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Summary 
Many operational applications, including agriculture and water resources 
management, local climate studies, flash flood prediction and forecasting that 
directly affect human livelihoods, need accurate high-resolution rainfall 
information. High-resolution rainfall is also vital in research applications such as 
evaluating satellite rainfall products to inform new satellite rainfall observation 
missions. However, despite its great value, rainfall’s intricate characteristics, such 
as intermittency and spatial variation, make accurate rainfall estimation 
challenging. 

There are existing techniques to measure rainfall, but each has an inherent 
limitation. For instance, rain gauges measure accurate rainfall from a point and 
are thus limited in their ability to measure the spatial state of rainfall. The 
weather radars are capable of accurate spatial rainfall information, but among 
other limiting factors, they are expensive to acquire, operate and maintain. 
Satellites are capable of global rainfall observations, but their estimates are often 
inaccurate. Moreover, their observations, usually averaged over squared 
kilometres, are not always ideal for all applications, e.g., farmers whose plots are 
only a few hundred squared meters.  

Over a decade ago, a new technique was introduced that utilises telecom service 
operators' extensive mobile phone infrastructure for rainfall observations. The 
microwave signals beamed from one telephone tower to the other are significantly 
affected by rain. For this reason, researchers studied the fluctuations in the signal 
level recorded at the receiving tower and showed that these systems can estimate 
accurate rainfall; suggesting that each microwave link (MWL)–a pair of 
connected towers–can serve to gauge rainfall along two connecting mobile phone 
towers in near real-time.  Albeit opportunistic and low-cost rainfall estimation 
technique, the problem is that the estimation accuracy is affected by many 
factors, including the variation of raindrop sizes along the link and the fact that 
the link’s antenna wetting during and after rainfall introduces additional 
uncertainties in the retrieved rainfall estimates. Moreover, the density of the 
MWL network is arbitrary and often biased towards densely populated areas. 
This characteristic may complicate their use for retrieving spatial rainfall 
patterns, especially in areas with low network densities. 

At the same time, geostationary (GEO) meteorological satellites, such as the 
Meteosat Second Generation (MSG), frequently observe the earth’s atmosphere 
with wide spectral range radiometers capable of detecting rapidly developing 
storms, raining areas and estimating rainfall intensities. Several studies have 
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extensively studied the data with traditional rainfall measurement techniques 
such as rain gauges and weather radars for rainfall observation. However, 
combing the GEO satellite and MWL data for rainfall observation has gained very 
little attention, while such an alternative could benefit many places that lack 
traditional rainfall observation systems. 

For this reason, the main objective of this study was to investigate the MWL and 
the MSG satellite data for high spatiotemporal resolution rainfall detection and 
estimation using data from Central and Western Kenya, where traditional 
rainfall-observing systems are often lacking or sparse. This main objective was 
achieved based on 4 specific objectives, which form the basis of 4 individual 
research studies. 

Firstly, it was investigated if the MWL-MSG data combination could improve rain 
rate estimation and detection. We investigated the MWL’s capability to estimate 
accurate rain rates in the study area using gauge rainfall data. Then, the MWL’s 
rain rates were studied with the MSG satellite data using a conceptual model in 
which clouds with high cloud top optical thickness and particle effective radius 
have high rainfall probabilities and rain rates. Regarding the MWL’s rainfall 
estimation capability, the results confirmed the robustness of the MWL rainfall 
estimation technique concluded by many past studies. Studying the MWL’s rain 
rate with the MSG satellite data revealed unique spectral characteristics of 
daytime, night-time, raining and non-raining data. Eventually, descriptive 
statistics derived from the satellite spectral characteristics successfully detected 
rainfall on individual MWL in the study area. However, daytime rain detection, 
which uses reflectance data, was better than night-time detection, which uses 
infrared (IR) data, owing to the better rain information about cloud optical and 
the effective radius contained in the reflectance data. 

Following the successful combination of the MWL-MSG data for rainfall 
observation, the subsequent investigation developed an improved rain area 
detection system to improve the MWL’s rainfall estimates and map rainfall in the 
study area. This investigation evaluated multiple parametric rain detection 
models derived from MSG’s reflectance and IR data using a conceptual model 
similar to the previous research. Additionally, we developed a new technique that 
uses rain area-specific gradient parameters to improve detected rain areas by 
correcting the number and sizes of the detected rain area. While comparing the 
rain area technique with one of the most successful satellite rainfall products, the 
Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM 
(GPM IMERG), the results corroborate in terms of the spatial dynamics of the 
detected rain areas and rates. 
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Next, we improved the MWL’s rainfall estimates for the first time in a new MSG 
technique that uses the rain area detection system developed in the previous 
study. In this investigation, we developed a new technique for wet-dry 
classification and baseline level estimation using the MSG-based rain area 
information. A new wet path length (wpl) parameter, representing the length of 
the raining MWL, was also developed based on the MSG-based rain area. This 
technique’s wet-dry classification and baseline level estimation results agreed 
well with conventional technique results. The wpl parameter also remarkably 
improved the high rainfall intensities, which suggests that spatial rainfall 
variability over the MWL remains essential information to be considered in the 
MWL’s rain rate retrieval. 

Finally, a new technique was developed for high spatiotemporal rainfall 
estimation from MSG’s cloud top properties and MWL rainfall intensities. This 
technique trains the random forest (RF) machine learning algorithm with the 
MWL‘s rainfall estimates to estimate rainfall from the MSG data. The results are 
convincing and promising. When compared to gauge rainfall data, the techniques’ 
retrieval errors were comparable to errors found when comparing GPM IMERG 
and the European Organisation for the Exploitation of Meteorological Satellites 
Multi-sensor Precipitation Estimate (EUMETSAT MPE) rainfall intensities to 
gauge data. The spatial dynamics of the retrieved rainfall intensities also agreed 
well with these satellite products. The technique’s advantage lies in retrieving 
high spatiotemporal resolution rainfall intensities regardless of the rainfall type.   

Overall, this study demonstrates the great potential of using the MWL-MSG data 
for rainfall detection and estimation. In particular, the benefit of this rainfall 
observation alternative to areas with sparse or lacking conventional ground 
rainfall monitoring systems but growing MWL network and geostationary 
satellite (with capabilities like MSG) coverage may be invaluable.
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Samenvatting 
In veel operationele toepassingen, zoals bijvoorbeeld waterbeheer, landbouw, en 
het maken van hydro-meteorologische verwachtingen, zijn accurate observaties 
van neerslag, met hoge spatio-temporele resolutie, van groot belang. Daarnaast 
zijn neerslagdata met hoge resolutie ook nodig voor onderzoeksdoeleinden zoals 
het evalueren van neerslagproducten op basis van satellietdata, en het ontwerpen 
van nieuwe neerslagobservatie satellieten. Echter, de ruimtelijke en temporele 
variabiliteit van neerslag maken precieze bepaling van neerslag een grote 
uitdaging.  

Nagenoeg alle bestaande technieken om regen te meten hebben inherente 
beperkingen. Zo zijn regenmeters in staat tot het nauwkeurig bepalen van regen 
op de positie van de meting, maar voor het verkrijgen van ruimtelijke informatie 
over de neerslag hebben deze puntmetingen duidelijke beperkingen. Deze 
informatie kan wel uit de data van buienradars worden gehaald, maar 
buienradars hebben onder andere als beperking dat de aanschaf, het onderhoud 
en het gebruik van de systemen grote kosten met zich meebrengen. Uit 
satellietdata kan informatie over regenval over grote delen van de wereld gehaald 
worden, maar de nauwkeurigheid van de uiteindelijke neerslagdata varieert 
sterk. Daarnaast is de resolutie van neerslagdata op basis van satellietdata niet 
altijd hoog genoeg om te voldoen aan de vereisten van bijvoorbeeld boeren, wiens 
percelen vaak aanzienlijk kleiner zijn (enkele honderden vierkante meters dan de 
hoogste resolutie van satelliet neerlsagdata (in de meeste gevallen minimaal 
enkele vierkante kilometers). 

Aan het begin van de 21ste eeuw is een begin gemaakt met de ontwikkeling van 
een nieuwe techniek om regenintensiteit te bepalen. Deze techniek is gebaseerd 
op data van de alom aanwezige netwerkinfrastructuur van mobiele telefonie 
aanbieders. De signalen van microgolf straalverbindingen ondervinden 
signaalverlies door regen die in het microgolftraject valt. Onderzoekers hebben 
de ontvangen signaalsterkte bestudeerd, en hun bevindingen bewezen dat het 
signaalsterkte verlies gebruikt kan worden om met goede nauwkeurigheid de 
neerslagintensiteit op het traject te berekenen. Dit betekent dat iedere 
microgolfverbinding (hierna afgekort tot MWL, voor microwave link), het traject 
dat tussen de antennes van twee op elkaar gerichte microgolf zendontvangers, 
gebruikt kan worden ter bepaling van neerslagintensiteit op dat traject, met een 
zeer lage latentie van de meting. Dit opportunistisch gebruik als 
neerslagobservatie middel, dat bovendien zeer lage operationele en 
onderhoudskosten met zich meebrengt, heeft echter enkele nadelen; de 
nauwkeurigheid van de bepaling van de regenintensiteit is van vele factoren 
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afhankelijk. Voorbeelden zijn de variatie van druppelgrootte over het hele traject, 
en de invloed van natte antennes tijdens de regen en daarna.  

Echter, er bestaan meteorologische geostationaire (GEO) observatie satellieten, 
zoals Meteosat Second Generation (MSG), die met hoge spatio-temporele 
resolutie en over een breed spectrum de atmosfeer van de aarde observeren, en 
daardoor in staat zijn om snel ontwikkelende buien en regengebieden te 
observeren, en informatie over de neerslag die daaruit valt te verstrekken. Er zijn 
veel studies uitgevoerd die satelliet regendata hebben vergeleken met traditionele 
observatiemethodes, zoals regenmeters en buienradars. Echter, onderzoek naar 
de combinatie tussen GEO satellieten en MWL data voor regenobservatie is tot 
op heden onderbelicht gebleven – terwijl deze combinatie zeer interessant is voor 
gebieden waar adequate regenobservatie systemen ontbreken. 

Dit is de reden dat het doel van deze studie het onderzoek naar de mogelijkheden 
voor regendetectie en bepaling met hoge spatio-temporele resolutie voor midden- 
en West Kenia (gebieden met een ontbrekend of ontoereikend regenobservatie 
netwerk), op basis van MWL en MSG satellietdata. Dit hoofddoel werd 
gerealiseerd door middel van vier specifieke doelen, die de basis vormen van 4 
individuele onderzoeken. 

Ten eerste werd er onderzocht of de combinatie van MWL en MSG data gebruikt 
kon worden om de nauwkeurigheid van regenintensiteitsbepalingen te 
verbeteren. We onderzochten allereerst de mogelijkheden voor het gebruik van 
regenintensiteiten in het studiegebied, door deze met data van regenmeters te 
vergelijken. Vervolgens zijn de MWL regenintensiteiten met MSG data 
bestudeerd, waarbij een conceptueel model gebruikt werd. In dit conceptuele 
model werden hoge regenwaarschijnlijkheden en -intensiteiten toegekend aan 
wolken met een grote optische dikte en een hoge deeltjesdoorsnee. Het onderzoek 
bevestigde eerdere studies met betrekking tot de robuustheid van het gebruik van 
de MWL voor bepaling van regenintensiteit. Het bestuderen van de MWL 
regenintensiteiten met de MSG satelliet data gaf goede inzichten over de spectrale 
karakteristieken van dag- en nachtdata, alsmede over het verschil tussen pixels 
met en zonder regen. Tenslotte werden beschrijvende statistieken afgeleid van de 
spectrale karakteristieken van de satellietdata, op basis waarvan met succes 
regendetectie in het studiegebied uitgevoerd kon worden. Hieruit bleek echter 
wel dat de detectie gedurende de dag, die op basis reflectiedata plaatsvond, beter 
was dan die tijdens de nacht, welke op basis van infrarood (IR) data gebeurde. De 
oorzaak hiervan is dat uit de reflectiedata betere wolk optische dikte en 
deeltjesgrootte bepaald kon worden.  
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Volgend op de geslaagde combinatie van MWL-MSG data voor 
regenintensiteitsobservatie is er gekeken naar de ontwikkeling van 
gebiedsbepaling van regen, teneinde de van MWL data afgeleide 
regenintensiteiten te verbeteren, en vervolgens regen in het studiegebied te 
kunnen bepalen. In dit onderzoek zijn meerdere parametrische regendetectie 
modellen op basis van MSG zichtbaar licht en IR data geëvalueerd, met 
gebruikmaking van een conceptueel model, zoals ook in het vorige stadium 
gebruikt werd. Daarnaast hebben we een nieuwe techniek, op basis van gradiënt-
parameters van regengebieden, ontwikkeld, teneinde regengebiedsdetectie te 
verbeteren en de aanvankelijk gedetecteerde regengebieden hiermee te 
corrigeren. Vergelijking van deze techniek met een van de meest nauwkeurige op 
satellietdata gebaseerde regenproducten, GPM IMERG (Global Precipitation 
Measurement Integrated Multi-satellitE Retrievals for Global Precipitation 
Measurement), liet erg goede overeenstemming zien in de ruimtelijke dynamiek 
van de gedetecteerde regengebieden en regenintensiteiten. 

Vervolgens is er gekeken naar het verbeteren van regenbepaling op basis van 
MWL data, waarbij voor het eerst een nieuwe techniek op basis van de eerder 
afgeleide regengebiedsbepaling op basis van MSG data gebruikt werd. In dit 
onderzoek hebben we een nieuwe techniek voor de nat-droog classificatie en de 
bepaling van de basis signaalsterkte niveaus ontwikkeld, op basis van de uit MSG 
data afgeleide regengebiedsdata. Een nieuwe manier om de natte traject lengte 
(wpl) parameter te bepalen is ook op basis van deze data ontwikkeld. Deze 
parameter geeft aan over welk gedeelte van een MWL regen plaats vindt. De nat-
droog classificatie en de basisniveau bepaling kwamen goed overeen met de 
resultaten van de conventionele techniek voor deze bepalingen. Het gebruik van 
de wpl parameter leidde tot een verbetering van de regenbepaling bij hoge 
regenintensiteiten, hetgeen aantoont dat ruimtelijke variabiliteit van regen langs 
het MWL traject essentiële informatie is, die bij het afleiden van 
regenintensiteiten uit MWL data gebruikt moet worden.  

Tenslotte is er een nieuwe techniek voor hoog-resolute spatio-temporele 
regenbepaling op basis van MSG wolkentop karakteristieken en uit MWL-data 
afgeleide regenintensiteiten ontwikkeld. In deze techniek worden random forest 
(RF) machineleer algoritmes getraind met de MWL regendata om op basis 
hiervan met MSG data ruimtelijke regenintensiteiten te bepalen. De resultaten 
zijn overtuigend en veelbelovend. Een vergelijking met regenmeter data laat 
vergelijkbare afwijkingen zijn als wanneer GPM IMERG en EUMETSAT MPE 
(European Organization fort he Exploitation of Meteorological Satellites 
Multisensor Preciptation Estimate) regendata worden vergeleken met 
regenmeter data. De ruimtelijke dynamiek van de op onze manier berekende 
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regenintensiteiten komt ook goed overeen met deze satelliet regenproducten. Het 
voordeel van onze techniek ligt in het vermogen om, ongeacht het type neerslag, 
met hoge spatio-temporele resoluties goede regenintensiteiten te kunnen 
bepalen.   

In het algemeen toont dit onderzoek het grote potentieel van de combinatie van 
MWL data en MSG data voor regendetectie en -bepaling aan. Vooral voor 
gebieden waarin conventionele in-situ regenobservatie netwerken ontbreken of 
dun gezaaid zijn, maar waar vaak zowel de dichtheid van MWL netwerken als de 
beschikbaarheid van bruikbare satellietdata met hoge resolutie alleen maar 
toeneemt, kan deze techniek zeer belangrijk zijn.   
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1.1 Background 

a) Rainfall, why it is relevant and its implications 

Rainfall is the amount of liquid precipitation that descends onto the Earth’s 
surface from the atmosphere, whether on land or the oceans, expressed as the 
vertical water depth. It is a crucial geophysical variable of the hydrologic cycle: a 
solar radiation-driven process that ensures continual water movement between 
the atmosphere, land and oceans and regulates Earth’s freshwater availability. 
This water cycling is linked with the energy cycling between the atmosphere, land 
and oceans that ultimately determines the Earth’s climate and is responsible for 
much of its natural variability (Bolles, 2022; Duan & Duan, 2020). In its right 
amount, rainfall sustains aboveground primary productivity, species richness 
and ecosystem dynamics (Yan et al., 2015). Far too little rainfall and drought 
would devastate livelihood and economies, whereas too much rainfall, especially 
within a short time, puts life and properties at risk due to flooding. 

Rainfall information about its quantity and pattern is valuable to many 
operational and research applications. For instance, to sustain more than 60% of 
the world’s food through rainfed agriculture (FAO, 2020), farmers need timely 
rain forecasts to plan land preparations for growing seasons. Rainfall amount and 
variability are also used to infer discharge at a catchment’s outlet, reservoir water 
balance, and streamflow forecasting, which informs decision-making in various 
water resource sectors, including hydropower production, dam protection and 
flood risk management (Ali & Shahbaz, 2020; Barua et al., 2013).    

Additionally, rainfall is a crucial climate change variable linked to climate 
extremes such as drought and floods (Ojo & Ilunga, 2017). Past studies point 
toward an intensifying hydrologic cycle under a warming climate, with a 1 to 3% 
increase in global mean precipitation per degree rise in temperature (Allen & 
Ingram, 2002; Held & Soden, 2006). Studies show that roughly two-thirds of 
land on the earth will face a wetter and more variable hydroclimate on daily to 
multiyear timescales (Zhang et al., 2021). The recent IPCC report projects an 
alarming increase in temperature, frequency and intensity of heavy rainfall 
events over the African continent, increasing the severity and occurrence of 
droughts and floods with severe implications for food security, nutrition, 
involuntary migration and many more (IPCC, 2022).  

Moreover, rainfall positively correlates with malaria, suggesting an increased risk 
of malaria transmission during rainy periods (Dabaro, Birhanu et al. 2021, 
Donkor, Kelly et al. 2021), and requires spatial rainfall pattern information to 
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track this vector-borne disease. Furthermore, several applications include: 
estimating groundwater table in hydrologic models (Kotchoni et al., 2018), 
estimating the amount of water in the soil capable of causing landslides (Rong et 
al., 2020), designing structures for runoff control, e.g. stormwater drains 
(Mendes et al., 2021) and monitoring water budget at the catchment level (Sieck 
et al., 2003) all require some rainfall information such as its amount, intensity 
and variability.  

b) Measuring rainfall 

Rainfall has high spatiotemporal variability, partly because it is a product of 
complex hydrometeorological processes that vary extensively in space and time 
(Rios Gaona et al., 2017). Spatially, rainfall variability is further complicated by 
factors such as orography and atmospheric processes. Temporally, rainfall is 
intermittent, and its distribution is highly variable. For instance, the global 
rainfall occurrence may be about 1 %. The modal rainfall is often zero, and while 
the distribution of other variables like temperature and pressure is nearly normal, 
rainfall’s frequency distribution skews towards zero (Kidd, 2001). Due to these 
factors, characteristics and variability, capturing a complete and accurate picture 
of rainfall is challenging. Rainfall measurements broadly fall under direct and 
indirect techniques, albeit they continue to evolve.  

i) Direct technique 

The direct technique is done mainly using rain gauges and sometimes 
disdrometers. Rain gauges are the oldest and widely used measurement 
technique (Sene, 2013; Strangeways, 2010). They measure rainfall accumulation 
as a function of time and are broadly classified into recording or non-recording 
types. The latter accumulates rainfall over time using a graduated cylinder. After 
a rain event, the cylinder’s water level directly represents the rainfall 
accumulation at that point. An observer manually records the measurements at a 
fixed time each day. The recording types use varying techniques. For instance, the 
tipping bucket type uses buckets placed on a fulcrum and balanced ‘like a see–
saw’ under a rain collector. When rainwater of a calibrated volume expressed as 
rainfall depth accumulates in one bucket, it tips over and empty’s itself while the 
other bucket replaces it instantaneously. This tipping action triggers a recorder 
that logs the time and counts based on which rain rate can be estimated. Another 
recording type is the weighing rain gauges. They record the mass of rainwater 
collected in a storage bin seated on a scale. Rain rate is measured as the difference 
in rainwater accumulation over time. Optical rain gauges are yet other recording 
types that deduce rain rate information from rain-induced attenuation (as a 
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function of time) of an optical signal beaming from a light source to an optical 
detector. Acoustic rain gauges are an even more interesting recording type; they 
quantitatively measure rainfall from the naturally occurring underwater sound 
produced by raindrops (Michaelides, 2008; Nystuen, 1998; Nystuen et al., 1996; 
Sene, 2013). 

Instead, disdrometers provide more detailed rain hydrometeor information such 
as the count, drop size, shape and fall velocity. The rain rate and accumulation 
are then computed by summating the drops counted and sized over the sensing 
area per time. The common types are impact, imaging and optical disdrometers. 
The impact type uses a sensing head to convert the momentum of individual 
raindrops striking the sensor head to an electronic signal proportional to the drop 
size. The exact detail of the conversion is dependent on the sensor head and 
transducer design. Imaging disdrometers use two imaging cameras to capture the 
size, shape and fall velocity of raindrops passing through the camera's field of 
view. On the other hand, the optical type uses laser transmitters and receivers, a 
short distance apart, to determine the size, shape and velocity of raindrops 
passing through the laser beam (Michaelides, 2008; Thurai et al., 2011). 

ii) Indirect technique 

The indirect techniques detect and measure rainfall quite differently than the 
direct techniques. They remotely sense rain hydrometeors well above the ground 
in spatial measurement volume. Two techniques are used in rainfall remote 
sensing: active and passive techniques. The active rainfall remote sensing 
techniques use devices that beam pulses of electromagnetic radiation into the 
atmosphere and measure backscattered radiation or echoes from targets in 
clouds such as rain hydrometeors. The passive technique devices measure the 
incoming radiation from clouds and precipitation, more like cameras without a 
flash.   

Weather radars are a typical example of active rainfall remote sensing devices. 
They measure rainfall from the radar reflectivity factor, Z (mm6/m3), empirically 
related to rainfall via a power-law relation, e.g. (Marshall et al., 1947). The Z 
quantifies the radar echoes proportional to the volume of all hydrometeors 
detected by the radar beam (Wilson & Brandes, 1979). Radars are typically 
characterised by the pulse frequency (or wavelength) they transmit, which has 
important implications on their ability to sense clouds and precipitation 
remotely, such as the beamwidth for a given antenna size and sensitivity to 
precipitation. For instance, radiation of different wavelength respond differently 
to clouds and precipitation hydrometeors; attenuation of the transmitted 
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radiation is more for small than long-wavelength radiation. Additionally, a larger 
antenna size leads to a smaller beamwidth for a given wavelength. Different 
frequency bands may be used for radar remote sensing; traditionally, categories 
of weather radars include precipitation (S-X bands) and cloud radars (Ku-W 
bands)  (Hong & Gourley, 2015; Kumjian, 2018). 

The passive rainfall remote sensing devices are mostly spaceborne meteorological 
satellites. They measure incoming radiation scattered and emitted from clouds 
and precipitation using visible (VIS), infrared (IR) and passive microwave (PMW) 
sensors on geostationary (GEO) and low earth-orbiting (LEO; including polar-
orbiting) satellites. GEO satellites are located 35800 km above the equator in 
orbit with a singular speed the same as the Earth and therefore appear stationary 
relative to a location on Earth (Kidd et al., 2010a). Current GEO satellites include 
EUMETSAT’s MSG (Schmetz et al., 2002), US’s GEOS-R, S and T 
(https://www.goes-r.gov/mission/mission.html, accessed on April 19, 2022), 
and Chinese’s FengYun-2 (Guo et al., 2018) satellites. Although their sensor 
specifications differ, these satellites share common characteristics; they carry VIS 
and IR sensors with spatial and temporal resolutions of about 1–4 km and 15–30 
minutes (Kidd et al., 2010a). Planned GEO satellites missions such as 
EUMETSATS’s MTG-I, S (Holmlund et al., 2021; Stuhlmann et al., 2017) and 
US’s GEOS-U satellites (https://www.goes-r.gov/mission/mission.html, 
accessed on April 19, 2022) have more advanced atmospheric imaging and 
sounding capabilities with better measurement resolution than the existing ones.     

The LEO satellites orbit the Earth such that they pass over the equator at the same 
local time, providing about two overpasses a day. On top of the VIS and IR 
sensors, LEO satellites also carry PMW imagers and sounders capable of direct 
precipitation measurement. The ‘direct precipitation measurement’ implies that 
the PMW radiations interact strongly with precipitation particles because their 
sizes are similar to the PMW wavelength. It does not directly observe the surface 
rainfall like e.g. rain gauges. Some currently existing polar-orbiting satellites 
include the NOAA series of satellites 18 and 19 (NOAA, 2009) and EUMETSAT’s 
Metop series (Schmetz et al., 2007), orbiting the Earth every 100 minutes at an 
altitude of about 850 km. They carry a wide range of instrumentation, including 
the third-generation VIS/IR AVHRR and AMSU (Kidd et al., 2010a). 

Besides operational meteorological satellites, military and research satellites are 
also used to estimate precipitation. These include the DMSP satellites series: 
SSM/I, SSMIS (Kunkee et al., 2008), AMSR-E and the MODIS onboard Terra 
and Aqua satellites (Kawanishi et al., 2003; Yan & Yang, 2007). Perhaps, the most 
dedicated satellite missions for detailed precipitation studies are the TRMM and 

https://www.goes-r.gov/mission/mission.html
https://www.goes-r.gov/mission/mission.html
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GPM satellites (Kummerow et al., 1998; Kummerow et al., 2007). The latter 
constitutes a significant advancement of the previous TRMM satellites, carrying 
the only spaceborne DPR and GMI. The DPR can create 3D structure and 
intensity estimates of precipitation, and the GMI has a greater frequency range 
than TRMM. Additionally, GPM has a broader global coverage (65o north-south) 
than TRMM (35o north-south) (Blumenfeld, 2015). 

Owing to the plethora of satellite observations, many satellite rainfall retrieval 
algorithms have emerged that can be categorised based on the type of 
observation, namely, VIS/IR, PMW and multi-sensor algorithms. VIS 
observations compare closely to the human eye. Since clouds appear brighter 
from above, VIS observations infer rainfall with the assumption that the 
brightness of a cloud is related to its thickness, and thick clouds are likely to rain 
(Kidd et al., 2010a). The limitations of a VIS algorithm are that the observations 
are only available during the daytime. The data processing is also complicated 
because one has to account for factors such as changes in the Sun angle. Cloud 
top properties, including size and phase (whether ice or water hydrometeor), can 
also be inferred from reflected/emitted radiation in the near-IR observations for 
successful rainfall estimation (Rosenfeld & Gutman, 1994; Rosenfeld & Lensky, 
1998). However, the observations are limited by solar illumination, restricting 
their usage to full daylight operations. 

The thermal IR observations are related to emissions from an object and 
therefore have day and night usefulness. Heavier rainfall is linked to taller and 
larger clouds with cold tops. Thus, by observing the cloud top temperature, one 
can derive rainfall estimates, e.g. (Arkin & Meisner, 1987; Arking & Childs, 1985). 
Multichannel/multispectral techniques such as (Lazri et al., 2014; Lensky & 
Rosenfeld, 1997) combine observations from VIS, near-IR, water vapour and 
thermal IR to estimate rain area and intensities. However, several studies have 
focused on using multispectral channel observations for rain area delineation 
(Feidas & Giannakos, 2010; Lazri et al., 2013; Thies et al., 2008a, 2008c).  

The PMW retrievals rely on the Earth’s natural MW emissions. Two retrieval 
process: emission and scattering processes, which depends on the background 
emissivity, is used in the rainfall retrieval. The emission process is caused by 
raindrops and leads to increased MW radiation, whereas scattering, caused by ice 
particles, leads to decreased radiation. Over water, background emissivity is low 
and constant; thus, low frequency (< 20 GHz) PMW channels are used for rainfall 
retrieval from additional emissions from raindrops. Rainfall retrieval over land 
uses high frequency (> 35 GHz) channels to measure decreased radiation due to 
scattering by ice particles (Kidd et al., 2010a).  
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The PMW retrieval algorithms may use emission (Wilheit et al., 1991), scattering 
(Ferraro & Marks, 1995) or multichannel inversion (Kummerow et al., 2001) type 
techniques. Further, these can be split into empirical techniques, which are 
relatively simple and calibrated against surface data or physical techniques, 
which minimise the differences between modelled and observed radiance (Kidd 
& Levizzani, 2011). More successful physical type algorithms such as (Kummerow 
et al., 2001) use an a priori database of the model-generated atmospheric profiles 
compared with satellite observations. The physical techniques provide surface 
rainfall and more detailed information about precipitation (Kidd & Levizzani, 
2011). 

Typically, the multi-sensor algorithms employ synergistic use of the LEO PMW 
and the GEO VIS/IR observation to overcome their individual deficiencies when 
used for rainfall retrieval. Some techniques adjust the IR radiance or generate 
calibration curves to map IR radiance using the gauge, radar or satellite datasets. 
The TMPA uses PMW imaging and sounding sensors and GEO IR data, adjusted 
for different satellite retrievals, to estimate rainfall (Wolff et al., 2007). The GPM 
IMERG final run version 5 (V05) ingests datasets from the GPM core observatory, 
a constellation of PMW satellites, GEO IR observations and rain gauges from the 
GPCC to produce a single rainfall product (Hosseini-Moghari & Tang, 2020). 
Other techniques, such as the PERSIANN algorithm, use artificial neural 
networks to derive rainfall estimates from multichannel and multi-sensor 
observations (Hsu & Sorooshian, 2008). However, the indirect nature of the IR 
observation to sense rainfall limits these techniques. Nevertheless, the IR 
observations provide useful cloud motion information capable of morphing PMW 
observations between successive satellite overpasses. 

Some studies suggest that lightning data may improve rainfall retrievals (Biron 
et al., 2012; Garcia et al., 2013; Grecu et al., 2000). For instance, Grecu et al. 
(2000) assessed the use of lightning information in convective rainfall 
estimation. They found a reduction of about 15% in RMSE of the estimated 
rainfall defined by convective areas. This was attributed to the fact that the errors 
caused by missing convective areas due to the absence of lightning were smaller 
than errors due to overestimated convective areas due to cirrus clouds assuming 
only IR data is used. 
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c)  The limitations in the rainfall measurement techniques 

The various rainfall retrieval techniques have inherent limitations. A significant 
drawback of the direct technique is that they observe rainfall from a single point 
and do not provide spatially representative rainfall information. Though spatial 
interpolation techniques may retrieve spatial rainfall information from their 
network, they easily propagate errors from the point measurements. Also, its 
accuracy is dependent on the density of the observing systems. Another problem 
common to the direct technique is the effect of environmental factors such as 
wind and evaporation (Michaelides et al., 2009; Villarini et al., 2008). 

Weather radars are limited because the coefficient of the power-law relation that 
translates radar reflectivity to rain rates lacks unique information that 
characterises microphysical variability of different meteorological systems 
ranging from cold frontal to summer thunderstorms and tropical systems. 
Further, radars suffer from ground clutter and complex terrain effects like beam 
blockage, beam overshoot and range effects. Additionally, radars are expensive to 
acquire, operate and require technical and human resources to ensure adequate 
system maintenance, limiting their operations to well-funded meteorological 
institutions (David et al., 2013; Hoedjes et al., 2014; Michaelides et al., 2009). 

The major limitation in the VIS/IR rainfall retrieval technique is that its relates 
precipitation to properties at the cloud top, e.g. cloud top temperature. However, 
precipitation of a given cloud may depend on the cloud’s composition, namely 
cloud particle size and phase. These properties determine a cloud’s precipitation 
properties and the difference between raining and non-raining clouds of similar 
top properties (Rosenfeld, 2007). Therefore, the technique often leads to retrieval 
uncertainties. For instance, very high cold cirrus clouds may be misinterpreted as 
raining, and low-level raining clouds may be missed. On top of this, there is also 
the issue of variation in the cloud top property-rainfall relation during the lifetime 
of the rainfall event, between rain systems and climatological regimes (Kidd et 
al., 2010a).  

The limitations of PMW retrievals are that PMW sensors are on LEO platforms 
and therefore have a limited temporal sampling. Also, the spatial resolution of 
the PMW observations, 50 by 50 km (over oceans) and 10 by 10 km (over land), 
may not be ideal for rainfall retrieval (Kidd & Levizzani, 2011; Kidd et al., 2010a). 

Furthermore, the PMW retrievals over land are challenged by the variable 
emissivity of soil, vegetation, and water and their variability from one location to 
another (Michaelides et al., 2009). Additionally, the spatial and temporal 
resolution difference between GEO and PMW observations and between 
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multispectral PMW observations require resampling and spatiotemporal 
collocation to combine the data. This preprocessing step may introduce 
uncertainties that may propagate into the retrieved rainfall based on multi-sensor 
techniques (Alemseged & Rientjes, 2007; Bellerby & Sun, 2005). 

1.2 Commercial Microwave Link for gauging 
rainfall 

MWL are point-to-point radio connections between antennas that commercial 
cellular communication service providers use for data transmission from radio, 
TV, internet and wireless communication between our cell phones. Rainfall 
physically affects the electromagnetic wave transmission between the 
transmitting and receiving antennas of MWL. When raindrops interact with the 
electromagnetic waves, a portion of the energy is scattered or absorbed, the 
combined effect of which reduces the energy detected at the receiving antenna 
(Leijnse et al., 2007a), see Figure 1. 1.  

 
 

Figure 1. 1 Rain-induced attenuation of MWL signal between a transmitting and receiving 
antenna. (Obtained from https://www.epfl.ch/labs/lte/research/past-research/page-
50160-en-html/)  

Telecom engineers have long known and studied the relation between rainfall 
statistics and attenuation to design MWL networks to avoid rain-induced 
disruptions in signal transmission (Hogg, 1968; Olsen et al., 1978).  

https://www.epfl.ch/labs/lte/research/past-research/page-50160-en-html/
https://www.epfl.ch/labs/lte/research/past-research/page-50160-en-html/
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Studies in the recent decade (Leijnse et al., 2007a; Messer et al., 2006) have, 
however, shown that this relative decrease in power (dB) per unit distance, A (dB 
km-1), can be used to retrieve average rainfall intensities along the signal 
transmission path. Consequently, the technique has received global research 
attention, and its application has been demonstrated for various 
hydrometeorological applications such as (David et al., 2009; Hoedjes et al., 
2014; Overeem et al., 2013; Overeem et al., 2021; Pastorek et al., 2019). The global 
MWL network is denser than, e.g. rain gauges; estimated globally at 4 million 
(ERICSSON, 2015; Uijlenhoet et al., 2018) compared to about 150000 global rain 
gauges (Kidd et al., 2017), pointing toward an enormous and untapped potential 
for continental-scale rainfall monitoring. 

Figure 1. 2 presents the global map of mobile service coverage across croplands 
(Figure 1. 2a) (Mehrabi et al., 2020) and GPCC’s global rain gauge network 
coverage (Figure 1. 2b) (GPCC, 2020). In particular, the mobile service’s wide 
coverage over agricultural fields in the Sub Saharan Africa compared to GPCC, 
which operates a few gauges per 1-degree grid box in the region, points towards a 
huge potential of the MWL network system for ground rainfall monitoring to 
benefit, e.g., agricultural management in an area where, compared to other areas, 
the traditional ground monitoring systems are insufficient or lacking.  

Since these MWL systems already exist in the field, including widely ungauged 
areas and are maintained by the service providers, their operational cost for 
rainfall monitoring may be minimal (Kumah et al., 2021). Nonetheless, several 
challenges may hinder the fruition of such a goal. For instance, there are no 
standard procedures for acquiring the MWL data, making it challenging to access 
spatiotemporally continuous datasets, especially in developing countries. 
Besides, the MWL network is not designed for rainfall monitoring, with often an 
arbitrary distribution and biased towards densely populated areas that 
complicate accurate high spatial resolution rainfall mapping. Additionally, 
variation in raindrop size distribution along the MWL propagation path and 
issues of antenna wetting during and after a rain event limit the accuracy of the 
MWL rainfall estimate (Chwala & Kunstmann, 2019; Uijlenhoet et al., 2010; 
Zinevich et al., 2008). 
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Figure 1. 2 (a) Global map of 2G, 3G and 4G mobile service coverage across croplands, 
acquired from (Mehrabi et al., 2020) (b) Number of rain gauges per 1-degree grid used by 
GPCC as of 2012, acquired from (GPCC, 2020). 
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1.3 Meteosat Second Generation 

The MSG is a series of operational GEO meteorological satellites continuously 
observing the earth-atmosphere system from the equator and operating over 
Europe, Africa and the Indian Ocean (EUMETSAT, 2021). Its radiometric sensor, 
SEVIRI, has 12 spectral channels: eight thermal infrared, three solar, and one 
high-resolution visible (HRV) channel. SEVIRI’s temporal resolution is 15 min, 
and its spatial resolution is 3 km for the thermal infrared and solar channels and 
1 km for the HRV channel at nadir (Schmetz et al., 2002). MSG’s measurement 
characteristics are suitable for detecting rapidly developing severe weather, 
weather forecasting and climate monitoring. On top of this, several studies have 
combined the SEVIRI spectral channels to infer cloud top properties such as 
optical thickness, particle size, and phase, which can successfully detect and 
estimate rainfall (Bendix et al., 2010; Giannakos & Feidas, 2012; Lazri et al., 2014; 
Thies & Nauss, 2008). MSG data is freely available in EUMETSAT’s data archives 
(EUMETSAT, 2020). 

1.4 What this thesis is about and how it is 
structured 

a) The objective and its underlying motivation 

The main objective of this dissertation is to investigate the MWL and MSG data 
for spatial and temporal rainfall detection and estimation. The following specific 
objectives investigate this main objective. 

1. To investigate if the combination of MWL with MSG satellite signals 
could improve rainfall detection and rainfall rate estimates. 

2. To develop an improved rain area detection system using MSG’s high-
resolution data. 

3. To investigate the applicability of MSG's high-resolution rain area 
detection for improving the MWL rainfall intensity estimates. 

4. To estimate high spatiotemporal resolution rainfall from the MWL and 
MSG data. 

The study objective is motivated by the fact that, until now, most studies have 
independently used the MWL and MSG data to detect, estimate, and map rainfall. 
The existing MWL rainfall estimation and mapping studies are mainly based on 
dense MWL network data, and they have often focused on using geostatistical 
techniques for spatial rainfall retrieval from the MWL (Overeem et al., 2016a; 
Overeem et al., 2016b). However, the MWL network is arbitrarily distributed, and 
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the spatial density is often non-uniform. This may challenge geostatistical-based 
spatial rainfall retrieval from MWL in areas with sparse networks and locally 
intense rainfall.  

On the other hand, the MSG satellite data has been widely used for high 
spatiotemporal resolution rainfall detection and estimation, albeit with gauge 
and radar data, which is not spatially dense everywhere (Bendix et al., 2010; 
Feidas & Giannakos, 2010; Moraux et al., 2019). Coincidentally, the MSG 
satellite’s temporal measurement (15-minutes) and spatial coverage on land often 
match the MWL data, while both systems observe rainfall independently. When 
combined, the two systems will suit rainfall retrieval and monitoring over vast 
areas, including areas with sparse ground observations. Given this, new and 
improved techniques that improve spatiotemporal rainfall retrieval from 
combined MWL and MSG data may be a promising alternative that may benefit 
applications in vast areas, particularly areas with sparse or insufficient ground 
observation.  

For this reason, this study investigated the main objective using data from Central 
and Western Kenya (longitudes 34°E, 42°E and latitudes of 5°N, 5°S), where 
ground data is often sparse. The area also plays a crucial role in Kenya’s 
agricultural production and is frequently affected by drought and floods 
(Nicholson, 2017). It is characterised by the Kenyan Rift Valley, mountains (e.g. 
Mount Kenya), and forest complexes (e.g. the Mau Forest). It experiences two 
rainy seasons: long rains from March to June (MAMJ) and short rains from 
October to December (OND), which coincide with the ITCZ passage over the 
equator. Furthermore, ENSO, IOD, MJO, and relief features influence the area’s 
local rainfall amounts, patterns, and characteristics (Brian et al., 2016; 
Nicholson, 2017; Ogwang et al., 2014).  

b) The dissertation outline  

This dissertation is organised into 6 chapters. Chapter 1 presents the relevance 
and implications of studying rainfall, the measurement techniques and their 
spatiotemporal caveats. The MWL and MSG are introduced in this chapter as 
independent rainfall observing systems. Chapter 2 investigates specific objective 
1 by first assessing the MWL’s ability to estimate accurate rain rates in the study 
area using multiple rain gauge data. Next, the satellite signals that indicate 
raining and non-raining cases on the MWLs were investigated for rainfall 
detection using a conceptual model.  
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Chapter 3 was dedicated to the second specific objective. The chapter investigates 
the MSG data for rain area detection by evaluating multiple rainfall detection 
models developed from solar and thermal IR channels. The chapter also 
developed a new gradient-based adaptive correction technique to improve the 
rain area retrievals from the MSG data. Chapter 4 investigated specific objective 
3. Here, a new method to improve the MWL rainfall estimation using rain area 
detections in Chapter 3 is developed, evaluated and described.  

Chapter 5 investigated specific objective 4 by applying machine learning 
techniques to the MWL and MSG data to estimate high spatiotemporal resolution 
rainfall. Finally, Chapter 6 is the conclusions and study implications chapter. 
Here, the significant conclusions and their research and operational implications 
are summarised.  
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Abstract 
Accurate rainfall detection and estimation are essential for many research and 
operational applications. Traditional rainfall detection and estimation techniques 
have achieved considerable success but with limitations. Thus in this study, the 
relationships between the gauge (point measurement) and the MWL rainfall (line 
measurement) and the MWL to the satellite observations (area-wide 
measurement) are investigated for (area-wide) rainfall detection and rain rate 
retrieval. More precisely, we investigate if combining MWL with MSG satellite 
signals could improve rainfall detection and rain rate estimation. The 
investigated procedure includes an initial evaluation of the MWL rainfall 
estimates using gauge measurements, followed by a joint analysis of the rainfall 
estimates with the satellite signals by means of a conceptual model that clouds 
with high cloud top optical thickness and large particle sizes have high rainfall 
probabilities and intensities. The analysis produced empirical thresholds that 
were used to test the capability of the MSG satellite data to detect rainfall on the 
MWL. The results from Kenya during the "long rains" of 2013, 2014 and 2018 
show convincing performance and reveal the potential of MWL and MSG data for 
area-wide rainfall detection.    
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2.1 Introduction 

Accurate rainfall detection and estimation are beneficial for many operational 
and research applications, including hydrological modelling, flash flood 
prediction, urban drainage planning, water resources management and many 
more (Hong et al., 2007). However, accurate rainfall estimation is a challenge 
because rainfall is intermittent, and its intensities, in some cases, vary 
significantly in space and time (Cristiano et al., 2017; Levizzanni et al., 2007). The 
state-of-the-art rainfall measurement consists of devices that can detect and 
quantify rainfall depending on its location (Michaelides et al., 2009). 

Rain gauges measure rainfall accumulations as a function of time and generally 
have a high degree of accuracy, especially at low to medium intensities (Rios et 
al., 2012a). However, rain gauges measure at a discrete point, providing site-
specific measurements with low spatial representativeness (Villarini et al., 2008). 
Interpolation techniques to obtain spatially continuous rainfall estimates from 
rain gauges are available. Nevertheless, they easily propagate errors from the 
point measurement and cannot adequately capture the spatial variability of 
rainfall (Tang et al., 2016). Also, installing and maintaining rain gauge networks 
can be practically challenging and expensive (Barthès & Mallet, 2013; Upton et 
al., 2005), resulting in sparse deployment and a rapid decline in gauge stations, 
especially in developing and underdeveloped countries (Dinku et al., 2008; Kidd 
et al., 2017).  

Weather radar systems usually operate at S or C-band wavelengths, with better 
coverage and high spatiotemporal resolution (Lengfeld et al., 2014). The 
challenge is that radar-based rainfall estimation suffers from limitations, such as 
ground clutter, beam blockage, attenuation due to rain, mean-field and range-
dependent systematic errors, see, e.g. (David et al., 2013; Dinku et al., 2002; 
Uijlenhoet & Berne, 2008; Villarini & Krajewski, 2009). Additionally, radars are 
expensive to acquire, operate and require technical and human resources to 
ensure adequate system maintenance. This limits their operation to well-funded 
national hydrometeorological institutions with the resources to ensure the 
valorisation of the data in the form of relevant information products (Barthès & 
Mallet, 2013; Hoedjes et al., 2014). 

Alternatively, satellite systems can provide continuous and global-scale rainfall 
observation at different spatiotemporal resolutions. Satellite systems remotely 
sense scattered and emitted radiation from clouds, precipitation and underlying 
surface to estimate rainfall (Rosenfeld, 2007). This is achieved using visible and 
infrared sensors onboard geostationary satellites and passive and active 
microwave sensors onboard polar-orbiting satellites. Consequently, many 
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satellite rainfall estimation techniques exist e.g. Kidd et al. (2010b) provide an 
overview of satellite estimation techniques. Some of the most accurate satellite-
based rainfall products, e.g. (Paredes Trejo et al., 2016), incorporate in-situ 
measurement in the retrieval process. Nonetheless, uncertainties in satellite 
rainfall estimates exist at varying spatiotemporal scales (Han et al., 2010). 
Furthermore, reliable satellite rainfall estimates require ground validation and 
evaluation at different spatiotemporal scales using sufficient ground data (Dezfuli 
et al., 2017; Doumounia et al., 2014). 

Several studies in the past decade pioneered by (Leijnse et al., 2007b; Messer et 
al., 2006) have shown that Microwave Links (MWL) from cellular 
communication networks can provide near-ground average rainfall estimates. 
Potentially, this rainfall estimation technique could have many benefits. For 
instance, it is possible to estimate rainfall over large areas due to their extensive 
coverage (on land). Furthermore, the MWL estimates line-average rainfall, which 
is more representative of areal rainfall than the rain gauge's point estimates. 
Uijlenhoet et al. (2018) provide an overview of the history, theory, challenges and 
opportunities of large-scale MWL rainfall monitoring. A review of current and 
future challenges to MWL rainfall monitoring can also be found in (Chwala & 
Kunstmann, 2019).  

Many studies have also combined different rainfall estimation methods to 
improve near-ground rainfall estimates at different spatiotemporal scales 
(Bianchi et al., 2013; Liberman et al., 2014; Scheidegger & Rieckermann, 2014; 
Sebastianelli et al., 2013; Todini, 2001). Sebastianelli et al. (2013) used rain gauge 
data to correct the radar rainfall estimates. By combining radar-based areal 
precipitation fields with point rain gauge measurements, Todini (2001) improved 
rainfall accuracy and spatial distribution. Furthermore, merging techniques 
involving MWL, radar and rain gauge data have been described by (Bianchi et al., 
2013; Liberman et al., 2014; Scheidegger & Rieckermann, 2014). 

The MSG is a GEO weather satellite with a wide spectral range radiometer, 
SEVIRI. It has eleven spectral channels of 3 km × 3 km and one high resolution 
visible (HRV) channel of 1 × 1 km nadir resolution that observes the Earth's 
atmospheric state and dynamics every 15 min (Schmetz et al., 2002). These 
individual SEVIRI spectral channels and combinations infer cloud top properties 
such as cloud top temperature for successful rainfall detection and estimation 
(Bendix et al., 2010; Roebeling & Holleman, 2009; Thies et al., 2008a, 2008b).   

Surprisingly, the combination of MWL and MSG satellite for rainfall detection 
and estimation has received far too little attention, albeit it could be of great value 
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to area-wide rainfall monitoring. The MWL-MSG satellite combination, in which 
MSG observes the Earth's atmosphere at high spatial and temporal resolution and 
the MWL estimates accurate near-ground average rainfall, can essentially benefit 
large-scale rainfall detection and estimation. To date, van het Schip et al. (2017) 
investigated the MSG-based satellite rainfall product's potential for wet and dry 
classification of MWL signals in the Netherlands. They suggested that since the 
MWL estimates rainfall close to the ground, their combination with satellite data 
can provide better estimates than a satellite-only approach. Hoedjes et al. (2013) 
Hoedjes et al. (2014) proposed the MWL and MSG satellite data as suitable for 
estimating rainfall from convective systems and developing conceptual flash 
flood early warning systems for underdeveloped countries. 

This chapter’s objective is to investigate if the combination of MWL with MSG 
satellite signals could improve rainfall detection and rainfall rate estimates. 
Contrary to other MWL-based rainfall studies, for the first time, the path average 
rainfall is studied together with signals from MSG SEVIRI channels that provide 
information on cloud dynamics. Our approach includes: (i) the MWL rainfall was 
first evaluated using rain gauge measurements; (ii) secondly, the MWL rainfall 
estimates were analysed as a function of the MSG SEVIRI satellite signals. The 
satellite signals, in this case, were used to infer information on cloud top 
properties, (iii) finally, the knowledge gained from analysing the MWL rainfall 
with MSG SEVIRI satellites signals detected rainfall on individual rainfall MWL.  

This chapter’s sections are organised as follows. Section 2.2 presents the study 
area and the data used. Section 2.3 describes the method and performance 
measures used to evaluate and analyse MWL-based rainfall intensities and their 
relationship with MSG cloud top properties. Section 2.4 briefly presents and 
discusses the results, and lastly, in Section 2.5, significant findings and 
conclusions are summarised. 

2.2 Study Area and Dataset 
2.2.1 Study Area 

Kericho (0.36° S, 35.28° E) and Naivasha (-0.71° S, 36.43° E), Kenya (0.02° S, 
37.90° E) are the study areas for this study. The two locations were chosen 
because of MWL, rain gauge, and satellite data availability. Located within the 
Kenyan Rift Valley, both study locations are dominated by farmland. They also 
have similar rainfall patterns, with a long rainy season occurring in March, April, 
May, and June (“long rains”) and a shorter rainy season in October, November, 
and December (“short rains”) (Kimani et al., 2017). The ITCZ's seasonal passage 
over Kenya influences the long and short rainfall seasons (Schneider et al., 2014). 
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The two study locations share similar complex terrain features: high mountains, 
dense forests, farmlands, water bodies, and fairly populated urban areas. Kericho 
is characterised by hilly terrain, with elevations ranging between 1800 and 3000 
m above mean sea level (a.m.s.l). Elevation in Naivasha ranges from 1980 m 
a.m.s.l. close to lake Naivasha to about 4000 m a.m.s.l in the Aberdare 
Mountains. Rainfall in both areas also varies quite noticeably with the local relief. 
On average, total annual rainfall varies between low and high altitudes, from 1400 
to 2125 mm and 610 to 1525 mm in Kericho and Naivasha, respectively (MoAlf, 
2017; Odongo et al., 2015). The temperature in Kericho ranges between 10 and 
29 °C (KERICHO, 2015) and in Naivasha, between 8 and 30 °C (Odongo et al., 
2015). 

2.2.2 Dataset 

This study focused on rainfall data for the “long rains” in May and June 2013, 
2014, and 2018 (Table 2. 1). These data were obtained from MWL, rain gauges 
and MSG SEVIRI. Part of the data set, consisting of 2 MWL and 16 rain gauges, 
was used to evaluate the MWL’s capability to estimate rainfall intensities. All data 
analysed the relationship between ground rainfall (from rain gauges and MWL 
rainfall estimates) and MSG satellite data for rainfall detection on MWL. The rain 
gauge data served as the reference data. 

Table 2. 1 Characteristic of the MWL network per each study location 
Study 

Location 
Evaluation Period Number 

of MWL 
Frequency 

(GHz) 
Link Length 

(km) Year Month 

Kericho 2013 May–June 2 23 <2 
4 15 3.45–4.77 

Naivasha 2014 May–June 

3 23 <2 
9 15 3.47–18.95 
1 8 28.4 

2018 1 15 10 

2.2.2.1 Rain Gauge Data 

The gauge rainfall data were from 14 aerodynamic ‘tipping bucket’ rain gauges 
(ARG 100 rain gauges, see www.emltd.net) and two TAHMO (van de Giesen et 
al., 2014) rain gauges. In Kericho, five ARG rain gauges were aligned near a 15 
GHz, 3.68 km MWL transect to collect the reference rainfall data during the May–
June 2013 evaluation period. In Naivasha, nine ARG rain gauges aligned under a 
15 GHz, 10 km MWL, and two TAHMO gauges installed near its transmitting and 
receiving antennas collected the reference data for the May–June 2018 
evaluation period. Figure 2. 1 shows the gauges’ proximity to the MWLs per each 

http://www.emltd.net/
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study location. The ARG rain gauges were set to log data every minute, while the 
TAHMO stations recorded rainfall every 5 min. One tip of the ARG bucket equates 
to 0.198 to 0.202 mm of rain. Because no rain gauge data were available during 
the 2014 period, its evaluation did not consider ground-based rainfall 
information. 

  
Figure 2. 1 The MWL and rain gauges in (a) Kericho and (b) Naivasha. The base map is 
SRTM DEM over the locations. Note: map coordinates are in decimal degrees; some MWL 
in Naivasha (red lines in (b)) did not have RSL data. 

2.2.2.2 MWL data 

Safaricom, a Kenyan telecom service provider, supplied the MWL data. Safaricom 
routinely collects and stores the MWL data for monitoring purposes. This study 
acquired received signal level (RSL) data for 19 MWLs of variable lengths and 
frequencies for the evaluation period. Figure 2. 1 shows the MWL network in 
Kericho and Naivasha on a base map using a Shuttle Radar Topography Mission 
(SRTM) digital elevation model (DEM) (EROS). All the MWLs used were Aviat 
Eclipse. Table 2. 1 gives further details on the MWL network per each study 
location and evaluation period. 

The RSL data were characterized by minimum, maximum, and mean values at 15 
min intervals and a resolution of 0.1 dBm. The MWL used were vertically 
polarized and had constant transmitted signal levels (TSLs). Out of the 19 MWL, 
one link (8 GHz, 28.4 km) was not included in this study because, at such 
frequencies, the attenuation rainfall relationship for estimating path average 
rainfall is sensitive to variation in raindrop size distribution, which can result in 
significant rainfall retrieval errors (Atlas & Ulbrich, 1977; Zinevich et al., 2010) 

 

 



Chapter 2 

24 

 

2.2.2.3 MSG Satellite Data 

This study used data from the Meteosat at 0° E (2013, 2014 evaluation periods) 
and 41.5° E (2018 evaluation period), which corresponded to Meteosat 10 and 8 
satellites (EUMETSAT, 2016), respectively, at the time this study acquired the 
data from (EUMETSAT, 2020). From the different kinds of SEVIRI’s spectral 
channels, this study focused on solar and thermal infrared channels sensitive to 
cloud top properties: optical thickness, particle size, and phase during the day 
and nighttime. These correspond to visible (VIS 0.6 µm), near-infrared (NIR 1.6 
µm), thermal infrared (IR 3.9 µm, IR 8.7 µm, IR 10.8 µm and IR 12.0 µm), and 
water vapour (WV 7.3 µm) channels. 

2.3 Method 

This section presents the methodology of this chapter using three broad parts. 
The first part, represented by subsections 2.3.1 and 2.3.2, estimates rainfall from 
MWL and rain gauges in Figure 2. 1a and b. Part two first briefly describes 
preprocessing of the SEVIRI data (i.e. 2.3.3). Next, subsection 2.3.4 describes the 
conceptual model that linked and analysed the satellite,  MWL and gauges data 
using cloud top properties: cloud optical thickness, particle size and phase under 
daytime and nighttime conditions. SEVIRI-based cloud properties represent the 
cloud top information and have an indirect and nonlinear relationship with 
ground rainfall (Bendix et al., 2010; Rosenfeld, 2007). However, their 
information helps quantify rainfall due to the apparent statistical relationship 
between rainfall duration and amount (Bergès et al., 2005).  

The spatial and temporal approach that retrieved MSG satellite, MWL and rain 
gauge data while considering their spatiotemporal measurement difference is 
also described in subsection 2.3.4. Subsequently, the retrieved data were jointly 
analysed to test the potential of the satellite data to detect rainfall on the 
individual MWL. The final part (2.3.5) presents performance measures for 
evaluating rainfall detection and estimation. 

2.3.1 Estimating Rainfall from rain Gauges 

For each ARG rain gauge, the per-minute tipping count multiplied by the tip 
equivalent of rain estimated the rainfall accumulation in millimetres (mm). This 
was then used to estimate rainfall intensities, R (mm h−1), at 15 min intervals. The 
rainfall data from the TAHMO stations were also used to estimate rainfall 
intensities at 15 min to ensure temporal consistency in the gauge data. During 
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every 15 min, the average rainfall intensities along the MWL transmission path 
were calculated as the mean of the gauge rainfall estimates. 

2.3.2 Estimating Rainfall from MWL Data 

The average attenuation along the MWL path can be used to estimate the average 
rainfall, R (mm h−1), using the formula (Olsen et al., 1978) in Equation 2. 1. 

𝑍𝑍 =  𝑎𝑎𝑅𝑅𝑏𝑏              (2.01) 

where Z (dB km−1) is the rain-induced attenuation, a ((dB km−1) (mm h−1)-b) and 
b (−) are empirical parameters that are known from the literature (ITU, 2005a; 
Olsen et al., 1978) and are dependent on MWL signal frequency and polarization. 
Depending on the sampling strategy used for the MWL RSL data, some studies 
(e.g.Ostrometzky & Messer, 2014; Overeem et al., 2016b) have used different 
characteristics of the RSL data for rainfall estimation. The RSL data used in this 
study consisted of two instantaneous signal levels (i.e., the minimum and 
maximum RSL) and a mean signal level over a 15 min interval. We used the mean 
RSL to retrieve R to ensure a homogeneous comparison of gauges and MWL 
mean rainfall estimates. The steps below describe the estimation of R from the 
mean RSL data. 

2.3.2.1 Wet /Dry Classification of RSL Data 

MWL signal attenuation can be related to non-rainfall sources such as 
atmospheric water vapour content, air temperature, strong solar irradiance and 
multipath propagation (Chwala & Kunstmann, 2019; David et al., 2009; David & 
Gao, 2018). Therefore, it is essential to identify the rain periods (i.e. wet periods) 
in the RSL data and separate them from the no rain periods (i.e. dry periods) to 
estimate R from RSL data accurately. The former indicates when rain is present 
on the MWL path, and the latter is when rain is absent on the MWL path. Wet/dry 
classification in literature is based on two major concepts. One concept assumes 
rainfall is correlated in space so that neighbouring links will experience mutual 
attenuation during rain occurrence. Hence, this concept achieves wet/dry 
classification for a particular link by comparing its attenuation measurement with 
several links within its vicinity (Overeem et al., 2016b). The other concept 
analyses the statistical properties of the time series of link signals (e.g. (Schleiss 
& Berne, 2010; Wang et al., 2012). 

Rainfall varies considerably in space and time over the study area (Tazalika et al., 
2013; Wakachala et al., 2015). Therefore, a wet/dry classification based on a 
concept of mutual attenuation of nearby links might not be a practical approach 
in our study location. Thus, this study utilized the latter wet/dry classification 
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approach. For every ten mean RSL data (i.e. the equivalent of 150 min interval), 
we estimated the standard deviation to measure the local variability in the RSL. 
Since rain attenuates MWL signals, the standard deviation for a rainy interval will 
be high. Thus, a suitable threshold value was defined to separate the standard 
deviation values into wet/dry periods. Schleiss and Berne (2010) proposed that 
such a value can be derived from the rainfall climatology of the area as inferred 
from, e.g., nearby rain gauges. This study’s threshold values were calibrated for 
each location using data from the experimental setup (i.e. Figure 2. 1, the MWL 
with gauges underneath their transects). The threshold value was then applied to 
all the links in the respective locations for wet/dry classification, assuming that 
the rainfall climatology is homogeneous for the small study location considered 
(Figure 2. 1). When a 150 min interval had less than five mean RSL data, wet/dry 
classification and hence rainfall was not computed for that interval. 

2.3.2.2 Estimating the Reference RSL 

The reference RSL or the baseline level indicates the RSL levels during dry 
periods. Its precise estimation depends on accurate wet/dry classification 
(Overeem et al., 2016b; Zinevich et al., 2010). The baseline level fluctuates even 
in the dry period due to signal attenuations in clear sky conditions (Chwala & 
Kunstmann, 2019; ITU, 2019), making it challenging to estimate accurately. This 
study estimated the baseline level for every wet period as the median of the mean 
RSL from the previous 24 h dry periods. 

2.3.2.3 Estimating R from Z 

After wet/dry classification and baseline level estimation, additional attenuation 
due to antenna wetting during and after rain was taken into account by following 
the dynamic model by Schleiss et al. (2013). Eventually, the path average 
attenuation, Z (dB km−1), was estimated for every 15 min wet period by 
subtracting the mean RSL from the baseline level, as shown in Equation 2.2. In 
some cases, the method retrieved negative path average attenuation values. This 
is the case when a 15 min period within a 150 min interval labelled as wet is dry 
because rainfall was intermittent in the wet interval. In these cases, the 
attenuation was set to zero. 

𝑍𝑍 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝑃𝑃
𝐿𝐿

                                                                                                                          (2.02) 

where 𝐿𝐿 is MWL length (km), while 𝑃𝑃𝑟𝑟𝑃𝑃𝐴𝐴 and 𝑃𝑃 (dBm) are the reference and mean 
RSL (corrected from the effect of wet antenna), respectively. Finally, Equation 2.3 
estimated the R (mm h−1) from Z. 
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𝑅𝑅 = �𝑍𝑍
𝑎𝑎
�
1
𝑏𝑏                                                                                                                    (2.03) 

The values of 𝑎𝑎 (0.05008, 0.1284) and 𝑏𝑏 (1.0440, 0.9630) for 15, and 23 GHz 
MWL, respectively, used in this study were from (ITU, 2005a). 

2.3.3 SEVIRI Data Retrieval and Processing 

The zenith viewing angle of the Meteosat at o° E, over the study area, is 
approximately 41°. Depending on the location and the height of clouds, this 
viewing angle could cause displacement of cloud tops from their actual position 
due to the effect of parallax, which occurs because SEVIRI observes the Earth 
under an oblique angle (Roebeling & Holleman, 2009). This parallax 
displacement can amount to about 12 km in SEVIRI pixels for very high clouds in 
Kenya (Hoedjes et al., 2014). Therefore, the 2013 and 2014 evaluation periods 
(retrieved from Meteosat at ° E) were parallax corrected using a correction 
algorithm from EUMETSAT (see https://cwg.eumetsat.int/parallax-
corrections/, accessed on 9 June 2021). However, the zenith viewing angle of the 
Meteosat at 41.5° E is about 5°, and this small viewing angle does not require 
parallax correction. 

2.3.4 The Conceptual Model, Satellite and Ground data Sampling 
and Analysis for Rainfall Detection 

1) The SEVIRI-based Rainfall Detection Conceptual Model 

This study linked MWL rainfall estimates to MSG SEVIRI data based on the 
assumption that clouds that rain over MWL can be detected using SEVIRI-based 
cloud top properties. Therefore, a conceptual model was defined that explored 
the relationship between spectral characteristics of different kinds of SEVIRI 
channels and cloud top properties (cloud top optical thickness, particle size and 
phase) for detecting rainfall on individual MWL. The model assumes that clouds 
with high optical thickness and large particle sizes (with the existence of ice or 
water hydrometeors at the top) have high rainfall probability and intensity, 
whereas clouds with low optical thickness and small particles sizes have low 
rainfall probability and intensity (Bendix et al., 2010; Thies et al., 2008a). The 
physical basis underlying this assumption is that the conditions for the 
development of precipitation in clouds are (i) availability of sufficient moisture, 
(ii) existence of an effective mechanism for converting small cloud droplets that 
are suspended in the air into large precipitating particles, and (iii) the existence 
of ice phase clouds at the cloud top to support rain generation by the Bergeron–
Findeisen process (Lensky & Rosenfeld, 2003a; Thies et al., 2008b). 

https://cwg.eumetsat.int/parallax-corrections/
https://cwg.eumetsat.int/parallax-corrections/
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Past studies have inferred information about the cloud top optical thickness, 
particle size, and phase from SEVIRI’s solar and thermal infrared satellite 
channels for successful rainfall detection (Bendix et al., 2010; Feidas & 
Giannakos, 2010; Lazri et al., 2014). Based on the numerous successful and 
convincing rainfall detection results, this study utilized the original reflectance 
and brightness temperature differences of SEVIRI channels to infer cloud top 
properties for rainfall detection from clouds. Because cloud top properties 
information differs between daytime and nighttime, detecting raining clouds is 
done separately for daytime and nighttime. EUMETSAT’s operational cloud mask 
product (EUMETSAT, 2015) identified the cloudy pixels in this study to ensure 
that this study utilized only cloudy scenes for rainfall detection. 

i. Detecting raining clouds during daytime 

Reflection of solar radiation by clouds in the non-absorbing channels (between 
0.4 μm and 0.8 μm visible channels) is strongly related to the cloud optical 
thickness. However, in the slightly absorbing 1.6 μm and 3.9 μm channels, this is 
related to the particle size (Baum & Spinhirne, 2000; Kawamoto et al., 2001; 
Kokhanovsky, 2003). Therefore, the two combined channels can provide cloud 
optical thickness and particle size information. Cloud’s optical thickness and 
particle size represent a single parameter, CWP, directly related to a cloud’s 
rainfall probability.  

The CWP indicates the amount of water vertically integrated into the cloud. It 
depends on the diameter of particle size and the thickness of clouds formed by 
these particles (Lazri et al., 2013; Lazri et al., 2014; Thies & Nauss, 2008). 
Consequently, CWP is often implicitly inferred from VIS 0.6 μm and NIR 1.6 μm 
channels from SEVIRI (Thies et al., 2008b; Thies et al., 2008d). High VIS 0.6 μm 
reflectance indicates optically thick clouds, and low NIR 1.6 μm reflectance 
corresponds to large cloud particle sizes. The implication is that large CWP is 
observed when high VIS 0.6 μm reflectance coincides with low NIR 1.6 μm 
reflectance (Thies et al., 2008b). 

The difference in brightness temperature between IR 8.7 µm and 10.8 µm (∆TIR8.7-

IR10.8) and that between IR 10.8 µm and  12.0 µm (∆TIR10.8-IR12.0) can be used to 
infer information about the cloud phase (Thies et al., 2008b). Strabala et al. 
(1994) observed stronger water particle absorption between 11 µm and 12 µm 
than between 8 µm and 11 µm, whereas, for ice particles, the reverse is true. 
Following this observation, the study found that ∆TIR10.8-IR12.0 differences 
indicative of water clouds are higher than coincident ∆TIR8.7-IR10.8 differences. On 
the contrary, ∆TIR8.7-IR10.8 of ice clouds is higher than coincident ∆TIR10.8-IR12.0. Feijt 
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et al. (2008) have instead suggested the simultaneous use of brightness 
temperature IR10.8 µm (TIR10.8) and the difference ∆TIR8.7-IR10.8 for identifying the 
cloud phase. They found that ice crystals begin to form when TIR10.8 < 238 K and 
∆TIR8.7-IR10.8 > 0.25 K. As earlier indicated, the ice phase at the cloud top supports 
rain generation and thus increases the likelihood of a cloud producing rain.  

The ∆TIR10.8-IR12.0 has also been considered a good indicator of cloud optical 
thickness and can effectively discriminate optically thick cumulous clouds from 
optically thin cirrus clouds (Feidas & Giannakos, 2010, 2011; Inoue, 1987b). 
Optically thick cumulous clouds show small ∆TIR10.8-IR12.0 because of their 
blackbody characteristics. Optically thin cirrus clouds show larger differences 
because of the differential absorption between ice crystals between the two 
channels (Inoue et al., 2001). It is expected that optically thick cumulous-type 
clouds with small ∆TIR10.8-IR12.0 produce rain (Inoue, 1987b).  

ii. Detecting raining clouds during night-time 

During the night-time, the brightness temperature differences: ∆TIR3.9-IR10.8, 
∆TIR3.9-WV7.3, ∆TIR8.7-IR10.8, and ∆TIR10.8-IR12.0 were used to infer information about 
cloud optical thickness, particle size and phase (Lensky & Rosenfeld, 2003a, 
2003b; Thies et al., 2008a; Thies et al., 2008d) for rainfall detection. A sufficient 
empirical basis exists for using such temperature differences and combinations 
for night-time rainfall detection (Lensky & Rosenfeld, 2003a; Schmetz et al., 
2002; Thies et al., 2008a; Thies et al., 2008d). The 3.9 μm emissions are sensitive 
to particle size, such that large particles have high emissions than smaller 
particles. The dependence on particle size is less distinct in the IR10.8 µm than 
in IR3.9 μm – resulting in higher ∆TIR3.9-IR10.8 differences for large particle 
sizes than smaller particles (Thies et al., 2008a; Thies et al., 2008d). Using 
∆TIR3.7-IR11 of the TRMM satellite, Lensky and Rosenfeld (2003a) showed that 
optically thick raining clouds with large particles produced a brightness 
temperature difference in the interval −1 to 4 K. Concerning the ∆TIR3.9-WV7.3 
difference, the characteristics should be similar to ∆TIR3.9-IR10.8 but with generally 
higher differences than ∆TIR3.9-IR10.8. This is due to the diminishing effect of the 
water vapour absorption and emission in the mid-to-low tropospheric levels on 
the brightness temperature in the WV7.3 μm channel (Schmetz et al., 2002; Thies 
et al., 2008a).  
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2) Spatial and Temporal Differences between SEVIRI and the Ground Data 

The measurement characteristics of satellite and ground sensors are 
fundamentally different (Ha et al., 2002). The satellite measures instantaneously 
over a wide area, while the ground sensors continuously measure from a single 
location (rain gauges) or aggregated measurements over time and space (MWL). 
Therefore, the measurement differences suggest a possible spatial and temporal 
mismatch between satellite and ground measurements that must be considered 
when analysing the two datasets. The description below presents the spatial and 
temporal difference between the SEVIRI and ground sensors (MWL or rain 
gauges) and how they are treated in this study. 

i. Spatial mismatch 

The general assumption often used to compare ground rainfall, and satellite data 
is that the measured rainfall represents the whole satellite pixel containing the 
ground sensors. However, the hydrometeors from heavy rain, falling at a speed 
of 10 ms−1 from a 3 km height cloud and horizontal wind speed between 5 and 30 
ms−1, can drift a horizontal distance between 1.5 and 90 km (Roe, 2005). This 
suggests that the rainfall recorded by a ground sensor might not always correlate 
with the satellite signal from a collocated pixel but with the signal from other 
adjacent pixels. Additionally, for tropical deep convective systems consisting of 
convective cores and anvil cloud areas having different cloud properties, 
dynamical regimes, and varying rainfall intensities, the retrieved cloud top 
properties might be biased towards the spatially dominant anvil cloud areas 
(Young et al., 2013). 

This study adopted an approach that considered the pixel containing the ground 
sensor and the surrounding 3 by 3 pixels to minimise the spatial mismatches 
between the satellite and ground data in its analysis. This meant the gauge pixel 
and its surrounding 3 by 3 pixels were considered for the rain gauge. For the 
MWL, this corresponded to 3 by 3 pixels surrounding the centre of the MWL 
transect, which in this case, constituted all the pixels covering the MWL. This 
study used two spatial aggregation methods (i.e., summary statistics used to 
sample from the raw data in space) to retrieve a single satellite signal out of the 3 
by 3 pixel environment comparable to the ground rainfall under daytime and 
night-time conditions.  

The daytime spatial aggregation method previously described by (Kuhnlein et al., 
2010) was used because of its simplicity and effectiveness in identifying the most 
effective satellite signal comparable with the ground rainfall data. The method 
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identifies the pixel with the most effective satellite signal as the pixel with the 
highest reflectance value in the VIS 0.6 µm and lowest reflectance values in the 
NIR 1.6 µm (indicating high optical thickness and large particle size, respectively, 
i.e., thick clouds). More precisely, for n ≥ 2 (where n is the number of cloudy 
pixels in the 3 by 3 pixels environment), the maximum and minimum reflectance 
values were expressed as: 

𝛽𝛽𝑉𝑉𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃 =   𝑚𝑚𝑎𝑎𝑚𝑚𝑖𝑖=1,𝑛𝑛(𝑚𝑚𝑖𝑖)                                                                                           (2.04) 
where 𝑚𝑚𝑖𝑖 is the reflectance value in the VIS 0.6 µm channel, and 

𝑁𝑁𝑉𝑉𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 =   𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1,𝑛𝑛(𝑦𝑦𝑖𝑖)                                                                                            (2.05) 
where: 𝑦𝑦𝑖𝑖 is the reflectance value in the NIR 1.6 μm channel. If the retrieved 
maximum VIS 0.6 µm and minimum NIR 1.6 μm values do not occur in the same 
pixel, the value combination that returns the highest difference between the two 
signals is used. The maximal difference was expressed as: 

𝐵𝐵𝑎𝑎𝑚𝑚𝑀𝑀𝑚𝑚𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =   𝑚𝑚𝑎𝑎𝑚𝑚𝑖𝑖=1,𝑛𝑛(𝑚𝑚𝑖𝑖 −  𝑦𝑦𝑖𝑖)                                                                 (2.06) 

The theoretical assumption in this method is that by identifying the pixel with the 
maximum and minimum reflectance in VIS 0.6 µm and NIR 1.6 μm, respectively, 
the pixel with the highest optical thickness and largest particle size that indicate 
a large CWP pixel is detected. Once the cloudy pixel with large CWP is detected, 
the phase of clouds is then retrieved using ∆TIR8.7-IR10.8 and ∆TIR10.8-IR12.0.  

The night-time spatial aggregation method used the mean brightness 
temperature differences retrieved from cloudy scenes. This mean brightness 
temperature difference for n ≥ 2 (where n is the number of cloudy pixels in the 
three by three pixels environment) was expressed as: 

𝐵𝐵𝑃𝑃𝑎𝑎𝑚𝑚 =   1
𝑛𝑛
∗ ∑ ∆𝑇𝑇𝑖𝑖𝑛𝑛

𝑖𝑖=1                                                                                                (2.07) 

where ∆𝑇𝑇𝑖𝑖 is the brightness temperature difference for the various channel 
combinations considered. 

ii. Temporal mismatch 

The potential temporal mismatch between the satellite and ground data is mainly 
because SEVIRI instantaneous scenes over the study area are acquired in about 
6 min (depending on the latitude) into each 15 min scan interval. Therefore, the 
measurement may represent the cloud top conditions available during the first 
few minutes of SEVIRI’s 15 min scan interval. In contrast, the ground 
measurements were continuous in time. In particular, the gauges originally 
recorded data at least every minute, while the MWL recorded mean RSL every 15 
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min. Moreover, during a 15 min interval, a raining cloud could have passed over 
the ground sensor during the first 6 min (when SEVIRI scenes were available) or 
the latter 9 min. Thus, the satellite measurement might not necessarily coincide 
with the ground measurement at all times. The dataset was aggregated in time to 
minimise the effect of this temporal mismatch. This temporal aggregation was 
done by computing the mean satellite signal for the satellite data, and for the 
ground rainfall data, the rainfall sums were computed every 30 min. 

Other measurement characteristics of the satellite that may potentially present 
uncertainties when comparing and analysing the ground and satellite data are the 
effect of viewing and illumination geometries: solar zenith angle, viewing zenith, 
and relative azimuth angles (Kato & Marshak, 2009). These effects concern the 
2013 and 2014 data acquired from solar channels of the Meteosat at 0° E. Since 
small study locations are considered (Figure 1) in this study, the effects of viewing 
and illuminating geometries should be minimal. Besides, we only used solar 
reflectance for daytime hours when sufficient solar illumination was available 
over the study area. 

3) The MWL Rainfall and SEVIRI Data Analysis for Rainfall Detection 

The analysis was separate for the daytime and night-time using MWL rainfall and 
satellite data pairs retrieved from the experimental setup in Figure 2. 1 (i.e. the 
MWL with rain gauges under their transect). After spatiotemporal aggregation to 
reduce the effect of their inherent measurement mismatch, the data pairs 
permitted the separation of the satellite data into raining and non-raining 
satellite signals. The raining satellite signals were further classified based on 
different rainfall categories in Table 2. 5 to investigate the satellite signals for 
varying rainfall intensity ranges. The rainfall classes' determination was done by 
analysing the frequency distribution of the gauge rainfall intensities (not shown 
here) and using different criteria, if possible. (1) Each rainfall class should have 
sufficient data to compute descriptive statistics; (2) the rainfall classes should be 
equal for both study locations to ensure homogenous rainfall analysis across the 
two areas. Subsequently, a scatter plot of rainfall intensities as a function of the 
satellite signals was used to investigate the rainfall in each rainfall class and the 
corresponding satellite signal. Then, each rainfall class’ satellite signal was 
statistically analysed using descriptive statistics. 

These descriptive statistics tested the potential of combining the information 
content gained from the different SEVIRI signals to detect rainfall on individual 
MWL during daytime and night-time. The daytime rainfall detection evaluated a 
four-dimensional matrix of VIS 0.6, NIR 1.6, and ∆TIR8.7-IR10.8, ∆TIR10.8-IR12.0 to 
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make a rain or no rain decision. In contrast, the night-time considered ∆TIR3.9-

IR10.8, ∆TIR3.9-WV7.3, ∆TIR8.7-IR10.8, and ∆TIR10.8-IR12.0 for rain no rain decision. The rain 
detection test used independent MWL and satellite datasets.  

2.3.5 Performance Measures 

2.3.5.1 Evaluating MWL Rainfall Intensities 

The MWL rainfall estimates (RMWL) were evaluated against the rain gauge 
estimates (RRG) using the relative bias (RB), coefficient of variation (CV), 
coefficient of determination (r2), and root mean square error (RMSE) (Table 2. 
2) across the evaluation period. RB indicates whether the RMWL systematically 
over or underestimates the RRG (Walther & Moore, 2005) and ranges from −1 to 
+ ∞, with 0 being an unbiased case. The CV indicates how the RMWL varies around 
the mean of the RRG (Rios et al., 2012b) and ranges from 0 to ∞. The r2 shows the 
strength of the linear relationship between the RMWL and the RRG. It ranges from 
0 to 1, where 1 indicates a perfect linear correlation between the RMWL and the RRG 
(Wilks, 2006). Finally, the RMSE shows how close the RMWL is to RRG and ranges 
from 0 to positive ∞, where 0 is a hypothetical case, and a larger RMSE indicates 
decreasing accuracies of RMWL (Barnston, 1992; Wilks, 2006). 

Table 2. 2 Performance measures for evaluating RMWL. The full name of each measure is 
indicated in the text. j and n represent all timestamps for the evaluation period. 

Performance Measure Formula Range 

RB 
1
𝑚𝑚 ∗ ∑ (𝑅𝑅𝑀𝑀𝑀𝑀𝐿𝐿 − 𝑅𝑅𝑉𝑉𝑅𝑅  )𝑛𝑛

𝑗𝑗=1

1
𝑚𝑚 ∗ ∑ 𝑅𝑅𝑉𝑉𝑅𝑅𝑛𝑛

𝑗𝑗=1

 −1 to + ∞ 

CV 
�𝛽𝛽𝑎𝑎𝑟𝑟(𝑅𝑅𝑀𝑀𝑀𝑀𝐿𝐿 − 𝑅𝑅𝑉𝑉𝑅𝑅)

1
𝑚𝑚 ∗ ∑ 𝑅𝑅𝑉𝑉𝑅𝑅𝑛𝑛

𝑗𝑗=1

 0 to ∞ 

r2 �
𝐶𝐶𝐶𝐶𝐶𝐶(𝑅𝑅𝑀𝑀𝑀𝑀𝐿𝐿,𝑅𝑅𝑉𝑉𝑅𝑅)
𝐵𝐵𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝐵𝐵𝑉𝑉𝑅𝑅𝑅𝑅

�
2

 0 to 1 

RMSE �
1 
𝑚𝑚
∗� (𝑅𝑅𝑀𝑀𝑀𝑀𝐿𝐿 − 𝑅𝑅𝑉𝑉𝑅𝑅)2

𝑛𝑛

𝑗𝑗=1
  0 to + ∞ 

2.3.5.2 Evaluating the Performance of SEVIRI-Based Rain Detection on MWL 

The rain detection performance test was evaluated by computing the values of the 
elements a, b, c and d as described in (Harold et al., 2015; Wilks, 2006). Their 
formulation differs for daytime and night-time because of the different SEVIRI 
channels and information content used for each time of the day (i.e., daytime or 
night-time). For daytime, 𝑎𝑎𝑑𝑑,𝑏𝑏𝑑𝑑,𝑐𝑐𝑑𝑑, and 𝑏𝑏𝑑𝑑 were computed as: 
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𝑎𝑎𝑑𝑑 = 𝑅𝑅𝑠𝑠𝑎𝑎𝑠𝑠 �
𝛽𝛽𝑚𝑚𝑉𝑉 ≥ 𝛽𝛽𝑚𝑚𝑉𝑉𝑠𝑠ℎ𝑃𝑃𝑃𝑃𝑠𝑠 𝐴𝐴𝑁𝑁𝑀𝑀 𝑁𝑁𝑚𝑚𝑟𝑟 ≤  𝑁𝑁𝑚𝑚𝑟𝑟𝑠𝑠ℎ𝑃𝑃𝑃𝑃𝑠𝑠 𝐴𝐴𝑁𝑁𝑀𝑀 

∆𝑇𝑇β1 ∈ [𝑚𝑚1, 𝑚𝑚2] 𝐴𝐴𝑁𝑁𝑀𝑀 ∆𝑇𝑇β2 ∈ [𝑦𝑦1, 𝑦𝑦2] � 𝐴𝐴𝑁𝑁𝑀𝑀 (𝑅𝑅𝑀𝑀𝑀𝑀𝐿𝐿 ≥ 1 𝑚𝑚𝑚𝑚ℎ−1)  (2.08) 

𝑏𝑏𝑑𝑑 = 𝑚𝑚𝐶𝐶𝑅𝑅𝑠𝑠𝑎𝑎𝑠𝑠 �
𝛽𝛽𝑚𝑚𝑉𝑉 ˂ 𝛽𝛽𝑚𝑚𝑉𝑉𝑠𝑠ℎ𝑃𝑃𝑃𝑃𝑠𝑠 𝐴𝐴𝑁𝑁𝑀𝑀 𝑁𝑁𝑚𝑚𝑟𝑟 ˃ 𝑁𝑁𝑚𝑚𝑟𝑟𝑠𝑠ℎ𝑃𝑃𝑃𝑃𝑠𝑠 𝐴𝐴𝑁𝑁𝑀𝑀 
∆𝑇𝑇β1 ∉ [𝑚𝑚1, 𝑚𝑚2] 𝐴𝐴𝑁𝑁𝑀𝑀 ∆𝑇𝑇β2 ∉ [𝑦𝑦1,𝑦𝑦2] � 𝐴𝐴𝑁𝑁𝑀𝑀 (𝑅𝑅𝑀𝑀𝑀𝑀𝐿𝐿 ≥ 1 𝑚𝑚𝑚𝑚ℎ−1)  (2.09) 

𝑐𝑐𝑑𝑑 = 𝑅𝑅𝑠𝑠𝑎𝑎𝑠𝑠 �
𝛽𝛽𝑚𝑚𝑉𝑉 ≥ 𝛽𝛽𝑚𝑚𝑉𝑉𝑠𝑠ℎ𝑃𝑃𝑃𝑃𝑠𝑠 𝐴𝐴𝑁𝑁𝑀𝑀 𝑁𝑁𝑚𝑚𝑟𝑟 ≤  𝑁𝑁𝑚𝑚𝑟𝑟𝑠𝑠ℎ𝑃𝑃𝑃𝑃𝑠𝑠 𝐴𝐴𝑁𝑁𝑀𝑀 

∆𝑇𝑇β1 ∈ [𝑚𝑚1, 𝑚𝑚2] 𝐴𝐴𝑁𝑁𝑀𝑀 ∆𝑇𝑇β2 ∈ [𝑦𝑦1,𝑦𝑦2] �  𝐴𝐴𝑁𝑁𝑀𝑀 (𝑅𝑅𝑀𝑀𝑀𝑀𝐿𝐿˂ 1 𝑚𝑚𝑚𝑚ℎ−1)    (2.10) 

𝑑𝑑𝑑𝑑 = 𝑚𝑚𝐶𝐶𝑅𝑅𝑠𝑠𝑎𝑎𝑠𝑠 �
𝛽𝛽𝑚𝑚𝑉𝑉 ˂ 𝛽𝛽𝑚𝑚𝑉𝑉𝑠𝑠ℎ𝑃𝑃𝑃𝑃𝑠𝑠 𝐴𝐴𝑁𝑁𝑀𝑀 𝑁𝑁𝑚𝑚𝑟𝑟 ˃ 𝑁𝑁𝑚𝑚𝑟𝑟𝑠𝑠ℎ𝑃𝑃𝑃𝑃𝑠𝑠 𝐴𝐴𝑁𝑁𝑀𝑀 
∆𝑇𝑇β1 ∉ [𝑚𝑚1, 𝑚𝑚2] 𝐴𝐴𝑁𝑁𝑀𝑀 ∆𝑇𝑇β2 ∉ [𝑦𝑦1, 𝑦𝑦2] � 𝐴𝐴𝑁𝑁𝑀𝑀 (𝑅𝑅𝑀𝑀𝑀𝑀𝐿𝐿˂ 1 𝑚𝑚𝑚𝑚ℎ−1)   (2.11) 

where: 𝑎𝑎𝑑𝑑,𝑏𝑏𝑑𝑑,𝑐𝑐𝑑𝑑, and 𝑑𝑑𝑑𝑑 are the hits, misses, false alarms and correct negative 
events, respectively. 𝑅𝑅𝑠𝑠𝑎𝑎𝑠𝑠 and 𝑚𝑚𝐶𝐶𝑅𝑅𝑠𝑠𝑎𝑎𝑠𝑠 are raining and non-raining conditions in 
the satellite data. 𝛽𝛽𝑚𝑚𝑉𝑉,𝑁𝑁𝑚𝑚𝑟𝑟 are VIS 0.6 µm and NIR 1.6 μm and their respective 
thresholds 𝛽𝛽𝑚𝑚𝑉𝑉𝑠𝑠ℎ𝑃𝑃𝑃𝑃𝑠𝑠 and 𝑁𝑁𝑚𝑚𝑟𝑟𝑠𝑠ℎ𝑃𝑃𝑃𝑃𝑠𝑠. ∆𝑇𝑇β1, ∆𝑇𝑇β2 are ∆TIR10.8-IR12.0 and ∆TIR8.7-IR10.8, and 
their brightness temperature ranges [𝑚𝑚1, 𝑚𝑚2] and[𝑦𝑦1,𝑦𝑦2], respectively. During the 
nighttime, the corresponding values of 𝑎𝑎𝑛𝑛,𝑏𝑏𝑛𝑛,𝑐𝑐𝑛𝑛, and 𝑏𝑏𝑛𝑛 were computed as: 

𝑎𝑎𝑛𝑛 = 𝑅𝑅𝑠𝑠𝑎𝑎𝑠𝑠 �
∆𝑇𝑇γ1 ∈ [𝑢𝑢1,𝑢𝑢2] 𝐴𝐴𝑁𝑁𝑀𝑀 ∆𝑇𝑇γ2 ∈ [𝐶𝐶1, 𝐶𝐶1] 𝐴𝐴𝑁𝑁𝑀𝑀 

∆𝑇𝑇β1 ∈ [𝑚𝑚1, 𝑚𝑚2] 𝐴𝐴𝑁𝑁𝑀𝑀 ∆𝑇𝑇β2 ∈ [𝑦𝑦1, 𝑦𝑦2] �  𝐴𝐴𝑁𝑁𝑀𝑀 (𝑅𝑅𝑀𝑀𝑀𝑀𝐿𝐿 ≥ 1 𝑚𝑚𝑚𝑚ℎ−1)     (2.12) 

𝑏𝑏𝑛𝑛 = 𝑚𝑚𝐶𝐶𝑅𝑅𝑠𝑠𝑎𝑎𝑠𝑠 �
∆𝑇𝑇γ1 ∉ [𝑢𝑢1,𝑢𝑢2] 𝐴𝐴𝑁𝑁𝑀𝑀  ∆𝑇𝑇γ2 ∉ [𝐶𝐶1, 𝐶𝐶1] 𝐴𝐴𝑁𝑁𝑀𝑀 

∆𝑇𝑇β1 ∉ [𝑚𝑚1, 𝑚𝑚2] 𝐴𝐴𝑁𝑁𝑀𝑀  ∆𝑇𝑇β2 ∉ [𝑦𝑦1,𝑦𝑦2] �  𝐴𝐴𝑁𝑁𝑀𝑀 (𝑅𝑅𝑀𝑀𝑀𝑀𝐿𝐿 ≥ 1 𝑚𝑚𝑚𝑚ℎ−1) (2.13) 

𝑐𝑐𝑛𝑛 = 𝑅𝑅𝑠𝑠𝑎𝑎𝑠𝑠 �
∆𝑇𝑇γ1 ∈ [𝑢𝑢1,𝑢𝑢2] 𝐴𝐴𝑁𝑁𝑀𝑀 ∆𝑇𝑇γ2 ∈ [𝐶𝐶1, 𝐶𝐶1] 𝐴𝐴𝑁𝑁𝑀𝑀 

∆𝑇𝑇β1 ∈ [𝑚𝑚1, 𝑚𝑚2] 𝐴𝐴𝑁𝑁𝑀𝑀 ∆𝑇𝑇β2 ∈ [𝑦𝑦1,𝑦𝑦2] �  𝐴𝐴𝑁𝑁𝑀𝑀 (𝑅𝑅𝑀𝑀𝑀𝑀𝐿𝐿˂ 1 𝑚𝑚𝑚𝑚ℎ−1)        (2.14) 

𝑑𝑑𝑛𝑛  =  𝑚𝑚𝐶𝐶𝑅𝑅𝑠𝑠𝑎𝑎𝑠𝑠 �
∆𝑇𝑇γ1 ∉ [𝑢𝑢1,𝑢𝑢2] 𝐴𝐴𝑁𝑁𝑀𝑀  ∆𝑇𝑇γ2 ∉ [𝐶𝐶1, 𝐶𝐶1] 𝐴𝐴𝑁𝑁𝑀𝑀 

∆𝑇𝑇β1 ∉ [𝑚𝑚1, 𝑚𝑚2] 𝐴𝐴𝑁𝑁𝑀𝑀 ∆𝑇𝑇β2 ∉ [𝑦𝑦1, 𝑦𝑦2] �𝐴𝐴𝑁𝑁𝑀𝑀 (𝑅𝑅𝑀𝑀𝑀𝑀𝐿𝐿˂ 1 𝑚𝑚𝑚𝑚ℎ−1)  (2.15) 

where: 𝑎𝑎𝑛𝑛,𝑏𝑏𝑛𝑛,𝑐𝑐𝑛𝑛, and 𝑑𝑑𝑛𝑛 are the hits, misses, false alarms and correct negatives 
events respectively during the nighttime; ∆𝑇𝑇γ1and ∆𝑇𝑇γ2 are ∆TIR3.9-IR10.8, ∆TIR3.9-

WV7.3 and their brightness temperature ranges [𝑢𝑢1,𝑢𝑢2], and [𝐶𝐶1, 𝐶𝐶1], respectively. 

Based on the computation of these elements, a set of standard verification scores 
(Table 2.3) were computed that evaluated an aspect of the rain detection test. The 
POD evaluated the fraction of the RMWL correctly detected by the test. FAR 
answered the question, ‘what fraction of the number of RMWL detected by the test 
was incorrect?’ POFD indicates the fraction of no rain (RMWL < 1 mm h−1) on the 
MWL that was incorrectly identified as rain (RMWL > 1 mm h−1) by the test. The 
ACC evaluated the overall fraction of rain and non-rain correctly detected by the 
test. CSI is used to show how well the rain detected by the test corresponds to 
RMWL on individual MWL. The HSS evaluates the rain detection test's accuracy by 
considering the detection that was due to random chance. The  N in its formula 
(Table 2. 3) is the sum of a, b, c and d. 
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Table 2. 3 Standard Verification Scores that Evaluated the Rain Detection Test 

2.4 Results and Discussion  
2.4.1 Results 

The first part of this section presents the results of evaluating the MWL rainfall 
against gauge measurements. The second part shows the results of analysing the 
rainfall estimates in part 1 with the SEVIRI satellite signals for rainfall detection. 
The final part summarizes the performance of the satellite data when used to 
detect rainfall on individual MWLs. 

2.4.1.1 The RMWL versus RRG 

The rainfall estimates evaluated in this section were from the experimental setup 
in Figure 2. 1. The evaluation period was during the long rains of 2013 and 2018 
for the Kericho and Naivasha setup, respectively. The frequency of both links is 
15 GHz, and their lengths are approximately 3.7 and 10 km for the Kericho and 
Naivasha MWL, respectively. The RMWL were evaluated using RRG from 16 rain 
gauges – 5 for the Kericho link and 11 for the Naivasha link. Here, the gauge 
rainfall intensities were considered as the reference rainfall measurement. 

Standard verification scores 

POD 
𝑎𝑎

𝑎𝑎 + 𝑏𝑏
 

FAR 
𝑎𝑎

𝑎𝑎 + 𝑐𝑐
 

POFD 
𝑐𝑐

𝑐𝑐 + 𝑑𝑑
 

ACC 
𝑎𝑎 + 𝑑𝑑

𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑
 

CSI 
𝑎𝑎

𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐
 

HSS 

(𝑎𝑎 + 𝑑𝑑) − (𝑎𝑎𝑃𝑃𝑎𝑎𝑛𝑛𝑑𝑑𝑟𝑟𝑟𝑟)
𝑁𝑁 − 𝑎𝑎𝑃𝑃𝑎𝑎𝑛𝑛𝑑𝑑𝑟𝑟𝑟𝑟 

 

𝑎𝑎𝑃𝑃𝑎𝑎𝑛𝑛𝑑𝑑𝑟𝑟𝑟𝑟 =
(𝑎𝑎 + 𝑏𝑏)  ×  (𝑎𝑎 + 𝑐𝑐) + (𝑑𝑑 + 𝑏𝑏)  ×  (𝑑𝑑 + 𝑐𝑐)

𝑁𝑁 
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Figure 2. 2 From raw RSL to rainfall using MWL data from Kericho, 11 to 12 May 2013. (a) 
mean and reference RSL (b) rolling standard deviation with a threshold of 0.8 dB (red 
dashed line) for detecting wet/dry periods (c) attenuation (d) MWL derived rainfall 
intensities, and (e) rain gauge derived rainfall intensities. 

Figure 2. 2 shows the transformation of MWL RSL to RMWL compared with RRG at 
15 min intervals for Kericho, using data recorded over 48 h. It can be seen from 
the figure that the drop in signal levels, e.g. between 11:00 and 12:00 pm (Figure 
2. 2 a), was detected as wet by the wet/dry classification (Figure 2. 2 b), indicated 
by the period's standard deviation above the wet/dry threshold value. This period 
also coincides with high attenuation (Figure 2. 2 c) and rainfall intensities 
averaged from the gauges under the MWL (Figure 2.2 e). 
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Figure 2. 3 As in Figure 2.2 but for the Naivasha MWL and rainfall events on 4 June to 5 
June 2018 

Figure 2. 3 is analogous to Figure 2. 2 but for the experimental MWL in Naivasha. 
The link had frequent intermittent periods of no data compared to the Kericho 
link. The data gaps were considered during the MWL rainfall estimation 
procedure. The estimated threshold value of the wet/dry classification was 0.7 
dB, which detected most of the variable average rainfall intensities observed by 
the gauges under the MWL. 

The RMWL and RRG are also compared in a scatter plot at 15 min, half-hourly and 
hourly evaluation timestamps for both study locations (Figure 2. 4). The half-
hourly and hourly values were a summation of the 15 min rainfall intensities. 
Table 2. 4 summarizes the values of the performance measures for each 
evaluation timestamp and study location. For the scatter plot comparison and 
computation of the performance measures, RMWL and RRG pairs less than 1 mm 
h−1 was set to 0 mm h−1 (i.e., considered dry). However, data with the 0 mm h−1 
were included in all analyses to evaluate the MWL’s detection and estimation 
capabilities for both wet and dry periods. All performance measures were 
computed across each evaluation period. 
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Figure 2. 4 Scatter plot comparison of RMWL and the RRG for Kericho (a–c) and Naivasha 
(d–f) at 15 min (a,d), half-hourly (b,e) and hourly (c,f) timestamp. 

Table 2. 4 Performance measures calculated from RMWL and RRG pairs from the two study 
locations. 

Study 
Location 

RB CV r2 RSME (mm h−1) 
15 

min 
30 

min 1 h 15 min 30 min 1 h 15 min 30 min 1 h 15 min 30 min 1 h 

Kericho 1 0.50 0.32 0.32 9.87 7.18 5.09 0.42 0.49 0.62 1.22 1.96 2.77 
Naivasha 2 -0.05 -0.14 -0.18 5.78 5.68 4.07 0.52 0.53 0.58 0.48 0.80 1.15 

1Performance measures were computed using 26 days of RMWL and RRG pairs. 
2performance measures were calculated using 52 days of RMWL and RRG pairs. 

Table 2. 4 shows that the rainfall intensity estimation skill of both MWLs differs 
when comparing their RMWL to the RRG. The RB indicates that the Kericho MWL 
overestimated the observed average rainfall intensity, albeit this decreased with 
increasing aggregation timestamp, from 0.50 at the 15 min to 0.32 for both half-
hourly and hourly timestamps. Likewise, the CV decreased from 9.87 at 15 min to 
5.09 at the hourly timestamp. The strength of the relationship between RMWL and 
RRG increased for increasing timestamps, with r2 values reaching approximately 
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0.6 at the hourly timestamp. The RMSE, however, increased from 1.22 mm h−1 at 
15 min to 2.77 mm h−1 at the hourly timestamps. 

In contrast, the Naivasha link marginally underestimated the observed rainfall. 
The value of RB increased minimally from −0.05 at 15 min to −0.18 at half-hourly 
and hourly timestamps. The CV decreased from 5.78 to 4.07 for 15 min to hourly 
evaluation timestamps. The strength of the relationship between RMWL and RRG 
(Figure 2. 4d–f) also increased for increasing timestamps with r2 above 0.5 for all 
timestamps. Even though the RMSE increased with aggregation time, the values 
(Table 4) were comparatively lower than those of the Kericho link. 

2.4.1.2 Joint Analysis of Rainfall and SEVIRI Satellite Data 

This section presents the results of analysing rainfall estimates with SEVIRI 
satellite data in two parts. First, collocated ground rainfall (from MWL and rain 
gauge) and satellite data from the experimental setup in Figure 2. 1a,b were 
jointly analysed for detecting rainfall. The gauge rainfall intensities presented in 
this analysis were from the rain gauges close to the centre of each MWL. Note, 
however, that the inclusion of the gauge rainfall data gave a perspective of the 
rainfall satellite analysis from a reference measurement point of view. The rainfall 
values were grouped into different rain classes to investigate further the satellite 
signals for different rainfall intensity ranges (Table 2. 5). The analysis was done 
separately for the two study areas and for during day and night-time. Next, 
inferences deduced from the rainfall satellite analysis are summarised based on 
observations from the two study areas and separately during day and night-time. 

Table 2. 5 Summary of the RMWL data per each study area for the day and night-time 
Study 
Area 

RMWL  
(mmh−1) 

1Percentage of Data (%) Accumulated RMWL (mm) 
Day Night Day Night 

Kericho 
0 91.56 (93.81) 94.5 (97.7) 0 (0) 0 (0) 

0–5 1.95 (2.61) 2.29 (1.84) 12.22 (24.92) 13.57 (12.06) 
>5 6.49 (3.58) 3.21 (0.46) 314.25 (219.49) 98.1 (39.40) 

Naivasha 
0 96.68 (96.84) 95.34 (96.02) 0 (0) 0 (0) 

0–5 2.41 (2.11) 2.61 (2.88) 48.45 (34.74) 61.92 (54.14) 
>5 0.90 (1.05) 2.06 (1.1) 43.02 (88.88) 106.09 (61.41) 

Note: 1values used in calculating percentages in Kericho and Naivasha are 307, 
217, 663, and 729 for day and nighttime, respectively; values in parenthesis are 
computed based on the rain gauge data. 

(i) MSG satellite rainfall 

Figure 2. 5 is a scatter plot of rainfall intensities as a function of the MSG satellite 
signals during the daytime in May–June 2013 (in total, 313 MSG SEVIRI scenes). 
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A clear observation from the figure is the difference in the scatter of data points 
between the raining satellite signals (0–5 mm h−1 and above 5 mm h−1 rainfall 
classes) and non-raining satellite signals (0 mm h−1 rainfall class). This feature 
was evident in both reflectance and brightness temperature difference 
combinations and the RRG and RMWL scatter plots. 

The SEVIRI reflectance combination is in Figure 2. 5a,c. The figure shows that 
the 0 mm h−1 rainfall scatter throughout the whole range of the satellite signals, 
with a high concentration of the scatter occurring in the lower-left corner of the 
plot, where low VIS 0.6 μm reflectance is connected to low NIR 1.6 μm 
reflectance. On the other hand, the combination of high VIS 0.6 μm versus low 
NIR 1.6 μm reflectance is generally evident for rainfall occurrence. The 0–5 mm 
h−1 RMWL scatter over a wide range of the satellite signal. In some cases, the value 
combination of the VIS 0.6 μm and NIR 1.6 μm reflectance in this rainfall class 
were comparable. The rainfall above 5 mm h−1 was generally restricted to the 
lower right corner of the plot, where high VIS 0.6 μm reflectance is connected 
with low NIR 1.6 μm reflectance. 

 

Figure 2. 5 Day time RRG (a,b) and RMWL (c,d) as a function of VIS 0.6 μm versus NIR 1.6 
μm (a,c), and ∆TIR10.8-IR12.0 versus ∆TIR8.7-IR10.8 (b,d) for Kericho. 
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For the satellite brightness temperature difference (Figure 2. 5b,d) indicative of 
cloud phase, water (∆TIR10.8-IR12.0) and ice (∆TIR8.7-IR10.8), the 0 mm h−1 rainfall also 
scatter throughout the whole range of the satellite signal, albeit with higher 
∆TIR10.8-IR12.0 differences than ∆TIR8.7-IR10.8. In contrast, the raining satellite signals 
tend to scatter in different ranges of values for ∆TIR10.8-IR12.0 and ∆TIR8.7-IR10.8. Most 
of the raining satellite signals of ∆TIR10.8-IR12.0 scatter above 0 K, with a large 
concentration of the scatter falling within a narrow range (approximately 0 to 1 
K). However, ∆TIR8.7-IR10.8 scatter over a wide range of values (between -2 and 1.5 
K). In addition, from the plot, some coincident values ∆TIR10.8-IR12.0 are larger than 
∆TIR8.7-IR10.8, and vice versa, which was evident for the above 0 mm h-1 rainfall and 
in both the RRG and RMWL plots. 

Figure 2. 6 is analogous to Figure 2. 5, but for brightness temperature differences 
during night-time conditions in May-June 2013 (altogether 218 MSG SEVIRI 
scenes). The scatter of this plot's 0 mm h−1 rainfall satellite signal is similar to 
those observed during daytime conditions. However, the raining satellite signals 
are in different ranges for all the brightness temperatures and scatter differently 
for the RRG and RMWL.  

For instance, the values of ∆TIR3.9-WV7.3 were larger than the values of ∆TIR3.9-IR10.8 
(Figure 2. 6a,c). The RRG plot (Figure 2. 6a) scatter below 10 K for the ∆TIR3.9-WV7.3, 
whereas the differences shown in the RMWL plot (Figure 2. 6c), particularly those 
between 0–5 mm h−1, tend to scatter over a wide range of the satellite signals. 
Conversely, ∆TIR3.9-IR10.8 of RMWL scatter above 0 K, whereas the RRG plot’s 
differences are over a wide range (between −5 and 3 K). 

For the brightness temperature differences in Figure 2. 6b,d, the ∆TIR10.8-IR12.0 
scatter above 0 K with a large concentration of the scatter between 0 and 1 K, 
whereas the ∆TIR8.7-IR10.8 scatter over a comparatively wide range of values 
(between −1.5 and 1 K). Similar to daytime observation, some coincident values 
of ∆TIR10.8-IR12.0 are larger than those of ∆TIR8.7-IR10.8 for the above 0 mm h-1 and 
vice versa and are evident from the RRG and RMWL plots. 
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Figure 2. 6 Nighttime RRG (a,b) and RMWL (c,d) as a function of ∆TIR3.9-IR10.8 versus 
∆TIR3.9-WV7.3, (a,c) and ∆TIR10.8-IR12.0 versus ∆TIR8.7-IR10.8 (b,d) for Kericho. 

A scatter plot of rainfall intensity as a function of the MSG satellite signal, 
analogous to the daytime analysis in Kericho (Figure 2. 5), is presented for 
Naivasha (Figure 2. 7). Altogether, 713 MSG SEVIRI scenes were analysed during 
May–June 2018 period. Comparable to Kericho’s analysis in Figure 2. 5, most of 
the raining satellite signals in RRG and RMWL plots did not scatter over the whole 
range of value combinations of satellite reflectance (Figure 2. 7a,c) and brightness 
temperature difference (Figure 2. 7b,d). 
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Figure 2. 7 As in Figure 2.5 but for daytime rain events in Naivasha. 

The satellite reflectance combination for the 0 mm h−1 was comparable to 
Kericho’s daytime observations (Figure 2. 5a,c), with a large concentration of very 
low VIS 0.6 μm and NIR 1.6 μm reflectance pairs. However, in contrast to the 
daytime analysis in Kericho, the RRG between 0–5 mm h−1 tend to scatter over the 
whole range of the satellite signals (Figure 2. 7a). Also, for some of the rainfall 
intensities in this RRG class, the value combination of the VIS 0.6 μm and NIR 1.6 
μm were comparable. This plot also shows that most of the above 5 mm h−1 
rainfall is scattered in the lower right corner with high VIS 0.6 μm and low NIR 
1.6 μm reflectance pairs. For the above 5 mm h−1 RRG that did not scatter in the 
lower right corner, their VIS 0.6 μm reflectance was nonetheless higher than 
those of the NIR 1.6 μm. 

As can be seen from the ∆TIR10.8-IR12.0 versus ∆TIR8.7-IR10.8 plot (Figure 2. 7b,d), the 
0 mm h−1 scatter over the whole range of the satellite signal, with generally larger 
values of ∆TIR10.8-IR12.0 than those of ∆TIR8.7-IR10.8. However, the raining satellite 
signals scatter over varying ranges of the two brightness temperature differences. 
For ∆TIR10.8-IR12.0, this range is above 0 K, with the majority of the signals falling 
between 0 and 1 K. For the ∆TIR8.7-IR10.8, the range is comparatively wider; in 
particular, the RRG falls between −2 and 2 K. It can also be observed from the plot 
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that some coincident values of ∆TIR10.8-IR12.0 are larger than those of ∆TIR8.7-IR10.8. 
Likewise, values of ∆TIR8.7-IR10.8, in some cases, are larger than the values of 
∆TIR10.8-IR12.0. This feature was evident for the rainfall between 0–5 mm h−1 and 
those above 5 mm h−1 and can be seen from the RRG and RMWL plots. Moreover, 
these observations were similar to those found in Kericho's previous analysis of 
daytime rainfall intensities and MSG satellite signals (Figure 5). 

 
Figure 2. 8 As in Figure 2.6 but for night-time rainfall events in Naivasha. 

Figure 2. 8 shows rainfall intensities as a function of MSG signals during night-
time in May–June 2018 (altogether 733 MSG SEVIRI scenes) for Naivasha. A 
clear observation from the figure is that the satellite signals indicate 0 mm h−1 
rainfall scattered over the whole range of values for all the brightness temperature 
differences.  

However, the raining satellite scattered in different value ranges for the two 
brightness temperature differences. ∆TIR3.9-WV7.3 differences were below 15 K, and 
∆TIR3.9-IR10.8 were between −5 and 5 K (Figure 2. 8a,c). Also, most RRG between 0–
5 mm h−1 scattered over a larger ∆TIR3.9-WV7.3 than those above 5 mm h−1 (Figure 
2. 8a), whereas in the RMWL plot (Figure 2. 8c), both rainfall intensity classes tend 
to scatter over a wide range. 



Chapter 2 

45 
 

The ∆TIR10.8-IR12.0 versus ∆TIR8.7-IR10.8 scatter plot (Figure 2. 8b,d) shows that most 
raining satellite signals scatter above 0 K for ∆TIR10.8-IR12.0 differences, and 
between –2 and 2 K for the ∆TIR8.7-IR10.8 differences. More precisely, the raining 
satellite signals of the 0–5 mm h−1 scattered over a wide range of value 
combinations of ∆TIR10.8-IR12.0 and ∆TIR8.7-IR10.8. By contrast, the signals of the 
above 5 mm h−1 were in a narrow range of value combinations of the brightness 
temperature differences (Figure 2. 8b). 

(ii) Inferences from analyzing rainfall estimates with MSG satellite data 

Overall, it can be stated based on the observations in Figure 2. 5 and Figure 2. 7 
that most of the rain cases (i.e., 0–5 mm h−1 and above 5 mm h−1) defined by RRG 
and RMWL during daytime were from optically thick clouds that characterized by 
high VIS 0.6 μm and low NIR 1.6 μm reflectance, and with different ranges of 
∆TIR10.8-IR12.0 and ∆TIR8.7-IR10.8. The high VIS 0.6 μm and low NIR 1.6 μm 
reflectance indicate the cloud’s large CWP and high rainfall probabilities and 
intensities (Thies et al., 2008b). The ∆TIR10.8-IR12.0 (between 0 and 1 K) and ∆TIR8.7-

IR10.8 (between −2 and 2 K) ranges found in this study also indicated medium (i.e., 
low optical thickness with large particle sizes and high optical thickness with 
small particle sizes) to large (i.e., high optical thickness with large particle sizes) 
CWP with high rainfall probabilities and intensities according to radiative 
transfer calculation by Thies et al. (2008a). Further, the value ranges of ∆TIR10.8-

IR12.0 and ∆TIR8.7-IR10.8 are characteristic of optically thick cumulous-type clouds 
with ice at the top, based on cloud classification presented by Feidas and 
Giannakos (2010). In contrast, most of the no rain cases (i.e., 0 mm h−1) 
correspond to non-precipitating thin and thick cirrus clouds and N-type clouds 
(edges of optically thick clouds, optically thinner cumulous clouds, or low-level 
cumulous clouds overlaid by thin cirrus clouds) (Feidas & Giannakos, 2010; 
Inoue et al., 2001). 

Optically thick clouds with medium ∆TIR3.9-IR10.8 (between -5 and 5 K) and ∆TIR3.9-

WV7.3 (between 5 and 10 K) produced most of the night-time (Figure 2. 6 and 
Figure 2. 8) rain cases (i.e., 0–5 mm h−1 and above 5 mm h−1). Thies et al. (2008a) 
showed that medium ∆TIR3.9-IR10.8 values are linked to large CWP with high 
rainfall probabilities and intensities. High and small ∆TIR3.9-IR10.8 is, however, 
indicative of medium CWP with low rainfall probabilities and intensities—the 
results for ∆TIR3.9-WV7.3 show comparable characteristics to ∆TIR3.9-IR10.8 but with 
generally higher ∆TIR3.9-WV7.3 than ∆TIR3.9-IR10.8 differences. The higher ∆TIR3.9-WV7.3 
differences than ∆TIR3.9-IR10.8 is due to the diminishing effect of the water vapour 
absorption and emission in the mid-to-low tropospheric levels on the brightness 
temperature in WV7.3 μm channel (Schmetz et al., 2002). For the ∆TIR8.7-IR10.8 
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versus ∆TIR10.8-IR12.0 difference, the observations made for both rain and no rain 
cases were comparable to those found during the daytime analysis. 

The results are consistent with the conceptual model introduced in Section 2.3.4 
that clouds with high optical thickness and large particle sizes, indicative of large 
CWP (with the existence of ice or water hydrometeors at the top), have a high 
probability of producing rainfall. Based on this fact and according to the 
inspections of Figures 2.5–2.8, it raises the possibility of distinguishing rain and 
no rain cases based on a combination of parameters: VIS 0.6 μm, NIR 1.6 μm, 
∆TIR10.8-IR12.0 and ∆TIR8.7-IR10.8 (for during daytime), and ∆TIR3.9-WV7.3, ∆TIR3.9-IR10.8, 
∆TIR10.8-IR12.0 and ∆TIR8.7-IR10.8 (for during night-time). This is achieved using 
statistical machine learning or parametric (threshold) techniques, e.g., (Feidas & 
Giannakos, 2010; Lazri et al., 2013). Here, we empirically defined parametric 
thresholds based on descriptive statistics of the raining SEVIRI satellite signals 
for rainfall detection. 

2.4.1.3 Rainfall Detection with MSG SEVIRI Data 

The different combinations of MSG channels jointly analysed with rainfall data 
in the previous section were used to test rain detection on individual MWL. This 
section presents the results of detecting rain on MWL using MSG SEVIRI satellite 
signals. Table A2 1 shows calculated descriptive statistics of SEVIRI satellite 
signals per RMWL class, study location, and day and night-time. A summary of the 
data used for calculating these statistical values is in Table 2. 5, and the data were 
analysed in Figures 2.5–2.8 in the previous section.  

What is clear from Table A1 is the low and high standard deviation values of the 
reflectance and brightness temperature differences, respectively. When the 
standard deviation is interpreted together with the mean, mode, and median 
values, it becomes evident that the satellite reflectance tends to spread close to its 
mean. In contrast, the brightness temperature differences spread over a large 
range of values. Additionally, there were large differences in the statistical values 
between raining and non-raining satellite signals. However, the differences in 
statistical values between 0–5 mm h−1 and above 5 mm h−1 rainfall classes were 
relatively low. 

Based on the descriptive statistics in Table A2 1, reflectance threshold and 
brightness temperature difference range (Table 2. 6) were derived that were used 
to compute the elements a, b, c, and d in Equations (2.8)–(2.15) for rainfall 
detection. Since the satellite signals of 0–5 mm h−1 and above 5 mm h−1 rainfall 
classes were not statistically different, the two classes' separate threshold and 
brightness temperature difference ranges were unnecessary. Thus, a single 
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threshold and brightness temperature difference range were defined separately 
for day and night-time and the two study locations. The reflectance thresholds: 
Visthres and Nirthres (Table 2. 6) were derived from the median and mean statistical 
values, respectively, whereas the brightness temperature difference ranges were 
from a combination of minimum, maximum, mean and mode values depending 
on the channel difference. The results in Table 2. 6 show that the reflectance 
thresholds were comparable (during daytime). In contrast, the brightness 
temperature difference ranges (during day and night-time) varied across the two 
study locations. 
Table 2. 6 Reflectance threshold and brightness temperature range used for rain detection.  

Time 
Study 

Location 
Visthres Nirthres 

∆TIR8.7-IR10.8 
K 

∆TIR10.8-IR12.0 

K 

Day 
Kericho >0.70 < 0.43 −1.0–1.42 −1.0–1.0 

Naivasha >0.70 < 0.50 −1.10–1.15 0.0–1.2 
      
 

 
∆TIR3.9-IR10.8 

K 
∆TIR3.9-WV7.3 

K 
∆TIR8.7-IR10.8 

K 
∆TIR10.8-IR12.0 

K 

Night 
Kericho 2.0–5.0 4.0–12.0 −0.01–1.0 0.26–1.9 

Naivasha −3.0–1.0 3.0–15.0 −1.0–2.0 0.0–1.0 

Table 2.7 summarizes the verification scores of the rain detection on individual 
MWL for Kericho and Naivasha during the day and night-time. The scores are 
based on MWL and satellite data from the two study locations independent of 
those used in the analysis of previous sections (Section 2.4.1.1 and 2.4.1.2). The 
MWL names (Table 2. 7, first column) were derived from the link identifications 
supplied by the telecommunication provider. The scores were computed across 
the evaluation period for MWLs with more than five RMWLs retrieved during the 
day or night-time. Table 2. 7 shows the method's effectiveness in detecting no rain 
on individual MWL, indicated by, on average, more than 95% correct negative 
detections. However, the rain detection skill varied between day and night-time, 
as seen from the hit percentage. 

The daytime detection in Kericho performed better than night-time detection. 
For most MWL, between 58.1% and 78.6% of the RMWL were successfully detected, 
and between 21.4% and 42.9% were incorrectly identified as non-raining. The 
successful night-time detections were between 25% and 50%, whereas 50% to 
75% of the RMWL was incorrectly detected as non-raining. The false alarms, FAR, 
and POFD percentages were generally higher in the daytime than in the night-
time. Nonetheless, the POD, CSI and HSS scores suggest better daytime rain 
detection than night-time. Altogether, the accuracy scores were high for the 
daytime and night-time tests, which can be attributed to the method's 
effectiveness in detecting no rain on individual MWL. 
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Similarly, the daytime detection results in Naivasha were comparatively better 
than the night-time. For daytime, the method successfully detected between 
57.1% and 62.5% of the RMWL, whereas between 35% and 42.9% were erroneously 
detected as non-raining. However, between 30% and 91.7%, successful RMWL 

detections were achieved during the night-time. The erroneous detections were 
between 8.3% and 70%.  

Like the Kericho study, the percentage of false alarms, FAR, and POFD for the 
daytime were lower than the night-time. However, the POD, CSI, and HSS 
indicate a better daytime performance than the night-time. For the daytime: POD 
range between 0.57 and 0.65; CSI range between 0.44 and 0.62; and HSS range 
between 0.61 and 0.76. For the night-time, values ranging between 0.3 and 0.92; 
0.14 and 0.58 and 0.23 and 0.73 were computed for POD, CSI, and HSS 
respectively. Regarding the overall accuracy for the day and night-time, the 
previous comment for the Kericho case is also valid.  

2.4.2 Discussion 

2.4.2.1 Accuracy of the MWL Rainfall Estimates 

Two MWL of the same frequency (15 GHz) but different lengths: 3.7 and 10 km, 
and from different study locations: Kericho and Naivasha, were used to estimate 
RMWL. The results were then compared, at different evaluation timestamps, with 
RRG derived from rain gauges. Overall, the results demonstrate the potential and 
capacity of MWL networks to provide accurate rainfall data. The overall accuracy 
of the RMWL derived from the two MWLs can be described as good. Despite the 
high CV observed, the low RB and RMSE values show that reliable rainfall 
information can be derived from MWL networks. The hourly r2 values were about 
0.60 for both MWLs, which can be described as convincing, considering these 
values were achieved at fine resolution. 

The discrepancies between RMWL and RRG were attributed to factors such as the 
differences between the nature of measurement by the MWL and gauge. The 
RMWL were retrieved from the mean RSL data derived from instantaneous RSL 
measurements. Additionally, the RMWL represent the average rainfall over the 
MWL’s signal transmission path. On the other hand, the RRG was computed from 
rain gauges that recorded rainfall accumulations every minute from a single 
point. Moreover, uncertainties in the RMWL rainfall estimation approach and 
spatial variability of rainfall could contribute to the differences between RMWL and 
RRG (David et al., 2019; Martin & Vojtech, 2018; Uijlenhoet et al., 2010). 
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2.4.2.2 The Analysis of RMWL with MSG SEVIRI Data 

RMWL from the two links presented above were jointly analysed with satellite 
signals from MSG SEVIRI solar and thermal infrared channels. Both data were 
temporarily aggregated, and the satellite data were spatially aggregated to reduce 
the effect of potential temporal and spatial mismatch between the rainfall and 
satellite data in our analysis. The premise for analysing the MWL rainfall with the 
SEVIIRI data is that raining clouds that attenuate individual MWL can be 
detected based on their cloud top properties using satellite data. Therefore, a 
conceptual model was defined for detecting rainfall based on the assumption that 
clouds with high cloud top optical thickness and large particle sizes (with ice or 
water hydrometeors) have high rainfall probabilities and intensities.  

During the daytime, the model infers cloud top optical thickness and particle sizes 
from SEVIRI solar channels: VIS 0.6 µm and NIR 1.6 µm, respectively, whereas 
the brightness temperature difference between IR 8.7 µm and 10.8 µm (∆TIR8.7-

IR10.8) and that between IR 10.8 µm 12.0 µm (∆TIR10.8-IR12.0), supplied additional 
information on cloud phase namely: ice and water, respectively. During the night-
time, the brightness temperature differences: ∆TIR3.9-IR10.8, ∆TIR3.9-WV7.3, ∆TIR8.7-

IR10.8, and ∆TIR10.8-IR12.0 inferred similar information about the cloud top 
properties. 

When RMWL was considered as a function of cloud optical thickness (VIS 0.6 µm 
reflectance) and particle sizes (NIR 1.6 µm reflectance) during the daytime, the 
raining satellite signals had high values of VIS 0.6 µm and low values of NIR 1.6 
µm reflectance. On the other hand, RMWL, as a function of ∆TIR8.7-IR10.8 and ∆TIR10.8-

IR12.0, showed that the raining satellite signals grouped in a different range of 
values of the two brightness temperature differences. ∆TIR8.7-IR10.8, indicative of 
ice clouds, covered a large range of values, while ∆TIR10.8-IR12.0, indicative of water 
clouds, covered a narrow range. Night-time analysis of RMWL as a function of 
∆TIR3.9-WV7.3 and ∆TIR3.9-IR10.8 also showed that the raining satellite signals spread 
over a wide range of value combinations of ∆TIR3.9-WV7.3 and ∆TIR3.9-IR10.8. 
However, the ∆TIR3.9-WV7.3 differences were mostly higher than those of 
∆TIR3.9-IR10.8. For the analysis of RMWL as a function of ∆TIR8.7-IR10.8 and ∆TIR10.8-

IR12.0, the brightness temperature differences in the raining satellite signals were 
comparable to those found in the daytime analysis. 

The results corroborate the conceptual idea that clouds with high optical 
thickness and large particle sizes have high rainfall probability and show the 
possibility for daytime and night-time area-wide rainfall detection based on the 
different MSG satellite signals. The rain detection results indicate an appreciable 
capability of the satellite data to detect rainfall intensities on individual MWL. 
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The verification scores showed that the test performed better during the daytime 
and was comparable across the two study locations. This could be due to the more 
reliable information on CWP and rainfall available in the VIS 0.6 µm and NIR 1.6 
µm reflectance pair compared to channel differences used at night (Thies et al., 
2008d). The results also show a strong relationship between VIS 0.6 µm, NIR 1.6 
µm reflectance and RMWL during the daytime. 

Moreover, descriptive statistical values from the RMWL and satellite data analysis 
indicate that the daytime satellite reflectance was statistically different between 
the rain and non-raining satellite signals. Based on the daytime test, this might 
explain the high rain detection with good CSI and HSS scores. The statistical 
values derived from the night-time data were often comparable between rain and 
non-raining satellite signals. They could explain its high false detection with 
comparatively weak CSI and HSS scores. 

The results suggest that the MWL and MSG data can potentially retrieve area-
wide rainfall. A possible implication is that the MWL and MSG data could be 
potential input to optical satellite-based rainfall detection and estimation models. 
In this context, data fusion (Lahat et al., 2015; Safont et al., 2019) and statistical 
machine learning offer techniques to explore relationships (linear and nonlinear) 
between multiple large input variables. Further, current developments in parallel 
computing with machine learning have increased the training and predicting 
speeds of these learning algorithms and can make the automatization and 
improvement of the method in real-time feasible (Kühnlein et al., 2014a; Meyer 
et al., 2016). In addition, for MWL-based rainfall studies in areas lacking in-situ 
data, the results suggest that satellite-based rain information may be a valuable 
tool for the wet/dry classification of the MWL signal. Therefore, future research 
involving analysis with large datasets would also focus on investigating the MWL 
and satellite data for such an application. 

Uncertainties in the analysis of RMWL with MSG satellite data could be due to 
many factors, such as the measurement differences between the satellite and 
MWL. The satellite signal is acquired instantaneously over an area, while the 
RMWL  retrieved from RSL every 15 min represents rainfall along the link 
transmission path. Therefore, it is unsurprising that the satellite signal might not 
correspond with the rainfall intensities. Furthermore, the spatiotemporal 
aggregation employed to retrieve the most effective satellite signal from the 
satellite data is, perhaps, not enough to compensate for measurement differences 
inherent in the two sensors.  

Additionally, horizontal wind drift within or outside raining clouds strongly 
influences falling hydrometeors of light rainfall. It could partly explain the high 
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uncertainty observed for the 0–5 mm h−1 rainfall intensity class. In the case of 
deep convective cores with anvil cloud areas, the retrieval of the satellite signal of 
high rainfall intensities clouds might be biased towards anvil cloud areas, which 
have characteristics of light rainfall intensities. This could explain why some 
rainfall intensities above 5 mm h−1 did not correspond with the satellite signals. 
Moreover, in the case of multi-layered clouds (Watts et al., 2011), with cloud 
properties differing between layers, the satellite signals may not correlate with 
the ground rainfall (Lensky & Rosenfeld, 1997). 

To this end, distinguishing different raining cloud types, e.g., 
convective/stratiform, and tracking their footprints surrounding the individual 
MWL will provide valuable information relevant for retrieving and linking the 
MSG satellite signals to the MWL rainfall and ultimately improve this study’s 
technique. Identifying different cloud types and tracking their location around 
the MWL should reduce the spatial aggregation problems and the resulting 
uncertainties between MWL rainfall and the MSG satellite signals. In this context, 
the promising results demonstrated by (Thies et al., 2008c; Thies et al., 2008d; 
Wang et al., 2019; Zipser et al., 2006) for raining cloud classification and (O'Neil 
et al., 2021; Turdukulov et al., 2007) for tracking raining clouds accentuate the 
potential of a more accurate MWL and satellite-based raining cloud detection. 
Future studies will consider these concepts. 

2.5 Conclusion  

This study investigated the combination of MWL rainfall estimates with MSG 
SEVIRI satellite data for rainfall detection using observations from two areas in 
Kenya: Kericho and Naivasha. The approach first evaluated the MWL rainfall 
estimates using an experimental setup consisting of two MWL and several rain 
gauge measurements as ground truth. Next, the MWL rainfall estimates were 
analysed as a function of the MSG SEVIRI satellite signals. The satellite signals 
were used to infer cloud top properties in a conceptual model that clouds with 
high cloud top optical thickness and large particle size (with ice or water 
hydrometeors) are linked to high rainfall probabilities and intensities. Finally, the 
information gained from analysing the MWL rainfall with MSG SEVIRI satellite 
signals successfully detected rain on individual MWL. 

The results show that the MWL can estimate rainfall intensities with reliable 
accuracy compared with rain gauges. However, limitations, such as inherent 
measurement differences between the MWL and rain gauge, remain challenging 
and affect rainfall retrieval accuracies. Analysing the MWL rainfall estimates as a 
function of the MSG satellite signals revealed the raining satellite signals' 
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characteristics that corroborate with the conceptual model for detecting rain 
clouds. During the daytime, high VIS 0.6 µm and low NIR 1.6 µm reflectance 
(indicative of high optical thickness and large particle sizes and thus large CWP) 
were often consistent with MWL rainfall between 0–5 mm h−1 and above 5 mm 
h−1. These raining satellite signals differed from the non-raining satellite signals 
(satellite signals indicative of 0 mm h−1) and were comparable across the two 
study locations.  

For night-time, ∆TIR3.9-IR10.8 and ∆TIR3.9-WV7.3 brightness temperature 
ranges, indicative of medium to large CWP characterized MWL rainfall between 
0 and 5 mm h−1 and above 5 mm h−1. Nonetheless, the ranges varied between the 
two study areas and were not different between rain and non-raining satellite 
signals. Additionally, daytime and night-time temperature ranges of ∆TIR8.7-IR10.8 
and ∆TIR10.8-IR12.0 for the MWL rainfall between 0 and 5 mm h−1 and above 5 mm 
h−1 suggest that most of the rain cases were from optically thick cumulous-type 
clouds with icy cloud tops.  Eventually, descriptive statistics: minimum, 
maximum, mean, mode, median and standard deviation of the satellite signal 
were used to determine threshold and brightness temperature difference range 
that tested the potential of combining information from the different satellite 
signals to detect rainfall on MWL. Overall, the verification scores indicate a 
considerable capability of the satellite data to detect rainfall on MWL, particularly 
during the daytime. 

One should interpret the findings of this study while considering its potential 
limitations. The assumed relationship between MWL rainfall and MSG SEVIRI 
satellite signals was confirmed using a limited dataset and local origin. Thus, the 
descriptive statistics of the rain and non-raining satellite and the corresponding 
parameters (i.e., the thresholds and brightness temperature difference ranges) 
should be considered restricted to the study locations. Nonetheless, the approach 
can be applied to other areas to retrieve representative thresholds using a 
sufficient dataset. Furthermore, to allow for the operational and large-scale 
application of MWL and MSG data for rainfall studies based on this study’s 
findings, further research involving large datasets are necessary to support the 
observed relation between MWL rainfall and MSG-based cloud top properties.  

In this regard, the dataset should be enlarged in both space and time. A larger 
time series of MWL and MSG data pairs retrieved from a spatially dense MWL 
network should compute more representative descriptive statistics and 
parameter estimates while improving the retrieval technique (Bell & Kundu, 
2003). Also, data fusion and machine learning techniques offer possibilities for 
exploring relationships between large numbers of input variables from different 
sensors. These learning algorithms provide efficient alternatives and may be 
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suitable for overcoming parametric approaches' limitations while potentially 
automating the retrieval approach (Kühnlein et al., 2014a; Kühnlein et al., 
2014b). 

Based on this study's findings, it can be stated that the combination of the MWL 
rainfall and MSG SEVIRI data has the potential for area-wide rainfall detection 
at a high temporal resolution. This is especially significant for areas lacking in-
situ monitoring systems but having good MWL coverage established (and 
maintained) over the last decade and is still further developed. Using both in-situ 
and MWL data will potentially enhance the density of the observation network to 
monitor rainfall on the ground, and with high temporal resolution remote sensing 
derived information, as acquired by geostationary satellites; better temporal and 
spatial extrapolation will be possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

55 
 

 

APPENDIX A2 

Table A2 1 Descriptive statistics of SEVIRI satellite signals for each rainfall intensity class 
and study location. 

MSG signal RMWL 
(mm h−1) Min Max Mean Mode Median SD 

Kericho 
Day time 

VIS 0.6 μm 
0 0.073 0.886 0.417 0.3 0.38 0.215 

0–5 0.562 0.972 0.74 0.8 0.77 0.15 
>5 0.374 1 0.726 0.7 0.726 0.148 

NIR 1.6 μm 
0 0.036 0.858 0.337 0.3 0.32 0.132 

0–5 0.31 0.608 0.433 0.3 0.384 0.137 
>5 0.178 0.536 0.304 0.3 0.296 0.09 

∆TIR8.7-IR10.8 
0 −2.357 2.177 −0.613 −1 −0.756 0.88 

0–5 −1.826 1.417 −0.453 - -0.57 1.10 
>5 −1.721 1.42 −0.137 −0.9 −0.354 0.915 

∆TIR10.8-IR12.0 
0 −0.55 4.336 1.711 2.3 1.736 0.98 

0–5 −0.215 2.366 0.737 0.9 0.617 0.914 
>5 −1.836 2.064 0.469 0.8 0.561 0.749 

Nighttime 

∆TIR3.9-IR10.8 
0 −5.252 9.709 −0.204 −1.6 −1.166 3.194 

0–5 0.033 4.57 2.087 - 1.998 1.633 
>5 −0.366 5.026 2.454 1.7 2.563 1.686 

∆TIR3.9-WV7.3 
0 3.466 25.765 12.884 13.2 12.64 5.122 

0–5 5.933 25.068 16.938 - 16.537 7.134 
>5 4.234 13.046 7.033 - 5.226 3.711 

∆TIR8.7-IR10.8 
0 −2.024 2.354 −0.702 −1.1 −0.959 0.894 

0–5 −0.944 0.76 −0.306 −0.7 −0.724 0.72 
>5 −1.242 0.988 0.272 0.3 0.318 0.734 

∆TIR10.8-IR12.0 
0 0.072 3.976 1.449 1.5 1.365 0.808 

0–5 0.655 2.162 1.732 1.9 1.918 0.611 
>5 0.258 1.748 0.678 0.3 0.532 0.511 

Naivasha 
Day time 

VIS 0.6 μm 
0 0.04 0.795 0.338 0.1 0.314 0.221 

0–5 0.611 0.871 0.758 0.8 0.764 0.075 
>5 0.751 0.873 0.815 0.8 0.812 0.05 

NIR 1.6 μm 
0 0.01 0.561 0.256 0.2 0.239 0.124 

0–5 0.14 0.495 0.244 0.2 0.21 0.093 
>5 0.209 0.437 0.296 0.2 0.281 0.086 

∆TIR8.7-IR10.8 
0 −2.199 2.923 −0.973 −1.2 −1.184 0.775 

0–5 −1.232 1.85 −0.066 −0.5 0.114 0.834 
>5 −1.054 1.146 −0.146 - −0.077 0.835 
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∆TIR10.8-IR12.0 
0 −2.76 4.17 1.31 1.8 1.282 0.859 

0–5 0.073 1.556 0.786 0.1 0.748 0.497 
>5 0.249 1.202 0.763 - 0.843 0.359 

Nighttime 

∆TIR3.9-IR10.8 
0 −5.37 12.848 −1.162 −2.5 −1.972 2.436 

0–5 −2.404 8.041 0.844 - 0.315 3.036 
>5 −2.4 6.999 0.537 - 0.166 2.42 

∆TIR3.9-WV7.3 
0 3.834 22.985 13.495 11.7 13.33 4.015 

0–5 3.648 13.04 8.537 13 9.44 2.967 
>5 3.317 16.932 7.845 - 7.994 3.902 

∆TIR8.7-IR10.8 
0 −1.851 2.175 −0.84 −1.2 −1.071 0.709 

0–5 −1.277 1.953 −0.144 −0.9 −0.258 0.884 
>5 −1.246 1.239 −0.171 −0.1 −0.145 0.697 

∆TIR10.8-IR12.0 
0 −0.181 4.008 0.945 0.9 0.851 0.715 

0–5 0.017 2.504 0.809 0.5 0.674 0.514 
>5 0.258 1.426 0.742 0.8 0.72 0.289 
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Abstract 
This study presents a rain area detection scheme that uses a gradient-based 
adaptive technique for daytime and night-time rain area detection and correction 
from the MSG satellite’s reflectance and IR brightness temperature data. First, 
multiple parametric rain detection models developed from the reflectance and IR 
data were calibrated and validated with rainfall data from a dense network of rain 
gauge stations and investigated to determine the best model parameters. The 
models were based on a conceptual assumption that clouds characterised by the 
top properties, e.g., high optical thickness and effective radius, have high rain 
probabilities and intensities. Next, a gradient-based adaptive correction 
technique that relies on rain area-specific parameters was developed to reduce 
the number and sizes of the detected rain areas. The daytime detection with 
optical (VIS0.6) and near IR (NIR1.6) reflectance data achieved the best detection 
skill. For night-time, detection with thermal IR brightness temperature 
differences of IR3.9-IR10.8, IR3.9-WV7.3 and IR10.8-WV6.2 showed the best 
detection skill based on general categorical statistics. Compared to GPM IMERG 
and the gauge station data from southwest Kenya, the model showed good 
agreement in the spatial dynamics of the detected rain area and rain rate. 
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3.1 Introduction 

Accurate rainfall detection and estimation in space and time are essential for 
resolving scientific questions for operational purposes such as early warning, 
forecasting and the development of services and applications that affect and 
influence human welfare and agricultural production decisions at a farm-scale 
level (David et al., 2019; David et al., 2021; Hong et al., 2007; Macharia et al., 
2020). Unfortunately, accurate detection and estimation are still open research 
challenges due to the high spatial and temporal variability of rainfall. 

Numerous studies have focused on using geostationary weather satellites for 
area-wide rainfall detection and estimation because the satellite’s high temporal 
resolution favours the study of this spatiotemporally varying phenomenon 
(Feidas & Giannakos, 2010; Kühnlein et al., 2014a; Kumah et al., 2020). 
Geostationary weather satellite-based information for retrieving rainfall is 
restricted to the cloud top and indirectly relates to ground rainfall observations 
(Rosenfeld, 2007). Nonetheless, some authors, e.g. (Bergès et al., 2005), have 
indicated that the information helps quantify rainfall because of the apparent 
relationship between rain duration and amounts. 

In the past, most retrieval techniques focused on the relationship between a single 
cloud top property (the cloud top BT) from the IR channel, rainfall probabilities 
and intensities (Adler & Negri, 1988; Milford et al., 1994). This technique works 
best for intense cold convective clouds. Another challenge with this technique is 
distinguishing non-raining cold cirrus clouds from the raining convective ones. 
The result is an overestimation of the detected rain areas and the corresponding 
rain rates (Feidas & Giannakos, 2010). While some of the retrieval techniques, 
e.g. (Adler & Negri, 1988), consider screening out cirrus clouds, they usually 
require ancillary data (e.g., radar data), which is not always available everywhere.  

Furthermore, the single IR retrieval technique shows drawbacks when applied to 
detect and quantify rainfall from stratiform clouds. These clouds have spatially 
homogenous (warmer) temperatures that do not differ significantly between 
raining and non-raining clouds. Stratiform rains are usually of low intensities but 
with extensive coverage. As a result, a single IR-based technique leads to 
uncertainties in the detected rain areas and rain rates (Kühnlein et al., 2014a). 
IR-only satellite rainfall products such as Milford et al. (1994) were developed for 
operational application in Africa. Nevertheless, ground validation over the years 
has shown varying accuracies over the continent see e.g., (Ross et al., 2014; 
Seyama et al., 2019). 
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To overcome these downsides, several authors suggest using multispectral 
satellite data (Feidas & Giannakos, 2010; Inoue & Aonashi, 2000; Kumah et al., 
2020; Thies et al., 2008a, 2008b). Multispectral satellites are passive remote 
sensing satellites that measure reflected energy within several specific regions 
(called spectral bands/channels) of the electromagnetic spectrum. Inoue and 
Aonashi (2000) studied cloud information from visible, IR scanners and rain 
information from precipitating radar onboard the TRMM and GPM satellite for 
rain area detection. They showed that additional details from a second channel 
improve detection results compared to the single IR retrieval technique. Thies et 
al. (2008a, 2008b) proposed a method for discriminating rain from non-raining 
clouds during the day and night that combines visible and IR multispectral 
satellite data. Likewise, Feidas and Giannakos (2010) demonstrated rain 
detection by utilising spectral and textural cloud features inferred from several 
IR channels. 

Multispectral satellite-based rainfall detection often applies parametric-based 
techniques that relate cloud top property derived from the satellite data to rainfall 
occurrences and rain rates see, e.g., (Feidas & Giannakos, 2010; Kumah et al., 
2020). The application is straightforward and requires defining the underlying 
conceptual models and parametric tests. The advantage is that they directly map 
the conceptual knowledge of the rainfall process onto the retrieval using the 
satellite data as proxies (Kühnlein et al., 2014a).  

In Feidas and Giannakos (2010), MSG IR satellite data was investigated for rain 
area delineation using a parametric technique and a conceptual model in which 
cloud top properties such as optical thickness and phase were used to detect 
precipitating clouds. Thies et al. (2008d) used visible and IR data from MSG for 
daytime and night-time precipitation process separation and rainfall intensity 
differentiation. Their conceptual design characterised convective clouds with 
higher rainfall intensities by their larger vertical extensions and cold top 
temperatures. However, the uncertainties in the detected rain areas are often 
significant, which calls for the need to develop new techniques for improving rain 
area detection.  

Motivated by the need for accurate rain area detection and the need to use 
multispectral data to improve rain area detection, this chapter utilised reflectance 
and IR data from the MSG SEVIRI satellite for rainfall detection with two primary 
objectives. (1) To investigate the satellite data’s suitability for detecting raining 
areas over topographically complex regions by evaluating multiple rainfall 
detection models. (2) To develop a rain area correction technique for improving 
the detected rain areas.  
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The primary vehicle for this investigation is a rain detection model developed 
based on a parametric threshold technique. Compared to state-of-the-art MSG-
based parametric rainfall detection studies (Feidas and Giannakos, 2010), which 
evaluated the satellite data’s ability to discriminate between raining and non-
raining clouds, this study distinguishes itself for the following reasons. (1) We 
optimally searched for daytime and night-time rain area detecting parameters 
from both optical and thermal IR data, and (2) we improved the detected rain 
areas using a newly developed gradient-based adaptive technique.  

The structure of this chapter is as follows. The data and method are presented in 
Section 3.2. The results are shown in Section 3.3 and discussed in Section 3.4. 
Finally, Section 3.5 presents a conclusion on the significant findings. 

3.2 Study Area and Dataset 
3.2.1 Study Area 

 
Figure 3. 1 Study area and locations of rain gauges (triangles) displayed using ALOS DEM 

The area investigated (southwest Kenya) is shown in Figure 3. 1 using ALOS 
World 3D 30 m (AW3D30) DEM (Caglar et al., 2018). This area’s rainy season 
occurs from March to June (“long rains”), and the second season is from October 
to December (“short rains”). The rainfall variability in the area is generally linked 
to the seasonal passage of the ITCZ over Kenya (Schneider et al., 2014), tropical 
pacific sea surface temperature (Maidment et al., 2015), ENSO and the IOD 
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(Hoell & Funk, 2013; Nicholson, 2017). Nonetheless, relief features like 
mountains (Mount Kenya, Rift valley) and large inland water (Lake Victoria) 
bodies influence the local rainfall variability (Tazalika et al., 2013). 

3.2.2 Dataset 

The dataset consists of MSG SEVIRI, GPM IMERG and rain gauge rainfall 
observations for the long rain period of 2018, 2019 and 2020. The MSG data was 
from the Meteosat satellite at longitude 41.5° E, including reflectance and IR 
channels sensitive to different cloud top properties, e.g., optical thickness, 
effective radius and phase during the day and night. These channels correspond 
to visible (VIS0.6 µm), near-IR (NIR1.6 µm), thermal IR (IR3.9 µm, IR8.7 µm, 
IR10.8 µm and IR12.0 µm) and water vapour (WV6.2 µm and WV7.3 µm) which 
were acquired at 15 min interval. The data are freely available in the EUMETSAT 
data archives (EUMETSAT, 2020)).  

The rain gauge data was from the TAHMO. TAHMO maintains a network of 
ground-based weather stations across Sub-Saharan Africa. These stations (see 
locations in Figure 3. 1) measure standard meteorological variables such as 
rainfall, relative humidity, solar radiation and wind speed at 5 min intervals. (van 
de Giesen et al., 2014). The data ground validated the GPM IMERG satellite 
rainfall product over Africa (Dezfuli et al., 2017). This study used rainfall data 
from ninety stations distributed over the study area and had data during the 
evaluation period. TAHMO records rainfall accumulations every 5 min, which 
was used to estimate rain rates at 30 min intervals. It is also noteworthy that the 
TAHMO data are not part of the global network of rain gauges used by the GPCC. 
Therefore, this study independently compared its results with the GPM IMERG 
final run version 6 (V06B) satellite global precipitation product, which is 
calibrated with rainfall data from GPCC.  

The IMERG final run version 6 (V06B) is the latest level 3 globally gridded 
satellite precipitation product derived from satellite radiometric observations 
from several GPM constellation satellites—consisting of a GPM Core Observatory 
satellite equipped with a dual-frequency precipitation radar and a 13-channel 
passive microwave (PMW) imager, and multiple partner satellites. The algorithm 
draws strength from previous satellite merging techniques such as the TMPA 
(Huffman et al., 2010). In the algorithm, rainfall estimates from the constellation 
satellites and based on the GPROF2017 are first gridded and intercalibrated to 
the estimates of the GPM Core satellite. They are then merged from their native 
spatial resolution to the IMERG grid at a half-hourly time step. For areas with no 
PMW overpass and beyond a forecast time of ±30 min from the closest PMW 
observation, IMERG uses the CPC CMORPH-KF Lagrangian time interpolation 
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scheme PERSIANN-CCS re-calibration scheme to create the half-hourly 
estimates.  

Unlike previous versions, the motion vectors for the morphing are from hourly 
water vapour motion vectors from MERRA, version 2 (Joyce et al., 2004; Tan et 
al., 2019). Among the various IMERG precipitation products, this study utilised 
the MERG Calibrated precipitation estimates (precipitationCal), a gauge 
calibrated rainfall product using the GPCC data. The data is available freely 
(Huffman et al., 2014), with 10 km, 30 min resolution. 

3.3 Method 
3.3.1 Spectral Characteristics and Cloud Top Properties 

The method for detecting rain clouds was based on investigating the relationship 
between the satellite data’s spectral characteristics, cloud top properties (Table 3. 
1) and rain. The conceptual idea used was that clouds characterised by their top 
properties, such as high optical thickness and effective radius (consisting of either 
ice or water hydrometeors), have high rainfall probability and intensities than 
those with low optical thickness and effective radius (Kumah et al., 2020; Thies 
et al., 2008a). The physical basis of this assumption is derived from the following 
characteristics of raining clouds: (i) the availability of adequate moisture, (ii) an 
effective mechanism for converting small cloud droplets that are suspended in 
the atmosphere into raining particles and (iii) existence of ice phase clouds to 
support rain generation by the Bergeron–Findeisen process (Lensky & Rosenfeld, 
2003a).  

This study utilised the MSG satellite's original reflectance, BT and BTD to infer 
cloud top properties that detected raining areas under day and night conditions. 
Different combinations of satellite channels were used for rain detection during 
the day and night periods because the MSG reflectance channels do not have 
night-time data. The use of IR3.9 µm during the day and twilight is also 
discouraged due to solar and thermal contributions and varying solar 
components in this channel (Kerkmann et al., 2014; Meyer et al., 2016). The 
daytime and night-time periods were from 04:15 AM to 3:15 PM and 4:15 PM to 
03:15 AM UTC, respectively, excluding twilight periods between 03:30 AM and 
04:00 AM and 3:30 PM and 4:00 PM UTC. The EUMETSAT operational cloud 
mask product (EUMETSAT, 2015) identified cloudy pixels in this study to ensure 
that only satellite data from cloudy scenes were used. 
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Table 3. 1 Spectral characteristics and cloud top parameters used for rain detection 
Spectral Characteristics Inferred Cloud Top Parameter Application 

VIS0.6 and NIR1.6 Optical thickness and effective 
radius Daytime 

IR10.8 K Cloud top temperature Day and night-
time 

IR10.8–WV6.2 K Height Day and night-
time 

IR10.8–IR12.0 K Phase (water)/optical thickness Day and night-
time 

IR8.7–IR10.8 K Phase (ice) Day and night-
time 

IR3.9–IR10.8 and IR3.9–
WV7.3 K 

Optical thickness and effective 
radius Nighttime 

WV6.2–WV7.3 K Level (high or low) Day and night 
time 

Several studies have shown that the two reflectance channels: VIS0.6 and NIR1.6 
µm, can be used to infer cloud top optical thickness and effective radius for 
successful rainfall detection (Feidas & Giannakos, 2010; Kumah et al., 2020; 
Lazri et al., 2013). Clouds with high optical thickness and effective radius (water 
or ice hydrometeors) have comparatively higher VIS0.6 µm and low NIR1.6 µm 
reflectance than clouds with low optical thickness and effective radius. The cloud 
top optical thickness and effective radius properties point towards a single 
parameter, cloud water path (CWP), interpreted as the amount of water vertically 
integrated into the cloud and directly linked to the clouds' rainfall probability. 
More precisely, when high VIS0.6 µm reflectance coincides with low NIR1.6 µm 
reflectance, it suggests clouds with high optical thickness and effective radius, 
and as such, large CWP is observed.  

The BT at IR10.8 µm channels is a good indicator of the cloud’s vertical extent 
because the IR10.8 µm BT of a cloud depends on its top height (Feidas & 
Giannakos, 2010; Giannakos & Feidas, 2012). Inoue and Aonashi (2000) 
observed lower BT (less than 260 K) in 11 µm for raining areas identified by a 
precipitation radar. The BTD between IR10.8 and WV6.2 µm was previously used 
for cloud classification (Lutz et al., 2003; Schmetz et al., 1997) and rainfall 
detection (Kidder et al., 2005). In the latter, clouds with BTD < 11 K for IR10.8–
WV6.2 (an empirically determined threshold) were classified as raining.  

The split window technique (i.e., BTD IR10.8–IR12.0) implemented by (Inoue, 
1987a, 1987b) can be used to gain information about cloud optical thickness, 
which is useful for discriminating optically thick cumulus clouds from optically 
thin cirrus clouds (Feidas & Giannakos, 2011; Inoue, 1985). Optically thick 
cumulus clouds show small BTD because of their blackbody characteristics. In 
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contrast, optically thin cirrus clouds show a larger difference due to the 
differential absorption by ice crystals between the two channels (Inoue et al., 
2001). 

The tripsectral BTD: IR8.7–IR10.8 and IR10.8–IR12.0 have been used to infer 
cloud phase information (Kumah et al., 2020; Thies et al., 2008b). The basis for 
employing these channel differences for inferring the cloud phase lies in earlier 
results by Strabala et al. (1994). They showed that absorption of solar radiation 
by cloud hydrometeors differs (for ice and water) between the two BTDs. Water 
particle absorption is stronger between 11 and 12 µm (comparable to the IR10.8–
IR12.0 BTD of MSG) than between 8 and 11 µm (similar to the IR8.7–IR10.8 BTD 
of MSG). For ice, the reverse is correct.  

The BTD for IR3.9–IR10.8 and IR3.9–WV7.3 have also been used to infer cloud 
optical thickness and effective radius. The former is linked to the differential 
emissivity at IR3.9 µm and IR10.8 µm channel by large and small cloud 
hydrometeor particle sizes. Thus, the IR3.9–IR10.8 BTD are higher for optically 
thick clouds with a high effective radius than for clouds with small particle sizes 
(Lensky & Rosenfeld, 2003a; Thies et al., 2008d). The latter BTD are similar to 
that of IR3.9–IR10.8 but with generally higher differences due to the diminishing 
effect of the water vapour absorption and emission in the mid-to-low 
tropospheric levels on the BT in the WV7.3 µm channel (Schmetz et al., 2002). 

Unlike WV6.2 µm, the WV7.3 µm channel is positioned at the edge of the water 
vapour absorption band (approximately 50 kPa). Thies et al. (2008c) performed 
radiative transfer simulations for the spectral ranges of SEVIRI WV and IR 
channels from cloud-free and variable cloud top heights. They indicated that for 
cloud tops below the tropopause temperature level, the WV6.2 µm BT are lower 
than the WV7.3 µm BT. In contrast, for cloud tops above the tropopause level, the 
WV6.2 µm BT is higher than that of the WV7.3 µm BT due to the stronger 
absorption lines of the WV6.2 µm channel. Based on these observations, it is 
anticipated that optically thick raining clouds with cloud tops piercing through 
the tropopause level will show small negative to positive WV6.2–WV7.3 BTD. 
Large negative differences may be observed for low-level clouds with cloud tops 
below the tropopause level. 

3.3.2 Data Pre-Processing 

This study selected rainy days from the rain gauge datasets to develop the 
parametric rain detection models during the evaluation period. Rainfall over the 
study area is highly variable in space and time (Tazalika et al., 2013; Wakachala 
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et al., 2015); therefore, rainy days were identified separately per gauge station as 
a day with accumulated rainfall above 1 mm per day.  

The MSG data over the study area did not require parallax correction because of 
the small zenith-viewing angle of the Meteosat satellite (at 41.5° E) over the study 
area (Kumah et al., 2020). The satellite data were spatially aggregated. Both the 
satellite and rain gauge data were temporally aggregated to 30 min intervals 
following the method described in (Kumah et al., 2020) to reduce the effect of 
spatial and temporal mismatch between the satellite and gauge measurements in 
this study (Bendix et al., 2010; Ha et al., 2002).  

The resulting dataset consisted of collocated and coincident gauge rainfall, 
satellite reflectance and IR BT, which inferred cloud top properties for each rainy 
day at a gauge station. A cloud top property was then flagged as raining if the 
station rainfall was equal to or above 1 mmh−1; otherwise non-raining. The two 
sets of data, i.e., raining and non-raining cloud top properties, were analysed 
separately to find the optimal parametric model parameter values discussed in 
Section 3.3.4. Consequently, our dataset comprised gauge and satellite 
observations from a mixed space-time domain—implying that the dataset was 
derived from time-series observations sampled from different locations within 
the study area. As such, proper data splitting into calibration and validation sets 
(Moraux et al., 2019) was needed to reduce spatial and temporal bias in the 
amount of data per gauge station used to train and validate the model and 
evaluate its performance on both seen and unseen rainfall events. Table 3. 2 
summarises the non-zero rain rates (i.e., above 1 mm h−1) from the calibration 
and validation sets. 

Table 3. 2 Summary of non-zero rainfall from calibration and validation sets for the 
daytime and night-time from the long rain period of 2018–2020. 

 Calibration Validation 
Day Night Day Night 

Mean mmh−1 5.59 4.39 5.26 4.00 
Maximum mmh−1 157.01 137.26 81.87 97.89 

Standard deviation 8.97 6.32 7.42 5.47 
Fraction % 13.47 16.35 13.21 14.93 

N 5111 9457 1544 2957 
n days 212 209 104 101 

N is the total number of 30 min aggregated intervals assembled from an n (313 days) 
number of daytime and night-time rainy days during the evaluation period. The Fraction 
(%) represents the percentage of the non-zero rain rates in entire datasets (i.e., including 
zero and non-zero rain rates). 

 



Chapter 3 

68 

 

3.3.3 The Parametric Threshold Based Rainfall Detection Model 

The rainfall detection method relies on a threshold applied to an m-dimensional 
space defined by the spectral characteristics that infer cloud top parameters. 
Here, we studied different combinations of cloud top parameters inferred from 
the reflectance, BT and BTD to determine the suitability of the satellite data for 
rain detection. It is worth mentioning that convective and stratiform rainfall is 
responsible for most of the area’s rainfall (Houze, 1997; Kilavi et al., 2018). These 
two rainfall types differ in their spectral characteristics (particularly for the IR 
and BTD) used to infer the cloud properties, and during the day and night 
conditions (Feidas & Giannakos, 2011; Thies et al., 2008d). Nonetheless, we 
focused on the first primary objective and investigated different combinations of 
the BTD parameters (Table 3. 3) for detecting rain areas suggesting that the 
developed approach does not consider the type of rainfall.  

Table 3. 3 The BTD combinations investigated for rain area detection 
BTD Combinations 

BTD1 (IR10.8–IR12.0) and (IR8.7–IR10.8) 
BTD2 (IR10.8–IR12.0) and (IR8.7–IR10.8) and (WV6.2–WV7.3) 
BTD3 (IR10.8–IR12.0) and (IR8.7–IR10.8) and (IR10.8–WV6.2) 
BTD4 (IR3.9–IR10.8) and (IR3.9–WV7.3) and (IR10.8–WV6.2) 
BTD5 (IR10.8–IR12.0) and (IR3.9–WV7.3) and (IR10.8–WV6.2)  
BTD6  (IR10.8–IR12.0) and (WV6.2–WV7.3) and (IR8.7–IR10.8) 

For a thorough evaluation, the rain detection model was categorised into 3 groups 
(Table 3. 4), and the investigation was based on 2 major questions:  

(1) What is the rain detection skill of the satellite data if rain detection is 
based on reflectance-only, IR-only and combined reflectance-IR models?  

(2) Which model possesses the best rain detection skill? The model based on 
a single infrared (IR10.8) channel was included for comparison. 
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Table 3. 4 The categories of rain area detection and their parametric models for the day 
and night times. 

Period Reflectance-only IR-only Combined reflectance-
IR 

Daytime 

Ref 1 VIS0.6 and NIR1.6 IR10.8 and 
BTD1 Ref1 and BTD3 

Ref 2 VIS0.6 ÷ NIR1.6 IR10.8 and 
BTD2 Ref2 and BTD2 

Ref 3 VIS0.6 − NIR1.6 
IR10.8 and 

BTD3 Ref3 and BTD1 

IR 10.8  

Nighttime 

 BTD4  

 IR10.8 and 
BTD5  

 IR10.8 and 
BTD6  

 IR10.8   
Note: Ref is a reflectance model. 

For daytime, all 3 categories of models were evaluated, and for night-time, the 
IR-only models were assessed due to the unavailability of the reflectance data. 
These models’ application assumes that a cloud is more likely to rain if the cloud 
top parameter is above or below a defined benchmark value. More precisely, in 
Figure 3. 2, the model application is exemplified by dichotomous statements for 
raining and non-raining cases of, for instance, a reflectance-only, IR-only or 
combined reflectance-IR model. 

A significant challenge to rainfall detection and estimation by the parametric 
threshold technique is non-raining thin/thick cirrus clouds because they result in 
erroneous estimates. The objective cloud-type classification method (Inoue, 
1987a) was adopted to overcome this challenge. The basis for implementing this 
technique for cirrus clouds discrimination lies in the differential emissivity at 
10.8 µm and IR 12.0 µm channels for cirrus clouds (Inoue, 1985), leading to larger 
BTD for these clouds. Therefore, this study used the empirically derived threshold 
of 2.5 K for IR10.8-IR12.0 BTD (Inoue, 1987a, b) to screen out cirrus clouds 
before calibrating and validating our parametric rain detection models. 
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Figure 3. 2 Examples of the dichotomous statement for each category of the rain detection 
model. The 𝛽𝛽𝑉𝑉 and 𝛽𝛽𝑉𝑉 are the thresholds for VIS0.6 and NIR1.6 reflectance, respectively, 
𝑇𝑇𝑠𝑠ℎ𝑃𝑃 is the threshold for IR10.8 BT, ∆𝑇𝑇𝑠𝑠ℎ𝑃𝑃1, ∆𝑇𝑇𝑠𝑠ℎ𝑃𝑃2, ∆𝑇𝑇𝑠𝑠ℎ𝑃𝑃3, and ∆𝑇𝑇𝑠𝑠ℎ𝑃𝑃4 are the thresholds for 
IR10.8–IR12.0, IR8.7–IR10.8, IR10.8–WV6.2 and WV6.2–WV7.3 BTD, respectively. 

3.3.4 Model’s Calibration and Validation 

1) Determining the best parametric model and parameters 

The calibration of the various rain detection models (Table 3. 4) was achieved by 
optimally searching for the threshold value of each model parameter in a range, 
e.g., 𝑚𝑚 ≤ 𝛼𝛼 ≤ 𝑦𝑦; where 𝛼𝛼 is the parameter value and 𝑚𝑚, 𝑦𝑦 are the upper and lower 
limits of the range of values, respectively. Each threshold value was used to 
conduct a raining/non-raining classification. The results were compared to the 
station data using categorical statistics to determine (1) the rain detection skill of 
the satellite based on the kind of satellite data used for rain detection and (2) the 
best rain detection model.  

A 2 × 2 contingency table (Table 3. 5) was used to define the frequencies of the 
model (satellite-based estimates) and gauge (reference/real observations) based 
on the raining/non-raining observations to compute some categorical statistics. 
The ℎ in Table 3. 5 are the raining observations detected in both the model and 
gauge observations (Hits). The 𝑚𝑚 are raining observations detected by the gauge 
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and not the model (Misses), and 𝐴𝐴 indicate those seen by the model and not by 
the gauge (False alarms). Finally, the frequency of non-raining observations 
detected by both the model and gauge observations was represented by 𝑧𝑧.  

Table 3. 5 Contingency table for evaluating the raining and non-raining decision 

2 × 2 Contingency Table Gauge Observation 
Raining Non-raining 

Model observation Raining ℎ 𝐴𝐴 
Non-raining 𝑚𝑚 𝑧𝑧 

In Table 3. 6, different categorical statistics were computed for each threshold 
value based on the contingency table elements. Each statistical parameter 
evaluates an aspect of the model's performance. Collectively, they were used to 
find the threshold value that provides optimal model performance in rainfall 
detection. A detailed description of each statistical parameter can be found in, 
e.g. (Harold et al., 2015; Wilks, 2006).  

The different models were tested, and the best rain detection model was 
determined by optimising the value of the equitability threat score (ETS) together 
with the probability of detection (POD), false alarm ratio (FAR) and bias. The best 
model and corresponding threshold value appropriate for rain detection was 
defined as the model that maximises the ETS and POD values while minimising 
FAR and bias values. 

Table 3. 6 Summary of the categorical statistics. 
Statistic Equation Range Optimal Value 

POD 
ℎ

ℎ + 𝑚𝑚
 [0,1] 1 

FAR 
𝐴𝐴

ℎ + 𝐴𝐴
 [0,1] 0 

POFD 
𝐴𝐴

𝑧𝑧 + 𝐴𝐴
 [0,1] 0 

Bias 
ℎ + 𝐴𝐴
ℎ + 𝑚𝑚

 [0,∞] 1 

ACC 
ℎ + 𝑧𝑧
ɳ

 [0,1] 1 

CSI 
ℎ

ℎ + 𝑚𝑚 + 𝐴𝐴
 [0,1] 1 

ETS 
(ℎ − ℎ𝑃𝑃𝑃𝑃𝑎𝑎𝑛𝑛𝑑𝑑𝑟𝑟𝑟𝑟)

ℎ + 𝑚𝑚 + 𝐴𝐴 − ℎ𝑃𝑃𝑃𝑃𝑎𝑎𝑛𝑛𝑑𝑑𝑟𝑟𝑟𝑟
 [−1/3,1] 1 

where ɳ = ℎ + 𝑚𝑚 + 𝐴𝐴 + 𝑧𝑧 and ℎ𝑃𝑃𝑃𝑃𝑎𝑎𝑛𝑛𝑑𝑑𝑟𝑟𝑟𝑟 = (ℎ+𝑟𝑟)×(ℎ+𝑃𝑃)
ɳ
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2) Validating the best parametric model and parameters 

The best parametric models identified based on the daytime and night-time 
statistical parameters were validated using independent rainfall data. The 
validation approach was (1) by a point-to-pixel comparison of model rain 
detection with the gauge station data, (2) by comparing the model results to rain 
areas and rate from the GPM IMERG (Huffman et al., 2020) satellite rainfall 
product and (3) by comparison of both model and IMERG detected rain rates to 
the gauge rain rates (i.e., the ground truth).  

The best rain detection model and its corresponding parameters were used for 
rainfall detection. The results were compared with the gauge rainfall data using 
all the statistical parameters (Table 3. 6) to point validate the rain detection 
model. Note that the rain area correction scheme was not implemented in this 
validation. 

For the comparison with GPM IMERG, the corrected model detected rain areas 
(see the method in the next section), and rain rates were compared to the results 
from the latest IMERG Final Run version 6 (V06b) (Huffman et al., 2019). The 
focus was on the precipitationCal dataset because it is a research-grade product 
that is climatologically adjusted using ground data from the GPCC. Although 
recent studies see, e.g. (Anjum et al., 2019; Maranan et al., 2020; Moazami & 
Najafi, 2021) have ground validated and reported this new IMERG rainfall 
product’s performance elsewhere, its performance over areas with sparsely 
distributed gauge data like the study area is generally not yet reported (Jackson 
et al., 2020). Therefore, this comparison intends to spatially validate the newly 
developed parametric model’s rain area and rate detection skill against the new 
IMERG V06b precipitationCal rainfall product.  

The rain areas detected by the developed parametric model and IMERG were 
compared for the entire validation period. From IMERG, rain areas were 
identified by flagging IMERG pixels with a rain rate equal to or greater than 1 
mmh−1 as raining, otherwise dry. IMERG has a 30 min, 10 km temporal and 
spatial resolution, respectively. The IMERG data were spatially resampled to 3 × 
3 km using the nearest neighbourhood technique to compare IMERG with the 3 
km parametric model results from the MSG data. The nearest neighbourhood 
resampling was used to preserve the original pixel values as much as possible.  

The rain rates detected by the developed parametric model and IMERG were 
compared at 30 min for the entire validation period. For the developed model, 
the detected rain rates were all the rain rates recorded at a gauge station when 
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the model flagged the station pixel (i.e., the satellite pixel containing the gauge 
station) as raining. For IMERG, this corresponded to the rainfall retrieved from 
the IMERG pixel having the gauge station. The absolute difference between the 
means of the two detected rain rates (i.e., the parametric model and IMERG) was 
compared per each gauge station and separately for the day and night time to 
assess the model’s daytime and night-time rain rate detection performances.  

Finally, the probability density of the rain rates detected by the developed 
parametric model and IMERG, at 30 min for the entire validation period, were 
compared to the rain rate recorded at all the gauge stations. For this, the detected 
rain rates were organised into bins, and the number of rain rates in each bin was 
counted. The density was then computed as the count divided by the total count 
and the bin width. The cross-comparison purpose was to evaluate rain rate 
detection performance over the study area using the developed parametric model 
and IMERG against the ground truth and provide valuable insights that inform 
the ground validation wish list (Jackson et al., 2020). 

3.4 Results and Discussion  
3.4.1 Results 

3.4.1.1 Model Calibration 

i. Preliminary Analysis of the Spectral Characteristics of Cloud Top 
Properties 

This section analyses the spectral characteristics of raining and non-raining 
clouds, which guided the model parameter ranges described in Section 3.3.4. The 
analysis is presented separately for day and night times, and descriptive statistics 
of the data are in APPENDIX A3. 

Figure 3. 3 is a bivariate probability density distribution of the raining and non-
raining spectral characteristics compared in a 2D space for the daytime 
observations. Each figure’s contours represent the raining (blue contours) and 
non-raining (red contours) densities in the dichotomous dataset. A general 
observation from Figure 3. 3 is the clear distinction in the peak of the distribution 
(i.e., the area in the plot where most of the data is concentrated, indicated by high 
densities) for the raining and non-raining densities. This characteristic behaviour 
is also supported by the significant difference in descriptive statistics 
(APPENDIX A3, Table A3. 1 and Table A3. 2, respectively) computed from the 
raining and non-raining data. Although this observation is particularly noticeable 
in the reflectance than in the BT and BTD plots, it raises the possibility of rain 
and no-rain discrimination by using respective thresholds in the 2-D space.  
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Figure 3. 3 Bivariate probability density distribution of daytime raining (blue) and non-
raining (red) spectral characteristics in (a) VIS0.6 and NIR1.6, (b) IR10.8 and VIS0.6 ÷ 
NIR1.6, (c) IR10.8 and VIS0.6–NIR1.6, (d) IR10.8 and IR10.8–IR12.0, (e) IR10.8 and 
IR8.7–IR10.8, (f) IR10.8 and WV6.2–WV7.3, (g) IR10.8 and WV6.2–IR10.8 space. The 
coloured figures in (g) are the raining and non-raining data counts that computed the 
density distribution. The colour bar shows normalised densities to make the subfigures 
comparable. 

In Figure 3. 3a, one can notice that the raining cases of the spectral characteristics 
peak towards the lower right corner of the plot, where large VIS0.6 (>0.6) 
reflectance coincides with low NIR1.6 (<0.4). Figure 3. 3b,c also show higher 
(above 1.5 and 0.2 respectively) ratios and differences of the VIS0.6 and NIR1.6 
reflectance together with colder IR10.8 BT (less than 265 K) for the raining cases. 
Also, their distributions tend to be bimodal, with peaks above and below 250 K. 
The high VIS0.6 and low NIR1.6 reflectance and the corresponding high ratio and 
differences for the raining cases suggest that most of the raining cases defined by 
the rain gauges were from optically thick clouds with large CWP, high rainfall 
probabilities and intensities (Bendix et al., 2010; Kumah et al., 2020). The first 
peak (IR10.8 > 250 K) in Figure 3. 3b,c of the distribution for the raining cases 
suggests low-level optically thick clouds, whereas the second peak (IR10.8 < 250 
K) is indicative of high-level optically thick cumulonimbus type clouds.  
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By contrast, the distribution of the non-raining cases shown in Figure 3. 3a–c all 
peak outside the area defined by the raining cases’ distribution. In Figure 3. 3a, 
this corresponds to the lower left corner of the plot where low VIS0.6 (<0.6) 
reflectance coincide with low NIR1.6 (<0.4) reflectance. For Figure 3. 3b,c, these 
correspond to areas in the plot where the reflectance ratio and differences are 
lower than their indicated respective thresholds and with IR10.8 BT that are 
mostly warmer than 265 K. From the figures, one can also notice that some non-
raining cases overlap the areas defined by the raining cases. Based on the IR10.8 
BT in Figure 3. 3b,c, the areas defined by the non-raining cases mostly correspond 
to low and high-level non-precipitating thin and thick cirrus clouds and N-Type 
clouds (representing edges of optically thick clouds, optically thinner cumulus 
clouds, or low-level cumulus cloud overlaid by thin cirrus clouds) according to 
the cloud type classification by (Inoue, 1987a, 1989). 

Figure 3. 3d compares the raining and non-raining case distribution for the 
IR10.8 BT and the split window BTD. The dotted square marks the IR10.8 BT and 
IR10.8–IR12.0 BTD threshold (Tthr >  253 K and ∆Tthr1  >  2.5 K) used to 
eliminate non-precipitating cirrus clouds (Section 3.3.3) according to the cloud 
classification technique by (Inoue, 1987a); Inoue (1987b). As can be seen from 
the plot, most of the raining cases are characterised by IR10.8–IR12.0 BTD < 1.5 
K and IR10.8 BT colder than 265 K. In addition, the distribution here is bimodal, 
having two peaks (above and below 250 K) with the IR10.8–IR12.0 BTD < 1.5 K. 
The first peak (IR10.8 > 250 K) comprises raining cases mostly from low-level 
cumulus clouds, and the second peak (IR10.8 < 250 K) contains raining cases 
from mainly cumulonimbus types.  

However, most non-raining cases are distributed above 1.5 K (IR10.8–IR12.0 
BTD) and 265 K (IR10.8 BT). Note from the plot that some of the areas defined 
by the non-raining cases, especially above 265 K IR10.8 BT, overlap with the 
raining cases. However, a large concentration of this overlap occurs in areas 
where the IR10.8–IR12.0 BTD > 1.5 K. Based on the cloud type classification by 
Inoue (1989), most of these non-raining cases are from non-precipitating thin 
and thick cirrus clouds and N-Type clouds. 

Figure 3. 3e compares the raining and non-raining distributions of IR10.8 BT and 
IR8.7–IR10.8 BTD. Recall that the IR8.7–IR10.8 BTD has been used for 
separating water from ice clouds (Strabala et al., 1994). Larger IR8.7–IR10.8 BTD 
will mainly occur due to ice particles at the cloud top. It can be observed that most 
of the raining cases have IR8.7–IR10.8 K BTD above -2 K and are colder than 265 
K (IR10.8 BT). The distribution is again bimodal, first peaking above 250 K 
(IR10.8 BT) and IR8.7–IR10.8 BTD between −2 and 0 K and secondly, below 250 
K and above 0 K for IR10.8 BT and IR8.7–IR10.8 BTD, respectively. The first 
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peak consists of raining cases from mainly clouds with water droplets, while the 
second peak suggests clouds with ice tops–based on the threshold function by 
Uttal et al. (2005). The non-raining cases are warmer than 265 K IR10.8 BT and 
below 0 K for the IR8.7–IR10.8 K BTD. They are mostly cirrus (thin and thick) 
and N-Type clouds. It is also apparent from Figure. 3e that some non-raining 
cases overlap with the areas defined by the raining cases. 

The raining and non-raining distributions of IR10.8 BT and WV6.2–WV7.3 BTD 
are compared in Figure 3. 3f. Most of the raining cases correspond to IR10.8 BT 
< 260 K and WV6.2–WV7.3 BTD > −18 K. The distribution also shows a bimodal 
tendency, having two peaks above and below 250 K IR10.8 BT. The first peak is 
between −18 and −10 K WV6.2–WV7.3 BTD and consists of raining cases from 
optically thick clouds below the tropopause level. The second peak (BTD mostly 
above −5 K) comprises raining cases from optically thick cumulonimbus-type 
clouds with cloud tops above the tropopause level. The non-raining cases, on the 
other hand, consist of N-Type clouds with WV6.2–WV7.3 BTD less than −15 K 
and IR10.8 BT warmer than 260 K. 

Figure 3. 3g compares the raining and non-raining distributions for IR10.8 BT 
and IR10.8–WV6.2 K BTD. The raining cases consist of IR10.8 BT colder than 
265 K and IR10.8–WV6.2 BTD, mostly less than 30 K. From the figure, the 
empirical threshold (<11 K) determined by Kidder et al. (2005) is consistent with 
raining cases from clouds with cold tops (<250 K). However, raining cases from 
clouds with relatively warm top temperatures (<265 K) show BTD mostly above 
the empirical threshold. On the other hand, the non-raining cases mainly consist 
of clouds with warmer top temperatures (IR10.8 BT > 265 K) and IR10.8–WV6.2 
BTD > 30 K. 
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Figure 3. 4 Bivariate probability density distribution of night-time raining (blue) and non-
raining (red) spectral characteristics in (a) IR10.8 and IR3.9–IR10.8, (b) IR10.8 and 
IR3.9–WV7.3, (c) IR10.8 and IR10.8–IR12.0, (d) IR10.8 and IR8.7–IR10.8, (e) IR10.8 
and WV6.2–WV7.3, (f) IR10.8 and WV6.2–IR10.8 space. The coloured figures in (f) are 
the raining and non-raining data counts that computed the density distribution. The 
colour bar shows normalised densities to make the subfigures comparable. 

Figure 3. 4 is analogous to Figure 3. 3 but for night-time. Unlike Figure 3. 3, one 
can observe a significant overlap in the raining and non-raining distributions. 
Their descriptive statistics (APPENDIX A3, Table A3. 3 and Table A3. 4) also 
paint a similar picture based on the comparatively similar statistical parameter 
values. Additionally, the figure shows bimodally distributed densities of IR10.8 
BT above and below 255 K, slightly warmer than the temperatures observed in 
the daytime data. 

Figure 3. 4a compares the raining and non-raining distributions for IR10.8 BT 
and IR3.9–IR10.8 BTD. The raining cases mainly consist of IR3.9–IR10.8 BTD 
between 0 and 5 K and IR10.8 BT colder than 270 K. These spectral 
characteristics are consistent with medium BTD found in Kumah et al. (2020); 
(Thies et al., 2008a) and are indicative of large CWP with high rain probabilities 
and intensities. The non-raining cases mostly show large positive differences in 
clouds with medium CWP and low rain probability and intensity. 
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The results comparing the raining and non-raining IR10.8 BT and IR3.9–WV7.3 
BTD (Figure 3. 4b) show comparable characteristics to Figure 3. 4a but with 
generally higher IR3.9–WV7.3 BTD. The higher differences are due to the 
diminishing effect of the water vapour absorption and emission in the mid-to-low 
tropospheric levels on the brightness temperature in the WV7.3 µm channel.  

Figure 3. 4c compares the raining and non-raining distributions for the IR10.8 
BT and the split window BTD. Like in Figure 3. 3d, the dotted square indicates 
the IR10.8 BT and IR10.8–IR12.0 BTD threshold used to eliminate non-
precipitating cirrus clouds (Section 3.3.3). The IR10.8–IR12.0 BTD defined by 
the raining cases is mostly between 0 and 2 K and colder than 270 K IR10.8 BT. 
As noted earlier, these characteristics indicate optically thick cumulonimbus 
clouds. On the other hand, the non-raining cases are from non-precipitating 
cirrus clouds and N-Type clouds. Unlike the daytime observations (Figure 3. 3d), 
the IR10.8 BT and the IR10.8–IR12.0 BTD are distributed over a wide range. 

For the comparison of IR10.8 BT and IR8.7–IR10.8 BTD (Figure 3. 4d), the 
observations made for the raining cases were comparable to those found during 
the daytime (Figure 3. 3e). However, the non-raining cases showed a relatively 
wide range of IR10.8 BT values that mainly were warmer (>270 K). Figure 3. 4e,f 
compare the raining and non-raining distributions for IR10.8 BT and WV6.2–
WV7.3 BTD and IR10.8 BT and IR10.8–WV6.2 BTD, respectively. Here, the 
observations made for both the raining and non-raining cases were comparable 
to their daytime observations (Figure 3. 3f,g respectively), except their IR10.8 BT 
shows a wide range of values. 

ii. Determination of the Optimum Parametric Thresholds 

Figure 3. 5 presents the graphical representation to determine the parametric 
thresholds with the best rain detection performance to answer the 2 essential 
questions: the satellite data’s rain detection skill based on the kind of data and 
the best rain detection model. The categorical statistics of POD, POFD, FAR and 
bias were computed as a function of parameter thresholds to assess model 
performance and answer these two questions for the day and night-time analysis. 
The POD versus the POFD was analysed to infer the models’ relative operational 
characteristic (ROC) curve—a measure of a forecasting system’s relative skill and 
usefulness (Kharin & Zwiers, 2003). The distance of the ROC curve from the 
diagonal line (where POD = POFD) corresponds to a climatological skill and is 
often used to evaluate the quality of forecasts (Feidas & Giannakos, 2010).  
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Figure 3. 5 Daytime (a–d) and night (e–h) model calibration results. (a,e) ROC curve for 
different model parameter thresholds. Statistical scores of ETS compared to (b,f) POD 
(c,g) FAR and (d,h) Bias. 

From the daytime results (Figure 3. 5a–d), the ROC curves (Figure 3. 5a) for the 
different parametric thresholds of the rain detection models show that threshold 
values corresponding to models derived from the reflectance data have the largest 
distance from the diagonal line. Notably, the models derived from the VIS 0.6 and 
NIR 1.6 reflectance (Ref2 and Ref3) showed the best performance. This suggests 
that daytime rain detection based on reflectance measurements alone may be 
enough to achieve maximum detection results. The rain detection models 
developed from reflectance and IR showed medium performances, whereas those 
from the IR data alone were often poor.  

The observations above are further supported by the relationship between ETS 
and the POD, FAR and bias values (Figure 3. 5b–d respectively). Figure 3. 5b 
shows that the Ref2 and Ref3 models have comparatively higher ETS and POD 
values. Nonetheless, all models have reasonably high FAR and Bias (Figure 3. 
5c,d, respectively). It can also be seen from the figure that the rain detection 
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models developed from combined reflectance and IR data tend to reduce model 
FAR and bias values but at a cost to the POD values.  

To answer the question “which is the best parametric rain detection model?” the 
values of all 4 categorical scores were considered. Between the Ref2 and Ref3 
models, the Ref3 model was considered the best model because of its high ETS 
and POD and correspondingly low FAR and Bias values.  

For the night-time results (Figure 3. 5e–h), the ROC curves (Figure 3. 5e) show 
that threshold values corresponding to BTD4 have the largest distance from the 
diagonal line, suggesting the best model performance. On the other hand, rain 
detection models developed from IR (IR10.8) BT and BTD usually resulted in 
medium model performance. In contrast, those based on a single IR BT often 
showed poor performance. 

Moreover, when the ETS is compared to the POD, FAR, and Bias, the BTD4 rain 
detection model’s superior performance is further strengthened. Its ETS and 
POD values are higher than those of combined IR and BTD and single IR models, 
with the single IR model being the lowest. Again, all models show higher FAR and 
Bias, although the Bias is comparatively lower than those found during daytime. 
Therefore, the BTD4 rain detection is considered the best model for the night-
time case because of its high ETS and POD and comparatively low FAR and Bias 
values. 

Table 3. 7 Best rain detection model and the parameter values during the day and night-
time. 

The parameters and values for the best model are shown in Table 3. 7, and their 
categorical statistics from the model calibration are presented in Figure 3. 6. The 
daytime parameter value is comparable to the one inferred from the raining 
spectral characteristics (i.e., the satellite signals sampled when rainfall in the 
gauge was equal to or above 1 mm h−1) in the bivariate distribution (Figure 3. 3c). 
In contrast, the night-time parameters’ values are comparable to the sum of their 
75th percentile and standard deviation values (APPENDIX A3 Table A3. 3) of the 
raining spectral characteristics’ descriptive statistics. 

Application Rain Detection Model  Parameter Parameter Value 
Daytime  Ref3 VIS0.6–NIR1.6 0.21 

Nighttime  BTD4 
IR3.9–IR10.8 8.18 K 
IR3.9–WV7.3 17.03 K 

IR10.8–WV6.2 33.65 K 
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Figure 3. 6 Categorical statistics from daytime (a) and night-time (b) calibration of the best 
parametric rain detection model with gauge rainfall data. 

Figure 3. 6 shows a clear difference in rain detection performance between the 
daytime (Figure 3. 6a) and night-time (Figure 3. 6b). Although their POD, FAR, 
and ETS are comparable, the comparatively high ACC, CSI, and low POFD and 
bias (2.28 compared to 3.67 for the night-time case) scores suggest that the 
daytime detection was better than the night-time. 

3.4.1.2 Parametric Model Validation 

This section validates the developed rain area detection and correction technique 
using the independent validation datasets for the daytime and night-time and the 
entire evaluation period. First, the point-to-pixel validation of the model results 
using the gauge station data is presented. Next, the developed rain area correction 
technique is described and demonstrated for two selected daytime (on 14 April 
2018, 11:00 UTC) and night-time (on 6th March 2018, 17:00 UTC) periods from 
the validation dataset due to the variety of detected rain areas present in the 
scene. Finally, the model detected rain areas and rain rate are compared with the 
GPM IMERG satellite rainfall product results to validate the model spatially. 

i. Point validation of the parametric model’s rain area  

Figure 3. 7 presents the categorical scores of rain area detection, indicating the 
best performance of the models when the model results were compared with the 
daytime (Figure 3. 7a) and night-time (Figure 3. 7b) gauge station data. The 
results show improved daytime detection, indicated by high ACC, low FAR and a 
marginal increase in bias (2.3) scores compared to the calibration scores. 
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However, the low ETS and high bias (4.11) scores suggest a decreased model 
performance for the nighttime compared to its previous calibration scores. 

 

Figure 3. 7 Categorical statistics from daytime (a) and night-time (b) validation of the best 
parametric rain detection model with gauge rainfall data 

ii. The rain area correction scheme 

Corrections were applied to the detected rain areas because the indirect 
relationship between rain and the inferred cloud top properties from the satellite 
often results in retrieval uncertainties (Karaseva et al., 2011). Moreover, both the 
point validation of the initial rain area detection results (shown above) and its 
preliminary comparison with the results from  
EUMETSAT’s MPE (Dhib et al., 2017; Heinemann et al., 2002) (not used in this 
study) and GPM IMERG (used in this study) showed high FAR and comparatively 
extensive raining areas, respectively, which required corrections. Below is a 
summary and results that detail the implementation of the correction technique. 

This study implemented rain area correction for only the validation data because 
of the large number of datasets. The correction scheme relies on adaptive 
parametric thresholds applied to spectral characteristics from the detected rain 
area. This implies that the applied corrections were based on scene and rain area-
specific parameters for each classification scene and detected rain area. They 
were more precisely derived from the gradient in the spectral characteristics 
computed for each rain area, i.e., the identified raining cloud object (cloud object 
gradient) and each pixel (pixel gradient) in a cloud object. These two kinds of 
gradients differ for daytime and night-time due to the different data and 



Chapter 3 

83 
 

information content used for rain area detection. Nonetheless, their 
implementations are for the same purpose during the day and night.  

Cloud objects gradient aims to reduce the number of detected rain areas. It 
combines the gradient computed for each cloud object with the average gradient 
and standard deviation from all cloud objects to locate non-raining areas 
previously classified as raining in the initial results. This reduces the number of 
detected rain areas (i.e. the number of different sized raining areas) identified by 
the parametric model. The pixel gradient results in a reduction of the size of the 
cloud object because it compares the gradient computed for each pixel in a cloud 
object to its median and average median (from all cloud objects) to locate the non-
raining high/low gradient (depending on the day/night application) pixels in the 
initial results. 

Figure 3. 8 demonstrates the implementation of the daytime rain area correction 
scheme. The best daytime model was the VIS0.6 − NIR1.6 parametric model 
(Ref3). As was shown in Figure 3. 3c, the raining spectral characteristics were 
mainly above 0.2, suggesting that higher differences correspond to high rain 
probabilities. Figure 3. 8a is a Daytime Natural Colour RGB composite 
(http://www.eumetrain.org/rgb_quick_guides/, accessed on 24th March 2021) 
from SEVIRI NIR1.6, VIS0.8 and VIS0.6 µm channels, respectively, over the 
study area. High-reaching clouds with ice tops, e.g., cumulonimbus-type clouds, 
appear cyan in the figure. Black lines demarcate the raining areas initially 
detected by the developed daytime parametric model. The cloud object gradient 
(Figure 3. 8b) represents an area-specific gradient computed (for each detected 
raining area in Figure 3. 8a) as the maximum reflectance difference (max 
(VIS0.6–NIR1.6)) of each cloud object minus its minimum (min (VIS0.6–
NIR1.6)). The cloud object gradient was combined with the average gradient (Δ) 
and standard deviation (σ), both indicated in Figure 3. 8b, to identify non-raining 
areas in the initial results and thus reduce the number of detected ted cloud 
objects (Figure 3. 8c). 

http://www.eumetrain.org/rgb_quick_guides/
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Figure 3. 8 Daytime rain area correction. (a) Initial rain area detections, (b) Cloud object 
gradient, (c) Rain area correction based on cloud object gradient, (d) Pixel gradient, (e) 
Median pixel gradient, (f) Rain area correction based on pixel gradient, (g) GPM IMERG 
rainfall estimate (mm/30 min) over the study area. 

The pixel gradient (Figure 3. 8d) was computed for each cloud object in Figure 3. 
8c as max (VIS0.6-NIR1.6) minus the pixel value. Thus, the low gradients in 
Figure 3. 8d correspond with high VIS0.6–NIR1.6 differences, whereas the high 
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gradients are the low differences. Combined with the median pixel gradient 
(Figure 3. 8e) for each cloud object and the average of the median (M) pixel 
gradient from all cloud objects, these gradients identify and reclassify high 
gradient pixels as non-raining. The result is a reduction in the detected rain area’s 
size, as shown in the RGB colour composite in Figure 3. 8f. Figure 3. 8g is the 
GPM IMERG rainfall estimate over the study area. Comparing the initial results 
in Figure 3. 8a–f (the corrected version) and the rainfall estimates in Figure 3. 
8g, it is evident that the correction scheme can improve the initial results to 
estimates comparable with the GPM IMERG satellite estimates.  

Figure 3. 9 demonstrates rain area correction for the night-time. Unlike the 
daytime, night-time rain detection was based on a combination of IR3.9–IR10.8, 
IR3.9–WV7.3 and IR10.8–WV6.2 BTD (BTD4). Here, the rain area-specific 
parameters used in correcting the detected rain areas were from IR10.8–WV6.2 
K to reduce redundancy in the data used for the correction. Figure 3. 3g and 
Figure 3. 4f indicate that most of the raining spectral characteristics of the 
IR10.8–WV6.2 are less than 30 K. In Table A3. 1 and Table A3. 3, on average, 75% 
are <26 K, suggesting that low differences indicate high rain probabilities.  

Figure 3. 9a is a Nighttime Microphysics RGB colour composite of SEVIRI IR12.0 
–IR10.8 µm and IR10.8–IR3.9 µm channel differences, and IR10.8 µm channel, 
respectively, over the study area. Detailed colour interpretations are in 
(http://www.eumetrain.org/rgb_quick_guides/, accessed 24th March 2021); of 
interest are the reddish-brown areas that indicate optically thick ice clouds. The 
initially detected rain areas by the night-time parametric model are demarcated 
in black. The cloud object gradient (Figure 3. 9b) and Δ were computed similarly 
to the daytime. The cloud object standard deviation in Figure 3. 9c and the σ 
(shown in Figure 3. 9c) represent an area-specific standard deviation and σ of the 
IR10.8–WV6.2 BTD for the detected raining area. Combined with Figure 3. 9b, 
they were used to reduce the number of detected cloud objects, as shown in Figure 
3. 9d, similar to the daytime approach. The pixel gradient in the IR10.8–WV6.2 
BTD for the areas in Figure 3. 9d is also shown in Figure 3. 9e. It was computed 
similar to the daytime approach. Thus, the high gradient area corresponds to the 
low IR10.8–WV6.2 BTD and vice versa. The median pixel gradient and the M 
shown in Figure 3. 9f were derived from the raining areas in Figure 3. 9e. They 
were used to reduce the sizes of the detected rain areas, as shown in Figure 3. 9g. 
Figure 3. 9h is the rainfall estimate from the GPM IMERG; its comparison with 
the initial and final (the corrected version) rain areas result (Figure 3. 9a,g, 
respectively) provided a better perspective of the effect of the developed 
correction scheme similar to the daytime. 

http://www.eumetrain.org/rgb_quick_guides/
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Figure 3. 9 Nighttime rain area correction. (a) Initial rain area detections, (b) Cloud object 
gradient, (c) Cloud object standard deviation (d) Rain area correction based on cloud 
object gradient, (e) Pixel gradient, (f) Median pixel gradient, (g) Rain area correction based 
on pixel gradient, (h) GPM IMERG rainfall estimate (mm/30 min) over the study area. 
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iii. Spatial validation of the parametric model’s rain area and rate 

Figure 3. 10 is an “eyeball” verification of the corrected rain areas (Figure 3. 8f 
and Figure 3. 9g) compared with the initial rain areas detections (Figure 3. 8a and 
Figure 3. 9a, lime green demarcations) and detections by the GPM IMERG (white 
demarcations). This daytime and night-time model results in an RGB colour 
composite compared to the IMERG results; validate the developed parametric 
model spatially. The daytime comparison in Figure 3. 10a shows a convincing 
agreement in the detected rain areas’ spatial dynamics by the model and IMERG. 
For instance, areas between latitudes 0 to -2 and longitude 34 to 36 show a good 
spatial match in rain areas. These observations correlate with the high POD, ACC 
and CSI scores observed for the daytime in the previous validation, thus 
indicating high confidence in the model results. 

 

Figure 3. 10 Spatial verification of the corrected rain area detections (black extent) 
compared to the initial detections (lime green) and GPM IMERG (white extent) for the day 
(a, on 14 April 2018, 11:00 UTC) and night-time (b, on 6th March 2018, 17:00 UTC). The 
base maps are composite for Daytime Natural Colour (a) and Nighttime Microphysics (b). 

Nevertheless, there are some differences in Figure 3. 10a. IMERG detects more 
rainy areas (of varying sizes) than the developed model. Instead, the raining rain 
areas detected by the model are mainly organised into large areas and fewer in 
number. Additionally, a close inspection of Figure 3. 10a reveals a slight shift in 
the detected rain areas by IMERG relative to the model. 

Figure 3. 10b is an analogous comparison of Figure 3. 10a but for the night-time. 
Compared to IMERG, the corrected rain areas’ spatial dynamics show good 
agreement, especially for the large rain areas. However, the figure also indicates 
that night-time detection detects more rainy areas than IMERG, which may 
explain the high POFD, low ACC, and high bias scores observed in the previous 
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validation. Moreover, the spatial shift in the detected rain areas of IMERG 
relative to the parametric model observed for the daytime is again noticeable. 

The differences in rain areas detected by IMERG and the parametric model were 
mainly attributed to factors such as differences in the native resolution of the 
model dataset and IMERG. The spatial and temporal aggregation methods used 
to resolve their resolution differences could further contribute to these 
differences.  

Table 3. 8 presents descriptive statistics of the detected rain areas’ spatial 
properties; herein, the number and size (i.e., the area in km2) for the uncorrected 
parametric model, corrected parametric model, and IMERG. The number of 
detected rain areas expresses the average count of all detected rain clouds, the 
50% percentile, 75% percentile and standard deviation per 30 min validation time 
step. On the other hand, the area in Table 3. 8 expresses the average size, 50% 
percentile, 75% percentile and standard deviation of the clouds detected per 30 
min validation timestep.  

Table 3. 8 Descriptive statistics of spatial properties of the rain areas detected per 30 min 
time step. 

Stand. dev. is the standard deviation, 50% and 75% are the percentile values. 

Based on Table 3. 8 results, IMERG, on average, detects a comparatively smaller 
number of rain clouds of large sizes than the parametric model, which may be 
because of IMERG’s larger native spatial resolution than the model. 

Figure 3. 11 compares the average sizes of the parametric model’s detected rain 
areas, before and after correction, to rain areas from IMERG for the entire 
validation period. The figure shows the average detected rain area for sizes 
ranging from 81 to 20,000 km2 because it constitutes most of the detected rain 
area sizes and allows for a clear visual comparison. 

Descriptive 
Statistics 

Number Of Contiguous Cloudy 
Areas Area (km2) 

 Uncorrected 
model 

Corrected 
model 

GPM 
IMERG 

Uncorrected 
model 

Corrected 
model 

GPM 
IMERG 

Average  186 85 19 2522 814 2275 
50% 120 63 16 1732 621 1545 
75% 195 103 26 3230 988 2863 

Stand. dev. 191 86 15 2453 795 2547 
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Figure 3. 11 Comparing the average sizes of detected rain areas by the parametric model 
and IMERG. 

The initial model results generally detected extensive rain areas of varying sizes. 
Nonetheless, the implemented correction technique effectively reduced the 
number and sizes of the detected rain areas. From visual inspection of 
uncorrected and corrected detected rain areas, the daytime rain area correction 
mainly occurred at the fringes of initially detected large contiguous raining areas, 
whereas the small areas were mainly reclassified non-raining. On the contrary, 
the night-time implementation showed that large areas initially flagged as raining 
were reclassified as non-raining.  

Figure 3. 12 compares the gauge stations’ detected rain rates to those detected by 
the parametric model and IMERG for the entire validation period, using absolute 
differences and probability densities. Figure 3. 12a,b are the absolute differences 
between the mean rain rates detected at each gauge station by the parametric 
model and IMERG compared separately for the daytime and night-time, 
respectively. The probability densities of the rain rates from the gauge, IMERG 
and parametric model were also compared for rain rates below and above 20 
mmh−1 (Figure 3. 12c,d) for the entire validation period to evaluate the models’ 
detected rain rates against the actual observations) and IMERG.  
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Figure 3. 12 Comparison of the detected rain rates by the gauge, parametric model and 
IMERG. (a) Daytime absolute differences between the means of the parametric model and 
IMERG, (b) Nighttime absolute differences between the means of the parametric model 
and IMERG, (c) Probability density of below 20 mm per 30 min rain rates, and (d) 
Probability density of above 20 mm per 30 min rain rates detected by the gauge, IMERG 
and model. 

Figure 3. 12c shows comparable probability densities of the detected rain rates by 
the gauge, model and IMERG for rain rates below 20 mm per 30 min interval. By 
contrast, the densities for the above 20 mm rain rates in Figure 3. 12d show that 
IMERG’s maximum detected rain rate was below 40 mm. On the other hand, the 
model detections were mainly comparable to the ground truth and above 50 mm 
per 30 min, suggesting that IMERG has a low tendency to detect very high rain 
rates. The model’s comparable detected rain rates with the ground truth is 
because it was calibrated using a dense rain gauge network. IMERG’s low 
tendency to detect very high rain rates may be due to the spatial and temporal 
averaging technique used to merge and intercalibrate rainfall estimates from 
several PMW sources. 
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Based on the results, it can be stated that the developed rain area detection and 
correction technique using multispectral data from the MSG SEVIRI was 
successful in detecting rain areas at 2 scales. (1) At the point and pixel scale when 
the detected rain areas were compared with gauge station data, and (2) at a large 
scale when compared to the spatial dynamics of rain areas detected by IMERG. 
Furthermore, retrieval and comparison of the model, IMERG, and gauge rain 
rates reveal the model’s capability to detect rain rates comparable to rain gauge 
data and with a better tendency for detecting higher intensities than IMERG.  

3.4.2 Discussion 

3.4.2.1 The Day and Nighttime Rain Detection Technique 

Rain area detection using multispectral satellite data from MSG SEVIRI was 
demonstrated for the daytime and night-time over topographically complex 
terrain in south-western Kenya. The technique relies on developing and 
calibrating multiple parametric rain detection models using rainfall data from a 
dense network of rain gauges to determine the best model parameters and 
parametric values for successful rain area detection. The models were rooted in 
the conceptual assumption that clouds characterised by their top properties, such 
as high optical thickness and effective radius (comprising ice and water 
hydrometeors), have high rainfall probabilities and intensities. Several models in 
3 categories: reflectance, IR and combined reflectance-IR models, were 
developed to answer 2 primary questions: (1) what the rain detection skill of the 
proposed spectral models is? (2) Which model possesses the best detection skill? 

The results, determined using standard categorical statistics and ROC curves, 
show that daytime rain detection based on models using reflectance alone data 
over the study area outperformed those using the IR and combined reflectance-
IR models. Combining reflectance and IR data showed medium performance in 
rain area detection and reduced model FAR and Bias scores. However, the IR-
only-based models, particularly the model based on a single IR BT, often showed 
poor performances. The best daytime model was determined from the reflectance 
models to be VIS0.6–NIR1.6, and the parameter value above which the best 
detection performance was achieved was 0.21. Based on the premise that the 
VIS0.6 and NIR1.6 reflectance indicates cloud optical thickness and effective 
radius, respectively, and point towards CWP, the results suggest that the 
reflectance differences above 0.21 detect clouds with high CWP indicating high 
rainfall probabilities.  

The night-time models consisted of a single IR BT, BTD and combined IR BT-
BTD models developed from IR-only spectral data. The results indicate that the 
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BTD model showed the best performance in rain area detection over the study 
area. In contrast, the combined IR BT-BTD and the single IR BT models showed 
medium and poor performances, respectively. The best model was determined to 
be a combination of IR3.9–IR10.8, IR3.9–WV7.3 and IR10.8–WV6.2 BTD. The 
corresponding parameter values, below which the best detection performance 
was achieved, were 8.18 K, 17.03 K and 33.65 K, respectively. The IR3.9–IR10.8 
and IR3.9–WV7.3 parameters indicate cloud optical thickness and the IR10.8–
WV6.2 BTD indicates the height of the cloud top. Unlike daytime detection, the 
results suggest that night-time rain area detection may be best achieved with 
cloud optical thickness and height information. 

Overall, the day and night-time models demonstrated high FAR scores due to 
many factors, such as the non-linear relationship between rainfall and the cloud 
top properties (Karaseva et al., 2011). The daytime rain area detection performed 
better than the night-time, which could be attributed to the relevant information 
content on CWP and rainfall available in the VIS 0.6 and NIR 1.6 reflectance pair 
(Kumah et al., 2020). Furthermore, the bivariate analysis of the raining and non-
raining spectral characteristics (Section 3.4.1.1) and their descriptive statistics 
(APPENDIX A3) reveal uniqueness in reflectance data that supports its high 
detection skill. The night-time model’s comparatively weak performance, 
indicated by its high POFD and low CSI and ETS values, was also observed by 
Kumah et al. (2020) for a relatively small study area. It could be partly explained 
by the comparable distribution observed for their raining and non-raining 
spectral characteristics (Section 3.4.1.1). Nonetheless, the results support the 
conceptual model that raining clouds characterised by their top properties, such 
as high optical thickness and effective radius, have high rainfall probabilities.  

3.4.2.2 The Rain Area Correction and Validation Technique 

The detected rain areas were corrected for their number (i.e., the number of areas 
detected as raining) and sizes (i.e., the sizes of the detected rain areas) using rain 
area-specific parameters and adaptive parametric thresholds. Specifically, two 
kinds of gradient correction: the cloud object and pixel gradient, were defined for 
the daytime and night-time rain area correction. Although their determination 
differed for the day and night-time, the implications were the same for both 
periods. The cloud object gradient reduced the number of areas detected as 
raining by comparing a rain area-specific cloud gradient with the average 
gradient and standard deviation from all detected rain areas. On the other hand, 
the pixel gradient reduced the detected rain areas’ size by comparing the gradient 
computed for each pixel in a raining area to its median and average median from 
all detected rain areas.  
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The developed rain detection parametric model was validated using independent 
validation sets and comparing the model results to data from the gauge stations 
and IMERG. The comparison between model rain detection results and the gauge 
station’s rainfall data showed improvement in daytime detection, indicated by 
high ACC and low FAR scores compared to its previous calibration results. In 
contrast, low ETS scores (compared to previous calibration results) observed for 
the night-time detection suggested reduced night-time detection skills for the 
validation sets. 

The detected rain areas by the parametric model and IMERG were compared to 
validate the model’s rain area detection skill spatially. Their detected rain rates 
were compared to the gauge station rainfall data to evaluate the model’s rain rate 
detection against ground truth and IMERG.  

By visual inspection, the model's agreement in spatial dynamics of detected rain 
areas with IMERG’s detected rain areas was generally convincing, particularly for 
large contiguous raining areas and better during the day than nighttime. 
However, there were some noticeable differences between the detected rain areas. 
For instance, a slight shift between the detected rain areas by the model and 
IMERG could be discerned from both the day and night-time results. Further, 
IMERG, particularly during the daytime, detected more rain areas of varying 
sizes, whereas the model’s detection was mainly organised into large contiguous 
areas. Also, the absolute differences in mean rain rate detected by the model and 
IMERG at the gauge stations showed similar spatial dynamics for the day and 
night. However, the mean differences were comparatively higher for the day than 
the night-time. 

3.4.2.3 Uncertainties and Implications of the Rain Area Detection and Correction 
Technique 

The uncertainties in the model results may be related to multiple factors. For 
instance, the spatial and temporal mismatch between the MSG satellite and gauge 
observations, although spatiotemporally aggregated following the method by 
Bendix et al. (2010); Kumah et al. (2020), impacts the satellite’s data sampled to 
calibrate and validate the model. Additionally, for multi-layered clouds with 
cloud properties differing between layers (Watts et al., 2011), the satellite’s 
information may not agree with the ground observation (Lensky & Rosenfeld, 
1997). This could explain uncertainties in the bivariate comparison of rain and 
non-raining spectral characteristics.  

Many factors contribute to the differences in rain area and rates detected by the 
parametric model and IMERG. For instance, the difference in spatial resolution 
of the MSG and IMERG datasets (approximately 3 × 3 and 10 × 10 km, 
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respectively) suggests that the IMERG data is averaged at a comparatively large 
spatial resolution than the parametric model; however, in this study, the IMERG 
pixel was compared to a single gauge. Such a spatial disparity could affect the 
MAD and explain for, e.g., the comparatively less number but large contiguous 
(raining) cloud areas detected by IMERG than the model. Moreover, the 
developed model was based on reflectance and IR data from a single 
geostationary satellite, MSG, calibrated using rainfall data from a dense gauge 
station network.  

On top of this, the parametric model’s underlying conceptual assumption is the 
relationship between cloud top information such as high optical thickness and 
effective radius and rain probability and intensities. IMERG, on the other hand, 
is a multi-satellite algorithm that combines microwave observations from 
multiple satellite sensors to estimate half-hourly globally gridded precipitation. 
Central to IMERG is the morphing technique, which uses motion vectors to fill 
gaps in passive microwave precipitation estimates using a quasi-Lagrangian 
interpolation. This latest version of the IMERG rainfall product (V06b) uses 
motion vectors derived from total precipitable water vapour retrieved from 
numerical models, unlike geostationary IR BT in the previous versions (Tan et al., 
2019). This could explain the differences in the number and sizes of the detected 
rain areas by the model and IMERG. 

Furthermore, the shift/dislocation between IMERG relative to the model 
detected rain areas observed in this study should be due to the procedures 
undertaken in developing IMERG, such as the morphing passive microwave 
measurements using the motion vectors (Jackson et al., 2020). It is worth 
pointing out that spatial displacement or dislocation errors have not received 
much attention in satellite rainfall validation. Nevertheless, where the rainfall 
field is located has significant implications on operational applications’ 
effectiveness and efficacy, such as flood and flash flood forecasts. Recent work 
has suggested some spatial displacement error metrics, e.g. (Acharya et al., 2020; 
Carlberg et al., 2020), to address this gap, albeit applied to reanalysis and rainfall 
forecast data. However, satellite rainfall evaluations that address this possible 
spatial displacement are still lacking. The results presented herein imply the 
possibility of a spatial displacement in satellite rain fields, which needs to be 
investigated, quantified and corrected. Therefore, future studies will investigate 
and address this potential spatial displacement error in rain areas from satellites.  

The rainfall and satellite datasets used in this study represent a significantly 
larger space and time domain than the previous study (Kumah et al., 2020). Thus, 
the developed model and parameters may be regionally applicable in the tropical 
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(Eastern) African region to detect and correct rain areas using multispectral 
geostationary satellite data. Nevertheless, Milford et al. (1994) suggest that the 
rain area detecting parameters are regional and climate-dependent. Therefore, 
more research on the technique’s applicability over a comparatively more 
extensive scale, e.g., continental, must be completed until a final rain area 
detection scheme is available.  

In this regard, the near continental scale coverage of TAHMO’s stations in Africa 
(van de Giesen et al., 2014) and the existence of opportunistic rain sensors such 
as MWL (Uijlenhoet et al., 2018) are, e.g., two valuable sources of rainfall 
information that heightens the potential of developing such a spatiotemporally 
high detection scheme. Despite the challenges, e.g. (Chwala & Kunstmann, 2019), 
in the last decade, it has been well established that accurate near-ground rainfall 
monitoring using CML data is possible and could benefit the sparsely gauged 
regions or complement conventional monitoring techniques. The study will be 
extended to cover sub-Saharan Africa and match TAHMO’s spatial coverage in a 
future step. In addition, cloud-top information from Cloud Property Dataset 
Using SEVIRI, edition 2 (CLAAS-2) (Stengel et al., 2014) will replace the indirect 
cloud-top property information inferred from the SEVIRI optical, near and 
thermal IR data in this study. This could potentially reduce uncertainties due to 
analysing ground rainfall with indirect cloud top information. 

3.5 Conclusions 

A gradient based adaptive technique capable of day and night-time rain area 
detection and correction is presented using reflectance and IR data from the MSG 
SEVIRI satellite observations from south-western Kenya. In this investigation, 
we first developed, calibrated and validated multiple parametric rain detection 
models using rainfall data from a dense gauge station network to determine the 
best model parameters for the day and night-time. We then developed a new 
technique to correct the detected rain areas—the method uses rain area-specific 
parameters to reduce the number and sizes of the detected rain areas. 

Compared to the GPM IMERG and gauge station data, the developed model 
shows convincing agreement in both the detected rain area and rain rates, 
suggesting that the new technique could provide valuable insights to satellite 
rainfall retrievals to benefit many operational applications.  

The technique’s limitation is related to the fact that it calibrates the satellite data 
using gauge rainfall data which may not be available everywhere. Additionally, 
the rain detecting parameters identified from the satellite data may be regionally 
and climate-dependent—implying the technique should be calibrated per study 
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region to obtain suitable parameter values for a successful rain area detection. In 
that sense, the study by Kumah et al. (2020) is for, e.g., a proof of concept that 
near-ground rainfall from microwave attenuations on CML can be used in place 
of the gauge data to overcome these limitations.  
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APPENDIX A3 

The tables in this section are the descriptive statistics of the spectral 
characteristics during the daytime and night-time. The notations: Stan. Dev, 25%, 
50%, and 75% are standard deviation, percentile values respectively. 

Table A3. 1 Descriptive statistics of the spectral characteristics of daytime raining cloud 
top properties. 

Descriptive  
Statistics VIS0.6 NIR1.6 

VIS0.6 
/ 

NIR1.6 

VIS0.6 
– 

NIR1.6 

IR 
10.8 

IR10.8 –
WV6.2 

IR8.7 
–

IR10.8 

IR10.8 
–IR12.0 

WV6.2 
– 

WV7.3 
Minimum 0.06 0.01 0.46 −0.11 213.02 0.38 −3.61 −0.95 −27.82 
Maximum 1.00 0.81 17.47 0.90 288.02 50.01 5.49 6.56 0.87 

Mean 0.63 0.27 2.51 0.35 253.03 18.89 0.16 1.01 −10.58 
Mode 0.70 0.20 1.60 0.40 262.70 23.80 −0.80 0.50 −14.80 

Median 0.65 0.26 2.40 0.36 256.24 19.09 0.05 0.81 −11.42 
Stan. Dev 0.21 0.11 1.02 0.18 16.51 10.30 1.11 0.89 4.93 

25% 0.50 0.20 1.78 0.22 241.42 10.86 −0.68 0.43 −14.56 
50% 0.65 0.26 2.40 0.36 256.24 19.09 0.05 0.81 −11.42 
75% 0.77 0.34 3.10 0.49 264.96 25.74 0.83 1.38 −6.78 

Table A3. 2 Descriptive statistics of the spectral characteristics of daytime non-raining 
cloud top properties. 

Descriptive  
Statistics VIS0.6 NIR1.6 VIS0.6/ 

NIR1.6 

VIS0.6 
– 

NIR1.6 

IR 
10.8 

IR10.8 
–

WV6.2 

IR8.7 
–

IR10.8 

IR10.8 
–

IR12.0 

WV6.2 – 
WV7.3 

Minimum 0.03 0.01 0.24 −0.31 212.49 0.15 −4.04 −9.31 −23.84 
Maximum 1.00 0.89 10.67 0.78 294.91 57.02 8.27 15.10 2.49 

Mean 0.43 0.32 1.39 0.11 266.62 29.86 −0.10 1.96 −14.34 
Mode 0.40 0.30 1.00 0.00 268.90 30.10 −1.00 0.70 −16.60 

Median 0.42 0.32 1.22 0.07 268.93 30.42 −0.40 1.70 −15.24 
Stan. Dev 0.20 0.12 0.69 0.16 14.46 10.75 1.28 1.34 3.97 

25% 0.27 0.24 0.95 −0.02 260.23 22.98 −1.02 0.92 −17.03 
50% 0.42 0.32 1.22 0.07 268.93 30.42 −0.40 1.70 −15.24 
75% 0.58 0.41 1.61 0.20 277.23 38.10 0.54 2.75 −12.67 
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Table A3. 3 Descriptive statistics of the spectral characteristics of night-time raining cloud 
top properties. 

Descriptive  
Statistics 

IR3.9 – 
IR10.8 

IR3.9 –
WV7.3 IR 10.8 IR10.8 –

WV6.2 
IR8.7 –
IR10.8 

IR10.8 – 
IR12.0 

WV6.2 
– 

WV7.3 
Minimum −7.57 −1.26 220.10 2.19 −1.89 −0.72 −22.84 
Maximum 21.13 33.06 285.66 48.16 7.15 8.47 −0.70 

Mean 1.91 10.54 254.93 20.41 0.18 1.21 −11.78 
Mode −1.50 8.50 258.40 17.10 0.20 0.70 −14.70 

Median 1.16 9.61 256.04 20.30 0.04 0.99 −12.12 
Stan. Dev 3.72 4.37 12.52 7.97 1.07 0.85 3.72 

25% −0.96 7.45 245.62 14.43 −0.67 0.63 −14.63 
50% 1.16 9.61 256.04 20.30 0.04 0.99 −12.12 
75% 4.17 12.71 264.73 26.00 0.82 1.56 −9.09 

Table A3. 4 Descriptive statistics of the spectral characteristics of night-time non-raining 
cloud top properties. 

Descriptive  
Statistics 

IR3.9 – 
IR10.8 

IR3.9 –
WV7.3 IR 10.8 IR10.8 –

WV6.2 
IR8.7 –
IR10.8 

IR10.8 – 
IR12.0 

WV6.2 
– 

WV7.3 
Minimum −9.38 1.22 220.10 2.12 −2.20 −0.45 −23.89 
Maximum 28.00 37.97 289.38 51.20 6.29 39.32 4.57 

Mean 2.68 15.35 261.92 26.69 0.09 1.80 −14.01 
Mode −1.90 11.80 267.10 28.50 −1.00 0.80 −15.40 

Median 1.81 14.37 264.02 27.22 −0.13 1.58 −14.65 
Stan. Dev 4.68 6.21 12.08 8.50 1.22 1.13 3.49 

25% −0.97 10.49 254.78 20.96 −0.90 0.94 −16.54 
50% 1.81 14.37 264.02 27.22 −0.13 1.58 −14.65 
75% 5.41 19.48 270.42 32.78 0.86 2.44 −11.98 
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Abstract 
According to studies in the past decade, MWL used by mobile telecom operators 
for data transmission can provide hydro-meteorologically valid rainfall 
estimates. For the first time, this study investigated a new method, the MSG 
technique, that uses MSG satellite data to improve MWL rainfall estimates. The 
investigation, conducted during the daytime, used MSG optical (VIS0.6) and near 
IR (NIR1.6) data to estimate rain areas along a 15 GHz, 9.88 km MWL for 
classifying the MWL signal into wet-dry periods and estimate the baseline level. 
Additionally, the MSG technique estimated a new parameter, wet path length, 
representing the length of the MWL that was wet during wet periods. Finally, 
MWL rainfall intensity estimates from this new MSG and conventional 
techniques were compared to rain gauge estimates. The results show that the 
MSG technique is robust and can estimate gauge comparable rainfall estimates. 
The evaluation scores every three hours of RMSD, relative bias, and r2 based on 
the entire evaluation period results of the MSG technique were 2.61 mm h-1, 0.47, 
and 0.81, compared to 2.09 mm h-1, 0.04, and 0.84 of the conventional technique, 
respectively. For convective rain events with high intensity spatially varying 
rainfall, the results show that the MSG technique may approximate the actual 
mean rainfall estimates better than the conventional technique. 
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4.1 Introduction 

An MWL is a communication between two antennas (i.e., transmitter and 
receiver antennas) usually installed on telephone towers or roofs of buildings by 
mobile telecom service providers for data transmission from radio, TV, internet, 
and wireless communication between our cell phones (Edstam et al., 2018; 2015; 
Patrick, 2020). MWL uses 10GHz–80GHz frequency ranges for data 
transmission, which are attenuated mainly by rainfall such that the more intense 
the rainfall, the stronger the MWL experiences attenuation. For this reason, 
previous studies pioneered by (Leijnse et al., 2007a; Messer et al., 2006) have 
investigated and converted the MWL signal to hydro-meteorological valid rainfall 
estimates.  

Indeed, the MWL signal data have been studied for estimating rainfall for many 
applications (e.g. David et al., 2013; David et al., 2019; David et al., 2021; 
Doumounia et al., 2014; Kumah et al., 2020; Overeem et al., 2011). For example, 
Overeem et al. (2011) used the MWL data for measuring urban rainfall, and 
(David et al., 2013) demonstrated the data’s potential application for monitoring 
rainfall in dry climatic regions. In Africa, David et al. (2019); David et al. (2021) 
investigated the MWL data’s potential for providing valuable rainfall information 
for agricultural needs and (Doumounia et al., 2014; Kumah et al., 2020) tested 
its application for rainfall monitoring. Other studies have applied the data for 
country-wide rainfall monitoring (Overeem et al., 2013, 2016a) and 
complimenting gauge and radar rainfall estimates (Rahimi et al., 2004).  

Such extensive research of the MWL data for rainfall estimation is due to their 
specific advantages for rainfall monitoring comparable to prevailing techniques. 
For instance, their network on land is relatively dense and can estimate rainfall 
over vast areas comparable to weather radars. Additionally, this naturally dense 
MWL network allows for spatially redundant rainfall observing systems with 
potentially no single point of failure (i.e., unlike radars, when one MWL fails, 
several other links are usually active). Moreover, line-average rainfall estimated 
from the MWL is spatially representative of areal rainfall than point estimates 
from rain gauges. Further, the potential costs of running and maintaining the 
MWL network for rainfall estimation and monitoring are minimal since the 
telecom service providers have already established and maintained the 
infrastructure. 

Nonetheless, there are limitations to MWL rainfall estimation and monitoring. 
Access to MWL data can be a challenge. Usually, there are no standard 
procedures (Chwala & Kunstmann, 2019), so some studies (e.g. Leijnse et al., 
2007a; Upton et al., 2005) utilised self-made MWL data in their MWL rainfall 
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estimation. Additionally, the MWL network is designed for a purpose other than 
rainfall monitoring, often arbitrary in space and mostly biased towards densely 
populated areas (Zinevich et al., 2008). This complicates rainfall mapping from 
the MWL and can affect the retrieval accuracies for low MWL network density 
areas. Furthermore, the low sampling frequency (usually 15 minutes), precision 
(often 1 dB), and the noisy nature of the MWL data present additional challenges 
to accurate rainfall estimation from MWL data (Chwala & Kunstmann, 2019; 
David et al., 2015; Leijnse et al., 2008; Uijlenhoet et al., 2018).  

Currently, three primary steps are used to estimate rainfall from the MWL data. 
Firstly, the MWL received signal levels (RSL) are classified into wet and dry 
periods, describing periods when rain is present or absent on the MWL. This is 
essential because MWL rainfall estimation uses data from only the wet periods. 
The prevailing methods for this classification are centred on two concepts. One 
concept assumes rainfall is naturally correlated in space and relies on mutual 
attenuation on neighbouring for the wet-dry classification (Overeem et al., 
2016b). This concept favours high MWL network density areas but may 
significantly challenge areas with low network density and high spatially varying 
rainfall. The other concept classifies the MWL RSL data by analysing the 
statistical properties of the time series of the individual MWL (Schleiss & Berne, 
2010) and thus may not be affected by the network's density. However, gaps in 
the MWL RSL and low sampling frequency data may affect the wet and dry 
classification accuracy. 

Step two estimates the baseline level to represent the RSL behaviour during the 
dry period. The accuracy of this baseline level estimate is affected by the 
classification accuracy in the previous step and the fact that the MWL RSL 
fluctuate during the dry period due to attenuation caused by other non-rainfall-
related sources (Chwala & Kunstmann, 2019). Previous studies (e.g. Kumah et al., 
2020; Rios Gaona et al., 2015) estimated the baseline level as the median signal 
of all dry periods in the previous 24 hrs. The final step computes rain-induced 
specific attenuation (i.e., the relative loss of signal attributed to the MWL length) 
by subtracting the signal level from the baseline level and dividing it by the length 
of the MWL. Before estimating the path average rainfall from, e.g., the power-law 
model (Olsen et al., 1978), attenuations due to antenna wetting are often 
corrected using varying techniques, see, e.g. (Minda & Nakamura, 2013; Schleiss 
et al., 2013)). The wet antenna attenuation describes the additional attenuation 
caused by wetting the MWL antenna surfaces during and after rainfall; this needs 
to be estimated and corrected to prevent the overestimation of the MWL rainfall.  
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The conventional MWL rainfall estimation technique described above implies 
that the rain-induced attenuation and rainfall retrieved from the MWL represent 
average attenuation and rainfall over the entire MWL propagation path (Rios 
Gaona et al., 2015). Nevertheless, rainfall, in some cases, can vary 
spatiotemporally along the MWL propagation path. This suggests that the 
conventional technique may not, at all times, accurately represent the actual 
average rainfall intensity, e.g., as identified by rain gauges (Villarini et al., 2008). 

Due to the existing challenges in MWL rainfall estimation, this study advocates 
incorporating high-resolution information on clouds and rainfall from 
meteorological satellites, including MSG, in the rainfall retrieval procedure. MSG 
represents a significant advancement in observation capabilities from previous 
geostationary meteorological satellites. MSG’s radiometric sensor, SEVIRI, has a 
wide spectral range and a frequent repeat cycle (Schmetz et al., 2002). These 
measurement characteristics permit a quasi-continuous observation of rainfall 
distribution, making it possible to study spatiotemporally varying rainfall in near-
real-time (Bendix et al., 2010). 

Surprisingly, only a few studies have combined the MWL and satellite data for 
rainfall detection and estimation (Kumah et al., 2020; van het Schip et al., 2017). 
To our knowledge, no study has used the MSG satellite data to improve MWL 
rainfall estimations. Both data already exist at a comparable spatial coverage (on 
land) and temporal resolution while being used independently for rainfall 
detection, estimation, and monitoring. Nevertheless, the MWL and MSG data 
synergy could be valuable for areal rainfall estimation from the MWL. More 
precisely, a combination of the MWL and MSG, where the satellite estimates high 
spatiotemporal resolution raining area information, could be valuable to the 
MWL rainfall estimation procedure. For example, this study shows how MSG-
based rain area information could benefit the MWL’s wet-dry periods and 
baseline level estimation during the daytime. Additionally, it is shown in this 
study that the spatially distributed raining areas identified by the MSG could be 
critical information for identifying the approximate wet path of the MWL, 
particularly during spatially varying raining conditions such as convective rainfall 
(Hoedjes et al., 2014), and improve the MWL rainfall estimates thereof during 
the daytime.  

Therefore, this study benefits from MSG’s high measurement (temporal, spatial, 
and spectral) resolution for improving MWL rainfall intensity estimation during 
the daytime. More precisely, it is investigated whether MSG's high-resolution rain 
area detection could achieve wet-dry and baseline level estimation for a successful 
MWL rainfall estimation. Further, the rain area information from the satellite is 
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used to investigate a new parameter, wet path length (wpl in km), representing 
the approximate length of the wet MWL (i.e., length of the MWL covered by the 
rainfall) during each wet interval. This is particularly important under spatially 
varying raining conditions for improving the retrieved MWL rainfall estimates. 
Ultimately, this new technique—the MSG technique—and the conventional 
technique are compared to the actual mean rainfall intensities from rain gauges 
to evaluate the MSG-based rain areas’ effect on improving the MWL rainfall 
estimates. 

4.2 Study Area and Dataset 

The data used in this study were MWL, rain gauges, and MSG SEVIRI from a 
topographically complex area (-0.61° S, 36.6° E) close to the Aberdare mountain 
in Kenya (0.02° S, 37.90° E). The evaluation period was between May and June 
2018. Previous research in this region during the evaluation period demonstrated 
the data’s capability for rainfall detection and estimation (Kumah et al., 2020).  

Rainfall data from nine aerodynamic ‘tipping buckets’ (ARG TB) rain gauges and 
two rain gauges from TAHMO (van de Giesen et al., 2014) served as ground truth 
in this study. The ARG TB were aligned under the MWL transect. In contrast, the 
TAHMO gauges were placed close to its transmitting and receiving antennas. The 
ARG TB logged data every minute using a Gemini Tinytag data logger, while the 
TAHMO gauges recorded rainfall data every 5 minutes. One tip of the ARG TB 
equates to 0.198 to 0.202 mm of rain. 

A Kenyan telecom service provider, Safaricom, supplied the received signal level 
(RSL) data for a 15 GHz, 9.88 km MWL. The RSL data were characterised by 
minimum, maximum, and mean values at 15 minute intervals and a resolution of 
0.1 dBm. It is an Aviat Eclipse MWL, vertically polarised, and has a constant 
transmitted signal level (TSL). The data was accessed through Safaricom’s head 
office in Nairobi, Kenya.  

The MSG SEVIRI data was obtained from the Meteosat at 41.5o E, which 
corresponded to Meteosat 8 (EUMETSAT, 2016) when the data was retrieved. 
The SEVIRI channels used were visible (VIS0.6 μm) and near-infrared (NIR1.6 
μm), provided by EUMETSAT (2020) at 3km and 15 minutes spatiotemporal 
resolution. 
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4.3 Method 
4.3.1. Rainfall Intensities Estimated from Rain Gauges 

The rainfall for all gauges was used to estimate rainfall intensities (R mm h-1) at 
15 minutes. For the ARG TB, this was computed from the per-minute rain rate in 
millimetres estimated from the tipping count and the gauge-specific tip 
equivalent of rain in mm provided by the manufacturer. On the other hand, R 
(mm h-1) from the TAHMO data were computed from their 5 minutes 
accumulated rain rates. In this study, a gauge was considered raining if the R (mm 
h-1) was above 0.5 mm h-1; otherwise, it was non-raining. Table 1 summarises the 
non-zero rainfall data for all the gauges. The differences in the gauge rainfall data 
records are mainly due to spatial variability of rainfall in the area due to 
topography and gauge malfunctions during the field campaign. For instance, 
gauge G1 was often non-operational during the field campaign, thus having the 
least days with data records. Nonetheless, these gauge rainfall records depict high 
spatial rainfall variability over the MWL propagation path. 

Table 4. 1 Summary of non-zero rainfall intensities from all rain gauges. 

N is the total number of 15 minutes of rainfall data assembled from n number of days 
during the daytime in the evaluation period. The fraction (%) represents the fraction of 
raining periods. Standard dev is the standard deviation 

4.3.2. Rainfall Intensities Estimated from MWL 

The rain-induced specific attenuation 𝐴𝐴(dB km-1) can be used to estimate 𝑅𝑅 (mm 
h-1) from, e.g., the power-law model in (Olsen et al., 1978): 

A =  𝑎𝑎𝑅𝑅𝑏𝑏                                                             (4.01) 
where the 𝑎𝑎 ((dB km-1) (mm h-1)-b) coefficient and 𝑏𝑏 (-) exponent depend on the 
MWL frequency, polarisation, and local rainfall climatology (Olsen et al., 1978; 
Uijlenhoet et al., 2018), which can be acquired from the literature, such as (ITU, 
2005b).  

 

 G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 
Mean  7.12 7.65 8.74 8.25 6.79 4.41 2.88 4.36 6.7 3.82 3.98 

Maximum  43.46 23.64 72.36 49.53 27.72 43.63 5.54 27.47 19.3 12.86 28.02 
Standard dev 9.8 7.65 15.01 12.79 8.16 8.56 1.43 5.61 7.33 3.98 5.71 

Fraction % 3.29 1.72 2.4 1.98 1.46 2.82 1.14 2.47 0.62 0.82 1.88 
N 70 7 23 19 14 44 11 46 6 8 40 

n days 53 12 26 26 26 39 26 46 26 26 53 
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4.3.2.1. The Conventional Technique 

The conventional technique used to estimate MWL rainfall intensities in this 
study is described in detail by Kumah et al. (2020) and in the methodology of 
Chapter 2. Here, a summary of the steps used to estimate the path average rainfall 
from the mean RSL data is provided. (1) The wet-dry classification of the MWL 
signal was by the rolling window approach, which uses the time series of the 
individual MWL signals separately. (2) Next, a reference or baseline level was 
estimated as the median of the mean RSL of the previous 24 hours labelled as dry 
periods by the preceding step. Before computing 𝐴𝐴 from Equation 4.02, a 
dynamic wet antenna correction model (Schleiss et al., 2013) was used to correct 
the mean RSL from attenuation due to antenna wetting. 

𝐴𝐴𝑃𝑃𝑓𝑓 =  𝐵𝐵 − 𝑃𝑃
𝐿𝐿𝑓𝑓𝑓𝑓

   (4.01) 
where: 

𝐴𝐴𝑃𝑃𝑓𝑓 (dB/km)—is the rain-induced specific attenuation averaged over the 
entire MWL  
𝐿𝐿𝑃𝑃𝑓𝑓—is the MWL length, and 𝐵𝐵 and 𝑃𝑃  are the baseline and the mean RSL, 
corrected for the effect of antenna wetting according to the dynamic 
model by Schleiss et al. (2013).  

Finally, Equation 4.03 estimated the R (mm h-1) from 𝐴𝐴𝑃𝑃𝑓𝑓. 

𝑅𝑅𝑃𝑃𝑓𝑓 = �
𝐴𝐴𝑃𝑃𝑓𝑓
𝑎𝑎
�
1
𝑏𝑏
 (4.02) 

where 𝑅𝑅𝑃𝑃𝑓𝑓 is the path average rainfall computed based on the entire MWL length, 
and 𝑎𝑎 (0.05008) and 𝑏𝑏 (1.0440) were from (ITU, 2005b). 

4.3.2.2. The New MSG Technique  

The MSG technique incorporates an MSG-based rain area detection and 
correction method recently developed by Kingsley et al. (2021) into the MWL 
rainfall estimation procedure. The method detects rain areas at 3 km and 30 
minutes spatiotemporal resolution. However, in this study, it was implemented 
at MSG’s 15 minutes temporal resolution to match the temporal resolution of the 
MWL RSL data. Additionally, the method is capable of daytime and night-time 
rain area detection, but this study focused on daytime detection due to its high 
success rate of rain detection. Further details of the method and its accuracy can 
be found in (Kingsley et al., 2021); here, a summary and its application for MWL 
rainfall estimation are provided.  
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This rain area detection method is instantaneous, which means that, for each 
individual MSG scene, the method detects rain areas independent of the previous 
and subsequent scenes. It employs a parametric threshold model developed from 
a conceptual framework in which clouds characterised by top properties such as 
high top optical thickness and large effective radius have high rainfall 
probabilities and intensities. The daytime model is from MSG SEVIRI optical 
(VIS0.6) and near-infrared (NIR1.6) reflectance differences. Specifically, the 
model application assumes that a cloud is raining if the reflectance difference is 
above 0.21; otherwise, it is non-raining. The method subsequently corrects the 
detected rain areas by employing a gradient-based adaptive correction technique 
that uses rain area-specific parameters to reduce the number and sizes. 

 
Figure 4. 1 The MWL and rain gauges displayed in MSG pixels. 

The following steps describe how the MSG-based rain area information is 
incorporated into the MSG technique for estimating rainfall intensities from the 
mean RSL data. (1) During each 15 minute interval in the MWL mean RSL data, 
the rain area detection method classified the pixels over the link as raining or 
non-raining. When a pixel over the MWL was classified as raining, the new 
parameter, wpl, was retrieved from the length (km) of the MWL touching the 
raining pixel. Figure 4. 1 displays the MSG pixels over and around the 
neighbourhood of the MWL. 
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A 15 minute interval in the mean RSL data was classified as wet if the wpl was 
larger than 15% of the MWL length; otherwise, the interval was classified as dry. 
This was to ensure the retrieval of realistic path averaged specific attenuation 
values in the subsequent step. Simultaneously, the rainfall intensities measured 
by the rain gauges situated in the wpl were retrieved and averaged as the actual 
mean rainfall intensities. (2) After identifying the wet and dry periods in the RSL 
data, the baseline level was estimated from the mean RSL. The latter is the 
median of the previous 24 hours classified as dry by the MSG-based rain area 
detection technique. (3) Finally, the wet antenna correction method by Schleiss 
et al. (2013) was implemented before estimating the rain-induced specific 
attenuation from: 

𝐴𝐴𝑤𝑤𝑓𝑓 =  
𝐵𝐵𝑀𝑀𝑉𝑉𝑅𝑅 −  𝑃𝑃

𝐿𝐿𝑤𝑤𝑓𝑓
   (4.03) 

where: 
𝐴𝐴𝑤𝑤𝑓𝑓 (dB km-1)—the rain-induced specific attenuation averaged over wpl  
𝐿𝐿𝑤𝑤𝑓𝑓—the wpl (km) retrieved from the MSG-based rain area information 
𝐵𝐵𝑀𝑀𝑉𝑉𝑅𝑅—the baseline, retrieved from dry periods identified by the MSG-
based rain area information.  

The average R (mm h-1) was estimated from 𝐴𝐴𝑤𝑤𝑓𝑓 using: 

𝑅𝑅𝑤𝑤𝑓𝑓 = �
𝐴𝐴𝑤𝑤𝑓𝑓
𝑎𝑎
�
1
𝑏𝑏
  (4.04) 

where 𝑅𝑅𝑤𝑤𝑓𝑓 (mm h-1) represents the average rainfall intensity over wpl.  

4.3.2.3. Conditions and Uncertainties in Estimating the Rwp 

Some conditions under which the 𝑅𝑅𝑤𝑤𝑓𝑓 may be uncertain, and the approach to 
retrieving more accurate estimates is described. The first is when the wpl is 
between 1.5 (the threshold MWL length used to make a wet-dry decision in the 
RSL data) and 3 km (i.e., the width of the MSG pixel). Figure 4. 2a shows rain 
area detection over the MWL in binary classification (1 is rain and 0 is no rain), 
where wpl is approximately 2 km. The 𝑅𝑅𝑤𝑤𝑓𝑓 for such wpl are high and do not 
correlate with the gauge rainfall and MSG pixel intensity, such as those from 
convective raining pixels, because the MWL attenuation is computed over a short 
MWL length. For these cases, the 𝑅𝑅𝑤𝑤𝑓𝑓 from Equation 4.04 was multiplied by 𝛼𝛼 =

 𝑤𝑤𝑓𝑓𝑤𝑤
𝐿𝐿

, where 𝛼𝛼 < 1 and 𝐿𝐿 is the MWL length to retrieve more accurate estimates.  
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Figure 4. 2 MSG-based rain (blue), no rain (white) area detections over the MWL and wpl 
for different conditions. (a) Rain areas cover about 20% of the MWL’s length (b) Rain areas 
cover about 50% of the MWL’s length.  

The second is when wpl is estimated from rain areas defined by mixed pixels (i.e., 
raining MSG pixels of varying reflectance difference intensities) from a 
convective rain cloud. A convective rain cloud covered a few rain gauges (see 
Figure 2b), had high gauge rain intensities, and mostly lasted for less than an 
hour. The intensities of the raining area MSG pixels also varied from a maximum 
reflectance difference to a relatively low difference. Capturing the high rain 
intensities for such cases requires determining the centre of the convective 
rainstorm. This was determined as the raining pixels with reflectance difference 
greater than the mean reflectance difference of all raining pixels covering the 
MWL, and wpl was estimated from the length of the MWL covered by these pixels. 
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4.3.3. Error Metrics 

The average rainfall intensities by the conventional and MSG technique were 
compared to the rain gauges using the root mean squared deviation (RMSD), 
relative bias (RB), and coefficient of determination (r2) to evaluate their 
performances against the actual mean rainfall intensities. The actual mean 
rainfall intensities for the conventional technique were computed from all gauges 
under the MWL; for the MSG technique, this was computed from gauges under 
wpl. Detailed descriptions for these metrics are in (Barnston, 1992; Walther & 
Moore, 2005; Wilks, 2006) and Equations 4.05 and 4.06, respectively. 

𝑅𝑅𝐵𝐵𝐵𝐵𝑀𝑀 = �∑ (𝑅𝑅𝑀𝑀𝑖𝑖 − 𝑅𝑅𝑉𝑉𝑅𝑅𝑖𝑖)2𝑉𝑉
𝑖𝑖=1

𝑁𝑁
 (4.05) 

𝑅𝑅𝐵𝐵 =  
1
𝑁𝑁 ∗ ∑ (𝑅𝑅𝑀𝑀𝑖𝑖 − 𝑅𝑅𝑉𝑉𝑅𝑅𝑖𝑖)𝑉𝑉

𝑖𝑖=1

1
𝑁𝑁 ∗ ∑ 𝑅𝑅𝑉𝑉𝑅𝑅𝑖𝑖𝑉𝑉

𝑖𝑖=1

 (4.06) 

where:  
𝑅𝑅𝑀𝑀𝑖𝑖 —represents all possible MWL rainfall intensity estimates by the 
conventional and MSG technique  
𝑅𝑅𝑉𝑉𝑅𝑅𝑖𝑖 —represents all possible gauge mean rainfall estimates, and N is the 
number of samples. 

4.4 Results and Discussion  
4.4.1 Results 

This section compares the MWL rainfall intensity estimates by the conventional 
and the new MSG technique to actual mean rainfall intensities from gauges to 
evaluate the new technique’s accuracy for improving MWL rainfall intensity 
estimates. From the raw mean RSL to the MWL rainfall intensity estimates, line 
plots for specific rainy periods were used to compare MWL rainfall intensity 
estimates to rain gauge estimates. Due to the variable rain intensities, the selected 
periods allowed for an effective visual comparison of the new MSG and 
conventional techniques. Finally, performance metrics computed based on all the 
15 minute intervals in the MWL RSL data evaluate the accuracy of the new 
technique for MWL rainfall intensity estimation. 

4.4.1.1 From Raw RSL to Rainfall Intensity Estimates: a Comparison of the 
Conventional and MSG Technique 

Figure 4. 3 demonstrates the transformation of the mean RSL to rainfall 
intensities and its comparison with the actual mean intensities from rain gauges 
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according to the conventional and MSG techniques. Figure 4. 3a shows 
comparable baseline levels estimates by the conventional and MSG techniques. 
Figure 4. 3b compares the conventional and MSG technique's wet-dry 
classification. The dashed pink line indicates a standard deviation threshold value 
of 0.7 (dB), an empirically determined value by Kumah et al. (2020), that 
separates the wet (above 0.7 dB) and dry (below 0.7 dB) in the conventional 
technique. Instead, the MSG technique uses a binary classification of 0 and 1 to 
indicate when the MWL is wet (1) and dry (0).  

 

Figure 4. 3 From MWL mean RSL to rainfall for 15 minute interval rain events of 8 May 
2018. (a) compares the conventional (𝐵𝐵) and MSG technique (𝐵𝐵𝑀𝑀𝑉𝑉𝑅𝑅) baseline level to the 
mean RSL (𝑃𝑃), (b) compares wet–dry classification by the conventional (wet–dry) and 
MSG technique (wet–dryMSG)—the standard deviation threshold (wet–dry_thr, dashed 
pink line) value (0.7 dB) separates the wet and dry periods in the conventional technique; 
a binary class showing raining (1) and non-raining (0) periods separates the wet and dry 
periods in the MSG technique—(c) is the wpl over which the MSG technique computed 
attenuation (𝐴𝐴𝑤𝑤𝑓𝑓), (d) compares the conventional (𝐴𝐴𝑃𝑃𝑓𝑓) and MSG technique (𝐴𝐴𝑤𝑤𝑓𝑓) 
attenuation, (e) compares the conventional MWL rainfall intensity (𝑅𝑅𝑃𝑃𝑓𝑓) and the actual 
mean rainfall intensity (𝑅𝑅𝑉𝑉𝑅𝑅𝑃𝑃𝑓𝑓), and (f) compares the MSG technique MWL rainfall 
intensity (𝑅𝑅𝑤𝑤𝑓𝑓) and actual mean rainfall intensity (𝑅𝑅𝑉𝑉𝑅𝑅𝑤𝑤𝑓𝑓). 
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According to the wpl in Figure 4. 3c, the MWL was fully wet from the onset of the 
rain event until 11:15 and then partially wet at 11:30. Thus, this suggests that the 
rain events during the former periods occurred over the entire MWL length. In 
contrast, the event occurred over approximately half the MWL length for the 
latter period. Following these observations, one can observe comparable rain-
induced specific attenuation estimates (Figure 4. 3d) by the conventional and 
MSG techniques from the rain event onset until 11:15 since their attenuation 
estimates were computed over the entire MWL length. However, the attenuation 
estimate at 11:30 was comparatively higher for the MSG because, unlike the 
conventional technique, it was estimated over a shorter MWL length 
(approximately 5 km).  

The MWL rainfall intensities by the conventional and MSG techniques in Figure 
4. 3e,f, respectively, were comparable most of the time for this rain event. Overall, 
they had a convincing agreement with the actual mean rainfall intensities from 
the rain gauges according to the r2 values computed based on the entire rain event 
period. One noticeable feature in Figure 4. 3e,f is that both the conventional and 
MSG techniques overestimated the actual mean intensities at the onset of the 
rainfall event. 

Figure 4. 4, like Figure 4. 3, demonstrates the transformation of the mean RSL to 
rainfall intensities by the conventional and MSG techniques compared to the 
actual mean rainfall intensities from rain gauges. The baseline level by both 
techniques in Figure 4. 4a again shows comparable estimates. Their wet–dry 
classifications (Figure 4. 4b) are also primarily comparable, especially for wet 
periods between 11:00 and 12:00. As was observed in Figure 4. 3, these 
observations coincide with a decrease in mean RSL (dB) attributed to rainfall as 
observed by the rain gauges.  

However, there are some differences in Figure 4. 4b. The wet-dry classification 
by the MSG technique seems to detect wet periods before the onset of the wet 
period, which does not agree with the mean RSL and the no rainfall occurrence 
in the rain gauges, e.g., between 10:30 and 10:45. On the other hand, the 
conventional technique missed the onset of the wet periods between 10:45 and 
11:00. For the MSG technique, this may be due to the raining cloud top properties 
available before the onset of the rain event, which resulted in false rain detection 
by the rain detection method used by the MSG wet–dry classification technique. 
By contrast, the conventional wet-dry technique missing the beginning of the wet 
period may be due to low rainfall intensities that resulted in a mean RSL that is 
not entirely different from the RSL in the preceding dry periods. Again, the 
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conventional technique continues to report wet periods even after it has ceased, 
likely due to the wet antenna effect. 

 
Figure 4. 4 (a-f) As in Figure 4. 3 but for 15 minutes interval rain events of 2 June 2018. 

Figure 4. 4c suggests spatiotemporally distributed rainfall events occurred along 
the MWL length, indicated by time-varying wpl, for the entire raining period. 
Such rainfall events are often attributed to convective rainfall and are associated 
with sub-hourly high rain intensities. In Figure 4. 4d, the MSG technique 
estimated comparatively high attenuations than the conventional technique 
because it was estimated over a portion of the MWL length rather than the entire 
length (i.e., according to the conventional technique).  

As shown in Figure 4. 4e,f, the rainfall intensities by the MSG technique are also 
comparatively higher than the conventional technique due to its higher 
attenuation estimates. Its rainfall intensity estimates better reflect the high 
rainfall intensities observed for that rainfall event and compare better to its actual 
mean rainfall than the conventional technique according to the error metrics 
shown in the figures. This can be attributed to determining the rainstorm's centre 
for a more accurate estimation of wpl to capture the high rainfall intensities. 
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Figure 4. 5 (a–f) As in Figure 4. 3 but for 15 minutes interval rain events of 9 June 2018. 

Figure 4. 5 is an analogous comparison of Figure 4. 3 and Figure 4. 4, but for 
different date-time periods. Again, Figure 4. 5a shows comparable baseline levels 
estimates by the MSG and conventional techniques. The wet-dry classification in 
Figure 4. 5b shows that the MSG technique captures the dynamics in the mean 
RSL and rainfall observation in the rain gauges better than the conventional 
technique. It is clear from the figure that the technique coincides nicely with the 
onset and end of the wet period and the dry periods preceding and after the wet 
periods. On the other hand, the conventional technique missed the onset of the 
wet period and continued to detect wet periods even after they had ceased. 

The wpl shown in Figure 4. 5c suggests spatiotemporally varying rainfall events 
occurred along the MWL length, as in the previous analysis (Figure 4. 4c). 
Correspondingly, Figure 4. 5d shows comparatively higher attenuation estimates 
by the MSG than the conventional technique. This is because it was estimated 
over varying portions of the MWL rather than the entire length based on the 
conventional technique. According to their figures' error metrics, their rainfall 
estimates in Figure 4. 5e and Figure 4. 5f show good agreement with the actual 
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mean rainfall estimates from the gauges, albeit better in the MSG than the 
conventional technique. 

 
Figure 4. 6 (a–f) As in Figure 4. 3 but for 15 minutes interval rain events of 3 May 2018 

Albeit analogous to previous figures, Figure 4. 6 is a unique comparison of the 
MSG and conventional techniques regarding frequent gaps in the MWL RSL data. 
The mean RSL in Figure 4. 6a shows that the MWL data was available for only a 
few minutes of this rainfall event. For this reason, wet-dry classification, 
attenuation, and rainfall (Figure 4. 6b,d,e, respectively) were unsuccessful in the 
conventional technique. However, the MSG technique instantaneously 
determines the wet-dry periods and wpl from the rain areas information (Figure 
4. 6b and c). Therefore, the technique could estimate attenuation and rainfall 
intensities (Figure 4. 6d,f, respectively) for the period when the MWL data was 
available. Note that the r2 values are not computed in Figure 4. 6e,f because the 
MWL data gaps did not allow for a fair comparison of MWL–gauge rainfall 
intensities. 
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Figure 4. 7 (a–f) As in Figure 4. 3 but for 15 minutes interval rain events of 15 May 2018. 

Figure 4. 7 demonstrates the effect of 𝛼𝛼 in correcting the 𝑅𝑅𝑤𝑤𝑓𝑓 described in Section 
4.3.2.3. As shown in Figure 4. 7b,d,e, the conventional technique missed this 
period's rain event, possibly due to the low rain rates (< 5 mm h-1) observed based 
on the gauge rainfall data. The MSG technique’s wet-dry classification detected 
the event (Figure 4. 7b), which may be attributed to the MSG-based rain area 
detection’s ability to detect low rain rates. The wpl in Figure 4. 7c shows the time-
varying MWL length covered by the rain. For instance, at the beginning and end 
of the event, the estimated wpl was < 3km. Subsequently, the attenuation and 
rainfall retrieved based on this MWL length were high and did not agree with the 
gauge rainfall intensities, thus requiring correction. After correction, using the 𝛼𝛼, 
the MSG technique’s rainfall intensities 𝑅𝑅𝑤𝑤𝑓𝑓−𝑐𝑐𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑠𝑠𝑃𝑃𝑑𝑑 visually shows a better 
agreement with the observed rainfall intensities by the rain gauges than its 
previous estimate based on the wpl. 

Overall, the results show that rainfall estimation from MWL is robust in 
approximating the actual mean rainfall intensities over the MWL propagation 
path. Additionally, the MSG technique successfully estimated wet-dry and 
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baseline-level MSG techniques. This can be attributed to the MSG-based rain area 
detection, which uses relevant information content on cloud-top properties and 
rainfall available in the VIS 0.6 and NIR 1.6 reflectance pair.  

In particular, the successful baseline level estimates by the MSG technique can be 
attributed to the robustness of the MSG data in detecting dry areas (Kumah et al., 
2020). Furthermore, the new parameter, wpl, derived from the MSG-based rain 
area information, effectively estimated attenuation and rainfall intensities 
comparable to the conventional and actual gauge estimates, especially when the 
entire MWL length was wet. Based on the results, it can also be stated that when 
the rainfall is not spatially covering the entire length of the MWL, the MSG 
technique provides a better estimate of the actual mean rainfall as retrieved from, 
e.g., rain gauges. 

4.4.1.2 Appraisal of the MSG and Conventional Technique for MWL Rainfall 
Intensity Estimation 

Table 4. 2 presents the error metrics computed based on MWL and gauge rainfall 
intensity pairs for evaluation timestamps at 15 minutes, 30 minutes, hourly, and 
every three hours for both the MSG and conventional techniques. The RB suggest 
an overestimated rainfall intensities by the MWL relative to the actual gauge 
estimates, albeit comparatively higher in the MSG than the conventional 
technique. This is reflected in the RMSD, which is comparable for the two 
techniques, except for the 3-hourly scores. Nonetheless, their r2 values were 
above 0.5 at 15 min, which increased due to aggregation (Rowe, 1976) above 0.8 
at hourly and 3-hourly evaluation timestamps, indicating that both techniques 
can estimate gauge comparable rainfall intensities. 

Table 4. 2 Error metrics computed for varying evaluation timestamps. 

Estimation 
technique 

RMSD mm h-1 RB r2 
15 

min 
30 

min 1 h 3 h 15 
min 

30 
min 1 h 3 h 15 

min 
30 

min 1 h 3 h 

MSG 0.63 0.84 1.32 2.61 0.47 0.47 0.47 0.47 0.70 0.78 0.83 0.81 
Conventional  0.60 0.80 1.23 2.09 0.02 0.02 0.03 0.04 0.63 0.73 0.80 0.84 
The total number of MWL–gauge rainfall intensity pairs (including raining > 0.5 mm h-1 
and non-raining < 0.5 mm h-1) that computed the error metrics were 2088, 1380, 660, 
and 240 for the evaluation timestamps at 15, 30 minutes, one hour, and three hours, 
respectively, covering the evaluation period. These data and periods corresponded to when 
the MWL, MSG satellite, and rain gauges coincided. 

Various factors may account for the overestimation of rainfall intensities by the 
MWL relative to the gauge estimates. The MWL rainfall intensities represent 
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areal average estimates derived from 15 minutes instantaneous mean RSL data. 
In contrast, the gauge computed average rainfall estimates from point 
measurements recorded per minute and 5-minute intervals. Additionally, spatial 
variability of rainfall in the study area and uncertainties in the MWL rainfall 
estimation may contribute to the discrepancies between the MWL and gauge 
estimates (Kumah et al., 2020; Uijlenhoet et al., 2010). 

In particular, compared to the conventional technique, the comparatively high 
overestimation by the MSG is mainly attributed to uncertainties in the MSG-
based rain area detection (Kingsley et al., 2021). For instance, false alarms in the 
rain area detection method could significantly affect the wet-dry classification 
and baseline level estimation. A dry interval in the MWL data, incorrectly 
identified by the MSG-based information as wet, could compute rainfall for a dry 
period and affect the RMSD and RB scores. Furthermore, the MSG technique 
estimated high attenuation and rainfall intensities for wpl less than the MWL 
length (indicating spatial variability of rainfall over the MWL). Additionally, this 
wpl is tied to the MSG rain area information’s accuracy and may further impact 
the computed error metrics that evaluate the MSG technique’s accuracy. 

4.4.2 Discussion 

A new technique for MWL rainfall estimation is investigated and described using 
15 GHz, 9.88 km MWL, and MSG SEVIRI VIS0.6 μm and NIR1.6 μm satellite 
data. The investigation, conducted during the daytime, used the MSG data for 
detecting rain areas, according to the method by Kingsley et al. (2021), over the 
MWL propagation path. This spatial information on rain areas provided by the 
MSG data estimated three significant parameters: wet-dry periods, baseline level, 
and wpl for estimating MWL rainfall intensities. 

All three parameters were estimated instantaneously from the MSG satellite data. 
The wet-dry periods indicate when the MWL was wet or dry, whereas the baseline 
level represents the MWL’s behaviour in the dry period. The wpl is a property of 
the MWL’s length, indicating the approximate length of the MWL during a wet 
period based on which the rain-induced attenuation was estimated. Eventually, 
rainfall intensity was estimated using all parameters. The results were compared 
to intensities estimated by a conventional method and rain gauges (where the 
gauge served as the actual estimates). 

The results demonstrate an effective skill of the new MSG technique. The wet-dry 
periods and baseline level estimates were comparable to the conventional 
technique. In addition, the wpl effectively estimated the MWL signal attenuations 
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for wet periods. Subsequently, the rainfall estimates agreed well with the 
conventional and rain gauge estimates when the rainfall was spatially covering 
the entire length of the MWL (i.e., when the wpl was equal to the MWL length). 
However, when the rainfall is convective and spatially covered a portion of the 
MWL, determining the centre of the rainstorm was required to estimate a more 
accurate wpl and capture the high rainfall intensities that reflect the actual mean 
intensities better than the conventional technique. Moreover, unlike the 
conventional technique, the MSG technique’s rainfall detection and estimation 
were unaffected by periods with no MWL RSL measurement. 

Furthermore, the current study’s results were better than the previous study's 
results (Kumah et al., 2020) for the same link, albeit with overestimation. The 
hourly RB and r2 values were –0.18 and 0.58, respectively, estimated from 
combined daytime and night-time rainfall. The differences in performance may 
be due to the daytime rainfall and its high rainfall intensities measured by this 
current study, for which the influence of wet antenna and wet-dry classification 
errors may be minimal (Overeem et al., 2021) 

The MSG technique showed higher RB and RMSD scores than the conventional 
technique. Generally, the differences can be attributed to differences in their 
measurement techniques and uncertainties in the MWL rainfall estimation 
procedure. The differences resulting from the uncertainties in the rain area 
detection provided by the MSG, such as false rain detections, could be interpreted 
in the MWL data as wet periods and be used to compute rainfall during dry 
periods, impacting the metric scores. It is noteworthy that this study’s results 
were based on daytime MSG satellite reflectance data. Additionally, convective 
clouds with cold cloud top temperatures are responsible for most of the rainfall 
in the area. Therefore, our analysis did not consider the overall effect of warm 
rainfall, i.e., rain from clouds with top temperatures warmer than 273 K (Feidas 
& Giannakos, 2010; Thies et al., 2008d). However, for night-time applications 
and applications with rain areas derived from thermal infrared satellite data, e.g., 
(Feidas & Giannakos, 2010), warm rains may further impact the error metrics. 
For instance, the MSG technique may underestimate the actual mean rainfall 
estimates for warm rains that are not detected by the satellite-based rain area 
information. 

The study’s results may have many implications. For instance, the successful 
wet–dry classification and baseline level estimation by this MSG technique 
indicates that it may be applied when the conventional technique is limited. In 
particular, since their estimation is independent of the MWL RSL data and 
instantaneous from the satellite data, it may not be affected by the MWL network 
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density or sampling frequency of the MWL RSL data, which are common to the 
conventional technique. Additionally, wpl could estimate mean rainfall 
intensities more reflective of the actual mean rainfall intensities. This fact 
indicates that spatial variability of rainfall along the MWL (as shown in Section 
4.3.1) may be essential information to consider in the MWL rainfall estimation. 
More detailed information on the rainfall process and type (such as convective, 
stratiform) from the satellite, e.g., (Thies et al., 2008c; Thies et al., 2008d), may 
also inform the 𝑎𝑎 and 𝑏𝑏 parameters in Section 4.3.2, because these parameters 
may differ according to the rainfall type, e.g., convective rainfall (Olsen et al., 
1978), and may improve the MWL rainfall estimates. An overall implication of 
the success of this MSG technique based on this study’s results is that the MWL 
MSG synergy may be beneficial for large-scale rainfall estimation and monitoring 
or complement existing techniques. 

Despite the new MSG technique’s robustness and accurate rainfall estimates, 
further studies are needed, for instance, using multiple MWL. Additionally, wpl 
needs further investigation, especially for wpl less than the width of the MSG pixel 
(i.e., ~3 km). Furthermore, from a scientific research perspective, it is necessary 
to estimate and validate wpl using other remote sensing systems such as weather 
radars. In fact, radars may provide better estimates since they can provide rainfall 
locations more accurate than those derived using cloud-top information from 
geostationary satellites such as MSG. These questions constitute our future 
research. 

4.5 Conclusions 

A new MSG technique for MWL rainfall estimation was presented, which 
incorporates rain area detections by MSG satellite for the MWL rainfall retrievals. 
Based on the presented results, the technique is robust and is capable of wet-dry, 
baseline, and gauge comparable rainfall intensity estimates to benefit many 
operational and research applications. Specifically, the results confirm the 
capability of the MWL to estimate accurate mean rainfall estimates that had 
occurred over the MWL propagation path, especially when the rainfall occurred 
over the entire MWL path. However, when rainfall is spatially varying over the 
MWL (often the case for high-intensity convective rainfall), the results suggest 
that the MSG technique may approximate the actual mean rainfall better than the 
conventional technique. 

Nevertheless, the technique is limited because its accuracy is linked to the spatial 
information on rain areas provided by the MSG satellite data. Nonetheless, this 
limitation may be somewhat prevented using more accurate information from 
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remote sensors such as weather radars. The study’s results are from a single 15 
GHz, 9.88 km MWL with two months of gauge, MWL, and satellite data. Despite 
this limitation, the results improve the MWL rainfall estimation, specifically from 
a spatially varying rainfall occurrence perspective. Additionally, it is shown that 
the satellite information is capable of wet-dry and baseline level estimation, 
which may benefit the large-scale application of the MWL and satellite for rainfall 
retrievals. 

Overall, the new MSG technique may largely contribute to rainfall estimation and 
monitoring in many ungauged areas where the MWL and satellite data are readily 
available. In particular, its application for estimating high rainfall intensities 
from convective systems may benefit many applications in flash flood warnings 
and the nowcasting of hazardous storms.
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Abstract 
High spatiotemporal resolution rainfall is needed in predicting flash floods, local 
climate impact studies and agriculture management. Rainfall estimation 
techniques like satellites and commercial microwave links (MWL) rainfall 
estimation have independently made significant advancements in high 
spatiotemporal resolution rainfall estimation. However, their combination for 
rainfall estimation has received little attention, while it could benefit many 
applications in ungauged areas. This study investigated the usability of the 
random forest (RF) algorithm trained with MWL rainfall and Meteosat Second 
Generation (MSG) based cloud top properties for estimating high spatiotemporal 
resolution rainfall in the sparsely gauged Kenyan Rift Valley. Our approach 
retrieved cloud top properties for use as predictor variables from rain areas 
estimated from the MSG data and estimated path average rainfall intensities from 
the MWL to serve as the target variable. We trained and validated the RF 
algorithm using parameters derived through optimal parameter tuning. The RF 
rainfall intensity estimates were compared with gauge, MWL, GPM IMERG and 
EUMETSAT MPE to evaluate its rainfall intensities from point and spatial 
perspectives. The results can be described as good, considering they were 
achieved in near real-time, pointing towards a promising rainfall estimation 
alternative based on the RF algorithm applied to MWL and MSG data. The 
applicative benefits of this technique could be huge, considering that many 
ungauged areas have a growing MWL network and MSG and, in the future, 
Meteosat Third Generation (MTG) coverage.   
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5.1 Introduction 

Understanding the hydrologic and energy cycles to enhance our meteorological 
and hydrological monitoring capabilities, predict flash floods, manage water 
resources and make agricultural decisions at a farm-scale level require high 
spatiotemporal resolution rainfall information, including its distribution and 
quantity. However, rainfall’s intricate characteristics, such as high 
spatiotemporal variability, hinder accurate spatial rainfall retrieval from 
prevailing techniques (Hu et al., 2019).  

Spatial interpolation techniques such as deterministic, geostatistical and multiple 
regression have been widely used to retrieve the spatial state of rainfall from 
gauge rainfall data (Hu et al., 2019; Ly et al., 2013). However, rain gauges are 
often sparsely distributed, and the accuracy of these methods depends on the 
density and spacing of rain gauges. Even if one could install a spatially dense 
gauge network with extensive coverage that can accurately capture the spatial 
characteristics of rainfall, such a task will be expensive to install and maintain. 
Besides, the gauge provides point rainfall information that may not spatially 
represent the entire rainfall field (Gyasi-Agyei, 2020; Yan et al., 2021). 

MWLs used by commercial telecom service providers for data transmission can 
estimate rainfall (Leijnse et al., 2007a; Messer et al., 2006). Following a 
successful demonstration of such a unique rainfall retrieval technique, some 
studies have utilised the MWL for spatial rainfall retrieval and demonstrated the 
potential of using the globally spread MWL system for rainfall mapping (Messer 
et al., 2008; Overeem et al., 2016b; Silver et al., 2021). Nonetheless, various 
factors may limit accurate spatial rainfall estimation from the MWL. The accuracy 
of the MWL’s rainfall estimates is affected by the variation of raindrop size 
distribution along the MWL path and the fact that the MWL antenna wetting 
during and after rainfall introduces additional uncertainties to the MWL signal. 
Furthermore, the MWL’s network is arbitrary, and the density is often biased 
towards more developed countries and urban areas, affecting retrieval accuracies 
in underdeveloped countries and rural areas (Kumah et al., 2021; Zinevich et al., 
2008).   

Additionally, remote sensing systems such as weather radars and satellites 
provide spatially continuous rainfall information and have been a valuable source 
of spatial rainfall information for operational and research applications. The 
weather radars estimate spatial rainfall from backscattered radar power from 
precipitation particles, typically using low frequency (S or C band) high power 
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radar systems (Michaelides et al., 2009). Nonetheless, radars cannot be installed 
everywhere, e.g. over oceans and topographically complex regions. Also, various 
error sources, including uncertainties in the backscattering-rainfall (Z-R) 
relationship, beam overshoot and range effects, and vertical profile reflectivity, 
limit the radar estimates' accuracy (Uijlenhoet & Berne, 2008; Yan et al., 2021).  

Satellites are spaceborne in low earth or GEO orbit, and their rainfall estimates 
have extensive coverage that fills the spatial rainfall information gap. In 
particular, the GEO satellite-based spatial rainfall information retrieval has been 
the focus of many studies due to its high spatial and temporal resolution that 
permits the study of sudden and intense rainfall with thunderstorms from 
convective systems. Notably, retrieval from the MSG satellite has received 
significant attention because of its high temporal resolution and wide spectral 
range consisting of different channels that infer cloud top properties and rainfall. 
Most MSG-based retrievals use multispectral data to infer optical and 
microphysical cloud top properties such as cloud top optical thickness and 
effective radius for rainfall detection and estimation (Bendix et al., 2010; 
Roebeling & Holleman, 2009; Thies et al., 2008d). Other retrieval techniques 
relate the MSG’s spectral features to cloud top properties and rainfall (Feidas & 
Giannakos, 2010; Kingsley et al., 2021). 

A parametric approach that relates the cloud top properties to rainfall is at the 
core of these retrieval techniques. Typically, their application requires a 
definition of parametric tests and underlying conceptual models. The advantage 
is that their application is straightforward, requiring few input variables, and they 
directly map the conceptual knowledge of the rain generation process onto the 
retrieval using the satellite data as proxies (Kingsley et al., 2021). In contrast, the 
non-linear and complex relation between cloud top property and rainfall may be 
beyond the skill of parametric tests and conceptual models (Kühnlein et al., 
2014b).     

In this regard, machine learning algorithms that rely on data-driven analysis to 
explore the relationship between variables and have strong capabilities in dealing 
with non-linear relations may be suitable for retrieving rainfall from the 
multivariate satellite data to overcome the limitations of the parametric 
techniques (Hu et al., 2019; Kühnlein et al., 2014a; Kühnlein et al., 2014b). 
Several studies have successfully used machine learning algorithms such as RF, 
NNET, SVM and deep-learning models for spatial rainfall estimation (Kühnlein 
et al., 2014a; Lazri et al., 2014; Meyer et al., 2016; Moraux et al., 2019). In 
particular, the RF machine (Breiman, 2001) learning algorithm has gained 
significant attention. It is an ensemble classification and regression algorithm 
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that assumes that a whole set of trees can make more accurate predictions than a 
single tree or network. The RF algorithm has many features that suit its 
application for rainfall retrievals. For instance, it efficiently handles large 
datasets and can capture non-linear relations between predictor and target 
variables (Kühnlein et al., 2014a). However, most of its applications to MSG data, 
such as (Kühnlein et al., 2014a; Kühnlein et al., 2014b; Meyer et al., 2016), used 
gauge-adjusted radar data as the training target, which may be sparsely 
distributed or non-existent depending on the study area. To the best of our 
knowledge, no study has applied the RF algorithm to MSG data and used MWL-
based rainfall as the training target, while the application could be beneficial to 
areas with insufficient ground data but with a growing MWL network. 

Therefore, the objective of this chapter is to evaluate the usefulness of the RF 
algorithm trained with MWL-based rainfall intensities for estimating high 
spatiotemporal resolution rainfall from cloud top properties of the MSG satellite. 
Compared to existing studies,  this study’s uniqueness is due to the following 
reasons: 

1) This study applied the RF algorithm for rainfall estimation in a 
topographically complex area in the Kenya Rift Valley, where gauge data 
is sparsely distributed  

2) This study trained the RF algorithm using MWL rainfall as the target 
variable for the first time.  

5.2 Study Area and Dataset 

Figure 5. 1 shows the study area using ALOS World 3D 30 m (AW3D30) DEM 
(Caglar et al., 2018) to visualize the area’s location within the Kenyan Rift  Valley. 
The area’s temperature ranges between 8 and 30 °C. It experiences a bimodal 
rainfall pattern influenced by the passage of the ITCZ over Kenya. There is a long 
rainy season from March to June and a shorter rainy season from October to 
December. Additionally, rainfall varies noticeably with relief features, with the 
total annual rainfall of the low and high altitudes varying between 610 to 1525 
mm (Odongo et al., 2015), respectively. 

This study’s evaluation period was during the long rain period of 2014, 2018 and 
2019, which constitute the periods we had consistent and collocated ground and 
satellite data. For the 2018 and 2019 periods, gauge rainfall data from TAHMO 
were available as 5 min rainfall accumulations. These computed the 15-minutes 
rainfall intensities that served as the ground truth in this study. The TAHMO 
gauges are shown as white triangles (labelled by the station codes provided by 
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TAHMO) in Figure 5. 1 and illustrate a sparse distribution of ground data in the 
study area.  

Safaricom provided the RSL data for the set of MWL with arbitrary geometry, 
frequency and length in the study area, as shown in Figure 5. 1 For the 2014 and 
2019 periods, data from multiple MWL were available. In contrast, for the 2018 
period, only a single 15 GHz MWL data was available. These MWL are Aviat 
Eclipse MWL, vertically polarised, and has a constant transmitted signal level 
(TSL). Their RSL was characterised by minimum, maximum, and mean values at 
15 minute intervals and a 0.1 dBm resolution. 

 
Figure 5. 1 Study area in Kenya, locations of rain gauges and topology of MWL shown using 
ALOS DEM as a base map 

The IR (IR10.8 µm and IR12.0 µm) and water vapour (WV6.2 µm and WV7.3 µm) 
channels used in this study were from the SEVIRI radiometer onboard the 
Meteosat at 00 (2014 period) and 41.5o E (2018 2019 period). This corresponded 
to Meteosat 10 and 8 satellites, respectively (EUMETSAT, 2016), when the data 
was acquired from (EUMETSAT, 2020) at 3×3 km and 15 min spatial and 
temporal resolution. This spatial resolution is preserved over the study area. 
These channels are sensitive to cloud top properties such as cloud top 
temperature and height. The data from the Meteosat at 0o were parallax corrected 
because of the satellite viewing angle, which could cause displacement in the 
actual position of cloud tops depending on their location and height (Kumah et 
al., 2020; Roebeling & Holleman, 2009). 
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The IMERG final run version 6 (V06B) and EUMETSAT MPE rainfall products 
verified this study’s retrieved rainfall spatially. The MPE is a near real-time 
rainfall product derived for each repeat cycle of Meteosat 7, 8 and 9 satellites from 
the thermal IR channel. The MPE algorithm relies on a weather-dependent 
monotonic function that relates the IR brightness temperatures to the PMW 
SSM/I rain rates. For this reason, MPE continuously adjusts the retrieval 
function geographically and temporarily, using the PMW rain rates as calibration 
values. The retrieval function is based on the histogram matching technique 
derived from collocated IR images and PMW data accumulated over up to 12 
hours and in 5o x 5o geographical boxes to account for the poor spatial coverage 
of the PMW measurement. The MPE rainfall product is most suitable for 
convective rainfall because the monotonic function assumes that colder clouds 
produce more rain than warm clouds (Heinemann & Kerényi, 2003). This study 
retrieved MPE data from EUMETSAT (2020) at 15 minutes and 3×3 km 
resolution for the evaluation period. 

The description of the IMERG precipitationCal data in this study is given in 
Chapter 3. This study used the precipitationCal data because it is a research-grade 
product that is climatologically adjusted using ground data from the GPCC. 
Moreover, previous studies in the study area (Kingsley et al., 2021) had found 
good agreement when they compared the data with MSG-based rain areas and 
ground data. IMERG data can be retrieved from 
https://gpm.nasa.gov/data/imerg (accessed on 16th February 2022) at 
approximately 0.10 × 0.10 and 30 minutes resolution.  

5.3 Method 
5.3.1. General methodology of the rainfall retrieval 

This study retrieved high spatiotemporal resolution rainfall intensities from MSG 
satellite data using the RF algorithm trained with MWL rainfall intensity 
estimates. Figure 5. 2 shows a flow chart of the retrieval procedure, comprising 
the three steps:  

(1) initial detection of raining areas 
(2) estimating MWL rainfall intensities  
(3) estimating the rainfall intensity of the detected raining areas step 1.  

In this study, steps 1 and 2 were based on techniques described in previous 
studies (Kingsley et al., 2021; Kumah et al., 2020, 2021) and in chapters 2, 3 and 
4 of this dissertation. Step 3 was realised by using the RF algorithm. These steps 

https://gpm.nasa.gov/data/imerg
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agree with the optical rainfall retrieval approach that separates rain area 
detection from the rain rate estimation (Bendix et al., 2010). 
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Figure 5. 2 Flow chart of this study's rainfall retrieval procedure 

5.3.1.1 Detecting rain areas 

The rain area identification technique was based on the approach described in 
Chapter 3. It relies on a parametric threshold model based on the concept that 
clouds with high cloud top optical thickness and height have high rain 
probabilities and intensities and vice versa. The basis of this conceptual model is 
rooted in the characteristics of raining clouds provided by Lensky and Rosenfeld 
(2003a). The rain detection model uses differences in brightness temperature of 
the thermal IR and water vapour channels such as IR10.8–IR12.0 K and IR10.8–
WV6.2 K BTD from IR10.8 µm, IR12.0 µm and WV6.2 µm SEVIRI channels to 
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infer the cloud top optical thickness and height properties. It applies a threshold 
to a 2-D space defined by these BTDs, assuming that a cloud is more likely to rain 
if the parameter (i.e. the BTD) is below the threshold value. The threshold values 
were determined by calibrating and validating the detection model using gauge 
rainfall and satellite data. Subsequently, a gradient-based adaptive correction 
technique reduces the number and sizes of the detected rain areas by using rain 
area-specific parameters. 

5.3.1.2 Estimating rainfall intensities from the MWL data 

This section presents this study's MWL rainfall estimation method, which 
summarises the conventional approach previously described in Chapters 2 and 4 
and in (Kingsley et al., 2021; Kumah et al., 2020). The approach estimates rainfall 
intensities from the mean RSL data by first classifying the data into wet and dry 
periods using a rolling window statistical technique. Next, a baseline level is 
estimated as the median of the mean RSL of the previous 24 hours labelled as dry 
periods by the wet and dry classification step. Finally, the mean RSL data is 
corrected for the effect of the wet antenna (Schleiss et al., 2013) before retrieving 
attenuation and rainfall from equations 5.01 and 5.02, respectively. 

𝐴𝐴 = 𝐵𝐵−𝑃𝑃
𝐿𝐿

          5.01 

𝑅𝑅 = �A
𝑎𝑎
�
1
𝑏𝑏   

5.02 

where:  
𝐴𝐴 (dB/km)—is the rain-induced specific attenuation averaged over the 
entire MWL  
𝐿𝐿—is the MWL length, and 𝐵𝐵, 𝑃𝑃 are the baseline and the mean RSL, 
corrected for the effect of antenna wetting by using a dynamic model by 
Schleiss et al. (2013). 
𝑅𝑅—is the MWL rainfall intensity, 𝑎𝑎(0.05008,0.1284) and 
𝑏𝑏(1.0440,0.9630) values were from (ITU, 2005b) for the 15,23 GHz MWL 
respectively. 

5.3.1.3. Estimating spatial rainfall intensities using RF 

i. The predictor variables 

Based on conceptual ideas used by optical rainfall retrieval models in the last 
decades, optical cloud properties most relevant to rain areas and rain rates are 
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cloud top temperature, height, and cloud water path (represented by the cloud 
optical thickness and particle effective radius). Retrieval techniques such as those 
that use only the cloud top temperature often consider the cloud top temperature 
to indicate the cloud top height and assume that cold clouds produce (more) 
rainfall (Arkin & Meisner, 1987). Though this worked for convective clouds, the 
technique considered cold non-raining cirrus clouds as raining or missed rainfall 
from the relatively lower warm clouds. The cloud water path retrievals, e.g. 
(Bendix et al., 2010; Thies et al., 2008d), assume that rain clouds have high 
optical thickness and effective radius with extended tops.  

This study utilised two kinds of information as predictor variables: (1) spectral 
features and (2) gradient features, summarised in Table 5. 1. The spectral features 
were derived from SEVIRI channels and differences. They are consistent with 
those used by previous studies (Kingsley et al., 2021; Kühnlein et al., 2014a; 
Kühnlein et al., 2014b) to infer cloud top properties such as cloud top 
temperature, height, optical thickness and particle effective radius, for rain area 
and rain rate retrievals.  

Table 5. 1 The predictor variables used for rainfall retrieval 
Spectral features 

Pixel gradient features Cloud top properties Channels and channels 
differences 

Cloud top temperature IR10.8 K ∆IR10.8 K 

Cloud top height IR10.8–WV6.2 K ∆IR10.8–WV6.2 K 
IR12.0–WV7.3  K  ∆IR10.8–IR12.0 K 

Cloud height WV6.2–WV7.3 K ∆WV6.2–WV7.3 K 
Cloud optical thickness IR10.8–IR12.0 K ∆IR12.0–WV7.3  K 

The gradient features indicate pixel gradients in the cloud top properties. This 
was computed based on past study’s (Kingsley et al., 2021) method described in 
Chapter 3. Previous studies used gradient features in satellite rainfall retrievals 
(Gao et al., 2004; Li et al., 2021). The reason for including gradient features as a 
predictor for retrieving rainfall is that different raining cloud types, such as 
convective and stratiform clouds, have distinguishable characteristics, such as 
temperature gradient and local pixel temperature variations with corresponding 
rain rates. For instance, fully grown convective clouds have overshooting tops 
with high temperature gradients indicating the convective core, characterized by 
high rainfall intensities. By contrast, stratiform clouds exhibit gradual 
temperature gradients and low pixel temperature variations with relatively low 
rainfall intensities. The gradient feature measures the cloud patch average pixel 
gradient to determine these distinct characteristics to improve the retrieved 
rainfall estimate. 
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ii. Compiling training and validation datasets 

This study utilised common machine learning techniques consisting of training, 
validation and testing datasets to develop and test the rainfall retrieval method. 
The training set was used to train the model by optimising its learning 
parameters, whereas the validation and testing set assessed the model’s ability to 
generalize well to unseen data. 

The training dataset consisted of target and predictor variables sampled from 
mixed space-time observations from the study area during the 2014 and 2019 
periods. More precisely, they were retrieved from multiple MWLs and the 
corresponding MSG pixels covering the MWL, shown in Figure 5. 3 for the raining 
(R > 1 mmh-1) and non-raining (R < 1 mmh-1) periods. For the MWL with 
transmission paths covered by multiple MSG pixels, the mean of the satellite data 
estimated from these pixels was retrieved for estimating the average rainfall of a 
pixel to allow a fair comparison with other satellite rainfall estimates used by this 
study. Besides, unlike, e.g., the minimum or median values, the mean value of the 
satellite data considers neighbouring pixel information.  

The validation dataset was from the 2018 and 2019 periods. It consisted of all 
MSG pixels in the study area, assuming that the rainfall and MSG-based cloud 
top properties would not change much for the small study area we considered 
(see Figure 5. 1). For the 2019 period, this excludes data from those pixels 
covering individual MWL since they were used to train the RF model. The data 
from the 2018 and 2019 periods validated the RF model because they coincided 
with the periods when gauge, independent MWL, MPE and IMERG data were 
available in the study area, thereby allowing for a thorough validation of the RF 
model against different rainfall estimation techniques. 
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Figure 5. 3 The MSG pixels covering multiple MWL that trained the RF model 

iii. The RF regression model and parameter tuning 

This study applied the RF for rainfall retrieval based on its advantages and good 
performance for rainfall estimation (Kühnlein et al., 2014a; Kühnlein et al., 
2014b; Wolfensberger et al., 2021). Besides, Meyer et al. (2016) investigated the 
performance of several machine learning algorithms, including the RF, for 
rainfall retrieval and found no single algorithm performed considerably better 
than the other. They concluded that finding more suitable satellite-based 
predictor variables is more necessary than optimization through the choice of the 
machine learning algorithm.  

The RF is an ensemble approach used for classification and regression purposes. 
It is based on the idea that the outcome of a group of weak learners (i.e. decision 
trees) when combined with a voting scheme, can yield an improved estimate with 
better performance (Breiman, 2001). RF uses bootstrap sampling and random 
feature selection to ensure the heterogeneity of these weak learners. Assuming an 
input dataset with N × M dimensions (where N and M are the numbers of samples 
and input features, respectively), RF grows each tree in the forest using bootstrap 
samples (randomly selected, with replacement, samples from N). About two-
thirds of the sample is used to grow the decision tree for each bootstrap, while the 
remaining one-third is not included in the learning sample. This out-of-bag 
(OOB) sample is later used to get an unbiased estimate of the generalised error 
and to estimate the importance of the variables used in constructing the tree. 
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When growing trees, only a number of m features (where m < M) are used in 
deciding the best split at each node of a tree, and features with the lowest residual 
sum of squares are chosen for the split. The process is repeated through parallel 
processing until several trees are grown. For RF regression, the final estimate is 
the average of all outcomes of all trees in the forest (Wolfensberger et al., 2021). 
This study implemented the RF regression model in Python 3.7.3 using the scikit-
learn package (Pedregosa et al., 2011). There are over a dozen parameters to 
adjust in this package to achieve a robust RF performance. However, this study 
focused on the number of decision trees (n_estimators) and the number of input 
features to consider when looking for the best split (max_features), following 
previous study’s account (Turini et al., 2021).  

Since RF may perform poorly for the highly imbalanced dataset (Liu et al., 2006), 
the imbalance between the raining (representing 8% of the dataset – the minority 
class) and the non-raining (representing 92% of the dataset – the majority class) 
dataset was considered before assessing the optimal values of the RF parameters. 
Balancing class distribution may be achieved by oversampling the minority class 
or downsampling the majority class. The latter was a better strategy for our 
dataset because of the comparatively low percentage of the raining class. Besides, 
Liu et al. (2006) showed that downsampling the majority class is a better class 
balancing strategy. Therefore, this study addressed the imbalance in the dataset 
by keeping all the data from the minority class and randomly sampling (without 
replacement) several observations (less than the original) from the majority class.   

This study searched for optimal parameter values by performing a stratified 5-
fold-cross-validation on several tuning values. Stratified 5-fold-cross-validation 
randomly splits the training samples into 5 equal-sized folds regarding the 
distribution of the target variable. In effect, each (1/5) fold has a similar target 
variable distribution as the training sample. Then, models were fitted while 
repeatedly leaving one fold out to evaluate the model's performance using the 
mean squared error (MSE) metric in equation 5.01. The model performance for 
the respective tuning values is the average of the MSEs from the hold-one-out 
iterations. 

𝐵𝐵𝐵𝐵𝑀𝑀 = 1
𝑉𝑉

 ∑ �𝑅𝑅𝑃𝑃𝑃𝑃𝑖𝑖 − 𝑅𝑅𝑠𝑠𝑖𝑖�
2𝑉𝑉−1

𝑖𝑖=1                                                                                                               5.01 

where:  
𝑅𝑅𝑃𝑃𝑃𝑃𝑖𝑖 —represents all possible RF rainfall intensity estimates  
𝑅𝑅𝑠𝑠𝑖𝑖 —represents all possible target variable observations, and N is the 
number of samples. 



Chapter 5 

137 

 

An important parameter is the total number of trees, n_estimators, to grow in 
the forest. According to Breiman (2001), the generalization error converges as the 
number of trees increases. Increasing the number of trees in the forest does not 
result in over-adjustment, except this increases the computational time. In 
essence, n_estimators should be optimized to obtained a computationally 
feasible value. To determine the optimal value of the n_estimators parameter, 
many RF models were created using the training data for all possible values of 
n_estimators and max_features. The maximum n_estimators were 2000 trees, 
whereas the  max_features values ranged from 3 to 9 representing 30% to 90% 
of the total number of input features.  

 
Figure 5. 4 The RF parameter tuning. Effect of (a) number of decision trees with 3, 5, and 
9 input features on rainfall retrieval errors and computational time and (b) the number of 
input features on rainfall intensity retrieval errors. In (b), boxes show the first quartile, 
median (orange lines), and third quartile; whiskers (lines outside the box) extend from the 
minimum to the first quartile and from the third quartile to the maximum, and the average 
MSE is shown as green triangles. 
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Figure 5. 4a exemplifies how the number of trees with 3, 5, and 9 max_feature 
values affects rainfall intensity retrieval errors and computational time. Based on 
the dataset, the figure shows that increasing the number of decision trees and 
input features increases the computational time. Nonetheless, regardless of the 
number of input features, the rainfall intensity retrieval errors decrease rapidly 
with an increase in the number of decision trees until approximately 100 trees, 
where the error rate stabilises. This suggests that more than 100 trees in the forest 
can be considered sufficient for a robust RF model performance. Thus, this study 
set the n_estimators to 100, with a reasonable computational time of about 2 
seconds. 

Breiman (2001) shows that the RF error rate largely depends on the correlation 
between any two trees and the strength of individual trees in the forest.  
Increasing the correlation increases the RF error rate, whereas increasing the 
strength of individual trees decreases the RF error rate. The max_features 
parameter affects these two aspects such that reducing it reduces both the 
correlation and strength, whereas increasing it increases both. In practice, the 
max_features value is often treated as a tuning parameter (Kühnlein et al., 
2014a; Kühnlein et al., 2014b). To determine the optimal max_features value, 
many models were created using the training data for different possible 
max_features values ranging from 3 to 9, representing 30% to 90% of the number 
of input features while setting the n_estimators parameter to 100 in each 
scenario. Figure 5. 4b presents the descriptive statistics of the MSE of rainfall 
intensities based on the different max_features values.  Based on these results, 
max_features = 3 was used because this leads to low rainfall intensity errors.  

iv. RF model prediction and validation  

The tuned model parameter values were used to train the RF regression model, 
and the trained model predicted rainfall intensities of the validating MSG pixels. 
The mean absolute error (MAE) (Wilks, 2006) described in equation 5.02 
evaluated the RF model performance. 

𝐵𝐵𝐴𝐴𝑀𝑀 = 1
𝑉𝑉

 ∑ |𝑅𝑅𝑃𝑃𝑃𝑃𝑖𝑖 −  𝑅𝑅𝑟𝑟𝑖𝑖|𝑉𝑉
𝑖𝑖=1                                                                                          5.02 

𝑅𝑅𝐵𝐵 =
1
𝑁𝑁∑ �|𝑅𝑅𝑟𝑟𝐴𝐴𝑚𝑚− 𝑅𝑅𝐶𝐶𝑚𝑚�𝑁𝑁

𝑖𝑖=1
1
𝑁𝑁∑ 𝑉𝑉𝑜𝑜𝑖𝑖𝑁𝑁

𝑖𝑖=1
                                                                                 

 

5.02 

where:  
𝑅𝑅𝑃𝑃𝑃𝑃𝑖𝑖 —represents all possible RF rainfall intensity estimates  
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𝑅𝑅𝑟𝑟𝑖𝑖 —represents all possible gauge and MWL rainfall intensity estimates, 
and N is the number of samples. 

The validation approach was by: 

1) comparing the rainfall intensity estimates by the RF to gauge, IMERG, 
and MPE pixel to validate the RF model and evaluate its capability to 
estimate rainfall comparable to already existing rainfall estimation 
techniques. For this, we used the point-to-pixel approach to compare the 
gauge's rainfall estimate to the RF, IMERG and MPE estimates. The 
approach assumes that the gauge's estimate is representative of the RF, 
IMERG and MPE pixel being compared to; 

2) comparing averaged RF rainfall estimates from pixels covering the MWL 
to the MWL’s rainfall estimates to assess the RF’s capability of path 
average rainfall intensities estimation 

3) spatially comparing the RF model estimates to those of the MPE and 
IMERG rainfall products to evaluate the RF model against existing 
satellite rainfall products  

Since this study focused on evaluating the RF model’s usability for high 
spatiotemporal resolution rainfall retrieval, the validation was done at 30 
minutes and 3×3 km resolution. Also, to ensure a comparison of collocated 
rainfall intensity estimates, the spatial and temporal mismatch in the dataset was 
considered. For this, the IMERG estimates were spatially resampled, using the 
nearest neighbourhood technique that preserves the pixel values, to the spatial 
resolution of the RF and MPE. On the other hand, the gauge, RF and MPE 
estimates were temporally aggregated to IMERG’s 30 minutes temporal 
resolution by summing their respective rainfall intensity estimates.  

5.4 Results and Discussion  
5.4.1 Results 

5.4.1.1 Comparing rainfall intensity estimates at a pixel by the RF, MPE, IMERG 
and gauge 

This section evaluates the RF rainfall intensity estimates at a pixel using MWL, 
gauge, MPE, and IMERG estimates. Firstly, a point evaluation is presented 
through visual and statistical analysis of the RF estimates compared to gauge, 
MPE, and IMERG for rainfall events observed from two different locations in the 
study area. Secondly, a performance evaluation of the RF estimates against gauge 
estimates compared to MPE, and IMERG estimates are presented. Thirdly, the 
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probability density of all rainfall intensities observed by the gauge, RF, IMERG, 
and MPE from the gauge pixel is presented. 

 
Figure 5. 5 Comparing rainfall intensity estimates by the RF, MPE, IMERG, and rain 
gauge. Coloured figures are the mean intensity estimates (excluding R = 0 mmh-1) of RF, 
IMERG, MPE and gauge rainfall events, respectively. The names in brackets are the gauges 
that computed the mean values. 

Figure 5. 5 presents rainfall intensities of two rainfall events captured by the RF, 
MPE, IMERG and rain gauges. The gauge estimates are from gauges TA00378 
(Figure 5. 5a) and TA00586 (Figure 5. 5b), shown in brackets in the figure, 
situated at different locations within the study area. The RF, MPE and IMERG 
are estimates retrieved from the pixels containing the two gauges. Figure 5. 5a 
shows rainfall events that occurred on 8 May 2018. It is clear from the figure that, 
although all the rainfall retrieval techniques captured the rainfall events that 
occurred between the hours of 16:00 to 21:00 UTC, the characteristics of their 
rainfall events differ. For instance, the RF, MPE and IMERG captured more 
rainfall than the gauge, which is also evident from the mean rainfall computed for 
the event. Moreover, the peak rainfall intensity captured by IMERG was above 30 
mm per 30-minutes intervals. In contrast, the RF and MPE were comparable and 
below 30 mm per 30-minutes, compared to the gauge’s peak rainfall intensity 
below 10 mm per 30-minutes interval.  

The rainfall events in Figure 5. 5b occurred between 13:00 to 18:00 UTC (based 
on the gauge observation) on 4 April 2019. The figure shows that the gauge, RF, 
MPE, and IMERG captured the rainfall event with fairly differing characteristics. 
On average, the RF observed the most rainfall, followed by MPE, IMERG and 
gauge, as shown by the mean rainfall intensity of the rainfall event. In addition, 
the RF and MPE captured two comparable peaks below 25 mm per 30-minutes. 
However, IMERG’s event extends beyond 18:00 UTC and its peak rain intensity, 
like the gauge, was below 15 mm per 30-minutes. 
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Figure 5. 6 Performance evaluation of the RF compared with MPE and IMERG. Box and 
whisker plot showing descriptive statistics of the absolute error of (a) RF versus gauge, (b) 
IMERG versus gauge, and (c) MPE versus gauge. Boxes show the first quartile, median 
(orange lines), and third quartile; whiskers (lines outside the box) extend from the 
minimum to the first quartile and from the third quartile to the maximum; stars indicate 
outliers; the MAE is shown as green triangles. Each plot shows the total number of 30-
minutes data points at the top of the plot (excluding 0 mm) that computed the descriptive 
statistics. The x-axis shows the station codes provided by TAHMO 

Figure 5. 6 shows the absolute error of RF versus gauge rainfall intensity 
estimates compared to MPE and IMERG. The data used in computing the 
absolute error in this figure were collocated observations by the gauge, RF, MPE 
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and IMERG, excluding the 0 mm estimates, during the validation period. On 
average, the absolute errors in RF versus gauge (Figure 5. 6a) estimates were 
about 5 mm per 30-minutes, comparable to those of the IMERG and MPE vs 
gauge estimates. Based on the average errors, the RF’s rainfall estimation 
performance can be considered as good as IMERG (Figure 5. 6b) and MPE 
(Figure 5. 6c). Nonetheless, its outliers mostly below 30 mm per 30-minutes 

(Figure 5. 6a) compared to those of the IMERG and MPE, which mainly were 
below 50 mm per 30-minutes, may point to differences in their high rainfall 
intensity estimates.  

 
Figure 5. 7 Probability density of rainfall intensity estimates by the gauge, RF, IMERG, and 
MPE for (a) less than 20 mm and (b) above 20 mm 

Figure 5. 7 shows the density distribution of collocated rainfall intensity estimates 
from the gauge, RF, IMERG and MPE. The distribution of rainfall intensities in 
Figure 5. 7a suggests that compared to IMERG and MPE, the RF mostly 
overestimates the gauge rainfall intensities below 15 mm per 30-minutes. When 
this distribution is compared with that in Figure 5. 7b, it is evident that the RF 
underestimates the gauge’s rainfall intensities, judging by its estimates largely 
below 30 mm per 30-minutes. Nonetheless, these estimates were from sparse 
gauge pixels in the study area, which may not be a fair representation of the full 
range of the area’s rainfall estimates.  

The discrepancies in rainfall intensity estimates by the measurement techniques 
may be due to various factors. Their spatial resolution differences may explain 
some of these discrepancies. To be precise, the gauge observes rainfall from a 
single point, making it easy to miss or underestimate a high-intensity local 
rainfall event, depending on its proximity to a rainstorm. The RF, IMERG and 
MPE all estimate the average rainfall intensity of a pixel, which is spatially more 
extensive than the gauge’s point observation and, therefore, may more likely 
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capture a rainfall event, albeit with intensity differences that depend on the 
measurement technique. Additionally, the RF’s rainfall intensity estimate 
represents an average of predictions from all trees, which may explain why it 
overestimates the low (and underestimates the high) intensities (Kühnlein et al., 
2014b; Wolfensberger et al., 2021).  

5.4.1.2 Comparing the RF  and MWL rainfall intensity estimates 

We next compared the RF rainfall intensity estimates with independent MWL 
RSL data estimates to assess the RF’s capability of path average rainfall estimates. 
Here, the RF’s mean, median and maximum rainfall intensity over the MWL is 
included in the comparison to provide an idea of the range of rainfall intensities 
estimated by the RF and how it compares with the MWL’s estimates. Table 5. 2 
presents descriptive statistics of the absolute errors when comparing the RF’s 
mean, median and maximum rainfall intensities to the MWL’s estimates. 

Table 5. 2 Descriptive statistics of the absolute errors of the RF and MWL rainfall intensity 
estimates. 25%, 50% and 75% indicate percentile levels  

Descriptive statistics 

Absolute errors of RF versus MWL rainfall (mmh-1) 

Mean  Median  Maximum  
Mean 4.1 4.0 6.8 

Minimum 0.0 0.0 0.1 
Maximum 18.0 21.4 23.4 

25% 1.5 0.0 4.0 
50% 3.9 4.0 6.5 
75% 6.3 6.5 8.9 

These statistics are from a total of 920 15-minutes rainfall intensity data  

On average, absolute errors of the mean and median versus MWL rainfall 
intensities were around 4 mmh-1 compared to about 7 mmh-1 when comparing the 
RF’s maximum to the MWL’s estimates. This suggests a better agreement 
between the RF’s mean and median and the MWL rainfall intensity values. 
Nonetheless, the maximum error and the 75% percentile value of the mean 
comparison suggest the RF’s mean rainfall estimates may better agree with the 
MWL rainfall than the median.  

The better agreement between the RF’s mean and MWL rainfall intensities is 
because both represent average intensities over the MWL’s path. However, 
comparatively high absolute errors of the RF’s maximum versus MWL rainfall 
intensities are because the maximum rainfall intensities represent the highest 
intensities observed over the MWL’s path. Furthermore, discrepancies in RF and 
MWL estimates that contribute to errors in Table 5. 2 may be attributed to other 
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factors, including differences in their rainfall retrievals. The RF’s estimates are 
based on nonlinear relationships between MWL rainfall and cloud top properties 
aloft, whereas the MWL derives rainfall intensities from average rain-induced 
attenuation over its path. 

5.4.1.3 Comparing spatial rainfall estimates by the RF model, MPE and IMERG 

We finally validated the RF rainfall intensity estimate spatially by comparing it 
with the IMERG and MPE rainfall products on a scene-by-scene basis. First, an 
exemplary scene is shown from 4 April 2019 at 13:00 to visually analyse the RF, 
IMERG, and MPE estimate. Next, the MAE and RB were computed based on all 
above 0 mmh-1 rainfall intensity estimates by the RF, IMERG, and MPE during 
the validation.  

Figure 5. 8 compares spatial rainfall intensity estimates by the RF to IMERG and 
MPE to validate the RF estimates. The white pixels in the centre of the figure are 
the MSG pixels over the MWL that trained the RF model. There is a good 
agreement in the spatial distribution of rain areas by IMERG and RF, whereas 
MPE shows fewer rain areas that are more localised than RF and IMERG. There 
are also some differences in their rainfall intensity estimates. For instance, MPE 
captured high rainfall intensities around latitude 0o, which the RF and IMERG 
underestimated. Overall, based on a visual inspection of Figure 5. 8, it can be 
stated that the rain areas in the RF are comparable to IMERG but with intensities 
that compare better with the MPE.  

 
Figure 5. 8 Spatial rainfall estimates by the RF compared to IMERG and MPE 

These discrepancies in rain areas and intensities in Figure 5. 8 may be attributed 
to measurement differences in the retrieval techniques. For instance, the MPE 
algorithm’s design captures convective rainfall of local origin and high intensities. 
By contrast, the rain area detection system used by the RF is not dependent on 
the rain cloud type (Kingsley et al., 2021), and its rainfall intensity estimates were 
based on a nonlinear relationship between IR-based cloud properties aloft and 
ground-level rainfall. Moreover, the fact that the RF estimates represent an 
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average of predictions by all trees (Kühnlein et al., 2014b; Wolfensberger et al., 
2021) may contribute to some of the rain area and intensity differences between 
the RF, IMERG and MPE. On the other hand, IMERG uses spatiotemporal 
average rainfall from multiple microwave rainfall estimates, which may explain 
its low rainfall intensities in Figure 5. 8 compared to the RF and MPE. 

 
Figure 5. 9 Spatial variabilities of MAE (a,b) and RB (c,d) computed from RF and IMERG 
(a,c) and RF and MPE (b,d) rainfall pairs.  

Figure 5. 9 shows the spatial variability of MAE (Figure 5. 9a,b) and RB (Figure 
5. 9b,d) computed from RF versus IMERG (Figure 5. 9a,c) and RF versus MPE 
(Figure 5. 9b,d) pairs during the validation period over the study area. It is clear 
from the figure that the RF estimates agree better with IMERG than MPE 
estimates. On average, the MAE and RB computed from RF versus IMERG values 
were below 6 mm per 30-minutes and 3, compared to the values of RF versus 
MPE, which were below 8 mm per 30-minutes and 5, respectively.  

Nonetheless, both IMERG and MPE show high differences compared to the RF, 
indicated by their respective high MAE and RB values, particularly between 
latitude -0.2 and -0.6, attributed to probably the high rainfall intensities observed 
in these areas with complex topographic features (see Figure 5. 1). On average, 
the RF-IMERG MAE values are below 6 mm per 30-minutes compared to the RF-
MPE  estimates below 8 mm per 30-minutes. 
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5.4.2 Discussion 

The usability of the RF machine learning algorithm trained with MSG-based 
cloud top properties and MWL rainfall intensities for estimating high spatial and 
temporal resolution rainfall intensities in a topographically complex area in the 
Kenyan Rift Valley is investigated and evaluated. The investigation followed three 
major steps: (1) rain area detection based on the method described by (Kingsley 
et al., 2021) in Chapter 3 and retrieval of MSG-based cloud top properties that 
served as predictor variables, (2) rainfall estimation from MWL RSL data to serve 
as target variables and (3) rainfall intensity estimation using the RF algorithm. 
We compared the RF estimates with gauge, MWL, IMERG, and MPE estimates 
to evaluate the RF’s rainfall intensity estimation performance. 

The results based on the study area can be described as good, considering that 
they were achieved at a high spatial and temporal resolution of 3×3 km and 30 
minutes, pointing towards a convincing skill of the RF algorithm for rainfall 
estimation. An analysis of rainfall events from different locations in the study area 
revealed the capability of the RF to estimate rainfall events in the study area with 
mean rainfall characteristics comparable to IMERG and MPE. Comparing rainfall 
intensity estimates by the RF, IMERG, and MPE  retrieved from all gauge pixels 
in the study area to the gauge estimates reveals the RF’s overestimation of low 
intensities (mostly below 15 mm per 30-minutes), whereas the high intensities 
(above 30 mm per 30-minutes) are underestimated. On average, when compared 
to gauge estimates, the absolute errors were about 5 mm per 30-minutes, 
comparable to the IMERG and MPE versus gauge estimates, suggesting an RF 
rainfall estimation performance in the study area that may be as good as the 
IMERG and MPE technique. However, the fact that the RF’s estimation, unlike 
MPE, is not dependent on the cloud type and its estimates are at high spatial and 
temporal resolution than IMERG suggests an effective skill that needs future 
investigation. 

This study also compared the RF’s rainfall intensity estimates over the MWL 
transmission path to estimates derived from independent MWL RSL data to 
determine the RF’s ability to estimate average rainfall over the MWL path. 
Overall, the RF’s mean, median and maximum rainfall intensities indicate that 
the RF can quantify rainfall over the MWL transmission path. However, the RF’s 
mean intensities compare better with the MWL estimates, which was attributed 
to the fact that both represent the average rainfall intensity along the MWL 
transmission path. The differences in the RF and MWL rainfall estimates were 
rather due to differences in the retrieval techniques.  
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When comparing the spatial distribution of the RF rainfall intensities to IMERG 
and MPE over the study area using an exemplary scene, the MPE showed fewer 
rain areas of local origin but with intensities that agree with the RF. However, the 
RF and IMERG raining areas were extensive and comparable, though the 
IMERG’s intensities were comparatively lower. Overall, MAE and RB values 
computed using all scenes during the validation period reveal that the RF's spatial 
rainfall estimates agree better with IMERG than MPE. Nevertheless, some areas 
showed noticeably high MAE, and RB values which may be due to the high rainfall 
intensities observed related to complex topographic features. 

The discrepancies found when comparing the RF estimates to the gauge, IMERG 
and MPE are somewhat expected when comparing rainfall estimates from 
different techniques and may be due to many factors. The spatial resolution is a 
contributing factor; particularly, the gauge observes rainfall from a single point 
with low spatial representativeness compared to the RF, IMERG and MPE 
estimates. For this reason, the gauge may easily miss or underestimate a local 
rainfall event, depending on its proximity to the storm. In contrast, the RF, 
IMERG and MPE are more likely to capture a rainfall event, though their intensity 
estimates may differ based on the measurement technique.  

Additionally, the RF and MPE estimates represent average estimates of 3 × 3 km, 
whereas IMERG’s estimates represent approximately 10 × 10 km area. Moreover, 
differences in the measurement techniques used by the RF, gauge, IMERG and 
MPE may explain the discrepancies in their rainfall estimates. For instance, the 
rain gauge records rainfall accumulations continuous in time from a single point. 
The accuracy of the MWL rainfall data that trained (using tuned parameters) the 
RF model is affected by various factors such as the wet antenna effect and 
variation of raindrop sizes along the MWL path. Moreover, the MSG-based cloud 
properties that estimated the RF's rainfall estimates represent instantaneous 
properties at the cloud top. Besides, the RF rainfall intensity estimates represent 
an average of predictions by all trees, which may explain its overestimation 
(underestimation) of low (high) intensities.  

On the other hand, the MPE algorithm relates IR brightness temperatures to the 
SSM/I rain rates to target convective rainfall that is mostly of high intensities and 
localized. Therefore, the MPE is likely to miss non-convective rainfall events. 
IMERG is a multi-sensor technique; its estimates represent a spatiotemporally 
averaged rainfall from multiple microwave estimates. Also, the accuracy of PMW 
rainfall retrievals over mountainous areas is affected by the orographic effect on 
rainfall area (Adhikari & Behrangi, 2022; Kingsley et al., 2021; Petković & 
Kummerow, 2017), which may explain the high differences observed between the 
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RF versus IMERG and RF versus MPE estimates for areas with complex 
topography. Furthermore, the high spatiotemporal rainfall variability in the study 
area may also contribute to the differences in the rainfall estimates by the gauge, 
RF, IMERG and MPE (Wakachala et al., 2015). 

This study’s results may have implications for rainfall retrievals, benefiting 
various operational and research applications such as agriculture and water 
resources management and evaluating satellite products, particularly in the many 
ungauged areas. The reason is that our rainfall intensity retrievals rely on MWL 
and MSG satellite data, already existing in vast areas, including areas lacking 
conventional ground rainfall monitoring systems.  

5.5 Conclusion 

A new technique to estimate high spatiotemporal resolution rainfall from MSG-
based cloud top properties using the RF algorithm trained with MWL rainfall 
intensities is investigated and evaluated for a topographically complex area in the 
Kenyan Rift Valley. The technique uses MSG spectral IR data not affected by solar 
illumination, making it applicable under daytime and nighttime conditions.  

In general, the presented results show a promising technique. When comparing 
the technique's rainfall intensities to gauge data, the average retrieval errors were 
about 5 mm per 30-minutes, comparable to errors found when comparing 
IMERG and MPE to gauge data. Additionally, the spatial distribution of rainfall 
intensities retrieved agreed well with the IMERG and MPE satellite products. On 
top of this, the technique's advantage is that the rainfall intensities are retrieved 
at high spatiotemporal resolution and are not limited by the rainfall type. Besides, 
it employs a machine learning technique that may potentially allow for rainfall 
retrievals in an automated manner.  

The study's evaluation was based on a small area and limited MWL network data. 
On top of this, central to this study’s retrieval procedure is a rain area detection 
step requiring site-specific threshold and gradient parameters that may limit the 
direct transferability of this study’s model parameters to other areas. However, 
the method for retrieving site-specific rain area detection parameters (Kingsley 
et al., 2021) is transferable to other study areas. It can be used to replicate this 
study’s rainfall retrieval technique elsewhere. In spite of the limitations, the 
promising results suggest that with the inclusion of data from a spatially extensive 
MWL network and by considering site-specific rain area detection parameters, 
better retrieval accuracies over vast areas are possible. 
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Chapter 6: Concluding remarks and the 
study implications 
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6.1 Concluding remarks 
The significance of accurate spatial and temporal rainfall information for many 
applications such as climates studies, water resources management and 
agriculture cannot be overemphasized. Despite their great value, traditional 
techniques are mainly challenged in accurate rainfall detection and estimation by 
rainfall’s high spatiotemporal variability. 

The limitations of traditional techniques to estimate accurate rainfall information 
may be primarily technique-dependent. For instance, the gauge’s measurement 
provides point rainfall information and challenges its usage for spatial rainfall 
retrieval, especially when retrieving from sparsely distributed gauge 
observations. Though powerful for retrieving spatiotemporal rainfall, radars 
cannot be installed everywhere, and they are limited by error sources such as 
beam blockage, beam overshoot and range effects. Satellites provide area-wide 
rainfall that fills spatial rainfall gaps. Yet, in some cases, their estimates are 
uncertain, and they need ground evaluation to advance new satellite rainfall 
measurement missions and increase the reliability of their estimates. 

The MWL-rainfall estimation is an opportunistic technique that potentially offers 
a low-cost global rainfall observation. Nonetheless, the issue of raindrop size 
distribution and the MWL’s antenna wetting during and after rain are some 
factors that may challenge its accurate rainfall retrieval. Moreover, the low 
density of MWL in rural and underdeveloped areas may challenge accurate 
spatial rainfall estimation. With its wide range and high temporal resolution 
radiometer, SEVIRI, the MSG satellite permits quasi-continuous rainfall 
observation in near-real-time over large areas, including ungauged areas or areas 
with sparse monitoring systems. Consequently, its combination with the MWL 
data could improve rainfall observation in ungauged areas or areas with sparse 
data.  

Hence, this study’s objective was to investigate the application of the MWL and 
MSG data for high spatial rainfall detection and estimation using data from 
Central and Western Kenya, where ground data is often sparse. Four specific 
objectives investigated using individual research studies achieved this main 
objective.  

Chapter 2’s study achieved the first specific objective of investigating if the MWL-
MSG data combination could improve rain rate estimation and detection. This 
investigation first evaluated the MWL’s ability to estimate gauge-comparable rain 
rates. Then, the MWL’s rain rates were used to study MSG satellite signals of the 
day and night-time by utilizing a conceptual model in which clouds with high 
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optical thickness and effective radius have high rainfall probabilities and rain 
rates. Eventually, descriptive statistical information from the analysis 
successfully detected rainfall occurrence on individual MWL.  

The evaluation of the MWL rainfall estimation technique in the study area 
confirmed the robustness of the technique’s rainfall retrieval skill pointed out by 
numerous studies elsewhere. Studying the MWL’s rainfall estimates with MSG 
data for rain detection on individual MWL was also successful, with a better 
daytime performance than nighttime. This is due to its better rain information 
content about cloud optical depth and effective radius that lies in daytime 
reflectance than the night-time IR data. Overall, the study highlighted the unique 
potential of the MWL-MSG data for area-wide rainfall detection and estimation 
over the study area.  

Following the successful combination of the MWL-MSG data for area-wide 
rainfall observation, the study in Chapter 3 used the high-resolution MSG data to 
develop an improved rain area detection system that achieved specific objective 
2. This rain area detection system later improved the MWL rainfall and estimated 
high spatiotemporal rainfall over the study area. The investigated procedure 
involved developing and evaluating multiple parametric models derived from 
cloud top properties inferred from reflectance and IR data and using a conceptual 
idea similar to Chapter 2’s study. This study also introduced a new technique to 
overcome uncertainties in MSG cloud top property-based rain estimates using 
rain area-specific gradient parameters to improve the detected rain areas.  

Over the study area, this study found that the reflectance-based model VIS0.6–
NIR1.6 with a threshold value of 0.21 was consistent with daytime rainfall 
occurrences in rain gauges. In contrast, the night-time IR-based model from 
IR3.9–IR10.8, IR3.9–WV7.3 and IR10.8–WV6.2 brightness temperature 
difference (BTD) with parametric thresholds 8.18 K, 17.03 K, 33.65 K, 
respectively, achieved the best performance. It is noteworthy that the daytime 
detection model performed better than the night-time, which confirms the 
previous observation and conclusion in Chapter 2.  

In general, the detected rain areas also agreed well with estimates from the 
IMERG satellite rainfall product, albeit with a better agreement in the daytime 
than night-time estimates. Nonetheless, the study found differences in rain area 
locations by MSG and IMERG, suggesting spatial displacement errors in rainfall 
exist and may affect operational applications in floods and flash flood forecasts.  
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For the first time, the MSG data improved the MWL rainfall estimate in Chapter 
4, a study that achieved specific objective 3. This investigation utilized rain areas 
detected in Chapter 3 to develop a new method for the MWL’s wet-dry 
classification and baseline level estimation. Additionally, a new parameter, the 
wpl, was also derived from the satellite data representing the length of the MWL’s 
path that is raining.  

The MSG-based rain area estimates successfully detected wet and dry periods and 
estimated a baseline level from the MWL data. Also, the wpl parameter notably 
improved the high rain intensity estimates, suggesting that spatial rainfall 
variability along the MWL transmission path is essential to be considered in the 
MWL rainfall retrieval.  

Finally, Chapter 5’s study focused on achieving specific objective 4.  The study 
used the RF machine learning algorithm to investigate a new technique for high 
spatiotemporal resolution rainfall estimation from the MWL-MSG data. The 
investigation trained the RF algorithm with MWL rainfall estimates to estimate 
rainfall from MSG-based cloud top properties. The validation results 
demonstrated a promising rainfall retrieval technique with good accuracy. The 
retrieval errors were comparable to the IMERG and MPE satellite rainfall errors 
when evaluated based on gauge estimates. The technique’s spatial rainfall 
estimates also agreed well with these satellite rainfall products. The advantage is 
that the technique retrieves rainfall at a high spatiotemporal resolution 
regardless of the rainfall type, e.g. convective or stratiform. 

6.2 The study implications 

Ground rainfall information is often lacking, particularly in rural and 
underdeveloped parts of the world, where it directly impacts many applications 
such as agriculture and water resource management. Additionally, this limits 
satellite rainfall products' ground evaluation and reliability in these areas. It is 
expected that the techniques and models developed in this dissertation will 
generally contribute to area-wide rainfall detection and estimation, particularly 
by improving rainfall observation in areas where ground monitoring systems are 
sparsely distributed but with geostationary satellites (like MSG) data coverage 
and growing MWL network.    

The MWL and MSG data can independently observe rainfall. This dissertation 
confirms the MWL’s accurate rainfall retrieval in areas where ground monitoring 
systems are lacking or insufficient, suggesting the MWL is a vital source of rainfall 
information for many applications, particularly in these areas. Furthermore, this 
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dissertation shows that rain area-specific gradient parameters can reduce 
uncertainties in MSG cloud top property-based rain area estimates that may 
improve the satellite’s rainfall estimates. 

Additionally, the dissertation highlights the great potential of combining the 
MWL and MSG data to improve rainfall observation to benefit areas with 
insufficient monitoring systems. For instance, the accuracy of the MWL’s high 
rainfall intensities estimates can be remarkably improved when considering the 
spatial variability of rainfall along the MWL signal transmission path. This may 
directly affect the study of convective rain and flash floods, especially in areas 
where monitoring systems are lacking or insufficient.  

Moreover, high spatial and temporal rainfall retrieval from the MWL and MSG 
data is demonstrated in this study. The implications of this realisation for area-
wide rainfall observation are enormous, considering that both the MWL and MSG 
data (together with other geostationary satellites) have global coverage on land. 
Notably, its application for rainfall estimation in areas with sparse ground data 
may invaluably impact applications such as satellite data ground evaluation, local 
climate studies and water resource management. 
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