_num and 
PR_pat_num_ant (Formula 5-2). 

𝑃(𝑌 = 1| 𝑝𝑎𝑡_𝑛𝑢𝑚, 𝑝𝑎𝑡_𝑛𝑢𝑚_𝑎𝑛𝑡, 𝑃𝑅_𝑝𝑎𝑡_𝑛𝑢𝑚, 𝑃𝑀_𝑝𝑎𝑡_𝑛𝑢𝑚_𝑎𝑛𝑡) (Formula 5-
2) 

5.2.6 Decision trees 
A decision tree was used to determine a simple set of rules based on the covariates 
to estimate the probability of Y [195]. The decision tree was grown using a 70% 
random training sample of the complete set of data. The data were split 
incrementally by adding question nodes. The question nodes consider the ability of 
each covariate to discriminate between the observed binary outcomes and 
formulates the question using the one that can discriminate best [51]. We used the 
Gini index to quantify the discriminatory ability of each covariate at the question 
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nodes [195]. Continuing in this way, a tree branch structure is created, leading to the 
final decision or leaves of the tree.  

5.2.7 Random forest 
The model performance of decision trees was improved by creating an ensemble of 
decision trees and using them in unison to predict the outcome variable [51]. We 
used the same 70% randomly sampled training samples used to train the decision 
tree model. To build the random forest (RF) model, 500 random samples with 
replacement (bootstrap sample) were drawn from the training data and two random 
outcome variables were used to build a decision tree for each of the bootstrap 
sample. The probability of Y was determined by calculating the proportion of the 500 
trees that predicted 𝑌 = 1.  

We compared the model performance of the decision tree and random forest models 
using the remaining 30% data as a test sample. The area under the receiver operating 
characteristic curve (AUC) was used to measure model performance as it provides a 
holistic view of how well the model predicts the outcome variable for different levels 
of sensitivity and specificity [196]. An AUC between 0.7 and 0.8 is considered as 
acceptable and between 0.8 and 0.9 excellent [125]. 

5.2.8 Software 
The R statistical programming language was used to perform the analyses in this 
study [78]. Graphs were created and evaluated using igraph [197]. The decision trees 
and random forest models were fitted using the R packages rpart and randomForest 
packages [198,199]. In addition, the tidyverse R package was used to clean and 
structure the data [81]. 

5.3 Results 
In total, 48 distinct wards were occupied over the 730 days in the study period (2018 
– 2019). Of the possible 35 040 observations, if all the wards were occupied every 
day, only 31 649 observations were collected, of which 1 377 (5.45%) had at least 
one patient with VRE.  

5.3.1 Covariates 
The pat_num and pat_num_ant covariates are shown with the number of positive 
VRE patients during the VRE breakout period in 2018 in Figure 5-2. We highlight the 
covariate associated with a general care ward with many VRE patients during this 
outbreak in Figure 5-3. These results show a higher level of variation at the ward 
level, which conforms better to the number of patients with VRE. The highest number 
of positive VRE patients were observed in the last week of August 2018. At the 
hospital level, the relationship between the pat_num_ant, pat_num and the number 
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of positive VRE patients is not evident. When the same data are shown at the ward 
level for the general care ward, these covariates are correlated with the number of 
VRE patients. 

 

Figure 5-2: Number of patient and patients using antibiotics. pat_num_ant = the number of patients 
using antibiotics in each ward; pat_num = the number of patients in each ward. 

 

Figure 5-3: Number of patient and patients using antibiotics in example general care ward. pat_num_ant 
= the number of patients using antibiotics in each ward; pat_num = the number of patients in each ward. 
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Comparing the two PR_pat_num and PR_pat_num_ant reveal that during this period, 
PR_pat_num_ant was higher than PR_pat_num (Figure 5-4). This means that, on 
average, the probability of a patient using antibiotics to visit an occupied ward was 
higher than for the total patient population. The same covariates are shown for the 
example general care ward in Figure 5-5. The general care ward experienced a 
significant increase in PR_pat_num_ant during July and October, which lasted for 
four weeks and yet PR_pat_num did not show a similar pattern. These results show 
that the two centrality covariates provide different information of the patient and 
antibiotics flow in a hospital at the ward level. 

 

Figure 5-4: Average daily PageRank covariate and the number of VRE positive patients. PR_pat_num  = 
PageRank of patient movements between wards; PR_pat_num_ant = PageRank of patient movements 
using antibiotics. 
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Figure 5-5: Average daily PageRank covariate and the number of VRE positive patients in example ward 
general care ward. PR_pat_num  = PageRank of patient movements between wards; PR_pat_num_ant 
= PageRank of patient movements using antibiotics. 

5.3.2 Decision tree 
The 70% training sample had a 4.3% positive VRE percentage of the root node (Figure 
5-6). The pat_num_ant covariate splits the first nodes. If the number of patients is 
less than six, which is the case for 40% of the training sample, then there is a 0.098% 
probability that the ward has a VRE patient. If the number of patients in a ward is six 
or more, but less than 13, we continue to the next node to consider the 
PT_pat_num_ant covariate. After dividing the training sample by the five nodes, we 
arrive at the seven leaves of the tree. The probabilities of the leave population range 
between 0.98% and 15.68%. According to the order in which the covariates were 
used in the model, the pat_num_ant is the most important covariate to estimate the 
probability of a hospital ward having at least one VRE patient or not. The PR 
covariates are next in the order of importance to determine the final leaves of the 
tree. The decision tree results can be written and executed as a simple set of rules 
provided in (Formula 5-3). 
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Figure 5-6: Decision tree for the daily VRE occurrence in a hospital ward using PageRank and traditional 
covariates. pat_num_ant = the number of patients using antibiotics in each ward; PR_pat_num_ant = 
PageRank of patient movements currently using antibiotics; PR_pat_num = PageRank of patient 
movements between wards. In each node, the percentage of ward with at least one VRE positive patient 
is shown above the sample distribution of the node. 

𝑃(𝑌 = 1| pat_num, pat_num_ant, PR_pat_num, PM_pat_num_ant) =  
                (Formula 5-3) 

0.0098 if pat_num_ant < 6,                                                                            

0.0326 if pat_num_ant ∈ [6,13] AND PR_pat_num_ant ∈ [0.022, 0.029) AND PR_pat_

num ≥ 0.025,                                      

0.0340 if pat_num_ant ∈ [6,13] AND PR_pat_num_ant < 0.22,                

0.0384 if pat_num_ant ∈ [6,13] AND PR_pat_num_ant ≥ 0.29,                

0.1030 if pat_num_ant ≥ 13,            
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0.1568 if pat_num_ant ∈ [6,13] AND PR_pat_num_ant ∈ [0.022, 0.029) AND PR_pat_

num < 0.025 

5.3.3 Random forest 
The minimal depth provides insight into where a covariate occurs for the first time in 
the decision trees for the random forest and quantified variable importance. 
Covariates with lower minimal average depth are used to split larger proportions of 
the population due to higher discriminatory power. The results show that 
pat_num_ant has the lowest average depth (0.61) and is most likely to be used in the 
root node. This result is consistent with our single decision tree model (Figure 5-7). 
PR_pat_num was not used as a root node for any of the 500 decision trees. It has the 
largest average depth (1.93) in the trees, which means that it was generally used in 
nodes appearing lower in the decision trees. 

 

Figure 5-7: Minimal depth for each covariate in the 500 random forest decision trees. pat_num_ant = 
the number of patients using antibiotics in each ward; PR_pat_num_ant = PageRank of patient 
movements currently using antibiotics; pat_num = the number of patients in each ward; PR_pat_num = 
PageRank of patient movements between wards. 

We determined the covariate importance in the RF model by calculating the 
percentage increase in the mean square error (MSE) and the change in the residual 
sum of squares (RSS) of the model should random information replace the values of 



 

80 

 

the model covariates. The results show that the PR covariates are the most important 
ones in terms of the MSE (Figure 5-8) and RSS (Figure 5-9) reductions. 

 

Figure 5-8: The change in mean squared error when covariate values are replaced with random values. 
PR_pat_num = PageRank of patient movements between wards; PR_pat_num_ant = PageRank of 
patient movements currently using antibiotics; pat_num = the number of patients in each ward; 
pat_num_ant = the number of patients using antibiotics in each ward. 

 

Figure 5-9: The change in residual sum of squares when covariate values are replaced with random 
values. PR_pat_num_ant = PageRank of patient movements currently using antibiotics; PR_pat_num = 
PageRank of patient movements between wards; pat_num_ant = the number of patients using 
antibiotics in each ward; pat_num = the number of patients in each ward. 
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5.3.4 Model performance 
The performance of the models is compared to the Lorenz curves shown in Figure 
5-10. The Lorenz curve of the RF model is consistently higher than for the decision 
tree model. The RF model achieved an excellent AUC of 0.883 and the decision tree 
model an acceptable AUC of 0.755 on the 30% test set. This result confirms that the 
random forest model performs better than a single decision tree for all levels of 
model sensitivity and specificity on data not used to estimate the models. This is 
important to estimate the loss in model performance when choosing to use the 
simple set of rules produced by the decision tree model to calculate the probability 
of Y rather than using the RF model.  

 
Figure 5-10: Lorenz curves of the decision tree and random forest models. 

5.4 Discussion 
This study showed how the movements of patients inside hospitals and their use of 
antibiotics could predict the occurrence of VRE at the ward level. Two daily centrality 
measures were proposed to summarise the flow of patients and antibiotics at the 
ward level. A simple set of rules were produced which can be used to monitor the 
risk of VRE in hospital wards. Using an ensemble method, a more accurate but more 
complicated model was developed, which can be applied to the same effect should 
resources allow for it. 

The two PageRank covariates proposed offered new insight into the centrality of 
wards regarding patient and antibiotic movements and their interaction. This study 
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used the covariates to predict VRE, but they can be used in many other studies 
concerning antimicrobial resistance in hospitals. Institutional surveillance monitors 
the usage of antibiotics but not the flow and concentration thereof. The proposed PR 
covariates can be used in conjunction with existing institutional surveillance metrics 
to monitor the risks for VRE and AMR in general. 

The decision tree model resulted in six simple questions and provided the probability 
that a ward has at least one patient with VRE as an answer. This model enables 
hospitals to use passive data collected in their electronic health records to calculate 
this probability. To improve the accuracy of this model, a random forest model was 
built, which outperforms the decision tree model. The random forest model results 
were not as easily interpretable as that of the decision tree as it uses 500 smaller 
decision trees every time a probability is calculated. In practice, the model used will 
depend on the skills and resources of the hospital and its infection prevention and 
control specialists. 

5.4.1 Future work 
The results of this study can be used to develop an early warning system for VRE and 
other microorganisms with similar transmission mechanisms. The probabilities 
produced by the models presented can be used to classify VRE according to the 
desired level of sensitivity and specificity for such a system. The results can then be 
updated daily or as frequently as the covariates can be calculated and evaluated by 
the infection prevention specialists to decide on the best course of action. 

Our results showed that the value of the patient movement and antibiotic PR 
covariates sometimes move in the opposite direction over time. This divergence 
suggests that the proportion of patients using antibiotics is changing over time. These 
covariates can be used together to determine if emerging divergences increase the 
risk of VRE occurrence. 

5.4.2 Limitation 
The study period was limited by the amount of data available for intrahospital patient 
movement, antibiotic use and VRE screening. UMCG migrated to a new electronic 
healthcare system in 2017, resulting in the antibiotic data not being available at the 
time of publication. There was a VRE outbreak in 2017, which would have allowed us 
to build these models on the 2017 outbreak and validate them on the 2018 outbreak. 
Once these data become available, this could be a future research opportunity. 

Even though this study can determine if a patient were using antibiotics at a 
particular time, we could not distinguish between the types of antibiotics used. Some 
antibiotics target specific bacteria and can have a more significant effect on the risk 
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of acquiring VRE. A future research opportunity is to create antibiotics centrality 
measure for antibiotics targeting different bacteria. 

The ideas behind this study can be further expanded to the patient level. This 
expansion will require additional patient data regarding demographics and 
comorbidities affecting the risk of contracting VRE. A prediction model for VRE at the 
patient level using the proposed spatiotemporal centrality measures and patient-
level data will improve the efficiency with which infection prevention specialists can 
control AMR in hospital. 

5.5 Conclusion 
This study showed how the movements of patients inside hospitals and their use of 
antibiotics could predict the occurrence of VRE at the ward level. Two daily centrality 
measures were proposed to summarise the flow of patients and antibiotics at the 
ward level. A simple set of rules was produced which can be used to monitor the risk 
of VRE in hospital wards. A random forest model was compared with a decision tree 
model to improve the prediction performance at the cost of simplicity. An early 
warning system for VRE can be developed to test and further develop infection 
prevention plans and outbreak strategies using these results. 
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6.  Synthesis 
6.1 Findings 

This thesis investigates how statistical models can improve our understanding of the 
occurrence and spread of harmful microorganisms in hospitals with the additional 
complication of antimicrobial resistance (AMR).  

In this chapter, the main findings are summarised and discussed for each of the four 
research questions in terms of significance, limitation and potential for future 
research. 

RQ 1: How can knowledge gaps in AMR research be identified objectively and 
automatically? 

Potential knowledge gaps in AMR research were identified using a data-driven 
statistical methodology and the key knowledge gaps were highlighted. AMR scientific 
research over the past 20 years was grouped into 88 topics. These topics were 
clustered into seven larger research areas. In total, 421 potential knowledge gaps 
were identified between the AMR research topics and larger research areas and 2 
663 between individual topics. From these potential knowledge gaps, specific 
knowledge gaps could be highlighted. A knowledge gap between the clinical AMR 
research area and topics related to molecular and laboratory research was identified. 
Topics related to the water and the environment and surveillance were found to be 
unrelated in AMR research and identified as a knowledge gap. Furthermore, the 
results showed that a knowledge gap exists between Data modelling and estimation 
topic and the Resistance patterns on hospital level AMR research topic. These results 
show that a semi-automated data-driven statistical methodology can be used to 
identify potential knowledge gaps in AMR research that AMR researchers may 
consider for further research and suggest that it can function as an alternative or in 
conjunction with the existing expert methodology.  

RQ 2: What are the risk factors for the occurrence of SSI when using data-driven cut-
off values for continuous variables? 

Risk factors related to surgical site infection were identified using standard medical 
cut-off values and data-driven cut-off values for continuous variables. Although the 
standard medical cut-offs were confirmed by the data-driven cut-offs for most 
continuous variables, the data-driven cut-offs were different for pre-operative 
patient temperature, CRP and patient age and better explain the outcome value by 
up to 19.5%. A preoperative body temperature of ≥38 oC and antibiotic use are risk 
factors for surgical site infection (SSI) after digestive, orthopaedic and thoracic 
system surgeries. The duration of surgery and patient age are risk factors for SSI after 



 

85 

 

orthopaedic and thoracic system surgeries, respectively. SSI is more likely to occur in 
children (age < 18) than in adults after thoracic system surgeries. The results show 
that data-driven cut-offs for continuous variables may differ from standard medical 
cut-offs and that they can be effective to identify risk factors for the occurrence of 
SSI. 

RQ 3: How can the spatiotemporal movements of healthcare workers identify 
potential a super-spreader occupation group of harmful microorganisms in a closed 
healthcare setting? 

Spatiotemporal data were collected from healthcare workers using radio frequency 
identification (RFID) technology to simulate the spread of harmful microorganisms in 
a hospital ward for different hand hygiene compliance levels. The results showed that 
nurses are potential super-spreaders of harmful microorganisms due to their 
spatiotemporal movement and social mixing patterns in a healthcare setting. The 
expected number of healthcare workers and patients to whom a super-spreader 
transfers microbes increased exponentially as the level of hand hygiene compliance 
deteriorates. Five risk outcomes were defined: 1) the time that a colonised super-
spreader is expected to be colonised; 2) the number of contact moments with other 
healthcare workers (HCW) or patients; 3) the number of HCWs or patients 
encountered; 4) the number of ward rooms frequented while colonised and 5) the 
expected number of HCWs or patients a super-spreader will transfer microbes to 
before performing proper hand hygiene. They were used to quantify the 
transmission and spread of harmful microorganisms. The results further show that a 
change in spatiotemporal movement and social mixing patterns of healthcare 
workers will affect the expected number of transmissions in a closed healthcare 
setting. 

RQ 4: How can the occurrence of vancomycin-resistant Enterococcus (VRE) in a 
hospital be predicted using intrahospital patient movements and antibiotic usage? 

This study shows how commonly available intrahospital patient movement data from 
EHR could be used to predict the occurrence of VRE at the hospital ward level. Two 
daily centrality measures summarised the flow of patients based on and antibiotics 
at the hospital ward level. The result is a simple set of rules that can monitor the risk 
of VRE in hospital wards. A random forest model improved the model prediction 
performance (area under the curve (AUC) = 0.883) compared to a decision tree model 
(AUC = 0.755) at the cost of model simplicity. These results showed how centrality 
covariates summarising the flow of patients and their antibiotic use between hospital 
wards could be used to predict the daily occurrence of VRE at the hospital ward level.  
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6.2 Significance and prospects 
This thesis shows how statistical models and novel spatiotemporal data could enrich 
existing risk factors and identify new risk factors to predict the occurrence and spread 
of harmful microorganisms and the complication of AMR. Furthermore, this thesis 
contributes to clinical practice by providing new statistical tools to prevent and 
control the occurrence and spread of AMR in closed healthcare settings. Although 
much has been done in the thesis, many future research opportunities were 
identified. 

For the first time, the scientific AMR literature was quantitively classified into topics 
and assessed for knowledge gaps. It is now clear what the current standing is of AMR 
research, what the topics are and how they are related or not related to each other. 
This thesis provides a complete list of potential knowledge gaps in AMR research, of 
which the most important and urgent ones were highlighted. Technical advisory 
groups across sectors and industries can use these results to inform national and 
international research agendas about the current shortcomings in understanding 
AMR. In addition to answering RQ1, this new insight may change how knowledge 
gaps are identified in the future. The search for knowledge gaps was limited to AMR 
research, but the same methodology can be applied to any research field with similar 
results. A future research opportunity is to fully automate the methodology used in 
Chapter 2 and generalise it to other research areas. These additional steps may lead 
to a time when researchers may not have to look for knowledge gaps to fill but 
choose from a list of gaps automatically generated and available to everyone. The 
final step may be to determine the importance of those knowledge gaps 
automatically. 

The process followed to identify risk factors in healthcare has evolved over the last 
century into a standardised process. So much so that the definition of the potential 
risk factors themselves is rarely questioned. It is intuitive to assume that a cut-off for 
age seems reasonable at, maybe, 18, since society regards this age as highly 
significant in other aspects of life. Does that mean that it should be used as a cut-off 
when considering age as a risk factor for getting an infection after having surgery? 
Before the research performed in Chapter 3 of this thesis, this question was neither 
asked nor answered. RQ2 questioned the established standard medical cut-offs used 
in risk factor identification research and Chapter 3 illustrates the importance of data-
driven methodologies when identifying risk factors for the occurrence of SSI. The 
results showed how a statistical model could be used to determine the cut-off values 
of potential risk factors and how the subsequent risk factors identified differ from 
those identified when using standard medical cut-off values. Even though it may be 
convenient to use existing standard medical cut-off values because they are widely 
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accepted and easily comparable, key insights are likely to be missed due to using 
them. These results can inform the methodology of future studies that aim to identify 
risk factors for adverse patient-related outcomes. Future research may suggest best-
practices to evaluate both standard medical and data-driven cut-off values when 
identifying risk factors in healthcare.  

This thesis identified nurses as potential super-spreaders of harmful microorganisms 
to answer RQ3. This result was confirmed using empirical spatiotemporal RFID data 
to study the social mixing patterns of healthcare workers. Using the five-risk outcome 
defined in Chapter 4, hospitals can estimate the change in the expected number of 
transmissions for different levels of hand hygiene compliance based on the social 
mixing pattern of healthcare workers. These results are instrumental in informing 
better infection prevention and control measures and providing relevant training 
based on empirical data. In addition, this research confirmed the importance of 
spatiotemporal data and the understanding of social mixing patterns to explain the 
spread of harmful microorganisms. Future research may use these risk outcomes 
together with patient-level data to determine the risk of transmission for each 
patient. Another opportunity is to collect higher spatial resolution data to identify 
the proximity between people, within room locations in the hospital and interaction 
with objects like hand hygiene dispensers and mobile (diagnostic) equipment like 
computers on wheels. Using technologies like active RFID tags to increase spatial 
resolution may enable a more accurate event classification and result in more 
accurate simulation results [200]. 

The final study combined the learnings of the previous chapters to predict the 
occurrence of AMR at the hospital ward level using spatiotemporal data of patients 
and their antibiotic use to answer RQ4. Using the PageRank algorithm to encapsulate 
the flow of patients and antibiotics is a novel and elegant way to summarise the 
relevant information in a dynamic directed spatiotemporal graph. The same 
methodology may also be used to model the flow of other attributes and objects over 
the same network. The simple set of rules is easily interpretable by healthcare 
workers and infection prevention specialists and can be used to strategic screening 
policies for VRE. The random forest model can be incorporated into a sophisticated 
early warning system for VRE to enable state of the art infection prevention and 
control measures at the hospital ward level. Although the model is not at the patient 
level, the results may help infection prevention and control specialists to identify 
wards at high risk of AMR and take preventative measures earlier. 

Furthermore, the intrahospital movement data used in this model should be 
available in most hospitals, making it more straightforward and cost-effective to 
develop and implement than other real-time location technologies. Future studies 



 

88 

 

may use the methodology developed in this research in combination with patient-
level data to develop patient-level models to predict AMR at the patient level. This 
expansion will require additional patient data regarding demographics and 
comorbidities affecting the risk of contracting VRE. These patient-level data may be 
more challenging to obtain as they may not be available in a structured format but 
rather in free-text documents. Hospitals must aim to store all potential patient-
related risk factor data in a structured format to optimise the use of statistical models 
to identify risk factors and predict future outcomes. A prediction model for VRE at 
the patient level using the proposed spatiotemporal centrality measures and patient-
level data will dramatically improve the efficiency with which infection prevention 
specialists can control AMR in hospitals. Such a model can be used to develop an 
early warning system for VRE to inform strategic screening and cleaning strategies to 
combat the occurrence and spread of VRE. To further improve the generalisability of 
Chapter 5, data from different hospitals in The Netherlands and other countries can 
be used to obtain comparable results. Specifically, this study can be repeated for a 
university medical hospital in Germany on the Dutch-German border to compare the 
effect of different healthcare policies on the occurrence and spread of AMR in 
hospitals. 

Future research may consider more advanced statistical models to increase model 
performance, stability and generalisability. Bayesian statistical methods can 
determine the probability that the data observed were generated by the estimated 
model. This ability can determine if our model is suitable to use in different 
healthcare settings such as other hospitals in the Netherlands or even healthcare 
facilities in developing countries with different AMR prevalence and infection 
prevention policies. Should the estimated model not be suitable, then the probability 
estimate from the initial model can be used as a prior probability and updated by 
observing the new data. Bayesian statistics can be used to increase the stability of 
the decision tree model built in Chapter 5. Bayesian decision trees have many 
advantages of random forests with the additional benefit of an easily interpretable 
result [201].  

Statistical research using complex networks, such as the dynamic directed 
spatiotemporal graph used in Chapter 5, is still in its infancy [202]. Dynamic graph 
neural networks (DGNN) use deep neural network architecture to encode the 
network structure of complex networks and aggregate local and global features of 
neighbouring nodes over continuous time. Streaming Graph Neural Networks (SGNN) 
is the state-of-the-art DGNN approach [202,203]. A future opportunity is to use SGNN 
to take full advantage of the embedded structure of the IPM data while incorporating 
both ward-specific and patient-related data to predict the occurrence and spread of 
VRE. 
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6.3 Limitations 
Several obstacles were faced while conducting the research comprising this thesis 
and some lead to limitations in this research. Most of these obstacles were 
concerning the availability and integrity of the data needed. Data privacy is of utmost 
importance in the Netherlands and is enforced by the Dutch Personal Data Protection 
Act (WBP). This act places restrictions on when and what personal data may be used, 
where and by whom personal data are processed and when processing is allowed. 
Although these restrictions are imperative to protect the privacy of Dutch residents, 
important data may be neglected in healthcare research because of it. For the studies 
included in this thesis, research protocols were drafted to inform the respective 
hospitals’ ethical committees that the proposed studies would use anonymised 
retrospective data not subject to the Medical Research Involving Human Subjects Act 
(WMO). Unfortunately, this process took several months and was necessary as the 
WMO does not cater specifically for healthcare research. These are examples where 
data privacy policies may hamper healthcare research. To overcome this challenge, 
the studies performed in this thesis were performed in parallel as much as possible 
to research downtime but only became effective during the middle of the total 
research period. Research centres perpetually doing research in this research field 
should get the full benefit of this strategy. 

Chapter 3 is a retrospective, single-centre study, and therefore the data were not 
collected for this study. The models built in this study were not externally validated. 
To overcome this limitation, cross-validation was performed to estimate model 
performance on new data. Surgeries were aggregated into three broad groups of 
surgical procedures, which serve as a proxy for the reason for surgery but leads to 
the loss of information regarding the exact reasons for the surgery. The 
administration of prophylaxis and the optimal timing thereof is an important risk 
factor for the occurrence of SSI. However, these data were not available. The data 
were stratified according to surgery type to minimise the impact of missing risk factor 
data. 

Patient management systems are constantly changing and evolving in healthcare. In 
Chapters 3 and 5, delays were experienced due to data system migrations and data 
format changes. Some of the patient comorbidity data used in Chapter 3 were stored 
in free text in different formats depending on the system used at the time. These 
data had to be extracted using regular expressions, which may be prone to error. In 
Chapter 5, some data were not available due to system migrations, resulting in the 
lack of validation in the study. The challenge of missing data from the free text was 
overcome using multiple imputation strategies in Chapter 3. This strategy meant that 
the variables extracted from the free text could still be used in the statistical models, 



 

90 

 

although their probability of being found significantly decreased due to an 
understated variability. The migration to new patient management systems showed 
how rapidly hospitals in the Netherlands transitioned to digital solutions. The new 
systems store essential data in structured databases, which will reduce research 
complications in the future. 

In Chapter 4, the RFID data used for the study were data collected during a pilot study 
performed at UMCG. There were some irregularities in the data, and it was decided 
to collect these data again using different proximity settings. Unfortunately, the 
company responsible for the data collection closed before this could be achieved. 
This situation forced us to take a serious look at the data collected during the pilot 
and devise ways to check it and clean it to be viable for the suggested study. In this 
way, we worked more efficiently with the data that would probably have been 
discarded. The data were collected over seven days, giving a unique sample with 
good coverage for a single week. Differences may exist, however, with other weeks 
throughout the year and even between years. The data used may further be biased 
towards HCWs who were diligent in wearing the RFID badges. The data were carefully 
checked for any inconsistencies; some loss in data quality was caused by incorrect 
room classification because overlapping RFID reader areas could still be present in 
the data. The results are based upon the sampled RFID tracking data for one specific 
ward. Even though the study’s hospital ward is similar to hospital wards found in 
most hospitals in terms of layout and specialism, it is a future challenge to generalise 
these results to other wards in other hospitals. 

The model built in Chapter 5 was not validated on another VRE outbreak. Even 
though the model performance was compared on a 30% test sample of the data, it 
was not possible to determine how the model would perform in a different time, a 
different hospital or a different country. This limitation may affect the generalisability 
of the model and should be tested in the future. The type of antibiotics used was not 
considered in this study. Some antibiotics target specific bacteria and can have a 
more significant effect on the risk of acquiring VRE. A future research opportunity is 
to create antibiotics centrality measure for antibiotics targeting different bacteria to 
further increase the discriminatory power of the predictive models. 

During 2020 and 2021, SARS-CoV-2 and the pandemic of COVID-19 increased the 
challenges faced by the research in this thesis. Chapter 2 was already published by 
that time, but Chapters 1, 4 and 5 were still in progress and relied heavily on the 
inputs of infection prevention specialists and microbiologists. Their research capacity 
decreased during this time, which resulted in several delays in the research 
performed in this thesis. During this time, good communication was extremely 
important to use time sparingly and efficiently. The pandemic also resulted in a 
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massive influx of new studies being performed on the transmission of harmful 
microorganisms. Even though the transmission mechanisms may differ between 
SARS-CoV-2 and AMR, the pandemic may provide more incentive to understand 
better the spatiotemporal risk of the transmission of harmful microorganisms. 

6.4 Reflection 
My research was performed from a statistician's perspective with limited experience 
in the medical sciences as part of the interdisciplinary and cross-sectoral EurHealth-
1Health project. This inexperience has been a blessing and a curse. The blessing was 
that I could study the AMR research field from an objective and fresh perspective 
while questioning established concepts and methodologies. A curse was to some 
degree that I had to rely on data collected by others to determine where the gaps 
are in the current knowledge of AMR research and how to fill those gaps. Consulted 
healthcare professionals were needed to interpret the results and to confirm the 
practical relevance of my questions and ideas.  

My experience as a statistician with identifying risk factors and building predictive 
models helped guide my thoughts on approaching this research. Logistic regression 
modelling is still widely used in medical modelling, while much more advanced 
methods are available.  The idea to test the medical cut-off values for the continuous 
variables in Chapter 3, for instance, was inspired by a similar procedure that is widely 
used in credit scorecard development. I also identified other similarities between 
studies conducted in the healthcare and financial research fields and saw how both 
domains could benefit from each other. Personally, I gained valuable statistical 
knowledge while performing this research because of the different research 
environments. I would recommend the experience for anyone specialising in applied 
statistics. 
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Summary 
Statistical models are essential to understand the occurrence and spread of microbes 
to support decision-making in microbiology and epidemiology. Antimicrobial 
resistance (AMR) is a multifaceted global problem and a significant threat to 
sustainable modern healthcare. This thesis aims to identify knowledge gaps in the 
AMR research field and explain the added value of using statistical models and novel 
spatiotemporal data to predict and identify risk factors for the occurrence and spread 
of AMR. 

Strategic action plans to tackle the increasing international threat of AMR are based 
upon research agendas that are informed using knowledge gaps in the AMR research 
field. Currently, these knowledge gaps are identified manually and are often 
subjective. Chapter 2 describes how bibliometric data-driven methodology can be  
used to identify knowledge gaps in AMR research. To this end, twenty years of AMR 
related articles were extracted using the PubMed search engine. With structural 
topic modelling I identified the topics comprising the AMR research field, while topic 
clusters were created using hierarchical clustering on the topic proportions. Potential 
AMR knowledge gaps were obtained using Spearman’s correlation between topic 
clusters and topics and between individual topics. A total of 88 topics and seven topic 
clusters were identified from 158 616 scientific AMR research articles. In total, 421 
potential knowledge gaps were identified between the topic clusters and topics and 
2 663 between individual topics. Key knowledge gaps between molecular and 
laboratory AMR research were highlighted. The knowledge gaps between AMR 
research regarding water and the environment and both institutional and 
international surveillance topics were highlighted at the topic level. These results 
provide an innovative, data-driven way to identify knowledge gaps in AMR research. 

Surgical site infections (SSI) make up 19.6% of healthcare-associated infections (HAIs) 
in Europe [98]. Risk factor identification studies for the occurrence of SSI do not 
usually specify how continuous variables cut-offs are determined. In most cases, they 
use standard medical cut-offs without considering the data being studied. Chapter 3 
identifies the risk factors for the occurrence of SSI for digestive, thoracic and 
orthopaedic system surgeries using standard medical and data-driven cut-off values. 
Retrospective surgical procedure data, individual electronic health records, 
pharmaceutical data and laboratory data were used from the Erasmus MC University 
Medical Centre in The Netherlands. Risk factors for the occurrence of SSI were 
identified using a multivariate forward-step logistic regression model. Standard 
medical cut-off values were compared with cut-offs determined from the data. For 
digestive, orthopaedic and thoracic system surgical procedures, the risk factors 
identified for the occurrence of SSI were preoperative temperature of 38 oC and 
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antibiotics used at the time of surgery. C-reactive protein (CRP) and the duration of 
the surgery were identified as risk factors for digestive surgical procedures. Being an 
adult (age ≥ 18) was identified as a protective effect for thoracic surgical procedures. 
Data-driven cut-off values identified for temperature, age, and CRP, explained the 
occurrence of SSI outcome up to 19.5% better than standard medical cut-off values. 
Future studies should investigate if data-driven cut-offs can add value to explain the 
clinical outcome being modelled and not solely rely on standard medical cut-off 
values for continuous variables to identify risk factors. 

Transmission of harmful microorganisms (HMO) poses a major threat to patients and 
healthcare workers in healthcare settings. The most effective countermeasure 
against these transmissions is the adherence to hand hygiene policies, but adherence 
rates are relatively low and vary over space and time. The spatiotemporal effects of 
varying levels hand hygiene compliance on the transmission and spread of hand-
transmitted HMO in a closed healthcare setting must still be quantified. Chapter 4 
describes how identifies healthcare worker occupation group of potential super-
spreaders and the spatiotemporal effects on the hand transmission of HMO 
quantified for varying levels of hand hygiene compliance (HHC) caused by this group 
using their spatiotemporal movements. Spatiotemporal data were collected in the 
University Medical Center Groningen (UMCG) using radio frequency identification 
technology. The effects of five probability distributions of HHC and three harmful 
microorganism transmission rates were simulated using a dynamic agent-based 
simulation model. The effects of initial simulation assumptions on the simulation 
results were quantified using five risk outcomes. Nurses were identified as the 
potential super-spreader healthcare worker occupation group. During lack of HHC 
(5%) and high transmission rates (5% per contact moment), a colonised nurse can 
transfer microbes to three of the 17 healthcare worker or patients encountered 
during the 98.4 minutes of visiting 23 rooms while colonised. The HMO transmission 
potential for nurses is higher during weeknights (5 pm – 7 am) and weekends as 
compared to weekdays (7 am – 5 pm). Spatiotemporal behaviour and social mixing 
patterns of healthcare can change the expected number of hand transmissions and 
spread HMO by super-spreaders in a closed healthcare setting. These insights can be 
used to evaluate spatiotemporal safety behaviours and develop infection prevention 
and control strategies. 

Vancomycin-resistant enterococci (VRE) is can cause severe patient health and 
monetary burdens. The odds of a hospital patient acquiring VRE increases when using 
antibiotics and when prior room occupants had VRE, but the antibiotic use of prior 
room occupants are often neglected. Chapter 5 describes how the occurrence and 
spread of VRE can be explained using intrahospital patient movements (IPM) and 
their antibiotic use between hospital wards. Retrospective IPM, antibiotic use and 
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PCR screening data were used from a hospital in the Netherlands. A dynamic directed 
spatiotemporal graph was developed, and together with the PageRank algorithm 
used to calculate two daily centrality measures to summarise the flow of patients 
and antibiotics at the ward level. With a decision tree and random forest model I 
predicted the daily occurrence of VRE for every ward and compared the models’ 
performance using a 30% test sample. The decision tree model produced a simple 
set of rules that can be used to determine the daily probability of VRE occurrence for 
each hospital ward. The decision tree model achieved an area under the curve of 
0.685 and the random forest model 0.886 on the test set. These results confirm that 
the random forest model performs better than a single decision tree for all levels of 
model sensitivity and specificity at the cost of model simplicity. An early warning 
system for VRE can be developed and inform infection prevention plans and outbreak 
strategies further using these results. 

In summary, this thesis showed that data-driven statistical models can improve our 
understanding of antimicrobial resistance. It considers how different sources of 
spatiotemporal data may be used to predict its occurrence and spread of AMR in 
hospitals. 
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Samenvatting 
Antimicrobiële resistentie (AMR) vormt een belangrijke bedreiging voor de 
volksgezondheid en is een wereldwijd domein-overstijgend probleem. Voor de 
aanpak van AMR binnen de humane gezondheidszorg kunnen statistische modellen 
een belangrijke bijdrage leveren voor besluitvorming in de microbiologie en 
epidemiologie.  

Dit proefschrift heeft tot doel om kennishiaten in het AMR-onderzoeksveld op te 
sporen door gebruik te maken van data gedreven methodes. Daarnaast wordt de 
toegevoegde waarde onderzocht van statistische modellen met tijdruimtelijke 
gegevens voor het voorspellen en identificeren van risicofactoren voor het 
voorkomen en verspreiding van microben en AMR. 

De internationale strategische onderzoek en Innovatieagenda (SRIA) geeft een 
overzicht van recente ontwikkelingen en toekomstige aandachtspunten in AMR-
onderzoek en is gebaseerd op kennishiaten in het AMR-onderzoeksveld. Momenteel 
worden deze kennishiaten handmatig geïdentificeerd door expertconsultatie en zijn 
daarom subjectief. In hoofdstuk 2 is beschreven in hoeverre kennislacunes in AMR-
onderzoek objectief en automatisch kunnen worden gesignaleerd. Hiervoor is een 
bibliometrische datagedreven methodologie gebruikt. Met behulp van de PubMed-
zoekmachine zijn twintig jaar aan AMR-gerelateerde artikelen geëxtraheerd. Met 
structurele onderwerpmodellering zijn de onderwerpen die het AMR-
onderzoeksveld omvatten in kaart gebracht. Vervolgens werden onderwerpclusters 
gecreëerd met behulp van hiërarchische clustering op de onderwerpverhoudingen. 
Potentiële AMR-kennishiaten werden verkregen met behulp van Spearman's 
correlatie tussen onderwerpclusters en onderwerpen en tussen individuele 
onderwerpen. In totaal werden 88 onderwerpen en zeven onderwerpclusters 
geïdentificeerd uit 158616 wetenschappelijke AMR-onderzoeksartikelen. In totaal 
zijn 421 potentiële kennislacunes geïdentificeerd tussen de themaclusters en 
thema's en 2663 tussen de afzonderlijke thema's. Belangrijke hiaten in de kennis 
tussen moleculair en laboratorium AMR-onderzoek werden benadrukt. De 
kennishiaten tussen AMR-onderzoek met betrekking tot water en milieu en zowel 
institutionele als internationale surveillance-onderwerpen werden op 
onderwerpniveau benadrukt. Deze resultaten bieden een innovatieve, 
datagestuurde manier om kennishiaten in AMR-onderzoek te identificeren. 

Postoperatieve wondinfecties (POWI’s) vormen 19,6% van de zorg-gerelateerde 
infecties (HAI's) in Europa. In publicaties waarin risicofactoren voor POWI’s in kaart 
worden gebracht, wordt meestal niet gespecifieerd hoe de grenswaarden voor 
continue variabelen zijn bepaald. Meestal wordt gebruik gemaakt van standaard 
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medische grenswaarden. In hoofdstuk 3 wordt beschreven welke risicofactoren 
kunnen worden geïdentificeerd voor het optreden van POWI’s bij operaties aan het 
spijsverteringsstelsel, de borstkas en orthopedische verrichtingen door gebruik te 
maken van standaard medische versus datagedreven grenswaarden. Voor dit 
onderzoek is gebruik gemaakt van retrospectieve operatiegegevens uit individuele 
elektronische medische dossiers, farmaceutische gegevens en 
laboratoriumgegevens van het Erasmus MC Universitair Medisch Centrum in 
Nederland. Risicofactoren voor het optreden van POWI’s werden geïdentificeerd met 
behulp van een Multivariabele Logistische Regressie Analyse. Standaard medische 
grenswaarden werden vergeleken met grenswaarden bepaald uit de data. Voor 
chirurgische ingrepen aan het spijsverteringsstelsel, orthopedische en thoracale 
ingrepenzijn de geïdentificeerde risicofactoren een preoperatieve temperatuur van 
38 oC en het gebruik van antibiotica op het moment van de operatie. Voor 
chirurgische ingrepen aan het spijsverteringstelsel werden C-reactief proteïne (CRP) 
en de duur van de operatie geïdentificeerd als risicofactoren. Een volwassen leeftijd 
(leeftijd ≥ 18 jaar) werd geïdentificeerd als een beschermende factor voor thoracale 
chirurgische ingrepen. Datagedreven grenswaarden voor de variabelen 
lichaamstemperatuur, leeftijd en CRP, verklaarden het optreden van POWI‘s tot 
19,5% beter dan standaard medische grenswaarden. Toekomstige studies moeten 
onderzoeken of datagedreven grenswaarden van toegevoegde waarde zijn om de 
klinische uitkomst te voorspellen en niet alleen te vertrouwen op standaard 
medische grenswaarden voor het identificeren van risicofactoren. 

Overdracht van schadelijke micro-organismen (SMO) vormt een grote bedreiging 
voor patiënten en gezondheidswerkers in de gezondheidszorg. De meest effectieve 
maatregel om deze overdrachten te voorkomen is de naleving van het 
handhygiënebeleid, maar de nalevingspercentages zijn relatief laag en variëren in tijd 
en ruimte. De tijdruimtelijke effecten van verschillende niveaus van naleving van 
handhygiëne op de overdracht en verspreiding van hand overdraagbare SMO in een 
gesloten zorgomgeving moeten nog worden gekwantificeerd. In hoofdstuk 4 is 
beschreven in hoeverre tijdruimtelijke bewegingen van zorgprofessionals potentiële 
superverspreiders kunnen identificeren binnen een gesloten zorgomgeving. Hiervoor 
is de beroepsgroep van potentiële superverspreiders in de gezondheidszorg 
geïdentificeerd en zijn de tijdruimtelijke effecten op de handtransmissie van SMO 
gekwantificeerd voor verschillende niveaus van naleving van handhygiëne (NH) 
veroorzaakt door deze groep. In het Universitair Medisch Centrum Groningen 
(UMCG) zijn tijdruimtelijke gegevens verzameld met behulp van radiofrequentie-
identificatietechnologie. De effecten van vijf kansverdelingen van NH en drie 
transmissiesnelheden van schadelijke micro-organismen werden gesimuleerd met 
behulp van een dynamisch agent-gebaseerd model. De effecten van initiële 
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aannames op de simulatieresultaten werden gekwantificeerd met behulp van vijf 
risico-uitkomsten. Verpleegkundigen werden geïdentificeerd als de potentiële super 
verspreidende beroepsgroep van gezondheidswerkers. Bij beperkte naleving van 
handhygiëne (NH5%) en hoge transmissiesnelheden (5% per contactmoment), kan 
een gekoloniseerde verpleegster microben overbrengen naar drie van de 17 
gezondheidswerkers of van de patiënten waar ze contact mee hebben tijdens de 98,4 
minuten van 23 kamers die gekoloniseerd zijn. De tijdsperiode van mogelijke SMO-
transmissie door verpleegkundigen is hoger tijdens doordeweekse avonden (17 uur 
– 7 uur) en in het weekend in vergelijking met weekdagen (7 uur – 17 uur). 
Tijdsruimtelijk gedrag en sociale mengpatronen van de gezondheidszorg kunnen het 
verwachte aantal handtransmissies veranderen en SMO verspreiden door 
superverspreiders in een gesloten zorgomgeving. Deze inzichten kunnen worden 
gebruikt om tijdruimtelijke veiligheidsgedragingen te evalueren en strategieën voor 
infectiepreventie en -bestrijding te ontwikkelen. 

Een uitbraak met Vancomycine-resistente enterokokken (VRE) is geassocieerd met 
ernstige gezondheidslasten- voor kwetsbare patiënten en hoge kosten voor de zorg. 
De kans dat een ziekenhuispatiënt VRE krijgt, neemt toe bij gebruik van antibiotica 
en wanneer eerdere kamergenoten VRE hadden. Het antibioticagebruik van eerdere 
kamergenoten wordt echter vaak verwaarloosd. In hoofdstuk 5 is beschreven hoe 
het optreden en de verspreiding van VRE verklaard kan worden met behulp van 
patiëntbewegingen binnen het ziekenhuis (IPB) en het antibioticagebruik tussen 
verschillende ziekenhuisafdelingen. Er is gebruik gemaakt van retrospectieve IPB-, 
antibioticagebruik- en PCR-screeningsgegevens van een ziekenhuis in Nederland. Er 
werd een dynamisch gestuurde tijdruimtelijke grafiek ontwikkeld, die samen met het 
PageRank-algoritme werd gebruikt om twee dagelijkse centraliteitsmaatregelen te 
berekenen om de stroom van patiënten en antibiotica op afdelingsniveau samen te 
vatten. Met een Decision Tree en Random Forest model werd een voorspelling 
berekend van het dagelijkse optreden van VRE voor elke afdeling. In een 30% 
teststeekproef werden de prestaties van de modellen vergeleken. Het Decision Tree 
model leverde een eenvoudige set regels op die kunnen worden gebruikt om de 
dagelijkse kans op het optreden van VRE voor elke ziekenhuisafdeling te bepalen. Het 
Decision Tree model behaalde een oppervlakte onder de curve van 0,685 en het 
Random Forest model 0,886 op de testset. Deze resultaten bevestigen dat het 
Random Forest model beter presteert dan een enkele Decision Tree voor alle niveaus 
van modelgevoeligheid en specificiteit, ten koste van de eenvoud van het model. Met 
behulp van deze resultaten kan een systeem voor vroegtijdige waarschuwing voor 
VRE worden ontwikkeld en kunnen plannen voor infectiepreventie en 
uitbraakstrategieën worden gebruikt. 
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Samenvattend wordt in dit proefschrift beschreven dat datagestuurde statistische 
modellen ons begrip en voorspellen van antimicrobiële resistentie kunnen 
verbeteren. Er wordt uitleg gegeven hoe verschillende bronnen van tijdruimtelijke 
gegevens kunnen worden gebruikt om het optreden en de verspreiding van AMR in 
ziekenhuizen te voorspellen. 
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