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1.1 Background 

Point clouds are characterized by representation of objects’ geometrical 

properties, like shape, size and orientation. They are essential data 

sources used to generate digital terrain models (DTM), 3D city models, 

landscape models and high precision maps. Products derived from 

point clouds can provide detailed information on natural and man-

made environments, such as the number and the size of buildings and 

trees and the spatial distribution of different objects. They therefore 

have a wide range of applications in urban planning, disaster 

management, forest inventory and autonomous driving.  

 

Point cloud interpretation, which targets the obtention of geometrical 

and semantic information, is an important step which is taken prior to 

the generation of the above products. For example, binary pointwise 

classification can be a pre-step for DTM generation, in order to separate 

ground and non-ground points. More categories are required for 3D 

city models like buildings and vegetation. With advances in Lidar 

techniques, Lidar point clouds are cheaper and easier to acquire so a 

huge amount of point cloud data is now available. However, manual 

interpretation of a considerable number of points can be very time-

consuming, especially for 3D city models which cover large urban areas 

and require semantic information on multiple categories. Also, urban 

environments can rapidly change and slow manual interpretation may 

fail to keep up with those changes. Therefore, how to efficiently 

interpret point clouds needs to be investigated.  

 

Finding and distinguishing 3D objects in complex urban areas can be 

achieved by 3D object detection and recognition. Object detection aims 

to find and localize objects, where bounding boxes are assigned to 

objects. Recognition aims to provide semantic information. These tasks 

are essential in many real-time applications such as autonomous 

driving and augmented reality. However, the limitation is that only 

bounding boxes are given without object boundaries which are critical 

for high-accuracy 3D maps. 

 

Semantic segmentation of point clouds aims to assign every point with 

a semantic label and it provides more detailed semantic information on 

objects boundaries compared to 3D object detection and recognition. 

It is of importance when generating 3D products that have multiple 

categories and ask for detailed object geometry, such as high-accuracy 

3D maps. Currently, semantic segmentation of point clouds is a very 

active research field and many researchers attempt to apply machine 

learning techniques to this task (Gerke and Xiao, 2013; Huang et al., 

2016; Li et al., 2016; Weinmann et al., 2015; Xu et al., 2014; Yang et 

al., 2017). 
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1.2 Airborne laser scanning point clouds 

Laser scanning is one of the approaches used to acquire point clouds. 

It is an active remote sensing technique in surveying communities. 

Laser scanners emit pulsed laser light to illuminate the target and 

receive reflected pulses. The distance between the scanner and the 

target is derived from the differences in laser return wavelengths and 

times (Vosselman and Maas, 2010) (Figure 1.1). The absolute 3D 

coordinates of a target object are calculated from the distance between 

the target and the sensor, the angle at which the pulse is emitted and 

the absolute location of the laser scanner. Laser scanners can be 

mounted on various platforms like aeroplanes and cars. In our 

research, we focus on point clouds captured through Airborne Laser 

Scanning (ALS) which can be performed on helicopters, fixed-wing 

aircraft and Unmanned Aerial Vehicles (UAVs). 

 

 

Figure 1.1 Principle of Lidar (Vosselman and Maas, 2010). 

 

The ALS technique has two major components (Vosselman and Maas, 

2010): a laser scanner system and a GPS/IMU combination. The former 

measures the distance to the spot hit by the laser and the latter 

measures the position and the orientation of the aircraft. An on-board 

airborne laser scanner has basically six parts namely, scanner 

assembly, GPS antenna, inertial measurement unit (IMU), control and 

data recording unit, operator laptop and flight management system. 

The scanner assembly is mounted on the bottom of the fuselage. It 

continuously emits laser pulses towards the ground and records echoes 
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during the flights. The GPS antenna placed on the top of the aircraft 

records the position of the system. The IMU records the rotation rates 

and acceleration data during the flight which are essential information 

to calculate the orientation and the position of the system with high 

accuracy. The combination of GPS and IMU are used to reconstruct the 

flight path. The control and data recording unit synchronizes time and 

stores all the data acquired by the components mentioned above. The 

operator laptop is responsible for parameter setup and system 

monitoring during the flight and the flight management system 

displays the flight plan to the pilot. 

 

ALS point clouds are important data sources for surveying and mapping 

at the city level. Compared to other platforms, ALS allows quick data 

acquisition from the top view for large scales areas. It not only captures 

points from object surfaces but also penetrates through vegetation 

canopies to reach the ground. Therefore, DTM can be extracted from 

the ALS point clouds even in forestry areas. 

1.3 Advantage of deep learning techniques  

In recent years, machine learning has shown huge potential in 

automated interpretation. Machine learning algorithms can directly 

learn from data without using predetermined sophisticated features. 

Traditional classifiers such as random forest (Breiman, 2001), boosting 

scheme (Breiman, 1996) and support vector machine (Cortes and 

Vapnik, 1995) are widely used in semantic segmentation tasks. They 

use handcrafted features as input and produce pointwise labels. 

However, these predefined features are not representative enough to 

differentiate objects in complicated environments because they are not 

data-driven. 

 

Deep learning is a specialized technique in machine learning. Its 

capabilities were first proven in ‘Large Scale Visual Recognition 

Challenge’ (Russakovsky et al., 2015). It achieved record-breaking 

results in both classification and localization tasks in the world’s 

greatest computer vision competition. From then on, as an efficient 

state-of-the-art approach to extracting information from visual data, 

deep learning has continued to show its powerful abilities in object 

recognition and semantic segmentation from both images and point 

clouds. The huge success of deep learning is due to its ability to 

learning features from different levels based on data instead of using 

the predefined features in traditional machine learning methods. 

 

Convolutional Neural Network (CNN) is one of the most important deep 

learning algorithms in image related tasks. The network consists of a 

sequence of convolutional layers and pooling layers. Shallow 
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convolutional layers have relatively small receptive fields and can 

capture local features, while deep layers have larger receptive fields 

and can extract more abstract features at higher levels. These higher-

level features are more robust to variance in size, location and 

orientation of objects, which improve model performance. 

 

Deep learning also shows its power in point cloud processing. Unlike 

images with regular grid style, points are sparsely distributed without 

any permutation. To take advantage of CNNs, some methods try to 

convert point clouds into the grid style in order to make the data adapt 

to CNN networks. They project 3D point clouds to 2D images from 

different views (Kalogerakis et al., 2017) or attempt to convert point 

clouds into well-aligned 3D grids (Maturana and Scherer, 2015). 

Recently, researchers have paid more attention to how raw points can 

be taken as the network input without any conversion that may cause 

artefacts. PointNet (Qi et al., 2017a) is the prior work that constructs 

the network by a set of multi-layer perceptrons and first allows the 

network to learn from sparely and regularly distributed points. Inspired 

by the image convolutions, many researchers design new convolutions 

(Li et al., 2018; Thomas et al., 2019) for point clouds that not only 

directly take points as the input but are also more effective in learning 

geometrical features from point clouds compared to conventional 

CNNs. 

1.4 Research gap 

For point clouds, inherent structures of objects are the keys to 

distinguishing different categories. Those structures can be captured 

at multiple scales. However, how to enhance the learning of those 

representative features from ALS point clouds, with the intention to 

boost the network performance, is still an open topic to be researched. 

In conventional deep network training for semantic segmentation, the 

training data needs to be fully annotated. Even though pointwise labels 

on the whole training data are helpful to avoid overfitting and to have 

better generalization to the testing data, labelling 3D points is much 

more difficult than image annotation and 3D annotation is tedious and 

time-consuming. Thus, how to maintain the network performance with 

fewer annotation efforts on the training datasets, for instance 

annotating fewer but informative samples and using cheaper labels, 

are required to be investigated. 

1.5 Research objectives 

This Ph.D. thesis investigates the semantic segmentation of ALS point 

clouds based on deep learning algorithms. We first explore how to learn 

representative features from ALS point clouds and then focus on how 
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to reduce the manual labelling efforts to train a deep learning model 

for semantic segmentation. For the training, we investigate active 

learning to select and annotate only informative points and weak 

supervision to annotate only weak labels for the pointwise prediction 

task. Figure 1.2 demonstrates the structure of this research. The 

Details for each objective are as follows: 

 

1). Semantic segmentation of ALS point clouds. The major objective is 

to allow the network to learn representative features from ALS data 

and involve different levels of neighbouring information to extract 

pointwise geometrical features. Firstly, local geometrical features for 

ALS point clouds are extracted by a designed feature extractor. Then 

contextual information is explored at both object and global levels. 

 

2). Active and incremental learning for semantic segmentation of ALS 

point clouds. The primary objective is to reduce the required annotation 

efforts for the training of deep learning models by selecting and 

annotating the most informative ALS point clouds. Under the active 

learning strategy, how to effectively select informative samples for ALS 

datasets is explored. As active learning requires model training every 

time newly annotated samples are involved, how to effectively train 

the models is explored. 

 

3). Weak supervision on semantic segmentation of ALS point clouds. 

This objective aims to alleviate the annotation efforts for the deep 

learning training through the use of weak subcloud labels instead of 

pointwise ground truth for ALS datasets.  There are two basic 

components for this objective, the classification network and the 

segmentation network. We first explore how to use weak subcloud 

labels to train a classification network that can produce pointwise 

pseudo labels on the training data. Then we investigate how to make 

use of the produced pseudo labels to train a segmentation network that 

gives predictions on the testing data. 

 

 
Figure 1.2 The structure of the research objectives in this thesis. 
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1.6  Outline 

This thesis is composed of five chapters. Objectives 1, 2, 3 mentioned 

above are addressed in Chapters 2, 3, 4. Each of these chapters is 

based on a journal paper which is listed on the first page of each 

chapter. The literature review in these chapters may have some 

overlap. Details of each chapter are as follows: 

 

Chapter 1 presents the background and introduces the ALS point clouds 

and the deep learning techniques. Then the research gap is explained 

and the primary objectives of this research are listed. Finally, an outline 

is given to show the structure of this thesis. 

 

Chapter 2 investigates how to learn representative features from ALS 

point clouds for semantic segmentation using the deep learning 

algorithm. We first adapt the KPConv to a 2D-3D convolution block to 

extract local representative features for ALS point clouds. Then we 

propose a segment-based edge conditioned convolution to encode 

context at the object level. Finally, we exploit the global contextual 

information by adding a spatial-channel attention module at the end of 

the network.  

 

Chapter 3 explores how to select informative training samples through 

an active learning strategy in order to effectively reduce the required 

annotation efforts for the training of deep learning models for the 

semantic segmentation of ALS point clouds. Different evaluation 

metrics are compared and contrasted after which the optimal one is 

chosen for the semantic segmentation of ALS point clouds. The 

incremental learning is also introduced to the active learning 

framework for the purpose of effectively reducing the training efforts. 

 

Chapter 4 addresses the training of deep learning networks with weak 

subcloud labels. We first improve the classification network in order to 

produce better pointwise pseudo labels on the training data by 

exploiting the semantic heterogeneity within a subcloud and encoding 

more representative features by an elevation attention module. Then, 

a supervised contrastive loss is adopted to unravel the underlying 

correlations of class-specific features for the segmentation network 

trained on the produced pointwise pseudo labels. 

 

Chapter 5 synthesizes the research. It draws conclusions on this 

research and makes recommendations for future research.  

 
 

  



 

Chapter 2 – Local and Global Encoder Network 
for Semantic Segmentation of Airborne Laser 
Scanning Point Clouds 1 
 

  

 
1 This chapter is based on: 

 
Lin, Y., Vosselman, G., Cao, Y., Yang, M.Y., 2021. Local and global encoder 

network for semantic segmentation of Airborne laser scanning point 

clouds. ISPRS Journal of Photogrammetry and Remote Sensing 176, 151–
168. 
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Abstract 

Interpretation of Airborne Laser Scanning (ALS) point clouds is a critical 

procedure for producing various geo-information products like 3D city 

models, digital terrain models and land use maps. In this chapter, we 

present a local and global encoder network (LGENet) for semantic 

segmentation of ALS point clouds. Adapting the KPConv network, we 

first extract features by both 2D and 3D point convolutions to allow the 

network to learn more representative local geometry. Then global 

encoders are used in the network to exploit contextual information at 

the object and point level. We design a segment-based Edge 

Conditioned Convolution to encode the global context between 

segments. We apply a spatial-channel attention module at the end of 

the network, which not only captures the global interdependencies 

between points but also models interactions between channels. We 

evaluate our method on two ALS datasets namely, the ISPRS 

benchmark dataset and DCF2019 dataset. For the ISPRS benchmark 

dataset, our model achieves state-of-the-art results with an overall 

accuracy of 0.845 and an average F1 score of 0.737. With regards to 

the DFC2019 dataset, our proposed network achieves an overall 

accuracy of 0.984 and an average F1 score of 0.834. 
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2.1 Introduction 

With the advanced techniques of light detection and ranging (LiDAR) 

systems, point clouds are more easily obtained in various scenes. 

Airborne laser scanning (ALS) point clouds have become an essential 

type of data in the generation processes of digital terrain models (DTM) 

(Chen et al., 2017), landscape models  (Murtha et al., 2018), 3D city 

models (Lin et al., 2018) and land use maps (Meng et al., 2012). These 

point cloud based products are required in many disciplines, like urban 

planning (Murgante et al., 2009), land administration (Lemmen et al., 

2015), forest inventory  (Wallace et al., 2012), tourism (Cooper et al., 

2013) and disaster management (Shen et al., 2010). The 

interpretation of ALS point clouds is a prerequisite for their use in these 

applications. One of the interpretation methods is semantic 

segmentation which assigns a semantic label to each point in the 

dataset. Manually labelling every point is quite time-consuming, 

especially for large urban areas. Thus, machine learning techniques are 

developed to automate the interpretation process (Vosselman and 

Maas, 2010). 

 

Machine learning approaches used for 3D scene understanding 

traditionally focused on extracting representative handcrafted features 

to describe local geometry (Lin et al., 2014; Weinmann et al., 2013) 

and training different discriminative classifiers to produce pointwise 

labels like Supported Vector Machine (SVM) (Lodha et al., 2006), 

AdaBoost (Lodha et al., 2007), Random Forests (RF) (Chehata et al., 

2009), Gaussian Mixture Model (GMM) (Weinmann et al., 2014) and 

Artificial Neural Networks (ANN) (Xu et al., 2014). The involvement of 

contextual information between points has been proven to be effective 

in improving semantic segmentation results and this can be achieved 

by using graphical models such as Conditional Random Field (CRF) 

(Niemeyer et al., 2016, 2011; Vosselman et al., 2017). However, in 

these methods, low dimensional handcrafted features are not 

representative to distinguish all categories in the dataset especially for 

the ALS point clouds acquired over complicated scenes where objects 

are largely different in size.  

 

Recently, deep learning methods have shown their powerful abilities in 

object recognition and semantic segmentation from images. The huge 

success of deep learning is due to learning features from different 

levels based on data instead of using the predefined features in 

traditional machine learning methods. Inspired by the success of deep 

learning in image related tasks, many deep learning based approaches 

for 3D interpretation tasks are proposed, like image-based methods 

(Boulch et al., 2018; Kalogerakis et al., 2017), voxel-based methods 

(Maturana and Scherer, 2015; Tchapmi et al., 2017) and point-based 
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methods (Li et al., 2018; Qi et al., 2017a; Thomas et al., 2019). With 

regards to ALS point clouds, some researchers convert point clouds 

into sets of images (Hu and Yuan, 2016; Yang et al., 2017; Zhao et 

al., 2018)  or 3D voxel grids (Schmohl and Sörgel, 2019). Others 

design networks (Arief et al., 2019; Li et al., 2020; Winiwarter et al., 

2019; Yousefhussien et al., 2018) that can directly consume ALS point 

clouds and learn more representative features with less information 

loss.  

 

Global contextual cues have proven that they can further improve the 

results from deep learning methods for computer vision tasks. Some 

approaches use fully connected CRF to enforce global consistency and 

refine semantic predictions on images (Zheng et al., 2015) and point 

clouds (Tchapmi et al., 2017). Motivated by the self-attention module 

proposed by Vaswani et al. (2017) for machine translation, various 

other approaches adapt this concept for computer vision tasks like 

semantic segmentation of images (Wang et al., 2018) and point clouds 

(Feng et al., 2020). Nevertheless, these methods explore 

dependencies between pixels or points, ignoring relationships between 

objects which are informative for large scale complex outdoor scenes. 

Super point graph (SPG) (Landrieu and Simonovsky, 2018) only 

assigns labels to segments and incorrect segmentation causes errors 

in the final pointwise predictions. Therefore, it is still challenging to 

make use of global context at both point and object levels for large 

scales ALS data.  

 

In this chapter, we propose a novel 3D convolutional network, a local 

and global encoder network (LGENet), that can embed more 

representative features for ALS data and exploit global context at both 

object and point levels. Considering that the variance of ALS point 

cloud coordinates is larger in the XY plane than along the Z-axis, we 

first enhance the representativeness of features obtained by 3D 

convolutions by adding 2D convolutions in order to pay more attention 

to the point distribution on the XY plane. Next, motivated by SPG 

(Landrieu and Simonovsky, 2018), we encode global 

interdependencies between segments by segment-based Edge 

Conditioned Convolution (SegECC). Segments are obtained from the 

unsupervised algorithms before the training and trainable edge 

conditioned convolutions are applied to capture the spatial 

dependencies between objects. This operation can be inserted after 

any convolutional layers in the network. Finally, a spatial-channel 

attention is introduced to semantic segmentation of point clouds and 

placed at the end of the network to capture long-range interactions 

between points and dependencies between channels. The major 

contributions of this chapter are listed as follows: 
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1) We propose a hybrid block that combines features extracted from 

both 2D and 3D convolutions. 2D convolutions are introduced to 

allow the network to learn representative features for point clouds 

primarily distributed in horizontal dimensions.  

2) To capture global spatial dependencies at the object level, we 

design a SegECC operation that constructs graphs on segments and 

exploits the relationships among objects. Segment features are 

then concatenated to pointwise features to allow the network to 

adaptively encode local-global features.  

3) To make use of spatial and channel dependencies, a spatial-channel 

attention is modified for semantic segmentation of ALS point 

clouds. The spatial attention learns the global interactions between 

points and channel-wise attention enhances the discriminability of 

learned features for different semantic categories. 

The remainder of the chapter is structured as follows. In Section 2.2, 

we review related traditional methods and recent deep learning 

methods in semantic segmentation of point clouds. Section 2.3 

introduces the hybrid convolution, SegECC and spatial-channel 

attention designed in our network. In Section 2.4, we show our results 

on the ISPRS benchmark dataset (Niemeyer et al., 2014) and compare 

LGENet against other state-of-the-art models. Extensive ablation 

experiments are carried out on the ISPRS benchmark dataset 

(Niemeyer et al., 2014) to evaluate our proposed method. We also test 

our model with the DFC2019 dataset (Bosch et al., 2019). Section 2.5 

concludes this chapter. 

2.2 Related work 

2.2.1 Traditional methods 

Traditional machine learning methods for classifying point clouds are 

generally divided into two steps, extracting handcrafted features and 

training discriminative classifiers. For semantic segmentation of ALS 

datasets, many researchers define features that describe local 

geometry. Lin et al., (2014) propose a method to compute 

‘eigenfeatures’ from the covariance matrix of local neighbouring points 

to characterize local point distributions of ALS point clouds, e.g. 

planarity, sphericity, linearity. Then a Support Vector Machine (SVM) 

is used to classify point clouds. Weinmann et al. (2013) evaluate 21 

geometric features including 8 ‘eigenfeatures’ derived from optimal 

local neighbours and a set of 2D geometric features to describe the 

local characteristics. These features are then tested with four 

classifiers, namely, nearest neighbour, k Nearest Neighbour, Naive 

Bayesian and SVM. However, these methods take each point’s local 



Chapter 2 

 13 

geometry independently for pointwise prediction and ignore the spatial 

dependencies, resulting in prediction noises and label inconsistency.  

 

The above issues can be addressed by taking advantage of the 

contextual information. An important statistical method to model the 

context is probabilistic graphical models, such as Conditional Random 

Fields (CRFs). Niemeyer et al. (2014, 2011) propose a pointwise 

classification method using CRF for ALS datasets. Unary potential is the 

pointwise probability distribution over classes produced by a learned 

classifier. Pairwise potential, revealing prominent relations between the 

data and object classes, is also learned during the training. Although 

this CRF based method gives rise to smoother results and improves 

class-specific accuracy, especially for classes with fewer instances, the 

pairwise CRF still takes interactions at a very local level into account 

and cannot avoid incorrect labelling to isolated point clusters. A longer-

range of interactions between points is a possible solution. Xiong et al. 

(2011) propose a sequence of stacked classification procedures. They 

propagate pointwise classification to segments and then consider 

contextual information according to the segment-based results for the 

final pointwise prediction. Niemeyer et al. (2016) propose a two-layer 

hierarchical higher order CRF for semantic segmentation of ALS data 

based on the robust Pn Potts model (Kohli et al., 2009). The first layer, 

operating on points, takes both handcrafted geometric features and 

relations between points to produce pointwise labelling. In the second 

layer, nodes are represented by segments that are generated by a 

variant of the region growing algorithm, so that interactions between 

objects are considered. However, these methods need to extract 

handcrafted features before the training which are not representative 

for multiple categories in point clouds acquired from complex scenes.  

2.2.2 Deep learning methods 

The effectiveness of deep learning approaches has been proven in 

recent research and the idea of deep learning has been applied to point 

clouds interpretation.  

 

As CNNs are capable of learning highly representative features in many 

image processing tasks, many strategies are proposed to adjust 

classical 2D image deep neural networks to 3D point clouds. One 

branch of methods is based on the concept of converting the unordered 

and irregularly distributed point clouds into rasterized 2D 

representations which are the input of the CNNs. For example, 

Kalogerakis et al. (2017) propose a fully convolutional network, 

ShapePFCN, for 3D part segmentation. The network input is rendered 

images of 3D shapes captured from different views. In addition to 

ShapePFCN, this projection-based method has been extended to the 
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semantic segmentation of large-scale point clouds with complicated 

scenes. Boulch et al. (2018) generate images containing geometric 

features obtained from the depth and RGB information. Then fully 

convolutional networks produce pixel-wise labels and these labels are 

converted into 3D space through a fast back-projection. Nevertheless, 

self-occlusion is difficult to avoid during the projection, especially for 

complicated outdoor scenes. For semantic segmentation of large-scale 

ALS data, numerous methods convert 3D point clouds into 2D 

rasterized features from the top view in order to pass the data through 

image based CNNs. Hu and Yuan (2016) conduct the ground points 

labelling of ALS data by assigning simple attributes to each pixel like 

minimum, maximum and mean of the height within each grid cell. 

Similarly, Yang et al. (2017) also apply 2D grids to 3D point clouds but 

they assign more full-waveform and geometric features to each 2D 

grid. Zhao et al. (2018) produce multi-scale contextual images that 

represent point set features like height, intensity and roughness. These 

methods of processing ALS point clouds require complicated features 

to be produced before the network training. Many pre-calculated 

features can be redundant and require large memory for data 

processing during the training. Also, only extracting features from 

projected point clouds on two 2D spaces leads to information loss along 

the third dimension.  

 

Volumetric approaches that voxelize unordered point clouds into 

regular 3D grids are alternatives to processing point clouds in order to 

adapt to deep neural networks. Maturana and Scherer (2015) convert 

the sparsely distributed point clouds into 32 × 32 × 32 binary occupancy 

grids where each voxel is categorized into occupied and unoccupied. 

Then voxelized point clouds are processed by 3D convolutions for fast 

object detection. 3DShapeNet (Wu et al., 2015) also uses binary 3D 

voxel grids as the network input for object recognition and shape 

completion. SegCloud (Tchapmi et al., 2017) is a 3D CNN that 

generates coarse down-sampled labels for each voxel. Then pointwise 

labels are obtained by transferring the voxel labels back points through 

trilinear interpolation. Concerning ALS datasets, Schmohl and Sörgel 

(2019) take voxelized ALS point clouds as the input of sparse 

submanifold convolutional networks (SSCNs). The voxelization 

unavoidably leads to information loss and causes artifacts. These 

disadvantages negatively impact the learning of representative 3D 

features. In addition, a large number of unoccupied grids stored in 

voxel structures result in high memory requirements.  

 

Recent research focuses on how to make the deep neural network 

directly consume point clouds to minimize information loss. PointNet, 

a deep learning network designed by Qi et al. (2017), can directly 
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process unstructured points without any rasterization or voxelization 

and it achieves compelling performance on a series of point cloud 

related tasks, like object classification, part segmentation and semantic 

segmentation. PointNet learns representative point set features by 

Multilayer Perceptron (MLP) layers. Spatial transformers which produce 

transformation matrices are also auxiliary learned to align input point 

clouds to a canonical space and improve the robustness to geometric 

transformations. The key limitation is that PointNet treats each point 

independently. It can only encode each point individually and 

aggregate point features into one global representation, failing in 

capturing local structures. To address the above issues, Qi et al. 

(2017b) present a hierarchical deep network called PointNet++. It 

consists of a sequence of set abstract modules that progressively 

capture geometric features in wider and wider local regions. Instead of 

using farthest point sampling applied in PointNet++, RandLA-Net (Hu 

et al., 2020) is built on random sampling. Local feature aggregation 

modules are designed to capture complex local geometry. The feature 

aggregators first use MLPs to encode relative point positions in a local 

neighbourhood and then attentively pool those encoded features to the 

central point. Wang et al. (2020) innovatively construct a hierarchical 

network called WreathProdNet. It achieves the state-of-the-art on 

some public 3D datasets. The network is based on the symmetries of 

hierarchical structures which are expressed by the wreath product of 

the group. JSIS3D  (Pham et al., 2019) is a joint semantic-instance 

segmentation network built on PointNet. Semantic labels and instance 

labels are jointly optimized by a multi-value conditional random field.  

 

As 2D convolutional kernels have shown their effectiveness in capturing 

relationships in local neighbourhoods, deep neural networks based on 

the concept of 3D convolutions are proposed to extract representative 

features from local structures of point clouds. Unlike Voxnet (Maturana 

and Scherer, 2015) which only takes a grid-style input, these networks 

are able to directly process irregularly distributed point clouds and 

some of them define convolutional function over continuous 3D space 

where weights of points within a local neighbourhood depend on their 

spatial distributions around the central point. For example, Kernel Point 

Convolutions (KPConv) proposed by Thomas et al. (2019) are defined 

over continuous space. Linear correlation between point positions and 

kernel point positions defines weights of points to different areas inside 

convolutional kernels. Kernel point positions are learnable and this 

helps convolution kernels to adapt to local structures in a better way. 

Following Thomas et al. (2019), Varney et al. (2020) introduce spatial 

and channel attention to KPConv in order to capture more descriptive 

features. Instead of constructing a U shape network used in Thomas et 

al. (2019), Varney et al. (2020) construct a Pyramid Point network to 
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densely connect all convolutional layers. InterpConv    (Mao et al., 

2019), PointConv (Wu et al., 2019), SpiderCNN (Xu et al., 2018), Flex-

Convolution (Groh et al., 2019) and ConvPoint (Boulch, 2020)  are also 

3D convolutional operators defined over continuous space to capture 

local contextual information. The operators can also be defined over 

discrete space. For example, FKAConv (Boulch et al., 2020) is designed 

to learn a transformation of irregularly distributed input points in order 

to align them with the grid-style kernel.  

 

With regards to semantic segmentation of ALS point clouds, 

Yousefhussien et al. (2018) modify the PointNet and make the network 

learn from more input features which consist of XYZ coordinates and 

corresponding radiometric features extracted from IR-R-G imagery. 

AlsNet based on PointNet++ is proposed by Winiwarter et al. (2019). 

A batching framework is introduced to allow the network to process 

large scale point clouds. Lin et al. (2020) also apply PointNet++ to 

large scale ALS data and an active and incremental learning strategy 

is proposed to make the training more efficient. An Atrous XCRF 

network is designed by Arief et al. (2019) to avoid overfitting during 

deep network training (eg. PointCNN) for ALS datasets that are small 

in size. Wen et al. (2020) first project 3D points to a horizontal plane 

and then use a directionally constrained point convolution to encode 

neighbouring orientation information in ALS data. Li et al. (2020) apply 

a dense hierarchical architecture with geometry-aware convolutions 

and an elevation-attention module to fully embed characteristics of ALS 

point clouds.  

 

Exploiting global contextual information is also researched in 3D deep 

neural networks for semantic segmentation of point clouds. Tchapmi 

et al. (2017) use a fully connected conditional random field (FC-CRF) 

at the end of the 3D CNN to exploit long-range interactions among 

points. The FC-CRF is implemented as a differentiable Recurrent Neural 

Network. This formulation allows the joint training of 3D CNN and 3D 

FC-CRF. Landrieu and Simonovsky (2018) first partition large point 

clouds into geometrical homogenous point sets called superpoints and 

then apply graph convolutions to the graph constructed by superpoints. 

Gated Recurrent Units are implemented to exploit the long-range 

relationships among superpoints. Huang et al. (2020) achieve global 

optimization for semantic segmentation of ALS point clouds through 

the Markov random fields algorithm which is a post-processing to refine 

initial classification results.  

2.2.3 Attention models 

Attention can be used as a tool to pay more attention to the most 

informative signals during data processing and attention models have 
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been widely used in natural language processing and computer vision 

tasks. Recently, the attention mechanism has shown its potential in 

encoding global contextual information. Vaswani et al. (2017) propose 

a self-attention module for machine translation. The idea is to encode 

the context at one position in a sequence by calculating a weighted 

average of embeddings at all positions. With regards to computer 

vision tasks, Wang et al. (2018) propose a non-local operation in order 

to capture long-range spatial dependencies. The non-local operation 

produces attention maps by computing the correlation between all 

possible point pairs in the feature space and those attention maps 

guide the aggregation of spatial contextual information. Apart from 

modelling spatial dependencies, channel-wise relationships are also 

exploited by attention mechanisms in order to enhance the 

representative power of deep learning models. For example, Hu et al. 

(2018) design squeeze-and-excitation blocks which firstly squeeze 

spatial features into a channel descriptor for each channel and then 

recalibrate channel-wise features by modelling channel-wise 

interdependencies. DANet (Fu et al., 2018) takes advantage of both 

spatial and channel-wise attentions. Their outputs are fused at the end 

of networks to boost feature representation, contributing to more 

precise predictions. Concerning the semantic point cloud 

segmentation, Feng et al. (2020) insert several pointwise spatial 

attention modules into deep neural networks to make use of 

interdependencies among all points regardless of their distance. The 

effectiveness of the pointwise spatial attention has been proven on the 

ShapeNet (Wu et al., 2015) and two indoor datasets namely, ScanNet 

(Dai et al., 2017) and S3DIS (Armeni et al., 2016). It is also valuable 

to explore how to take advantage of attention modules to boost feature 

representation of networks by modelling both spatial and channel-wise 

interdependencies for the semantic segmentation of ALS datasets.  

2.3 Method 

We first describe the design of 2D convolutions and how 2D and 3D 

convolutions work together in Section 2.3.1. Then we introduce the 

SegECC operation that encodes the contextual information at the 

object level in Section 2.3.2. Section 2.3.3 explains how the spatial-

channel attention is adjusted to 3D point clouds. Finally, the 

architecture of LGENet is presented in Section 2.3.4. 

2.3.1 Hybrid convolution block 

KPConv (Thomas et al., 2019) is a 3D convolutional kernel whose 

domain is a spherical 3D space. It has a deformable version that adapts 

to local geometry in order to enhance the representation of features. 

However, Thomas et al. (2019) suggest that rigid convolutions perform 
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better than deformable ones on scenes that lack of diversity. As a 

majority of objects in ALS datasets are buildings, ground and 

vegetation, pedestrians and road furniture are less likely to be 

observed, we use rigid convolutions in our experiments. If it is not 

specified, KPConv represents rigid KPConv in the following chapter. In 

order to extract more representative features for ALS point clouds, a 

2D variant of KPConv is applied and is incorporated with 3D KPConv 

forming a hybrid block.  

 

As ALS point clouds are acquired by airborne LiDAR equipment from a 

top view and most semantic objects in urban scenes are horizontally 

distributed on the ground, point cloud variance in the vertical direction 

(z coordinates) is much less than that in the horizontal plane. Due to 

this characteristic, 2D convolutions are applied to learn more 

representative features for urban objects from the point distribution on 

the horizontal plane. Their effectiveness has been proven by various 

previous works (Wen et al., 2020; Yang et al., 2017; Zhao et al., 

2018), in which point clouds are projected to the horizontal plane and 

2D CNN is applied to extract features and predict pointwise semantic 

labels. In the following section, the mechanism of KPConv is reviewed 

according to Thomas et al. (2019). Thereafter, how the 2D KPConv 

works and how the 2D and 3D KPConv are combined are explained. 

 

Given a point cloud 𝒫 ∊ ℝ𝑁×3 and the corresponding feature ℱ ∊ ℝ𝑁×𝐶1, 

at a point 𝑝 ∊ ℝ3 , the point convolution of ℱ  taken by the kernel 

function 𝑔 is written as follows:  

 

(ℱ ∗ 𝑔)(𝑝) = ∑ 𝑔(𝑝𝑖 − 𝑝)𝑓𝑖

𝑝𝑖∈𝑁𝑝

  (2.1) 

where 𝑁𝑝 is a set of neighbours around 𝑝 within a fixed radius 𝑟 ∊  ℝ, 

𝑁𝑝 = {𝑝𝑖 ∈  𝒫 | ‖𝑝𝑖 − 𝑝‖ ≤  𝑟}. 𝑝𝑖 is one of the neighbours for 𝑝 in point set 

𝒫 and its corresponding feature is 𝑓𝑖  ∊ ℝ𝐶𝑖𝑛, where 𝐶𝑖𝑛 is the number of 

input feature channels. For simplicity, we set the input of function 𝑔 as 

𝑥𝑖 =  𝑝𝑖 − 𝑝, and {𝑥𝑖 ∊ ℝ3  | ‖𝑥𝑖‖  ≤  𝑟, 𝑖 ∊  1, 2, … , 𝑁′} ⊂ 𝐷𝑟
3. 𝑥𝑖  is the relative 

position of neighbouring points to the central point 𝑝 and 𝑁′ is the 

number of neighbours. 𝐷𝑟
3 represents the domain of 𝑔 for 3D KPConv, 

which is a 3D ball space centred on 𝑝 with a radius 𝑟. Similar to image 

convolutional kernels, the kernel function 𝑔 has different weights to 

different parts inside the kernel domain. Different areas in 𝐷𝑟
3  are 

localized by a set of kernel points {𝑝𝑘 ∊ ℝ3|𝑘 < 𝐾} ⊂ 𝐷𝑟
3 . 𝑝𝑘  is a 3D 

position in 𝐷𝑟
3  and 𝐾  is the number of kernel points for the kernel 

function 𝑔. The corresponding weight matrices of the kernel points are 

denoted as {𝑊𝑝𝑘 |𝑘 < 𝐾} ⊂ ℝ𝐶1×𝐶2, mapping features from dimension 𝐶1 

to 𝐶2. The kernel function 𝑔 for any input 𝑥𝑖 ∊ 𝐷𝑟
3 is defined as: 
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𝑔(𝑥𝑖) =  ∑ ℎ(𝑥𝑖 , 𝑝𝑘)𝑊𝑝𝑘

𝑘<𝐾

    (2.2) 

where ℎ is a linear correlation between 𝑝𝑘 and 𝑥𝑖. ℎ is larger when 𝑥𝑖 is 

close to the 𝑘𝑡ℎ kernel point 𝑝𝑘.  

 

The 2D kernel function 𝑔2𝑑 is quite similar to the 3D one 𝑔, except 𝑁𝑞 

and kernel point position 𝑞̃𝑘 defined differently. The point convolution 

taken by the 2D kernel function 𝑔2𝑑 at 𝑞 ∊ ℝ2, the projection of the point 

𝑝 ∊ ℝ3 on the XY plane, is defined as: 

(ℱ ∗ 𝑔2𝑑)(𝑞) = ∑ 𝑔2𝑑(𝑞𝑖 − 𝑞)𝑓𝑖

𝑞𝑖∈𝑁𝑞

  (2.3) 

Instead of searching neighbours among projected 2D points, 𝑁𝑞 is the 

2D projection of 𝑁𝑝. Therefore, 𝑁𝑞 and 𝑁𝑝 have the same number of 

points 𝑁′. We define the input of function 𝑔2𝑑 as 𝑦𝑖 =  𝑞𝑖 − 𝑞 and {𝑦𝑖 ∊
ℝ2  | ‖𝑦𝑖‖  ≤  𝑟, 𝑖 ∊  1, 2, … , 𝑁′} ⊂ 𝐷𝑟

2. 𝑦𝑖 is the relative position of 𝑞𝑖 to the 

central point 𝑞  and 𝐷𝑟
2  is the domain of 𝑔2𝑑  which is a 2D circular 

surface centred on 𝑞 with a radius 𝑟. The 2D kernel points in 𝐷𝑟
2 are 

written as {𝑞̃𝑜 ∊ ℝ2 |𝑜 < 𝑂} ⊂ 𝐷𝑟
2. 𝑞̃𝑜 is a 2D coordinate in 𝐷𝑟

2 and 𝑂 is the 

number of kernel points for the 2D kernel function 𝑔2𝑑 . The 

corresponding weight matrices of the 2D kernel points are notated as 

{𝑊𝑞𝑜  |𝑜 < 𝑂} ⊂ ℝ𝐶1×𝐶2. The 2D kernel function 𝑔2𝑑 is defined as: 

𝑔2𝑑(𝑦𝑖) =  ∑ ℎ(𝑦𝑖 , 𝑞̃𝑜)𝑊𝑞𝑜

𝑜<𝑂

    (2.4) 

The distributions of 3D and 2D kernel points are shown in Figure 2.1. 

It can be seen that in the 3D kernel, top and bottom kernel points are 

far away from the object surface so that those points have little to no 

contribution in describing the local geometry. However, when the 

distance between a point and a kernel point is only assessed in 2D, 

most kernel points will have some nearby points on object surfaces. In 

this way, more kernel points contribute to the feature extraction, 

leading to more representative features on object surfaces.  
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Figure 2.1 Illustration of kernel points distribution for 2D and 3D 

KPConv. Left: an example of ISPRS benchmark dataset. Right top: the 

perspective view of 3D kernel points. Right bottom: the perspective 

view of 2D kernel points. Kernel points are shown in orange. 

 

 
Figure 2.2 The convolutional block used in Thomas et al. (2019) (top) 

and the hybrid 2D-3D block used in this chapter (bottom). The hybrid 

block inherits the ResNet connections from the original one. Instead of 

simply passing through a 3D-KPconv, features are fed to both 2D and 

3D KPConvs and outputs of two convolutions are concatenated for the 

1×1 convolution. 

 

The hybrid KPConv block used in the network is shown in Figure 2.2. 

It inherits the ResNet connections from the original block (Thomas et 

al., 2019) shown in the top block of Figure 2.2. The single 3D-KPConv 

in the original block is replaced with a 3D-KPConv and a 2D-KPConv. 

The hybrid block first maps the input feature from dimension  𝐶𝑖𝑛 to 

dimension 𝐶1  through a 1×1 convolution layer followed by a batch 

normalization layer and ReLu. The input features are also transformed 

by another 1×1 convolutional layer to obtain ℱ′ ∊ ℝ𝑁×𝐶𝑜𝑢𝑡. The mapped 

features ℱ ∊ ℝ𝑁×𝐶1 are taken as the input of 2D and 3D kernel function 
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whose output feature dimensions are 𝐶2. Then, output features are 

concatenated to form the feature ℱ′′ ∊ ℝ𝑁×𝐶3, where 𝐶3 = 2 × 𝐶2. ℱ′′ ∊
ℝ𝑁×𝐶3 is then transformed to be ℱ′′′ ∊ ℝ𝑁×𝐶𝑜𝑢𝑡 by a 1×1 convolutional 

layer. Finally, an elementwise summation between ℱ′′′  and ℱ′  is 

implemented to form a residual block and produce final output 

features.  

2.3.2 SegECC 

The pointwise features obtained by hybrid KPConv layers are only 

representative for local geometry because each convolutional layer 

only has a local receptive field and pointwise features cannot encode 

information outside the local region as well as relationships between 

objects. This is insufficient to explore the inherent structures of large 

objects and the interactions between objects. Lack of this global 

context limits the network performance on pointwise prediction for 

outdoor scenes in ALS point clouds. To achieve better performance, 

spatial dependencies at the object level from a global perspective 

should be exploited and integrated with local geometrical features. 

Inspired by SPG (Landrieu and Simonovsky, 2018), we construct 

graphs on segments that consist of geometrical homogenous points to 

capture the relationships among objects. By combining segment 

features and pointwise features, the network adaptively encodes local-

global features, thus achieving better semantic predictions on ALS 

datasets. The following paragraphs explain how global context is 

explored at the segment level and how it is aggregated with local 

features.  

 

 
Figure 2.3 Steps in SegECC to obtain segment embeddings using edged 

conditioned convolutions (ECC). Different colors represent different 

segment labels. 
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Figure 2.4 The structure of the hybrid-SegECC block. 

 

Figure 2.3 illustrates the process of the segment-based Edge 

Conditioned Convolution (SegECC) to obtain global embeddings. 

Firstly, point clouds are partitioned into segments by an unsupervised 

algorithm, L0-cut pursuit proposed by Landrieu and Obozinski (2017). 

The segmentation is performed before the training and is based on 

predefined geometrical features and intensity. Unlike DNN 

(Simonovsky and Komodakis, 2017) which dynamically clusters points 

according to updated features during the training, we use a fixed graph 

structure in our network and all segment labels are inherited from the 

initial segmentation. This fixed structure is more computationally 

efficient because it does not search KNN neighbours in high 

dimensional feature space for every training iteration. Experimental 

results in Section 2.4.1.8.2 show the effectiveness of the fixed segment 

labels. Next, pointwise features obtained from hybrid KPConv ℱ′′ ∊
ℝ𝑁×𝐶3  are aggregated to node features 𝑀 ∊ ℝ𝑁𝑠𝑒𝑔×𝐶3  according to 

segment labels where 𝑁𝑠𝑒𝑔 is the number of segments within the scene. 

Within a segment, node features are calculated as averages of features 

over all segment points. For each node 𝑠𝑖, a graph is constructed with 

all other nodes {𝑠𝑖𝑗  | 𝑗 < (𝑁𝑠𝑒𝑔 − 1)} in the scene. The features at the 

central node 𝑠𝑖 are represented by 𝑚𝑖 ∊ ℝ𝐶3   and the features of 𝑠𝑖𝑗 are 

represented by 𝑚𝑖𝑗 ∊ ℝ𝐶3. Edge features are represented by 𝑒𝑖𝑗 = 𝑚𝑖 −

 𝑚𝑖𝑗 . Then Edge-Conditioned Convolution (ECC) (Simonovsky and 

Komodakis, 2017) is used to capture the contextual information among 

different segments. It can dynamically generate filtering weights are 

according to 𝑒𝑖𝑗 and deal with a flexible number of neighbours. The 

calculation of ECC is shown as the following:  

𝑚𝑖
′ =

1

𝑁𝑠𝑒𝑔 − 1
∑ Θ(𝑒𝑖𝑗 , 𝑊𝑒)𝑚𝑖𝑗

𝑗<(𝑁𝑠𝑒𝑔−1)

   
 (2.5) 

𝑊𝑒  are learnable parameters in the multi-layer perceptron Θ. Edge 

features 𝑒𝑖𝑗  are processed by Θ  to produce a weight matrix and a 
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matrix-vector multiplication is performed between the weight matrix 

and neighbouring node features 𝑚𝑖𝑗 . Adaptively weighted 𝑚𝑖𝑗  are 

aggregated by the calculation of the mean. Finally, updated node 

features 𝑀′ ∊ ℝ𝑁𝑠𝑒𝑔×𝐶4  are directly mapped to each point as ℱ𝑒𝑐𝑐 ∊ ℝ𝑁×𝐶4. 

Then ℱ𝑒𝑐𝑐 are concatenated with pointwise features ℱ′′ generated from 

KPconv and the concatenated features are mapped to dimension 𝐶5 by 

a 1×1 convolutional layer. Figure 2.4 demonstrates how SegECC 

operation is inserted into a hybrid convolution block. The input of the 

SegECC is the feature obtained from the hybrid KPConv ℱ′′ and its 

output is ℱ′𝑒𝑐𝑐 ∊ ℝ𝑁×𝐶5 . ℱ′′ and ℱ′𝑒𝑐𝑐  are concatenated for following 

operations.  

2.3.3 Spatial-channel attention 

Hybrid KPConv and SegECC are proposed to extract representative 

features at point and object levels. However, it is also necessary to 

consider global information when determining the semantic label for 

each point. In semantic segmentation, two points can be the same 

category even if they are spatially far away. Considering the correlation 

between these two points in feature space can mutually improve the 

prediction accuracy. Also, for high dimensional features, dependencies 

between channels exist, which enhance the feature discriminability for 

different semantic classes. Following the dual attention proposed by Fu 

et al. (2018) for image semantic segmentation, the spatial-channel 

attention is proposed for semantic segmentation of ALS point clouds.  

 

In order to model the relationship between any two members in a point 

cloud, the spatial-attention Module is applied to adaptively aggregate 

pointwise features according to their correlations. The spatial attention 

module in Fu et al. (2018) is built on the self-attention mechanism 

proposed by Vaswani et al. (2017) for machine translation. According 

to Vaswani et al. (2017), the attention function maps queries and key-

value pairs to outputs. The outputs are calculated as the weighted sum 

of the values and the corresponding weights can be obtained from 

pairwise functions between the queries and their corresponding keys 

which represent query-key relationships. Fu et al. (2018) adapt this 

self-attention concept to image semantic segmentation tasks. The 

input feature is projected to different feature subspaces through 

different learnable fully connected layers in order to construct queries, 

keys and values in the attention function. The outputs of the attention 

function are feature-enhanced and have the descriptive ability to 

encode global context.  

 

The spatial attention demonstrated in Figure 2.5 is a variant of the self-

attention function designed for point cloud processing. Given the input 

feature matrix 𝐹 ∊ ℝ𝑁×𝐶’ for a point set, 𝐹 is projected to three different 



Local and Global Encoder Network for Semantic Segmentation of Airborne Laser 
Scanning Point Clouds 

 24 

feature subspaces to form the query, key and value which are 𝐹𝑈, 𝐹𝑉,
𝐹𝑇 ∊ ℝ𝑁×𝐶’ respectively. 𝐹𝑈, 𝐹𝑉 and 𝐹𝑇 are calculated as the following: 

𝐹𝑈 =  𝛼𝑠(𝐹), 𝐹𝑉 =  𝛽𝑠(𝐹), 𝐹𝑇 =  𝛾𝑠(𝐹)  
 

 (2.6) 

where 𝛼𝑠, 𝛽𝑠 and 𝛾𝑠 are the transformation functions achieved through 

different fully connected (FC) layers. As the output features in the 

attention function in Vaswani et al. (2017) are computed through 

attending to all positions, a spatial attention matrix 𝑆𝐴 ∊ ℝ𝑁×𝑁 should 

be calculated to capture the relationships between all possible point 

pairs. Following the Fu et al. (2018), we use the dot product between 

the 𝐹𝑉𝑗 and the transpose of 𝐹𝑈𝑖 to represent the correlation between 

the point 𝑖 and 𝑗 in a point cloud: 

𝑠𝑎𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗(𝐹𝑉𝑗 · 𝐹𝑈𝑖
𝑇)  (2.7) 

where 𝑠𝑎𝑖𝑗 is the normalized spatial attention map that estimates the 

impact of point 𝑗 on point 𝑖. Similar features of two points give rise to 

a high correlation between them, contributing to a large value in 𝑠𝑎𝑖𝑗. 

The final feature 𝐹𝑠𝑎 is computed as the following: 
𝐹𝑠𝑎 = 𝛼𝑠𝑎 𝑆𝐴 · 𝐹𝑇 + 𝐹  (2.8) 

where a matrix multiplication is performed between the spatial 

attention 𝑆𝐴  and the transformed embeddings 𝐹𝑇 . The output is 

multiplied by 𝛼𝑠𝑎 , a learnable scale parameter, and then element-

wisely summed with the input feature 𝐹 . The resulting feature 𝐹𝑠𝑎 

encodes the embeddings across all point positions and this global view 

helps similar semantic features to achieve mutual gains, therefore 

improving the semantic consistency.  

 

In addition to spatial attention, channel attention is employed to exploit 

channel-wise interdependencies. Every channel in high level features 

can be taken as a class-specific response and responses of different 

semantics are related to each other. Therefore, modelling the 

interdependencies between different channels can improve feature 

discriminability. 

 

The structure of the channel attention model is shown in Figure 2.5. 

𝐶𝐴 ∊ ℝ𝐶’×𝐶’ is the attention matrix directly computed from the matrix 

multiplication between the transpose of the input feature 𝐹 and 𝐹. 𝑐𝑎𝑖𝑗 

measures the influence of 𝑗𝑡ℎ channel on 𝑖𝑡ℎ channel and 𝐶𝐴 estimates 

the dependency between all channels. Similar to the calculation of the 

spatial attention module, the resulting feature 𝐹𝑐𝑎 is computed as the 

following:  

𝑐𝑎𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗(𝐹𝑖
𝑇 ·  𝐹𝑗)  (2.9) 

𝐹𝑐𝑎 = 𝛽𝑐𝑎  𝐹 · 𝐶𝐴 + 𝐹 
 (2.10) 
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Where a matrix multiplication is performed between 𝐶𝐴 and 𝐹. The 

output is multiplied by a learnable scale parameter 𝛽𝑐𝑎  and then 

element-wisely summed with the input feature 𝐹. 

 

 
 

Figure 2.5 Structures of spatial attention (top) and channel attention 

(bottom). 

 

 

Figure 2.6 Structure of spatial-channel attention model. 
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In order to make full use of the global context, 𝐹𝑠𝑎 and 𝐹𝑐𝑎 are summed 

up and the sum is passed to an FC layer to obtain pointwise semantic 

labels. The structure is shown in Figure 2.6, where 𝐶 is the number of 

classes for the final prediction. With this spatial-channel attention 

module, pointwise features are updated from a global perspective. The 

complicated interactions between points are comprehensively learned, 

contributing to more accurate predictions.  

 

Attention based modules are also used in RandLA-Net (Hu et al., 2020) 

which achieves state-of-the-art in many semantic segmentation of 

point clouds tasks. Although RandLA-Net and our method both apply 

attention functions to improve the network performance, our spatial-

channel attention is different from the attentive pooling in RandLA-Net 

in the following perspectives. First, RandLA-Net searches KNN 

neighbours and aggregates their features to describe the local 

geometry, while our spatial attention pays attention to all points in the 

input cloud. Even though RandLA-Net can progressively enlarge the 

receptive field through step-by-step subsampling, detailed geometrical 

information is lost as a result of subsampling. In contrast, the spatial 

attention avoids this issue by considering all the points from a global 

view. Second, the attention scores in RandLA-Net are calculated by 

putting a feature vector to a learnable MLP layer followed by a softmax 

function. In comparison, the attention scores in our method are based 

on the correlation between different points for spatial attention and the 

interdependencies between different channels for channel attention. 

Third, in RandLA-Net, the attention scores can be taken as a mask to 

select important features of each neighbour. Then feature vectors of K 

nearest neighbours are summed up into one informative feature vector 

to capture the local geometry for the central point. In our spatial-

channel attention model, the spatial attention module searches for the 

important position from the entire input point clouds and aggregates 

information from all other points by a weighted sum. The channel 

attention module reveals the interdependencies between different 

channels, and the output features gather all useful information from all 

other channels. Considering representative features are already 

extracted at point and object levels by Hybrid KPConv and SegECC, the 

attentive pooling proposed in RandLA-Net to extract local geometrical 

features is not necessary for our network and therefore, we apply the 

spatial-channel attention to optimize network prediction from a global 

perspective.  

2.3.4 Overall Network architecture 

With three blocks introduced above, LGENet that encodes both local 

and global information can be constructed for semantic segmentation 

of ALS point clouds. Following the fully convolutional network proposed 
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by Thomas et al. (2019), our network is composed of an encoder and 

a decoder. As illustrated in Figure 2.7, the encoder has 5 convolutional 

layers and each layer consists of two convolutional blocks. We use 

hybrid KPConv for all convolutional blocks. However, SegECC is only 

inserted at the second block of the third and fourth layer. According to 

Feng et al. (2020), using blocks that encode global features in all layers 

fails to improve model performance because those blocks intensively 

increase the number of network parameters and it is difficult to achieve 

a global optima. This is also demonstrated by our experiments shown 

in Table 2.5. In order to capture the local geometry at multiple scales, 

downsampling is used to enlarge the receptive field of convolutions 

step by step.  

 

In the decoder, nearest upsampling is employed to obtain final 

pointwise features. Four skip connections are applied to pass 

intermediate features from encoder to decoder. Those features are 

concatenated with the upsampled features and then passed to a unary 

block which is a 1 × 1 convolution. At end the of the network, a spatial-

channel attention block is stacked to consider global context, thus 

improving final pointwise semantic predictions.  

 

 
Figure 2.7 Illustration of the proposed LGENet architecture for semantic 

segmentation of ALS point clouds. The encoder consists of hybrid 2D-

3D blocks and hybrid-SegECC blocks. The decoder is composed of 

unary blocks (1×1 convolutions). N1 > N2 > N3 > N4 > N5 denote 

point numbers. Intermediate features are passed from encoder to 

decoder through four skip links. The spatial-channel attention block is 

stacked at the end of the network. 

 

For network training, we use the weighted cross entropy loss shown in 

(2.12). The weight for each class 𝑤𝑐 is calculated by its proportion out 

of the total number of points, shown in  (2.11), where 𝑁𝑐 denotes the 

number of points for 𝑐th class. In (2.12), ŷ𝑖𝑐 represents whether the 
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ground truth label for 𝑖th is in 𝑐 th category and 𝜌𝑖𝑐  represents the 

corresponding predicted probability.  

 

𝑤𝑐 =
1/𝛾𝑐

∑
1
𝛾𝑐

𝐶
𝑐=1

   ,      𝛾𝑐 =
𝑁𝑐

∑ 𝑁𝑐
𝐶
𝑐=1

  (2.11) 

𝐿𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = −
1

𝑁𝑖𝑛
∑ ∑ 𝑤𝑐ŷ𝑖𝑐  𝑙𝑜𝑔𝜌𝑖𝑐

𝐶

𝑐=1

𝑁𝑖𝑛

𝑖=1

  
(2.12) 

 

2.4 Experiments 

In this section, experiments are shown to evaluate the effectiveness of 

the proposed network in two ALS datasets. We compare the 

performance of our model against that of other the state-of-the-art 

models on the ISPRS benchmark (Niemeyer et al., 2014). We also 

conduct a comprehensive experiments on the ISPRS benchmark 

(Niemeyer et al., 2014) to show the effectiveness of our proposed 

method and evaluate how hyperparameters and network structure 

influence the model performance. Next the DFC2019 dataset (Bosch et 

al., 2019) is used to further demonstrate the advantages of our 

method.   

2.4.1 Experiments on ISPRS benchmark dataset 

2.4.1.1 Dataset 

The performance of our method is evaluated by the ISPRS benchmark 

dataset of 3D labelling (Niemeyer et al., 2014). An overview of the 

dataset is shown in Figure 2.8. The benchmark dataset was obtained 

in August 2008, at Vaihingen, Germany, through a Leica ALS50 system 

whose mean flying height is 500m and field of view is 45o. Point clouds 

were captured with a density of 4 points/m2. Each point has five 

attributes, namely, XYZ coordinates, intensity values and number of 

returns. The dataset is labelled into 9 classes, including powerline, low 

vegetation, impervious surface, car, fence/hedge, roof, façade, shrub, 

and tree. In ISPRS 3D labelling contest, the point cloud is divided into 

a training area and a testing area. The training area consists of 753,876 

points, dominated by residential buildings. The testing area contains 

411,722 points located in the city centre. 
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Figure 2.8 An overview of the ISPRS benchmark dataset. Section A is 

used for model training and Section B is used for model evaluation. 

2.4.1.2 Accuracy assessment 

Following the evaluation metrics of ISPRS benchmark dataset, we use 

the average F1 score (Avg. F1) and overall accuracy (OA) to evaluate 

our method. The overall accuracy measures the percentage of correctly 

predicted points in the total number of test points. F1 score is a 

statistical metric calculated from precision and recall.  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃) 

 (2.13) 
𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑁) 

 (2.14) 
𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 × (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙)/ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+  𝑟𝑒𝑐𝑎𝑙𝑙) 
 (2.15) 

Where TP, FN and FP are true positives, false negatives and false 

positives receptively in a confusion matrix. 

2.4.1.3 Preprocessing 

The ISPRS benchmark dataset is first segmented by the algorithm 

proposed by Landrieu and Obozinski (2017) to obtain segment labels 

required in the SegECC block. We use both XYZ coordinates and 

intensity as the input of the segmentation algorithm. The most 

important factor of the segmentation is the regulation strength, 

determining the coarseness of the final partition. The regulation 

strength is set to 0.03 in this chapter.  
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When preparing the data for training, we subsample the point clouds 

with a grid sampling size of 0.24m, in order to deal with the large 

variation in point density in ALS point clouds. Spheres are randomly 

selected from the subsampled point clouds and fed into the network. 

The radius of the input sphere is taken as 24m. We use intensity, 

absolute Z- coordinates and normalized Z- coordinates within the 

sphere as input features. For data augmentation, the input sphere is 

randomly rotated around the Z-axis to improve the network robustness 

to orientation. Also, random noises are added to XYZ coordinates with 

a σ of 4 cm which is chosen empirically and will not significantly modify 

the geometry of target objects.  

2.4.1.4 Network implementation 

As mentioned in Section 2.4.1.3, input point clouds are downsampled 

in different layers. Table 2.1 shows the grid size of the downsampling 

and the size of convolution kernels from layer 1 to layer 5. The 

convolution radius is 2.5 times the grid size in the corresponding layer. 

For example, the input of the first convolutional layer is subsampled 

with the grid size of 0.24m and the radius of the convolution in the first 

layer is 0.6m The number of kernel points in 3D KPConv is 15 and that 

of 2D KPConv is 17. Kernel points are initialized by the energy function 

proposed by Thomas et al. (2019) to ensure they are far from each 

other inside a given sphere (or circle for the 2D kernel). 

 

Table 2.1 Subsampling grid size and convolution radius in differet 

layers. 
Layer 1 2 3 4 5 

Subsampling grid size 
(m) 

0.24 0.48 0.96 1.92 3.84 

Convolution radius (m) 0.6 1.2 2.4 4.8 9.6 

2.4.1.5 Training and testing 

The proposed network is implemented based on the PyTorch 

framework (Paszke et al., 2019), trained with a Geforce RTX 2080 Ti 

GPU. Stochastic gradient descent (SGD) optimiser is applied to 

optimize network weights. The weighted cross entropy loss function is 

applied to rebalance imbalanced data. During the training, we take 

2000 iterations as one epoch. The learning rate starts from 0.001 with 

a decay rate of 0.9 at every 5 epochs. The model is trained for 60 

epochs until the convergency is achieved. For testing, we randomly 

select spheres in the test area and each point is repeatedly fed into the 

network at least 20 times to obtain averages predictive probability. 

This repetition is to avoid the misclassification on points near the 

sphere boundary whose geometry may be incomplete. 
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2.4.1.6 Classification results 

Qualitative results are shown in Figure 2.9 and the corresponding error 

map is demonstrated in Figure 2.10. It can be seen that the proposed 

LGENet correctly predicts most of the points in the testing area (Figure 

2.10). As shown in Figure 2.9, car and façade points are well predicted, 

even though they have fewer instances in the whole dataset. Also, the 

LGENet can effectively identify powerline points although they are 

sparsely distributed above all other classes.  

 

 
Figure 2.9 Classification results of our LGENet on the ISPRS benchmark 

dataset. 

 



Local and Global Encoder Network for Semantic Segmentation of Airborne Laser 
Scanning Point Clouds 

 32 

 
Figure 2.10 The error map of our LGENet on the ISPRS benchmark 

dataset. 

 

Classification results are quantitively present by the confusion matrix 

in Table 2.2. LGENet can effectively recognize most of the classes with 

an overall accuracy of 0.845. Powerline, low vegetation, impervious 

surface, roof and tree points are well recognized. The worst 

classification result lies in the fence/hedge, most likely it will be 

predicted as shrub points according to the confusion matrix. This 

confusion is due to these classes being similar in geometry, pulse 

intensity and spatial distribution. In addition, façade points are also 

likely to be identified as shrub points since points are relatively sparse 

on façade in ALS dataset and they are difficult to separate if shrub 

points are very close to the building. 
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Table 2.2 Confusion matrix of our proposed network on ISPRS 

benchmark dataset. Precision, recall and F1 score are reported for each 

class. The overall accuracy is 0.845 and the average F1 score is 0.737.  
Power Low_ 

veg 
Imp_ 
surf 

Car Fence/ 
Hedge 

Roof Facade Shrub Tree 

Power 459 2 0 0 0 95 16 1 27 

Low_veg 0 83454 5870 61 263 1201 391 5008 2442 

Imp_surf 0 9318 91972 44 18 301 35 296 2 

Car 0 206 144 2612 84 112 7 518 25 

Fence/Hedg
e 

0 871 103 5 2063 188 33 3217 942 

Roof 112 3883 114 3 60 101146 1486 1229 1015 

Facade 14 776 77 34 34 1243 6583 1863 600 

Shrub 1 4682 75 57 97 1281 368 14319 3938 

Tree 14 1391 15 4 126 938 200 6144 45394 
          

Precison 0.765 0.798 0.935 0.926 0.752 0.950 0.722 0.439 0.835 

Recall 0.765 0.846 0.902 0.704 0.278 0.928 0.587 0.577 0.837 

F1 0.765 0.821 0.918 0.800 0.406 0.938 0.647 0.499 0.836 

 

2.4.1.7 Comparison to state-of-the-art methods 

We quantitatively compare our LGENet to other state-of-the-art models 

on the ISPRS benchmark dataset in Table 2.3. LUH (Niemeyer et al., 

2016)  relies on handcrafted features and applies a two-layer 

hierarchical CRF at point and segment level. Other methods are based 

on deep learning, namely, WhuY4 (Yang et al., 2018), RIT_1 

(Yousefhussien et al., 2018), alsNet (Winiwarter et al., 2019), A-XCRF 

(Arief et al., 2019), D-FCN (Wen et al., 2020), and  Li et al. (2020). 

 

Compared with all the above methods, LGENet achieves superior 

classification performances to other methods in terms of the average 

F1 score (0.737). Nevertheless, the overall accuracy of LGENet is 

slightly lower than the highest overall accuracy (0.850) obtained by A-

XCRF. One explanation for this is that we apply a weighted loss to 

balance the imbalanced class distribution in the ISPRS benchmark 

dataset. The focusing on overall accuracy leads to bias on dominant 

categories and ignores minority classes in the dataset. Therefore, it is 

more meaningful to evaluate model performance by average F1 scores 

that equally reflect the model performance for all categories. Our 

LGENet significantly improves the baseline (KPConv) by 0.031 in the 

average F1 score and overall accuracy in 0.028. As the data processing 
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and hyper-parameter settings are the same for LGENet and the 

baseline network, the accuracy improvement is a result of our network 

design. 

 

Table 2.3 Quantitative comparisons between our LGENet and other 

models on the ISPRS benchmark dataset. The F1 scores for different 

classes are shown in the first nine columns and the overall accuracy 

and the average F1 score are shown in the last two columns. The 

boldface text means the highest value in the column.  
Power Low_ 

veg 

Imp_ 

surf 

Car Fence/ 

Hedge 

Roof  Facade Shrub Tree  Avg. 

F1 

OA 

LUH 
(Niemeyer et 

al., 2016) 

0.596 0.775 0.911 0.731 0.340 0.942 0.563 0.466 0.831 0.684 0.816 

WhuY4 

(Yang et al., 
2018) 

0.425 0.827 0.914 0.747 0.537 0.943 0.531 0.479 0.828 0.692 0.849 

RIT_1 

(Yousefhussien 

et al., 2018) 

0.375 0.779 0.915 0.734 0.180 0.940 0.493 0.459 0.825 0.633 0.816 

alsNet 
(Winiwarter et 

al., 2019) 

0.701 0.805 0.902 0.457 0.076 0.931 0.473 0.347 0.745 0.604 0.806 

A-XCRF 

(Arief et al., 
2019) 

0.630 0.826 0.919 0.749 0.399 0.945 0.593 0.507 0.827 0.711 0.850 

D-FCN 

(Wen et al., 

2020) 

0.704 0.802 0.914 0.781 0.370 0.930 0.605 0.460 0.794 0.707 0.822 

Li et al. (2020) 0.754 0.820 0.916 0.778 0.442 0.944 0.615 0.496 0.826 0.732 0.845 

KPConv 

(Thomas et al., 

2019) 

0.735 0.787 0.880 0.794 0.330 0.942 0.613 0.457 0.820 0.706 0.817 

Ours (LGENet) 0.765 0.821 0.918 0.800 0.406 0.938 0.647 0.499 0.836 0.737 0.845 

 

2.4.1.8 Experiments with different model settings 

2.4.1.8.1 Effectiveness of hybrid convolution 
To justify the importance of 2D KPConv in semantic segmentation of 

ALS point clouds, we conduct experiments to compare and contrast 

models with and without 2D convolutions. We also evaluate how the 

model performance changes with a different number of kernel points 

in 2D convolutions. Furthermore, we test the model performance when 

only using 2D convolutions and when searching neighbours among 

projected 2D points in the 2D KPConv of hybrid blocks. 

 

Table 2.4 presents the quantitative results using different convolutions. 

The original 3D KPConv is used as the baseline. Although deformable 

KPConv kernels (Thomas et al., 2019) are adaptive to object surface 

and enhance descriptive power of output features, they fail in the 

experiments on the ISPRS benchmark dataset (last row in Table 2.4). 

According to Thomas et al. (2019), this is because the dataset has only 
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9 classes and lacks object diversity comparing to other datasets with 

more complex scenes.  

Table 2.4 Quantitative results (F1 scores) of hybrid KPConv with 

different numbers of kernel points in the 2D convolution on ISPRS 

benchmark dataset. Here, we fixed the number of kernel points in 3D 

convolution as 15. The baseline network uses rigid 3D KPConv 

proposed by Thomas et al. (2019). The hybrid models involve 2D 

KPConv in all convolutional layers in the network. The number in the 

bracket represents the number of kernel points in 2D KPConv. The fifth 

row shows the results of the model only using 2D KPConv. The sixth 

row shows the results of hybrid blocks searching neighbours among 

projected 2D points. The seventh row shows the results of the 

deformable KPConv.  
Power Low_ 

veg 

Imp_ 

surf 

Car Fence/ 

Hedge 

Roof  Facade Shrub Tree  Avg. 

F1 

OA 

Base 0.735 0.787 0.880 0.794 0.330 0.942 0.613 0.457 0.820 0.706 0.817 

Hybrid (5) 0.657 0.806 0.909 0.756 0.365 0.938 0.627 0.486 0.807 0.706 0.829 

Hybrid (9) 0.693 0.803 0.900 0.762 0.363 0.937 0.632 0.497 0.824 0.712 0.829 

Hybrid 

(17) 

0.703 0.811 0.908 0.757 0.381 0.939 0.632 0.495 0.826 0.717 0.837 

Only 2D 

(17) 

0.637 0.741 0.853 0.794 0.389 0.862 0.629 0.380 0.793 0.675 0.777 

Hybrid 

(17) 2D 

neighbours  

0.651 0.801 0.889 0.755 0.347 0.932 0.625 0.460 0.809 0.697 0.823 

Deformable 

kernels 

0.604 0.743 0.879 0.734 0.403 0.941 0.595 0.453 0.820 0.686 0.812 

 

By comparing the baseline to the only-2D network, it can be seen that 

although the 2D convolutions lead to low F1 scores in most of the 

semantic classes, the only-2D network outperforms the baseline with 

3D convolutions for the fence/hedge class which is a very difficult class 

for other methods. A possible explanation for this could be that 

fence/hedge are elongated structures distributed on XY plane and fixed 

kernel points on XY planes contributes to better representations. For 

rigid 3D convolutions, kernel points are distributed in the sphere and 

very limited kernel points are located near the XY plane, resulting in 

the failure on those elongated structures distributed on the ground. 

When combining 2D and 3D KPConvs, we could see better average F1 

and overall accuracy are obtained with more kernel points in 2D 

KPConv (Hybrid(5), Hybrid(9) and Hybrid(17) in Table 2.4. Using 2D 

KPConv leads to more confusion between powerline points and roof 

points because projecting points to an XY plane is likely to cause the 

overlap between the powerline points and roof points and responses of 

2D kernels for these two classes can be very similar, while this adverse 

impact is relieved when using more kernel points to enhance the 
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descriptive power of convolutions. The average F1 and overall accuracy 

achieved are 0.717 and 0.837 respectively when the hybrid convolution 

layers have 17 kernel points in the 2D convolution. Comparing to the 

baseline network, this combination significantly improves the F1 scores 

in fence/hedge and shrub by solving the confusion between them.  

 

We also show the results of searching neighbours among projected 2D 

points in the 2D KPConv of hybrid blocks in the sixth row of Table 2.4. 

When comparing to the neighbour searching strategy mentioned in 

section 2.3.1 (Hybrid(17)), F1 scores for all categories are lower, 

especially powerline. This is probably because powerlines always hang 

over all other objects and searching neighbours among projected 2D 

points brings irrelevant points like impervious surface and façade 

points which only give noises and have no contribution to classification 

results.  

 

2.4.1.8.2 Effectiveness of SegECC convolution 
To take advantage of the SegECC operation, we place the SegECC at 

different hybrid convolutional layers in the network architecture and 

quantitative results are shown in Table 2.5. As shown in the first and 

second columns in Table 2.3, adding SegECC at 1 to 4 layers and 2 to 

4 layers fails to improve the network performance in terms of average 

F1 and overall accuracy, compared with the network only using hybrid 

convolutional layers. This is in accordance with observations obtained 

by Feng et al. (2020) that adding more layers to encode global context 

in an encoder and decoder network deteriorates model performance. 

One possible explanation for this drop is that more SegECC blocks raise 

the number of network parameters and therefore the network fails to 

achieve global optima. When only inserting the SegECC at the fourth 

layer, F1 scores on most of the classes are quite similar to the results 

of the hybrid network, like roof and impervious surface points. The 

model performance achieves the best by adding the SegECC at layer 3 

and layer 4. It outperforms the hybrid network (No SegECC in Table 

2.5) in terms of average F1 score and overall accuracy by 0.007 and 

0.006. The most significant increase lies in the powerline, façade and 

fence/hedge which only takes a small proportion of the training data 

and are difficult to predict. This suggests that the global contextual 

information captured at an object level is valuable for these classes. 

This is probably because distributions of these objects are unique in 

urban scenes. Façades exist with roofs. Powerlines are always above 

all other objects and fences/hedges always surround buildings. 

However, this global context fails to solve the confusion between shrub 

and tree because shrub and tree objects are always mixed distributed 

in urban scenes. Thus, exploiting global context at the object level is 

limited in distinguishing these two classes. 
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Table 2.5 Quantitative comparison of classification results using 

SegECC operations at different hybrid convolutional layers on ISPRS 

benchmark dataset. The last row shows the results of the network only 

use hybrid convolutional layers without SegECC operation.  
Power Low_ 

veg 

Imp_ 

surf 

Car Fence/ 

Hedge 

Roof  Facade Shrub Tree  Avg. 

F1 

OA 

1,2,3,4 0.651 0.806 0.902 0.704 0.310 0.936 0.631 0.417 0.795 0.683 0.821 

2,3,4 0.725 0.815 0.911 0.750 0.377 0.925 0.615 0.432 0.797 0.705 0.829 

3,4 0.740 0.819 0.916 0.749 0.420 0.941 0.649 0.466 0.814 0.724 0.843 

4 0.773 0.808 0.915 0.745 0.381 0.936 0.642 0.446 0.815 0.718 0.834 

No 

SegECC 

0.703 0.811 0.908 0.757 0.381 0.939 0.632 0.495 0.826 0.717 0.837 

 

According to Landrieu and Obozinski (2017), the regularization factor 

determines the number of segments produced by the algorithm. To 

evaluate how our method sensitive to this factor, we conduct 

experiments on the ISPRS benchmark dataset using segmentation 

results obtained from three different values of the regularization factor 

for the segmentation algorithm. Quantitative results are listed in Table 

2.7 and qualitative results are demonstrated in Figure 2.11. Three 

values are tested in our experiments, namely 0.01, 0.03 and 0.1. The 

numbers of segments they yield in training and testing areas are shown 

in Table 2.6. A larger regularization factor leads to a smaller number 

of segments. In Figure 2.11, coarse segmentation results are obtained 

with a large regularization factor (0.1). This undersegmentation cannot 

separate delicate structures like fence/hedge from other objects and 

therefore prevents the network from learning interactions among 

different objects, resulting in poor semantic segmentation results 

shown in the last row in Table 2.7. Smaller regularization factors (0.01 

and 0.03) produce more detailed segmentation and this allows the 

network to capture the interactions among different segments within a 

single object and relationships between different objects, thus, 

improving semantic segmentation results. Comparing the results of 

two small regularization factors, 0.03 gives better results than 0.01 in 

terms of the overall accuracy and it achieves better accuracy in low 

vegetation, impervious surface, roof and façade. These classes are 

large objects and segmentation results of 0.01 are too fragmented to 

assist the network to learn better representations. Therefore, we use 

0.03 as the regularization factor to obtain segmentation labels before 

the network training. 

Table 2.6 The number of segments produced with different 

regularization factors for the segmentation algorithm. 

Reg. factor 0.01 0.03 0.1 

Training area 46023 18756 2737 

Test area 27774 10906 1583 
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Table 2.7 Comparison of model performance on ISPRS benchmark 

dataset when using different regularization factors in the segmentation 

algorithm. 
Reg. 

factor 

Power Low_ 

veg 

Imp_ 

surf 

Car Fence 

/Hedge 

Roof  Facade Shrub Tree  Avg. 

F1 

OA 

0.01 0.717 0.811 0.910 0.778 0.397 0.937 0.647 0.476 0.818 0.721 0.835 

0.03 0.740 0.819 0.916 0.749 0.420 0.941 0.649 0.466 0.814 0.724 0.843 

0.10 0.619 0.767 0.843 0.663 0.209 0.929 0.625 0.417 0.797 0.652 0.795 

 

 
Figure 2.11 Qualitative classification results on ISPRS benchmark 

dataset with different regularization factors. The top row shows the 

segmentation results obtained from the unsupervised segmentation 

algorithm and different colours represent different segments. The 

bottom row presents the corresponding semantic segmentation results 

and ground truth. 

 

We also experiment our SegECC with the segmentation results 

obtained from the algorithm proposed by Vosselman et al. (2017). 

Some examples of segmentation results are qualitatively shown in 

Figure 2.12 and network predictions on the ISPRS benchmark dataset 

are quantitively shown in Table 2.8. Segmentation results generated 

by the algorithm of  Vosselman et al. (2017) fail to improve the network 

performance. The accuracies on car and fence/hedge are much lower, 

compared to the results obtained using clustering results of Landrieu 

and Obozinski (2017). This can be explained by the under-

segmentation demonstrated in Figure 2.12. It can be seen that 

clustering results obtained by  Vosselman et al. (2017) have more well-

segmented planar components and are coarser than the output of  

Landrieu and Obozinski (2017). Car points are not separated from 

nearby tree points and fence/hedge points are grouped with nearby 

shrub points to form a single segment. Introducing the wrong 
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clustering information during training consequently deteriorates the 

network performance on those classes.  

 

Table 2.8 Quantitative comparison of classification results using 

different segmentation methods for SegECC operation on ISPRS 

benchmark dataset. Seg1 uses the segmentation results obtained by 

Vosselman et al. (2017) and seg2 takes L0-cut proposed by Landrieu 

and Obozinski (2017). The last row shows the results of the network 

only use hybrid convolutional layers without SegECC operation.  
Power Low_v

eg 

Imp_s

urf 

Car Fence/ 

Hedge 

Roof  Facad

e 

Shrub Tree  Avg. 

F1 

OA 

seg1 0.675 0.797 0.858 0.754 0.324 0.926 0.634 0.436 0.806 0.690 0.814 

seg2 0.740 0.819 0.916 0.749 0.420 0.941 0.649 0.466 0.814 0.724 0.843 

no_se

g 

0.703 0.811 0.908 0.757 0.381 0.939 0.632 0.495 0.826 0.717 0.837 

 

 

 
Figure 2.12 Examples of segmentation results on ISPRS benchmark 

dataset. Seg1 uses the segmentation results obtained by Vosselman et 

al. (2017) and seg2 takes L0-cut proposed by Landrieu and Obozinski 

(2017). Different colours represent different segments. Numbers below 

the segmentation result are numbers of segments within the cropped 

point clouds.  

  

In order to improve the model robustness and save GPU memory, we 

randomly select edges instead of using all edges during the training. 

Table 2.9 presents the classification results using a different number 

of edges in the SegECC operation. For simplicity, we select the same 

amount of edges in SegECC regardless of the layer. Considering the 

GPU memory and neighbourhood sizes in layer 3 and layer 4 (Figure 

2.13), we try 3 values for the number of selected edges, namely 40, 
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80 and 120. It can be seen from Table 2.9 that the use of too many 

edges cannot improve model performance due to overfitting while 

using only a few edges is insufficient to exploit contextual information. 

Therefore, we randomly select 80 edges for SegECC in layer 3 and layer 

4.  

 

Table 2.9 Comparison of model performance on ISPRS benchmark 

dataset with a different number of edges selected in SegECC operation.  
Power Low_ve

g 
Imp_su
rf 

Car Fence/ 
Hedge 

Roof  Facad
e 

Shrub Tree  Avg. 
F1 

OA 

40 0.707 0.809 0.905 0.727 0.402 0.939 0.643 0.448 0.814 0.711 0.831 

80 0.740 0.819 0.916 0.749 0.420 0.941 0.649 0.466 0.814 0.724 0.843 

120 0.696 0.801 0.903 0.760 0.359 0.930 0.625 0.437 0.801 0.701 0.822 

 

 
Figure 2.13 Distribution of neighbourhood size for Vaihingen dataset. 

 

2.4.1.8.3 Effectiveness spatial-channel attention 
Quantitative results of the model using spatial-channel attention on 

ISPRS benchmark dataset are shown in Table 2.10. Using spatial-

channel attention does not significantly improve the overall accuracy 

but increases the average F1 score from 0.724 to 0.737. The F1 score 

in powerline, car and shrub increase by 0.025, 0.051 and 0.033 

respectively. Figure 2.14 shows that with the spatial-channel attention, 

powerline and car points can be corrected by taking global contextual 

information. Also, the spatial-channel eliminates ‘salt and pepper’ 

effects in the classification results. In the bottom row of Figure 2.14, it 

removes isolated façade points to make results more consistent with 

surrounding points, although the model with the spatial-channel 

attention wrongly predicts hedge points to be shrub and tree points. 

These incorrect predictions lead to the slight decrease in the F1 score 

for fence/hedge shown in Table 2.10. 
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Table 2.10 Comparison of model performance with spatial-channel 

attention and without spatial-channel attention.  
Power Low 

_veg 

Imp_ 

surf 

Car Fence/ 

Hedge 

Roof  Facade Shrub Tree  Avg. F1 OA 

Without 
spatial-

channel 

attention 

0.740 0.819 0.916 0.749 0.420 0.941 0.649 0.466 0.814 0.724 0.843 

With 

spatial-

channel 

attention 

(LGENet) 

0.765 0.821 0.918 0.800 0.406 0.938 0.647 0.499 0.836 0.737 0.845 

 

 
Figure 2.14 Qualitative comparison of model performance with spatial-

channel attention and without spatial-channel attention. 

2.4.1.9 Experiments with PointNet++ backbone 

In this chapter, we mainly focus on adapting the KPConv network, while 

the proposed SegECC layer and spatial-channel attention (DA) is also 

possible to work with other feature extractors. In the following 

experiments, we insert SegECC and spatial-channel attention to 

PointNet++ (Qi et al., 2017b) and then test models on the ISPRS 

benchmark dataset. Table 2.11 shows the results of PointNet++, 

PointNet++ with a SegECC layer and PointNet++ with a SegECC layer 

and a spatial-channel attention. The model with both the SegECC layer 

and the spatial-channel attention achieves the best performance in 

terms of the average F1 score and the overall accuracy.  
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Table 2.11 Quantitative comparison of classification results of 

PointNet++, PointNet++ with a SegECC layer and PointNet++ with a 

SegECC layer and a spatial-channel attention on the ISPRS benchmark 

dataset. 
  Power Low_ve

g 

Imp_su

rf 

Car Fence/

Hedge 

Roof  Facade Shrub Tree  Avg. F1 OA 

Pointn

et++ 

0.604 0.814 0.904 0.723 0.103 0.906 0.349 0.469 0.739 0.623 0.806 

Pointn

et++ 

w/ 

SegEC
C 

0.644 0.797 0.897 0.660 0.185 0.923 0.621 0.359 0.776 0.651 0.812 

Pointn

et++ 

w/ 

SegEC

C+DA 

0.710 0.823 0.915 0.780 0.215 0.921 0.590 0.480 0.731 0.685 0.826 

 

2.4.2 Experiments on DFC2019 dataset 

2.4.2.1 Dataset 

We also evaluate our LGENet by another ALS dataset published by the 

IEEE Geoscience and Remote Sensing Society (GRSS) for the Data 

Fusion Contest in 2019 (DFC2019) (Bosch et al., 2019). The DFC2019 

dataset covers large-scale urban areas, about 100 km2, in two large 

cities, namely, Omaha, Nebraska and Jacksonville, Florida in the Unites 

States. The ALS point clouds are captured with an aggregate nominal 

pulse spacing of 0.8m and contain about 200 million points in total. For 

each point, not only XYZ coordinates but also the intensity and return 

number are available. The point clouds are manually labelled into five 

classes, namely ground, high vegetation, building, water and bridge 

deck. We use 100 tiles as the training data and 10 tiles as the test 

dataset, same as the data split in Wen et al. (2020). We use the same 

hyperparameters as those for experiments on ISPRS benchmark 

dataset, except the radius of the input sphere and the grid cell size for 

subsampling which are set as 48m and 0.48m respectively. This is 

because DFC2019 point clouds are sparse and only large objects are 

required to be predicted like building and bridge deck. Furthermore, 

the model is trained for 150 epochs to achieve convergence. 
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2.4.2.2 Classification results 

Table 2.12 Quantitative classification results of different models on the 

DFC2019 dataset. The first five columns show F1 scores for five 

classes. The last two columns list the average F1 score and OA 

respectively. The boldface text demonstrates the highest value in the 

column.  
Ground High 

Vege-
tation 

Build-
ing 

Water Bridge 
Deck 

Avg. F1 OA 

Baseline 

(KPConv) 

0.991 0.975 0.893 0.434 0.694 0.797 0.978 

Hybrid 0.992 0.974 0.925 0.444 0.735 0.814 0.980 

Hybrid-
SegECC 

0.993 0.979 0.924 0.447 0.791 0.827 0.983 

Hybrid-
SegECC-DA 
(LGENet) 

0.993 0.983 0.928 0.474 0.791 0.834 0.984 

 

 
Figure 2.15 Some examples of classification results on the DFC2019 

dataset obtained from different models. First row: baseline (KPConv), 

second row: hybrid convolution, third row: hybrid convolution with 

SegECC operations, fourth row: hybrid convolution with SegECC 

operations and spatial-channel attention at the end of the network, 

fifth row: ground truth. 
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Table 2.13 Quantitative comparisons between other methods and our 

LGENet on the DFC2019 dataset. The first five columns show F1 scores 

for five classes. The last two columns list average F1 scores and OA. 

The boldface text means the highest value in the column.  
Groun
d 

High 
Vegetati
on 

Buildin
g 

Water Bridge 
Deck 

Avg. 
F1 

OA 

PointNet++ 
(Qi et al., 
2017b) 

0.983 0.958 0.797 0.044 0.073 0.571 0.927 

PointSIFT 
(Jiang et al., 
2018)  

0.986 0.970 0.855 0.464 0.604 0.776 0.940 

PointCNN 
(Li et al., 
2018) 

0.987 0.972 0.849 0.441 0.653 0.780 0.938 

D-FCN 
(Wen et al., 
2020) 

0.991 0.981 0.899 0.450 0.730 0.810 0.956 

DANCE-NET 

(Li et al., 

2020) 

0.991  0.939  0.870  0.583  0.839  0.844 0.968  

GACNN 
(Wen et al., 
2021) 

0.993  0.968  0.911  0.425  0.844  0.828 0.951  

Ours 
(LGENet) 

0.993 0.983 0.928 0.474 0.791 0.834 0.984 

 

Table 2.12 and Figure 2.15 present the classification results of our 

method on the DFC2019 dataset. The use of hybrid convolutions only 

gives rise to the F1 score increase in building, water and bridge deck 

by 0.032, 0.009 and 0.041 respectively compared to the baseline 

KPConv. The average F1 score is therefore increased by 0.017. When 

adding SegECC to the network (third row in Table 2.12), it can be seen 

that the F1 score of the bridge deck rises by 0.056. The contextual 

information at the segmentation level helps to correct the building 

points near the bridge deck (Figure 2.15). The effectiveness of the 

spatial-channel attention at the end of the network can be noticed by 

comparing the third and fourth rows in Table 2.12. Pointwise 

predictions are further corrected by considering contextual information 

from a global perspective. In order to demonstrate the advantages of 

our LGENet, we also compare our results on DFC2019 with others’ 

results, namely PointNet++ (Qi et al., 2017b) PointSIFT (Jiang et al., 

2018) PointCNN (Li et al., 2018), D-FCN (Wen et al., 2020), DANCE-

NET (Li et al., 2020) and GACNN (Wen et al., 2021)  shown in Table 

2.13. Our LGENet achieves the best F1 scores on ground, high 

vegetation and building and it also reaches the top overall accuracy.   
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2.5 Conclusion 

We proposed a novel network LGENet for semantic segmentation of 

ALS datasets. The LGENet learns representative features from local to 

global and exploits contextual information at both object and point 

levels. We first add 2D point convolutions to the 3D point convolutions 

of KPConv forming a hybrid block in order to enhance the learning of 

the representative local geometry, especially for elongated objects 

distributed on the horizontal plane. Next, segment-based edge 

conditioned convolution (SegECC) is inserted at the end of the hybrid 

block to encode the context at the object level. Segment labels used in 

SegECC are obtained before the training from an unsupervised 

segmentation algorithm, while the segment features are dynamically 

calculated from changing pointwise features during the training. We 

finally add a spatial-channel attention module to further improve the 

semantic predictions by considering global relationships between 

points and interdependencies between channels.  

 

We verify the advantages of our proposed method by comprehensive 

experiments on the ISPRS benchmark dataset. LGENet outperforms 

the baseline model, KPConv (Thomas et al., 2019), by 0.031 in overall 

accuracy and 0.028 in average F1 score. When comparing to other 

state-of-the-art models, LGENet achieves the best accuracy in terms 

of the average F1 score (0.737). The overall accuracy is comparable 

with the published results obtained from those current leading models. 

Furthermore, we conduct experiments on the DFC2019 dataset and 

LGENet produces more accurate pointwise semantic predictions in 

terms of overall accuracy (0.984) and average F1 score (0.834), 

compared to the baseline and other leading models. This further 

demonstrates the advantage of our proposed LGENet.  

 

 



 

Chapter 3 – Active and Incremental Learning 
for Semantic Airborne Laser Scanning Point 
Cloud Segmentation 2   

 
2 This chapter is based on: 
 
Lin, Y., Vosselman, G., Cao, Y., Yang, M.Y., 2020. Active and incremental 

learning for semantic ALS point cloud segmentation. ISPRS Journal of 
Photogrammetry and Remote Sensing 169, 73–92. 
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Abstract 

Supervised training of a deep neural network for semantic 

segmentation of point clouds requires a large amount of labelled data. 

Nowadays, it is easy to acquire a huge number of points with high 

density in large-scale areas using current LiDAR and photogrammetric 

techniques. However, it is extremely time-consuming to manually label 

point clouds for model training. In this chapter, we propose an active 

and incremental learning strategy to iteratively query informative point 

cloud data for manual annotation and the model is continuously trained 

to adapt to the newly labelled samples in each iteration. We evaluate 

the data informativeness step by step and effectively and incrementally 

enrich the model knowledge. The data informativeness is estimated by 

two data dependent uncertainty metrics (point entropy and segment 

entropy) and one model dependent metric (mutual information). The 

proposed methods are tested on two datasets. The results indicate the 

proposed uncertainty metrics can enrich current model knowledge by 

selecting informative samples, such as considering points with difficult 

class labels and choosing target objects with various geometries in the 

labelled training pool. Compared to random selection, our metrics 

provide valuable information to significantly reduce the labelled 

training samples. In contrast with training from scratch, the 

incremental fine-tuning strategy significantly save the training time. 
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3.1 Introduction 

Point clouds, collections of points in 3D space, are characterized by 

their powerful abilities to represent position, size, shape and 

orientation of objects. Interpretation of point clouds captured by 

airborne laser scanning (ALS) systems is an essential step for many 

applications, such as 3D city modelling and urban land administration. 

Manually identifying urban objects like buildings, trees, and bridges 

requires a huge amount of human effort. To reduce this time-

consuming and tedious work, researchers put their efforts on 

investigating the potential of machine learning techniques to deal with 

point cloud understanding (e.g. semantic segmentation) automatically. 

 

Supervised machine learning is the most commonly used technique in 

point cloud interpretation. It relies on labelled data to train statistical 

models.  A lot of models have been researched for the task of semantic 

point cloud segmentation, like Random Forests (RF) (Chehata et al., 

2009), Supported Vector Machine (SVM) (Lodha et al., 2006), Gaussian 

Mixture Model (GMM) (Weinmann et al., 2014), AdaBoost (Lodha et al., 

2007) and Artificial Neural Networks (ANN) (Xu et al., 2014). Recently, 

deep neural networks made significant breakthroughs in point cloud 

classification and segmentation tasks, such as PointNet (Qi et al., 

2017a) and PointCNN (Li et al., 2018). Although the deep learning 

paradigm shows its power in complicated feature representation, it 

requires a massive amount of ground truth data to avoid overfitting 

during the training. Unfortunately, the ground truth for the semantic 

point cloud segmentation requires pointwise labelling, which is very 

time-consuming when done manually. To label ALS point clouds 

covering 2 km2 in Dublin centre into 8 categories, over 2500 hours 

were spent with an appropriate tutorial, supervision, and careful cross-

checks to minimize the error (Zolanvari et al., 2019). Therefore, 

strategies should be proposed to alleviate this manual annotation 

effort.  

 

To reduce manual annotation efforts, one possible strategy is to bring 

labels from other data sources. For example, Yang et al. (2020) directly 

bring 2D labels from topographic maps to train the model for semantic 

segmentation of point clouds. Another solution is to effectively train 

models with only a small set of labelled data. Semi-supervised learning 

is one of the techniques proposed to train models with limited labelled 

data and a large amount of unlabelled data (Zhu and Goldberg, 2009). 

It takes advantages of unlabelled data in order to facilitate supervised 

learning tasks in the lack of labelled data.  

 

Identifying and only labelling the most informative samples is another 

promising alternative. Settles (2009) show that the informativeness of 
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training samples differs. Some samples are informative and therefore 

improve the model performance, while some bring less information and 

others are even outliers to models. Only a part of the annotated data 

determines the models’ parameters. Therefore, an efficient learning 

strategy should be investigated to select the most informative samples 

for model optimization. Then manual annotation can be reduced 

because only selected informative samples need to be manually 

annotated. Active learning is an efficient learning strategy proposed to 

solve the problem.  

 

The aim of active learning is to create a small training subset from a 

larger unlabelled dataset. The strategy is to assess the sample 

informativeness in the unlabelled pool using the current model state. 

Then informative samples are manually annotated and added to the 

current training data for the next training. This minimizes manually 

labelling efforts during ground truth preparation while keeping the 

model performance in a supervised learning process. Active learning 

has been studied in many tasks like natural language processing (Wang 

et al., 2019a), object detection (Kellenberger et al., 2019), image 

classification (Wang et al., 2017), image semantic segmentation 

(Vezhnevets et al., 2012) and remote sensing (Tuia et al., 2011). 

Nevertheless, how to perform point cloud labelling tasks by active 

learning is rarely researched (Feng et al., 2019; Lin et al., 2020b; Luo 

et al., 2018). 

 

In addition to the active learning that iteratively selects informative 

samples for training, incremental learning is a type of machine learning 

technique where the learning process occurs whenever new data 

emerge and the current learned knowledge is adjusted according to the 

new data. In incremental learning, the model knowledge is 

continuously enlarged by the continually added samples. Incremental 

learning has been investigated in many computer vision applications 

like object recognition (Bai et al., 2015), image classification (Ristin et 

al., 2016) and segmentation (Tasar et al., 2018), visual tracking (Dou 

et al., 2015) and surveillance (Shin et al., 2018). Some researches 

involve active selection processes in incremental learning for image 

related tasks (Brust et al., 2020; Zhou et al., 2017). However, to our 

knowledge, there is no research to integrate active learning with 

incremental learning for semantic segmentation of ALS point clouds.  

 

In this chapter, we propose an effective framework for semantic 

segmentation of large-scale ALS point clouds in urban areas based on 

both active and incremental learning techniques. The objective of this 

chapter is to effectively query informative samples that can improve 

the performance of deep learning models meanwhile minimizing the 
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annotation efforts required for training data preparation. Also, we 

alleviate the training efforts by implementing incremental learning. We 

assess the informativeness of point clouds by three uncertainty 

metrics, point entropy, segment entropy and mutual information. The 

major contributions of this chapter are as follows: 

 

1) We introduce an active and incremental learning framework to 

effectively reduce the number of training samples required by deep 

neural networks for semantic segmentation of large ALS point 

clouds.  

2) To identify the most informative parts of a point cloud for model 

training, we quantitatively assess both data dependent and model 

dependent uncertainties using three independent metrics.  The data 

dependent uncertainty is estimated by point entropy and segment 

entropy. The segment entropy considers interactions among 

neighbouring points. Model dependent uncertainty is estimated by 

mutual information which analyses the disagreements produced by 

different model parameters.  

3) To make use of the knowledge obtained from previous training and 

reduce training efforts in the task of semantic segmentation of large 

ALS point clouds, we allow the model to incrementally learn from 

the point clouds by fine-tuning the model obtained from the 

previous stage instead of training the model from scratch for each 

active learning iteration.  

The rest of the chapter is structured as the following. Section 3.2 

reviews related work. Section 3.3 introduces the proposed active and 

incremental learning framework and describes the network structure 

as well as three query functions. Experimental results of two subsets 

of the AHN3 dataset are presented and analysed in Section 3.4. Section 

3.5 concludes the main observations in the chapter and provides some 

suggestions for the future work. 

 

3.2 Related work 

3.2.1 Deep learning approaches 

Recently, deep learning algorithms have been improving accuracy on 

semantic segmentation of point clouds. There are two groups of 

methods, 2D and 3D. For 2D methods, point clouds are firstly projected 

onto 2D image planes and then passes into Convolutional Neural 

Networks (CNNs). For example, Kalogerakis et al. (2017) and Boulch 

et al. (2018) capture point cloud images from different views and take 

these images as the input of image based CNNs. The output pixelwise 
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image labels are then projected back to 3D points. However, the work 

of Kalogerakis et al. (2017) only deals with part segmentation of 

objects instead of assigning pointwise labels for either indoor or 

outdoor scenes which are much more complex. Although SnapNet 

(Boulch et al., 2018) is designed for semantic segmentation of point 

clouds in complex scenes, during the projection, self-occlusion is 

inevitable, especially for complicated scenes. To deal with ALS data 

covering large areas, some researchers project point clouds onto 2D 

grids from the top view consisting of some simple attributes per grid 

cell like mean, minimum and maximum height (Hu and Yuan, 2016). 

Yang et al. (2017) also use 2D grids but improve the accuracy of ISPRS 

benchmark dataset by adding more geometric and full-waveform 

features to 2D grids. However, their method requires large memory to 

process the data. 

 

Semantic point cloud segmentation can also be solved by 3D deep 

learning networks. To adapt unstructured point clouds to 3D 

convolutional filters, a group of methods partition 3D space into small 

grid voxels (Maturana and Scherer, 2015; Tchapmi et al., 2017; Wu et 

al., 2015). However, comparing to original point clouds, the 

voxelization not only causes loss in data representation but also 

introduces artifacts. These drawbacks hinder the learning of 3D 

features. Also, voxel structures store unoccupied grids in 3D space and 

this leads to high memory requirements. To avoid the disadvantages 

of the voxelization, networks that can directly consume unstructured 

point clouds are designed. 

 

PointNet (Qi et al., 2017a) directly takes unstructured points as inputs 

and learns pointwise feature through a sequence of Multilayer 

Perceptron (MLP) layers. With the spatial transformer, the network is 

robust to variance in geometric transformation. Since PointNet only 

allows pointwise features to be learned independently, PointNet++ 

with a hierarchical structure is proposed to capture the geometric 

relationships among points in different scales (Qi et al., 2017b).  

 

To exploit the contextual information among neighbouring points like 

2D convolutional kernels, 3D convolutional networks are also 

introduced to directly consume irregularly structured point clouds. 

Unlike Voxnet (Maturana and Scherer, 2015) applying 3D convolutions 

on a discrete space, some methods define 3D convolutional operators 

over continuous space. For each point, weights of the neighbouring 

points depend on spatial distribution around the central points. Thomas 

et al. (2019) define both fixed and deformable Kernel Point 

Convolutions (KPConv) on continuous space. Linear correlation, 

assessing the distances between neighbouring points and kernel 
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points, is applied to assign different weights to different areas inside 

the domain of convolutional kernels. Positions of kernel points in 

deformable convolutions are learnable and can adapt to local 

geometry. Some other methods also define 3D operators in continuous 

space like SpiderCNN (Xu et al., 2018), PointConv (Wu et al., 2019) 

and Flex-Convolution (Groh et al., 2019).  

 

Some researchers introduce graph convolutions to semantic point 

cloud segmentation tasks, where each point is taken as a graph vertex 

and edges are defined by relations among neighbouring points. For 

example, EdgeConv (Wang et al., 2019b) dynamically computes 

graphs not only on 3D spatial space but also on higher dimensional 

feature space, in order to capture the topological information in point 

clouds. In addition to construct graphs over single points, Landrieu and 

Simonovsky (2018) define graphs on superpoints which are 

geometrically homogeneous point sets, aiming to efficiently deal with 

large scale point clouds. Edges in SuperPoint Graphs represent the 

adjacency relationships between superpoints. Graph Convolutional 

Networks (GCNs) are applied to exploit the contextual information 

among shapes and object and this makes the GCN to consider a wider 

range of point clouds compared to point based GCNs.  

3.2.2 Active learning  

The objective of active learning is to sample data based on a calculated 

informativeness metric and maximize model performance with fewer 

labelled samples. How to evaluate the informativeness of samples is 

the main research question in active learning and this has been studied 

in the machine learning community for a long time. There are many 

ways to evaluate the sample informativeness for active learning. 

Uncertainty-based active learning criteria is probably the simplest and 

most commonly used (Settles, 2009). It selects samples that the 

‘model’ is least certain about, like margin sampling and least confident 

sampling. This is a simple and direct method for probabilistic learning 

models (Settles, 2009). Density weighted methods query samples by 

assessing the intrinsic distribution and structure of the data and select 

samples are representative to the whole dataset, like Gaussian 

similarity (Zhu, 2005), divergence similarity  (McCallumzy and Nigamy, 

1998) and clustering (Xu et al., 2007). Expected change based 

methods estimate the influence of unlabelled samples on the current 

model. For example, Settles and Craven (2008) choose samples that 

make the largest change in the model by calculating the expected 

length of the gradient.  

 

Recently, active learning has been incorporated with deep 

architectures in many studies. Gal et al. (2017) propose several 
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uncertainty-based metrics based on Bayesian CNNs for image 

classification. Monte-Carlo dropout technique is applied to approximate 

the Bayesian process in networks and produce probabilistic output. 

Then entropy sampling, variance sampling and maximizing mutual 

information are employed to assess the sample informativeness. 

Beluch et al. (2018) use ensembles of neural networks to evaluate the 

model dependent uncertainty in image classification tasks. Beluch et 

al. (2018) train all ensembles with the same network architecture and 

the same data but with different initialization weights. Data 

informativeness is evaluated by several metrics, including entropy, 

variation ratio and mutual information estimate.  Besides evaluating 

the uncertainty, some studies combine expected change based 

methods with CNNs in image classification and object detection tasks 

like Otálora et al. (2017)  and Brust et al. (2020). 

 

In addition to image classification and object detection tasks, some 

efforts have been spent on solving point cloud related tasks by active 

learning strategies. Luo et al. (2018) propose a workflow to integrate 

higher order Markov Random Field (MRF) with active learning in order 

to efficiently assign pointwise labels to mobile LiDAR point clouds with 

limited labelling efforts. Assuming two nearby points are likely to share 

the same label, Luo et al. (2018) evaluate the neighbour-consistency 

during the sampling. That means, for a certain supervoxel, it is taken 

as a wrongly labelled sample if its predicted label is not the same as 

the label of its nearby manually annotated supervoxel. In this case, the 

‘incorrectly labelled’ samples will be queried and manually annotated 

and then used to improve model performance in the next iteration. 

Although this work takes the advantage of interactions among 

neighbouring supervoxels and saves manual labelling by selecting 

optimal training supervoxel, taking MRF as the classifier still requires 

hand-crafted features which is less representative compared to deep 

learning features. Feng et al. (2019) propose a framework to integrate 

a state-of-the-art deep learning method with uncertainty-based active 

learning queries for 3D object detection in point clouds. They evaluate 

both aleatoric (data dependent) and epistemic (model dependent) 

uncertainty through Monte-Carlo dropout and deep ensembles 

techniques. With their active learning strategies, the model only needs 

40% of the labelled data to achieve comparable accuracy when using 

all labelled data. Lin et al. (2020) integrate the deep learning network 

PointNet++ with two data dependent metrics for the semantic 

segmentation of ALS point clouds. However, the method does not take 

advantages of the knowledge learned from the previous stage, which 

makes the training process very time-consuming.  
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3.2.3 Incremental learning 

An important step to make the active learning training more efficient 

is to retain the knowledge from previous tasks, i.e. training steps. 

Incremental learning is a method where new data are continuously 

added to existing training data in order to extend the knowledge of the 

current model. In the deep learning paradigm, classifiers and task-

specific features are jointly learned. New samples cannot be simply 

added to update parameters as can be done in models like least-

squares regression, because neural networks are non-convex and 

highly non-linear. To update model parameters in non-convex and 

highly non-linear networks, optimization techniques, such as gradient 

descent, are implemented to gradually refine model parameters to 

achieve global optima. In this scenario, simply updating models 

incrementally by only using new data is likely to make large changes 

in previously learned weights, forcing the model to adapt to new data. 

Therefore, its performance on the old data dramatically degrades 

(Kirkpatrick et al., 2017).  

 

To maintain the performance on the old task, Castro et al. (2018) 

propose an end-to-end incremental learning strategy by combining 

distillation loss with cross entropy loss for image classification tasks. 

Distillation loss which is used to transfer information between different 

networks is adapted to maintain knowledge obtained from previous 

tasks and a cross entropy loss is used to learn from new data. Rusu et 

al. (2016) propose progressive neural networks where features 

acquired from old tasks are blocked to retain previous knowledge and 

new sub-networks are created to learn information from new data. In 

addition to enlarging the network, Kirkpatrick et al., (2017) propose 

the elastic weight consolidation (EWC) which penalizes on the 

difference between the new and old tasks. Brust et al. (2020) integrate 

incremental learning strategies with active learning criteria for object 

detection. The incremental learning is achieved by simple yet effective 

fine-tuning. After selecting new data by active learning criteria, newly 

labelled samples and old samples are assigned with different weights 

and are mixed. The model trained by the old data is updated to acquire 

information from new data by fine-tuning with those weighted samples. 

Similarly, Zhou et al. (2017) propose a framework to actively and 

incrementally fine tune CNNs for biomedical images. To our knowledge, 

there is no research that combines active and incremental learning with 

deep learning for semantic segmentation of point clouds. 
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3.3 Method 

 

 

 
Figure 3.1 The proposed framework for active and incremental learning 

strategy for the semantic segmentation of point clouds. First of all, 

point clouds in the training area are split into tiles and separated into 

two groups: labelled (minority) and unlabelled (majority). If no 



Active and Incremental Learning for Semantic ALS Point Cloud Segmentation 

 56 

previous model is available, the network is trained from scratch. 

Otherwise, the model is incrementally fine-tuned according to the 

previous model. The model is validated on the validation tiles to avoid 

the overfitting to labelled data during the training. Then, the trained 

network selects unlabelled tiles by one of three queries depending on 

the metric to assess the informativeness of the tile. Query 1 directly 

consumes unlabelled tiles and query 2 relies on the unsupervised 

segmentation. Query 3 directly takes unlabelled points and evaluates 

the disagreement caused by model parameters. Selected tiles are 

labelled before the next training. The trained network is evaluated on 

testing tiles in each iteration. 

 

The proposed workflow is presented in Figure 3.1. The red dash line 

box illustrates the active and incremental learning strategy introduced 

in this chapter. There are three major steps, namely, training, point 

cloud query, and annotation. The following sections first describe the 

active learning framework. Next, the details of the network used in this 

chapter are explained. Then, point entropy, segment entropy and 

mutual information are introduced to select informative point cloud 

tiles. Finally, how the incremental learning strategy is implemented in 

our research is explained. 

3.3.1 Active learning 

Let us consider a set of unlabelled point cloud tiles S which are 

generated by splitting the training area. To initialize the active learning 

framework, we first select and annotate a subset ℒ0 from 𝒮. We ensure 

ℒ0 contains at least one instance of each class. Then ℒ0 are excluded 

from 𝒮 and we define the reduced unlabelled pool as 𝒮0. The initial 

network ℳ0 is trained on ℒ0. The active learning loop starts with the 

trained model ℳ0 estimating the informativeness of all point cloud tiles 

in the unlabelled pool 𝒮0 . Then we select 𝐾  samples that are most 

informative and annotate them to form a set of labelled tiles 𝒳1. We 

update current labelled pool ℒ0 with 𝒳1 to form a new labelled set ℒ1 

while excluding 𝒳1 from the current unlabelled pool 𝒮0 to form a new 

unlabelled set 𝒮1. Instead of training from scratch, we obtained a new 

model ℳ1  by using all labelled tiles ℒ1  to incrementally update the 

model ℳ0  obtained from the previous step. For the 𝑛𝑡ℎ  iteration, 

selected tiles, the labelled pool, the unlabelled pool, and the trained 

model are defined by 𝒳𝑛 , ℒ𝑛 , 𝒮𝑛  and ℳ𝑛  respectively. This querying 

and training loop is repeated until the stopping criterion is met, such 

as no significant improvement in network performance for several 

iterations or sufficient network performance has been achieved. 

Algorithm 3.1 summarizes the active and incremental learning strategy 

step by step. 
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Algorithm 3.1 Active Learning Algorithm 

Input: a pool of unlabelled point cloud tiles 𝒮  

Output: the manually labelled point cloud tiles ℒ, and a trained 

neural network ℳ. 

Initialization: 

           ℒ0 = 𝑆𝑎𝑚𝑝𝑙𝑒𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒 (ℒ) # Manually annotate a small subset. 

𝒮0 = 𝒮\ℒ0  # Update set of unlabelled point cloud tiles. 

ℳ0 = 𝑇𝑟𝑎𝑖𝑛(ℒ0) # Train ℳ0 from scratch. 

Active selection and incremental model updates: 
𝑛 = 1 

while the stopping condition is not met, do: 

𝒳𝑛 = 𝐴𝐿 𝑞𝑢𝑒𝑟𝑦(ℳ𝑛−1, 𝒮𝑛−1) # Select 𝐾 tiles for labelling. 

ℒ𝑛 =  ℒ𝑛−1 ∪ 𝒳𝑛 # Update labelled tiles. 

𝒮𝑛 = 𝒮𝑛−1\𝒳𝑛  # Reduce unlabelled pool. 

ℳ𝑛 =  𝑇𝑟𝑎𝑖𝑛(ℳ𝑛−1, ℒ𝑛) # Use all labelled data to update the 

model. 
𝑛 = 𝑛 + 1 

Return ℒ𝑛 and ℳ𝑛 

 

Unlike picking points or super voxels proposed by Luo et al. (2018), 

point cloud tiles (𝒳𝑛) are queried by functions introduced in Section 

3.3.2. Luo et al. (2018) calculate pre-defined pointwise geometrical 

features based on neighbouring points, like planarity and linearity. 

Then an MRF classifier is trained for assigning a label to each point 

according to those pre-defined features. In contrast, deep learning 

based methods learn geometrical features from data. That means the 

input of the networks should be a group of points that can preserve 

geometrical information, instead of a single point with a set of pre-

defined features. Therefore, point cloud tiles are taken as the input of 

the forward pass and network weights are updated through back-

propagation according to the loss function. If only a part of the tile is 

annotated, a complete tile is still required as the network needs the 

input to have geometrical representative charateristics. The 

computational cost will not change with the proportion of labelled 

points. The only thing that will be changed is the loss where unlabelled 

points give no contribution. If we query points from all unlabelled 

points, all point cloud tiles are required to be put into the network for 

each training. The training time for one epoch is the same as that of 

using the fully labelled whole training data. However, if we select point 

clouds by tiles, querying fewer tiles results in less computation time to 

complete a single training epoch.  
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3.3.2 Query functions 

Four strategies to sample point cloud tiles are compared; random 

sampling, point entropy sampling, mutual information and segment 

entropy sampling. The random sampling picks tiles randomly and is 

taken as a baseline. We explain the other three methods in the 

following sections. 

3.3.2.1 Point entropy 

Shannon Entropy (SE) is an information metric indicating how much 

information is required to ‘encode’ a distribution. 

𝐸 =  − ∑ 𝑝𝑟𝑜𝑏(𝑦 = 𝑐|𝒙) log 𝑝𝑟𝑜𝑏(𝑦 = 𝑐|𝒙)

𝐶

𝑐=1

 
(3.1) 

where 𝑝𝑟𝑜𝑏(𝑦 = 𝑐|𝒙) is the predictive probability for class 𝑐 coming after 

the softmax function at the last layer of the network. 

 

When the model is quite certain about a class label, it will assign a very 

high predictive probability to that class and giving low values to other 

classes. In this case, the entropy value is low. On the contrary, high 

entropy value occurs when similar predictive probabilities are given to 

multiple classes and this suggests the model is not confident in the 

prediction. Here, we select samples that the model is most uncertain 

about and therefore those with high entropy values will be queried. In 

this research, point clouds are selected by tiles. To estimate the 

informativeness of the tile, we calculate the mean of pointwise entropy 

within each unlabelled tile. The 𝐾  tiles with the highest average 

pointwise entropy will be queried, annotated, and added to labelled 

data pool for the next training.  

3.3.2.2 Segment entropy 

Apart from assessing pointwise uncertainty, the informativeness of 

point cloud tiles can also be evaluated at the segment level. The 

objective of point cloud segmentation is to partition point clouds into 

geometrically homogenous units. In this chapter, we use the 

unsupervised segmentation method proposed by Vosselman et al. 

(2017). This method combines both planar surface extraction 

algorithms and feature based segmentation methods. Firstly, a Hough 

transformation and surface growing algorithms are implemented to 

extract planar objects but they produce unnecessary small fragments 

in non-planar objects like trees. As a result, in the second step, only 

large segments are kept as planar objects and the remaining points 

are re-segmented by the feature based segment growing algorithm. 

The algorithm considers normal vector directions and planarity to 

group points on non-planar objects like vegetation, chimneys and cars. 
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Next, to overcome the over-segmentation on imperfect planar ground 

points, large adjacent segments are merged if their normal vectors are 

nearly parallel and points in one segment are also able to fit the plane 

of the other segment and vice versa. Finally, unsegmented points are 

given segment labels by majority voting in their neighbourhood. 

Isolated points still without a segment label are excluded from segment 

entropy calculation.  

 

Here we assume that points within a geometrical homogenous unit 

share the same semantic label. Hence, if a model gives different labels 

to points within a segment, this model is likely to generate wrong 

predictions on this segment and thus those uncertain samples should 

be selected for the next training. The percentage of different predicted 

class labels within a segment is used to assess the informativeness of 

point cloud tiles. Suppose we have a segment consisting of 𝑁𝑠𝑝 points 

and predicted pointwise labels are represented by [𝑦̂1, … , 𝑦̂𝑛, … , 𝑦̂𝑁𝑠𝑝
]. The 

following shows how we calculated segment entropy: 

 

𝑞𝑐𝑡(𝑐) =  
∑ 𝑓𝑐𝑡(𝑦̂𝑛,𝑐)

𝑁𝑠𝑝
𝑛=1

𝑁𝑠𝑝
,  

 

where 𝑓𝑐𝑡(𝑦̂𝑛 , 𝑐) =  {
1,        𝑖𝑓 𝑦̂𝑛 = 𝑐
0,                  𝑒𝑙𝑠𝑒

 , 𝑦̂𝑛 = argmax𝑦𝑛
𝑝𝑟𝑜𝑏(𝑦𝑛|𝒙) 

 

  

(3.2) 

𝐸𝑠𝑒𝑔 =  − ∑ 𝑞𝑐𝑡(𝑐)log 𝑞𝑐𝑡(𝑐)

𝐶

𝑐=1

 

 

(3.3) 

where 𝐸𝑠𝑒𝑔 represents the entropy within a segment and 𝑞𝑐𝑡(𝑐) is the 

proportion of class c among the predicted labels, computed in equation 

(3.2). 𝑦̂𝑛 is the predicted class label which has the highest predictive 

probability.  

 

In order to avoid the underestimation of informativeness on large 

segments, segment entropy is given to their point members and then 

the mean of pointwise segment entropies is calculated to represent the 

informativeness of unlabelled tiles. Figure 3.2 illustrates the predicted 

labelled on the roof segment produced by models. The middle figure 

shows the variance of predicted labels on the roof and this variance 

leads to a high segment entropy. Tiles that comprise segments with 

high entropies are likely to be picked for the training in the next 

iteration.  
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A) 

 

B) 

Figure 3.2 Variation in predicted labels within a segment.  A) 

Unsupervised segmentation results. Different colours represent 

different segments. B) Left: high entropy (0.465) within the roof 

segment. Right: low entropy (0.000) within the roof segment. 

3.3.2.3 Mutual information 

The above two metrics evaluate the data dependent (aleatoric) 

uncertainties. The following section explains how to estimate model 

dependent uncertainty by mutual information based on Bayesian 

Neural Networks. Bayesian Neural Networks are neural networks where 

prior probability distributions, like standard Gaussian priors, are placed 

over model parameters (Gal et al., 2017). However, direct inference 

from Bayesian networks is computationally expensive. Therefore, as a 

stochastic regularization technique, dropout which randomly ignores 

some of the neurons during the training, is used to approximate 

inference in Bayesian networks (Gal and Ghahramani, 2016). To 

extract uncertainty in prediction induced by the uncertainty in weights, 

multiple forward passes are performed with activated dropout during 

the testing, which samples from the approximate posterior. 

 

In PointNet++, before the final prediction, a fully connected layer is 

inserted to integrate all features and then give logits to every class. 

Dropout is often set in this layer to prevent overfitting and is also used 

to construct a Bayesian network. Normally, we turn off the dropout 

during the prediction, but here we keep it on to get samples from the 

approximate posterior distribution of models. 

 

Predictive probability distributions for 𝑁𝑟𝑢𝑛 runs with dropout are 

represented by 𝑝(𝑦|𝑥, 𝑤1), 𝑝(𝑦|𝑥, 𝑤𝑛), …, 𝑝(𝑦|𝑥, 𝑤𝑁𝑟𝑢𝑛
). Mutual information 
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between predictions and model posterior is calculated by the following 

equation: 
 

𝑀𝐼 =  Entropy(
1

𝑁𝑟𝑢𝑛
∗ ∑ 𝑝(𝑦|𝑥, 𝑤𝑛)𝑁𝑟𝑢𝑛

𝑛=1 ) - 
1

𝑁𝑟𝑢𝑛
∗ ∑ Entropy(𝑝(𝑦|𝑥, 𝑤𝑛))

𝑁𝑟𝑢𝑛
𝑛=1  

 (3.4) 

where Entropy() is the function of Shannon Entropy. High 𝑀𝐼 values 

suggest that the model is not confident in the predictions of samples 

on average, but different model parameters cause disagreement in 

predictions. In other words, each stochastic forward pass would have 

the highest predictive probabilities assigned to different classes. In this 

case, although the entropy of each run can be very small giving rise to 

a small value of the second term in equation (3.4), there is no 

significant large value in the averaged predictive probability 

distribution, which leads to the high entropy value for the model 

prediction, the first term in equation (3.4). Samples which maximize 

this 𝑀𝐼 metric are taken as informative data used for the next training. 

In our work, we calculate the average pointwise 𝑀𝐼 values within point 

cloud tiles and those causing uncertainties in model predictions are 

selected.  

3.3.3 Semantic point cloud segmentation by neutral networks 

An important component in our framework is the deep learning based 

model. Currently, many point based networks are available as 

mentioned in Section 3.2 and our proposed framework is supposed to 

be adapted to those models. To demonstrate the effectiveness of the 

proposed learning strategy, we pick PointNet++ (Qi et al., 2017b) as 

the model in this chapter. This is because Pointnet++ inherits MLP 

layers from PointNet to encode features in the local region, and the 

implementation of MLP layers which allow the network to directly 

consume points are still very popular in many deep learning based 

models (Landrieu and Simonovsky, 2018; Li et al., 2020; Wang et al., 

2019b).  

 

PointNet++ (Qi et al., 2017b) recursively apply a set of MLP layers to 

construct a hierarchical neural network. The network captures 

contextual information in point clouds by using set abstraction modules 

at multiple scales. The set abstraction module includes three sub-

phases, namely, sampling, grouping and PointNet. A subset of the point 

cloud is collected by iterative farthest point sampling (FPS) in the 

sampling phase. The FPS gives better coverage of the point cloud and 

minimizing the clustering of points in a small region. This sampling 

strategy also adapts receptive fields to the points’ distribution. In the 

grouping stage, neighbours around selected points are gathered. Then, 

selected points are taken as the input of the MLP. Here, a single input 

point relates to a small local region and represents a small point set, 
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in which each member contains its features, like XYZ coordinates or 

features obtained from previous set abstraction modules. In this 

chapter, the Adam optimiser (Kingma and Ba, 2014) is utilized to 

optimize the weights in PointNet++. A weighted cross entropy loss 

function is used to cope with imbalanced data. The dropout technique 

which ignores some of the neurons is implemented in the process of 

the training to avoid overfitting and we keep validating the model on 

the validation dataset to obtain optimal model weights. Early stopping 

is applied to terminate the training.  

3.3.4 Incremental learning  

Some of the active learning strategies focus on how to select samples 

step by step but ignore the knowledge learned from the previous 

learning stage during the training. For example. Luo et al., (2018) train 

the model from scratch for every step and Gal et al. (2017) train all 

models starting from a pre-trained VGG16 CNN model for the image 

classification task. To make good use of the previously learned 

information and speed up the training process, in this chapter, the 

model is incrementally fine-tuned from the model obtained in the 

previous step.  

 

Most of the incremental learning methods mentioned in Section 3.2.3 

deal with the case that new data are continuously added and this 

process may include new classes that are not used in the previous 

training. Also, old data is often unavailable in those cases and they can 

only train the model on the new data. However, in our study, the task 

is simpler. We do not introduce new classes during active learning steps 

and old data remain available. While keeping the model performance 

on all classes, we only need to make good use of the previous 

knowledge to speed up the training process instead of training from 

scratch for all models. Therefore, to speed up the training process, we 

modify the simple but effective strategy mentioned in Brust et al. 

(2020). Brust et al. (2020) suggest that parameters from the last 

active learning iteration can be used as the initialization of the current 

model in order to maintain the knowledge from previous training 

efforts. We incrementally fine-tune the models on both old tiles and 

newly selected tiles.  

3.4 Experiments 

Three active learning strategies are tested with ALS point clouds in our 

experiments. More details about the dataset, the specific structure of 

PointNet++, training parameters and how the proposed query 

functions are implemented are explained in the following paragraphs. 
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3.4.1 Data description 

 

 
Figure 3.3 An overview of the study area in Rotterdam. The training 

area is in the black box. The validation area is in the brown box and 

the testing area is in the grey box. The area to initialize the model is 

in the purple box. 

 

Actueel Hoogtebestand Nederland (AHN) dataset offers ALS point 

clouds with very high point density and high penetration from the 

multiple returns. It covers almost the entire area of the Netherlands. 

AHN3 is the latest version, covering more than half of the Netherlands. 

In this chapter, two subsets of AHN3 datasets are chosen for the 

experiments. The subsets are captured by an IGI LM6800 system with 

a 60o field of view. The mean strip overlap is 30% and the survey was 
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designed to obtain the point density at 60 points/m2. One subset is 

located in the centre of Rotterdam (Figure 3.3), covering a 2 × 2 km2 

area. It is a densely built-up area with high rise buildings surrounded 

by trees and there are river channels with bridges. The point clouds 

were acquired on 4th December 2016 and manually annotated with 

seven classes, namely ground, roof, water, façade, vegetation, 

artwork, and clutter. The other dataset is situated in Amsterdam and 

was captured on 2nd February 2014. Its size is much larger than the 

Rotterdam datasets covering an area of 5 × 6.25 km2 (Figure 3.4). The 

Amsterdam dataset not only includes the Amsterdam central area 

which is characterized by the buildings with complex shapes but also 

includes residential areas, parks and farmlands. Also, river channels in 

the Amsterdam dataset are crisscrossing and are much narrower than 

the river in the Rotterdam central area. As the Amsterdam dataset is 

quite large, we directly use the labels provided in the AHN3 dataset 

and classify points into 4 categories, namely ground, building, water 

and clutter. 

3.4.2 Preprocessing 

Since GPU memory is limited, it is unfeasible for a network to directly 

consume the whole study area. Therefore, the point cloud is cropped 

into 50 × 50 m2 tiles and only XYZ coordinates are kept as the input of 

the network. We keep the Z-coordinates and normalize X- and Y- 

coordinates by the starting position of the tiles. In experiments, we 

randomly select 20,000 points as the input of the network. For tiles 

with more than 20,000 points, we select without replacement. For 

those with less than 20,000 points, all points are used as the input and 

the rest is compensated by random and repeated selection. With the 

purpose of making the model more robust to various orientations and 

noises, during the training, we randomly rotate point clouds around the 

Z-axis. Furthermore, Gaussian white noise with a σ of 4 cm is added 

to XYZ coordinates. These values are chosen empirically to add noise 

that will not significantly change the geometrical features for target 

objects. 
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Figure 3.4 The overview of the Amsterdam dataset. The training area 

is in the black box. The validation area is in the brown box and the 

testing area is in the grey box. The area to initialize the model is in the 

purple box. 
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3.4.3 Network implementation 

As mentioned in Section 3.3.3, PointNet++ consists of a sequence of 

sampling and grouping layers. Table 3.1 shows the spatial scales of set 

abstraction modules. The first sampling and grouping layer selects 

4096 points from 20000 points in tile by iterative farthest point 

sampling strategy. Next, nearby points are grouped at two scales. 16 

points are selected with a spherical search radius of 2 meters and 32 

points are searched within 4 meters. For the next set abstraction 

module, 4096 points are subsampled to be 1024 and neighbouring 

points are searched and gathered within two larger scales. Fewer 

points can be sampled by the abstraction modules at higher levels and 

this inevitably leads to the loss in information in the latter layers of the 

network but this is beneficial for the network to exploit relationships 

among points in a wider range.  

 

Table 3.1 Parameter configuration of multiple grouping modules in 

PointNet++ 

Level 
Number of 

points 

Search radius 

(m) 

Number of 

neighbours 

0 20000   

1 4096 [2, 4] [16, 32] 

2 1024 [4, 8] [16, 32] 

3 256 [8, 16] [16, 32] 

4 64 [16, 32] [16, 32] 

 

During the training, the learning rate for the initial model starts from 

0.005 with a decay rate of 0.7 at every 75 training iterations. The 

learning rate keeps decreasing until it is less than 0.0001. Then the 

rate is kept at 0.0001 for the rest of the training. An early-stop strategy 

is applied to avoid overfitting. As the Rotterdam validation dataset is 

small, we check the performance on the validation dataset every epoch 

and stop training when the performance fails to improve over 15 

epochs. For the Amsterdam dataset, the validation data contain about 

2500 tiles. Here, it is not feasible to validate the model performance 

every epoch because the validation time is much longer than the 

training time. To balance the time spent on training and validation, we 

only check the model performance every several epochs. The check 

frequency changes with the size of the labelled data pool. Suppose we 

have J samples in the initial labelled training data, the check frequency 

is calculated by ⌈
2500

𝐽+𝐾∗𝑛
⌉. Here 𝐾 represents the number of newly added 

samples in the 𝑛𝑡ℎ iteration. The training is stopped when there is no 

improvement in model performance for 2 checks.  
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Due to the sampling, some points remain unlabelled in original point 

clouds. Therefore, pointwise predictions are propagated to the whole 

original tiles by nearest neighbour interpolation. To obtain the 

prediction on the test dataset, the data pass through the network 10 

times and the predictive probability is averaged.  

3.4.4 Accuracy assessment 

Intersection over Union (IoU) (Everingham et al., 2010) is utilized to 

evaluate network performance. IoU per class is computed from true 

positives (TP), false negatives (FN) and false positives (FP) in confusion 

matrices as TP / (TP +  FN +  FP). 

3.4.5 Active learning setup 

For the Rotterdam dataset, an area where all seven classes (ground, 

roof, water, façade, vegetation, artwork, and clutter) exist should be 

selected to initialize the first model. The model performances initialized 

with different numbers of tiles (ℒ0) are shown in Figure 3.5. Model 

performance is quite similar when ℒ0 is set as 50 and 107. When ℒ0 is 

200, 410 tiles are required to achieve to the full training mIoU. In the 

following experiments, the area covering 600 × 600 m2, consisting of 

107 tiles is selected to initialize the first model. After excluding very 

sparse tiles, 783 tiles are in the unlabelled pool, waiting to be selected. 

 

Then the next question is how many tiles we need to select in each 

iteration, that is the value of 𝐾 mentioned in 3.3.2. Some studies only 

select a single sample in each iteration. As this requires to run the 

training and selecting process many times, it would be a very time-

consuming process. Therefore, multiple point cloud tiles are queried in 

every iteration. Yet, it is not a wise choice to query a large portion of 

data like a quarter of the tiles for annotation because less important 

tiles which can only make little contributions to model performance will 

be selected and all tiles will be annotated in four iterations which 

conflicts with the purpose of the active learning, namely saving 

annotation efforts.  

 

Figure 3.6 below illustrates how the model performance changes with 

increasing training tiles when selecting different numbers of tiles in 

each iteration. We test three sizes 10, 35 and 70 which corresponding 

to about 1%, 4% and 8% of the tiles in the training area respectively. 

When adding 35 tiles each iteration, after training and querying for 2.9 

hours, 282 tiles are selected and fed to the model and the model 

performance becomes stable and fluctuated around the mIoU obtained 

by the full trained model. When taking 𝐾 as 70, although the training 

and selecting process takes 2.5 hours, the model requires 387 

annotated tiles to achieve the same status. When 𝐾 equals 10, the 
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model takes 19 steps (6.9 hours) with 297 annotated tiles to reach the 

full train IoU. It fails to reduce the number of required tiles and leads 

to longer training time. Therefore, the labelled training pool is updated 

by 35 tiles in each iteration. 

 
Figure 3.5 Comparison of model performance on the Rotterdam dataset 

with different sizes of the initial tiles (left). Point entropy is taken as 

the query function. The pink, purple and yellow boxes represent 300 × 

600 m2, 600 × 600 m2 and 1200 × 600 m2 areas (right). After 

excluding very sparse tiles with 50, 107 and 150 tiles are left for 

training. 

 

 
Figure 3.6 Comparison of the model performance with three sizes of 

selected point cloud tiles in each iteration in the Rotterdam dataset, 

using point entropy function.  

 

For the Amsterdam dataset, the model performances initialized with 

different numbers of tiles (ℒ0) are shown in Figure 3.7. When the model 

is initialized by 200 tiles, it requires more than 600 labelled point cloud 

tiles to reach the full training mIoU. Here we select a 500 × 500 m2 



Chapter 3 

 69 

area, which contains 100 tiles to initialize the first model.  We compare 

three sizes of queried tiles, namely 50, 100, 200 which corresponding 

to about 1%, 2% and 4% of the tiles in the training area respectively 

(Figure 3.8). It can be seen that 𝐾  equals 50 firstly approach the 

around the mIoU obtained by the full trained model while the other two 

values still require more iterations. To save manual annotation efforts, 

the training data is updated by 50 tiles step by step.   

 

 
Figure 3.7 Comparison of model performance on the Amsterdam 

dataset with different sizes of the initial tiles. Point entropy is taken as 

the query function (left). The pink, purple and yellow boxes represent 

250 × 500 m2, 500 × 500 m2 and 1000 × 500 m2 areas (right), 

corresponding to 50, 100 and 200 tiles. 

 

 
Figure 3.8 Comparison of the model performance with three sizes of 

selected point cloud tiles in each iteration in the Amsterdam dataset, 

using point entropy function.  
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In our experiments, the active learning strategies based on point 

entropy, mutual information and segment entropy are compared with 

the baseline method in which unlabelled tiles are randomly selected. 

For the mutual information metric which evaluates disagreements 

among various model variants, each point cloud tile is predicted under 

10 different parameter settings. The process of querying and training 

is run for 10 iterations to see which strategy first makes the model 

achieve a high level with the least training samples. To demonstrate 

the effectiveness of the proposed method, for each query, experiments 

are repeated 3 times and results are averaged.  

 

3.4.6 Incremental learning setup 

In our experiments, we incrementally fine tune models with all 

available data. Although fine-tuned with only newly selected data takes 

less time to train the model (Table 3.2), its model performance is much 

worse compared with using all available data.  

 

To set the learning rate for fine-tuning, the effects of the learning rate 

on model performance are presented in Figure 3.10 and computation 

times are listed in Table 3.3. The active and incremental learning 

process ends up with similar model performance with different fine-

tuning learning rates. However, when the learning rate is 0.005, the 

model takes a longer time to converge when it is compared to the other 

two values. Here we set the fine-tuning learning rate as 0.0001 to avoid 

models fall into local optima.  

 

 
Figure 3.9 Comparison of model performance on the Rotterdam dataset 

when models are incrementally fine-tuned with only newly selected 

data (New data) and all available data (All data). Here we use point 

entropy as the query function. 
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Table 3.2 Comparison of required training time for the Rotterdam 

dataset when models are incrementally fine-tuned with only newly 

selected data (New data) and all available data (All data). Here we use 

point entropy as the query function. 

Method New data All data 

Training time (hours) 2.6 3.8 

 

 
Figure 3.10 Comparison of the model performance on the Rotterdam 

dataset for different learning rates used in fine-tuning. Point entropy is 

taken as the query function.   

 

Table 3.3 Comparison of the computation time required for the 

Rotterdam dataset using different fine-tuning learning rates.  

Learning rate 0.0005 0.0001  0.00001 

Training time (hour) 4.40 3.80  3.71 

 

3.4.7 Results 

3.4.7.1 Comparison of selection queries 

Model performances of various active learning functions are presented 

in Figure 3.11 and Figure 3.16. 

 

3.4.7.1.1 Rotterdam 
Figure 3.11 and Table 3.4 illustrate how the model performance on the 

Rotterdam dataset changes with an increasing number of samples 

selected by different active learning query functions. It can be seen 

that for all functions model performance tends to increase with some 

fluctuations. Point entropy, segment entropy and mutual information 

give better results than the baseline method. The random selection 

leads to an unstable model performance which is illustrated by the 
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large standard deviation in the mIoU. When it comes to the other three 

query functions, the standard deviation is only large at the beginning 

which can be explained by the asynchronous improvements among 

different runs. Then the standard deviation becomes relatively small in 

the later iterations where mIoU is similar to the value obtained from 

the full training. This suggests that the selected samples do provide 

useful information to improve model performance. When comparing 

three query functions, segment entropy performs the best and it first 

reaches full training accuracy at the fifth iteration where 282 tiles, 

31.7% of the tiles in the training area are used. Point entropy also 

reaches full train mIoU at the fifth iteration but its mIoU is a little bit 

lower than that of segment entropy. Mutual information reaches the 

full train mIoU at the 6th iteration where 35.6% of the tiles in the 

training area are used. In terms of mIoU, all query functions select 

meaningful data for model training and can be used to save manual 

annotation efforts.  

 

 
Figure 3.11 Mean IoU scores of baseline and active learning strategies 

with different query functions for the Rotterdam dataset. The horizontal 

axis represents the iteration. Error bars represent standard deviations. 

 

Figure 3.12 shows the change in IoU for different classes (lines) and 

the variation of training data distribution (columns) with more selected 

training samples. It can be seen that the three query functions improve 

model performance for the classes ground, water, clutter, and artwork. 

For other classes, the IoU values are comparable to those of the 

baseline but the results are more robust as the standard deviations are 

much smaller than those of the baseline. One possible reason for the 

insignificant improvement in these classes is that they are relatively 
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easy classes for the model and the model can easily acquire enough 

information to differentiate them and then reach high accuracy. As a 

result, newly added samples are hard to enrich the model knowledge 

of these classes. One observation is that all three query functions are 

able to select tiles with difficult classes like artwork and clutter. When 

selecting samples by our query functions, the IoU values for artwork 

and clutter are higher than those of the baseline, especially artwork. 

This suggests that all active query functions achieve the objective of 

selecting informative samples for deep learning models.  

 

Table 3.4 Mean IoU scores of baseline and active learning strategies 

with different query functions for the Rotterdam dataset. For every 

function, the first value to reach the full train mean IoU is in bold. 

Iteration 0 1 2 3 4 5 6 7 8 9 10 

Baseline 0.505 0.480 0.548 0.594 0.610 0.659 0.642 0.643 0.635 0.686 0.678 

Point 

entropy 
0.505 0.565 0.627 0.634 0.675 0.702 0.701 0.714 0.712 0.696 0.702 

Mutual 
information 

0.505 0.588 0.580 0.602 0.666 0.680 0.703 0.704 0.712 0.702 0.711 

Segment 

entropy 
0.505 0.556 0.636 0.640 0.671 0.714 0.720 0.720 0.711 0.703 0.731 

 

Figure 3.13 demonstrates some samples selected by point entropy 

uncertainty. It can be seen that high uncertainty values are around 

object boundaries, clutter objects and on sloped ground. The model is 

uncertain on points within slanted ground segments because those 

segments are similar to slanted roofs in terms of the geometry. 

However, this uncertainty is not visible for segment entropy because 

the segmentation algorithm separates flat ground and slant ground into 

different parts. Most of the sloped ground points are predicted to be 

roof leading to a low value in segment entropy.  

 

Figure 3.12 shows that mutual information selects tiles with abundant 

tree points which are also shown in Figure 3.14. Although most of the 

vegetation and ground points are correctly predicted, the mutual 

information is still high on the ground points because with dropout 

during the testing, some models are quite confident in predicting 

ground points as vegetation. However, selecting tiles that only have 

ground and vegetation points makes little contribution to model 

knowledge because vegetation and ground points already got relatively 

high accuracy. Similar to segment entropy, mutual information can 

also detect the uncertainty at object boundaries.  
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Figure 3.12 IoU (lines) and data distribution (columns) for different 

classes in the Rotterdam dataset. The horizontal axis represents the 

iteration. Error bars represent standard deviations. 

 

Relating to the distribution columns in Figure 3.12, segment entropy 

prefers tiles with more ground points comparing to point entropy and 

mutual information. For example, in Figure 3.15, PointNet++ is not 

good at object boundaries and some ground points surrounding clutter 

objects are predicted as clutter. As we enforce the consistency within 

segments, those wrongly predicted flat ground points enlarge the 

segment entropy of tiles. Although its IoU values in ground are not 

better than the other two methods, this could help solve the confusion 

between clutter and ground points and explain the better accuracy for 

clutter (Figure 3.12). Also, segment entropy selects scenes where trees 

are quite close to building facades and part of the canopy is likely to 
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be predicted as façade points. As a tree canopy is always taken as one 

segment according to the unsupervised segmentation algorithm, the 

inconsistency of predicted labels in a canopy segment leads to large 

segment entropy over the tile. 

 

 
Figure 3.13 Example of tiles selected by point entropy. The first row 

shows the predicted label. The second row shows the corresponding 

pointwise point entropy values. 

 

 
Figure 3.14 Example of tiles selected by Mutual information. The 

second row shows the corresponding pointwise mutual information 

values. 
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Figure 3.15 Example of tiles selected by segment entropy. The first row 

shows the predicted label. The second row shows the corresponding 

unsupervised segmentation results. 

 

Table 3.5 demonstrates the computational time to train models and 

query samples for the Rotterdam dataset. The table indicates that the 

training times required for different methods are quite similar but the 

mutual information metric takes much longer time to select informative 

point cloud tiles. This is because as mentioned in Section 3.3.2.3, point 

clouds are supposed to pass the network multiple times, in order to 

estimate the disagreement among the predictions. In comparison, 

point entropy and segment entropy are much faster to select 

informative samples.  

 

Table 3.5 Comparison of the computational time required for the 

Rotterdam dataset using different query functions.   
Baselin

e 

Point 

entropy 

Mutual 

information 

Segment 

entropy 

Full 

train 

Training 

(hour) 

4.04 3.80 4.18 3.94 0.97 

Querying 

(hour) 

0.00 1.17 8.50 1.20 0.00 

Sum (hour) 4.04 4.97 12.68 5.14 0.97 

 

3.4.7.1.2 Amsterdam 
Figure 3.16 and Table 3.6 show how the model performance on the 

Amsterdam dataset responds to an increasing number of samples 

selected by different active learning query functions. In terms of the 
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mIoU, the performance of the baseline is quite stable after the third 

iteration. The improvement in model performance is insignificant with 

an increasing number of randomly selected tiles and the mIoU is much 

lower than that of the other three methods at the final iteration. For 

the other three query functions, the mIoUs gradually increase to a level 

which is slightly above the mIoU achieved by using all samples during 

the training. Segment entropy firstly reaches the full-train mIoU at the 

seventh iteration where only 9% of the tiles are used for training. 

Mutual information achieves 0.759 (mIoU) using 10% of the tiles at 

the eighth iteration and point entropy only reaches 0.762 (mIoU) with 

12% of the tiles at the tenth iteration. Computational times to train 

models and query samples for the Amsterdam dataset are presented 

in Table 3.7. Except mutual information, point entropy and segment 

entropy take over 9 more hours compared to full training while it 

significantly reduces annotation efforts which is more time-consuming.  

 

When analysing the IoU for each class in Figure 3.17, it can be seen 

that the IoU values for the classes ground, building and clutter are 

quite similar for all strategies and the baseline method even has a 

higher IoU in clutter and building before the sixth iteration. The main 

differences lie in the IoU for the water where the lines for the three 

query functions are above the line for baseline. Unlike the Rotterdam 

dataset where the river is wide and easy to be recognized, the 

identification of water points by PointNet++ is challenging in the 

Amsterdam dataset, because the canals in the dataset are crisscrossing 

and narrow. Our query functions select tiles with more water points 

and contribute to higher IoU values for the water. This is similar to the 

selection of more tiles with artwork and clutter improved the 

performance in the Rotterdam dataset. This suggests that selected 

samples enrich the model knowledge in difficult classes.  

 

Figure 3.18 presents the spatial distribution of all selected tiles 

according to different active learning strategies. Selected tiles for the 

baseline method are randomly spread over the training area while the 

other three queries select tiles located in the southern part of the 

training area which is dominated by farmlands, different from the 

densely built-up area in Amsterdam centre. The knowledge of 

farmlands brings slight advantages over the baseline in the IoU for 

ground before the third iteration. 
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Figure 3.16 Mean IoU scores of baseline and active learning strategies 

with different query functions for the Amsterdam dataset. The 

horizontal axis represents the iteration. Error bars represent standard 

deviations. 

 

 
 

Figure 3.17 IoU (lines) and data distribution (columns) for different 

classes in the Amsterdam dataset. The horizontal axis represents the 

iteration. Error bars represent standard deviations.  
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Table 3.6 Mean IoU scores of baseline and active learning strategies 

with different query functions for the Amsterdam dataset. For every 

function, the first value to reach the full train mean IoU is in bold. 

Iteration 0 1 2 3 4 5 6 7 8 9 10 

Baseline 0.546 0.643 0.629 0.677 0.682 0.685 0.686 0.691 0.689 0.689 0.699 

Point 

entropy 
0.546 0.636 0.657 0.661 0.692 0.690 0.696 0.734 0.735 0.749 0.762 

Mutual 

information 
0.546 0.631 0.668 0.693 0.695 0.703 0.743 0.742 0.759 0.767 0.772 

Segment 

entropy 
0.546 0.618 0.668 0.666 0.732 0.735 0.740 0.775 0.773 0.785 0.780 

 

Table 3.7 Comparison of the computation time required for the 

Amsterdam dataset using different query functions.   
Baselin

e 

Point 

Entropy 

Mutual 

informati

on 

Segment 

entropy 

Full 

train 

Training time 

(hour) 

10.11 10.33 9.35 10.16 4.78 

Querying 

(hour) 

0.00 3.84 30.65 4.15 0.00 

Sum (hour) 10.11 14.17 40.00 14.31 4.78 

 

 

 
Figure 3.18 Spatial distribution of selected tiles in Amsterdam.  
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3.4.7.2 Comparison between fine-tuning and training from 

scratch 

 

 
Figure 3.19 Comparison of model performance on the Rotterdam 

dataset under different training strategies, training from scratch (TFS) 

and fine-tune (FT). The vertical axis represents the mIoU and the 

horizontal axis represents the iteration. 

 

Figure 3.19 shows the model performance on the Rotterdam dataset 

when training from scratch and fine-tuning the model from the 

previous model. It can be seen that fine-tuning can achieve the 

accuracy comparable to training from scratch but it effectively saves 

training efforts.  

 

Figure 3.20 shows how many updates the model requires during the 

training. More updates mean a longer time for training. When using all 

tiles in the training area, the batch accuracy gradually increases with 

fluctuations which are caused by the randomness of point cloud tiles in 

each batch. When all models are trained from scratch in each active 

learning iteration, the batch accuracy drops dramatically because no 

previous knowledge is involved and it takes some updates for the 

model to learn. While fine-tuning requires more updates compared to 

full training for all active learning strategies, it saves about half of the 

training efforts comparing to the training from scratch. It can be seen 

that the model keeps the previous knowledge and avoids low batch 
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accuracy at the beginning of the training in each iteration. Table 3.8 

demonstrates the training time required for training from scratch, fine-

tuning and full training. Incrementally fine-tuning is much faster than 

straining from scratch. 

 

 
Figure 3.20 Accuracy (batch accuracy) for each update during the 

training. During the training, a batch of samples is randomly drawn 

from the entire labelled data to update the model parameters by 

stochastic gradient descent. Here ‘update’ means updating the network 

weights using 16 point cloud tiles. For each tile, 20,000 points are 

randomly selected. Here the (batch) accuracy represents the number 

of correctly (predicted points) / (20,000*16). For training from scratch 

and fine-tuning, we accumulate the number of performed updates and 

the training accuracy of each update is plotted from the initial training 

to the 10th training. (Full train: use all tiles in the training area in once. 

TFS: for each step, the model is trained from scratch. FT: for each step, 

the model is fine-tuned from the previous model.) 
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Table 3.8 Comparison of the training time required for the Rotterdam 

dataset using different training strategies. (TFS: for each step, the 

model is trained from scratch. FT: for each step, the model is fine-

tuned from the previous model.)  
Baselin

e 

Point 

entropy 

Mutual 

information 

Segment 

entropy 

TFS (hour) 6.96 6.62 6.35 6.49 

FT (hour) 4.04 3.80 4.18 3.94 

Full train 

(hour) 

0.97 

3.5 Conclusion 

Existing supervised deep learning networks for semantic point cloud 

segmentation require a large number of labelled points for training. 

This research proposes an active and incremental learning workflow to 

effectively reduce annotation efforts by iteratively selecting informative 

samples and incrementally enriching the model knowledge. Firstly, 

point clouds are split into tiles and separated into labelled and 

unlabelled groups. Then the labelled tiles are used for training. For the 

initial iteration, the network is trained from scratch. For the rest of the 

steps, fine-tuning is implemented to incrementally enlarge the model 

knowledge based on the previous model. In each iteration, after the 

training, the informativeness of point cloud tiles in the pool of 

unlabelled training tiles is evaluated by the trained network according 

to three uncertainty metrics, namely point entropy, segment entropy 

and mutual information. Both point entropy and segment entropy 

assess the data dependent uncertainty while the segment entropy 

considers the interactions among neighbouring points within 

geometrical homogenous units. Mutual information, which estimates 

the model dependent uncertainty, is derived from Bayesian networks. 

The idea is to analyse the disagreements in model predictions caused 

by the uncertainty of model parameters. The most informative tiles are 

labelled and added to the labelled training pool for the next training.  

 

The framework is tested on two subsets of AHN3 datasets. 

Experimental results show that compared to the random selection, all 

three metrics are capable of selecting informative point clouds like tiles 

dominated by difficult classes and samples diversifying geometry of 

target objects in the labelled training pool. Among the three query 

functions, segment entropy performs the best. For the 7 class 

classification in the Rotterdam dataset, it takes 31.7% of the whole 

training area to reach the mIoU obtained from the model trained on 

the whole training area. When it comes to the 4 class classification in 

the Amsterdam dataset, it only requires 9% of the whole training area 
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to achieve the full training mIoU. Also, the effectiveness of incremental 

learning is verified on the Rotterdam dataset. It saves about half of the 

training efforts comparing to the training from scratch for each active 

learning iteration. 

 

The proposed framework is successfully tested with two ALS datasets 

using PointNet++. Although we perform experiments on PointNet++, 

the three uncertainty metrics can also be applied to many other state 

of the art network architectures. Point entropy requires the predictive 

probability for each class and mutual information needs to turn on 

dropout during the testing. These conditions can be easily met by most 

of the networks like PointCNN, KPconv and SPG. However, segment 

entropy, evaluating the interactions among points within segments, 

can only be applied to point based networks. It is invalid for segment 

based method, like SPG, where segments are taken as homogenous 

units and points within a segments share the same label. In addition 

to ALS data, the framework is also possibly generalized to point clouds 

from terrestrial mobile laser scanners or indoor scenes. 

 

 

  



 

Chapter 4 – Weakly Supervised Semantic 
Segmentation of Airborne Laser Scanning 
Point Clouds 3 

 

 
  

 
3 This chapter is based on: 

 
Lin, Y., Vosselman, G., Yang, M.Y., 2022. Weakly supervised semantic 

segmentation of airborne laser scanning point clouds. ISPRS Journal of 

Photogrammetry and Remote Sensing 187, 79–100. 

 



Chapter 4 

 85 

Abstract 

While modern deep learning algorithms for semantic segmentation of 

airborne laser scanning (ALS) point clouds have achieved considerable 

success, the training process often requires a large number of labelled 

3D points. Pointwise annotation of 3D point clouds, especially for large 

scale ALS datasets, is extremely time-consuming work. Weak 

supervision that only needs a few annotation efforts but can make 

networks achieve comparable performance is an alternative solution. 

Assigning a weak label to a subcloud, a group of points, is an efficient 

annotation strategy. With the supervision of subcloud labels, we first 

train a classification network that produces pseudo labels for the 

training data. Then the pseudo labels are taken as the input of a 

segmentation network which gives the final predictions on the testing 

data. As the quality of pseudo labels determines the performance of 

the segmentation network on testing data, we propose an overlap 

region loss and an elevation attention unit for the classification network 

to obtain more accurate pseudo labels. The overlap region loss that 

considers the nearby subcloud semantic information is introduced to 

enhance the awareness of the semantic heterogeneity within a 

subcloud. The elevation attention helps the classification network to 

encode more representative features for ALS point clouds. For the 

segmentation network, in order to effectively learn representative 

features from inaccurate pseudo labels, we adopt a supervised 

contrastive loss that uncovers the underlying correlations of class-

specific features. Extensive experiments on three ALS datasets 

demonstrate the superior performance of our model to the baseline 

method. 
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4.1 Introduction 

Airborne laser scanning (ALS) point clouds are important data sources 

for many products like digital terrain models (DTM) (Chen et al., 2017), 

3D city models (Zhou et al., 2020) and landscape models (Murtha et 

al., 2018). These products are required in a wide range of applications 

like land administration (Lemmen et al., 2015), urban planning 

(Murgante et al., 2009) and disaster management (Shen et al., 2010). 

Point cloud interpretation is an essential step to produce these products 

and semantic segmentation is one kind of interpretation where each 

point in point clouds is assigned a semantic label. However, manually 

assigning a label to every single point requires a huge amount of 

manual efforts, especially for large scale datasets. Therefore, many 

machine learning algorithms are proposed to automate the pointwise 

interpretation.  

 

Semantic segmentation of point clouds through machine learning 

techniques has been investigated, from extracting representative 

hand-crafted features (Lin et al., 2014; Weinmann et al., 2013) to 

using different classifiers (Chehata et al., 2009; Lodha et al., 2007, 

2006; Xu et al., 2014). In addition, in order to capture contextual 

information among adjacent points, some methods use graphical 

models like Markov Random Fields (MRF) (Najafi et al., 2014), and 

Conditional Random Fields (CRF) (Niemeyer et al., 2014) or a versatile 

regularization framework (Landrieu et al., 2017). Recently, deep 

learning approaches have been proven to be an effective solution that 

do not rely on predefined hand-crafted features but can learn highly 

representative features from the data. Many algorithms have been 

developed for the semantic segmentation of point clouds and they can 

be roughly categorized into three branches according to their input 

data structures, namely projection based (Boulch et al., 2018; 

Kalogerakis et al., 2017), voxel-based (Graham et al., 2018; Maturana 

and Scherer, 2015; Tchapmi et al., 2017; Wu et al., 2015) and point-

based (Guo et al., 2021; Hu et al., 2020; Qi et al., 2017a; Wang et al., 

2020; Zhao et al., 2021). Regarding ALS datasets, many methods are 

proposed based on deep learning, of which some are projection based 

(Hu and Yuan, 2016; Yang et al., 2017; Zhao et al., 2018) and some 

are point based (Huang et al., 2021; Li et al., 2020; Lin et al., 2021; 

Yousefhussien et al., 2018).  

 

The deep learning algorithms mentioned above follow the typical 

training scheme for semantic segmentation where networks are trained 

fully supervised on pointwise labels over the entire training area. This 

scheme always requires a huge amount of precise pointwise labels. 

Unfortunately, the pointwise annotation for all points in datasets is 

difficult, especially for those covering large scale urban areas. This is 
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because points are unstructured and non-uniformly distributed. Manual 

pointwise annotation is very tedious and time-consuming, e.g. it takes 

over 2500 hours in total to manually label ALS point clouds of 2 km2 

with the density of 348 points/m2 into 13 classes (Zolanvari et al., 

2019). Therefore, it is necessary to investigate strategies to reduce the 

annotation efforts. 

 

Various strategies are proposed to reduce manual annotation efforts 

on point clouds. Some methods utilize 2D data sources whose labels 

are much easier to obtain compared to 3D point clouds (Wang et al., 

2019; Yang et al., 2020). However, producing precise annotation on 

2D data is not cheap. The annotation cost can also be reduced by using 

low-cost noisy labels for the training of semantic segmentation of point 

clouds (Ye et al., 2021). Active learning is an alternative solution that 

aims to identify the most informative samples for model optimization 

and put manual annotation efforts only on those samples. Selected 

samples could be tiles that include complete scenes (Lin et al., 2020), 

super-points (Shi et al., 2021) or individual points (Kölle et al., 2021). 

Semi-supervised learning has also been investigated to alleviate 

annotation efforts. The idea is to assign semantic labels to a part of the 

points and models not only learn from the small set of labelled data 

but also exploit the potentials in the rest of the unlabelled data which 

take a larger proportion (Deng et al., 2022; Hu et al., 2021; Wang and 

Yao, 2021; Xu and Lee, 2020). Unsupervised learning is an alternative 

approach to addressing the problem. Pretrained models using 

contrastive learning loss are adapted for semantic segmentation of 

point clouds to reduce the annotation efforts. Contrastive losses are 

designed to force the model to learn from a large amount of unlabelled 

data (Hou et al., 2021; Xie et al., 2020). The underlying assumption is 

that spatial context and geometrical features of the same objects will 

not change with different rotations and perspectives. With the prior 

knowledge on point clouds acquired by unsupervised learning, the 

pretrained models only require a limited extra point annotation to 

achieve comparable results to those trained with fully labelled point 

clouds. The major limitation of the methods based on active, semi-

supervised and unsupervised learning is that they require exact point 

annotations. However, it is difficult for non-experts to label 3D points 

and they need tutorials to learn how to use annotation tools to assign 

a sematic label to a point which will lead to more costs.  

 

Inexact annotations on point clouds are easier to acquire because 

annotators do not need long tutorials to learn how to use annotation 

tools to label points and they only need to roughly outline objects or 

just recognize what kind of objects are in the scene. Although very few 

works attempt to train segmentation networks on those cheap labels 
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for point cloud tasks, this has been researched in many image related 

tasks. Various types of cheap labels are researched from bounding 

boxes (Dai et al., 2015; Song et al., 2019), scribbles (Lin et al., 2016), 

to image-level labels (Chang et al., 2020; Fan et al., 2020; Hou et al., 

2018; Li et al., 2020; Oh et al., 2017; Stammes et al., 2020; Wei et 

al., 2017; Yu et al., 2019). From bounding boxes to image level labels, 

fewer and fewer localization cues are available to the training data and 

this is the main challenge when using inexact weak labels for semantic 

segmentation tasks.  

 

Similar to weak supervision based on image-level labels, although the 

labels can be easily acquired, training semantic segmentation networks 

on weak subcloud labels is also very challenging. This is because 

pointwise labels are not available to train conventional semantic 

segmentation networks and only a label is given to a small region for 

the training data. Limited localization cues for objects make the 

training for semantic segmentation quite difficult. Strategies are 

required to establish how to correctly infer a semantic label for each 

point within a region without exact localization cues. Wei et al. (2020) 

propose a two-step framework to solve the problem, called multi-path 

region mining (MPRM). The first step is to generate pointwise pseudo 

labels from a classification network trained on weak labels and the 

second step is to take pointwise pseudo labels as the ground truth to 

train a segmentation network. They propose point class activation 

maps to provide the localization cues for target objects and four 

attention heads are proposed to obtain more precise pointwise pseudo 

labels for the training data. The MPRM mainly focuses on improving the 

pseudo label accuracy but does not take advantage of the overlapping 

weak labels which can be further exploited to provide extra spatial 

information. Also, they take all pseudo labels to train the segmentation 

network without considering the influence of the incorrect training 

labels.  

 

Since accurate pointwise labels are difficult to acquire and weak labels 

on subclouds are more accessible, we investigate how to supervise the 

training for semantic segmentation of ALS point clouds by weak 

subcloud labels. In this chapter, we extend the MPRM proposed by Wei 

et al. (2020) and adapt it to ALS data. In order to obtain more accurate 

pseudo labels from the classification network, how to introduce more 

localization cues to the network without providing more manually 

annotated labels is investigated in our research. We propose an overlap 

region loss to exploit the semantic heterogeneity within a subcloud. 

Class labels of the overlap regions are implied through pairwise 

comparison between weak labels of overlapping subclouds and these 

implied labels provide semantic cues for different subregions of each 
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subcloud. Since elevation related features are important attributes to 

distinguish different target categories in ALS datasets and many 

methods take advantage of them, an elevation attention block is 

designed and embedded to MPRM in order to better identify objects in 

ALS training data. Compared to the classification network in MPRM (Wei 

et al., 2020), the proposed network can learn more representative 

class-specific features from ALS datasets. After preparing pseudo 

labels, instead of directly using all of them to train a segmentation 

network, we only select part of the pseudo labels as the ground truth 

for the training and the labels of the rest points are dynamically 

assigned during the training. Inspired by Khosla et al. (2020), we 

reveal the underlying correlations of class-specific features between 

different classes through a supervised contrastive loss to make full use 

of both labelled and unlabelled points. The main contributions of this 

work are listed as the following: 

 

1) With weak subcloud labels covering large-area ALS point clouds, we 

make use of the overlapping subclouds and infer the label of the 

overlap from the label sets of the two overlapping subclouds. A loss 

function is designed to consider this inference and forces the pseudo 

label generation network to be aware of the semantic differences 

between a subregion and the entire subcloud, contributing to more 

accurate pseudo labels. 

2) To fully exploit the characteristics of ALS datasets, an elevation 

attention block is introduced to the pseudo label generation network. 

It encodes elevation related features to higher-dimensional features 

and helps the pseudo label generation network to produce more class-

specific features that are useful to identify different objects. 

3) For the training with pseudo labels for ALS datasets, we adapt a 

supervised contrastive loss (Khosla et al., 2020) to reveal the 

underlying correlations of class-specific features between different 

classes.  

 

In the rest of the chapter, we first review the related deep learning 

algorithms with both full and weak supervision for semantic 

segmentation of point clouds in Section 4.2. Next, our framework is 

explained and illustrated in Section 4.3. Section 4.4 shows our 

experimental results on three ALS datasets. Finally, Section 4.5 

concludes this chapter.  

4.2 Related work 

4.2.1 Deep learning on point clouds 

As point clouds are irregularly distributed, they cannot be directly taken 

as the input of 2D CNNs. Therefore, a branch of methods attempts to 
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convert 3D data into 2D representations, like producing images of 3D 

data from different views (Boulch et al., 2018; Kalogerakis et al., 2017) 

and these images can be fed into 2D CNNs for the 3D semantic 

segmentation tasks. The conversion from 3D to 2D is also applied to 

the semantic segmentation of ALS data, especially rasterizing features 

from the top view. Hu and Yuan (2016) create grid cells over XY plane 

and height related attributes within the cell are summarized and taken 

as the value of the corresponding pixel. In addition to height 

information, Yang et al. (2017) encode full-waveform and geometric 

features when generating 2D feature maps and feed those projected 

features to image based CNNs. Zhao et al. (2018) utilize multi-scale 

contextual images which further facilitate 2D CNNs to learn more 

representative features for ALS data. The limitation of these 2D CNN 

methods is that many pre-calculated features are required before the 

training and the training needs large memory to process the data.  

 

Apart from projecting point clouds to 2D images, another approach to 

regularizing unordered point clouds is voxelization. The idea is to 

represent point clouds by regular 3D grids which can be processed by 

3D convolutional networks (Maturana and Scherer, 2015; Tchapmi et 

al., 2017; Wu et al., 2015). However, the implementation of 3D CNNs 

can be inefficient when dealing with sparse points. To solve the 

problem, Graham et al. (2018) propose a sparse convolutional 

operation to speed up the convolutional calculation over voxelized 

data. The performance of the sparse submanifold convolutional 

networks (SSCNs) proposed by Graham et al. (2018) on the semantic 

segmentation of ALS data is researched by Schmohl and Sörgel (2019). 

The disadvantage of voxelization is that it causes 3D information loss.  

Recently, more and more researchers are attempting to directly take 

unevenly distributed points as the network input. PointNet proposed by 

Qi et al. (2017) is the first deep learning network that can take raw 

points as the input. PointNet learns geometrical features by a sequence 

of Multilayer Perceptron (MLP) layers. Based on PointNet, PointNet++ 

(Qi et al., 2017b) is composed of set abstraction modules that can 

progressively learn local geometrical features at different scales. 

RandLA-Net (Hu et al., 2020) has local feature aggregation modules to 

encode positional features and attentively pool them in a local 

neighbourhood. Unlike PointNet++ using farthest point sampling, Hu 

et al. (2020) prove that random sampling can also be an effective 

sampling strategy for representative feature extraction. 

WreathProdNet, proposed by Wang et al. (2020), is a hierarchical 

network where the wreath product of the group is utilized to express 

the symmetries of hierarchical structures. Inspired by the transformer 

utilized in natural language processing and image processing, Point 
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Cloud Transformer (Guo et al., 2021) and Point Transformer (Zhao et 

al., 2021) are proposed to capture better local geometrical features. 

 

With the success of 2D convolutions in image related tasks, many 

researchers develop 3D convolutions to learn local geometrical features 

from point clouds. Different from 3D voxel based method, these 3D 

convolutions can directly take unstructured points as the input. For 

example, Kernel Point Convolutions (KPConv) (Thomas et al., 2019) 

are defined over continuous space where the weights of a point 

depending on the linear correlation between its position and its nearby 

kernel points’ positions. The positions of kernel points are learnable, 

allowing the convolutions to learn more representative features from 

local structures. In addition to KPConv, Flex-Convolution (Groh et al., 

2019), PointConv (Wu et al., 2019) and ConvPoint (Boulch, 2020) also 

define 3D convolutions over continuous space. In contrast, FKAConv 

(Boulch et al., 2020) is a convolutional operator defined over discrete 

space, which transforms irregularly distributed points to align with grid 

kernels.  

 

There are also many deep learning based approaches proposed for the 

semantic segmentation of ALS datasets. Yousefhussien et al. (2018) 

allow the PointNet to learn from both XYZ coordinates and radiometric 

features captured from IR-R-G imagery. Winiwarter et al. (2019) 

introduce a batching framework that helps the PointNet++ to efficiently 

process large scale ALS point clouds. Li et al. (2020) design geometry-

aware convolutions, construct a dense hierarchical network and 

propose an elevation-attention module to effectively encode the 

characteristics of ALS datasets. In order to capture representative 

features for ALS point clouds from local to global scales, Lin et al. 

(2021) first integrate features extracted from both 2D and 3D 

convolutions to extract local features. Then edge conditioned graph 

convolutions are applied to geometrical homogenous segments in order 

to exploit the contextual information at an object level. Finally, a 

spatial-channel attention is proposed to encode the dependencies at a 

global scale. These three blocks are embedded in a single network and 

can be trained end to end. Huang et al. (2021) propose a network 

GraNet to learn spatial dependencies at both local and global scales. 

Considering the point distribution of ALS data, they propose a local 

spatial discrepancy attention convolution module that encodes point 

distribution, orientation and elevation information. Then a global 

relation-aware attention module is proposed to further learn global 

structures and global dependencies in high-level features. 
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4.2.2 Weakly supervised semantic segmentation on 2D 

images  

Before we review the weakly supervised methods on semantic 

segmentation of point clouds, we first review some weak supervision 

approaches proposed for image related tasks. Weak supervision for 

semantic segmentation on images has been researched in different 

kinds of supervisions like bounding boxes, scribbles and image level 

labels. Box level annotations provide rectangular masks to objects 

which are less precise but easier to obtain compared to pixel level 

masks (Dai et al., 2015; Song et al., 2019). Scribble annotations are 

easier to obtain compared to the bounding boxes as annotators only 

need to draw several lines for different objects (Lin et al., 2016).  

 

Compared to annotations at the box and scribble levels, weak 

supervision with image-level annotations is the hardest task but it 

requires the least annotation efforts. Supervision by image-level labels 

mainly takes two steps. Firstly, pseudo masks of objects are derived 

from image-level annotations and then these masks are taken as the 

ground truth for the fully supervised training of semantic segmentation 

networks. To obtain pseudo masks of the objects, without providing 

any spatial information on target objects, taking advantage of class 

activation maps (CAM) is a common practice. CAM is a set of response 

maps for target categories derived from classification networks 

supervised by image level labels. However, CAM tends to pay attention 

to the most discriminative region of the target objects and fails to 

activate other object parts. To extend pseudo masks to less 

discriminative parts, a group of methods attempts to force the network 

to pay more attention to other parts of the objects. This can be 

achieved by hiding or erasing parts of target objects (Hou et al., 2018; 

Li et al., 2020; Stammes et al., 2020; Wei et al., 2017). Some 

approaches obtain more accurate pseudo masks by using features from 

different images (Chang et al., 2020; Fan et al., 2020). Other methods 

incorporate saliency maps in order to separate objects from their 

background (Oh et al., 2017; Yu et al., 2019). How to obtain accurate 

object masks based on image-level labels is the main issue these 

methods attempt to solve.  

4.2.3 Deep learning on point clouds with fewer annotation 

efforts 

Recently, some researchers have focussed on using limited accurate 

point annotation for the training of deep networks. Lin et al. (2020) 

propose an active learning strategy to select the most informative tiles 

to train PointNet++ for the semantic segmentation of ALS point clouds. 
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Instead of annotating tiles, Shi et al. (2021) propose an active learning 

strategy to progressively annotate the most informative segments 

which are clusters of points sharing similar geometrical features. With 

the intention to outsource the point annotation to the crowd, Kölle et 

al. (2021) iteratively select points which are easy for non-experts to 

interpret. Tao et al. (2020) introduce a one point per instance 

annotation strategy. Point clouds are first partitioned into homogenous 

segments and then one point annotation is assigned to the most 

representative segment per instance.  

 

Apart from tiles and segments, supervision by sparse point annotation 

has also been investigated. Xu and Lee (2020) adopt a semi-supervised 

learning strategy to allow the network to learn from not only a small 

number of labelled points but also a large number of unlabelled points. 

To fully exploit unlabelled data, Xu and Lee (2020) introduce three 

constraints: inexact supervision ensures all categories at a block level 

are consistent with the pointwise labels in this block, self-supervision 

keeps the feature consistency when a point cloud is randomly rotated 

or flipped and a spatial and colour constraint smooths the network 

outputs. Wang and Yao (2021) also exploit the potentials of unlabelled 

points when limited accurate point labels are available. They introduce 

entropy regularization to penalize uncertain predictions, a consistency 

constraint for ensemble predictions and an online pseudo-labelling 

strategy to dynamically involve extra pointwise supervision. Deng et 

al. (2022) use sparse labels and train a graph convolutional network in 

a semi-supervised manner to generate foreground-background 

pointwise pseudo labels for training samples. Then the classification 

and segmentation losses are jointly minimized to enhance the model 

robustness to noises in pseudo labels. With sparsely labelled points, Hu 

et al. (2021) propose a point feature query network to spread sparse 

training signals to a larger spatial extent by encoding the most 

important features from local regions of annotated points. Zhang et al. 

(2021) first make a model to learn from unlabelled data by self-

supervised training and then knowledge is transferred to the weakly 

supervised segmentation network to enrich the information learned 

from limited pointwise annotation. Moreover, during the weak 

supervision training, pseudo labels are also assigned to unlabelled 

points in order to expand the supervision information.  

 

Some approaches take advantage of 2D labels which are easier to 

acquire. For example, Wang et al. (2019) build a graph convolutional 

network for semantic segmentation of point clouds that can achieve 2D 

and 3D joint optimization and only requires 2D supervision. Yang et al. 

(2020) supervise the training of semantic segmentation of ALS point 

clouds by 2D labels acquired from topographic maps. Inspired by weak 
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supervision with the image level annotation, Wei et al. (2020) first set 

up the baseline for weak supervision with scene and subcloud level 

annotations which are easier to acquire compared to point annotations. 

However, using subcloud level labels is more challenging than using 

point annotations because no spatial information is available for labels. 

Following CAM, a point cloud activation map (PCAM) is proposed to 

provide localization cues for target objects. In order to obtain better 

pseudo labels for the training data, four attention heads are introduced 

and a conditional random field is taken as the postprocessing to further 

refine pseudo labels. Pointwise pseudo labels are taken as the ground 

truth to train normal networks for semantic segmentation of point 

clouds. Our work follows Wei et al. (2020), investigating the potentials 

of subcloud labels for semantic segmentation of ALS data as they are 

the easiest annotation to acquire.  

4.3 Method 

We adopt and further develop the framework proposed by Wei et al. 

(2020) (Figure 4.1). There are two main steps, generating pointwise 

pseudo labels from a classification network (the upper part in Figure 

4.1) and training a segmentation network based on pseudo labels (the 

lower part in Figure 4.1). In the first step, Wei et al. (2020) use weak 

labels on subclouds for the training area to train the classification 

network and pass the training data to the trained classification network 

in order to produce pointwise pseudo labels. We extend this step by 

introducing an overlap region loss and an elevation attention module. 

The overlap region loss is designed to exploit the weak label 

information between nearby subclouds and the elevation attention 

module aims to help the classification network learn more class-specific 

features from the ALS point clouds. In the second step, training data 

with pointwise pseudo labels are utilized to train a segmentation 

network which then gives predictions on unlabelled testing data. We 

further develop the segmentation network by applying a supervised 

contrastive learning loss to train the segmentation network, which 

allows the segmentation network (KPConv network (Thomas et al., 

2019)) to learn better class-specific representations with inaccurate 

pseudo labels.  

 

In this section, we first review the weak label settings and network 

design proposed by Wei et al. (2020) which are taken as our baseline. 

Then we describe the mechanism of the overlap region loss, the design 

of the elevation attention and how we apply the supervised contrastive 

loss.  
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4.3.1 Brief review on MPRM 

4.3.1.1 Subcloud-level annotation 

 
Figure 4.1 The workflow of weak supervision for the semantic 

segmentation of ALS data based on weak subcloud labels. 

 

Wei et al. (2020) use subcloud-level labels for the weak supervision of 

3D semantic segmentation. In MPRM, anchor points 𝐴 = {𝑎1, 𝑎𝑖 , … , 𝑎𝑁𝑔
} 

are uniformly placed in the space. For 𝑎𝑖, all neighbouring points within 

a radius of 𝑟𝑠 are grouped as a subcloud 𝑔𝑖. Therefore, a large point 

cloud is separated into a set of subclouds 𝐺 = {𝑔1, 𝑔𝑖 , … , 𝑔𝑁𝑔
}. A label 

vector 𝑙𝑠𝑖 ∊ 𝑅1×C  is assigned to the subcloud 𝑔𝑖  as the weak label. 

Elements in 𝑙𝑠𝑖 are either 0 or 1. If 𝑙𝑠𝑖𝑐
= 1, 𝑐𝑡ℎ category exists in 𝑔𝑖 and 

𝑐𝑡ℎ category is taken as a positive class. If 𝑙𝑠𝑖𝑐
= 0, 𝑐𝑡ℎ category is not 

present in 𝑔𝑖  and 𝑐𝑡ℎ  category is taken as a negative class. When 

generating subclouds, anchor points 𝐴 are uniformly placed along the 

XYZ axis and the distance between anchors is taken as the same as 
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the subcloud radius 𝑟𝑠 . Therefore, the number of subclouds can be 

calculated as ⌈𝑙𝑥/𝑟𝑠⌉ × ⌈𝑙𝑦/𝑟𝑠⌉ × ⌈𝑙𝑧/𝑟𝑠⌉, supposing no empty anchors are 

placed at empty space. Here, 𝑙𝑥 , 𝑙𝑦 , 𝑙𝑧  represent the extents in the 

three dimensions of the training data. With this subcloud extraction 

strategy, the union of all subclouds covers the entire training area. 

Every point has a chance to be included in multiple subclouds and to 

be assigned different weak subcloud labels. 

4.3.1.2 Point class activation map 

 

 
Figure 4.2 The structure of the base network to generate PCAM and 

pseudo labels. Here, the input sphere has ground, façade and 

vegetation points. The weak label can be written as a vector 

[1,0,0,1,1,0] which represents the existence of ground, roof, water, 

façade, vegetation and artwork in sequence. 

 

The use of a class activation map (CAM) is common practice for many 

weak supervision tasks on semantic segmentation of images. It 

extracts class-specific object localization cues from classification 

networks. CAM is applied to point-based convolutional networks, called 

a point class activation map (PCAM) (Wei et al., 2020), in order to 

produce localization cues on 3D point clouds. The structure of the base 

network to generate PCAM, denoted as 𝑓𝑃𝐶𝐴𝑀  ∊ 𝑅𝑁3×𝐶 , is shown in  

Figure 4.2. A subcloud 𝑔𝑖 is passed through three convolutional layers 

to obtain the intermediate feature map 𝑓[3] ∊  𝑅𝑁3×𝐷3. Then, the feature 

map is converted to the PCAM by a 1× 1 convolution layer which 

reduces the feature dimension to the number of classes. During the 

training, a global average pooling layer is applied to produce the 1D 

prediction vector 𝑙𝑜𝑔𝑖𝑡𝑠𝑖 ∊ 𝑅1×C  and a multi-label classification loss is 

computed according to the weak label of the subcloud 𝑙𝑠𝑖. Here the 

binary cross entropy loss is taken as the multi-label classification loss. 

It not only encourages logits for positive classes to be higher but also 
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forces the logits for negative classes to be lower. The loss for 𝑔𝑖
 is 

written as the following: 
𝐿𝑜𝑠𝑠𝑖 = 𝐵𝐶𝐸(𝑙𝑜𝑔𝑖𝑡𝑠𝑖 , 𝑙𝑠𝑖) 

 

𝐵𝐶𝐸(𝑙𝑜𝑔𝑖𝑡𝑠𝑖 , 𝑙𝑠𝑖) = − ∑[𝑙𝑠𝑖𝑐
∙ 𝑙𝑜𝑔𝑖𝑡𝑠𝑖 𝑐

+ (1 − 𝑙𝑠𝑖 𝑐
) ∙ 𝑙𝑜𝑔(1 − 𝑙𝑜𝑔𝑖𝑡𝑠𝑖 𝑐

)]

𝐶

𝑐=1

 

 

(4.1) 

 

4.3.1.3 Multi-Path Region Mining 

In order to learn more discriminative features that can provide more 

reliable object localization cues, the intermediate feature map 𝑓[3] ∊
 𝑅𝑁3×𝐷3 is fed to three attention modules (Figure 4.3), namely spatial 

attention module, channel attention module and point-wise attention 

module. The idea is to make different attention modules focus on 

different perspectives of the network and then generate class-specific 

discriminative regions. The aggregation of them gives more reliable 

pseudo labels. As for the plain PCAM path, each attention module is 

followed by a 1× 1 convolution layer to obtain a corresponding PCAM. 

Then a global average pooling layer is applied to obtain a 1D prediction 

which is passed to a cross entropy loss function. During the training, 

the loss is summed up and back-propagated. All the paths are 

aggregated by taking the element-wise maximum and are then 

upsampled to produce pseudo labels. 

  

 
Figure 4.3 Pseudo label generation in MPRM (Wei et al., 2020). 
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4.3.2 Pseudo label generation 

4.3.2.1 Reveal the relationship between subclouds 

We follow the setup of MPRM to generate weak labels on subclouds. 

However, Wei et al. (2020) directly use a subcloud and its 

corresponding label vector for training, without considering the 

additional semantic information that can be inferred from two 

overlapping subclouds. Suppose we have two overlapping subclouds 𝑔1 

and 𝑔2 . 𝑔1  has low vegetation, impervious surfaces and car points, 

while 𝑔2 has low vegetation, impervious surfaces, etc. except car points 

(Figure 4.4). In this case, we can infer that the overlap region has no 

car, powerline, roof, façade, fence/hedge, shrub, tree points. This 

inference on negative classes can be utilized, since we use the binary 

cross entropy loss that tries to minimize the logits for negative classes. 

 

To make use of weak labels of nearby subclouds, we compare 

subclouds by pairs (Figure 4.4) and then obtain pseudo weak labels for 

pairwise overlap regions. For a subcloud 𝑔𝑖 , the overlap with a 

neighbouring subcloud 𝑔𝑗 is denoted as 𝑔𝑖𝑗. The label vector of 𝑔𝑖𝑗 is 

taken as 𝑙𝑠𝑖𝑗 ∊ 𝑅1×C, calculated as the following equation:  

𝑙𝑠𝑖𝑗 =  𝑙𝑠𝑖  ∘  𝑙𝑠𝑗 (4.2) 

Where ∘ represents the Hadamard product and 𝑙𝑠𝑗
 is the weak label for 

𝑔𝑗. 

 

Objects in the overlap 𝑔𝑖𝑗 can only be the positive classes 𝑙𝑠𝑖𝑗, but not 

all positive classes in 𝑙𝑠𝑖𝑗  have to be present in the overlap. For 

example, in Figure 4.4, according to (4.2), low vegetation and 

impervious are positive classes in 𝑙𝑠𝑖𝑗 but, in reality, the overlap region 

does not contain low vegetation points. In contrast, negative classes in 

𝑙𝑠𝑖𝑗  will never exist in the overlap region. Although some positive 

classes in inferred label vectors may not be present in the overlap, 

information on negative classes can also benefit the training cause we 

use the binary cross entropy that takes advantage of both positive and 

negative classes.  
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Figure 4.4 A sample of the overlap region. 

 

 
Figure 4.5 The relationship between the input sphere of the 

classification network and the subcloud for weak labels. The text below 

the point cloud is the weak labels provided to the input sphere. Each 

colour represents a weak label. The left one demonstrates the size of 

subcloud chosen by Wei et al. (2020), where 𝑟𝑠 =  𝑟𝑖𝑛  ( 𝑟𝑠 =24m, 

𝑟𝑖𝑛=24m). Only one weak label is assigned to the input sphere. The 

right one is the strategy used in our method, where 𝑟𝑠 <  𝑟𝑖𝑛 (𝑟𝑠=12m, 

𝑟𝑖𝑛=24m) and five weak labels are available. 
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In our method, we add a term 𝐿𝑜𝑠𝑠𝑜𝑖 to involve the pseudo weak labels 

for overlap regions.  

𝐿𝑜𝑠𝑠𝑜𝑖 = ∑ 𝐵𝐶𝐸(𝑙𝑜𝑔𝑖𝑡𝑠𝑖𝑗 , 𝑙𝑠𝑖𝑗)

𝑀

𝑗=1

 
(4.3) 

Where 𝑙𝑜𝑔𝑖𝑡𝑠𝑖𝑗 is a feature vector computed by averaging all points in 

𝑔𝑖𝑗 for each channel in PCAM. 𝑀 is the number of subclouds that have 

an overlap with 𝑔𝑖 . Therefore, the loss for 𝑔𝑖
 in our method is 

formulated as  

𝐿𝑜𝑠𝑠𝑖 = 𝐵𝐶𝐸(𝑙𝑜𝑔𝑖𝑡𝑠𝑖 , 𝑙𝑠𝑖) + ∑ 𝐵𝐶𝐸(𝑙𝑜𝑔𝑖𝑡𝑠𝑖𝑗 , 𝑙𝑠𝑖𝑗)

𝑀

𝑗=1

 
(4.4) 

According to Thomas et al. (2019), the input of the KPConv is a 

spherical space whose radius is 𝑟𝑖𝑛. The subcloud is set as the same 

size as the input point cloud in MPRM (Wei et al., 2020) and therefore 

only one weak label vector is available for each input sphere. When we 

decrease the subcloud size (𝑟𝑠 < 𝑟𝑖𝑛), more subclouds can be included 

in the KPConv input (Figure 4.5) and the loss for the input point cloud 

can be written as: 

𝐿𝑜𝑠𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = ∑ 𝐿𝑜𝑠𝑠𝑖

𝑁𝑠

𝑖=1

 
(4.5) 

where 𝑁𝑠 is the number of subclouds within the input point cloud. 𝑁𝑠 is 

1 in MPRM (Wei et al., 2020). 

4.3.2.2 Elevation attention 

Elevation information has proven to be important to the semantic 

segmentation of ALS point clouds in many studies (Huang et al., 2021, 

Li et al. 2020). Therefore, it should be well-encoded to extract 

discriminative features for the network. In addition to taking elevation 

information as the input feature of the network, we design an elevation 

attention unit that encodes the elevation information to higher-

dimensional features and helps the classification network to produce 

more class-specific features. The structure of our elevation attention 

unit is shown in Figure 4.6. The elevation attention is applied to the 

output feature of the last convolutional layer in the classification 

network, shown in Figure 4.7. 

 

Here, we consider both the relative height in a local neighbourhood and 

the elevation in the original dataset, forming a height feature map 𝐻 ∈
𝑅𝑁×2 . Then 𝐻 is downsampled to the same size as 𝑓[3], denoted as 𝐻′. 
𝐻′ is transformed into two features maps 𝑓ℎ1 and 𝑓ℎ2  with the same 

dimension as 𝑓[3]  by two 1× 1 convolution layers. The elevation 

attention 𝐸𝐴 is calculated by the matrix multiplication between the 

transpose of 𝑓ℎ1 and 𝑓ℎ2, followed by a softmax function 𝜎:  
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𝐸𝐴 =  𝜎(𝑓ℎ1
𝑇 ∙  𝑓ℎ2) (4.6) 

Then a matrix multiplication is applied between 𝐸𝐴 and 𝑓[3] and the 

result is then multiplied by a learnable parameter 𝛼 and element-wisely 

added to the intermediate feature 𝑓[3], shown in the following equation:  

𝑓[3]
𝐸𝐴

=  𝛼 ∙ 𝐸𝐴 ∙ 𝑓[3] + 𝑓[3] (4.7) 

 

 
Figure 4.6 The structure of the elevation attention unit.  

 

 
Figure 4.7 The position of the elevation unit.  

4.3.2.3 Pseudo label refinement 

Since each point may appear in multiple subclouds, it can correspond 

to several weak labels. These weak labels are helpful to mask out those 

classes that do not exist in the ground truth. For a point 𝑝, its new 

features 𝑓𝑃𝐶𝐴𝑀(𝑝) ∊ 𝑅1×𝐶 constrained by its corresponding weak labels 

can be defined as the following:  

𝑓𝑃𝐶𝐴𝑀(𝑝) =   𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓𝑃𝐶𝐴𝑀(𝑝)) ∘(𝑙𝑠1∘…∘𝑙𝑠𝑘) (4.8) 

Where 𝑘  is the number of subclouds that include point 𝑝  and ∘  is 

Hadamard product. 



Weakly Supervised Semantic Segmentation of Airborne Laser Scanning Point Clouds 

 102 

As our pointwise pseudo labels are inaccurate, we set a threshold 𝑡 to 

select those confident predictions as the pseudo labels for the next 

training process and the rest are taken as the unlabelled points. 

Therefore, our pointwise label 𝑦̂ for point 𝑝 is obtained by the following 

equation: 

𝑦̂ =  {
𝑁𝑜𝑛𝑒                               ,         𝑓𝑃𝐶𝐴𝑀(𝑝) < 𝑡

𝑎𝑟𝑔𝑚𝑎𝑥
𝑐∈𝐶

(𝑓𝑐
𝑃𝐶𝐴𝑀

(𝑝)) , 𝑓𝑃𝐶𝐴𝑀(𝑝) ≥ 𝑡
 

(4.9) 

 

4.3.3 Training with pseudo labels 

4.3.3.1 Semantic segmentation network 

As Wei et al. (2020) take the KPConv network as the segmentation 

network, in order to make a fair comparison to demonstrate the 

advantages of our proposed strategy, we follow Wei et al. (2020) to 

also take the KPConv network as the model for the semantic 

segmentation on the testing data. Its encoder consists of five 

convolutional layers and every layer has two convolutional blocks. The 

decoder contains four MLP layers. Suppose a set of points 𝑃 =
{𝑝1, 𝑝𝑖 , … , 𝑝𝑛} as the input of the network. Let 𝑖 ∈ 𝐼 = {1, … , 𝑁𝑝} be the 

index of a point in 𝑃. The indices of labelled points can be written as 

𝐼𝑙  ⊆  𝐼 and those of unlabelled points are taken as 𝐼𝑢  ⊆  𝐼. The numbers 

of points in the labelled and unlabelled sets are represented by 𝑁𝑝𝑙 and 

𝑁𝑝𝑢 respectively. The weighted loss function based on labelled points is 

written as: 

𝐿𝑐𝑒 =  ∑ 𝑤𝑦̂𝑖
∙ 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑦̂𝑖 , 𝑙𝑜𝑔𝑖𝑡𝑠𝑖)𝑖∈𝐼𝑙

, 

where    𝑤𝑦̂𝑖
=

ln (
1

𝛾𝑦̂𝑖

)

∑ ln (
1

𝛾𝑦̂𝑖

)𝐶
𝑦̂𝑖=1

   ,      𝛾
𝑦̂𝑖

=
𝑁𝑦̂𝑖

∑ 𝑁𝑦̂𝑖
𝐶
𝑦̂𝑖=1

 ,  𝑦̂
𝑖

= {1, … , 𝐶} 

 

(4.10) 

 

 

4.3.3.2 Supervised contrastive learning using pseudo labels 

In order to the improve the representativeness of learned class-specific 

features, we introduce a contrastive learning strategy to allow the 

network to reveal the underlying correlation between different 

categories. In conventional self-supervised contrastive learning, for an 

anchor sample, positive samples are augmented samples derived from 

the same source sample while the negative samples are all other 

samples originating from different sources. Positive pairs are expected 

to have similar features while negative pairs are supposed to be 

different. Khosla et al. (2020) suggest that with the existence of labels 
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in supervised learning, positive samples can be those belonging to the 

same class. The supervised contrastive loss is proposed to pull together 

points in the same class in embedding space, while pushing apart 

samples from different classes. Since we do not have manually labelled 

pointwise labels, we use pointwise pseudo labels to define positive and 

negative samples for each point. 

 

To take advantage of unlabelled points, instead of using fixed pseudo 

labels for training, we dynamically assign pseudo labels to those 

unlabelled points during the training if the network gives confident 

predictions on them.  
𝑦̂𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑐∈𝐶
(𝑓𝑖

𝑐), 𝑖𝑓 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓𝑖) ≥ 𝑡, 𝑖 ∈  𝐼𝑢  (4.11) 

where 𝑡 is the same threshold mentioned in Section 4.3.2.3 and 𝑓𝑖 is 

the feature map from the last layer of the segmentation network. Then, 

the labelled set is extended 𝐼′𝑙 = 𝐼𝑙 ∪ {𝑖} and the unlabelled set is shrunk 

𝐼′𝑢 = 𝐼𝑢 \ {𝑖}.  
 

For point 𝑝𝑖  (𝑖 ∈  𝐼′𝑙) , the indices of all other labelled points are 

represented as 𝑉(𝑖) = 𝐼′𝑙  \ {𝑖}. The supervised contrastive loss (Khosla 

et al., 2020) for 𝑝𝑖 in the extended labelled set 𝐼′𝑙 is defined as the 

following:  

𝐿𝑐𝑙𝑖 =
−1

|𝑍(𝑖)|
∑ 𝑙𝑜𝑔

exp (𝑓𝑖 ∙ 𝑓𝑧/𝜏)

∑ exp (𝑓𝑖 ∙ 𝑓𝑣/𝜏)𝑣∈𝐾(𝑖)
𝑧∈𝑍(𝑖)

 
(4.12) 

Here, 𝑍(𝑖) = {𝑧 ∈ 𝑉(𝑖): 𝑦̂𝑧 =  𝑦̂𝑖} is the set of indices of all positives that 

share the same pseudo label with point 𝑝𝑖 and its cardinality is denoted 

as |𝑍(𝑖)| . The correlation between samples is calculated by a dot 

product between feature vectors followed by exp (). 𝑓𝑖 , 𝑓𝑧  and 𝑓𝑣  are 

pointwise features obtained by the last layer of the KPConv. 𝜏 is a 

temperature factor that controls the influence of the contrastive loss 

on gradients for back-propagation. A smaller 𝜏  means a larger 

gradient. Then supervised contrastive loss for all points with pseudo 

labels is computed as follows:   

𝐿𝑐𝑙  =  ∑ 𝑤′𝑦̂𝑖
 ∙

𝑖 ∈𝐼′
𝑙

 𝐿𝑐𝑙𝑖   (4.13) 

𝑤′𝑦̂𝑖
=  

1

𝑁𝑦̂𝑖

 , 𝑦̂𝑖 = {1, … , 𝐶} (4.14) 

To keep the balance between majority and minority categories, we 

assign weight 𝑤′𝑦̂𝑖
 to each pointwise loss according to its pseudo label. 

𝑁𝑦̂𝑖
 is the number of points for category 𝑦̂𝑖 in the labelled set. Finally, 

the 𝐿𝑐𝑒 and 𝐿𝑐𝑙 are summed up as the loss to train the segmentation 

network: 
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𝐿𝑜𝑠𝑠 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 =  𝐿𝑐𝑒 + 𝐿𝑐𝑙 

 

(4.15) 

 

4.4 Experiments  

Experiments are carried out on ALS datasets to evaluate our weak 

supervision method based on subclouds. We first show our results on 

the ISPRS benchmark dataset (Niemeyer et al., 2014) and make 

comparisons to the baseline method (Wei et al., 2020) and other fully 

supervised methods. Experiments are performed to verify the 

effectiveness of our proposed method. Our weak subcloud supervision 

method is also tested on Rotterdam dataset (Lin et al., 2020) and 

DFC2019 dataset (Bosch et al., 2019) to demonstrate its pros and 

cons. 

4.4.1 Experiments on ISPRS benchmark dataset 

4.4.1.1 Dataset 

 

 

 
Figure 4.8 An overview of the ISPRS benchmark dataset. Section A is 

used for model training and Section B is used for model evaluation. 

 

Our method is first tested on the ISPRS benchmark dataset (Niemeyer 

et al., 2014). Figure 4.8 provides an overview of the dataset which was 

captured by a Leica ALS50 system in August 2008, at Vaihingen, 

Germany with a mean flight height of 500m and a field of view of 45o. 

The point density is 4 points/m2. Except for XYZ coordinates, the 
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dataset also provides pointwise intensity and number of returns. Nine 

classes are predefined in the dataset, namely powerline, low 

vegetation, impervious surface, car, fence/hedge, roof, façade, shrub, 

and tree. The point cloud is split into two parts, the training area with 

753,876 points and the testing area with 411,722 points. 

4.4.1.2 Accuracy assessment 

We take the average F1 score (Avg. F1) and overall accuracy (OA) as 

our evaluation metrics to assess our proposed method. The overall 

accuracy is the proportion of correctly predicted points to the total 

number of points in the testing data. F1 score of each class is computed 

from precision and recall. 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃) 

 (4.16) 
𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑁) 

 (4.17) 
𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∙ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙  𝑟𝑒𝑐𝑎𝑙𝑙)/ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙) 

 (4.18) 

Where TP, FN and FP are true positives, false negatives and false 

positives receptively in a confusion matrix. 

4.4.1.3 Preprocessing 

To train the classification network which generates pseudo labels on 

the training data, we first generate subclouds with a radius of 6m. 

Following Wei et al. (2020), 7452 weak labels are generated for the 

training data with 753,876 points in total. The number of weak 

subcloud labels used for the training of the classification network is 1% 

of the number of points in the training data. For simplicity, we use ‘1% 

weak labels’ to represent this weak labelling scheme. To demonstrate 

the superiority of our method over MPRM in terms of required 

annotation efforts and accuracy, we only use half of the weak labels 

(‘0.5% weak labels’) and mainly discuss the classification results under 

this scheme. How a smaller number of labels are selected is 

demonstrated in Section 4.4.1.6.2.  

 

Following the data preprocessing utilized in KPConv, the ISPRS dataset 

is first subsampled by grid sampling with a grid size of 0.24m to 

mitigate the influence of the uneven spatial distribution of ALS data. 

Since both the classification network and segmentation network are 

built on KPConv, we apply the same strategy to generate input data 

for the model training. The radius of the input sphere is 24m. Apart 

from XYZ coordinates, we also use intensity, absolute height and 

normalized height as input features. A random rotation around the Z-

axis is applied to each input sphere and random noises with a standard 

deviation of 4cm are added to XYZ coordinates to augment the point 

clouds without significant changes in object geometry.  
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4.4.1.4 Network implementation details 

The encoder of the classification network has three convolutional layers 

and every layer has two convolutional blocks. The output dimensions 

for three convolutional layers are 64, 128 and 256 respectively. Their 

subsampling grid sizes are 0.24m, 0.48m and 0.96m in sequence and 

the corresponding convolution radii incrementally rise as 0.6m, 1.2m 

and 2.4m to have larger receptive fields for the latter layers. To find 

reliable pseudo labels, we set 𝑡 as 0.2.  

 

The encoder of the segmentation network consists of five convolutional 

layers and their output dimensions are 64, 128, 256, 512 and 1024 

respectively. Their subsampling grid sizes are 0.24m, 0.48m, 0.96m, 

1.92m and 3.84m in sequence and the corresponding convolution radii 

incrementally increase as 0.6m, 1.2m, 2.4m, 4.8m and 9.6m. For the 

supervised contrastive learning loss, since we have limited GPU 

memory, we cannot compare all points in a batch pair by pair. We 

randomly select 2000 points and perform pairwise comparisons, which 

means that cardinality of 𝐾(𝑖)  is 1999. According to Khosla et al. 

(2020), we set the temperature factor 𝜏 as 0.1.  

 

Our experiments rely on the PyTorch framework (Paszke et al., 2019) 

and are implemented on a Geforce RTX 2080 Ti GPU. Network weights 

are optimized through stochastic gradient descent (SGD). To train the 

classification network, we set 400 iterations for a single epoch. The 

learning rate is initially set as 0.01 and gradually decreases with a 

decay rate of 0.98 at every epoch. It takes 80 epochs to achieve 

network convergence. For the segmentation network, one epoch is set 

as 2000 iterations and the learning rate is set as 0.001 whose decay 

rate is 0.9 for every 5 epochs. We train the segmentation network for 

25 epochs to achieve network convergence.  
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4.4.1.5 Classification results 

Table 4.1 Confusion matrix of our method (0.5% weak labels) on the 

ISPRS benchmark testing data. Precision, recall and F1 score are shown 

for each category. The overall accuracy is 0.800 and the average F1 

score is 0.631.  
   

  

Power Low_ 
veg 

Imp_ 
surf 

Car Fence/ 
Hedge 

Roof Facad
e 

Shrub Tree 

Power 249 5 0 0 0 137 43 1 165 
Low_veg 0 88768 4215 42 110 1171 241 1705 2438 
Imp_surf 0 24458 77067 77 5 209 52 85 33 
Car 0 554 61 2501 81 111 0 387 13 
Fence/Hedg
e 

0 2441 21 41 411 464 17 3549 478 

Roof 214 4376 0 3 0 10029
0 

861 824 2480 

Facade 12 1905 9 29 0 1590 5855 874 950 
Shrub 0 8429 106 96 99 1356 518 8915 5299 
Tree 1 2256 2 6 31 1035 192 5563 45140 
          
Precison 0.415 0.899 0.756 0.674 0.055 0.920 0.522 0.359 0.832 
Recall 0.523 0.666 0.946 0.895 0.558 0.943 0.753 0.407 0.792 
F1 0.463 0.766 0.840 0.769 0.101 0.931 0.616 0.382 0.812 

 

The performance of our proposed weak supervision is evaluated on the 

ISPRS benchmark. We show the confusion matrix of our classification 

results under the 0.5% weak labels scheme in Table 4.1. Classification 

results and errors are qualitatively shown in Figure 4.9 and Figure 4.10 

respectively. Our method correctly predicts 80% of the testing points 

and the average F1 score is 0.631. As shown in Table 4.1, the F1 scores 

of six classes exceed 0.6, namely low vegetation, impervious surface, 

car, roof, façade and tree. For powerline points, although the F1 score 

is only 0.463 and they are likely to be misclassified as roof and tree 

points, it is still surprising to see these delicate structures can be 

recognized when only weak subcloud labels are given for the training 

dataset without any precise localization information. The precision of 

fence/hedge is quite low and the fence/hedge points are likely to be 

predicted as low vegetation and shrub points. This is because 

fence/hedge, vegetation and shrub are likely to coexist in the same 

subcloud and they share similar intensity values. The classification 

network is difficult to produce precise localization cues on fence/hedge 

points and fails to generate accurate pointwise pseudo labels for those 

points. The inaccurate pseudo labels mislead the training of the 

segmentation network which then consequently fails to correctly 

predict fence/hedge points.  
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Figure 4.9 Classification results of our weak supervision on the ISPRS 

benchmark dataset (0.5% weak labels). A: Correctly predicted car 

points B: Wrongly predicted powerline points C: Correctly predicted 

powerline points over the roof.  

 

We quantitatively compare our weak supervision method with some 

state-of-the-art full supervision methods on the ISPRS dataset in Table 

4.2. All these methods are deep learning based, namely alsNet 

(Winiwarter et al., 2019), WhuY4 (Yang et al., 2018), KPConv (Thomas 

et al., 2019), RandLA-Net (Hu et al., 2020), GraNet (Huang et al., 

2021), LGENet (Lin et al., 2021) and DAPnet (Chen et al., 2021). 

Compared to the best results (DAPnet), our segmentation results under 

1% weak labels are 0.093 and 0.164 lower in terms of the overall 

accuracy and the average F1 score respectively. When reducing to half 

of the weak labels (0.5% weak labels), the accuracy for the prediction 
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on the testing data drops and the gap to DAPnet becomes 0.107 for 

the overall accuracy and 0.192 for the average F1 score. Compared to 

KPConv, the full supervision counterpart of our method, our results 

under the 1% weak labels scheme archive a comparable overall 

accuracy (0.814) and the average F1 score is 0.047 lower. Even if we 

reduce to half of the weak labels (0.5% weak labels), we still achieve 

0.800 in the overall accuracy and 0.631 in the average F1 score. 

Although the F1 score is 0.075 lower than that of KPConv, the F1 scores 

in roof, façade and tree are comparable. The lower average F1 score 

can be explained by the poor performance on powerline and 

fence/hedge whose F1 scores are 0.286 and 0.212 lower than those 

obtained by KPConv respectively. 

 

 
Figure 4.10 The error map of our weak supervision on the ISPRS 

benchmark dataset (0.5% weak labels). 
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Table 4.2 Quantitative comparisons between full supervision and weak 

supervision on the ISPRS benchmark dataset. Numbers in the first nine 

columns present the F1 scores for different categories. The overall 

accuracy (OA) and the average F1 score (Avg. F1) are listed in the last 

two columns. 
Settin

g 

Meth

od 

Powe

r 

Low_

veg 

Imp_

surf 

Car Fence/

Hedge 

Roof Facad

e 

Shru

b 

Tree Avg.F

1  

OA 

Full 

super
vision 

alsNe

t 

0.701 0.805 0.902 0.457 0.076 0.931 0.473 0.347 0.745 0.604 0.806 

WhuY

4 

0.425 0.827 0.914 0.747 0.537 0.943 0.531 0.479 0.828 0.692 0.849 

KPCo

nv 

0.735 0.787 0.880 0.794 0.330 0.942 0.613 0.457 0.820 0.706 0.817 

Rand

LA-

Net 

0.690 0.801 0.914 0.731 0.362 0.937 0.584 0.458 0.827 0.701 0.831 

GraN

et 

0.677 0.827 0.917 0.809 0.511 0.945 0.620 0.499 0.820 0.736 0.845 

LGEN

et 

0.765 0.821 0.918 0.800 0.406 0.938 0.647 0.499 0.836 0.737 0.845 

DAPn

et 

0.876 0.904 0.953 0.874 0.545 0.967 0.715 0.681 0.889 0.823 0.907 

Weak 

super

vision 

(subcl

oud) 

MPRM 

(base

line 

1%) 

0.283 0.704 0.748 0.582 0.240 0.912 0.606 0.249 0.792 0.569 0.752 

Ours 

(0.5

%) 

0.449 0.765 0.837 0.76 0.118 0.930 0.623 0.380 0.810 0.631 0.800 

Ours 

(1%) 

0.457 

 

0.774 

 

0.874 

 

0.752 

 

0.289 

 

0.931 

 

0.612 

 

0.428 

 

0.820 

 

0.659 

 

0.814 

 

 

Table 4.3. Quantitative results on ISPRS pseudo labels. Numbers in the 

first nine columns present the F1 scores for different categories. The 

overall accuracy (OA) and the average F1 score (Avg. F1) are listed in 

the last two columns. 
Method Power Low 

_veg 

Imp 

_surf 

Car Fence 

/Hedge 

Roof Facade Shrub Tree Avg. 

F1  

OA 

MPRM 

(baseline 

1%) 

0.149 0.704 0.737 0.509 0.409 0.904 0.687 0.421 0.895 0.602 0.765 

Ours 

(0.5%) 

0.357 0.757 0.817 0.654 0.461 0.923 0.675 0.490 0.911 0.672 0.811 

Ours 
(1%) 

0.424 
 

0.779 
 

0.799 
 

0.673 
 

0.654 
 

0.926 
 

0.698 
 

0.593 
 

0.920 
 

0.718 
 

0.820 
 

 

In Table 4.2, we also compare our proposed method to MPRM (Wei et 

al., 2020) which is taken as the baseline in this chapter. Following the 

strategy of producing weak labels in MPRM, 7452 weak labels are 

created for the ISPRS training data when the subcloud radius is taken 

as 6m. The baseline method only achieves 0.752 in the overall 

accuracy and 0.569 in the average F1 score. When using the same 

number of weak labels, our results (1% weak labels) achieve higher F1 

scores in all categories. When reducing to half of the weak labels, our 

method still outperforms the baseline, especially on powerline, car and 

shrub. This can be explained by the more accurate pseudo labels 
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produced by our classification network shown in Table 4.3 and the 

contrastive learning loss applied to the segmentation network training. 

A more detailed explanation is shown in Section 4.4.1.6. 

4.4.1.6 Experiments with different parameter settings 

In the following paragraphs, we first implement experiments to find an 

optimal configuration for the classification network that produces 

accurate pseudo labels with a limited annotation budget. The different 

subcloud radii (Section 4.4.1.6.1), different extents of overlaps 

(Section 4.4.1.6.2) and the impact of elevation attention (Section 

4.4.1.6.3) are tested for the classification network. Then we show how 

the performance of the segmentation network changes when using 

different confident levels of pseudo labels (Section 4.4.1.6.4) and how 

the supervised contrastive learning loss improves the results (Section 

4.4.1.6.5).  

 

4.4.1.6.1 The influence of subcloud radius 
We conduct experiments to see how the performance of the 

classification network changes with different subcloud radii in order to 

find an optimal subcloud radius. We follow Wei et al. (2020) to generate 

subclouds with different radii. All experiments in this section use the 

baseline classification network. The overlap region loss and the 

elevation attention are not considered. Predictions on the testing data 

are produced by the original KPConv.  
 

Table 4.4 Number of weak labels generated when using different 

subcloud radii. The ratio is calculated by the number of weak labels 

divided by the number of points in training data. 
Subcloud radius (m) 6 12 24 

Number of weak labels 7452 1626 325 

Ratio 0.99% 0.22% 0.04% 

 

Table 4.5 Pseudo label accuracy and testing data accuracy on the 

ISPRS dataset. The classification network is the same as MPRM (Wei et 

al., 2020). The KPConv is taken as the segmentation network (Thomas 

et al., 2019).  

 Pseudo label accuracy Testing data accuracy 
Subcloud radius 

(m) 
Avg.F1 OA Avg.F1 OA 

6 0.602 0.765 0.569 0.752 

12 0.462 0.673 0.476 0.684 

24 0.318 0.579 0.311 0.592 
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Figure 4.11 Pseudo label accuracy and testing data accuracy when 

using different radii of subcloud for weak supervision. In each plot, the 

x-axis represents subcloud radius (m) and the y-axis represents F1 

score. 

 

 

 
Figure 4.12 Examples of classification results on the Vaihingen dataset 

obtained from classification networks trained with different sizes of 

subclouds. 

 

Our results suggest that the classification network prefers smaller 

subcloud radii. Table 4.4 demonstrates the number of weak labels 

produced under different scenarios. It can be seen that with a larger 

subcloud radius, fewer weak labels are available for the training of the 

model to generate pointwise pseudo labels in the training data. Pseudo 

label accuracies and classification results on testing data are 
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demonstrated in Table 4.5 and Figure 4.11. When the subcloud radius 

is 24m, only 325 subclouds are supposed to be manually labelled but 

these limited weak labels fail to train a model that can produce precise 

pseudo labels for small objects like powerline, car, fence/hedge (Figure 

4.12). This is because the global pooling layer summarizes all the 

features to a vector and those small objects have very few 

contributions to the feature vector. Compared to those dominant 

classes, small objects are less likely to influence the loss and fail to 

make the training in favour of them. Consequently, the segmentation 

network trained on those unauthentic labels is not capable of 

identifying those classes. With decreasing subcloud radii, although 

more labelling efforts are required, each weak label represents fewer 

points and is likely to include fewer semantic classes. Points on small 

objects are likely to take a larger proportion of the subcloud and pose 

more impacts on the feature vector after the pooling layer. Therefore, 

these more exact weak labels allow the network to perceive small 

objects and give rise to better pseudo labels along with better 

predictions on testing point clouds. F1 scores in all categories are 

improved with the decrease of the subcloud size. It is possible to 

predict powerline, car, fence/hedge and shrub when the radius is 6m. 

Although 7452 are supposed to be given, this is still a small amount of 

labelling effort compared to the pointwise annotation on the whole 

training data. We also design an overlap region loss to further reduce 

half of the annotation without sacrificing the accuracy (Section 

4.4.1.6.2). Therefore, we set the subcloud radius to 6m for the rest of 

our experiments on the ISPRS data.  

 

4.4.1.6.2 The influence of overlap 
As explained in Section 4.3.1.1, Wei et al. (2020) produce enough 

subclouds to make sure all the data for the training exist in at least two 

subclouds. However, do we need the whole region to be fully 

overlapped and can our overlap region loss help the weak supervision 

to save some labelling efforts without sacrificing the accuracy? 

Therefore, we directly drop some subclouds to reduce the proportion 

of the space covered by at least two subclouds. 60% means 60% of 

data space for the training is covered by at least two subclouds and 

0% means there is no overlap between subclouds. In the following 

experiments, we first show how the results change with fewer weak 

labels. Then we analyse to what extent the overlap region loss can 

improve our results under different sampling strategies.  
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Figure 4.13 Examples of different sampling strategies to generate 

subclouds. Images are 2D projections of 3D objects. Blue squares 

represent the 3D space to be split. Grey circles represent 3D spheres. 

The number of spheres in each example is 27, 15, 14 and 8 from left 

to right. The darker grey means the region is covered by more spheres 

in the 3D space. For instance, in the example of 100%, there are three 

balls aligned along the edge that is represented by the upper corner of 

the blue square, while in the case of 60%, only 2 balls are available to 

that edge. The difference between the examples of 60% and 35% is 

that 60% has one more sphere in the middle. 

 

Table 4.6 Number of labelled subclouds with different percentages of 

the overlap region. The ratio is calculated by the number of weak labels 

divided by the number of points in training data. 
Percentage of the overlap 
region 

0% 35% 60% 100% 

Number of weak labels 953 2762 3624 7452 

Ratio 0.13% 0.37% 0.48% 0.99% 

 

The following section shows results when using different levels of 

overlap. Figure 4.13 demonstrates how subclouds are selected under 

different sampling strategies and Table 4.6 lists the corresponding 

number of weak labels produced. Note that the overlap between the 

3D spheres is much smaller than visible from their projections in Figure 

4.13. In general, more weak labels give rise to better performance of 

the classification network. Table 4.7 shows the accuracies of the 

pseudo labels and corresponding predictions on testing data 

respectively. When the classification network does not consider the 

overlap region loss, with more overlapped regions, the average F1 

score and the overall accuracy increase in the aspect of pseudo labels. 

More weak labels avoid the overfitting of the network and allow the 

network to learn representative features from the whole training data. 

When it comes to the F1 scores for different categories (blue lines in 

the first row of Figure 4.14), most of the classes have better F1 scores, 

except fence/hedge (Figure 4.15). This is because fence/hedge points 

always coexist with low vegetation and shrub points and these three 

categories share similar intensity values (as mentioned in Section 

4.4.1.5). More overlaps mean more subclouds, where fence/hedge 
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points coexist with low vegetation or shrub points. The enhanced 

learning from this coexistence confuses the network to correctly 

distinguish fence/hedge points from low vegetation or shrub points. 

Therefore, the pseudo labels of fence/hedge points are more likely to 

be taken as low vegetation or shrub when the overlap is set to 100%.  

 

For predictions on testing data, the average F1 score and the overall 

accuracy increase when the percentage of the overlap region is larger 

for the classification network. F1 scores for different classes are plotted 

as blue lines in the second row of Figure 4.14. Due to the improvement 

in pseudo label accuracy, the F1 scores for most of the classes increase. 

Although the F1 score in the pseudo label of fence/hedge is higher 

when the overlap region is set to 60%, this high value does not bring 

advantages to the accuracy in prediction on testing data. This can be 

explained by the false positives for fence/hedge labels in the pseudo 

label. More shrub and low vegetation points are labelled as fence/hedge 

points for the training and therefore more shrub points are predicted 

as fence/hedge, leading to a larger number of false positives. This 

amount of misclassified shrub points has little influence on the F1 score 

in shrub because of the large number of shrub points but brings about 

the decrease in the F1 score in fence/hedge. 

 

Table 4.7 Quantitative results on pseudo labels and predictions on 

testing data under different overlap schemes.  
Pseudo labels Predictions on testing data 

 
No overlap 
region loss 

With overlap 
region loss 

No overlap 
region loss 

With overlap 
region loss 

Overlap Avg.F1 OA Avg.F1 OA Avg.F1 OA Avg.F1 OA 

0% 0.439 0.659 0.439 0.659 0.447 0.691 0.447 0.691 

35% 0.557 0.726 0.598 0.761 0.520 0.706 0.554 0.750 

60% 0.591 0.741 0.629 0.782 0.546 0.739 0.584 0.760 

100% 0.607 0.763 0.639 0.793 0.578 0.755 0.632 0.803 

 

When the overlap region loss is considered, pseudo labels and 

corresponding predictions on testing data become more accurate with 

larger overlapped regions. How the F1 scores for different classes 

change with larger overlapped regions are plotted as yellow lines in 

Figure 4.14. By comparing yellow (overlap loss) and blue (no overlap 

loss) lines in the first row of Figure 4.14, it can be seen that the overlap 

region loss improves the pseudo label in most of the classes and 

contributes to a better average F1 score and overall accuracy. Since 

we infer weak labels from overlapping subclouds, the inferred labels 

correspond to subregions within a subcloud. If a small object exists in 

the subregion, it will give larger contributions to the pooling operation 

on the subregion and will be perceived by the classification network. 
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Apart from positive categories in weak labels, negative categories 

inferred from the overlaps also benefit the training, since the BCE loss 

penalizes high values on negative categories. This helps the network 

learn more discriminative features to distinguish different classes. In 

terms of the F1 scores for each class, the improvement is more 

significant for small objects like powerlines and cars, and this suggests 

the effectiveness of our overlap region loss in providing better 

localization cues. The loss fails in fence/hedge when the overlap is set 

to 60% and 100% due to its coexistence with shrub and low vegetation.  
 

 
Figure 4.14 Quantitative results on pseudo labels over the training data 

and predictions on testing data when using different percentages of the 

overlap region for weak supervision. The first nine columns show the 

F1 score for different categories. Blue lines represent experiments that 

do not use the overlap region loss. Yellow lines represent experiments 

that use the overlap region loss. The x-axis for each figure is the 

percentage of the overlap region and the y-axis represents the F1 

score. 

 

When it comes to predictions on testing data (the second row of Figure 

4.14), most categories take the advantage of better pseudo labels and 

achieve better accuracies, except fence/hedge. It can be concluded 

that our overlap region loss plays a greater role in obtaining a better 

average F1 score when the overlap is larger (Table 4.7). This is mainly 

related to better classification results on those difficult categories like 

powerline, car and shrub. By comparing the prediction on testing data 

using 100% overlap without overlap region loss and 60% with overlap 

region loss (Table 4.7), it can be found that the latter scheme achieves 

better accuracy in terms of the average F1 score and the overall 

accuracy. Referring to Table 4.6, this suggests that simply using an 

overlap region loss can reduce half of the required manual annotation 

effort. We take the overlap as 60% for the following experiments 

(presented in Table 4.8-4.10).  
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Figure 4.15 Examples of classification results on the Vaihingen dataset 

obtained from classification networks trained under different overlap 

schemes. 

 

4.4.1.6.3 Effectiveness of elevation attention 
Table 4.8 Quantitative results on pseudo labels and predictions on 

testing data with and without elevation attention (0.5% weak labels 

scheme).  
Method Pseudo labels Predictions on testing 

data  
Avg.F1 OA Avg.F1 OA 

Without elevation attention 0.629 0.782 0.584 0.760 

With elevation attention 0.672 0.811 0.600 0.788 

 

Quantitative results of the pseudo labels produced by models with and 

without elevation attention and the corresponding predictions on the 

testing data are shown in Table 4.8 and Figure 4.16. The classification 

network in this section involves the overlap region loss but the 

segmentation network is still the original KPConv. For pseudo labels, 

the average F1 score and the overall accuracy rise 0.043 and 0.029 

respectively when using the elevation attention. The elevation 

attention increases the F1 scores for 8 out of 9 categories. It corrects 

car points that are misclassified as roof points. Also, it can correct 

impervious surface points on top of the buildings to roof points (Figure 

4.17). The attention module reweights pointwise output features from 

the backbone according to elevation related features and makes the 
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features from different heads more class-specific. However, it confuses 

the network to label façade points near roof boundaries as roof and 

therefore reduces the precision of the façade. When comparing the 

predictions on testing data (in the second row of Figure 4.16), the 

misclassification between roof and façade points in pseudo labels does 

not negatively influence the F1 score in the façade. However, the F1 

score in fence/hedge and shrub decreases. This is because the 

attention elevation fails to raise the recall of fence/hedge in pseudo 

labels and more shrub points are labelled as fence/hedge, leading to 

confusion between these classes in the testing data. 
 

 
Figure 4.16 Quantitative results on pseudo labels and predictions on 

testing data when the classification network without (w/o) and with 

(w/) elevation attention (EA). In each plot, the x-axis represents 

whether the elevation attention is used and the y-axis represents F1 

score. 
 

 
Figure 4.17 Examples of classification results on the Vaihingen dataset 

obtained from classification networks trained with and without 

elevation attention (0.5% weak labels scheme) 

 

4.4.1.6.4 Influence of threshold t 
All classification results on testing data are obtained by models trained 

with all pseudo labels. However, not all generated pseudo labels are 

correct. Therefore, we set a threshold 𝑡 to select only confident pseudo 
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labels for the training. How the threshold influences the selected 

pseudo label accuracy is demonstrated in Figure 4.18. The selected 

pseudo labels are more accurate with a larger threshold. Figure 4.19 

shows how the predictions on testing data change with different 

threshold values. It can be seen that larger threshold values have very 

little influence on the overall accuracy but fail to raise the average F1 

score. More confident pseudo labels give rise to the slightly increased 

F1 score in roof and tree and the success in these dominant categories 

ensure the overall accuracy. The decreased average F1 score is a result 

of the failure in predicting powerline points (Figure 4.19). The reason 

for this failure is that a stricter threshold leads to a smaller proportion 

of powerline points in the whole training data. When the threshold is 

set to 0.3 and 0.4, the number of powerline points in pseudo labels is 

too small to allow the KPConv to learn representative features for 

themselves. Simply dropping unconfident labels by a threshold cannot 

improve the predictions on the testing data. Therefore, how to make 

use of those dropped points should be explored. 

 
Figure 4.18 Quantitative results on selected pseudo labels and 

predictions on test data with different values of the threshold for the 

ISPRS benchmark dataset. 

 

Table 4.9 Classification results on the ISPRS testing data when using 

different thresholds (𝒕) to select confident points for training. 
Threshold 0 0.2 0.3 0.4 

Avg.F1  0.6 0.574 0.565 0.555 

OA 0.788   0.788 0.789 0.793 
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Figure 4.19 Classification results on the ISPRS testing data when using 

different thresholds (𝒕) to select confident points for training. In each 

plot, the x-axis represents the threshold value and the y-axis 

represents F1 score. 

 

4.4.1.6.5 Effectiveness of supervised contrastive learning 
Table 4.10 and Figure 4.20 demonstrate the classification results on 

testing data with supervised contrastive learning loss under different 

thresholds (𝑡).  Compared to Figure 4.19, the segmentation network 

trained with supervised contrastive learning loss produces better 

results than its counterpart in terms of the average F1 score. When the 

threshold is set to 0, there are no uncertain points and therefore no 

pseudo labels are dynamically generated during the training. It can be 

seen that simply using contrastive loss can help the network to learn 

more representative features for difficult categories whose F1 scores 

are less than 0.6, like powerline, fence/hedge and shrub. The 

supervised contrastive learning loss contributes to the most significant 

improvement when the threshold is set to 0.2. The average F1 score 

increases by 0.057 and the overall accuracy rises by 0.012. The 

explanation for this is twofold. Firstly, with the contrastive loss, the 

model can learn better representative features by pulling together 

points in the same category and pulling apart points in the different 

categories in the embedding space. Secondly, during the training, since 

the segmentation network gradually converges with a decreasing loss, 

the model can progressively produce more and more accurate 

pointwise pseudo labels for uncertain points. Compared to the training 

of the classification network, the training of the segmentation network 

can perceive small objects through the existing exact pseudo labels. 

Then those small objects are likely to be correctly labelled when they 

appear in the unlabelled points. Points with corrected pseudo labels 

make contributions to the loss and then allow the segmentation 

network to perceive them. However, when the threshold value is set to 

0.3 and 0.4, our contrastive loss fails to make the training on pseudo 

labels in favour of powerline points due to the small number of 

powerline points.  

Table 4.10 Classification results on ISPRS testing data when using 

different thresholds (𝒕) to select confident points for training. 
Threshold 0 0.2 0.3 0.4 

Avg.F1  0.624 0.631 0.581 0.563 
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OA 0.788 0.800 0.791 0.796 

 

 
Figure 4.20 Classification results on the ISPRS testing data when using 

different thresholds (𝒕) to select confident points for training. The 

results are obtained by models trained with supervised contrastive 

learning loss. In each plot, the x-axis represents the threshold value 

and the y-axis represents F1 score. 

 

Model sizes and runtime of different classification and segmentation 

models are listed in Table 4.11 and Table 4.12 respectively. In terms 

of the classification networks, compared to the MPRM, our proposed 

overlap region loss does not lead to more trainable parameters but it 

does increase the processing time for each input sphere. The extra time 

is a result of loss calculation and backpropagation on subregions within 

each input sphere. Adding an elevation attention module directly 

enlarges the network and slightly rises the running time. The running 

time is also influenced by the number of weak labels available for the 

training. When we keep the network the same and only double the 

number of weak labels (third and fourth rows in Table 4.11), the 

running time of our proposed method increases by 144%. The reason 

for this long processing time is that more weak labels on overlapping 

regions are inferred by pairwise comparison between nearby subclouds 

when more weak labels on subclouds are available over the training 

data. More overlapping regions give rise to a longer training time for 

each input sphere. Since there is no calculation of the overlap region 

loss in MPRM, more weak labels will not influence its training time per 

input sphere. For the segmentation network, the supervised 

contrastive loss does not increase the model complexity. The longer 

training time is caused by the update of the pseudo labels on unlabelled 

points, the calculation of the supervised contrastive loss and the 

backpropagation. Compared to the MPRM, although our models take a 

longer time to run, our results are significantly improved as shown in 

Table 4.10. 
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Table 4.11 Classification network size and runtime comparison among 

different methods. 
  
MPRM 

Overlap_R
egion_Los
s 

Elevation_
Attention 

Weak_Lab
els 

Params 
(M) 

Training 
time/input 
sphere (s) 
(Vaihingen 

dataset) 

×     0.50% 4.5 0.05 

× ×   0.50% 4.5 0.08 

× × × 0.50% 5.4 0.09 

× × × 1.00% 5.4 0.22 

 

Table 4.12 Segmentation network size and runtime comparison among 

different methods. 

  

Params (M) 
Training time/input sphere (s)  

(Vaihingen dataset) 

KPConv 4.1 0.018 
KPConv with supervised 
contrastive loss 4.1 0.031 

 

4.4.2 Experiments on Rotterdam dataset 

4.4.2.1 Dataset 

The Rotterdam dataset is built on the third version of Actueel 

Hoogtebestand Nederland (AHN) dataset which provides ALS point 

clouds with a coverage of more than half of the Netherlands. The point 

cloud we used in Rotterdam is obtained by an IGI LM6800 system with 

a 60o field of view. The data acquisition was carried out on 4th 

December 2016 with a mean strip overlap of 30% and was designed 

to produce point clouds at a density of 60 points/m2. The Rotterdam 

dataset is located in the city centre with a coverage of 2 × 2 km2. It is 

characterized by high-rise buildings surrounded by trees and river 

channels with bridges. There are six classes predefined including 

ground, roof, water, façade, vegetation and artwork. The artwork class 

includes bridges and constructions related to water management.  

Figure 4.21 gives an overview of the dataset and how training and 

testing areas are split.  
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Figure 4.21 An overview of the Rotterdam dataset. The training area is 

in the black box and the testing area is in the grey box. 

4.4.2.2 Preprocessing 

Since the Rotterdam dataset only has six classes and small objects like 

cars and powerlines are not considered in the dataset, we take the 

subcloud radius as 24m which is the same size as the input sphere to 

the network. With 100% overlap, we generate 10604 weak labels for 

the area of 3 km2 containing about 45 million points and we simplify 

this scheme as ‘0.02% weak labels’. On average, each subcloud 

contains 2.78 categories and it takes us about 1s to label one category. 

Therefore, it takes about 3s on average to manually label a subcloud 

and 8.8 hours is estimated to provide weak labels for the whole training 

dataset. However, for the same data, it takes us about 130 hours to 
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give pointwise labels. We also tried 60% overlap which only needs 

6259 weak labels, denoted as ‘0.01% weak labels’. 

 

Similar to the ISPRS dataset, we first downsample the Rotterdam 

dataset with a grid size of 0.24m and we use the same input data 

generation strategy for both classification and segmentation networks. 

We take the same input sphere radius (24m) and the same data 

augmentation strategy as the experiments on the ISPRS dataset. 

Absolute height and normalized height are taken as the input features. 

The network structures of the classification and segmentation networks 

are the same as those used for the ISPRS benchmark dataset.  

 

To train classification and segmentation networks, we use the same 

parameters as the training on the ISPRS benchmark dataset, except 

epochs. We train the classification network for 100 epochs and the 

segmentation network for 30 epochs to achieve convergence. 

4.4.2.3 Classification results 

Table 4.13 Quantitative comparisons between full supervision and 

weak supervision on the Rotterdam testing data. Numbers in the first 

six columns present the F1 scores for different categories. The overall 

accuracy (OA) and the average F1 score (Avg. F1) are listed in the last 

two columns. 
Setting Method Ground Roof Water Façade Veg Artwork Avg. F1 OA 

Full 

supervis

ion 

KPConv 0.967 0.930 0.992 0.874 0.982 0.769 0.919 0.950 

Weak 

supervis

ion 

(subclo

ud) 

MPRM 

(baselin

e 0.02% 

weak 

labels) 

0.914 0.726 0.966 0.734 0.616 0.210 0.694 0.813 

Ours 

(0.02% 

weak 

labels) 

0.947 0.916 0.971 0.806 0.962 0.632 0.872 0.925 

 

Table 4.13 quantitatively compares the classification results on the 

Rotterdam testing data obtained by full supervision and weak 

supervision. Compared to the full supervision where models trained 

with pointwise ground truth labels, predictions obtained by our method 

using 0.02% weak labels are 0.025 lower in the overall accuracy and 

the gap in the average F1 score is 0.047. The main errors are with 

façade and artwork points. Although the gaps between our results and 

the full supervision predictions are not more than 0.02 for ground, roof, 

water and vegetation, only using a small number of weak labels for the 

training is still difficult to obtain precise localization cues for categories 

like façade and artwork. In terms of weak supervision by subcloud 
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labels, our method achieves much better accuracy compared to the 

baseline method (Wei et al., 2020). Table 4.14 and Table 4.15 more 

details on the advantages of our method.  

 
 

 
Figure 4.22 Qualitative results on pseudo labels for the training data of 

the Rotterdam data.  
 

Table 4.14 quantitatively presents the pseudo labels generated by 

different training strategies. Compared to the baseline method (Wei et 

al., 2020) under the 0.02% weak labels scheme, our overlap region 

loss significantly improves all the F1 scores for all classes, contributing 

to the increases in the average F1 score and the overall accuracy by 

0.191 and 0.192 respectively. By comparing the third row to the 

second row, it can be seen that using elevation attention does not make 

improvements in the overall accuracy but slightly increases the 

average F1 score. The elevation attention corrects some roof points on 

the bridge (Figure 4.22). When using 0.01% weak labels, pseudo labels 

produced by our proposed method achieve 0.773 in the average F1 
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score and 0.862 in the overall accuracy, which are better than the 

MPRM using 0.02% weak labels. 
 

Table 4.14 Quantitative results on pseudo labels on the Rotterdam 

dataset obtained by different strategies for pseudo label generation. 

The baseline is the MPRM (Wei et al., 2020).  
Overla
p_Regi

on_Los

s 

Elevati
on_Att

ention 

Weak_
Labels 

Ground Roof Water Façade Veg Artwor
k 

Avg. F1 OA 

    0.02% 0.872 0.643 0.853 0.546 0.481 0.432 0.638 0.733 

×   0.02% 0.958 0.894 0.865 0.72 0.967 0.571 0.829 0.925 

× × 0.02% 0.951 0.914 0.87 0.697 0.969 0.598 0.833 0.925 

× × 0.01% 0.896 0.888 0.802 0.638 0.858 0.555 0.773 0.862 

 

 

 
Figure 4.23 Qualitative results on pseudo labels for the training data.  
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The predictions on the testing data trained based on the pseudo labels 

mentioned above are quantitatively shown in Table 4.15 and qualitative 

shown in Figure 4.23. Due to more accurate pseudo labels obtained by 

the model using the overlap region loss, results on the testing data rise 

by 0.161 and 0.102 in terms of the average F1 score and the overall 

accuracy respectively, compared to the baseline method. Using 

elevation attention in the classification network, the average F1 score 

rises from 0.855 to 0.866 and the overall accuracy increases from 

0.915 to 0.924. With the supervised contrastive learning loss, our 

average F1 score is further increased by 0.006. We also test our 

method using 0.01% weak labels. Reducing half of the weak labels for 

our method leads to drops in the average F1 score and the overall 

accuracy, which are 0.034 and 0.023 respectively. However, compared 

to the baseline method, less weak labels still achieve better accuracy. 

  

Table 4.15 Predictions on the Rotterdam testing data obtained by 

different training strategies. The first three rows show the predictions 

of the KPConv networks fully supervised trained by different pseudo 

labels. The fourth and fifth rows present the predictions of the 

segmentation network trained with the supervised contrastive loss. 
Classification_Network Segm

entati

on_Ne

twork 

Groun

d 

Roof Water Façad

e 

Veg Artwor

k 

Avg. 

F1 

OA 

Overla

p_Reg

ion_Lo

ss 

Elevati

on_Att

ention 

Weak_

Labels 

Super

vised_

contra

stive_l

oss 

    0.02%   0.914 0.726 0.966 0.734 0.616 0.210 0.694 0.813 

×   0.02%   0.934 0.903 0.970 0.808 0.967 0.547 0.855 0.915 

× × 0.02%   0.944 0.914 0.978 0.821 0.964 0.575 0.866 0.924 

× × 0.02% × 0.947 0.916 0.971 0.806 0.962 0.632 0.872 0.925 

× × 0.01% × 0.927 0.895 0.951 0.781 0.933 0.543 0.838 0.902 

4.4.3 Experiments on DFC dataset 

4.4.3.1 Dataset 

DFC 2019 is an ALS dataset published by the IEEE Geoscience and 

Remote Sensing Society (GRSS) in 2019 (Bosch et al., 2019). The 

dataset was captured in two cities namely Omaha, Nebraska and 

Jacksonville, Florida in the United States, covering about 100 km2 and 

consisting of 200 million points. The aggregate nominal pulse spacing 

is 0.8m for the point cloud acquisition process. Except for XYZ 

coordinates, pointwise intensity and return number are available. The 

dataset is labelled into five semantic categories: ground, high 

vegetation, building, water and bridge deck. Following the data split in 
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Wen et al. (2020), 100 and 10 tiles are taken as the training and the 

testing data respectively.  

4.4.3.2 Preprocessing 

The subcloud radius for the DFC2019 dataset is taken as 24m which is 

the same size as the input sphere to the network. 92304 weak labels 

are given under the 100% overlap scheme. Since the training dataset 

has about 75 million points, we simplify this scheme as ‘0.12% weak 

labels’. We also test with 60% overlap where only 48387 weak labels, 

denoted as ‘0.06% weak labels’. We first downsample the DFC2019 

dataset with a grid size of 0.48m and we use the same input data 

generation strategy for both classification and segmentation networks. 

Intensity, absolute height and normalized height are taken as the input 

features. The network structures of the classification and segmentation 

networks are the same as those used for the ISPRS benchmark 

dataset. To train classification and segmentation networks, we use the 

same parameters as the training on the ISPRS benchmark dataset, 

except epochs. We train the classification network for 160 epochs and 

the segmentation network for 40 epochs to achieve convergence.  

4.4.3.3 Classification results 

Table 4.16 Quantitative comparisons between full supervision and 

weak supervision on the DFC testing data. Numbers in the first five 

columns present the F1 scores for different categories. The overall 

accuracy (OA) and the average F1 score (Avg. F1) are listed in the last 

two columns. 
Setting Method Ground High 

Vege- 

tation 

Build-

ing 

Water Bridge 

Deck 

Avg. F1 OA 

Full 

supervision 

KPConv 0.991 0.975 0.893 0.434 0.694 0.797 0.978 

Weak 

supervision 

(subcloud) 

MPRM (baseline 

0.12% weak 

labels) 

0.964 0.876 0.630 0.000 0.000 0.494 0.922 

Ours (0.12% 

weak labels) 

0.978 0.948 0.757 0.000 0.000 0.537 0.953 

 

Classification results on the DFC testing data are quantitively shown in 

Table 4.16. Our method achieves 0.537 in the average F1 score and 

0.953 in the overall accuracy, which is better than the baseline method. 

However, there is still a large gap between our weak supervision 

method and the fully supervised KPConv, especially for the average F1 

score. Weak supervision methods fail to correctly predict water and 

bridge deck points although our methods can produce some pseudo 

labels for these two categories (Figure 4.24). The main reason is their 

geometrical disparities in training and testing data. Our method can 

only recognize large water areas instead of sparse water points near 
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pools (Figure 4.24). However, most of the water points are distributed 

along the riverbank (Figure 4.25). As a result of inaccurate labels for 

small bridges crossing over channels, weak supervision methods 

cannot identify bridge decks in the testing data.  
 

 
Figure 4.24 Qualitative results on pseudo labels for the training data. 
 

Table 4.17 Quantitative results on pseudo labels on the DFC2019 

dataset obtained by different strategies for pseudo label generation. 

MPRM is the baseline method following Wei et al. (2020).  
Overla
p_Regi
on_Los
s 

Elevati
on_Att
ention 

Weak_
Labels 

Groun
d 

High 
Vegeta
tion 

Buildin
g 

Water Bridge 
Deck 

Avg. 
F1 

OA 

    0.12% 0.927 0.886 0.594 0.002 0.000 0.482 0.864 

×   0.12% 0.933 0.920 0.604 0.279 0.203 0.588 0.877 

× × 0.12% 0.933 0.919 0.629 0.551 0.000 0.607 0.879 

× × 0.06% 0.924 0.899 0.556 0.354 0.000 0.547 0.863 

 

The pseudo label results on the DFC2019 dataset are quantitively listed 

in Table 4.17. The baseline method can barely give predictions on 

water and bridge deck points. Compared to the baseline method, our 

overlap region loss contributes to improvements in the average F1 

score and the overall accuracy and makes a part of water and bridge 
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deck points detectable. Buildings in DFC2019 datasets are large in size 

and some of their roofs are large flat planes. Therefore, building points 

on roofs are likely to be predicted as ground and water which are also 

characterized as large plat planes. The elevation attention corrects 

those misclassified building points. However, it fails to recognize bridge 

deck points because bridge decks in the training data not only include 

the bridges crossing over channels but also contain large elevated 

roads which are large flat planes higher than the ground and have 

similar geometry to buildings (Figure 4.25). As bridge deck is not a 

majority class in the dataset, those points are misclassified as buildings 

when using elevation attention. When using 0.06% weak labels, our 

method achieves 0.547 in the average F1 score and 0.863 in the overall 

accuracy, which is comparable to the baseline method using 0.12% 

weak labels. 

   

Table 4.18 Predictions on the DFC2019 testing dataset obtained by 

different training strategies. The first three rows show the predictions 

of the KPConv networks fully supervised trained by different pseudo 

labels. The fourth and fifth rows list the predictions of the segmentation 

network trained with the supervised contrastive loss.  
Classification_Network Segm

entati
on_Ne
twork 

Groun
d 

High 
Vege-
tation 

Build-
ing 

Water Bridge 
Deck 

Avg. 
F1 

OA 

Overla
p_Reg
ion_Lo
ss 

Elevat
ion_At
tentio
n 

Weak
_Label
s 

Super
vised 
contra
stive 
loss 

    0.12%   0.964 0.876 0.630 0.000 0.000 0.494 0.922 

×   0.12%   0.973 0.933 0.678 0.000 0.000 0.517 0.942 

× × 0.12%   0.978 0.934 0.736 0.000 0.000 0.530 0.950 

× × 0.12% × 0.978 0.948 0.757 0.000 0.000 0.537 0.953 

× × 0.06% × 0.966 0.943 0.608 0.000 0.000 0.503 0.935 
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Figure 4.25 Qualitative results on the DFC2019 testing data.  

 

Classification results on the DFC2019 testing data obtained by different 

training pseudo labels are demonstrated in Table 4.18. The overlap 

region loss in the classification network gives rise to the increases of 

the average F1 score and the overall accuracy by 0.023 and 0.02 

respectively. More accurate building points in pseudo labels brought by 

the elevation attention directly contribute to better predictions on 

building points for the testing data. When training the segmentation 

network with the supervised contrastive loss, our results are further 

improved on high vegetation and building points. Under the condition 

of 0.06% weak labels, our results are better than the baseline using 

0.12% weak labels.  
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4.5 Conclusion 

This chapter investigates how to use weak labels on subclouds in order 

to supervise the training for semantic segmentation of ALS point 

clouds. Our method has two steps, pseudo label generation and 

training of semantic segmentation networks. For the first step, we use 

the PCAM from the classification network to induce localization cues for 

different categories. We propose an overlap region loss to make use of 

the semantic information inferred from overlapping subclouds. Then an 

elevation attention unit is designed to allow the classification network 

to produce more precise pseudo labels. For the training of the 

segmentation network, a supervised contrastive loss is adopted to help 

the network to learn from inaccurate pseudo labels. Our experiments 

on three ALS datasets show the effectiveness of our proposed method.  

 

Since we only weakly label subclouds, precise localization information 

is not available for the training. This leads to the failure of small objects 

like powerlines and small bridge decks, compared to the fully 

supervised networks. For future work, an active learning strategy could 

be involved to only annotate those informative subclouds to further 

reduce the labelling efforts. Since weak subcloud labels have a limited 

ability to provide localization cues for small objects, some pointwise 

labels could be introduced under a limited annotation budget. Our work 

adopts a two-step pipeline, while an end-to-end trained network that 

can be directly supervised by weakly labelled subclouds and at the 

same time produce pointwise semantic labels should be further 

investigated.  
 
 

 
 



 

 

Chapter 5 – Synthesis4 

  

 
4 This chapter is based on the previous chapters including lessons 

learned in working on the following publications: 

 
Lin, Y., Vosselman, G., Cao, Y., Yang, M.Y., 2021. Local and global encoder 

network for semantic segmentation of Airborne laser scanning point 
clouds. ISPRS Journal of Photogrammetry and Remote Sensing 176, 151–
168. 

Lin, Y., Vosselman, G., Cao, Y., Yang, M.Y., 2020. Active and incremental 
learning for semantic ALS point cloud segmentation. ISPRS Journal of 
Photogrammetry and Remote Sensing 169, 73–92. 

Lin, Y., Vosselman, G., Yang, M.Y., 2022. Weakly supervised semantic 
segmentation of airborne laser scanning point clouds. ISPRS Journal of 

Photogrammetry and Remote Sensing 187, 79–100. 
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5.1 Conclusions per objective 

Semantic segmentation of ALS point clouds 

 

This objective is addressed in Chapter 2. A network based on KPConv 

is proposed to learn characteristics of ALS point clouds. We allow the 

network to learn representations from local to global in order to reveal 

spatial contextual information from different scales.  

 

The proposed LGEnet takes both 2D and 3D convolutions as local 

encoders. The 2D convolutions are capable of capturing features for 

points distributed in horizontal dimensions. Furthermore, contextual 

information is explored at the object level through the proposed 

segment-based Edge Conditioned Convolution (SegECC), where graphs 

are constructed among segments. Then a spatial-channel attention is 

placed at the end of the network. The spatial attention models the 

global interdependencies between points by calculating the pairwise 

correlations between all points within an input sphere. The channel 

attention estimates the similarities between channels, aiming to 

enhance the learning of class specific discriminative features.  

 

The advantages of the proposed LGENet are verified on two ALS 

datasets, the ISPRS benchmark dataset and the DFC2019 dataset. 

LGENet outperforms the baseline method (KPConv) on both datasets. 

Experiments on the ISPRS benchmark dataset show that the 

combination of 2D and 3D convolutions enables the network to learn 

more discriminative features for elongated objects distributed on 

horizontal planes. Also, networks with SegECC layers give better 

predictions on fine structures in both datasets, powerlines and 

fence/hedge in the ISPRS benchmark dataset and the bridge deck in 

the DFC2019 dataset. The spatial-channel attention further boosts the 

network performance and makes the LGENet achieve the state-of-the-

art results attained in 2020. 

 

Active and incremental learning for semantic segmentation of 

ALS point clouds 

 

This objective is addressed in Chapter 3. Intending to reduce 

annotation efforts, we propose an active and incremental learning 

framework in which informative samples are iteratively selected and 

annotated to train deep learning models for the semantic segmentation 

of ALS point clouds. The deep learning models incrementally learn from 

the updated labelled pool. 

 

In our proposed framework, we iteratively select point cloud tiles from 

the unlabelled pool and then incrementally enrich the model 
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knowledge. For the evaluation criteria, we implement two data 

dependent uncertainty metrics (point entropy and segment entropy) 

and one model dependent metric (mutual information). Compared to 

the point entropy that only evaluates individual points, our proposed 

segment entropy estimates the semantic heterogeneity within 

geometrical homogenous units. We assess the informativeness of point 

cloud tiles at the segment level because points in a geometrical 

homogenous unit are supposed to share the same label. If different 

labels are predicted within a segment, that segment should be selected 

to enrich the model knowledge in the next training. We also use mutual 

information to assess the disagreements in model predictions caused 

by the uncertainty of model parameters. For the training stage, except 

for the initial model that is trained from scratch, we fine-tune the 

previous network on the enlarged labelled dataset in order to save the 

training time.  

 

Our proposed framework is tested on two ALS datasets. Our 

experimental results suggest that all evaluation metrics can select 

informative point cloud tiles that benefit the model training, compared 

to the random selection. The segment entropy gives the best 

performance for the ALS datasets. It achieves the full training accuracy 

by only taking a subset of the entire training data. The proportion is 

31.7% for the Rotterdam dataset and 9% for the Amsterdam dataset. 

Also, compared to the training from scratch for each iteration, our fine-

tuning strategy saves about half of the training time without sacrificing 

the model performance. 

 

Weak supervision on semantic segmentation of ALS point 

clouds 

 

This objective is addressed in Chapter 4. The idea is to supervise the 

training for semantic segmentation of ALS point clouds by weak 

subcloud labels. There are two basic steps to achieve this goal. The 

first step is to train a classification network with weak subcloud labels 

after which the pointwise pseudo labels on the training data are 

produced by the trained classification network. The second step is to 

exploit the produced pseudo labels to train a segmentation network 

which then produces predictions on the testing data.  

 

To boost the performance of the classification network, we first design 

an overlap region loss to explore the semantic heterogeneity within a 

subcloud. Since subclouds are extracted with overlaps to make sure 

the entire training area is fully exploited during the training, the overlap 

region loss considers the inferred semantic labels on the overlapped 

region. This introduces more localization cues to the classification 



Synthesis 

 136 

network and these cues allow the classification network to produce 

more accurate pointwise pseudo labels on the training data. Since 

elevation related features are proven to be a critical element in the 

semantic segmentation of ALS point clouds, we design an elevation 

attention that is placed at the end of the classification network in order 

to allow the classification network to learn more representative 

features from ALS data. More accurate pseudo labels can be generated 

by the improved classification network. For the training of the 

segmentation network, we use a supervised contrastive loss that 

uncovers the underlying correlations of class-specific features. This 

loss allows the segmentation network to effectively learn more 

representative class specific features from inaccurate pointwise pseudo 

labels.  

 

Experiments on three ALS datasets show the superior performance of 

our proposed model to the baseline method (MPRM). Our results prove 

that the localization cues introduced by the inferred semantic labels 

from the overlapping subclouds are effective in producing better 

pseudo labels. Also, elevation related features are still of importance 

to the training for the semantic segmentation of ALS point clouds. The 

supervised contrastive loss shows its ability to enhance the learning 

from the pseudo labels. The benefit is maximal when the network 

dynamically updates the labels for those points whose pseudo labels 

generated by the classification network are not confident.  

 

The limitation of the weak supervision by subcloud labels is the lack of 

precise localization cues for different semantic categories. This causes 

the failures on the small objects in the scenes. Therefore, with a limited 

annotation budget, pointwise labels could be included for those critical 

points to further improve the model performance. 

5.2 Reflections and outlook 

 

Dynamic graph construction 

 

In this thesis, we extracted contextual information from local to global. 

For the contextual information at the object level, we first partitioned 

point clouds into segments through an unsupervised algorithm and 

then the segments were kept the same during the training. The main 

advantage of these fixed segments is that they are quite 

computationally efficient. Every time we constructed graphs for 

SegECC, we did not have to cluster points again. Although DGCNN 

(Wang et al., 2019b) can dynamically update graphs during the 

training, it clusters points in the feature space in each forward pass 

which is highly computationally expensive. The high computational cost 
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makes this kind of dynamic graph infeasible to process large scale point 

clouds over urban areas.  

 

In spite of the computational efficiency, the fixed segmentation results 

still have some limitations. If objects with different semantic labels are 

clustered into the same segment, the network cannot correct the 

mistake and this mistake will mislead the network during the training. 

Also, our results in Table 2.5 suggested that the performance of 

SegECC was influenced by the segmentation results. Inappropriate 

segmentation results even degraded the network performance. These 

limitations suggest that a computationally efficient approach to 

dynamically clustering points is required to further improve the 

network performance.  

 

Spatial Transformer (Wang et al., 2021)  which aims at learning 

geometric transformations to the point clouds provides a possible 

solution. Instead of clustering points in the high dimensional feature 

space, the Spatial Transformer first learns the geometric 

transformation matrices and then clusters the transformed points in 

the 3D space. The learned transformation matrices are conditioned on 

point coordinates and features and they can pull together points that 

share similar geometrical features in the 3D space. Therefore, 

retrieving neighbours in the transformed point clouds will include points 

that have similar features but are far away in the original point clouds. 

Spatial Transformer provides a new perspective to efficiently cluster 

points and this could be further investigated in the neural networks to 

facilitate the learning of representative features. 

 

Self-attention for global features 

 

To encode the global contextual information, we applied the spatial-

channel attention which was first proposed by Fu et al. (2018) in the 

image semantic segmentation. The spatial-channel attention was 

placed at the end of the network to perceive all important class-specific 

information. The major limitation of the spatial attention is the high 

computational complexity since it has to calculate the 

interdependencies between all possible point pairs within the input 

point cloud.  

 

One possible solution is to apply the spatial attention to the 

downsampled point clouds with multiple scales and then attentively 

aggregate these output features (Xu et al., 2022). Since the number 

of points is reduced in low-resolution data, the computation of the self-

attention on the downsampled points is much more efficient compared 

to the calculation on the original data. Except for grid sampling (Xu et 
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al., 2022), LighTN (Wang et al., 2022) saves computational resources 

of the self-attention based operation by using a differentiable sampling 

operation to find the most representative subsets. The sampling 

operation can be trained end-to-end to learn from the data. Global 

contextual information is encoded based on representative subsets. 

LighTN also reduces the computational cost without sacrificing the 

accuracy by applying a simplified self-attention operation, called self-

correlation, where the three projection layers in the original self-

attention operation are removed. In the future, the efficiency of using 

the self-attention operations to embed global contextual information 

can be improved through the appropriate downsampling operations 

and more lightweight structures. 

 

Self-attention as local feature encoders 

 

Apart from using self-attention based operations to encode global 

features in Chapter 2, attention modules were also introduced to 

weakly supervised training based on subcloud labels in Chapter 4. Not 

only did the baseline method MPRM design three attention heads to 

mine localization cues, but we also proposed an elevation attention 

aiming to enhance the learning of class-specific features. These self-

attention based modules were also designed to encode global features. 

The self-attention operators can also be applied to encode local 

features which are taken as the basic feature extractor replacing 

convolutions. Since point clouds are unevenly distributed, the 

permutation invariance of the self-attention makes it a solution to 

effectively extract point cloud features. Some recent works show the 

potential of the self-attention based encoder. PCT (Guo et al., 2021) 

builds a base network upon the self-attention and the base network 

achieves good performance on a set of downstream tasks, including 

classification, segmentation and normal estimation. Zhao et al. (2021) 

build residual blocks upon point transformer layers and construct the 

segmentation network following the U-net design where points are 

downsampled in the encoder and upsampled in the decoder. In the 

future, self-attention could be further investigated to learn the 

representative local features for ALS point clouds.  

 

Training with fewer annotation efforts 

 

Pointwise annotation of point clouds for the training of semantic 

segmentation networks requires human labour. This thesis alleviated 

the required annotation efforts through active learning (Chapter 3) and 

weakly supervised learning (Chapter 4). In the active learning strategy, 

we selected tiles and annotated all points within the selected tiles. 

However, some points may be less informative and have a limited 
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capacity for enriching the network knowledge. The selection could be 

further optimized by ignoring the less informative data and only 

focusing on the most informative clusters (Shi et al., 2021; Wu et al., 

2021; Xie et al., 2020). Although subcloud labels are much cheaper 

compared to the pointwise annotation and our proposed overlap region 

loss can provide more exact localization cues, our results in Chapter 4 

have shown that they are still difficult to use to supervise the network 

to learn delicate structures such as powerlines. In the future, pointwise 

annotation could be actively added to the weak supervision on subcloud 

labels with a limited annotation budget.  

 

Both active learning and weakly supervised learning aim to make the 

network learn representative features from the data with limited 

annotation. Unsupervised pre-training aiming to learn internal data 

structures through various designed tasks that do not require semantic 

labels is one of the potential solutions to save the annotation cost. In 

the pre-training, the network can be trained to recover broken point 

clouds (Sauder and Sievers, 2019), set pointwise correspondences 

between point clouds captured from different views of the same scene 

(Xie et al., 2020) or complete the point clouds of partially occluded 

objects (Wang et al., 2020). Through these designed tasks, networks 

explore the structures of point clouds and intermediate representatives 

can be learned from the data. With the learned latent information, pre-

trained networks only need a small number of semantic labels for the 

semantic segmentation without sacrificing the network performance.  

 

Although deep learning networks are capable of learning representative 

features from the data, they may fail to generalize to various inputs 

with changes in data distribution. This may happen when ALS point 

clouds are captured from different cities or with different point 

densities. In this thesis, the pointwise predictions on two Dutch cities, 

Rotterdam and Amsterdam, were produced by the models separately 

trained on their subsets and labels were provided to both cities. To 

save annotation efforts, how to transfer the existing knowledge from 

one dataset to another without extra annotations need to be 

investigated. Domain adaption aiming to bridge the gap between two 

datasets in the feature space is a possible strategy (Achituve et al., 

2021). With this strategy, the model trained on the Rotterdam dataset 

can be applied to the Amsterdam dataset without extra labelling 

efforts. 
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Summary 

ALS data are essential data sources used to generate digital terrain 

models (DTM), 3D city models, landscape models and high precision 

maps. Semantic segmentation aiming to assign every point with a 

semantic label of ALS point clouds is of importance when generating 

those 3D products that have multiple categories and ask for detailed 

object geometry. Motivated by the top performance of deep learning 

algorithms on scene understanding tasks, this Ph.D. thesis investigates 

the semantic segmentation of ALS point clouds based on deep learning 

algorithms. We first explore how to learn representative features from 

ALS point clouds (Chapter 2). Then we focus on how to reduce the 

manual labelling efforts to train a deep learning model for semantic 

segmentation. We investigate active learning (Chapter 3) to select and 

annotate informative points, and weak supervision (Chapter 4) to 

annotate only weak labels for the pointwise prediction task.  

 

To allow the deep learning networks to learn representative features 

from ALS data and involve different levels of neighbouring information 

to extract pointwise geometrical features, we first designed a local 

feature extractor and then explored contextual information at both 

object and global levels. The proposed LGEnet takes both 2D and 3D 

convolutions as local encoders. The combination of 2D and 3D 

convolutions enables the network to learn more discriminative features 

for elongated objects distributed on horizontal planes. Furthermore, 

contextual information is explored at the object level through the 

proposed segment-based Edge Conditioned Convolution (SegECC), 

where graphs are constructed among segments. Then a spatial-

channel attention is placed at the end of the network. The spatial 

attention models the global interdependencies between points by 

calculating the pairwise correlations between all points within an input 

sphere. The channel attention estimates the similarities between 

channels, aiming to enhance the learning of class specific 

discriminative features. 

 

In order to reduce the required annotation efforts for the training of 

deep learning models, we propose an active and incremental learning 

framework for semantic segmentation of ALS point clouds. In this 

framework, we iteratively select point cloud tiles from the unlabelled 

pool and then incrementally enrich the model knowledge. For the 

selection criteria, we implement two data dependent uncertainty 

metrics (point entropy and segment entropy) and one model 

dependent metric (mutual information). Our proposed segment 

entropy estimates the semantic heterogeneity within geometrical 

homogenous units and it achieves the best performance for the ALS 
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datasets. Instead of training from scratch for each iteration, we fine-

tune the previous network on the enlarged labelled dataset and this 

significantly saves the training time. 

 

We also investigate how to alleviate the annotation efforts for the deep 

learning training through using weak subcloud labels instead of 

pointwise ground truth for ALS datasets. The first step is to train a 

classification network with weak subcloud labels after which the 

pointwise pseudo labels on the training data are produced by the 

trained classification network. The second step is to exploit the 

produced pseudo labels to train a segmentation network which then 

produces predictions on the testing data. The performance of the 

classification network is boosted by an overlap region loss and an 

elevation attention. The overlap region loss provides more localization 

cues to the classification network and the elevation attention allows the 

classification network to learn more representative features from ALS 

data. For the training of the segmentation network, we use a 

supervised contrastive loss that uncovers the underlying correlations 

of class-specific features. This loss allows the segmentation network to 

effectively learn more representative class specific features from 

inaccurate pointwise pseudo labels. The benefit is maximal when the 

network dynamically updates the labels for those points whose pseudo 

labels generated by the classification network are not confident. 

 

In conclusion, this thesis investigates deep learning algorithms for 

semantic segmentation of ALS point clouds. One network is proposed 

to extract representative feature from ALS data and two methods are 

proposed to reduce the annotation efforts for the training of semantic 

segmentation networks. In future, how to use self-attention 

mechanisms as feature extractors could be further explored. Also, 

unsupervised pre-training and domain adaption are possible solutions 

to reduce required annotation efforts for the training of semantic 

segmentation networks. 
 



 

 

Samenvatting 

ALS-gegevens (Airborne Laser Scanning) zijn essentiële 

gegevensbronnen die gebruikt worden voor het genereren van digitale 

terreinmodellen (DTM), 3D-stadsmodellen, landschapsmodellen en 

zeer nauwkeurige kaarten. Semantische segmentatie, met als doel elk 

punt een semantisch label toe te kennen van ALS-puntenwolken, is van 

belang bij het genereren van deze 3D-producten die meerdere 

categorieën hebben en om gedetailleerde objectgeometrie vragen. 

Gemotiveerd door de topprestaties van deep learning algoritmen bij 

het begrijpen van scenes, onderzoekt dit proefschrift de semantische 

segmentatie van ALS-puntenwolken op basis van deep learning-

algoritmen. We onderzoeken eerst hoe we representatieve kenmerken 

kunnen leren uit ALS-puntenwolken (hoofdstuk 2). Vervolgens richten 

we ons op hoe we de handmatige annotatie-inspanningen kunnen 

verminderen om een deep learning model voor semantische 

segmentatie te trainen. We onderzoeken actief leren (hoofdstuk 3) om 

informatieve punten te selecteren en te annoteren, en zwakke 

supervisie (hoofdstuk 4) om alleen zwakke labels te annoteren voor de 

puntsgewijze voorspellingstaak. 

 

Om de deep learning netwerken in staat te stellen representatieve 

kenmerken te leren uit ALS gegevens en verschillende niveaus van 

naburige informatie te betrekken om puntsgewijze geometrische 

kenmerken te extraheren, ontwerpen we eerst een lokale feature-

extractor en verkennen vervolgens contextuele informatie op zowel 

object als globaal niveau. Het voorgestelde LGEnet gebruikt zowel 2D- 

als 3D-convoluties als lokale encoders. De combinatie van 2D- en 3D-

convoluties stelt het netwerk in staat om meer discriminerende 

kenmerken te leren voor langwerpige objecten die verdeeld zijn over 

horizontale vlakken. Bovendien wordt contextuele informatie op 

objectniveau onderzocht via de voorgestelde op segmenten 

gebaseerde Edge Conditioned Convolution (SegECC), waarbij grafieken 

worden geconstrueerd tussen segmenten. Vervolgens wordt aan het 

einde van het netwerk een ruimtelijk kanaalattentie module geplaatst. 

Deze ruimtelijke aandacht module modelleert de globale onderlinge 

afhankelijkheden tussen punten door de paarsgewijze correlaties 

tussen alle punten binnen een invoerbol te berekenen. De 

kanaalattentie module schat de overeenkomsten tussen kanalen, met 

als doel het leren van klassespecifieke discriminerende kenmerken te 

verbeteren. 

 

Om de vereiste annotatie-inspanningen voor de training van deep 

learning-modellen te verminderen, stellen we een actief en 

incrementeel leerraamwerk voor semantische segmentatie van ALS-
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puntenwolken voor. In dit raamwerk selecteren we iteratief 

puntenwolktegels uit de niet-gelabelde pool en verrijken vervolgens 

stapsgewijs de modelkennis. Voor de selectiecriteria implementeren we 

twee gegevensafhankelijke onzekerheidsmetrieken (puntentropie en 

segmententropie) en één modelafhankelijke metriek (wederzijdse 

informatie). De door ons voorgestelde segment entropie schat de 

semantische heterogeniteit binnen geometrische homogene eenheden 

en bereikt de beste prestaties voor de ALS-datasets. In plaats van voor 

elke iteratie vanaf nul te trainen, finetunen we het vorige netwerk op 

de vergrote gelabelde dataset en dit bespaart aanzienlijk op de 

trainingstijd. 

 

We onderzoeken ook hoe we de annotatie-inspanningen voor de deep 

learning-training kunnen verlichten door zwakke subcloud-labels te 

gebruiken in plaats van puntsgewijze ground truth voor ALS-datasets. 

De eerste stap is het trainen van een classificatienetwerk met zwakke 

subcloud-labels, waarna de puntsgewijze pseudo-labels op de 

trainingsgegevens worden geproduceerd door het getrainde 

classificatienetwerk. De tweede stap is het exploiteren van de 

geproduceerde pseudo-labels om een segmentatienetwerk te trainen 

dat vervolgens voorspellingen maakt over de testgegevens. De 

prestaties van het classificatienetwerk worden versterkt door een 

verlies van overlapgebieden en een hoogte-attentie. Het verlies van 

het overlapgebied zorgt voor meer lokalisatieaanwijzingen voor het 

classificatienetwerk en de hoogte-aandacht stelt het 

classificatienetwerk in staat om meer representatieve kenmerken van 

ALS-gegevens te leren. Voor de training van het segmentatienetwerk 

gebruiken we een gesuperviseerd contrastief verlies dat de 

onderliggende correlaties van klassespecifieke kenmerken blootlegt. 

Dit verlies stelt het segmentatienetwerk in staat om op effectieve wijze 

meer representatieve klassespecifieke kenmerken te leren van 

onnauwkeurige puntsgewijze pseudo-labels. Het voordeel is maximaal 

wanneer het netwerk dynamisch de labels bijwerkt voor die punten 

waarvan de door het classificatienetwerk gegenereerde pseudo-labels 

niet betrouwbaar zijn. 

 

Concluderend onderzoekt dit proefschrift deep learning-algoritmen 

voor semantische segmentatie van ALS-puntenwolken. Eén netwerk 

wordt voorgesteld om representatieve kenmerken uit ALS-gegevens te 

extraheren en er worden twee methoden worden voorgesteld om de 

annotatie-inspanningen voor de training van semantische 

segmentatienetwerken te verminderen. In de toekomst zou verder 

onderzocht kunnen worden hoe zelf-attentie mechanismen als feature-

extractors kunnen worden gebruikt. Ook zijn pre-training zonder 

toezicht en domeinaanpassing mogelijke oplossingen om de vereiste 
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annotatie-inspanningen voor de training van semantische 

segmentatienetwerken te verminderen.  
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