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1.1 Photosynthesis and transpiration  
Terrestrial gross primary production (GPP), i.e. the CO2 assimilated by plants 

during the photosynthetic process, represents the largest global carbon flux 

and drives many crucial ecosystem functions, such as plant’s growth and the 

offsetting of anthropogenic CO2 emissions (Heimann & Reichstein, 2008).  

Plants’ photosynthesis is also the basis for food and wood production and is 

therefore indispensable for human’s survival. Transpiration (T) is the water 

flux constrained by plant’s stomata and represents the largest component of 

the evapotranspiration (ET), the total water flux exchanged between 

atmosphere and biosphere in the majority of terrestrial ecosystems (Jasechko 

et al., 2013). Plant’s physiological activity, especially through stomata 

regulation, plays therefore a key role globally in the terrestrial carbon and 

water cycle. 

Estimations of GPP and T at regional and global scale are the subject of ever-

evolving research and can be divided between process-based approaches and 

data-driven methods (Beer et al., 2010). Process-based models explicitly 

simulate the behavior of ecosystems describing their processes with 

mathematical simplifications. They rely on many assumptions and usually 

require large amount of in-situ data to constrain their predictions. Terrestrial 

biosphere models (Beer et al., 2010) and coupled radiative transfer models 

and soil-vegetation-atmosphere transfer schemes (van der Tol et al., 2009a)  

are example of process-based approaches and have been both used to 

estimate GPP and T. Other examples which include semi-empirical methods 

to estimate GPP include isotope fractionation (Farquhar et al., 1993) and 

eddy-covariance partitioning of net ecosystem exchange (NEE) (Fig. 1.1) 

(Reichstein et al., 2005; Lasslop et al., 2010). Data-driven techniques rely 

instead on statistical relationship to predict GPP or T, by relating them to 

meteorological or remote sensing variables.  
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Fig. 1.1. 3d illustration of net ecosystem exchange (NEE) fingerprint at the 
Majadas site. The x axis represents the hour of the day, the y axis the time of 
the year. The color and the height of the columns is proportional to NEE * -1. 
The higher a column the higher is the ecosystem’s CO2 assimilation. 

They are free from theoretical assumptions on the underlying processes, but 

they generally do not extrapolate well their predictions in conditions that 

significantly differ from the one that have been used to train the model. An 

example of data-driven GPP extrapolations at global scale is FLUXCOM (Jung 

et al., 2019). Finally, remote sensing (RS) techniques can be employed both 

within a process-based framework (Damm et al., 2010), or within a data-

driven one (Reichstein et al., 2019). Within the RS approaches, sun-induced 

fluorescence (SIF) has emerged as a very good RS proxy for photosynthesis 

(Guanter et al., 2014), and recently transpiration (Shan et al., 2019).  

  

1.2 Sun-induced fluorescence (SIF) 
SIF is the radiation emitted by chlorophyll containing plants upon sun 

exposure. SIF represents one of the three major pathways of light dissipation 

by plant’s photosystems, the other two being photosynthesis and 

nonphotochemical quenching (NPQ) (Porcar-Castell et al., 2014)(see next 

paragraph for the physiological link between SIF and photosynthesis). The 

SIF emission spans the range between 650 and 800 nm, and therefore 

contains both visible light (red SIF, wavelength < 700 nm) and near-infrared 

(NIR) light (NIR SIF, wavelength ≥ 700 nm). 



Chapter 2 

4 
 

 

 
Fig. 1.2. Illustration of the spectral dependency of sun-induced fluorescence 
(F) and the contribution of photosystem II (PSII) and photosystem I (PSI). 
The atmospheric oxygen A and B bands are highlighted. 

 
The SIF spectrum has two peaks, one at 685 nm and a larger one at 740 nm 

(Fig. 1.2) and is emitted by both photosystem II (PSII) and photosystem I 

(PSI), the former contributing to both the red and NIR regions and the latter 

contributing only to the NIR region (Mohammed et al., 2019). SIF represents 

a small portion of the incoming or reflected radiance (typically less than 1% 

of reflected radiance) and is generally retrieved by exploiting atmospheric 

oxygen absorption bands (Fig. 1.2) or solar absorption bands (Frankenberg & 

Berry, 2018). SIF retrievals with atmospheric oxygen absorption bands are 

performed with a Fraunhofer Line Depth (FLD) approach (Meroni & Colombo, 

2006) or through spectra fitting methods (SFM) algorithms (Meroni et al., 

2009) and require spectrometers capable of resolving the oxygen absorption 

bands (Julitta et al., 2017).  

 

1.3 Fluorescence, photochemistry and NPQ at 
photosystem scale 

The reason why SIF and photosynthesis correlate is that both processes start 

with absorption of light by a chlorophyll molecule. The absorption of photons 

by PSII causes chlorophyll molecules in the reaction center of PSII to 

transition to an excited state. This energy can be dissipated by three main 

pathways: (i) it can be used to drive photochemistry by means of linear 
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electron transport (LET); (ii) it can be dissipated non-radiatively as heat; or 

(iii) it can be emitted as a photon of fluorescence (Porcar-Castell et al., 

2014).  

(i) The LET chain is the process that allows the transport of electrons from 

PSII to PSI in order to produce ATP and NADPH to be used in light-

independent reactions of photosynthesis for sugar synthesis. During the LET 

the excited chlorophyll molecule from PSII donates an electron to the 

quinone A (QA) which passes it to a mobile electron carrier, the plastoquinone 

(Fig. 1.3), reducing it (Porcar-Castell et al., 2014). PSII, which has just lost 

an electron, is positively charged and is reduced by the oxygen-evolving 

complex (OEC) (Fig. 1.3), which splits a water molecule in the thylakoid 

lumen and produces O2 and a proton. The plastoquinone transfers the 

electron to the proton pump cytochrome b6f (Cyt b6f) (Fig. 1.3), which has 

the dual function of transferring an electron to the plastocyanin molecule and 

transporting a proton to the thylakoid lumen, thereby further decreasing the 

pH of the lumen (Kramer et al., 2004). Meanwhile PSI also absorbs a photon 

and uses the energy to reduce the electron acceptor ferrodoxyn (Fd) (Fig. 

1.3), which in turns transfers the electron to NADP+ to produce NADPH. 

Finally, the oxidized PSI receives an electron from the plastocyanin molecule 

(the electron that was transferred from PSII), thereby concluding the linear 

electron transport. The proton gradient in the thylakoid lumen is utilized by 

ATP synthase to produce ATP, concluding the light-dependent reactions of 

photosynthesis (Fig. 1.3) (Antal et al., 2013).  

 

 

Fig. 1.3. Illustration of linear electron transport (a) and fluorescence 
emission. Adapted from (Porcar-Castell et al., 2014). 

(ii) At high light intensities electron transport and carbon fixation can 

saturate, thereby causing an accumulation of protons in the lumen and an 

increase in the lifetime of the charge state of the antenna of PSII (τPSII), 

which can result in the formation of singlet oxygen, a reactive oxygen species 
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that can harm the photosystem. In order to avoid the build-up of excessive 

energy and to decrease the τPSII, plants employ other mechanisms to 

dissipate the excess quanta as heat; the nonphotochemical quenching (NPQ). 

Low pH in the lumen acts as signal for the NPQ mechanism, which works by 

removing the epoxy group from a violaxanthin molecule, converting it in 

zeaxanthin (the xanthophyll cycle). Zeaxanthin has a direct role in the 

quenching process in the form of energy transfer from chlorophyll to 

zeaxanthin, dissipating the excess energy as heat (Jahns & Holzwarth, 2012). 

(iii) Photochemistry can occur only in reaction centers that are open and 

functional, which means they are paired with an oxidized QA. When a reaction 

center is closed and a chlorophyll molecule is promoted to an excited state by 

a photon, the energy is dissipated radiatively, through the emission of photon 

of fluorescence (the SIF signal). The fraction of open reaction centers (q) is 

therefore inversely related to the quantum yield of fluorescence (Kitajima & 

Butler, 1975). SIF is not physiologically modulated, but both quenching 

through photochemistry (photochemical quenching, PQ) and NPQ are 

controlled by plants. As SIF, PQ and NPQ compete for the same dissipation 

energy, each dissipation pathway can be quantified as quantum yield, i.e. the 

efficiency of a certain dissipation pathway compared to the sum all the 

others. As the pathways are mutually exclusive (van der Tol et al., 2014) 

they can be defined as follows: 

 

𝛷𝑃 + 𝛷𝐹 +  𝛷𝐷 +  𝛷𝑁 = 1                                          (1) 

 

Where ΦP is the quantum yield of photochemistry, ΦF is the quantum yield of 

fluorescence emission, ΦD is quantum yield of internal conversion (whose 

rate constant is assumed to be constant and not described here for 

simplicity) and ΦN is the quantum yield of NPQ.  

In conditions of low light (when NPQ is low) PQ is the major dissipation 

pathway and ΦP and ΦF are negatively correlated, as each reduction in ΦP 

implies a further saturation, increase in lifetime of the excited state, and thus 

an increase in ΦF. Instead in conditions of high light the NPQ mechanism 

becomes dominant, causing a concurrent decrease in both ΦP and ΦF 

(Porcar-Castell et al., 2014), establishing therefore the basis for the 

correlation between SIF and photosynthesis. 

It should be noted that there are a variety of processes that can decouple the 

relationship between SIF and photosynthesis, such as mitochondrial 

respiration, photorespiration (Genty et al., 1990), cyclical electron transport 

and alternative electron sinks, such as chlororespiration (Nixon, 2000) and 

the Mehler reaction (Asada, 2000). 
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1.4 Pulse amplitude modulation fluorimetry and 
photosynthesis 

Many of the parameters described in the previous section can be empirically 

estimated through pulse amplitude modulation (PAM) fluorimetry. The PAM 

technique employs a weak and pulsed measuring light (ML) which is strong 

enough to induce a feeble fluorescence emission, but not intense enough to 

elicit photosynthesis in the dark. The fluorescence emitted in a dark adapted 

leaf (no NPQ) from the ML is defined as Fo. An application of an unmodulated 

saturating pulse (SP) of light is enough to completely saturate all reactions 

centers, which causes a spike in fluorescence emission. This maximum 

fluorescence induced by the SP in a dark adapted leaf is defined as Fm. These 

two values can be utilized to estimate dark adapted ΦP (ΦPo) as (Fm-Fo) /Fm 

(Butler, 1978). If the same method is repeated in a light adapted leaf (with a 

certain level of NPQ activity) the parameters F’o and F’m are derived. These 

two fluorescence values are of lower magnitude than the ones derived from a 

dark-adapted leaf because the NPQ process is actives and therefore 

dissipates some of the additional energy. It is therefore possible to calculate 

NPQ as (Fm - F’m) / F’m (Bilger & Bjorkman, 1991). PAM allows to calculate a 

large amount of parameters such as PQ, NPQ, q, ΦP, ΦF, ΦN (Porcar-Castell, 

2011) and conductance of Cyt b6f (Johnson & Berry, 2021). For details on 

the practical calculation of these parameters from time series of PAM 

measurements the reader is referred to the following R package that I wrote. 

https://github.com/davidmartini90/pam 

 

1.5 Effect of leaf and canopy structure on SIF 
Both leaf and canopy structure have a considerable effect on SIF emission 

and SIF observed. At leaf scale the chlorophyll content influences not only 

the amount of absorbed photosynthetic active radiation (APAR), and 

therefore the magnitude of SIF emitted, but also the amount SIF that 

escapes the leaf. SIF is emitted by chlorophyll molecules, but the same 

chlorophyll can also re-absorb and scatter SIF, as the chlorophyll absorption 

spectra overlaps with SIF emission spectra (Gitelson et al., 1998). 

Additionally, the wavelength dependency of the chlorophyll absorption 

spectra causes more SIF to be absorbed in the red than in NIR region. Other 

factors that can affect SIF at leaf scale are leaf pubescence, leaf thickness 

and chloroplast movement. Canopy structure has also a strong influence on 

the amount of SIF observed at top of canopy (TOC), with leaf area index 

(LAI), canopy chlorophyll content, and leaf angle distribution (Migliavacca et 

al., 2017) having a strong influence on the escape probability of SIF (Fesc) 

(Yang & van der Tol, 2018).  

https://github.com/davidmartini90/pam
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Finally, the solar zenith angle (SZA) (Fig. 1.4) has also a considerable effect 

on canopy interceptance (Liu et al., 2018) and therefore SIF emission, and 

also on the ability to retrieve SIF (Pacheco-Labrador et al., 2019a).  

 
Fig. 1.4. Visualization of the solar azimuth and zenith angle. Frame from the 

following video that I made as a scientific outreach project and available at:  

https://www.youtube.com/watch?v=V13njSaPBH8 

 

1.6 Research gaps 
The relationship between SIF and GPP is functional and quite well 

understood, but complex in nature, as many factors can have a profound 

influence on their link (Mohammed et al., 2019). Especially when exploring 

the spatial variability of SIF and GPP one of the main elements that need to 

be taken into account besides the species composition, is the nutrient content 

of the canopy. Leaf nitrogen (N) and phosphorus (P) content are leaf 

functional traits and changes in N and P have the potential to strongly affect 

both canopy structure (which can result in changes in APAR and Fesc) and 

photosynthetic or fluorescence efficiency (Migliavacca et al., 2017). Still, not 

enough is known with regards to how nutrient contents affect the relationship 

between GPP and SIF.  

The second research gap relates to the role of extreme heatwave events in 

shaping the GPP-SIF relationship (Wohlfahrt et al., 2018). It is clear that NPQ 

plays a major role in driving the GPP-SIF positive relationship, but it is 

unclear what are the dynamics of NPQ at high levels of stress, and how 

changes in NPQ would reflect on the GPP-SIF connection at very high 

temperatures. 

Finally the third research gap has to do with understanding the relationship 

between SIF and T. In the previous sections much more attention has been 
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put on describing the link between GPP and SIF than T and SIF. That is 

because the practice of using SIF to predict T is very young and not much is 

known on how and in which cases SIF can be used to predict T. T and 

photosynthesis are related via the Fick’s law, but it is unclear if T is also 

related to SIF via the light reactions. The lack of mechanistic knowledge on 

the T-SIF relationship has not stopped their widespread use in the last 3 

years (Lu et al., 2018; Damm et al., 2021), but much more has to be learned 

in order to accurately obtain SIF based T predictions; one of the major points 

is to understand if SIF and T are indeed mechanistically related, or if their 

relationship is caused by co-variation with external variables. 

1.7 Objectives 
The main objectives of this thesis are to understand how nutrient content and 

extreme events affect the GPP-SIF relationship and provide a framework for 

using SIF for T predictions. In order to do that a large variety of 

measurements are employed (SIF retrievals, CO2 fluxes from chambers, 

eddy-covariance and PAM measurements) and both empirical and process-

based approaches are used. Specifically the following questions are asked: 

a) How do the spatial variability, especially in nutrient contents, affect 

the relationship between GPP and SIF (chapter 2) ? 

b) How do stress events influence the relationship between GPP and SIF 

(chapter 3)? 

c) How can SIF be used to predict T (chapter 4)? 
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2 Nitrogen and Phosphorus effect on Sun-
Induced Fluorescence and Gross Primary 
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1This chapter is based on: Martini, D., Pacheco-Labrador, J., Perez-Priego, O., 

Van der Tol, C., El-Madany, T. S., Julitta, T., ... & Migliavacca, M. (2019). 

Nitrogen and phosphorus effect on sun-induced fluorescence and gross 

primary productivity in mediterranean grassland. Remote sensing, 11(21), 

2562. 
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Abstract: 
Sun-Induced Fluorescence at 760 nm (F760) is increasingly being used to 

predict Gross Primary Production (GPP) through light use efficiency (LUE) 

modeling, even though the mechanistic processes that link the two are not 

well understood. We analyzed the effect of nitrogen (N) and phosphorous (P) 

availability on the processes that link GPP and F760 in a Mediterranean 

grassland manipulated with nutrient addition. To do so, we used a 

combination of process-based modelling with Soil-Canopy Observation of 

Photosynthesis and Energy (SCOPE), and statistical analyses such as path 

modelling. With this study we uncover the mechanisms that link the 

fertilization-driven changes in canopy Nitrogen concentration (N%) to the 

observed changes in F760 and GPP. N addition changes plant community 

structure and increase canopy Chlorophyll content, which jointly lead to 

changes in photosynthetic active radiation (APAR), which ultimately affect 

both GPP and F760. Changes in plant type abundance (e.g. changes in the 

abundance of graminoids, %graminoids) driven by N addition lead to changes 

in structural properties of the canopy such as leaf angle distribution, and 

ultimately influenced observed F760 by controlling the escape probability of 

F760 (Fesc). In particular we found a change in GPP-F760 relationship between 

the first and the second year of the experiment that is largely driven by the 

effect of plant type composition on Fesc, whose best predictor is 

%graminoids. The P addition leads to a statistically significant increase on 

light use efficiency of fluorescence emission (LUEf), in particular in plots with 

also N addition, consistent with leaf level studies. The N addition induced 

changes in the biophysical properties of the canopy that lead to a trade-off 

between surface temperature (Ts), which decreases, and F760 at leaf scale 

(F760leaf,fw) that increases. We found that Ts is an important predictor of the 

light use efficiency of photosynthesis, indicating the importance of Ts in LUE 

modelling approaches to predict GPP. 
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2.1 Introduction 
An accurate estimation of gross primary production (GPP) by terrestrial 

ecosystems is crucial to understand the variability of the global carbon (C) 

cycle (Beer et al., 2010). One of the most common ways to estimate GPP 

relies on the use of light use efficiency (LUE) models (Equation 2.1). In the 

LUE framework (Monteith, 1972), estimates of GPP are based on three 

variables: i) the fraction of photosynthetically active radiation (fAPAR) 

absorbed by the vegetation; ii) the actual light use efficiency of 

photosynthesis (LUEp), i.e. the conversion efficiency of absorbed radiation to 

fixed carbon; and iii) incident photosynthetically active radiation (PAR). 

 

GPP = fAPAR × PAR × LUEp (2.1) 

The development and retrieval methods in passive sensing of sun-induced 

chlorophyll fluorescence (SIF), i.e. the radiation emitted by plants upon sun 

exposure, opens new possibilities to estimate GPP using remotely sensed 

data (Guanter et al., 2014; Zhang et al., 2014; Yang et al., 2015). In the last 

decade several studies have shown that sun-induced fluorescence at 760 nm 

retrieved from top-of-canopy (TOC) measurements (F760) can track changes 

in APAR and LUEp, and therefore can be directly linked to GPP from leaves 

(Meroni et al., 2009), ecosystem, (Damm et al., 2010; Rossini et al., 2010; 

Wieneke et al., 2016; Migliavacca et al., 2017) to regional and global scale 

(Lee et al., 2013; Guanter et al., 2014; Parazoo et al., 2014; Guan et al., 

2016). 

Although the mechanistic link between GPP and F760 is not completely 

understood, recent advances in the field have contributed to explaining the 

process under various conditions (Ač et al., 2015; Cendrero-Mateo et al., 

2015). The reason why F760 and GPP correlate is that both processes start 

with the absorption of light by a chlorophyll molecule. Once the photon is 

captured by the antenna and reaches the reaction center of the photosystem 

II, the chlorophyll molecule can return to the ground state through 

photochemical quenching (PQ), through the non-photochemical quenching of 

the excited state (NPQ), as the photon is dissipated non-radiatively as heat 

(Bilger & Bjorkman, 1991), or it can be re-emitted as a photon of 

fluorescence (Govindjee, 1995). Fluorescence emission cannot be 

physiologically regulated, and its quantum yield depends on the efficiency of 

the PQ and NPQ (Govindjee, 1995). The mechanisms regulating the 

partitioning of absorbed photosynthetically active radiation (APAR) into the 

different pathways is therefore fundamental to grasp the connection between 

GPP-F760 (Porcar-Castell et al., 2014; van der Tol et al., 2014). 

F760 is usually described with a similar approach to the Monteith’s LUE 

framework as shown in Equation 2.2:  
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F760 = fAPAR × PAR × LUEf  × Fesc (2.2) 

 

where F760 is equal to the product of fAPAR, PAR, the light use efficiency of 

fluorescence emission at 760 nm (LUEf), and the escape probability of 

chlorophyll fluorescence at 760 nm (Fesc) (Damm et al., 2015). 

Equation 2.1 and Equation 2.2 can be combined in Equation 2.3, which shows 

that the only variables that control the relationship between GPP and F760 are 

LUEp, LUEf and Fesc: 

 

GPP =  F760

LUEp

LUEf × Fesc
 

(2.3) 

                                                                                                             

Multiple factors can influence the different terms in Equation 2.3, and 

eventually GPP-F760 relationship (Zhang et al., 2014; Migliavacca et al., 

2017). Among these, the ones that require more attention because they are 

not fully understood are i) leaf nutrient content, in particular Nitrogen (N) 

and Phosphorous (P), and ii) canopy structural parameters such as leaf area 

index (LAI) and leaf angle distribution (LAD), that in grasslands are often 

related to the community structure of the canopy (Grime, 2006; Migliavacca 

et al., 2017). Being able to quantify the effect of nutrients and canopy 

structure on the partitioning of absorbed radiation and on LUEp, LUEf, and 

Fesc is the first step to shed light on GPP and F760 changes under different 

nutrient availability. 

Canopy N concentration (hereafter N%, N mass per gram of leaves of the 

whole canopy) is often related to the nutritional condition where the plant 

grows. Nitrogen is a fundamental constituent of leaves that is typically 

associated with higher LAI, and positively correlated with the amount of 

chlorophyll a and b (Cab) (Niinemets et al., 1999). Higher LAI and Cab 

increase APAR, but at the same time should reduce Fesc due to higher 

absorption and scattering of emitted fluorescence (Ač et al., 2015). Nitrogen 

is also positively related to the amount of ribulose-l,5-bisphosphate 

carboxylase and oxygenase (Rubisco) protein content (Evans, 1989; Houborg 

et al., 2013), and thus the maximum carboxylation rates (Vcmax), that is a 

key determinant of the maximum photosynthetic rates, and therefore GPP 

(Farquhar et al., 1980). Therefore nitrogen can influence the partitioning of 

APAR into PQ, NPQ, and fluorescence emission (Cendrero-Mateo et al., 

2015), but different studies, mainly at leaf level, showed contrasting results 

(Verhoeven et al., 1997; Ač et al., 2015). Moreover, there is lack of studies 

that investigate at canopy scale how LUEp, LUEf, and Fesc are modulated 

under varying nitrogen availability (Ač et al., 2015). Canopy Phosphorous 

concentration (hereafter P%) is another critical element for photosynthesis, 

being involved in the synthesis of Adenosine triphosphate (ATP) (Jiang et al., 

2019). Leaf-level studies with active fluorescence measurements showed that 

P% deficient plants have lower chlorophyll fluorescence emission efficiency 
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(Singh et al., 2017). However, we are not aware of canopy level studies 

showing the effect of P% on F760 and LUEf. 

Canopy structural variables, such as LAI and LAD, influence the radiative 

transfer of incoming radiance and emitted SIF within the canopy (van der Tol 

et al., 2014). LAD can vary on a daily and seasonal basis and is strongly 

influenced by species composition and plant functional forms (Wohlfahrt et 

al., 2001). LAI and LAD can have a major influence on the sun/shaded leaf 

ratio through the canopy. This ratio has the potential to directly influence the 

level of NPQ in the canopy (Porcar-Castell et al., 2008) (higher in sunlit, 

lower in shaded leaves) and therefore could indirectly influence the LUEf. 

Canopy structure, through absorption and scattering of the fluorescence 

emitted by the leaves, has a significant influence on observed F760, 

determining Fesc, the probability of F760 to escape the canopy. (Yang & van 

der Tol, 2018). Absorption by chlorophyll is higher in the red region, whereas 

multiple scattering in the far red region increases the probability of 

absorption by soil and woody elements. It has been shown recently with 

modeling studies that TOC observed F760 (canopy scale) is only a fraction of 

the F760 emitted at leaf scale (F760leaf) (Liu et al., 2018). The decoupling 

between F760leaf and F760, mainly mediated by Fesc, can have implications for 

the GPP-F760 relationships. Recently, new methods to estimate Fesc have 

been developed, potentially allowing to downscaling the F760 signal at the leaf 

level (Yang & van der Tol, 2018; Zeng et al., 2019) (Yang, P et al., 2020). 

Finally, other variables such as soil moisture or surface temperature (Ts) 

have also the potential to impact the relationship between GPP-F760. Heat and 

water stress have been proven to affect photorespiration, but not the PQ in 

Mediterranean species (Galmés et al., 2007), thus decoupling photochemistry 

from F760 (Porcar-Castell et al., 2014). Ts in particular, contains both 

information of the activation of NPQ mechanisms, but also other processes 

related to stomatal closure and sensible heat losses (Alonso et al., 2017). 

Therefore, surface temperature might also help to better characterize the 

seasonal variations of LUEp and therefore to better predict GPP, in particular 

under stress conditions (Hilker et al., 2008; Alonso et al., 2017). 

Fig. 2.1 illustrates a theoretical framework that sums up current knowledge 

and our hypothesis regarding the interlinks between GPP, F760 and their 

relationship with canopy structural parameters and leaf traits of vegetation. 

In Fig. 2.1 solid colored lines represent the energy partitioning at both leaf 

and canopy level and dotted lines represent the hypothesized relationships. 

All the factors illustrated in Fig. 2.1 play a role in determining GPP, F760, and 

their relationship. However, the strength of these influences, and whether 

leaf nutrient content and canopy structure influence the GPP-F760 relationship 

directly (through LUEp, LUEf and Fesc) or occur indirectly (mediated by APAR 

or by a third variable), is not clear.  

In this chapter we aim to fill the gap in understanding on how nutrients and 

canopy structure control LUEp, LUEf and Fesc, and we investigate the 
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mechanisms that drive GPP and F760 in a nutrient manipulation experiment. 

We asked the following questions: 

i) How do the treatments (N, NP, P) influence LUEp, LUEf, Fesc? 

ii) What are the drivers of the light use efficiency equations terms 

(LUEp, LUEf, Fesc) that relate GPP and F760? 

iii) What are the direct and indirect effects of nutrients (in particular 

N%) and canopy structure on GPP and F760? 

 

To answer these questions we use GPP, F760, and additional data on 

vegetation properties from a nutrient manipulation experiment in 

Mediterranean grassland with addition of N, P and N and P together (NP). The 

aim of the fertilization is to induce a change in both plant nutrient content 

and structural traits (through changes in LAD mediated by plant community 

and LAI) within the ecosystem.   

 
 

 
Fig. 2.1. Energy partitioning at the leaf and canopy level representing the 

processes involved in the photosynthetic light use efficiency model 

(GPP=APAR * LUEp) and fluorescence light use efficiency model (F760 = APAR 

*LUEf * Fesc) are represented with solid arrows. Dotted arrows represent the 

hypothesized relationship between leaf traits, canopy structure and the 

various processes related to the allocation of energy and transfer of SIF 

within the canopy. Photosynthetic active radiation (PAR); absorbed (by 

vegetation) photosynthetic active radiation (APAR); PAR absorbed by 

Chlorophyll a and b molecules (APARgreen), represented as the green bar in 

the equations on both sides of the figure; gross primary production (GPP); 

sun-induced fluorescence emitted by all leaves at 760 nm (F760leaf); sun-
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induced fluorescence at 760 nm observed at top of canopy (F760); Nitrogen 

concentration on a mass basis (N%); chlorophyll a and b on a mass basis 

(Cab); leaf mass per area (LMA); maximum carboxylation rate on a mass 

basis (Vcmax); leaf area index (LAI); leaf angle distribution (LAD). 

2.2 Materials and Methods  
 
Experimental site 

The study was conducted in a Mediterranean savannah located in Spain 

(39°56'24.68"N, 5°45'50.27"W; Majadas de Tietar, Caceres) characterized by 

a continental Mediterranean climate, with temperate winters and warm dry 

summers: mean annual temperature of 16.7°C, annual precipitation of 

~650 mm distributed mainly between September and May (Perez-Priego et 

al., 2015). 

The herbaceous layer is dominated by annual C3 species of the three main 

functional plant forms: grasses, forbs and legumes that are green and active 

from October to end May (Luo et al., 2018a). The site is managed as a typical 

wood pasture (Iberian Dehesa) with low intensity grazing by cows (~0.3 

cows ha-1) (Perez-Priego et al., 2015).  

 

Nutrient manipulation experiment, Gross Primary Production and 

ancillary data 

A nutrient manipulation experiment focused on the herbaceous layer was 

established in early spring 2014 and 2015. The set-up consisted of four 

20x20 m width randomized blocks. Within each block we established four 

plots (9x9 m) with 2 m of buffer between treatments (Supplementary Fig. 

S2.1). We established 4 treatments (for details see Perez-Priego et al. 

(2015)): control (C) with no fertilization, N addition with one application of 

100 kg N ha-1 as potassium nitrate (KNO3) and ammonium nitrate (NH4NO3), 

P addition with 50 kg P ha-1 as monopotassium phosphate (KH2PO4), and 

nitrogen-phosphorous (NP) addition, 100 kg N ha-1 and 50 kg P ha-1 as 

NH4NO3 and KH2PO4.  

 

Table 1. Summary of the main meteorological data collected in each field 

campaign.  

Date 

 

Campaign 

 

Fertilization 

 

PAR 

μmol 

s-1 m-2  

VPD 

hPa 

Ta 

°C 

SWC 

% 

SZA 

° 

20-

03-14     1 No 
1604.82 

± 11.33 

12.59 

± 0.38 

24.2 

± 0.2 

19.01 

± 0.27 

41.86 

± 0.23 

15-

04-14 2 Yes 
1842.92 

± 32.63 

15.12 

± 0.59 

30.09 

± 0.55 

22.58 

± 0.58 

31.83 

± 0.85 

7-05- 3 Yes 
1342.1 

± 93.73 

22.4 ± 

1.98 

32.1 

± 0.91 

4.78 ± 

0.09 

25.69 

± 0.6 
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14 

27-

05-14 4 Yes 
1417.15 

± 104.4 

15.83 

± 1.2 

27.89 

± 0.47 

6.57 ± 

0.09 

21.4 

± 0.82 

04-

03-15 5 Yes 
1411.29 

± 18.05 

7.01 ± 

0.36 

23.9 

± 0.48 

21.49 

± 1.91 

49.66 

± 0.49 

23-

04-15 6 Yes 
1842.64 

± 25.23 

16.38 

± 0.84 

29.98 

± 0.37 

6.7 ± 

0.11 

31.21 

± 0.98 

27-

05-15 7 Yes 
1955.21 

± 35.25 

23.2 ± 

1.56 

36.33 

± 0.73 

1.14 ± 

0.02 

24.26 

± 1.87 

PAR is the photosynthetic active radiation. VPD is the Vapor Pressure Deficit, 

Ta represents the mean air temperature, SWC is the soil water content and 

SZA is the solar zenith angle. Medians and 1 standard error is shown for each 

variable. 

 

Carbon Dioxide (CO2) fluxes between the herbaceous layer and the 

atmosphere were measured in 32 collars of 60x60 cm for each field campaign 

around noon local solar time (Table 1). At each collar GPP (μmol CO2m-2s-1) 

was estimated as the difference between net ecosystem CO2 exchange (NEE) 

measured with transparent chambers and ecosystem respiration (Reco) 

measured with opaque chambers. Measures CO2 and water vapor mole 

fractions (W) were collected at 1 Hz by means of an infrared gas analyzer 

(IRGA LI-840, Lincoln, NE, USA) connected to the chambers. The flux 

calculations and corrections were conducted using the self-developed R 

package ‘RespChamberProc’ (https://github.com/bgctw/RespChamberProc). 

Air temperature (Ta,°C) was measured with a thermistor probe (Campbell 

Scientific, Logan, UT, USA). Soil moisture content (%) at 5 cm depth was 

determined with an impedance soil moisture probe (Theta Probe ML2x, Delta-

T Devices, Cambridge, UK). Vapor pressure deficit (VPD, hPa) was computed 

using relative humidity and Ta. Incident PAR (µmol m-2 s-1) was measured 

with a quantum sensor (Li-190, Li-Cor, Lincoln, NE, USA) mounted outside of 

the chamber. Surface temperature (Ts, °C) was measured with infrared 

thermometer installed in the chambers (Tc, IRTS-P, Apogee, UT, USA).  

The meteorological conditions for each field campaign are reported in Table 

1. Destructive sampling of the vegetation in four parcels (0.25x0.25 m each) 

within each plot was conducted to estimate LAI and green to dry biomass 

ratio (Perez-Priego et al., 2015). The abundance of each functional group 

such as fraction of graminoids (%graminoids), forbs (%forbs), and legumes 

(%legumes) was determined. The Shannon biodiversity index (H) among 

plant functional types was determined as in (Spellerberg & Fedor, 2003).N% 

and P% in plant tissues were determined as described in Perez-Priego et al. 

(2015). Carbon isotopic signature (δ13C) for the vegetation was determined 

from dried samples using a DeltaPlus isotope ratio mass spectrometer 

(Thermo Fisher, Bremen, Germany) coupled via a ConFlowIII open-split to an 

elemental analyzer (Carlo Erba 1100 CE analyzer; Thermo Fisher Scientific, 
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Rodano, Italy). δ13C was calculated using the measured ratio between 13C 

and 12C in the sample and in a calibrated in-house-standard (Acetanilide: -

30.06 ± 0.05 ‰) as in (Coplen, 2011; Brand & Coplen, 2012)(Equation 2.4, 

Supplementary Fig. S2.2): 

𝛿13𝐶 =
(13𝑅𝑠𝑎𝑚𝑝𝑙𝑒 − 13𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 )

13𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
 

(2.4) 

 

where 13Rsample and 13Rstandard are 13C/12C ratio of the sample and of the 

standard, respectively. 

 

Transpiration estimates 

Two independent estimates of transpiration (expresses as latent heat fluxes, 

LE) have been obtained; one from upscaling the δ13C measurements (LEISO) 

and the other from the runs of SCOPE optimized at the experimental site 

(Pacheco-Labrador Javier 2019) to obtain the LE of canopy component 

(LEcanopy,inv).  

 

LEISO was calculated from δ13C, GPP and VPD according to (Seibt et al., 2008) 

(Equation 2.5), and then the units were converted from mmolH20 m-2 s-1 to W 

m-2. 

𝐿𝐸𝐼𝑆𝑂 =  (
𝐺𝑃𝑃

𝑊𝑈𝐸𝑖
) × 𝑉𝑃𝐷𝑚𝑒𝑎𝑛 

(2.5) 

 

where VPDmean is the mean daytime VPD computed over the period between 

the beginning of the growing season and the plant sampling dates for the 

isotope measurements, and intrinsic water use efficiency (WUEi) is calculated 

according to (Equation 2.6): 

 

𝑊𝑈𝐸𝑖 =  
𝐶𝑎

1.6
 (

𝑏′ −  Δ𝑙𝑖𝑛

𝑏′ − 𝑎
) 

(2.6) 

 

where Ca is the CO2 mole fraction in ambient air, b’ is the mean fractionation 

during carboxylation and internal transfer (0.27%), a is the fractionation 

during diffusion through stomata (0.44 %) and Δlin is the community 

weighted mean of δ13C. 

Supplementary Fig. S2.3a,b display LEISO and LEcanopy,inv respectively and 

Supplementary Fig. S2.3c shows the scatterplot of the two estimates. The 

two independent estimates have a good relationship, with Pearson correlation 

coefficient (r) of 0.701 and slope of 0.809. In Supplementary Fig. S2.3a there 

are no significant differences among treatments for each campaign in 2014 or 

2015 in LEISO.  According to the ANOVA test, the LEcanopy,inv shows significant 

differences in the campaign 2 in 2014 (F3,11= 11.4, p= 0.01) and the Tukey 

HSD post hoc-test identifies the P treatment as significantly different from 

the C treatment (p = 0.012). Also, in 2015 in the campaign 7 there is a 
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significant difference (F3,10= 5.47, p= 0.017) and the Tukey post-hoc 

identifies a significant decrease for N and P treatments in comparison with 

the control (p= 0.016, p= 0.042 respectively). 

 

Field spectroscopy, retrieval of sun-induced fluorescence and 

biophysical properties 

TOC spectral radiances were collected under clear-sky conditions immediately 

before flux measurements at each collar (Perez-Priego et al., 2015; 

Migliavacca et al., 2017). The sampling strategy was designed to minimize 

the differences in solar zenith angle (SZA) between measurements, 

confirmed by the ANOVA test which reports non-significant differences in SZA 

between treatments in each campaign (p = 0.43, p = 0.41, p = 0.33, p = 

0.65, p = 0.99, p = 0.99, p = 0.57, for the campaign 1 to 7 respectively).  

The ranges of SZA for the spectral measurements are reported in Table 1. 

Two portable spectrometers (HR4000, OceanOptics, USA) were used to 

estimate chlorophyll fluorescence at the O2A band (i.e. F760,) and reflectance 

in the spectral range 400-1000 nm. The measurements protocol was the 

following: we first measured the incident solar irradiance by nadir 

observations of a leveled calibrated standard reflectance panel (Spectralon, 

LabSphere, USA), and second we acquired five measurements of TOC 

spectral radiances from nadir at 110 cm above the targeted area using bare 

fiber optics of 25° of field of view (about 43 cm diameter at the ground, 

Supplementary Fig. S2.4). F760 was estimated by exploiting the spectral 

fitting method (Meroni et al., 2009). The spectral interval used for F760 was 

set to 759.00–767.76 nm. 

Albedo400-900 was calculated from TOC spectral radiances as shown in 

Equation 2.7, assuming a Lambertian behavior of the reflected radiance.  

 

𝐴𝑙𝑏𝑒𝑑𝑜400−900 =
∫ 𝐿𝑟 ×  𝜋

900

400

∫ 𝐸
900

400

 
(2.7) 

 

where Lr is the reflected radiance and E400-900 is the Irradiance.  

 

fAPAR was estimated in three different ways;  

i) fAPARSCOPE simulated by the process based SCOPE model (van der Tol 

et al., 2009b); 

ii) fAPARRENDVI based on the established relationship between measured 

fAPAR and the red edge NDVI (RENDVI) found in maize, soybean and 

grasslands (Vina & Gitelson, 2005) (Equation 2.8). 

 

𝑓𝐴𝑃𝐴𝑅𝑅𝐸𝑁𝐷𝑉𝐼 = 1.61 × 𝑅𝐸𝑁𝐷𝑉𝐼 − 0.03 (2.8) 

 

where RENDVI is calculated as show in Equation 2.9: 
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RENDVI =  
(RNIR − RRE)

(RNIR + RRE)
 

(2.9) 

 

where RNIR and RRE are reflectance factors in spectral bands 770-800 nm and 

700-710 nm, respectively 

iii) APARLi&Moreau1996 based on subtracting the the integral (between 400 and 

700 nm) of the incoming PAR (PARinc) from the integral (between 400 and 

700 nm) of the reflected PAR (PARrefl) measured by the spectrometers (Li & 

Moreau, 1996; Damm et al., 2010) and then muliplying by the proportion of 

canopy absorption (RAPAR) (Moreau & Li, 1996) (Equation 2.10). 

 

𝐴𝑃𝐴𝑅𝐿𝑖&𝑀𝑜𝑟𝑒𝑎𝑢1996 = (PARinc − PARrefl) × RAPAR (10) 

 

where RAPAR is calculated as:  

 

𝑅𝐴𝑃𝐴𝑅 = 0.105 − 0.323 × 𝑁𝐷𝑉𝐼 + 1.468 × 𝑁𝐷𝑉𝐼2 (11) 

 

The fAPAR formulations are quite consistent with each other (Supplementary 

Fig. S2.5), and therefore hereafter we use fAPARRENDVI. 

 

SCOPE model simulations 

Forward and inverse simulations with the SCOPE model were conducted to 

assess the robustness of fAPAR, Fesc, and LEISO derived from field 

observations.  

The forward runs model was parameterized using the structural and 

functional traits derived from the field sampling as well as meteorological and 

chamber data. Vapor pressure deficit (VPD, hPa), air pressure (p, hPa), short 

wave downwelling radiation (Rin, W m-2), long wave downwelling radiation 

(Rli, W m-2), air temperature (Ta, °C), wind speed (u, m s-1), soil moisture 

content (SMC, %), leaf area index (LAI), canopy height (h, m), chlorophyll a 

and b content (Cab, μg cm-2), dry matter content (Cdm, g cm-2),  maximum 

carboxylation rate (Vcmax, μmol m-2 s-1) and the parameters to characterize 

the leaf angle distribution (LAD), respectively LIDFa and LIDFb, were used to 

parameterize the model run. SCOPE meteorological drivers were measured 

along with chamber measurements for the majority, in case not available 

with the chambers, such as Rin, Rli, p, VPD, wind speed, atmospheric CO2 

concentration (Ca, ppm), atmospheric O2 concentration (Oa, ppm) were 

derived by linearly interpolating two consecutive measurements around the 

chambers measurement time collected at the nearby eddy covariance flux 

tower at 10 min of temporal resolution. Canopy height was estimated in the 

field with a meter stick in five positions within the measurement collar. 

Additional parameters such as leaf equivalent water thickness, leaf width, 

Ball-Berry stomatal conductance parameter and dark respiration rate at 25°C 
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as fraction of Vcmax were obtained from the literature for C3 grasses 

(Migliavacca et al., 2017). The SZA at the time of the collection of the 

spectral measurements was used as model input. Soil reflectance spectra 

were collected in a dedicated field campaign in April 2015 and used for all the 

runs. Leaf angle distribution was parametrized in SCOPE as in Migliavacca et 

al. (2017) by assuming grasses to be erectophile, forbs spherical and 

legumes planophiles. 

The accuracy of F760 and GPP simulated with SCOPE (F760FW and GPPFW, 

respectively) was evaluated by root mean-squared error (RMSE), slope, 

intercept, and the determination coefficient (R2) of the linear regression 

between observed and modeled data (Supplementary Fig. S2.6). 

Inverse runs of SCOPE against reflectance, F760, GPP and thermal radiance, 

as described in Pacheco-Labrador Javier (2019) were carried out to obtain 

LEcanopy,inv and Fesc (Fescinv). 

 

Calculation of the Light use efficiency of photosynthesis (LUEp) ,light 

use efficiency of fluorescence emission (LUEf) and escape probability 

of F760 (Fesc). 

For each plot and campaign the LUEp, LUEf and Fesc were computed. LUEp 

was calculated as in Equation 2.12: 

𝐿𝑈𝐸𝑝  =
𝐺𝑃𝑃

𝐴𝑃𝐴𝑅
 

(2.12) 

where GPP is the one measured with the chambers and APAR is calculated as 

in Equation 2.13:  

          

𝐴𝑃𝐴𝑅 =  𝑓𝐴𝑃𝐴𝑅𝑅𝐸𝑁𝐷𝑉𝐼  ×  𝑃𝐴𝑅 (2.13) 

 

LUEf, is computed as in Equation 2.14: 

 

𝐿𝑈𝐸𝑓 =  
𝐹760

𝐴𝑃𝐴𝑅𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒  × 𝐹𝑒𝑠𝑐𝑓𝑤
 

(2.14) 

 

where F760 is the TOC fluorescence retrieved and Fescfw is the escape 

probability calculate from forward runs of SCOPE and APARradiance (mW m-2 

nm-1 sr-1) is calculated from APAR (μmol m-2 s-1) as shown in Equation 2.15. 

The coefficient 4.6 represents the conversion factor from μmol m-2 s-1 to W 

m-2 for radiation from 400 to 700 nm (Sager & McFarlane, 1997) and wl is 

the wavelength interval (300 nm).  

 

𝐴𝑃𝐴𝑅𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 =  
𝐴𝑃𝐴𝑅

(4.6 × 𝑤𝑙 × 𝜋 )
 × 1000 

(2.15) 

 

We computed Fesc and F760leaf in three alternative ways to evaluate their 

consistency: 
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i) Combination of forward runs of SCOPE and measured F760 (Fescfw) as 

shown in Equation 2.16: 

 

𝐹𝑒𝑠𝑐𝑓𝑤 =  
𝐹760  ×  𝜋

𝐹760𝑙𝑒𝑎𝑓,𝐹𝑊 
 

(2.16) 

 

F760leaf,FW and F760leaf,fw are fluorescence emitted by all leaves at 760 nm as 

calculated by the forward SCOPE run (hemispherical and directional 

respectively). 

ii) An empirical estimate of Fesc (Fescemp) computed according to Zeng et al. 

(2019) (Equation 2.17): 

 

𝐹𝑒𝑠𝑐𝑒𝑚𝑝  =  
𝑁𝐼𝑅𝑣

𝑓𝐴𝑃𝐴𝑅𝑅𝐸𝑁𝐷𝑉𝐼
 

(2.17) 

 

NIRV is calculated as in Equation 2.18, where NIRT is the reflectance at 858 

nm. 

 

𝑁𝐼𝑅𝑉  = 𝑁𝐷𝑉𝐼 × 𝑁𝐼𝑅𝑇 (2.18) 

 

Then empirical Fleaf (F760leaf,emp) was calculated as in Equation 2.19. 

 

𝐹760𝑙𝑒𝑎𝑓,𝑒𝑚𝑝 =
𝐹760

𝐹𝑒𝑠𝑐𝑒𝑚𝑝
 

(19) 

 

iii) An estimation of Fesc using data from a SCOPE inversion (Fescinv) 

(Equation 2.20). 

Fescinv was obtained from inversion of SCOPE against reflectance, F760, GPP 

and thermal radiance, as described in Pacheco-Labrador Javier (2019) and 

was calculated as in Equation 2.20. 

 

𝐹𝑒𝑠𝑐𝑖𝑛𝑣 =  
𝐹760𝐼𝑁𝑉 𝜋⁄

𝐹760𝑙𝑒𝑎,𝐼𝑁𝑉
 

(2.20) 

 

Where F760INV and F760leaf,INV are the top-of canopy sun-induced fluorescence 

at 760 nm and sun-induced fluorescence emitted by all leaves at 760 nm as 

obtained from SCOPE inversion. 

Finally F760leaf,inv was calculated as in Equation 2.21. 

 

𝐹760𝑙𝑒𝑎𝑓,𝑖𝑛𝑣 =  
𝐹760

𝐹𝑒𝑠𝑐𝑖𝑛𝑣
 

(2.21) 

 

The three alternatives Fesc and Fleaf computed (F760leaf,fw, F760leaf,emp, F760leaf,inv) 

were compared against each other (Supplementary Fig. S2.7) and the 
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analysis presented below were conducted with all the different estimates of 

Fesc to evaluate the effect on the results presented. Hereafter, we report 

only the results obtained with Fescfw and F760leaf,fw. 

 

Statistical analysis 

Our statistical analysis consisted of three parts. First, to answer research 

question i), group differences among treatments were analyzed with Analysis 

of Variance (ANOVA) and differences among groups were tested with Tukey 

Honest Significant differences (HSD) post-hoc test. In case of violation of the 

assumption of homoscedasticity of residuals the ANOVA with the Welch’s 

correction (Moder, 2010) and post-hoc analysis with Games-Howell test 

(Games & Howell, 1976) were used. Also, an analysis of Covariance 

(ANCOVA) was used to test if the relationship between GPP and F760 (canopy 

scale) and F760leaf,fw (leaf level) is changing with the treatment and in time 

(Fig. 2.4).  

Second, we addressed the research question ii) with the relative importance 

analysis with “lmg” (Lindeman, Merenda and Gold), a popular approach for 

quantifying the individual contributions of multiple regressors, assuming 

linear relationships, as implemented in the R package “relaimpo” (Groemping 

& Matthias, 2006). Standard errors were computed by means of 

bootstrapping (n= 1000 realizations). Independent variables (i.e. predictors) 

used in the relative importance analysis are N%, %graminoids, %legumes, 

Ts, LAI, Shannon Biodiversity Index (H) and soil moisture. Additional relative 

importance analyses were carried out the surface-air temperature (Ts - Ta) in 

place of Ts (Supplementary Fig. S2.8), as Ts -Ta could be a good proxy for 

water stress (Sumayao et al., 1980).  

Third, to answer the research question iii) a path analysis was used. The path 

analysis assumes linearity among variables and the effects are considered 

additive and not multiplicative. The structural model is based on expected 

relationships hypothesized and its model structure is shown in 

Supplementary Fig. S2.9. The user specifies the model structure, and the 

method outputs estimates of the path coefficients. The analysis was 

conducted with the R package “lavaan” (Rosseel, 2012). The individual links 

among variables were evaluated by means of the p-value and standardized 

coefficient (β). It should be noted that in the analysis we used Ts in place of 

the reflectance based indexes because i) Ts contains information on NPQ 

(Weis & Berry, 1988), ii) Ts is independent from the measurements used to 

estimate F760.  

 Chi-squared (χ2), comparative fit index (CFI), standardized root mean 

square of residual (SRMR) and Root Mean Square Error of Approximation 

(RMSEA) were computed to evaluate the overall accuracy of the models. The 

standard error of β and of the model fit indices were obtained from 

bootstrapping the dataset (n=100 realizations). Additionally, to assess the 

stability of the individual paths across treatments and the robustness of the 
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original model, we made intervention on the dataset by removing from the 

dataset one treatment and evaluating the impact on the individual β 

coefficients (Supplementary Fig. S2.10-S13). 

 

2.3 Results 
 

Description of fertilization effects on fluxes, optical data, and 

vegetation characteristics 

The effect of the fertilization treatment on GPP, LUEp, F760, LUEf and Fescfw is 

shown in Fig. 2.2. All these variables show a wide variation in time 

(campaign) and with treatment. GPP is higher in the N and NP treatments in 

2014 and more substantially in 2015 during the campaign 5 (F3,18= 15.6, p < 

0.01) and campaign 6 (F3,26= 13.1, p < 0.01). LUEp in the N treatment is 

significantly different from the C treatment only during the campaign 6 

(F3,26= 2.7, p < 0.05).  
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Fig. 2.2. Bar graphs representing differences among treatments (Control 

Treatment, C; Nitrogen treatment, N; Nitrogen and Phosphorus treatment, 

NP and Control Treatment, C) of Gross Primary Production (GPP) in 2014 (a) 

and 2015 (b), light use efficiency of photosynthesis (LUEp) in 2014 (c) and 

2015 (d), Fluorescence at 760 nm (F760) in 2014 (e) and 2015 (f), light use 

efficiency of fluorescence emission at 760 nm (LUEf) in 2014 (g) and 2015 

(h) and fraction of F760 that escapes the canopy (Fescfw) in 2014 (i) and 2015 

(l). Data are divided among campaigns. Bar graphs represent means and 
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error bars represent 1 standard error. Group differences in (a) until (h) were 

analyzed with ANOVA test and individual differences among groups were 

evaluated with Tukey HSD post hoc test. Group differences in (i) and (l) were 

analyzed with ANOVA with the Welch correction and individual differences 

among groups were evaluated with the Games-Howell post hoc test. “*” 

refers to a significant difference from the control treatment with p value < 

0.05 and “**” refers to a significant difference from the control treatment 

with p value < 0.01. 
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Fig. 2.3. Bar graph representing differences among treatments (Control 

Treatment, C; Nitrogen treatment, N; Nitrogen and Phosphorus treatment, 

NP and Control Treatment, C) of Canopy Nitrogen content (N%) in 2014 (a) 

and 2015 (b), Absorbed Photosynthetic Active Radiation (APAR) in 2014 (c) 

and 2015 (d), Albedo400-900 in 2014 (e) and 2015 (f), and Surface 

Temperature (Ts) in 2014 (g) and 2015 (h), and graminoids relative 

abundance (%graminoids) in 2014 (i) and 2015 (l). Data are divided among 

campaigns. Bar graphs represent means and error bars represent 1 standard 

error. Group differences in (e) until (h) were analyzed with Anova test and 
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individual differences among groups were evaluated with Tukey HSD post hoc 

test. Group differences in a), b), i), l) were analyzed with ANOVA with the 

Welch correction and individual differences among groups were evaluated 

with the Games-Howell post hoc test. “*” refers to a significant difference 

from the control treatment with p value < 0.05 and “**” refers to a 

significant difference from the control treatment with p value < 0.01. 

 
F760 shows a significant increase during the campaign 2 for the NP treatment 

(F3,11= 5.9, p < 0.05) and during the campaign 5 (for N and NP) (F3,18= 13.2, 

p < 0.01) and 6 (for N,NP, and P) (F3,26= 19.7, p < 0.01) of 2015. LUEf is 

significantly higher for the NP treatment during the campaign 4 of 2014 

(F3,12= 4.59, p < 0.05), while Fesc shows significant increases for the N and 

NP treatment of the campaign 5 (F3,18= 11.32, p < 0.05 and p < 0.05 

respectively ) and 6 (F3,26= 15.91, p < 0.05 and p < 0.01 respectively) of 

2015. 

Fig. 2.3 displays changes in N%, APAR, Albedo400-900, Ts and plant community 

(%graminoids) with the fertilization treatment. N% shows a quite consistent 

increase in the N and NP treatment in 2014 in comparison with the C 

treatment for the campaign 2 (F3,11= 26.8, p < 0.01), campaign 3 (F3,12= 

14.2, p < 0.01) and 4 (F3,11= 14.2, p < 0.01) and in 2015 in the campaign 5 

(F3,18= 56.2, p < 0.01) and 6 (F3,26= 18.5, p < 0.01). APAR presents 

significant differences for the N and NP treatment of the campaign 2 (F3,11= 

24.98, p < 0.01) of 2014 and campaign 5 and 6 of 2015 (F3,18= 7.37, p < 

0.01  and F3,26= 38.5, p < 0.01 respectively).  

 

All treatments show a significant increase in Albedo400-900 during the 

campaign 5 (F3,18= 29.3, p < 0.01) and 6 (F3,26= 13.6, p < 0.01) in 2015, 

but no significant treatment-induced changes in Albedo400-900 are observed in 

2014. Ts shows significant differences in the campaign 6 for the N, NP and P 

treatments (F3,26= 13.5, p < 0.01). LEISO follows the phenological cycle with 

lower values in 2015 (Supplementary Fig. S2.3a). There are differences in 

LEISO among treatments (such as the increase during the campaign 2 of 2014 

for N and NP), but these appeared not significant according to the ANOVA. 

LEISO estimates are consistent also with independent simulations with SCOPE 

(Supplementary Fig. S2.3c).  

Instead, significant differences in %graminoids among treatment occur 

mainly in 2015 in the campaign 5 (F3,18= 9.4, p < 0.01) and 6 (F3,26= 13.3, p 

< 0.01) with lower %graminoids in N and NP treatments. %Forbs also 

present significant differences in 2015 by increasing in the N treatment (in 

comparison with the C treatment)( (F3,18= 8.8, p < 0.01) and in the 

campaign 6 in the N and NP treatment (F3,26= 11.5, p < 0.01) 

(Supplementary Fig. S2.14d). %Legumes is marginal and does not change 

significantly among treatments (Supplementary Fig. S2.14e,f). 
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Temporal variability of GPP-F760 and GPP- F760leaf.fw relationship 

among treatments 

The results of the ANCOVA show that in 2014, the intercept of the C 

treatment is significantly different from the other treatments for both F760 (as 

shown in previous studies (Perez-Priego et al., 2015; Migliavacca et al., 

2017) and F760leaf,fw (p < 0.05 and p < 0.05, respectively) (Fig. 2.4, 

Supplementary Table S2.1).  

 

 
Fig. 2.4. Scatterplot of observed Fluorescence at 760 nm from top of canopy 

(F760) vs Gross Primary Production (GPP)  for 2014 (a) and for 2015 (c) and 

directional fluorescence emitted by all leaves at 760 nm calculated from 

forward SCOPE runs (F760leaf,fw) vs GPP  for 2014 (b) and for 2015 (d). Data 

are divided for the 4 Treatments; control (C), nitrogen addition (N), nitrogen 

and phosphorus addition (NP) and Phosphorus addition (P). P values of the 

interaction Treatment - independent variable (in comparison with the control 

treatment, C) from an analysis of covariance (ANCOVA) are reported in the 
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bottom-right of each panel. Colored lines represent the regression from the 

ordinary least square regression. 

In 2015 the intercept is different for the C Treatment for both F760 and 

F760leaf,fw (p < 0.01 for both) and for the NP treatment with p<0.05 for both 

F760 and F760leaf,fw. In 2015 for the N treatment there is no significant 

interaction between F760 and Treatment (Fig. 2.4c), but there is a significant 

interaction between F760leaf,fw and the N treatment (p < 0.05) (Fig. 2.4d), with 

significant differences of the relationship GPP- F760leaf,fw. There is no 

significant effect of the year on the relationship between GPP-F760. For each 

treatment: p=0.706, p=0.323, p=0.927 and p=0.992 N, P and NP and C, 

respectively. Instead when substituting F760 with F760leaf,fw the effect of the 

year is not significant in the treatments C and P (p=0.659 and p=0.742), but 

is significant for the NP treatment with p<0.05, and barely not significant for 

the N treatment with p=0.057.  

 

Factors controlling the parameters of light use efficiency equation 

(LUEp, LUEf and Fesc) 

The relative importance analysis with “lmg” method shows that LUEp is the 

variable with the highest explained variance (R2=0.67 ± 0.054), followed by 

Fesc (R2 = 0.62 ± 0.06) and LUEf (R2 = 0.46 + 0.06) (Fig. 2.5). The variable 

that explains the most variance of LUEp is Ts (R2 = 0.36 ±0.06), followed by 

LAI (R2 = 0.13 ±0.05), Canopy N% (R2 = 0.06 ± 0.04) and H (R2 = 0.05 ± 

0.04). The main predictor of LUEf is %graminoids that contributes (R2 = 0.15 

± 0.07), then Ts (R2 = 0.13 ± 0.08), LAI (R2 = 0.07 ± 0.05), and Canopy 

N% (R2 = 0.05 ± 0.03). 

The main predictor of Fesc is clearly %graminoids (R2 = 0.52 ± 0.03), 

followed by soil moisture (R2 = 0.03 ± 0.04) and Canopy N% (R2 = 0.02 ± 

0.02), the latter contributing only marginally.  
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Fig. 2.5. Relative importance analysis with “lmg”(Lindeman, Merenda and 

Gold) method of Light use efficiency of photosynthesis (LUEp), Light use 

efficiency of fluorescence emission at 760 nm (LUEf) and escape probability of 

sun-induced fluorescence at 760 nm obtained from forward runs of SCOPE 

(Fescfw). Predictors included in the analysis are: soil moisture, Shannon 

biodiversity index (H), canopy nitrogen content (N%), surface temperature 

(Ts), relative abundance of legumes (%legumes), relative abundance of 

graminoids (%graminoids) and leaf are index (LAI). Error bars (1 SE) are 

calculated through bootstrapping (n= 1000), but are not shown in the figure. 

They are however reported in the result section.  

Results of the relative importance analysis for GPP, F760, and F760leaf.fw show 

the importance of LAI that controls the seasonality of canopy structure and 

APAR (Supplementary Fig. S2.15).  

When substituting as predictor Ts with Ts-Ta we find slightly better results 

than Ts alone when predicting GPP, F760, and F760leaf,fw (Supplementary Fig. 

S2.8). However, including Ts-Ta does not improve the overall prediction, as 

the contribution to R2 of LAI decreases, but the total R2 remains similar. 

When predicting LUEp, LUEf, and Fesc, Ts-Ta is a worse predictor of LUEp than 

Ts (R2 = 0.28 ± 0.05). 

 

Mechanisms behind the treatment effect on GPP and F760 at leaf and 

canopy scale 
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Fig. 2.6 shows the output of the path analysis. The results of the final models 

are displayed as graphs. The overall model fit is evaluated: χ2 =129 ± 23, 

CFI= 0.901 ± 0.03, SRMR= 0.07 ± 0.02 and RMSEA= 0.19 ± 0.02. CFI and 

SRMR show excellent fit according to (Hu & Bentler, 1999). In contrast, the 

RMSEA is higher than expected. RMSEA is part of the parsimony-adjusted fit 

indexes, which reward low model complexity. Our goal is however to 

represent a holistic model that includes all the relevant processes and we do 

not use the path analysis a posteriori as a mean of model selection. 

Additionally, according to Iacobucci (2010), “RMSEA over-rejects true models 

for “small” n (n<250)”, which might be the cause of our RMSEA value, as our 

sample size is 133.  
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Fig. 2.6. Path analysis displays the role of canopy nitrogen content (Canopy 

N) and relative graminoids abundance (%graminoids) on the energy 

partitioning at the leaf and canopy level. Photosynthetic active radiation 

(PAR); Absorbed by vegetation photosynthetic active radiation (APAR), 

Fluorescence emission by all leaves at 760 nm calculated by forward runs of 

SCOPE (F760leaf,fw); gross primary production (GPP), Surface temperature (Ts) 

and observed fluorescence at 760 nm (F760). The strength of the relationship 

among variables is expressed by the standardized coefficient (β) of the path 

analysis. Each standardized coefficient has a standard error obtained from 
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bootstrapping (n=100 times). The width of the arrows is proportional to their 

standardized coefficient (β). Colored lines (both solid or dotted) represent 

direct relationships between variables, whereas gray double-headed arrows 

represent the covariance among variables. Solid and dotted lines indicate 

significant (p < 0.05) and non-significant relationships, respectively. The 

width of the arrows is proportional to their standardized coefficient (β). The 

different colors are introduced to increase readability of the standardized 

path coefficients. The fit by the overall model is measured by means of Chi-

squared (χ2), comparative fit index (CFI) and standardized root mean square 

of residual (SRMR). 

Fig. 2.6 shows the clear effect of the %graminoids on F760. The N and NP 

treatments significantly affect N% with β of 0.44 ± 0.07 and 0.47 ± 0.08 

respectively. N and NP treatments also affect significantly %graminoids with 

β of -0.27 ± 0.1 and -0.21 ± 0.09 respectively. N% has a significant 

relationship with 4 variables, APAR, Ts, GPP, and F760leaf,fw with β of 0.37 ± 

0.05, -0.37 ± 0.06, 0.12 ± 0.03 and 0.10 ± 0.04 respectively. %graminoids 

significantly affects APAR and F760 with β of 0.27 ± 0.09 and -0.17 ± 0.02 

respectively. The path between %graminoids and Ts is however not 

significant. APAR significantly influences GPP, F760leaf,fw and Ts with β of 0.87 

± 0.02, 0.77 ± 0.03 and -0.25 ± 0.06. Finally, F760leaf,fw and Ts have a 

significant covariance with β of -0.17 ± 0.04 ; F760leaf,fw and GPP have also a 

significant covariance with β of 0.07 ± 0.02 and so do GPP and Ts with β of -

0.18 ± 0.03. 

Alternative models using different estimates of F760leaf were tested and we 

found that the same paths are selected as significant, and the magnitude of 

the β coefficients are almost unchanged (Supplementary Fig. S2.16). This 

suggests that the path analysis model is not strongly dependent by the 

estimation type of the fluorescence emission. The results of the intervention 

removing treatments show that the vast majority of the paths remain 

constant and significant. The only difference can be seen when removing the 

NP treatment (Supplementary Fig. S2.11), where the links between canopy N 

and GPP and canopy N and F760leaf,fw become non-significant. 

 

2.4 Discussion 
In the following section we first discuss the treatment effects (N, NP, P) on 

the LUE equation terms, second the predictors of LUEp, LUEf and Fescfw, and 

third how the nutrient fertilization affects GPP and F760 through changes in 

N%, plant community and canopy structure. 

 

Treatment effect on LUEp, LUEf, Fescfw  

The relative stability among treatments of LUEp, which is significantly 

different for the N treatment only in the campaign 6 and shows an increase of 
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NP in campaign 5 in 2015, suggests that our Mediterranean grasslands is 

quite constrained in its photosynthetic efficiency, and that any nutrient 

induced changes in GPP (Fig. 2.2) are mostly modulated by changes in 

structural parameters such as fAPAR. 

The increase in LUEf in the NP treatment compared to N alone, suggests a co-

limitation of nitrogen and phosphorus on fluorescence efficiency. The role of P 

on the functional modulation of fluorescence efficiency at canopy scale has 

not yet been shown in the literature. However, a series of studies at leaf level 

showed a positive relationship between photochemical quenching and P in 

leaves as well as an effect of P on active fluorescence measurements (Singh 

& Reddy, 2014), these back the differences in LUEf observed in our study. 

Our study suggest that P, and in particular the co-limitation N and P, might 

have an important role on determining F760 but is not conclusive on the 

mechanism, and more research is needed to understand the mechanism and 

also to support the current efforts to include P in terrestrial biosphere and 

photosynthesis models (Jiang et al., 2019). 

The fact that the magnitude of increase of Fescfw is very similar in N and NP 

treatments support the idea that N addition is the main factor regulating 

canopy structure (Fescfw, APAR). Other works show that N addition strongly 

impacts canopy structural parameters such as LAI and plant height in a 

short-grass prairie (Tatarko & Knops, 2018), though there are no studies 

focused on the effect of N and NP on Fesc. 

Overall the ecosystem responded in the first year to the fertilization, mainly 

in a functional way (higher LUEf), whereas in the second year of fertilization 

we observe structurally mediated increase in GPP and F760 (through higher 

APAR and Fescfw) (Fig. 2.3d, Fig. 2.2l). The structurally mediated changes in 

2015, driven by a decrease in abundance of erectophiles plants as the 

graminoids in the N containing treatments, cause a change in slope in the 

GPP-F760 relationship for the N and NP treatment (Fig. 2.4c) which is almost 

significantly different from the C for F760, but significantly different from the C 

for F760leaf,fw in the NP treatment (Fig. 2.4d). 

The N treatment has proven to affect plant functioning and canopy structure 

(APAR and Fescfw), while P has only a marginal role on the LUEf. For this 

reason in the next paragraphs more attention will be paid to the role of N%, 

together with meteorology and canopy structure, as driver of in LUEp, LUEf 

and Fescfw, as well as GPP and F760. 

 

Predictors of the terms of the light use efficiency equation 

Understanding the causes of variability of the parameters of LUE equations 

(LUEp, LUEf, and Fescfw is fundamental to exploit remote sensing information 

such as F760 for modeling spatio-temporal patterns of GPP (Damm et al., 

2015). We show that Ts is the main predictor of LUEp, and together with 

%graminoids is one of the two main predictors of LUEf. Ts is a good indicator 

of water stress and strongly related to phenology and green fraction of 
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vegetation (Jackson et al., 1981; Boulet et al., 2007), which ultimately 

relates to temporal variability of LUEp. However, the fact that variables 

normalized by APAR such as LUEp and LUEf are driven by Ts indicates that it 

is not only a seasonal effect but rather physiological. In fact, Ts contains also 

information related to the activation of the xanthophyll cycle responsible for 

NPQ processes (Supplementary Fig. S2.17) that ultimately is related to LUEp 

and LUEf (Porcar-Castell et al., 2014). Finally, many variables that have the 

potential to influence LUEp, such as photorespiration and chlororespiration, 

are influenced by leaf temperature (Diaz et al., 2007), potentially explaining 

why Ts is being selected. Our results reinforce the idea that Ts should be 

used as additional input of LUE models aimed at the prediction of GPP (Sims 

et al., 2008). 

The %graminoids is by far the best predictor of Fescfw, independently by the 

method used for the calculation of Fesc. Graminoids are mainly erectophiles 

(Wohlfahrt et al., 2001), because of this particular LAD, most of the 

fluorescence is emitted laterally and therefore scattered by the vegetation 

(Migliavacca et al., 2017). In this work we tested different formulations of 

Fescfw with consistent results, in particular between the model-based (Fescfw) 

and the data-driven (Fescemp) estimates. The fact that %graminoids is a good 

proxy for the effect of structure on F760 and Fesc also opens interesting 

perspective to use F760 and also Fesc to assess taxonomic diversity, when 

diversity is somehow represented by changes in canopy architecture (Weisser 

et al., 2017). 

N% is an additional predictor selected for LUEf and LUEp, though the 

additional explained variance seems marginal (Fig. 2.5). N% is positively 

related to Vcmax (Feng & Dietze, 2013; Houborg et al., 2013), and under 

light saturated conditions a higher Vcmax leads to an increase of LUEp and, to 

less extent to increase of LUEf (Frankenberg & Berry, 2018). As 

hypothesized, from this analysis it appears that the effect of N% on F760 and 

LUE equation terms is not direct and in the section ‘Mechanisms behind the 

treatment effect on GPP and F760 at leaf and canopy scale‘ we discuss the 

relationships between N%, canopy structure, and the observed variables. 

 

Mechanisms behind the treatment effect on GPP and F760 at leaf and 

canopy scale 

The effect of canopy structure on F760 manifests itself mainly through 

variation in APAR and Fescfw (Fig. 2.6 and Fig. 2.2i, respectively). With the 

path analysis we conclude that %graminoids positively influences APAR that 

leads to an increase of F760leaf,fw indirectly. Moreover, %graminoids negatively 

influences Fescfw. The changes of canopy structure mediated by changes in 

plant community at plot level are the most important factors controlling the 

pathway between F760leaf,fw and F760, and ultimately GPP-F760. 

By analyzing the relationships between different components measured in the 

manipulative experiment presented here, we were able to disentangle the 
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pathways, mostly unknown (Ač et al., 2015; Damm et al., 2015), through 

which N% influences the different components of the LUE equations. Our 

results show that the largest effect of N% on fluorescence emission is not 

direct, but rather mediated by APAR and Ts (Fig. 2.6), which in turn affect 

F760leaf,fw.  

There are two indirect ways in which N% affects F760leaf,fw:  

i) higher N% in the green fraction of the vegetation is associated to an 

increase of photosynthetic pigments and in particular Cab in leaves (Feng & 

Dietze, 2013) and in the canopy (Niinemets et al., 1999), that ultimately has 

a positive effect on APAR (Peng et al., 2011; Cendrero-Mateo et al., 2015). 

Increase in APAR causes higher fluorescence emission at leaf and canopy 

level (Fig. 2.6) (Buschmann, 2007). There are contrasting results in the 

literature regarding the effect of N% on fluorescence and all the studies 

conducted at the leaf level (Verhoeven et al., 1997; Ač et al., 2015; 

Cendrero-Mateo et al., 2015). Our study at canopy level supports the findings 

from (Cendrero-Mateo et al., 2015), that at varying levels of N availability 

APAR modulates F760leaf,fw and F760, and its relationship with GPP.  

ii) N% influences positively F760leaf,fw through Ts. N% has a negative effect on 

Ts and F760leaf,fw exhibits a negative relationship with Ts. The first 

hypothesized mechanism is related with the observed increased in Albedo400-

900 (Fig. 2.3e,f) associated with the higher N%. The effect of N% on albedo, 

despite being quite debated in the literature (Ollinger et al., 2008; Knyazikhin 

et al., 2013), it has been demonstrated both at canopy scale (El-Madany; 

Ollinger et al., 2009) and at leaf level (Sullivan et al., 2012) and has to do 

with the increase in near infra-red (NIR) reflectance that is larger than the 

decrease of the reflectance in the visible region due to higher Cab and light 

absorption. Therefore, the increase of Albedo400-900 with increasing N% results 

in less available energy in the canopy, that eventually leads to a decrease of 

Ts if other conditions such as soil moisture and VPD are similar (Ollinger et 

al., 2008; Sullivan et al., 2012). The second has to do with the modulation of 

transpiration due to the fertilization (Fig. 2.3g,h), which cools down the 

canopy, as the leaf surfaces lose heat when water evaporates through the 

stomata. Our estimate of LEISO show an increase in N and NP treatments 

during the peak of the growing season, but it is not significant 

(Supplementary Fig. S2.3a,b) and lower than the changes in in Albedo400-900 

for N, NP and P, in particular in 2015 (Fig. 2.3c,d). Given the strong response 

of GPP in the N and NP treatments in 2015 (Fig. 2.2b), the mild change in 

LEISO (Supplementary Fig. S2.3a,b) suggests an increase of water use 

efficiency, which is backed by δ13C measurements, which show a significant 

increase in the N and NP treatment of campaign 6 (Supplementary Fig. S2.2) 

(where less negative values correspond to higher WUE (Sun et al., 1996)). 

Therefore, we can conclude that although transpiration might be involved in 

the regulation of Ts at the peak of the season, biophysical variables such as 

Albedo400-900 are much more affected by N% and contribute to reduce Ts. 
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Given that a large amount of N is invested in Rubisco protein (Evans, 1989), 

N can impact directly the carboxylation rates. The direct link between 

carboxylation rates and F760leaf is not yet clear (Vilfan et al., 2019). However, 

we found a direct, though weak, relationship between N% and F760leaf,fw (Fig. 

2.6) that is mediated likely by the ceiling effect mechanism described in the 

literature in an elevated CO2 manipulation experiment (van der Tol et al., 

2014; Frankenberg & Berry, 2018), but not yet observed in nutrient 

manipulation experiments.  

 

2.5 Conclusions 
This study analyzed and explained the underlying mechanism responsible for 

the changes in gross primary productivity (GPP) and sun-induced 

fluorescence at 760 nm (F760), and their relationship, due to a nutrient 

fertilization with Nitrogen (N), Phosphorous (P), and the combination of the 

two nutrients (NP). The Nitrogen additions (N and NP) had an effect mainly 

through changes in absorbed photosynthetically active radiation (APAR) and 

escape probability of fluorescence (Fescfw). Changes in APAR are directly 

related to changes in GPP and F760 and are due to the combination of changes 

in canopy chlorophyll content and in species composition that modifies the 

canopy structure. Changes in Fescfw are mainly due to the changes in the 

abundance of erectophile vs non-erectophile vegetation with N addition. In 

the treatment with the addition in fact forbs increased (non-erectophile) 

while graminoids decreased (erectophile), which ultimately leads to changes 

in leaf angle distribution and modify the F760 observed in particular in 2015. 

This has an effect on GPP-F760 relationship both across treatments but also 

from year to year. Phosphorous addition had a significant effect on the light 

use efficiency of fluorescence, in particular when combined with high 

Nitrogen availability. This result points toward the need of better 

understanding the so far neglected role of phosphorous on modulating sun-

induced fluorescence. 

With a path analysis we also reveal that N%, not only affects F760 indirectly 

through APAR and Fescfw, but that is also tightly related with surface 

temperature (Ts). The negative relationship between N% and Ts is 

biophysically mediated by higher albedo observed after the fertilization, and 

only marginally physiological mediated by increase in transpiration. We also 

found a trade-off between F760 and Ts (likely mediated by the non-

photochemical quenching mechanisms), indicating the importance of 

measuring simultaneously these two quantities. We finally found that Ts is 

also the main predictor of the light use efficiency of photosynthesis, which is 

a fundamental parameter to describe for the improvement of the 

predictability of GPP. In conclusion our results show that both nutrient 

availability, and their indirect effect on biodiversity, are fundamental drivers 

of sun-induced fluorescence, and it relationship with gross primary 
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productivity. Our results also reveal the interlink between fluorescence, 

surface temperature and GPP, and support the importance of tandem 

missions such as the FLuorescence EXplorer (FLEX) and Sentinel-3, providing 

concomitant estimates of sun-induced fluorescence, vegetation related 

spectral indices, and land surface temperature. 
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Supporting information 
 

 
Supplementary Fig. S2.1. Aerial photograph of the experimental site 

(SMANIE) modified from Migliavacca et al., 2017. The position of the four 

blocks is indicated in transparent green and the treatment type is indicated at 

the corners of the blocks. The bands within each block indicate the buffer of 2 

m used to separate the different treatments. In the lower right corner the 

transparent chambers used to measure the CO2 and water fluxes are shown 

in the left figure and the manual system used to collect the spectral 

measurements is shown in the right figure. 
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Supplementary Fig. S2.2. Group differences among treatment of carbon 

isotopic signature (δ13C)  in 2014 (a) and 2015 (b). Group differences in (a), 

(b) were analyzed with ANOVA and Tukey post-hoc test.  “*” refers to a 

significant difference from the control (C) treatment with p value < 0.05 and 

“**” refers to a significant difference from the C treatment with p value < 

0.01. 
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Supplementary Fig. S2.3. Group differences among treatment of 

transpiration (LEISO)  (a) latent heat flux of the canopy estimated through 

SCOPE inversion (Lecanopy,inv) (b) integrated albedo between 400-900 

nm(Albedo400-900) (d) and relation among the two transpiration estimates (c) 

(note that the LEISO has been converted to W/m2). Group differences in (a), 

(b) and (d) were analyzed with ANOVA and Tukey post-hoc test.  “*” refers 

to a significant difference from the control (C) treatment with p value < 0.05 

and “**” refers to a significant difference from the C treatment with p value 

< 0.01. Dashed lines represent the 1:1 line. Blue lines represent the 

regression from the total least square regression. 
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Supplementary Fig. S2.4. Schematic of the radiometric footprint (black 

circle) and the gas exchange footprint (black diagonal stripes) with the 

experimental set-up. When performing radiometric measurements, a frame 

painted with black mat color was put on the edges of the collar to prevent 

reflections from the metallic collar. 
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Supplementary Fig. S2.5. Scatterplot of modeled (from forward runs of 

SCOPE) vs absorbed photosynthetic active radiation (APAR) calculate from 

the RENDVI index (a), and APAR calculated with method of Li & Moreau 1996 

vs APARRENDVI. Coefficient of determination (R2), slope and intercept and Root 

Mean Square Error (RMSE) of the ordinary least square regression are 

reported in the bottom right. Blue lines represent the regression from the 

ordinary least square regression. 

  



Chapter 2 

47 
 

 
Supplementary Fig. S2.6. Scatterplot of modeled (forward SCOPE runs) vs 

observed fluorescence at 760 nm (F760) (a) and scatterplot of modelled (from 

forward SCOPE runs) vs observed gross primary production (GPP)  (b). 

Coefficient of determination (R2), slope and intercept and Root Mean Square 

Error (RMSE) of the ordinary least square regression are reported in the top 

left. Blue lines represent the regression from the ordinary least square 

regression. 
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Supplementary Fig. S2.7. Scatterplot of the relationship between 

Fluorescence emitted by all leaves at 760 nm calculated by forward runs of 

SCOPE (F760leaf,fw) and Fluorescence emitted by all leaves at 760 calculated 

with the empirical approach (F760leaf,emp (a) and relationship between F760leaf,fw 

and fluorescence emitted by all leaves at 760 nm calculated from SCOPE 

inversion (F760leaf,inv) (b). Pearson correlation (r), slope and intercept form the 

Total Least Square regression is provided in the bottom right. Dashed lines 

represent the 1:1 line. Blue lines represent the regression from the total least 

square regression. 
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Supplementary Fig. S2.8. Relative importance analysis with LMG 

(Lindeman, Merenda and Gold) method of gross primary production (GPP), 

observed fluorescence at 760 nm (F760), Fluorescence emitted at 760 nm 

calculated by forward runs of SCOPE (F760leaf,fw), Light use efficiency of 

photosynthesis (LUEp), light use efficiency of fluorescence emission at 760 

nm (LUEf) ,escape probability of F760 calculated from forward runs of SCOPE 

(Fescfw). Predictors included in the analysis are: soil moisture, Shannon 

biodiversity index (H), canopy nitrogen content (N%), surface-air 

temperature (Ts - Ta), relative abundance of legumes (%legumes), relative 

abundance of graminoids (%graminoids) and leaf are index (LAI).   
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Supplementary Fig. S2.9. Set of equations that represent the model 

structure for the path analysis written as R markdown. Variables are the left 

are dependent variables and variables to the right of “~”are predictors. 

“~”denotes direct relationships, whereas “~~” denote covariance. 
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Supplementary Fig. S2.10. Path analysis without the Nitrogen (N) 

treatment. Path analysis displays the role of canopy nitrogen content (N%) 

and relative graminoids abundance (%graminoids) on the energy partitioning 

at the leaf and canopy level.  Photosynthetic active radiation (PAR); Absorbed 

by vegetation photosynthetic active radiation (APAR), Fluorescence emission 

by all leaves at 760 nm calculated by forward runs of SCOPE (F760leaf,fw); 

gross primary production (GPP), Surface temperature (Ts) and observed 

fluorescence at 760 nm (F760). The strength of the relationship among 

variables is expressed by the standardized coefficient (β) of the path 

analysis. Each standardized coefficient has a standard error obtain from 

bootstrapping (n=100 times). The width of the arrows is proportional to their 
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standardized coefficient (β). Colored lines (both solid or dotted) represent 

direct relationships between variables, whereas gray double-headed arrows 

represent the covariance among variables. Solid and dotted lines indicate 

significant (p < 0.05) and non-significant relationships, respectively. The 

width of the arrows is proportional to their standardized coefficient (β). The 

different colors are introduced to increase readability of the standardized 

path coefficients.  The fit by the overall model is measured by means of Chi-

squared (χ2), comparative fit index (CFI) and standardized root mean square 

of residual (SRMR). 
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Supplementary Fig. S2.11. Path analysis without the Nitrogen and 

Phosphorus (NP) treatment. Path analysis displays the role of canopy 

nitrogen content (N%) and relative graminoids abundance (%graminoids) on 

the energy partitioning at the leaf and canopy level.  Photosynthetic active 

radiation (PAR); Absorbed by vegetation photosynthetic active radiation 

(APAR), Fluorescence emission by all leaves at 760 nm calculated by forward 

runs of SCOPE (F760leaf,fw); gross primary production (GPP), Surface 

temperature (Ts) and observed fluorescence at 760 nm (F760). The strength 

of the relationship among variables is expressed by the standardized 

coefficient (β) of the path analysis. Each standardized coefficient has a 

standard error obtain from bootstrapping (n=100 times). The width of the 

arrows is proportional to their standardized coefficient (β). Colored lines 
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(both solid or dotted) represent direct relationships between variables, 

whereas gray double-headed arrows represent the covariance among 

variables. Solid and dotted lines indicate significant (p < 0.05) and non-

significant relationships, respectively. The width of the arrows is proportional 

to their standardized coefficient (β). The different colors are introduced to 

increase readability of the standardized path coefficients.  The fit by the 

overall model is measured by means of Chi-squared (χ2), comparative fit 

index (CFI) and standardized root mean square of residual (SRMR). 
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Supplementary Fig. S2.12. Path analysis without the Phosphorus (P) 

treatment. Path analysis displays the role of canopy nitrogen content (N%) 

and relative graminoids abundance (%graminoids) on the energy partitioning 

at the leaf and canopy level.  Photosynthetic active radiation (PAR); Absorbed 

by vegetation photosynthetic active radiation (APAR), Fluorescence emission 

by all leaves at 760 nm calculated by forward runs of SCOPE (F760leaf,fw); 

gross primary production (GPP), Surface temperature (Ts) and observed 

fluorescence at 760 nm (F760). The strength of the relationship among 

variables is expressed by the standardized coefficient (β) of the path 

analysis. Each standardized coefficient has a standard error obtain from 

bootstrapping (n=100 times). The width of the arrows is proportional to their 

standardized coefficient (β). Colored lines (both solid or dotted) represent 
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direct relationships between variables, whereas gray double-headed arrows 

represent the covariance among variables. Solid and dotted lines indicate 

significant (p < 0.05) and non-significant relationships, respectively. The 

width of the arrows is proportional to their standardized coefficient (β). The 

different colors are introduced to increase readability of the standardized 

path coefficients.  The fit by the overall model is measured by means of Chi-

squared (χ2), comparative fit index (CFI) and standardized root mean square 

of residual (SRMR). 
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Supplementary Fig. S2.13. Path analysis without the Control treatment(C). 

Path analysis displays the role of canopy nitrogen content (N%) and relative 

graminoids abundance (%graminoids) on the energy partitioning at the leaf 

and canopy level.  Photosynthetic active radiation (PAR); Absorbed by 

vegetation photosynthetic active radiation (APAR), Fluorescence emission by 

all leaves at 760 nm calculated by forward runs of SCOPE (F760leaf,fw); gross 

primary production (GPP), Surface temperature (Ts) and observed 

fluorescence at 760 nm (F760). The strength of the relationship among 

variables is expressed by the standardized coefficient (β) of the path 

analysis. Each standardized coefficient has a standard error obtain from 

bootstrapping (n=100 times). The width of the arrows is proportional to their 

standardized coefficient (β). Colored lines (both solid or dotted) represent 
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direct relationships between variables, whereas gray double-headed arrows 

represent the covariance among variables. Solid and dotted lines indicate 

significant (p < 0.05) and non-significant relationships, respectively. The 

width of the arrows is proportional to their standardized coefficient (β). The 

different colors are introduced to increase readability of the standardized 

path coefficients.  The fit by the overall model is measured by means of Chi-

squared (χ2), comparative fit index (CFI) and standardized root mean square 

of residual (SRMR). 
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Supplementary Fig. S2.14. Bar graph representing differences among 

treatments of graminoids relative abundance (%graminoids) in 2014 (a) and 

2015 (b), forbs relative abundance (%Forbs) in 2014 (c) and 2015 (d) and 

legumes relative abundance (%Legumes). Data are divided among 

campaigns. Bar graphs represent means and error bars represent 1 standard 

error. Group differences were analyzed with ANOVA with the Welch correction 

and individual differences among groups were evaluated with the Games-

Howell post hoc test. “*” refers to a significant difference from the control (C) 

treatment with p value < 0.05 and “**” refers to a significant difference from 

the C treatment with p value < 0.01. 
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Supplementary Table S2.1. Evaluation of the relationship between Gross 

Primary Production (GPP) and Fluorescence at 760 nm (F760) and between 

GPP and Fluorescence at emission level at 760 nm (F760leaf,fw) among different 

treatments. 

Year  Treatment  Variable  

Intercept 

P value 

Interaction 

P value 

Intercept 

value 

Slope 

value 

2014 C F760leaf,fw 0.03  
4.09 5.30 

2014 C F760 0.04  
4.48 17.11 

2014 N F760leaf,fw 0.38 0.95 
2.40 5.39 

2014 N F760 0.39 0.8 2.44 18.42 

2014 NP F760leaf,fw 0.92 0.89 
0.23 5.11 

2014 NP F760 0.77 0.69 
-0.79 19.19 

2014 P F760leaf,fw 0.07 0.86 
3.14 5.04 

2014 P F760 0.13 0.96 
2.60 17.36 

2015 C F760leaf,fw < 0.01  
4.68 4.57 

2015 C F760 < 0.01  
4.76 14.93 

2015 N F760leaf,fw 0.57 0.02 
0.89 8.46 

2015 N F760 0.59 0.09 
0.84 23.29 

2015 NP F760leaf,fw 0.03 0.09 
2.66 7.21 

2015 NP F760 0.02 0.32 
2.65 19.50 

2015 P F760leaf,fw 0.06 0.57 
3.94 5.51 

2015 P F760 0.07 0.64 
3.74 17.32 

 

 

Gross Primary Production (GPP) is the dependent variable. Fluorescence 

emitted by all leaves at 760 nm calculated from forward SCOPE runs 

(F760leaf,fw) and observed Fluorescence at 760 nm (F760) are the independent 

variables. The column intercept reports the p values of the intercept from the 

multiple linear model and the column Interaction reports the p values of the 

interaction between Independent variable and Treatment factor in relation to 

the Control (C) treatment from the ANCOVA. Bold p values refer to p values 

< 0.05. The values of intercept and slope from the linear model GPP ~ F760 

among treatments and the linear model GPP ~ F760leaf,fw among treatments 

are reported. N refers to Nitrogen addition treatment, P is the phosphorus 

addition treatment and NP is the nitrogen and phosphorus addition 

treatment. 
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Supplementary Fig. S2.15. Relative importance analysis with LMG 

(Lindeman, Merenda and Gold) method of Gross Primary Production (GPP), 

observed fluorescence at 760 nm (F760), Fluorescence emitted at 760 nm 

calculated by forward runs of SCOPE (F760leaf,fw), Light use efficiency of 

photosynthesis (LUEp), light use efficiency of fluorescence emission at 760 

nm (LUEf) ,escape probability of F760 calculated from forward runs of SCOPE 

(Fescfw). Predictors included in the analysis are: soil moisture, Shannon 

biodiversity index (H), canopy nitrogen content (N%), surface temperature 

(Ts), relative abundance of legumes (%legumes), relative abundance of 

graminoids (%graminoids) and leaf are index (LAI).   
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Supplementary Fig. S2.16. Path analysis with Fluorescence emission at 

760 nm calculated from SCOPE inversion F760leaf,inv. Path analysis displays the 

role of canopy nitrogen content (N%) and relative graminoids abundance 

(%graminoids) on the energy partitioning at the leaf and canopy level.  

Photosynthetic active radiation (PAR); Absorbed by vegetation photosynthetic 

active radiation (APAR), Fluorescence emission by all leaves at 760 nm 

calculated by forward runs of SCOPE (F760leaf,fw); gross primary production 

(GPP), Surface temperature (Ts) and observed fluorescence at 760 nm (F760). 
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The strength of the relationship among variables is expressed by the 

standardized coefficient (β) of the path analysis. Each standardized 

coefficient has a standard error obtain from bootstrapping (n=100 times). 

The width of the arrows is proportional to their standardized coefficient (β). 

Colored lines (both solid or dotted) represent direct relationships between 

variables, whereas gray double-headed arrows represent the covariance 

among variables. Solid and dotted lines indicate significant (p < 0.05) and 

non-significant relationships, respectively. The width of the arrows is 

proportional to their standardized coefficient (β). The different colors are 

introduced to increase readability of the standardized path coefficients.  The 

fit by the overall model is measured by means of Chi-squared (χ2), 

comparative fit index (CFI) and standardized root mean square of residual 

(SRMR).  
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Supplementary Fig. S2.17. Scatterplot of Surface temperature (Ts) vs 

Photochemical Reflectance Index (PRI). “Growing season” includes the 

campaigns 1,2,3,5,6 The p values of the ordinary least square regressions 

are reported in the top. Colored lines represent the regression from the 

ordinary least square regression. 
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2This chapter is based on: Martini, D., Sakowska, K., Wohlfahrt, G., Pacheco‐

Labrador, J., van der Tol, C., Porcar‐Castell, A., ... & Migliavacca, M. 

Heatwave breaks down the linearity between sun‐induced fluorescence and 

gross primary production. New Phytologist. 
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Summary  

• Sun-induced fluorescence in the far-red region (SIF) is increasingly 

used as a remote and proximal-sensing tool capable of tracking 

vegetation gross primary production (GPP). However, the use of SIF 

to probe changes in GPP is challenged during extreme climatic 

events, such as heatwaves.  

• Here, we examined how the 2018 European heatwave (HW) affected 

the GPP-SIF relationship in evergreen broadleaved trees with a 

relatively invariant canopy structure. To do so, we combined canopy 

scale SIF measurements, GPP estimated from an eddy covariance 

tower, and active PAM fluorescence. 

• The HW caused an inversion of the photosynthesis-fluorescence 

relationship at both the canopy and leaf scales. The highly nonlinear 

relationship was strongly shaped by nonphotochemical quenching 

(NPQ), i.e., a dissipation mechanism to protect from the adverse 

effects of high light intensity. During the extreme heat stress, plants 

experienced a saturation of NPQ, causing a change in the allocation 

of energy dissipation pathways towards SIF.  

• Our results show the complex modulation of the NPQ-SIF-GPP 

relationship at an extreme level of heat stress, which is not 

represented in state-of-the-art coupled radiative transfer and 

photosynthesis models. 
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3.2 Introduction  

 

Gross primary production (GPP) of terrestrial ecosystems represents the most 

important flux in the global carbon cycle (Beer et al., 2010), which provides 

ecosystem services of critical importance for society (Holmberg et al., 2019). 

Anthropogenic climate change has increased global temperature and the 

frequency and intensity of climate extremes such as heatwaves and droughts 

(Bindoff et al., 2014), which have a considerable effect on GPP (Reichstein et 

al., 2013). GPP can be estimated by means of proximal and remote sensing 

(RS), particularly through the use of sun-induced fluorescence in the far-red 

region (SIF) (Damm et al., 2010; Pacheco-Labrador et al., 2019a). Top-of-

the-canopy SIF measurements contain information on the radiation emitted 

by plants’ chlorophyll when exposed to solar radiation, mediated by canopy 

architecture through reabsorption and multiple scattering (escape probability 

of fluorescence, Fesc) (Yang & van der Tol, 2018). SIF is used to predict GPP 

as it is related to both the amount of absorbed photosynthetic active 

radiation (APAR) and the efficiency with which it is used to drive 

photosynthesis (light-use efficiency of photosynthesis, LUEp) (Zhang et al., 

2014). Therefore, SIF has the potential to quantify the effect of extreme 

events such as heatwaves on photosynthetic activity (Ač et al., 2015). 

Nevertheless, it is necessary to explore the mechanistic relationship between 

SIF and GPP during rapid extreme heat stress (Wohlfahrt et al., 2018; 

Magney et al., 2019).  

Both the light-dependent reactions of photosynthesis and SIF originate at the 

photosystem level. When a chlorophyll molecule is excited by a photon of 

light, the available energy can be allocated to photochemistry, emitted as 

fluorescence (the SIF signal), or dissipated as heat through 

nonphotochemical quenching (NPQ) (Kitajima & Butler, 1975), a process 

involving xanthophyll cycle de-epoxidation. Because photochemistry and NPQ 

are physiologically modulated (Porcar-Castell et al., 2014) and respond to 

different environmental conditions, it is complicated to find a universal linear 

relationship between photochemistry and SIF, without information about 

NPQ, especially under stress conditions. 

Understanding of the trade-offs between these processes can be achieved by 

combining canopy-scale passive (i.e., SIF) with leaf-level active (pulse 

amplitude modulation, PAM) fluorescence techniques; the latter of which can 

be used to derive parameters such as yields of photochemistry (ϕP) (Genty et 

al., 1989) and fluorescence (ϕF) (Atherton et al., 2019), and NPQ (Cailly, 

1996). Active fluorescence data at high temporal resolution (e.g., hourly) 

suggests that the relationship between ϕF and ϕP at the leaf level is highly 

nonlinear and strongly dependent on illumination conditions and NPQ (Porcar-
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Castell et al., 2014). Under typical high-radiation conditions, ϕP decreases in 

response to NPQ increase, driving the positive SIF-photochemistry 

relationship (“NPQ-phase”) (Porcar-Castell et al., 2014). van der Tol et al. 

(2014) reported that at high light and stress conditions various crops showed 

a negative ϕF-ϕP relationship (the “NPQ-saturation phase”). However, to our 

knowledge there are no observations of the “NPQ-saturation phase” for plants 

experiencing heat stress and it is unclear how this mechanism emerges at the 

canopy scale. NPQ is crucial to understand and model the GPP-SIF 

relationship. However, NPQ is challenging to measure at the canopy scale 

from remote sensing platforms because canopy structure can be a 

confounding factor (Perez-Priego et al., 2015). The integration of leaf and 

canopy-scale fluorescence has the potential to explain the scale-dependence 

of trade-offs between NPQ, photochemistry, and fluorescence (Magney et al., 

2017), and therefore can help to better understand the physiological 

information contained in SIF.   

Extreme events such as heatwaves can represent natural experiments, where 

increases in NPQ (Georgieva & Yordanov, 1994) can alter GPP-SIF dynamics. 

Generally, deciduous trees, crops, and grasslands react to heatwaves through 

a combination of physiological (e.g., increase in NPQ and/or transpiration 

(Drake et al., 2018)) and structural changes (reduction in leaf area index 

(LAI), chlorophyll degradation). Evergreen trees, particularly in the 

Mediterranean and semi-arid regions, can withstand extreme temperatures of 

short duration without showing significant pigment degradation or changes in 

canopy structure (Teskey et al., 2015), primarily relying on physiological 

adaptation for coping with extreme temperatures (Garcia-Plazaola et al., 

2008). Evergreen broadleaved trees thus represent an excellent test case to 

study the effect of extreme heatwaves on the GPP-SIF relationship 

independently of the variations of chlorophyll content and APAR. Here, we 

make use of data from the 2018 European heatwave (HW) that resulted in 

record-breaking temperatures (Bastos et al., 2020) in Western Europe 

(Barriopedro et al., 2020). During the first week of August, the western side 

of the Iberian Peninsula experienced daily temperature anomalies compared 

to long-term observations up to 9°C, caused by a Saharan air intrusion, 

leading to the most extreme event ever recorded in the region (Sousa et al., 

2019; Barriopedro et al., 2020).  

This study aims to shed light on the relationship between GPP and SIF during 

an extreme HW when changes in canopy structure are minimal. Our goals are 

twofold: First, we wish to understand the effect of the HW on the GPP-SIF 

relationship. In particular, we want to investigate what role NPQ plays in 

shaping the GPP-SIF relationship at high heat-stress levels. Second, we 

investigate if a state-of-the-art radiative transfer and photosynthesis model 

can reproduce NPQ, which is critical to obtain SIF, at high heat stress. To do 
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so, we used data from Mediterranean evergreen oak trees (Quercus ilex) at 

the study site Majadas de Tiétar (ES-LMa), where we measured canopy scale 

SIF, GPP estimated with the eddy covariance technique, and active PAM 

fluorescence.  

3.3 Materials and Methods 
 

Study site 

The study was conducted in a Mediterranean open woodland, a typical 

“Iberian Dehesa” in western Spain (39°56´024.68´´ N, 5°45´50.27´´ W; 

Majadas de Tiétar, Cáceres, Extremadura, FLUXNET site ES-LMa) 

(Supplementary Fig. S3.1). The ecosystem is composed of an herbaceous 

layer and scattered evergreen broadleaved trees, mainly Quercus ilex L. 

subsp. ballota [Desf.] Samp. (Holm Oak). Trees fractional cover was ~20 %, 

while the average horizontal and vertical crown radius was 4.2 m (σ = 0.9 m) 

and 2.7 m (σ = 0.9 m), respectively (Pacheco-Labrador et al., 2019b). 

 

The climate is Mediterranean, characterized by a hot and dry summer. The 

annual precipitation value is about 650 mm (falling mostly from autumn to 

spring). The mean annual temperature is 16 °C. The study was conducted 

from June 2018 to August 2018, when the herbaceous layer was senesced 

(Luo et al., 2018b; Luo et al., 2020), and the trees were the only active 

vegetation (El-Madany et al., 2020). From August 2 to August 6, 2018, the 

ecosystem experienced a heatwave (Barriopedro et al., 2020) with a five-day 

average of daily maximum air temperature (Tair) of 43.2 °C and daily 

maximum vapor pressure deficit (VPD) of 76.1 hPa (Supplementary Fig. 

S3.2). Extensive site details are available in earlier publications (El-Madany 

et al., 2018). The days considered part of the heatwave are the five days 

from the  2nd August 2018 to 6th August  2018, according to Sousa et al. 

(2019). The days considered pre-heatwave are the days from the 25th July 

2018 to 1st August 2018. 

 

Sun-induced fluorescence observations 

The spectral measurements were collected using the FloX (JB Hyperspectral 

Devices, Düsseldorf, Germany), a field spectrometer designed for continuous 

high-resolution spectral measurements for SIF retrieval with technical 

specifications in terms of spectral coverage, resolution and signal to noise 

ratio (SNR) coherent with the FLEX mission instrument specifications (Julitta 

et al., 2017). The FloX was equipped with two spectrometers: (i) QEPro 

(Ocean Optics, Largo FL, USA) with high spectral resolution (Full width at half 

maximum ~0.3 nm) in the fluorescence emission range 650 nm–800 nm; (ii) 

FLAME S (Ocean Optics, Largo FL, USA) covering the full range of Visible-

Near Infrared (Full width at half maximum ~1.7 nm). The spectrometer 

entrance-slit was split to two optical fibers that led to a cosine receptor 
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measuring the downwelling radiance and a bare fiber measuring the canopy 

upwelling radiance. The spectrometers were housed in a thermally regulated 

box, keeping the internal temperature constant at 20 °C in order to avoid 

dark current drift and spectral shifts related to temperature changes. The 

thermoelectric cooler (TEC) of the QEPro was set to 20 °C to control the back 

thinned CCD detector SNR (nominal SNR > 1000:1). Spectrometer 

integration time was optimized for each channel (down- and up-looking 

channels) at the beginning of each automatic measurement cycle and two 

associated dark spectra were systematically recorded. 

 

The FloX system was installed on a 10 m tall optical observation tower 

located in the vicinity of the eddy covariance (EC) tower. An upward facing 

fiber cable equipped with a cosine diffuser measured the down-welling 

irradiance, the up-welling radiance was measured with a bare fiber (25° field 

of view) pointing roughly North at a Holm Oak crown at about 2 m distance 

from the tower at a zenith angle of ca. 10°. From the measured spectra we 

retrieved sun-induced fluorescence in the red (O2-B band, 687 nm) and far-

red (O2-A band, 760 nm) regions, referred to as SIFB and SIF respectively, 

using both the improved Fraunhofer Line Depth (iFLD) and the spectral fitting 

method (SFM) (Meroni et al., 2009). SIF and SIFB retrieved with iFLD and 

SFM were extremely similar (Supplementary Table S3.1), and therefore in 

the article we present only the iFLD, as it is less sensitive to noise than other 

retrieval methods (Cendrero-Mateo et al., 2019). The integrated SIF (SIF660-

840) was calculated as: SIF660-840 = 39.2435 * SIFB + 83.6814 * SIF following 

Moreno et al. (2015) who empirically approximated the shape of the 

fluorescence emission spectra with a double gaussian regression. We applied 

a filter to remove measurements that were taken at high solar zenith angles 

(SZA < 50), which results in retrieval errors and nonlinear response of the 

cosine optics (Julitta et al., 2016). We computed a series of additional 

vegetation indices: the normalized difference vegetation index (NDVI), the 

near infrared reflectance of vegetation index (NIRV) (Badgley et al., 2017) 

and the photochemical reflectance index (PRI) (Gamon et al., 1997), derived 

from reflectance at 531 nm and 570 nm. Spectral measurements were taken 

at an interval of about 2 min, and then averaged over 1-hour periods. 

In order to reduce the effect of canopy structure on the fluorescence signal 

and to derive a more physiological proxy of fluorescence we calculated the 

escape probability of SIF (Fesc) following Zeng et al. (2019) (Equation 3.1). 

We used the method proposed by Zeng et al. (2019) as the assumption of 

high LAI and no contribution from the soil to the reflectance were met given 

the experimental design. 

           𝐹𝑒𝑠𝑐 =  
𝑁𝐼𝑅𝑉

𝑓𝐴𝑃𝐴𝑅
                                          (3.1) 

Fraction of absorbed photosynthetically active radiation (fAPAR) and absorbed 

photosynthetic active radiation (APAR) were estimated from incoming and 
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reflected radiance following Damm et al. (2010) and (Li & Moreau, 1996; 

Moreau & Li, 1996) (Equation 3.2).  

 

𝐴𝑃𝐴𝑅 = (𝑃𝐴𝑅𝑖𝑛𝑐 − 𝑃𝐴𝑅𝑟𝑒𝑓𝑙) × 𝑅𝐴𝑃𝐴𝑅                            (3.2) 

 

Where PARinc is the incoming photosynthetic active radiation and PARrefl is the 

reflected photosynthetic active radiation. RAPAR, which is the ratio of PAR 

absorbed by green canopy to the PAR absorbed by all surface materials was 

calculated as shown in Equation 3.3: 

 

 𝑅𝐴𝑃𝐴𝑅 = 0.105 − 0.323 × 𝑁𝐷𝑉𝐼 + 1.468 × 𝑁𝐷𝑉𝐼2                      (3.3) 

 

Total SIF (SIFtot) was calculated as in Equation 3.4: 

𝑆𝐼𝐹𝑡𝑜𝑡 =  
𝑆𝐼𝐹

𝐹𝑒𝑠𝑐
                                         (3.4) 

 

The light use efficiency of photosynthesis (LUEp) was calculated as in 

Equation 3.5: 

𝐿𝑈𝐸𝑝 =
𝐺𝑃𝑃

𝐴𝑃𝐴𝑅
                                        (3.5) 

 

Light use efficiency of fluorescence emission, LUEf was calculated as in 

Equation 3.6: 

𝐿𝑈𝐸𝑓 =
𝑆𝐼𝐹

(𝐴𝑃𝐴𝑅×𝐹𝑒𝑠𝑐)
                                  (3.6) 

 APAR was estimated in mW m-2 nm-1 sr-1 and was then converted to µmol m-

2 s-1 for the LUEp calculation in Fig. 3.3B. All data is presented at an hourly 

scale, except for Fig. 3.1, Fig. 3.2a-d and Supplementary Fig. S3.3 where 

midday means (between 11 and 13 UTC) are used. 

 

Leaf level active chlorophyll fluorescence and chlorophyll content 

Diurnal variation in active chlorophyll fluorescence was measured with a 

“MONI-PAM Multi-Channel chlorophyll Fluorimeter” (Walz, Effeltrich, 

Germany) composed of a data acquisition unit and five emitter-detector 

units. The system was equipped with solar panels as a power supply and 

operated in stand-alone mode. The five heads of the MONI-PAM were 

installed on south-facing branches of a Quercus ilex tree located within the 

EC footprint near the tree on which FloX measurements were performed 

(Supplementary Fig. S3.1e). Branches were accessed using a permanent 

scaffold, and measurements were performed on leaves flushed in 2018. 

Active fluorescence signals included instantaneous fluorescence and maximal 

fluorescence along with incident PAR and Tair, and were recorded at 10-

minute and one-hour frequencies, during the day- and night-time, 

respectively. For active fluorescence data, the hours from 11 to 16 were 

considered as the leaves measured by the MONI-PAM were shaded before 11 

as shown by the high ϕP and low NPQ values between 8 and 10 UTC 
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(Supplementary Fig. S3.4d,f). MONI-PAM data was used to derive NPQ, the 

yield of NPQ (ϕNPQ), the reversible component of NPQ (NPQr), the sustained 

component of NPQ (NPQs), and the yield of photochemistry (ϕP) according to 

Porcar-Castell (2011). The maximum value at night of quantum yield of 

photosystem II (ΦPmax), corresponding to the widely used Fv/Fm, was 

calculated according to Porcar-Castell (2011). For the calculation of NPQ, a 

reference maximum fluorescence (FmR) value was obtained during a period in 

which at night time the ΦPmax was 0.81, which is within the range of non-

stressed ΦPmax in Holm oak (Ogaya & Peñuelas, 2003). The yield of 

fluorescence (ϕF) was calculated as in Porcar-Castell et al. (2014). Relative 

light saturation of photosynthesis (x) is a scaling factor that describes the 

degree of photochemical impairment and was calculated following van der Tol 

et al. (2014). Details regarding the calculation of the MONI-PAM parameters 

can be found in the following R package developed by us 

(https://github.com/davidmartini90/pam). For the estimation of the 

parameters with the PAM we employed the prevailing assumption of perfect 

connectivity between PSII units (lake model assumption), which is still 

unclear whether is valid under stress (Porcar-Castell, 2011). The above 

parameters were obtained for each MONI-head and then averaged across all 

heads.  

 

A Soil Plant Analysis Development (SPAD) chlorophyll meter was used to 

estimate leaf chlorophyll status. SPAD measures transmittance of red (650 

nm) and infrared (940 nm) radiation through the leaf (Uddling et al. 2007). 

The SPAD measurements provide an indicator of chlorophyll content in 

relative units (SPAD values). SPAD values measured in Quercus ilex at the 

Majadas site have been found to strongly correlate (R2 = 0.91) with 

chlorophyll a+b obtained in the laboratory (Gonzalez-Cascon et al., 2017). 

SPAD measurements took place on the 20th July, 2018 (before the HW) and 

the 4th August, 2018 (during the HW), and were carried out on the tree 

measured with the FloX and the tree measured with the MONI-PAM. In each 

tree, two branches were measured (12 leaves per branch), dividing between 

current year leaves (new leaves) and previous year leaves (old leaves).  

 

Biometeorological parameters and carbon fluxes 

Biometeorological variables and surface gas exchange were measured at the 

site in the period June 2018 to July 2018. During this period the herbaceous 

layer was completely dry. Therefore, the fluxes measured were 

representative only of the tree functioning as shown by Perez-Priego et al. 

(2017), Perez‐Priego et al. (2018), and El-Madany et al. (2020) where EC 

derived water fluxes were compared to independent water fluxes of the 

herbaceous layer obtained with the lysimeters and sap flow measurements of 

the tree. An EC system consisting of a three-dimensional sonic anemometer 

(R3-50, Gill LTD, Lymington, UK) and an infrared gas analyzer (LI-7200, 
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Licor Bioscience, Lincoln, USA) was used to measure dry mixing ratios of CO2 

and H2O at a height of 15.5 m above ground. Shortwave incoming radiation 

(SWin, W m-2) and long wave outgoing radiation (LWout W m-2) were 

measured with a ventilated net radiometer (CNR4, Kipp and Zonen, Delft, 

Netherlands). Air temperature (Tair, °C) and relative humidity (rH, %) were 

measured with a combined Pt-100 temperature and capacitive humidity 

sensor (CPK1-5, MELA Sensortechnik, Germany).  Fluxes were computed 

using EddyPro version 6.2.0 (Fratini & Mauder, 2014) as described in El-

Madany et al. (2018). Quality check of the fluxes was accomplished according 

to Mauder and Foken (2011). The storage flux was computed using a vertical 

profile of CO2 according to Falge et al. (2001). The u*-threshold (~0.13 m 

s−1) was estimated according to Papale et al. (2006). The measured net 

ecosystem exchange (NEE) was partitioned into gross primary production 

(GPP) using both the nighttime partitioning (Reichstein et al., 2005) and 

daytime partitioning (Lasslop et al., 2010) methods as implemented in the 

REddyProc 0.7-1 R package (Papale et al., 2006). For the analysis we 

retained only data coming from measured NEE and latent heat data, or gap-

filled data with high confidence (i.e., quality flag 0 and 1 (Wutzler et al., 

2018)). In the main text only the GPP from the daytime partitioning 

technique is reported. We decided to use the GPP from the day-time 

partitioning because the GPP derived from night-time partitioning is noisier 

(e.g. (Lasslop et al., 2010)), particularly when measured NEE is relatively low 

as observed during the heat wave. GPP-SIF and the GPP-VPD relationships 

were consistent independently to the CO2 flux partitioning method 

(Supplementary Table S3.2, Supplementary Table S3.3), as well as the 

method used for retrieval of SIF (Supplementary Table S3.3, Supplementary 

Table S3.1).  

The EC and biometeorological data were averaged at hourly temporal 

resolution in order to smooth the effect of the random error on the 

measurements (Damm et al., 2010). Evapotranspiration (ET) was obtained 

from latent heat flux measurements, the surface conductance (gs) was 

obtained by inverting the Penman-Monteith equation (Beven, 1979). 

Aerodynamic resistance was removed before the calculation of gs using Thom 

(1972) as implemented in the bigleaf R package (Knauer et al., 2018). 

 

Statistical analysis 

Significant differences in Fig. 3.2 were calculated with an Analysis of variance 

(ANOVA) (Girden, 1992). In order to test differences in the slope of the NPQ-

VPD relationship between the pre-HW period and the HW period (Fig. 3.4c) 

an analysis of covariance (ANCOVA) was used (Rutherford, 2001). 

Regressions were performed with linear ordinary least squares and second 

degree polynomial regression. Selection of the regression method was based 

on lowest Akaike information criterion. 
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3.4 Results 

Effect of the heatwave on SIF, NDVI and NIRV 

During the HW we observed an increase of 7.2 °C and 22 hPa in daily mean 

Tair and VPD, respectively (Fig. 3.1a), compared to the pre-heatwave period 

(pre-HW, i.e., 7 days before the heatwave). The 5-days average of daily 

maximum Tair and VPD of 43.2 °C and 76.1 hPa, respectively, showed a 

substantial positive anomaly compared to what has been measured at the 

site since 2004 (Supplementary Fig. S3.2). As the HW was caused by a 

Saharan air intrusion (Sousa et al., 2019), which is usually accompanied by 

higher than average dust levels, we observed a 4.9% mean decrease in SWin 

(p < 0.01), and therefore also PAR. After the HW the SWin returned to the 

initial values. As a consequence of heat stress, LWout increased by 7.2% (p < 

0.01) (Fig. 3.1b). The trees responded to the HW by decreasing 

photosynthesis (32.2% mean decrease of midday – between 11 and 13 UTC - 

GPP, p < 0.01) (Fig. 3.1c) and by sharply diminishing midday SIF (Fig. 3.1d). 

SIF normalized by PAR exhibited a massive decline, with a mean decrease of 

64.1% (p < 0.01) with respect to the pre-HW (Fig. 3.1d). Evapotranspiration 

did not significantly vary between the pre-HW and HW period (Fig. 3.1c) (p = 

0.129), but a gradual decline during the course of the HW was observed. 

Supplementary Fig. S3.5 shows a strong sensitivity of gs to VPD, with lower 

gs during the HW. The strong physiological response of the vegetation 

contrasted with the relative stability of two spectral indices, the NDVI and the 

NIRV (Fig. 3.1e,f), which can be considered indicators of vegetation canopy 

greenness. Both indices increased significantly (p = 0.02, p < 0.01 for NDVI 

and NIRV, respectively) with the HW, though their increment was modest: 

0.7% and 4.7% for NDVI and NIRV, respectively. Simulations with the Soil 

Canopy Observation, Photochemistry and Energy fluxes (SCOPE), a state-of-

the-art radiative transfer-photosynthesis coupled model, showed that this 

increase can be explained by increased diffuse radiation during the HW 

(Supplementary Fig. S3.6). 
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Fig. 3.1. Daily means of (a) air temperature (Tair), vapor pressure deficit 

(VPD), (b) shortwave incoming radiation (SWin), longwave outgoing radiation 

(LWout), (c) gross primary production (GPP) and evapotranspiration (ET), (d) 

sun-induced fluorescence at 760 nm (SIF) (mW m-2 nm-1 sr-1) divided by 

photosynthetic active radiation (PAR) (mW m2 sr-1) (SIF / PAR), (e) 

normalized difference vegetation index (NDVI), (f) near-infrared reflectance 

of vegetation (NIRV). Daily values in (a) to (f) are computed between 11 and 

13 UTC. The yellow rectangle represents the heatwave (HW) period. 

 

fAPAR and chlorophyll remain unaltered 

The HW did not cause statistically significant changes in fAPAR (p = 0.07) (Fig. 

3.2a), which remained stable around 0.49. Likewise, chlorophyll 

concentration estimated with SPAD (see Methods) did not show significant 

differences for both the leaves flushed in 2018 (p = 0.06) (Fig. 3.2e) and in 
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the previous year (p = 0.052) (Fig. 3.2f). APAR decreased (6.9% mean 

decrease) during the HW due to the reduction in PAR (5% mean decrease) 

(Fig. 3.2a,b). Fesc instead showed a modest, yet significant (p < 0.01), 

increase (from a mean value of 0.418 ± 0.011 during the pre-HW to 0.432 ± 

0.009 during the HW) (Fig. 3.2d). Due to the small change in Fesc, we could 

not definitively rule out a change in canopy structure during the HW, but it 

was clear from the negligible changes in vegetation indices and fAPAR that the 

response of Quercus ilex to extreme heat was primarily physiological, and 

only marginally structural. 

 

 
Fig. 3.2. Boxplot of (a) fraction of absorbed photosynthetic active radiation 

(fAPAR); (b) photosynthetic active radiation (PAR); (c) absorbed 

photosynthetic active radiation (APAR); (d) escape probability of SIF (Fesc); 

and (e), (f) values from Soil Plant Analysis Development (SPAD) chlorophyll 
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meter for old leaves (i.e. leaves flushed in previous years) and new leaves 

(i.e., leaves flushed in the 2018), respectively. The pre-heatwave (pre-HW) 

period values are in blue while heatwave (HW) period values in yellow. Daily 

values of fAPAR, PAR, APAR and Fesc are computed between 11 and 13 UTC. 

’**’ indicates p values p < 0.01 and ‘*’ indicates p < 0.05 according to an 

ANOVA test. No significant differences are observed in (a), (e) and (f). In the 

boxplot the thick lines represents the median and the lower and upper hinges 

correspond to the 25th and 75th percentiles. The upper/lower whiskers 

extend from the hinge to the largest/smallest value no further than 1.5 * 

inter-quantile range. 

Nonlinear GPP-SIF relationship at hourly time scale during the 

heatwave 

Our study revealed a clearly nonlinear relationship between GPP and SIF, 

when considering both the pre-HW and HW period. During the pre-HW period 

GPP and total SIFtot exhibited a positive relationship (R = 0.52, p < 0.01), 

while during the HW their relationship was negative (R = -0.36, p = 0.034) 

(Fig. 3.3a). This pattern was even more pronounced when the efficiencies of 

both processes were considered, as shown by the relationship between LUEp 

and LUEf (Fig. 3.3b, Supplementary Fig. S3.7). 

A similar pattern was observed at the leaf level, as the relationship between 

ϕP and ϕF was negative during the HW (R = -0.61, p < 0.01) and positive 

during the pre-HW period (R = 0.64, p < 0.01). During the pre-HW period 

the ϕP-ϕF relationship showed a clear hysteresis (Supplementary Fig. S3.8) 

as for the same ϕF, ϕP showed lower values in the morning and higher values 

in the afternoon. 

The relationship between GPP and indices such as NDVI, PRI, and NIRV 

(Supplementary Fig. S3.9) differed strongly from the one exhibited by GPP 

and SIF. PRI showed a strong linear relationship (R = 0.86, p < 0.01) with 

GPP (Supplementary Fig. S3.9a), which indicated the important role of NPQ 

dissipation during the HW. Moreover, NPQ and PRI were strongly correlated 

(Supplementary Fig. S3.10d), suggesting that, given the negligible changes 

in canopy structure, PRI was a good indicator of NPQ processes despite the 

different scales at which they were measured (leaf and canopy). NDVI 

showed no significant relationship with GPP (Supplementary Fig. S3.9b), 

while NIRV showed a negative relationship (R = -0.69, p < 0.01) 

(Supplementary Fig. S3.9c). The negative relationship could be explained by 

the fact that GPP reached its maximum in the early morning hours, while 

NIRV is at its minimum (Supplementary Fig. S3.11) due to directional effects 

under direct illumination.  
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Fig. 3.3. (a) Scatterplot between gross primary production (GPP) and 

fluorescence emission at 760 nm (SIFtot). (b) Scatterplot between light use 

efficiency of photosynthesis (LUEp) and light use efficiency of SIF emission 

(LUEff). In (b) the units of APAR for the LUEp calculation are µmol m-2 s-1, and 

the units of APAR for the LUEf calculation are mW m-2 nm-1 sr-1. (c) 

Scatterplot between yield of photochemistry (ΦP) and yield of fluorescence 

(ΦF). Blue points correspond to the pre-heatwave (pre-HW) period and 

yellow points correspond to the heatwave (HW) period. Hourly mean values 

in (a) and (b) are computed from 9 to 16 UTC and from 11 to 16 UTC in (c). 

The size of each point is proportional to the nonphotochemical quenching 

(NPQ). In each panel the Spearman's rank correlation coefficient (R) and p 

value are reported for the pre-HW and HW period. The black line is the 

overall fit from a second degree polynomial. Blue and yellow lines are linear 

regressions for the pre-HW and HW period respectively. The shaded area 

represents the 95% confidence interval of the fit. 

The overall nonlinear GPP-SIFtot relationship (Fig. 3.3a) was mirrored by a 

similar NPQ-SIFtot relationship (Fig. 3.4a), with NPQ measured at the leaf 

level. Even though the correlation between NPQ-SIFtot was not significant 

when the pre-HW and HW periods were considered on a separate basis, the 

overall nonlinearity departed from the expected negative relationship 

reported in previous publications which did not account for heat-stress 

(Magney et al., 2017). NPQ-GPP was instead remarkably linear (Fig. 3.4b), 

and its slope was not altered by the HW (slope pre-HW = -1.2, slope HW = -

0.98, p = 0.77), suggesting that the photosynthetic activity of Evergreen 

oaks was strongly controlled by the activity of the xanthophyll cycle. NPQ 

was correlated with VPD (R = 0.82, p < 0.01), but the slope of NPQ-VPD 

showed a decreasing trend during the HW period (Fig. 3.4c) (slope pre-HW 

=0.064, slope HW = 0.039, p = 0.053). The diurnal cycles of NPQ showed in 

fact marked differences before and after the HW, with NPQ reaching a 

plateau in the afternoon of the HW period (Fig. 3.5a). In the same period 



Chapter 3 

79 
 

LUEf exhibited a strong increase, highlighting changes in energy allocation 

during the HW. Additionally, the ΦPmax and the LUEp during the HW were 

strongly downregulated (Supplementary Fig. S3.3a,b, Fig. 3.5b), alongside 

the accumulation NPQs ( Supplementary Fig. S3.3c,d).  

 

 

Fig. 3.4. (a) Scatterplot between nonphotochemical quenching (NPQ) and 

fluorescence emission at 760 nm (SIFtot). (b) Scatterplot between NPQ and 

gross primary production (GPP). (c) Scatterplot between NPQ and vapor 

pressure deficit (VPD). Blue points correspond to the pre-heatwave (pre-HW) 

period and yellow points correspond to the heatwave (HW) period. Hourly 

mean values are computed from 10 to 16 UTC. In each panel the Spearman's 

rank correlation coefficient (R) and p value are reported for the pre-HW and 

HW period. The black line is the overall fit from a second degree polynomial. 

The shaded area represents the 95% confidence interval of the fit. 
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Fig. 3.5. Mean daily cycles for (a) nonphotochemical quenching (NPQ) (b) 

light use efficiency of photosynthesis (LUEp) and (c) light use efficiency of SIF 

emission (LUEf). Blue points correspond to the pre-heatwave (pre-HW) period 

and yellow points correspond to the heatwave (HW) period. Error bars 

correspond to 1 standard error. 

NPQ, ϕP and ϕF plotted against x showed strong differences between the HW 

and pre-HW period (Fig. 3.6a,c,e). For x values higher than 0.75 NPQ-x was 

significantly positive in the pre-HW period (R = 0.61, p < 0.01), but showed 

a negative relationship during the HW (R = -0.32, p < 0.01) (Fig. 3.6b). The 

ΦNPQ shows a similar saturation although less extreme than NPQ for high 

levels of x (Supplementary Fig. S3.12a,b). ϕP-x presented a consistent 

negative relationship, but its slope became steeper during the HW (slope of -

5.9 and -6.5, for pre-HW and HW respectively, p < 0.01) (Fig. 3.6d), 

meaning that for the same x, ϕP decreases more during the HW. ϕF-x was 

negative during the pre-HW (R = -0.47, p < 0.01), but positive during the 

HW (R = 0.57, p < 0.01) (Fig. 3.6e). Taken together, this means that during 

the HW at high levels of light saturation, NPQ decreased, ϕP decreased faster 

than usual and ϕF increased. 
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Fig. 3.6. (a,b) Scatterplot between nonphotochemical quenching (NPQ) and 

relative light saturation of photosynthesis (x). The red dashed line and solid 

gray line represent the NPQ-x fit for the drought stressed plants and non-

stressed plants, respectively, from van der Tol et al. (2014). (c,d) Scatterplot 

between yield of photochemistry (ΦP) and x. (e,f) Scatterplot between yield 

of fluorescence (ΦF) and x. Blue points correspond to the pre-heatwave (pre-

HW) period and yellow points correspond to the heatwave (HW) period. 

Hourly mean values with x > 0.75 are shown in (b, d, f). In (a, c, e) the lines 

are a local polynomial regression. In (b, d, f) the lines represent linear 

regression and the Spearman's rank correlation coefficient (R) and p value 

are reported for the pre-HW and HW period. The shaded area represents the 

95% confidence interval of the fit. 
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3.5 Discussion 
 

Previous research has highlighted the need to better understand the 

relationships between photosynthesis, fluorescence, and NPQ under extreme 

stress conditions, in order to be able to better exploit proximal and/or remote 

sensing estimates of SIF for carbon cycle research (van der Tol et al., 2014; 

Wohlfahrt et al., 2018). Our study examined the effect of the HW on the GPP-

SIF relationship in evergreen broadleaved trees, under no major changes in 

canopy structure. Our results show that the HW caused nonlinearity in the 

overall relationship (i.e., when considering both the pre-HW and HW period 

together) between photochemistry and fluorescence at both canopy and leaf 

scale. We observed a saturation of NPQ at high temperatures, and a change 

in energy allocation towards fluorescence emission, thus leading to the GPP-

SIF nonlinear relationship when considering both the pre-HW and HW period. 

Additionally, current state-of-the-art radiative transfer and photosynthesis 

models such as SCOPE are unable to model NPQ at the level of stress 

experienced in this study, suggesting that improved parametrizations are 

required to correctly model NPQ and SIF during extreme events. 

  

Unraveling the mechanism behind GPP-SIF nonlinearity in response 

to heat stress: the role of NPQ. 

We show that in Mediterranean evergreen broadleaved trees SIF responded 

to the extreme heat stress (Fig. 3.1d), indicating that SIF reflects changes in 

photosynthesis even in absence of large changes in APAR and chlorophyll 

content. There is a current debate on the information content of SIF and the 

GPP-SIF relationship with two different positions (Dechant et al., 2020): the 

first is that SIF contains both information about canopy structure but also 

physiological modulation of photosynthesis, the second is that SIF and GPP-

SIF is mainly determined by structural changes. In this study we show that 

even with minimal changes in canopy structure (APAR and chlorophyll 

content) we observe a relationship between SIF-GPP, therefore challenging 

the studies suggesting that SIF-GPP is mainly determined by structure (Yang 

et al., 2018). For comparison we show that NDVI and NIRV, two vegetation 

indices that contain information about vegetation structure, are limited at this 

time scale where both directional effects and diffuse radiation do not allow 

tracking photosynthesis (Supplementary Fig. S3.9b,c). It is worth noting that 

we cannot completely rule out subtle changes in canopy architecture, which 

might be caused by slight changes in leaf angle distribution (Gratani & 

Bombelli, 2000; Migliavacca et al., 2017) or chloroplast movements (Van 

Wittenberghe et al., 2019). However, the variations in Fesc (Fig. 3.2d) and 

other structural parameters seem extremely modest (Fig. 3.1e,f). 

Additionally, more diffuse radiation during the HW could have increased LUEp 

or affected the reflectance. Still, reflectance based indices would be only 

marginally affected by higher diffuse radiation according to simulations with 
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the SCOPE model (Supplementary Fig. S3.6). Moreover, the retrieval of SIF is 

more uncertain during the HW because of the lower signal to noise ratio, 

which might explain the higher correlation during the HW of the ΦF- ΦP (leaf 

scale) relationship than the LUEf-LUEp relationship (Fig. 3.3b,c). 

This study confirms that GPP-SIF is influenced by NPQ, which is the dominant 

dissipation pathway during the progression of the HW. NPQ, which is 

observed with active fluorescence, can also be sensed at top of canopy with 

PRI (Supplementary Fig. S3.10d); the tight relationship between GPP and PRI 

(Supplementary Fig. S3.9a) suggests the need of combining SIF and PRI for 

accurate GPP predictions under extreme heatwaves. 

Leaf- and canopy-level observations agree remarkably well (Fig. 3.3), 

indicating that some features of the leaf level photosynthesis-fluorescence 

relationship manifest at the canopy level under the extreme heat stress 

experienced. This result calls for a more widespread combination of active 

and passive fluorescence measurements for explaining the partitioning of 

energy between NPQ, ϕP, and ϕF, and how this is reflected in the GPP-

fluorescence relationship. In order to do that, more analysis would be 

required to understand how the assumptions employed when estimating PAM 

parameters (such as connectivity between PSII units) are affected at 

seasonal scale or by stress (Porcar-Castell, 2011). 

NPQ exhibits a complex behavior during the HW. NPQ shows a strong 

response to VPD (Fig. 3.4c), indicating that stomatal closure may have been 

a process that triggered an increased dissipation of the excess energy 

through the NPQ mechanism. However, under high VPD (e.g., in the 

afternoon of the hotter days) the response of NPQ saturates – indicating that 

the temporal kinetics of stomata and the light reactions can decouple during 

heatwave events (Meinzer et al., 2017). The apparent link between NPQ and 

stomatal conductance, also suggested in previous research (Medrano et al., 

2002; van der Tol et al., 2009a) and exploited through remote sensing with 

the PRI (Suárez et al., 2008; Yang, JC et al., 2020) needs to be further 

investigated. In particular it would be required to establish a process-based 

understanding of the relationship between stomatal conductance, NPQ and 

SIF to correctly use SIF as proxy for transpiration. Under typical high 

illumination conditions ϕP and ϕF are positively correlated (Porcar-Castell et 

al., 2014). This “NPQ-phase” is what is generally observed in most studies, 

which linearly relate GPP and SIF (Damm et al., 2010; Yang et al., 2015) and 

is also representative of the pre-HW period. During the HW, plants do not 

have the capacity to adjust to unfamiliar climatic conditions and NPQ 

saturates, pushing the plant to the “NPQ-saturation phase” (van der Tol et 

al., 2014; Magney et al., 2020). In this phase, NPQ saturates early in the day 

(Fig. 3.5a), leaving the photosystems without sufficient protection to cope 

with excess energy.  

We propose that the mechanisms responsible for the observed GPP-SIF 

overall nonlinearity under high heat stress are shifts in energy allocation 



Chapter 3 

84 
 

towards fluorescence emission (Fig. 3.5c), as the plants are pushed by the 

extreme stress to the NPQ-saturation phase. This would be caused by NPQ 

saturation and sustained photoinhibition. NPQ might saturate, if limited by its 

xanthophyll pool size, which has a turnover time of several days (Demmig et 

al., 1988). Sustained photoinhibition is clearly demonstrated by decrease in 

ΦPmax and increase in NPQs (Supplementary Fig. S3.3) and may be also partly 

caused by damage of reaction centers (Porcar-Castell et al., 2008). 

 

State-of-the-art radiative transfer and photosynthesis models cannot 

reproduce NPQ at high levels of stress 

The fluorescence parameterization in the state-of-the-art radiative transfer 

and photosynthesis models, such as SCOPE, are based on the relationship 

between the relative light saturation of photosynthesis and NPQ (Fig. 3.6a). 

van der Tol et al. (2014) reported this relationship for a variety of conditions 

but not for the heat stress described in our study. Magney et al. (2020) 

indicates that there is only sparse evidence that under high stress conditions 

(high NPQ), an increase in ΦF can occur; therefore, more studies are needed 

to better interpret GPP-SIF relationship. With our study we fill this gap and 

we show that the current parameterization of models such as SCOPE, that 

are used to derive photosynthesis products from fluorescence measurements, 

including for current and future satellite missions, do not represent the NPQ 

response at the level of stress observed in our study (Fig. 3.6a,b). In fact, 

neither the NPQ levels reached in this study nor the observed nonlinearity of 

NPQ-x relationship are reproduced by the model (Fig. 3.6a). Hence, the 

model would not be able to describe the NPQ-saturation phase that led to 

overall nonlinear response between SIF-GPP. This lack of description of the 

NPQ-saturation phase under extreme heat stress by SCOPE has to do with 

the fact that there is shortage of data constraining the process (van der Tol 

et al., 2014; Magney et al., 2020). The increasing availability of continuous 

passive and active fluorescence data, alongside NPQ estimates in multiple 

experimental sites will provide the data to constrain the model 

parameterization under different conditions, including during extreme events. 

Our results call for an improvement of the parameterization of the 

relationship between the relative light saturation of photosynthesis and the 

NPQ process in radiative transfer and photosynthesis models. By doing so, we 

will likely improve the representation of GPP-SIF under extreme conditions 

with important implications for the exploitation of ground based and satellite 

measurements to monitor photosynthetic performance of the vegetation.  

 

Uncertainties related to footprint mismatch and leaf-canopy scaling. 

The difference between the radiometric and the eddy covariance footprint is a 

common source of uncertainty when analyzing time series of spectral data 

and eddy covariance flux data. To minimize this uncertainty, the experiment 

was designed in a way that the FloX system and the MONI-PAM are installed 
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within the eddy covariance footprint climatology (Supplementary Fig. S3.1e), 

and the selected trees are representative of the trees in the footprint. 

Moreover, as the herbaceous vegetation in summer was completely 

senesced, the GPP signal is dominated by the photosynthesis of the Quercus 

ilex trees sampled (Perez‐Priego et al., 2018; El-Madany et al., 2020). 

Another source of uncertainty is the mismatch between leaf-scale and 

canopy-scale measurements. To minimize the scale mismatch we sampled 

with the MONI-PAM and the FloX similar portions of the canopy of the two 

trees; that is the southern part of the canopy and external part of the crown. 

The sunlit leaves at the south side of the tree crown were sampled with the 

MONI-PAM because representatives of the area of the crown that is in the 

field of view of the FloX. In this analysis we showed 15 days with stable 

structure of the canopy (no substantial changes in NDVI and SPAD). The 

stability of vegetation structure guarantees that in the rather short period 

analyzed there are no artifacts affecting the leaf to canopy scaling due to 

changes in leaf area or pigments. The good relationship we found between 

NPQ measured at leaf level and the PRI (Supplementary Fig. S3.10d) is for 

instance an indicator of good comparability between leaf level and canopy 

scale measurements. 

 

Concluding remarks 

In sum, the present study shows that under severe heatwaves strong GPP-

SIF nonlinearities are possible even in the absence of large changes in 

canopy structure. While a linear GPP-SIF relationship is expected in most 

conditions and driven by NPQ at the seasonal scale, under extreme stress a 

shift in energy allocation can occur. Our results can help improving the 

parameterization of the response of fluorescence to extreme events and in 

this way pave the way toward a more robust use of SIF for monitoring GPP 

under projected future climatic conditions characterized by increases in both 

frequency and severity of heatwaves (Bernstein et al., 2008).  
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Supplementary Information 

 
Supplementary Fig. S3.1. (a) Picture of the eddy covariance tower. (b) 

Picture of the radiometric tower. (c,d) picture of the MONI-PAM system. (e) 

Satellite picture of the experimental site at Majadas de Tiétar. The eddy-

covariance tower, the tree measured by the radiometric tower and the tree 

measured by the MONI-PAM are highlighted. The blue circle represents the 

footprint climatology of the eddy covariance tower, here defined as the 

isoline corresponding to 80% of the total flux footprint contributions. 
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Supplementary Fig. S3.2. 2D kernel density estimation of daily maximum 

air temperature (Tair) and daily maximum vapor pressure deficit (VPD) from 

2004 to 2018 in the months of June, July and August at the Majadas de 

Tiétar site in blue, and in red for the 2018 heatwave. The red dots 

correspond to the daily maximum Tair and VPD during the 2018 heatwave. 
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Supplementary Table S3.1. Spearman's rank correlation coefficient (R) and 

p value between compared variables. Slope and intercept are obtained with 

total least square regression. SIFifld is obtained from the Improved Fraunhofer 

Line Discrimination Method (ifld) and SIFsfm is obtained with the spectral 

fitting method (SFM).  

 

Compared variables (Y - 

X) R Slope Intercept p value 

SIFifld - SIFsfm 0.988 0.723 0.22 < 0.01 
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Supplementary Fig. S3.3. (a) Scatterplot between the maximum value at 

night of quantum yield of photosystem II (ΦPmax) (correspondent to the 

widely used Fv/Fm) and daily means of SIF. (b) Scatterplot between ΦPmax 

and daily means of VPD. (c) Scatterplot between daily means of the 

sustained component of the nonphotochemical quenching (NPQs) and sun-

induced fluorescence at 760 nm (SIF). (d) Scatterplot between daily means 

of NPQs and vapor pressure deficit (VPD). Yellow points correspond to the 

pre-heatwave (pre-HW) period and blue points correspond to the heatwave 

(HW) period. Daily mean values in (a) to (d) are computed between 11 and 

13 UTC. In each panel the Spearman's rank correlation coefficient (R) and p 

value are reported for the overall data. The black line is the overall fit from a 

linear regression. The shaded area represents the 95% confidence interval of 

the fit. 
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Supplementary Fig. S3.4. Mean daily cycles for (a) light use efficiency of 

photosynthesis (LUEp), (b) light use efficiency of SIF emission (LUEf), (c) 

relative light saturation of photosynthesis (x), (d) yield of photochemistry 

(ΦP), (e) yield of fluorescence (ΦF) and (f) nonphotochemical quenching 

(NPQ). Blue points correspond to the pre-heatwave (pre-HW) period and 

yellow points correspond to the heatwave (HW) period. Error bars correspond 

to 1 standard error. The shaded gray bar highlights the hours (UTC + 0) 

between 9 and 16. 
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Supplementary Table S3.2. Spearman's rank correlation coefficient (R) and 

p value between compared variables. Gross primary production from day 

time partitioning (GPPDT) is obtained according to Lasslop et al. (2010) and 

GPP from night time partitioning (GPPNT) is obtained according to Reichstein 

et al. (2005). HW refers to the heatwave period and pre-HW refers to the 

days before the HW. 

Compared variables (Y - 

X) Period R p value 

GPPDT - SIFtot HW -0.36 0.0342 

GPPDT - SIFtot pre-HW 0.522 < 0.01 

GPPNT - SIFtot HW 0.075 0.672 

GPPNT - SIFtot pre-HW 0.314 0.0176 

  



Chapter 3 

93 
 

Supplementary Table S3.3. Spearman's rank correlation coefficient (R) and 

p value between compared variables. Slope and intercept are obtained with 

total least square regression. Gross primary production from day time 

partitioning (GPPDT) is obtained according to Lasslop et al. (2010) and GPP 

from night time partitioning (GPPNT) is obtained according to Reichstein et al. 

(2005). 

Compared variables (Y - 

X) R Slope Intercept p value 

GPPDT - VPD -0.928 -0.0549 5.45 < 0.01 

GPPNT - VPD -0.766 -0.0546 6.28 < 0.01 
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Supplementary Fig. S3.5. Scatterplot between surface conductance (gs) 

and vapor pressure deficit (VPD). Blue points correspond to the pre-heatwave 

(pre-HW) period and yellow points correspond to the heatwave (HW) period. 

Hourly mean values are computed from 9 to 16 UTC. The black line is the 

overall fit from a second degree polynomial. The shaded area represents the 

95% confidence interval of the fit. 
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Supplementary Fig. S3.6: Simulations with the Soil Canopy Observation, 

Photochemistry and Energy fluxes (SCOPE) model on the effect of diffuse to 

total radiation on normalized difference vegetation index (NDVI) in (a), near-

infrared reflectance of vegetation (NIRV) in (b), photochemical reflectance 

index (PRI) in (c) and sun-induced fluorescence at 760 nm (SIF) in (d). The 

range of diffuse to global radiation is consistent with what was observed at 

the Majadas de Tiétar site during the 2018 heatwave (HW). Simulations were 

performed with an air temperature (Tair) of 43°C. 
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Supplementary Fig. S3.7. (a) Scatterplot between light use efficiency of 

photosynthesis (LUEp) and light use efficiency of SIF emission (LUEf). (b) 

Scatterplot between nonphotochemical quenching (NPQ) and gross primary 

production (GPP). The days before the heatwave (pre-HW) and the days 

during the heatwave (HW) are differentiated by different color gradients. 

Paths connect consecutive observation in a given day. The color of the points 

and paths refers to the reversible component of the nonphotochemical 

quenching (NPQr). The size of the paths is proportional to the sustained 

component of the nonphotochemical quenching (NPQs). The hour (UTC) of 

the observations is also displayed. Hourly mean values are computed from 9 

to 16 UTC. The black line is the overall fit from a second degree polynomial in 

(a) and a linear regression in (b). The shaded area represents the 95% 

confidence interval of the fit. 
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Supplementary Fig. S3.8. Relationship between yield of photochemistry 

(ϕP) and yield of fluorescence (ϕF) for the pre-heatwave (pre-HW) period 

(circles) and for the heatwave (HW) period (triangles) between 11 to 16 UTC. 

Points are colored by the hour of the day (UTC). Linear regressions for the 

HW (yellow line) and pre-HW (blue line) is displayed. Spearman's rank 

correlation coefficient (R) and p value are reported for the pre-HW and HW 

period. The shaded area represents the 95% confidence interval of the fit. 
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Supplementary Fig. S3.9. (a) Scatterplot between gross primary 

production (GPP) and photochemical reflectance index (PRI).  (b) Scatterplot 

between GPP and normalized vegetation index (NDVI). (c) Scatterplot 

between GPP and near-infrared reflectance of vegetation (NIRV). Blue points 

correspond to the pre-heatwave (pre-HW) period and yellow points 

correspond to the heatwave (HW) period. Hourly mean values are computed 

from 9 to 16 UTC. In each panel the Spearman's rank correlation coefficient 

(R) and p value are reported for the pre-HW and HW period. The black line is 

the overall fit from a linear regression. The shaded area represents the 95% 

confidence interval of the fit. 
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Supplementary Fig. S3.10. (a) Scatterplot between yield of fluorescence 

(ΦF) and light use efficiency of SIF emission (LUEf). (b) Scatterplot between 

yield of photochemistry (ΦP) and light use efficiency of photosynthesis 

(LUEp). (c) Scatterplot between ΦF and sun-induced fluorescence integrated 

between 660 and 840 nm (SIF660-840). (d) Scatterplot between 

nonphotochemical quenching (NPQ) and the photochemical reflectance index 

(PRI). Blue points correspond to the pre-heatwave (pre-HW) period and 

yellow points correspond to the heatwave (HW) period. Hourly mean values 

are computed from 10 to 16 UTC. In each panel the Spearman's rank 

correlation coefficient (R) and p value are reported for the pre-HW and HW 

period. The black line is the overall fit from a second degree polynomial in (a) 

and a linear regression in (b,c,d). The shaded area represents the 95% 

confidence interval of the fit. 
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Supplementary Fig. S3.11. Hourly means of (a) vapor pressure deficit 

(VPD), (b) shortwave incoming radiation (SWin), (c) normalized difference 

vegetation index (NDVI), (d) near-infrared reflectance of vegetation (NIRV) 
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(e) light use efficiency of photosynthesis (LUEp), (f) light use efficiency of SIF 

emission (LUEff), (g) nonphotochemical quenching (NPQ), (h) yield of 

photochemistry (ΦP) and (i) yield of fluorescence (ΦF). 
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Supplementary Fig. S3.12. (a,b) Scatterplot between yield of 

nonphotochemical quenching (ΦNPQ) and relative light saturation of 

photosynthesis (x). Blue points correspond to the pre-heatwave (pre-HW) 

period and yellow points correspond to the heatwave (HW) period. Hourly 

mean values with x > 0.75 are shown in (B). In (a) the lines are a local 

polynomial regression. In (b) the lines represent linear regression and the 

Spearman's rank correlation coefficient (R) and p value are reported for the 

pre-HW and HW period. The shaded area represents the 95% confidence 

interval of the fit. 

 



4 Active and passive fluorescence 
measurements to interpret the interlink 
between remote sensing and transpiration 
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ABSTRACT 

Plant Transpiration (T), the water flux mediated by plant’s stomata, plays a 

pivotal role in the global water cycle and land-surface energy balance and 

represents a large fraction of evapotranspiration (ET), which contains also 

soil evaporation. Sun-Induced fluorescence (SIF), especially in far-red region 

(F760) has been proposed as a new remote sensing (RS) tool to estimate the 

latent heat flux related to plant’s transpiration (LEt) at ecosystem scale. The 

rationale used to justify SIF as a predictor of LEt is that stomatal opening is 

mediating both the photosynthetic and transpiration processes and SIF 

contains information on photosynthetic activity. Although SIF has been used 

to a) predict LEt, b) surface conductance (gs) and c) water use efficiency 

(WUE), the mechanistic relationship between SIF and LEt, gs and WUE is not 

clear and it is an active topic of research.  Our objectives are twofold: 1) 

Establishing a framework for RS based (especially through SIF) predictions of 

LEt and 2) understanding the mechanism behind this relationship. For the 

latter point we used not only SIF, but also pulse amplitude modulation (PAM) 

which provides additional information about the electron transport rate 

(ETR), nonphotochemical quenching (NPQ) and normalized steady state 

fluorescence (Fs/Fo) which are required to understand the physiological 

regulation of LEt and how it may be reflected at canopy scale on SIF.   

With a random forest approach, in which RS based and PAM derived 

predictors are included, we compare LEt predictions performed with three 

methods: 

a) Fully empirical approach; direct prediction of LEt. 

b) A semi-mechanistic hybrid modeling approach in which predictions of 

canopy conductance (gc) are used to reconstruct LEt through the 

Penman-Monteith approach. 

c) An efficiency based approach in which predictions of underlying water 

use efficiency (uWUE) are then applied to re-calculate LEt.  

We find that total F760 (F760,tot) has a stronger correlation with T than GPP 

across sites, as both F760,tot and LEt are driven to larger extent by APAR than 

GPP. Additionally, we find approach (a) and (b) to have similar predictive 

power across sites. Finally, the WUE approach had the lowest performance 

out of the three. In order to better understand the mechanistic relationship 

between SIF and LEt we highlight the importance of separating periods in 

which photosynthesis is stomatal or non-stomatically (i.e. carboxylation) 

limited from periods of low or no stress.  Overall, we find that during periods 

of photosynthetic limitations LEt is mostly predicted by NPQ and  SIF, 

whereas during periods of no stress we found LEt to be more energy driven 

and therefore more strongly predicted by APAR or surface temperature. 
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4.2 Introduction 
Plant Transpiration (T), the water flux mediated by plant’s stomata, plays a 

pivotal role in the global water cycle and land-surface energy balance and 

represents a large fraction of evapotranspiration (ET), which contains also 

evaporation of water from vegetation surfaces and soil evaporation (Jasechko 

et al., 2013). Plants transpire in order to lower leaf temperature through 

evaporative cooling, to access nutrients from the soil, to uptake water 

necessary to the metabolism and to uptake carbon dioxide (CO2), as the 

stomata allow for water vapor loss and CO2 uptake (Farquhar et al., 1980; 

Sterling, 2005). As stomata mediate both vegetation’s water and carbon 

fluxes, the processes of photosynthesis and transpiration are closely linked 

and the ratio of the latter and the former can be defined as water use 

efficiency (WUE) (Bonan et al., 2014). T and ET can also be expressed in 

terms of energy flux as latent heat flux of transpiration (LEt) and latent heat 

flux of evapotranspiration (LE), respectively, which is the notation used in 

this chapter. LE is limited by soil moisture and driven by meteorological 

variables such as air temperature (Tair), surface temperature (Tsurf), vapor 

pressure deficit (VPD) and solar radiation. Hydro-meteorological models, such 

as the Penman–Monteith (PM) approach (Beven, 1979), therefore 

approximate LE from Tair, wind speed, relative humidity, solar radiation and 

aerodynamic resistance, by estimating the evaporative demand by the 

atmosphere. The inversion of the PM equation can allow the calculation of the 

surface conductance (gs) e.g., the conductance of the surface (canopy and 

soil) to LE. By instead inverting the PM equation using LEt instead of LE it is 

possible to obtain the canopy conductance (gc) e.g., the conductance of the 

canopy to LEt. 

 LEt estimates at ecosystem scale can be obtained with various methods 

which include partitioning eddy covariance derived water fluxes (Nelson et 

al., 2018; Perez‐Priego et al., 2018), isotope mass budget measurements 

(Gibson & Edwards, 2002), and remote sensing (RS) estimates. RS estimates 

of LEt are often based on estimation of the evaporative cooling effect and use 

remotely sensed surface temperature and meteorological data to constrain 

transpiration with two-sources energy balance approaches e.g. (Burchard-

Levine et al., 2020). Sun-Induced fluorescence (SIF), especially in far-red 

region (F760) has been proposed as a new RS tool to estimate LEt at 

ecosystem scale (Lu et al., 2018; Damm et al., 2021). SIF is the radiation 

emitted by chlorophyll containing plants upon sun’s exposure and it is 

generally considered a good proxy of gross primary production (GPP) (Porcar-

Castell et al., 2014). Importantly, the relationship between GPP and SIF is 

not universal, and it is highly influenced by nonphotochemcal quenching 

(NPQ) (Martini et al. 2021), which represents the third major pathway of 

allocation of absorbed photosynthetic active radiation (APAR), besides 

photosynthesis and fluorescence emission. The rationale used to justify SIF 
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as a predictor of LEt is that stomatal opening is mediating both the 

photosynthetic and transpiration processes and SIF contains information on 

photosynthetic activity (Maes et al., 2020). Although SIF has been used to a) 

predict LEt (Lu et al., 2018), b) gs (Shan et al., 2019) and c) WUE (Pagán et 

al., 2019), the mechanistic relationship between SIF and LEt, gs and WUE is 

not clear (Damm et al., 2021) and it is an active topic of research. 

Our objectives are twofold: 1) develop a framework for RS based (especially 

through SIF) predictions of LEt using site-level data, and 2) understanding 

the mechanism behind this relationship using jointly passive proximal sensing 

and active fluorescence measurements. For the latter point we make use of 

SIF based and pulse amplitude modulation (PAM) based metrics such as the 

electron transport rate (ETR), NPQ and normalized steady state fluorescence 

(Fs/Fo) (Flexas & Medrano, 2002) which are crucial to understand the 

physiological regulation of LEt and how it may be reflected at canopy scale on 

SIF. We propose hypotheses related to mechanistic processes behind each of 

the approaches used in the literature to predict LEt from SIF and we test 

them in two different sites: first a temperate beech forest, and second a 

Mediterranean Savannah. 

  a) LEt-SIF;  predicting LEt directly from SIF has proven successful at coarse 

temporal and spatial scales (Maes et al., 2020). Spatially integrated retrievals  

of SIF every 16 days generally correlate well with APAR, as the changes in 

light use efficiency of fluorescence emission (LUEf) are smoothed out. We 

therefore hypothesize that F760, which generally correlates well with APAR, 

might be able to predict T well especially in ecosystems in which T is strongly 

energy driven. 

b) stomatal conductance-SIF; SIF may be used to predict gs (Shan et al., 

2021) or gc. As gc does not contain information on soil evaporation, and is 

physiologically controlled by plants, we expect a stronger relationship 

between SIF and gc than SIF and gs. Stomatal conductance is influenced by 

solar radiation, Tsurf, VPD (Katul et al., 2009) and hormones produced at the 

root level in response to soil drying, such as abscisic acid (ABA) (Omasa & 

Takayama, 2003). Many parameters obtained from PAM fluorimetry have 

been found to correlate with gc. Among these are ETR, NPQ, and normalized 

steady-state chlorophyll fluorescence (Fs/Fo) (Flexas et al., 2002). In 

particular, PAM related parameters can predict gc well only when stomatal 

limitations to photosynthesis or metabolic limitations to photosynthesis (non-

stomatal) are present (Medrano et al., 2002). According to Medrano et al. 

(2002) the value of gc can give insights into the level of photosynthesis 

limitation. In particular, gc > 0.4 mol H2O m-2 s-1 corresponds to periods of 

no stress.  In the gc range between 0.4-0.15 mol H2O m-2 s-1 (correspondent 

to mild-water stress) there are reductions in photosynthesis, but not in 

photorespiration. As the photorespiration process is also powered by electron 

transport (Flexas & Medrano, 2002), during water stress the reduction in ETR 

is comparably less than in photosynthesis. Metabolic limitations become more 
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important at gc values lower than 0.15 mol H2O m-2 s-1, especially if the 

stomata closure is also caused by high solar irradiance. The feedback 

mechanism from stress-induced stomata closure to metabolic limitation is 

mostly mediated by low internal CO2 concentration (Ci). Low Ci and the 

consequent relatively higher photorespiration increase transthylakoid pH, 

which in turn leads to increased NPQ and decreased fluorescence emission. 

We therefore expect that gc might be explained by Tsurf and PAM derived 

parameters (such as Fs/Fo, ETR and NPQ). 

c) WUE-SIF; Multiple works claim that SIF can predict several metrics of WUE 

including Transpiration efficiency (ratio of T and potential evaporation), 

Intrinsic WUE (WUEi), inherent WUE (IWUE) and underlying WUE (uWUE) 

(Lu, X et al., 2018; Pagán et al., 2019). In this work we investigate the SIF-

uWUE relationship as the uWUE metric is more related to physiological 

regulation of carbon uptake and water loss at sub-daily scale than other 

metrics (Zhou et al., 2014).  As uWUE takes into account VPD driven changes 

in ratio of internal CO2 concentration to atmospheric CO2 concentration 

(Ci/Ca), which in turn can impact ETR, NPQ and fluorescence emission (LUEf) 

we expect uWUE to be explained by ETR, NPQ, LUEf and Tsurf. This hypothesis 

is rather speculative, because not many works have linked canopy uWUE to 

ETR or NPQ and the link between SIF and uWUE has been so far analyzed 

empirically, without proposing a solid mechanistic basis for the found 

correlation (Lu, X et al., 2018).  

We believe that the inclusion of 2 different sites with distinct climatic 

conditions will allow us to test these hypotheses in a robust way, as we want 

to avoid to draw site-specific conclusions, but rather we are interested in 

understanding the SIF-LEt dynamics that emerge across sites. 

4.3 Materials and methods 
 
Study sites 

The study was conducted in two sites referred to as Majadas and Leinefelde. 

The Majadas site is a Mediterranean open woodland, a typical “Iberian 

Dehesa” in western Spain (39°56´024.68´´ N, 5°45´50.27´´ W; Majadas de 

Tiétar, Cáceres, Extremadura, FLUXNET site ES-LMa). The ecosystem is 

composed by an herbaceous layer and scattered evergreen broadleaved 

trees, mainly Quercus ilex L. subsp. ballota [Desf.] Samp. (Holm Oak). Trees 

fractional cover is ~20 %, while the average horizontal and vertical crown 

radius is 4.2 m (σ = 0.9 m) and 2.7 m (σ = 0.9 m), respectively (Pacheco-

Labrador et al., 2019b). 

 

The climate is Mediterranean, characterized by a hot and dry summer. The 

annual precipitation value is about 650 mm (falling mostly from autumn to 

spring), and mean annual temperature is 16 °C. 
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The study was conducted over the period June 2018 to August 2018, when 

the herbaceous layer is dry (Luo et al., 2018b; Luo et al., 2020) and the 

trees are the only active vegetation. From August 2 to August 6, 2018, the 

ecosystem experienced a heatwave (Barriopedro et al., 2020) with a 5 day 

average of daily maximum air temperature (Tair) of 43.2 °C and daily 

maximum vapor pressure deficit (VPD) of 76.1 hPa. Extensive site details are 

available in earlier publications (El-Madany et al., 2018). The days considered 

part of the heatwave are the 5 days from the 02-08-2018 to 06-08-2018 

according to (Sousa et al., 2019). The days considered pre-heatwave are the 

days from the 25-07-2018 to 01-08-2018.  

 

The Leinefelde site is a 130 year-old even-aged, pure Beech (Fagus sylvatica)  

stand, bordered by other even-aged Beech stands. It sits at an altitude of 

450 m, with an annual air temperature of 8°C for and an annual precipitation 

of 750 mm. It is  managed as a shelterwood system for maximum wood 

production and has been thinned regularly every 10–20 years (Anthoni et al., 

2004). The soil is characterised by a slightly thick loess cover, associated 

with a dominance of Luvisols. The maximum annual effective leaf area index 

as measured with an LAI-2000 plant canopy analyser (LI-COR Inc., Lincoln, 

NE, USA) was on average 4.2. The stand density is 224 m2, and the wood 

biomass (above and belowground is 237 t C ha-1). The maximum canopy 

height was about 35 m. 

 

Sun-induced fluorescence observations 

At both sites the spectral measurements were collected using the FloX (JB 

Hyperspectral Devices, Düsseldorf, Germany), a field spectrometer designed 

for continuous high-resolution spectral measurements for SIF retrieval with 

technical specifications in terms of spectral coverage, resolution and signal to 

noise ratio (SNR) coherent with the FLEX mission instrument specifications 

(Julitta et al., 2017). The FloX is equipped with two spectrometers: (i) QEPro 

(Ocean Optics, Largo FL, USA) with high spectral resolution (Full width at half 

maximum ~0.3 nm) in the fluorescence emission range 650 nm–800 nm; (ii) 

FLAME S (Ocean Optics, Largo FL, USA) covering the full range of Visible-

Near Infrared (Full width at half maximum ~1.7 nm). The spectrometer 

entrance-slit is split to two optical fibers that lead to a cosine receptor 

measuring the downwelling radiance and a bare fiber measuring the canopy 

upwelling radiance. The spectrometers are housed in a thermally regulated 

box, keeping the internal temperature constant at 20 °C in order to avoid 

dark current drift and spectral shifts related to temperature changes. The 

thermoelectric cooler (TEC) of the QEPro is set to 20 °C to control the back 

thinned CCD detector SNR (nominal SNR > 1000:1). The spectrometer 

integration time is optimized for each channel (down- and up-looking 

channels) at the beginning of each automatic measurement cycle and two 

associated dark spectra are systematically recorded. 
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The FloX system at the Majadas site was installed on a 10 m tall optical 

observation tower located in the vicinity of the eddy covariance (EC) tower. 

An upward facing fiber cable equipped with a cosine diffuser measured the 

down-welling irradiance, the up-welling radiance was measured with a bare 

fiber (25° FOV) pointing roughly North at a Holm Oak crown at about 2 m 

distance from the tower at a zenith angle of ca. 10°. The FloX system in the 

Leinefelde site was installed at the height of 43 m on the eddy covariance 

tower (8 m from the top of the vegetation). The upwelling radiance was 

measured by bare fibers installed on an arm at about 2m horizontal distance 

from the tower, pointing south at a zenith angle of about 10° at a single 

crown of Beech. Due to the close nature of the canopy, no contribution from 

the understory to the upwelling radiance measured by the FloX is considered. 

The down-welling radiance was measured with a cosine diffuser. 

 

From the measured spectra we retrieved SIF in the red (O2-B band, 687 nm) 

and far-red (O2-A band, 760 nm) regions, referred to as F687 and F760 

respectively, using both the improved Fraunhofer Line Depth (iFLD) and the 

spectral fitting method (SFM) (Meroni et al., 2009). F760 and F687 retrieved 

with iFLD and SFM are extremely similar, and therefore in the article we 

present only the iFLD, as it is less sensible to noise than other retrieval 

methods (Cendrero-Mateo et al., 2019). The integrated SIF (mW m-2 sr-1) 

(SIF660-840) was calculated as: SIF660-840 = 39.2435 * F687 + 83.6814 * F760 

following Moreno et al. (2015). We applied a filter to remove measurements 

that were taken at high solar zenith angles (SZA < 50), which results in 

retrieval errors and nonlinear response of the cosine optics (Julitta et al., 

2016). We computed a series of additional vegetation indices: the normalized 

difference vegetation index (NDVI), the near infrared reflectance of 

vegetation index (NIRV) (Badgley et al., 2017) and the photochemical 

reflectance index (PRI) (Gamon et al., 1997), derived from reflectance at 531 

nm and 570 nm. Spectral measurements were taken at an interval of about 2 

min, and then averaged over 1-hour periods. 

In order to reduce the effect of canopy structure on the fluorescence signal 

and to derive a more physiological proxy of fluorescence we calculated the 

escape probability of F760 (Fesc) following Zeng et al. (2019). The fraction of 

absorbed photosynthetically active radiation (fAPAR) and absorbed PAR (APAR) 

were estimated from incoming and reflected radiance following Damm et al. 

(2010), Li and Moreau (1996) and Moreau and Li (1996). Total F760, F760,tot 

(F760 / Fesc), light use efficiency of photosynthesis, LUEp (GPP / APAR) and 

light use efficiency of fluorescence emission, LUEf,760 (F760 / (APAR * Fesc)) 

were additionally calculated. APAR was estimated in mW m-2 nm-1 sr-1 and 

was then converted to µmol m-2 s-1 for the LUEp calculation. All data is 

presented at hourly scale. 
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Leaf level active chlorophyll fluorescence and chlorophyll content 

Diurnal variation in active chlorophyll fluorescence was measured by means 

of a MONITORING-PAM Multi-Channel chlorophyll Fluorimeter (MoniPam; 

Walz, Effeltrich, Germany) composed of a data acquisition unit (MONI-DA) 

and five emitter-detector units (MONI-head/485). The system was equipped 

with solar panels as power supply and operated in stand-alone mode. At the 

Majadas site five MONI-Heads were installed on south-facing branches of a Q. 

ilex tree located within the EC footprint and in close proximity to the tree on 

which FloX measurements were performed. Branches were accessed using a 

permanent scaffold, and measurements were performed on leaves flushed in 

2018. Active fluorescence signals included instantaneous fluorescence and 

maximal fluorescence along with incident PAR and Tair, and were recorded at 

10-minute and one-hour frequencies, during day- and nighttime, 

respectively. For active fluorescence data the hours from 11 to 16 were 

considered as the leaves measured by the MONI-PAM were shaded before 11 

as shown by the high ϕP and low NPQ values between 8 and 10 UTC. At the 

Leinefelde site 5 MONI-heads were placed on a platform attached to the eddy 

covariance tower at about 30 m. The MONI-head measured active 

fluorescence from 5 leaves that received direct light for the majority of the 

day (sunlit leaves). Data were used to derive NPQ, the reversible component 

of NPQ (NPQr), the sustained component of NPQ (NPQs), and the yield of 

photochemistry (ϕP) according to Porcar-Castell (2011). The yield of 

fluorescence (ϕF) was calculated as in Porcar-Castell et al. (2014). The 

maximum value at night of quantum yield of photosystem II (ΦPmax), 

corresponding to the widely used Fv/Fm, was calculated according to Porcar-

Castell (2011). Relative light saturation of photosynthesis (x) is a scaling 

factor that describes the degree of photochemical impairment and was 

calculated following van der Tol et al. (2014). The above parameters were 

obtained for each MONI-head and then averaged across all heads.  

 

A Soil Plant Analysis Development (SPAD) chlorophyll meter was used to 

estimate leaf chlorophyll status at the Majadas site. SPAD measurements 

took place on 20/07/2018 and 04/08/2018 and were carried out on the tree 

measured with the FloX and the tree measured with the MONITORING-PAM. 

In each tree, two branches were measured (12 leaves per branch), dividing 

between current year leaves (new leaves) and previous year leaves (old 

leaves). In Leinefelde a Dualex (Force-A, Orsay, France) was used to infer 

chlorophyll content of sunlit (at about 30 m height) and shaded leaves (at 

about 20 m height). Sixty leaves were measured on each field campaign 

which occurred on the following dates: 2019-07-12, 2019-07-31, 2019-08-

14, 2019-09-05, 2019-10-03. On the same dates CO2 response curves were 

performed with a LI-6800 Photosynthesis System on sunlit leaves. Maximum 

carboxylation rate (Vcmax) and maximum electron transport rate (Jmax) were 

obtained from the CO2 response curves with the R package “plantecophys”. 
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Biometeorological parameters, and carbon, water, and energy fluxes 

measurements 

Biometeorological variables and surface-atmosphere gas exchange were 

measured at the Majadas site in the period June 2018 to July 2018. During 

this period the herbaceous layer is completely dry. Therefore, the fluxes 

measured are representative only of the tree functioning (Perez-Priego et al., 

2017). An EC system consisted of a three-dimensional sonic anemometer 

(R3-50, Gill LTD, Lymington, UK) and an infrared gas analyzer (LI-7200, 

Licor Bioscience, Lincoln, USA) was used to measure dry mixing ratios of CO2 

and H2O at a height of 15.5 m above ground. Shortwave incoming radiation 

(Rg, W m-2) was measured with a ventilated net radiometer (CNR4, Kipp and 

Zonen, Delft, Netherlands). Air temperature (Tair, °C) and relative humidity 

(rH, %) were measured with a combined Pt-100 temperature and capacitive 

humidity sensor (CPK1-5, MELA Sensortechnik, Germany).   

The eddy covariance measurements at the Leinefelde site were carried out at 

44 m above the ground. The measurement system consisted of a three-

dimensional sonic anemometer (Solent R3, Gill Instruments Ltd., Lymington, 

UK) and a closed-path CO2/H2O infrared gas analyzer (LI-6262, LI-COR Inc., 

Lincoln, NE, USA) placed at the bottom of the instrument tower and 

connected to the gas inlet close to the anemometer by a 50 m long tube 

(Knohl et al., 2003). Data were synchronized and stored on a field computer 

using the ‘‘EddySoft’’ data acquisition software by O. Kolle (Max-Planck-

Institute for Biogeochemistry, Jena, Germany). The turbulent fluxes were 

recalculated in 2013 with version 4.1 of the ‘‘EddyPro’’ software (LI-COR Inc., 

Lincoln, NE, USA). 

 

Fluxes were computed using EddyPro version 6.2.0 (Fratini & Mauder, 2014) 

as described in El-Madany et al. (2018). Quality check of the fluxes was 

accomplished according to Mauder and Foken (2011). The storage flux was 

computed using a vertical profile of CO2 according to Falge et al. (2001). The 

u*-threshold (~0.13 m s−1) was estimated according to Papale et al. (2006). 

The measured net ecosystem exchange (NEE) was partitioned into gross 

primary production (GPP) using both the nighttime partitioning (Reichstein et 

al., 2005) and daytime partitioning (Lasslop et al., 2010) methods as 

implemented in the REddyProc 0.7-1 R package (Wutzler et al., 2018). In the 

main text only the GPP from the daytime partitioning technique is reported. 

For the analysis we retained only data coming from measured NEE data 

without any gap filling. The EC and biometeorological data were averaged at 

hourly temporal resolution in order to smooth the effect of the random error 

on the measurements (Damm et al., 2010) and to match the temporal 

aggregation of the FLoX measurements. 

 

SCOPE modelling 
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Simulations of carbon and water fluxes, SIF and PAM related parameters 

were performed with the SCOPE (Soil Canopy Observation, Photochemistry 

and Energy fluxes) model at both the Majadas and Leinefelde site (van der 

Tol et al., 2014). SCOPE is a vertical (1-D) integrated radiative transfer and 

energy balance model. Forward simulations were carried out at both the 

Majadas and Leinefelde site by providing time series of chlorophyll a+b 

content (cab), atmospheric vapor pressure (ea), Vcmax, Jmax, short and long 

wave incoming radiation (SWin and LWin respectively), leaf area index (LAI), 

atmospheric pressure (Pres), air temperature (Tair), horizontal wind speed (u) 

and solar zenith angle. At both the Leinefelde and Majadas sites ea, SWin, 

LWin, Pres, Tair and u were measured as described above and averaged at 

hourly scale. At the Majadas site cab was estimated from SPAD data, using a 

regression model calibrated at the site found to strongly correlate (R2 = 0.91) 

with chlorophyll a+b obtained in the laboratory (Gonzalez-Cascon et al., 

2017). Vcmax and Jmax were obtained by performing CO2 response curves on 

the 2018-07-20 with the LI-6800 Photosynthesis System and kept fixed at 

31.5 and 51.9 μmol m-2 s-1 respectively. At the Leinefelde site the cab and 

Vcmax time series was obtained by fitting the values measured at the 5 

campaigns (described above) with a local regression. For each site 2 

simulations were carried out. One with the default Kn-x parametrization (rate 

constant of nonphotochemical quenching to relative light saturation of 

photosynthesis) (van der Tol et al., 2014), and another one with a site 

specific Kn-x relationship parametrized at each site. 

 

Transpiration, conductance and uWUE 

LEt was obtained by partitioning total LE with the TEA algorithm (Nelson et 

al., 2018).  gc was obtained by inverting the Penman-Monteith equation by 

using LEt instead of LE, therefore obtaining a measure of canopy conductance 

which is not influenced by soil evaporation. Aerodynamic resistance was 

removed before the calculation of gc using Thom et al., (1972) implemented 

in the bigleaf R package (Knauer et al., 2018). gs was obtained by inverting 

the Penman-Monteith equation using LE. uWUE was obtained as specified in 

Zhou et al. (2014) (Equation 4.1). 

𝑢𝑊𝑈𝐸 =
𝐺𝑃𝑃×√𝑉𝑃𝐷

𝑇
                                       (4.1) 

 LEtgc was obtained by applying the Penman-Monteith approach using the 

predicted gc, whereas LEtgs was obtained by applying the Penman-Monteith 

approach using the predicted gs. Finally, LEtuWUE was obtained by inverting 

the uWUE calculation using the predicted uWUE. Internal leaf CO2 

concentration was obtained by inverting the Fick’s law (Lommen et al., 

1975). In the calculation of LEt, gs, gc and uWUE all rainy days, as well 2 

days following the rain events were removed. Following Medrano et al. 

(2002), we define photosynthesis to be metabolically limited when gc  < 0.05 

mol H20 m-2 s-1. Stomatal and metabolic limitations to photosynthesis 

correspond to gc < 0.15 mol H20 m-2 s-1 and gc > 0.05 mol H20 m-2 s-1. Mild 
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stress is defined as gc > 0.15 mol H20 m-2 s-1 and gc < 0.4 mol H20 m-2 s-1. 

Finally values of gc > 0.4 mol H20 m-2 s-1 are considered as periods of no 

stress. 

 

Statistical analysis 

We use a Random Forest model to predict hourly LEt, gc, gs, and uWUE. We 

used two sets of predictors: remote sensing only (RS) and RS + variables 

derived from PAM. RS predictors include F760,tot, APAR, LUEf, Tsurf and F687. 

PAM predictors include ETR, Fs/Fo and NPQ. These variables were selected to 

test the hypotheses described in the introduction. The predictive performance 

of the models was tested using a 10-fold cross-validation. The random forest 

was parametrized with 1000 trees, and the number of predictors randomly 

sampled at each tree (mytry) and the minimum number of data points in a 

node (min_n) were tuned according to the data within 10-fold cross 

validation framework. Variable importance of the predictors (VIP) was 

established by means of permutation random forest feature importance (Li et 

al., 2016). Importance values were scaled between 0 and 100. Note that the 

sum of the variables selected in permutation random forest feature 

importance is always higher than 100. The variable importance allows for 

ranking the most important predictors use in the regression analysis. Partial 

dependance plots (pdp) (Cutler et al., 2007) were performed for each 

random forest model. A pdp allows to visualize the marginal contribution 

(yhat) of each predictor to the outcome of the machine learning model and 

were computer using the DALEXtra R package (Maksymiuk et al., 2020). 

4.4 Results 
F760,tot presented a similar correlation with GPP in the Majadas site (R = 0.53, 

p < 0.01) and in the Leinefelde site (R = 0.55, p < 0.01) (Fig.  4.1). Instead 

red SIF (F687) performed better at the Leinefelde site (R = 0.75, p < 0.01), 

than at the Majadas site (R = 0.38, p < 0.01). The slopes of the linear 

regressions are very different for the two different sites, with Leinefelde 

showing higher slope compared to the Majadas sites, where measurements 

were collected during the dry period. The relationship between SIF and LE 

was more similar among sites than the relationship with GPP, but F760,tot 

showed higher total correlation (R = 0.68, p < 0.01) than F687 (R = 0.57, p < 

0.01) (Fig.  4.1). Finally, LEt presented a higher correlation than LE or GPP 

with F760,tot (R  = 0.71, p < 0.01), and with F687 (R = 0.59, p < 0.01) (Fig.  

4.1). Overall F760,tot showed to be better correlated with water fluxes (LE, T) 

than with gross carbon fluxes (GPP), especially at the Leinefelde site, which is 

characterized by higher variation in APAR and LAI.  F687 is instead better 

correlated to GPP than F760,tot.  
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Fig.  4.1. (a) Scatterplot between fluorescence emission at 760 nm (F760,tot) 

(F760 / Fesc) and gross primary production (GPP), latent heat flux (LE) and 

laten heat flux of transpiration (LEt). (b) Scatterplot between fluorescence at 

687 nm (F687) and GPP, LE and LEt. Violet points are from the Leinefelde site 

and yellow points are from the Majadas site. In each panel the Spearman's 

rank correlation coefficient (R) and p value are reported for the Majadas site, 

Leinefelde site and for the total dataset (in black). The blue line is the overall 

fit from a linear model. The shaded area represents the 95% confidence 

interval of the fit. 

The relationship between SIF in the A and B band as simulated by SCOPE 

(F760 SCOPE and F687 SCOPE respectively) and the simulated GPP (GPPSCOPE) 

(Supplementary Fig. S4.10) was quite different among the two sites; in the 

Leinefelde site the GPP-SIF relationship was very strong (R = 0.91, p < 0.01 

and R = 0.92, p < 0.01 for the GPPSCOPE-F760 SCOPE and for GPPSCOPE-F687 SCOPE 

respectively) (Fig. 4.2a,b). On the contrary, Majadas reported non-significant 

relationship for both GPPSCOPE-F760 SCOPE and for GPPSCOPE-F687 SCOPE (p = 0.55 

and p = 0.24 respectively). The relationship between the latent heat flux 

from SCOPE (LESCOPE) and SIF was quite comparable among sites for both 

F760 SCOPE (R= 0.78, p < 0.01 and R = 0.79, p < 0.01 for Majadas and 

Leinefelde respectively) and for F687 SCOPE (R= 0.83, p < 0.01 and R = 0.76, p 

< 0.01 for Majadas and Leinefelde respectively). Finally, the LEt-SIF 
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relationship was comparable with LE-SIF for Leinefelde (R= 0.8, p < 0.01 and 

R = 0.78, p < 0.01 for LEtSCOPE-F760 SCOPE and LEtSCOPE-F687 SCOPE respectively), 

but not for Majadas, that showed weaker relationships between LEt-SIF than 

in LE-SIF (R= 0.24, p < 0.01 and R = 0.15, p < 0.01 for LEtSCOPE-F760 SCOPE 

and LEtSCOPE-F687 SCOPE respectively) (Fig. 4.2a,b). 

In summary, according to SCOPE simulations, in the Leinefelde site the GPP-

SIF (irrespectively of wavelength) was the one that exhibited the higher 

correlation, followed by LEt-SIF and LE-SIF. Instead, in Majadas the GPP-SIF 

relationship was surprisingly not significant, and the LE-SIF had the higher 

correlation coefficient, followed by LEt-SIF. 

 

 

 
Fig. 4.2. (a) Scatterplot between sun-induced fluorescence at 760 nm as 

simulated from the SCOPE model (F760 SCOPE) and gross primary production 

from SCOPE (GPPSCOPE), latent heat flux from SCOPE (LESCOPE) and latent heat 

flux of transpiration from SCOPE (LEtSCOPE). (b) Scatterplot between 

fluorescence at 687 nm from SCOPE (F687 SCOPE) and GPPSCOPE, LESCOPE and 

LEtSCOPE. Violet points are from the Leinefelde site and yellow points are from 

the Majadas site. In each panel the Spearman's rank correlation coefficient 

(R) and p value are reported for the Majadas site, Leinefelde site and for the 

total dataset (in black). The blue line is the overall fit from a linear model. 

The shaded area represents the 95% confidence interval of the fit. 
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Fig. 4.3a shows that APARSCOPE and F760 SCOPE track LEtSCOPE (R = 0.73, p < 

0.01 and R = 0.71, p < 0.01 respectively) better than GPPSCOPE (R  = 0.51, p 

< 0.01).  A similar result is observed with the measured data, with F760,tot 

and APAR showing a stronger correlation with LEt (R = 0.71, p < 0.01 and R 

= 0.63, p < 0.01 respectively) than GPP (R = 0.48, p < 0.01) (Fig. 4.3b). 

 

 
Fig. 4.3. (a) scatterplot between the latent heat flux of  transpiration as 

modelled by SCOPE LEtSCOPE and the absorbed photosynthetic active radiation 

from SCOPE (APARSCOPE), gross primary production from SCOPE (GPPSCOPE) 

and sun-induced fluorescence at 760 nm from SCOPE (F760 SCOPE). (b) 

scatterplot between the latent heat flux of transpiration (LEt) and the 

absorbed photosynthetic active radiation (APAR), the gross primary 

production (GPP), and the total sun-induced fluorescence at 760 nm (F760,tot). 

For each panel the correlation coefficient (R) and the p value of the linear 

regression are reported. Both the Majadas site and the Leinefelde site are 

considered together. Points are colored by leaf temperature as modelled by 

SCOPE (Tleaf) in (a) and radiometric surface temperature (Tsurf) in (b). 

The relationship between ETR measured by PAM and F760 was positive, but 

quite different among sites, with much higher correlation in the Leinefelde 

site (R = 0.7, p < 0.01), than in the Majadas site (R = 0.37, p < 0.01) (Fig.  

4.4). In contrast, a much higher correlation was observed between ETR and 

APAR (R = 0.88, p < 0.01). LEt and ETR showed quite divergent relationship 

among sites (Fig.  4.4); if in the Leinfelde site the relationship was positive 

and significant (R = 0.76, p < 0.01), the Majadas site presented a non-
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significant relationship (R = 0.16, p = 0.21), suggesting how the LEt flux is 

likely much more energy driven in the deciduous Beech forest (Leinfelde), 

rather than in a Mediterranean Savannah (Majadas) where are more driven 

by water availability. Finally ETR and NPQ presented a linear relationship at 

both sites, but positive in Leinefelde (R = 0.77, p < 0.01) and negative at 

Majadas (R = -0.62, p <  0.01). Overall, the highly non-linear relationship 

suggests that at high levels of stress, such as those experienced in the 

Majadas site, ETR starts to decrease and NPQ becomes the more prominent 

dissipation pathway. 

 
Fig.  4.4. (a) Scatterplot between fluorescence at 760 nm (F760) and electron 

transport rate (ETR). (b) scatterplot between absorbed photosynthetic active 

radiation (APAR) and ETR. (c) scatterplot between the latent heat flux of 

transpiration (LEt) and ETR. (d) scatterplot between nonphotochemical 

quenching (NPQ) and ETR. Violet points are from the Leinefelde site and 

yellow points are from the Majadas site. In each panel the Spearman's rank 

correlation coefficient (R) and p value are reported for the total dataset (in 

black). The blue line is the overall fit from a linear model. The shaded area 

represents the 95% confidence interval of the fit. 

The relationship between the simulated electron transport rate (JaSCOPE) and 

F760 SCOPE was significant only in the Leinefelde site (R = 0.95, p < 0.01), 

while not-significant in the Majadas site (p = 0.06) (Supplementary Fig. S 

4.9a). The absorbed photosynthetic active radiation from chlorophyll 

molecules as simulated by SCOPE (APARcab SCOPE), which is frequently well 
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correlated with F760, had in Leinefelde a strong and positive relationship with 

JaSCOPE (R = 0.88, p < 0.01), but a negative relationship in Majadas (R = -

0.27, p < 0.01) (Supplementary Fig. S 4.9). The LEtSCOPE-JaSCOPE relationship 

had a similar correlation among sites (R= 0.81, p < 0.01 for Majadas and R 

= 0.75, p < 0.01 for Leinefelde), but significant different slopes and 

intercepts (p < 0.01 in both cases) (Supplementary Fig. S 4.9c). Finally, 

similarly to the measured data in (Fig.  4.4d), the simulated NPQ (NPQSCOPE) 

showed a negative relationship with JaSCOPE in Majadas (R = -0.47, p <  

0.01), but a positive relationship in Leinefelde (R = 0.72, p < 0.01) 

(Supplementary Fig. S 4.9d). 

 
The most important variables from the VIP when predicting T resulted to be 

F760,tot (VIP = 100), APAR (VIP = 84 for RS and VIP = 79 for RS + PAM) and 

ETR (VIP = 66.4) (Fig.  4.5a). When considering only a limited range of gc 

that corresponds to significant metabolic limitation to photosynthesis, the 

most important predictors changed, with Tsurf, APAR and NPQ being selected 

as the three most important (Supplementary Fig. S4.3). In terms of 

predictions (Table 1), using all the variables (RS + PAM) did not result in a 

large increase in R2 (R2 = 0.79 for RS + PAM and R2 = 0.77 for RS) or 

normalized root mean square (NRMSE) (NRMSE = 0.31 for RS + PAM and 

NRMSE = 0.37 for RS) (Fig.  4.5b,c) (Fig.  4.14a,b).  

 

 
Fig.  4.5. (a) Permutation random forest feature importance for the latent 

heat flux of transpiration (LEt), with two sets of predictors; remote sensing 

only (RS), in light blue, and RS and pulse amplitude modulation data (PAM), 

in red. RS predictors include F760,tot, APAR, LUEf, F760, Tsurf and F687. PAM 

predictors include ETR, Fs/Fo and NPQ. (b) scatterplot between observed LEt 

and LEt predicted by random forest with only RS predictors for the Majadas 

site (in yellow) and Leinefelde site (in violet) together. (c) scatterplot 

between observed T and T predicted by random forest with RS and PAM 

predictors for the Majadas site (in yellow) and Leinefelde site (in violet) 

together. Normalized root mean square error (NRMSE), coefficient of 
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determination (R2) and mean absolute errors (MAE) are calculated through 

10-fold cross validation for both (b) and (c). 

A partial dependence plot (pdp) of the LEt prediction model allows to 

understand the marginal effect (yhat) of multiple predictors on the predicted 

outcome of the random forest model (Cutler et al., 2007) (Fig. 4.6). It is for 

example possible to discern whether the relationship between a predictor and 

the predicted variable is linear or non-linear. Both APAR and F760tot showed a 

similar marginal contribution (Fig. 4.6a), with APAR being overall more 

marginally important (higher yhat values) in Leinefelde and with F760tot clearly 

showing higher importance in Majadas. The relationship of the predictors to 

the predicted outcome of LEt is not strictly linear in Majadas, with F760tot 

showing a saturation around 2 mW m2 nm-1 s-1. LUEf and ETR showed 

opposite patterns in their contribution, with higher contribution at low values 

of LUEf and higher values of ETR (Fig. 4.6b). In Majadas the LUEf clearly 

contributed more to the overall T prediction as shown by the higher yhat 

values (Fig. 4.6b). 

 
Fig. 4.6. Partial dependence plot (pdp) for the Transpiration (T) prediction 

model. (a) marginal effect (yhat) of fluorescence emission at 760 nm (F760,tot) 

and absorbed photosynthetic active radiation (APAR) on the predicted 
outcome of T. (b) marginal effect (yhat) of light use efficiency of fluorescence 
emission at 760 nm (LUEf) and electron transport rate (ETR) on the predicted 
outcome of T. In both panels the pdp is divided between the Majadas and 
Leinefelde site. 
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LE presented a very strong similarity in terms of variable importance in 

comparison with LEt. Indeed, the same predictors were selected with F760,tot 

(VIP = 100), APAR (VIP = 79 for RS; and VIP = 82 for RS + PAM), ETR (VIP 

= 62) and F687 (VIP = 53 for RS; and VIP = 67 for RS + PAM) (Fig.  4.7a). 

Also, the cross-validation metrics were similar to the one obtained from LEt 

(R2 = 0.74 for RS + PAM; and R2 = 0.76), although the normalized root 

mean square error was generally higher for LE (NRMSE = 0.36 for RS + PAM; 

and NRMSE = 0.44 for RS) (Fig.  4.7b,c) (Fig.  4.14c,d). 

 

 
Fig.  4.7. (a) Permutation random forest feature importance for latent heat 

flux (LE), with two sets of predictors; remote sensing only (RS), in light blue, 

and RS and pulse amplitude modulation data (PAM), in red. RS predictors 

include F760,tot, APAR, LUEf, F760, Tsurf and F687. PAM predictors include ETR, 

Fs/Fo and NPQ. (b) scatterplot between observed LE and LE predicted by 

random forest with only RS predictors for the Majadas site (in yellow) and 

Leinefelde site (in violet) together. (c) scatterplot between observed LE and 

LE predicted by random forest with RS and PAM predictors for the Majadas 

site (in yellow) and Leinefelde site (in violet) together. Normalized root mean 

square error (NRMSE), coefficient of determination (R2) and mean absolute 

errors (MAE) are calculated through 10-fold cross validation for both (b) and 

(c). 

The relationship between RS and PAM related variables with gc resulted to be 

highly dependent on the level of photosynthetic limitation (Fig.  4.8). The 

relationship between gc and APAR showed a low determination coefficient (R2 

= 0.11, p < 0.01) (Fig.  4.8a), whereas Tsurf presented the best overall 

determination coefficient (R2 = 0.61) (Fig.  4.8b), with a pronounced 

negative relationship during periods of only metabolic limitations and both 

stomatal and metabolic limitation to photosynthesis. Both passive 

fluorescence, in particular F760,tot, and active fluorescence such as Fs/Fo 

presented a similar relationship with gc with both R2 = 0.25 (p < 0.01) (Fig.  

4.8c,d). Especially at low values of gc both fluorescence metrics had a 
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steeper relationship which then tended to saturate especially for Fs/Fo. ETR 

did not show a significant relationship with gc (R2 = 0.01, p = 0.63) (Fig.  

4.8e). NPQ in contrast presented a steep negative relationship with gc during 

periods of stress, and saturation at higher levels of gc, with total R2 = 0.33 

(Fig.  4.8f).  

 
Fig.  4.8. (a) Scatterplot between absorbed photosynthetic active radiation 

(APAR) and canopy conductance (gc). (b) Scatterplot between surface 

temperature (Tsurf) and gc. (c) Scatterplot between total fluorescence at 760 

nm (F760,tot,  F760 / Fesc) and gc. (d) scatterplot between normalized steady 

state fluorescence (Fs/Fo) and gc. (e) scatterplot between electron transport 

rate (ETR) and gc. (f) scatterplot between nonphotochemical quenching 

(NPQ) and gc. Both the Majadas site and Leinefelde site are considered 

together. Colors represent different photosynthetic limitations; yellow 

represent metabolic limitations to photosynthesis, green represents stomatal 

and metabolic limitations to photosynthesis, blue represents mild stress and 

violet represents period of no stress. Lines are regression from a Gaussian 
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process model and shaded areas represent 95% confidence interval of the 

Gaussian process.  

Unlike LEt or LE, variables importance for the gc variables showed a clear 

dominant predictor: Tsurf was by far the most important predictor of gc (VIP = 

100 for both RS and RS + PAM) (Fig.  4.9a). The second predictor was F687 

(VIP = 40.6 for RS and VIP = 45.6 for RS + PAM) and the third was Fs/Fo 

(VIP = 36.6). When plants’ photosynthesis is metabolically limited the most 

important predictors shift to F760,tot, Tsurf and Fs/Fo (Supplementary Fig. 

S4.5). This change in predictors indicates the dynamic natures of gc, which 

appears to be more physiologically controlled during periods of stress. In 

terms of predictive power (Table 1), reconstructing LEt from gc through the 

Penman-Monteith approach yielded very similar results to predicting LEt 

directly. Using only RS predictors resulted in NRMSE = 0.38 and R2 = 0.76, 

whereas the RS + PAM approach lead to slightly lower NRMSE (NRMSE = 

0.32) and R2 = 0.79 (Fig.  4.9b,c) (Fig.  4.14e,f). 

 

 
Fig.  4.9. (a) Permutation random forest feature importance for canopy 

conductance (gc), with two sets of predictors; remote sensing only (RS), in 

light blue, and RS and pulse amplitude modulation data (PAM), in red. RS 

predictors include F760,tot, APAR, LUEf, F760, Tsurf and F687. PAM predictors 

include ETR, Fs/Fo and NPQ. (b) scatterplot between observed LEt and LEt 

calculated from predicted gc through the Penman-Monteith approach (LEtgc). 

gc is predicted  by random forest with only RS predictors for the Majadas site 

(in yellow) and Leinefelde site (in violet) together. (c) scatterplot between 

observed LEt and LEt calculated from predicted gc through the Penman-

Monteith approach. gc is predicted  by random forest with RS and PAM 

predictors for the Majadas site (in yellow) and Leinefelde site (in violet) 

together. Normalized root mean square error (NRMSE), coefficient of 

determination (R2) and mean absolute errors (MAE) are calculated through 

10-fold cross validation for both (b) and (c). 
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The pdp of the gc prediction model shows a somewhat linear relationship 

between the predictors F687, Tsurf and the predicted outcome of gc in 

Leinefelde, where higher values of F687 and lower values of Tsurf had higher 

marginal contribution to the random-forest model (Fig. 4.10a). In Majadas 

Tsurf resulted to be much more important than F687 (Fig. 4.10a). ETR and NPQ 

in Leinefelde showed a positive relationship (higher values correspond to 

higher marginal contribution to the prediction), whereas in Majadas ETR 

showed a strongly nonlinear and marginal contribution, with NPQ, especially 

at lower values, being much more important for gc prediction (Fig. 4.10b). 

 
Fig. 4.10. Partial dependence plot (pdp) for the canopy conductance (gc) 
prediction model. (a) marginal effect (yhat) of sun-induced fluorescence at 
687 nm (F687) and surface temperature (Tsurf) on the predicted outcome of 

gc. (b) marginal effect (yhat) of electron transport rate (ETR) and 
nonphotochemical quenching (NPQ) on the predicted outcome of gc. In both 
panels the pdp is divided between the Majadas and Leinefelde site. 

 
gs, which was obtained by inverting the Penman-Monteith equation using the 

total LE, instead of the partitioned LEt, had as similar sets of predictors 

selected by the variable importance, but with some key differences. The most 

important variable was again Tsurf (VIP = 100 for RS and VIP = 100 for RS + 

PAM) (Fig.  4.11a). Second was F687 (VIP = 65.1 for RS and VIP = 100 for RS 

+ PAM). Finally ETR was also selected (VIP = 66). In contrast with gc, LE 

reconstructed from predicted gs had a very poor fit with measured LE, as 

shown by NMRSE (NRMSE = 1.02 for RS and NRMSE = 0.89 for RS + PAM) 
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and R2 (R2 = 0.01 for RS and R2 = 0.06) (Fig.  4.11b,c) (Fig.  4.14g,h). 

Individual relationship within site are mostly significant (in Leinefelde R2 = 

0.29, p < 0.01 and R2 = 0.28, p < 0.01 for RS and RS + PAM respectively 

and for Majadas R2 = 0.05, p < 0.01 and p = 0.328 for RS and RS + PAM 

respectively), but the overall fit is very poor (R2 = 0.01, p < 0.01 and R2 = 

0.05, p < 0.01 for RS and RS + PAM respectively). This result confirms the 

importance of partitioning water fluxes when estimating canopy conductance. 

 

 
Fig.  4.11. (a) Permutation random forest feature importance for surface 

conductance (gs), with two sets of predictors; remote sensing only (RS), in 

light blue, and RS and pulse amplitude modulation data (PAM), in red. RS 

predictors include F760,tot, APAR, LUEf, F760, Tsurf and F687. PAM predictors 

include ETR, Fs/Fo and NPQ. (b) scatterplot between observed LE and LE 

calculated from predicted gs through the Penman-Monteith approach. gs is 

predicted  by random forest with only RS predictors for the Majadas site (in 

yellow) and Leinefelde site (in violet) together. (c) scatterplot between 

observed LE and LE calculated from predicted gs through the Penman-

Monteith approach. gs is predicted  by random forest with RS and PAM 

predictors for the Majadas site (in yellow) and Leinefelde site (in violet) 

together. Normalized root mean square error (NRMSE), coefficient of 

determination (R2) and mean absolute errors (MAE) are calculated through 

10-fold cross validation for both (b) and (c). 

uWUE presented 3 different predictors that seemed to contribute to similar 

extent to the variable importance. ETR was the most important predictor of 

uWUE (VIP = 100). APAR was the second one (VIP = 100 for RS and VIP = 

87.6 for RS + PAM), and third Tsurf (VIP = 77.8 for RS and VIP = 99.5 for RS 

+ PAM) (Fig.  4.12a). When considering periods of metabolic limitations to 

photosynthesis we observed a change in the predictors being selected, with 

F760,tot, Tsurf and ETR as the three most important (Supplementary Fig. S4.7). 

Predicting uWUE (Table 1) and using it to reconstruct LEt showed to be the 

worst approach of the three in terms of predictive power. Indeed, LEt 



Chapter 4 

125 
 

recalculated from predicted uWUE in relation to measured LEt showed quite 

high error (NRMSE = 0.73 for RS and NRMSE = 0.52 for RS + PAM) and large 

scatter (R2 = 0.45 for RS and R2 = 0.59 for RS + PAM), especially at high 

values of LEt (Fig.  4.12b,c) (Fig.  4.14i,l).  

 

 
Fig.  4.12. (a) Permutation random forest feature importance for underlying 

water use efficiency (uWUE), with two sets of predictors; remote sensing only 

(RS), in light blue, and RS and pulse amplitude modulation data (PAM), in 

red. RS predictors include F760,tot, APAR, LUEf, F760, Tsurf and F687. PAM 

predictors include ETR, Fs/Fo and NPQ. (b) scatterplot between observed LEt 

and LEt calculated from predicted uWUE. uWUE is predicted  by random 

forest with only RS predictors for the Majadas site (in yellow) and Leinefelde 

site (in violet) together. (c) scatterplot between observed LEt and LEt 

calculated from predicted uWUE (LEtuWUE). uWUE is predicted  by random 

forest with RS and PAM predictors for the Majadas site (in yellow) and 

Leinefelde site (in violet) together. Normalized root mean square error 

(NRMSE), coefficient of determination (R2) and mean absolute errors (MAE) 

are calculated through 10-fold cross validation for both (b) and (c). 

The pdp for the uWUE prediction model shows that lower values of ETR and 

APAR contributed more to the predicted outcome of uWUE (Fig. 4.13a), 

unlike in the case of pdp of LEt (Fig. 4.6), and gc (Fig. 4.10). The NPQ and 

Tsurf marginal contribution to the prediction of uWUE was highly nonlinear, 

with high values of NPQ and Tsurf (NPQ > 2 and Tsurf > 25°C) having very 

limited contribution to the predicted uWUE in both Leinefelde and Majadas 

(Fig. 4.13a). 
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Fig. 4.13. Partial dependence plot (pdp) for the underlying water use 
efficiency (uWUE) prediction model. (a) marginal effect (yhat) of electron 
transport rate (ETR) and absorbed photosynthetic active radiation (APAR) on 
the predicted outcome of uWUE. (b) marginal effect (yhat) of 

nonphotochemical quenching (NPQ) and surface temperature (Tsurf) on the 
predicted outcome of uWUE. In both panels the pdp is divided between the 
Majadas and Leinefelde site. 
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Fig.  4.14. Time series of latent heat flux of transpiration (LEt), in blue, and 

predicted LEt, in red, divided for the Leinefelde site (a) and Majadas site (b). 

Time series of transpiration (LE), in blue, and predicted LE, in red, divided for 

the Leinefelde site (c) and Majadas site (d). Time series of canopy 

conductance (gc), in blue, and predicted gc, in red, divided for the Leinefelde 

site (e) and Majadas site (f). Time series of surface conductance (gs), in blue, 
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and predicted gs, in red, divided for the Leinefelde site (g) and Majadas site 

h). Time series of underlying water use efficiency (uWUE), in blue, and 

predicted uWUE, in red, divided for the Leinefelde site (e) and Majadas site 

(f). All predictions are performed though 10-fold cross validation random 

forest using only remote sensing predictors. Predictions are calculated for the 

two sites together and not on a separate basis. 

 

Table 1. Metrics for predicted variables (Outcome) from 10-fold cross-

validation random forest, using remote sensing (RS) variables and RS and 

variables derived from pulse amplitude modulation (PAM) at both the 

Majadas site and Leinefelde site. The predicted variables are latent heat flux 

of transpiration (LEt), latent heat flux (LE), canopy conductance (gc), surface 

conductance (gs) and underlying water use efficiency (uWUE). Metrics include 

normalized root mean square error (NRMSE), coefficient of determination 

(R2), and mean absolute error (MAE). 

Outcome Predictors NRMSE R2 MAE 

LEt RS 0.37 0.75 18.89 W m-2 

LEt RS + PAM 0.31 0.77 18.75 W m-2 

LE RS 0.44 0.74 26.11 W m-2 

LE RS + PAM 0.36 0.76 27.30 W m-2 

gc RS 0.38 0.49 0.0011 m s-1 

gc RS + PAM 0.32 0.51 0.0011 m s-1 

gs RS 1.02 0.20 0.0011 m s-1 

gs RS + PAM 0.89 0.32 0.0011 m s-1 

uWUE RS 0.73 0.59 0.06 

uWUE RS + PAM 0.52 0.61 0.07 

 

4.5 Discussion 
Although SIF has been proposed as a good predictor of LEt, either directly or 

through the ingestion of SIF into PM or WUE approaches, not enough is 

known about the possible mechanistic link between SIF and LEt, gc or WUE 

(Damm et al., 2021). Previous research has suggested that in order to 

predict LEt, SIF should be coupled with other Earth observation data to 

produce robust predictions (Damm et al., 2021). Our study examined the 

relation of SIF, coupled with additional RS predictor such as APAR and Tsurf on 

LEt, gc and uWUE in a Beech forest and a Mediterranean Savannah. We also 

include variables obtained at leaf scale with the PAM approach to further 

improve our understanding of the physiological link between SIF and LEt. 
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Passive and active fluorescence as a tool to understand carbon and 

water dynamics 

Although SIF has been traditionally linked with GPP, in this study we find that 

F760,tot predicts LEt better than GPP across sites (Fig.  4.1), confirming 

therefore the recent literature that explores the potential of using SIF to 

predict LEt (Jonard et al., 2020). A similar result is obtained from SCOPE 

simulations, with (especially for Majadas) F760 SCOPE having very strong 

relationship with LESCOPE, and to a lesser extent with LEtSCOPE, and a not 

significant relationship with GPPSCOPE (Fig. 4.2) demonstrating that the SIF-

LEt relationship emerges not only from empirical observations, but also from 

process-based modelling. The reason for this is illustrated in (Fig. 4.3), where 

both in measured data and in SCOPE simulations the LEt-APAR and LEt-F760 

have higher correlation than LEt-GPP. Both LEt and F760 seem to be largely 

driven by APAR, as already reported in previous research (Yang et al., 2018). 

Instead, LEt-GPP is influenced to a larger extent by Tsurf as well. At high 

temperatures a decoupling of the LEt-GPP seems to occur (Kauwe et al., 

2019), caused by a decrease in WUE. F760’s inability to properly track GPP 

when GPP-LEt decoupling occurs seems to be an asset when using F760 to 

predict LEt.  

We also find that the choice of wavelength when using SIF for LEt predictions 

matters. Indeed, F760,tot predicts LEt better than F687, likely because F687 is 

strongly affected by canopy reabsorption and F760,tot is quite related to APAR, 

a critical driver of water fluxes.  Still we found F687 to be the best predictor of 

GPP, especially in the Leinefelde site (Fig.  4.4). Red SIF has not been 

explored enough as a proxy for GPP, as usually far-red SIF was preferred, but 

it seems to effectively track photosynthesis especially in deciduous 

vegetation types (Liu et al., 2020).  

PAM fluorescence has also been used to constrain estimates of water fluxes, 

more frequently in relation to stomatal conductance (Flexas & Medrano, 

2002; Medrano et al., 2002), but recently also at canopy scale by linking ETR 

and gc through the use of optimal stomatal theory (Shan et al., 2021). In 

this work we find ETR to be strongly energy driven and to have an excellent 

relationship with APAR across sites (Fig.  4.4). In contrast, the F760-ETR 

presents a strong saturation and differs across sites; this brings into question 

approaches that estimates plant functioning from SIF that rely on the linear 

relationship between F760-ETR. For instance, (Shan et al., 2021) used F760 as 

a proxy for ETR (obtained through SCOPE simulations), which was then 

ingested in a photosynthesis-transpiration model to obtain LEt. Such 

approach would probably require an ecosystem-specific or climate-specific 

SIF-ETR parametrization to be accurately used across scale and might be 

therefore challenging to generalize. 

NPQ and normalized steady state fluorescence (Fs/Fo) have been suggested 

by multiple authors to be mechanistically linked to stomata closure during 

stress (Flexas & Medrano, 2002; Medrano et al., 2002). In our study ETR and 
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NPQ are linearly and positively related during periods of low stress, but their 

relationship becomes negative at high levels of Tair and VPD, as the light 

reaction of photosynthesis are bottlenecked by the dark reaction (Porcar-

Castell, 2011) and ETR has to decrease in response to NPQ increase (Fig.  

4.4, Supplementary Fig. S 4.9). This would suggest that approaches that rely 

on ETR to estimate LEt might work only under low stress conditions, and we 

anticipate their predictive power to deteriorate under stress.  

 

Direct prediction of T and LE  

Direct SIF based predictions of LEt have been proven to be successful at 

global scale (Maes et al., 2020). However, it is not clear if their relationship is 

mechanistic in nature, or rather caused by co-variation of external variables 

such as net radiation and LAI (Damm et al., 2021). In this work we try to 

move beyond an empirical-only approach, by analyzing possible confounding 

variables and implementing process-based simulations with the SCOPE 

model. With our random forest modelling approach we are able not only to 

perform predictions, but we also assess the importance and the marginal 

contribution of predictors. It should be noted that we do not make the 

distinction between what might be defined as a mechanistic driver of LEt 

(such as VPD or soil moisture) and state variables that correlate with LEt 

(such as F760,tot or ETR).  Here, we confirm LEt to be largely energy driven as 

APAR and F760,tot are both selected as important predictors of LEt (Fig.  4.5). 

ETR, which is strongly driven by PAR (as PAR is required for the calculation of 

ETR) is also selected as an important predictor. This further confirms our 

hypothesis that especially in energy driven ecosystems (such as Leinefelde) 

the incoming and absorbed PAR are the variables that drive both F760 and LEt 

and therefore causing the correlation between the two (Fig. 4.3). 

Interestingly, Tsurf is not selected as an important predictor, as most of the 

LEt variability is captured by variables related to absorbed energy (APAR) and 

photosynthetic activity (F760,tot, LUEf). From a purely predictive point of view 

it seems that the inclusion of PAM related metrics does not improve the LEt 

prediction and that only RS variables are sufficient to directly estimate LEt. 

This can have three explanations. First, the remote sensing measurements 

already include all the driver of the processes; second, scaling issues from 

leaf to canopy (LAI sunlit/shaded, different field of view) cause a certain 

mismatch between the active and the passive measurements, despite the 

PAM measurements and passive RS measurements showing a good temporal 

agreement; the third, nonlinearity in the predictor space. The pdp allows to 

observe the marginal contribution of the different predictors to the prediction 

model. For example, a pdp of a linear model would always result in a linear 

relationship between the predictor and yhat. The pdp of the LEt random 

forest prediction model shows a plateau in the contribution of F760,tot (at 2 

mW m-2 sr-1 nm-1 ) only in the Majadas site. This suggests that the inclusion 

of sites with different climatic conditions might introduce nonlinearity in the 
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predictor space and potentially complicating the interpretation of the 

prediction. 

LE predictions with RS or RS + PAM have slightly higher normalized root 

mean square error (NRMSE), but do not significantly differ from LEt 

predictions (Fig.  4.7). It seems therefore that the inclusion of non-

physiologically regulated water fluxes such as soil evaporation do not 

significantly worsen the ability of RS to predict LE. As soil evaporation is only 

energy driven, this result confirms our assumption and previous research 

(Damm et al., 2021) that SIF related metrics are able to predict LEt or LE by 

capturing their dependence to energy availability. 

 

Prediction of gc and gs  

Stomatal conductance influences both transpiration and carbon assimilation 

and has therefore been considered to be the key to understand the process 

behind the correlations between LEt and SIF. There is however much more 

literature on the link between gc and PAM related metrics (Flexas & Medrano, 

2002; Medrano et al., 2002; Omasa & Takayama, 2003), than on the link 

between gc and passive fluorescence (Shan et al., 2019) which has only been 

employed in recent years to estimate gc. Also, typically active measurements 

are correlated with stomatal conductance estimated with leaf gas exchange 

measurements. Here we try to do a step forward and look at the relationship 

between multiple leaf level measurements and canopy scale gc derived from 

the eddy covariance measurements. Clearly we should acknowledge the scale 

mismatch between these measurements (i.e. leaf level measurements have a 

much smaller spatial scale than eddy covariance measurements), but 

postulate to be of minimal impact for the understanding of the predictors of 

the temporal variability of gc. The flat gc-APAR relationship reported in Fig.  

4.8 is indicative of the fact that we are not observing the part of the gc 

response that is only light-limited (Wong et al., 1979) (due to filtering for 

SZA < 50°), but rather the range in which gc is co-limited by VPD as well. It 

has been proposed that the relationship between gc and PAM derived metrics 

(such as NPQ or Fs/Fo) is affected by stomatal and non-stomatal limitations 

to photosynthesis (Fig.  4.8) (Medrano et al., 2002). Even experiments in 

which stomatal conductance is artificially suppressed show changes in PAM 

derived metrics such as the quantum yield of PSII (ΦPSII), but curiously not 

in SIF (Marrs et al., 2020). Under stress-induced stomatal closure leaf CO2 

concentration (Ci) decreases, causing an increase in photorespiration and in 

the Mehler reaction. As less ATP is consumed by other processes than 

photosynthesis, the trans-thylakoid pH will surge (Osmond et al., 1197b), 

activating the xanthophyll cycle and therefore causing an increase in NPQ and 

a decrease in fluorescence emission (SIF or Fs).  

This theoretical framework seems to be confirmed by our data. When 

photosynthesis is metabolically limited i.e., because of photorespiration, 

Mehler reaction, cyclical electron transport or xanthophyll cycle activity, the 
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best predictors of gc are F760,tot, Tsurf, Fs/Fo and NPQ (Supplementary Fig. 

S4.5). In contrast, when we consider the whole range of gc, the best 

predictor is Tsurf, followed by Fs/Fo (Fig.  4.9). As stomata regulate LEt, they 

also control the amount of evaporative cooling (Inoue et al. 1990), therefore 

explaining why Tsurf is selected as the best predictor of gc. Tsurf also shows to 

be linearly related to gc at both sites, unlike ETR and NPQ (Fig. 4.10), 

suggesting a robust Tsurf-gc relationship that holds across climates. The 

upcoming fluorescence explorer satellite (FLEX) will fly in tandem with 

Sentinel 3, which is equipped with the Sea and Land Surface Temperature 

Radiometer (SLSTR) instrument. The combined use of SIF (in the red and 

far-red region) and surface temperature will ensure accurate predictions of gc 

for LEt calculations.  

This work does not explicitly take into account the effect of the plant’s water 

strategies and stomatal regulation behavior on the RS prediction of gc. 

Isohydric plants maintain a constant leaf water potential by strongly 

regulating stomatal conductance, while anisohydric plants continue to 

transpire during periods of water stress, therefore lowering their leaf water 

potential (Sade et al., 2012). This strategy allows anisohydric plants to keep 

both transpiration and carbon assimilation high during periods of mild water 

stress. Previous research has shown that NPQ, ETR and fluorescence 

emission are more strongly related to gc than leaf water potential (Medrano 

et al., 2002). We therefore assume that different plant’s water management 

strategies might not significantly influence the ability to estimate gc with RS 

or PAM variables, but further research is needed to confirm this assumption. 

The predictive power of LEt estimates through predicted gc is not superior to 

direct prediction of LEt through RS or RS + PAM approaches. As re-computing 

LEt from gc requires knowledge of aerodynamic resistance and 

meteorological conditions it would seem that from a purely predictive 

standpoint RS prediction of LEt with SIF would be the most viable option. 

Although we found that predictions of LEt are not significantly better than LE, 

when it comes to predicting stomatal conductance ET partitioning plays a 

very important role. In fact, gs, which is estimated from total LE, could not 

be predicted across sites (Fig.  4.11). The poor prediction does not seem to 

berelated with the hybrid-modelling approach. It is possible in certain cases 

to successfully predict a parameter, but not the variable of interest (in this 

case LE) due to equifinality in the estimated parameters (Efstratiadis & 

Koutsoyiannis, 2010). In this case gs is the only parameter being estimated 

and the accuracy of prediction is much lower than gc (Table 1). This calls into 

question previous approaches that attempted to estimate LEt by predicting 

LE-derived canopy conductance (Shan et al., 2019) or that validate LEt 

estimates against LE (Shan et al., 2021). These methods are likely to not 

perform well across diverse ecosystems, which might have different ratios of 

LEt/LE. 
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Prediction of WUE 

Previous research has suggested that the relationship between SIF and 

transpiration is regulated by WUE (Maes et al., 2020),  but has not provided 

a convincing theoretical basis for the proposed link. Here we find that uWUE 

is mostly energy driven and temperature driven, as APAR, Tsurf and ETR are 

selected as important predictors for uWUE. uWUE presents an exponential 

negative relationship to these three variables (Supplementary Fig. S4.8) and 

is not predicted well by F760,tot across sites when all the data is considered. 

Only when metabolic limitations to photosynthesis are present F760,tot 

becomes an important predictor. Overall, uWUE appears to be mostly energy 

and temperature limited and not regulated by gc (Supplementary Fig. S4.8), 

with higher marginal contribution of the predictors at low values of APAR 

(Fig. 4.13). We had hypothesized that because uWUE reflects VPD driven 

changes in Ci/Ca, uWUE could be driven partially by NPQ. However, our 

results do not support this hypothesis. We rather find that uWUE is mostly 

driven by and negatively related to APAR and ETR. The diurnal cycle of uWUE 

is generally inverse to the one of PAR, with uWUE showing a peak in the 

morning and in the afternoon, but a drop during midday (Niu et al., 2003). 

The drop in uWUE is likely caused by higher VPD values (and therefore the 

evaporative demand) and midday depression in GPP. The development of RS 

based proxies of WUE is one of the outstanding challenges in earth 

observation (El Masri et al., 2021) and our empirical study represent a step 

stone to understand the interlinks between WUE and different processes that 

can picked up by remote sensing observations.  

 

Concluding remarks 

In order to advance the mechanistic understanding regarding the LEt-

fluorescence relationship it appears important to differentiate between 

periods of stomatal or metabolic limitation to photosynthesis and periods 

characterized by low stress. Overall, when considering the entire dataset, 

energy and temperature (APAR, Tsurf) have a more prominent role in all the 

approaches presented, whereas when only periods of high stress are 

considered more physiological indicators (F760,tot, NPQ, Fs/Fo) are selected. 

We show that F760 is better at predicting LEt than GPP because during periods 

of photosynthesis-transpiration decoupling F760,tot still tracks APAR well, 

whereas GPP is strongly downregulated. Traditionally PAM fluorimetry and 

SIF have been used separately to investigate transpiration and stomatal 

conductance, but a combined approach of active and passive fluorescence 

might be required to better understand and constraint water fluxes. 
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SUPPLEMENTARY MATERIAL 

 

 
Supplementary Fig. S4.1. Scatterplot between canopy conductance (gc) 

and leaf internal CO2 concentration (Ci). Yellow points are from the majadas 

site and violet points are from the Leinefelde site. The size of the points is 

proportional to the nonphotochemical quenching (NPQ). Lines are regression 

from a second degree polynomial. Shaded areas represent the 95% 

confidence interval. 
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Supplementary Fig. S4.2. Scatterplot between the slope of surface 

conductance (gs) and vapor pressure deficit (VPD) during a window of 5 days 

for the Leinefelde site (violet points) and 3 days for the Majadas site (yellow 

points) and the 90% quantile of electron transport rate (ETR), 

nonphotochemical quenching (NPQ) and reversible nonphotochemical 

quenching (NPQr). Black and yellow lines are regressions from linear models 

from the Leinefelde site and Majadas site respectively. Gray lines are 

regressions from second degree polynomials for the whole data. Shaded 

areas represent the 95% confidence interval. 

  



Chapter 4 

137 
 

 
Supplementary Fig. S4.3. (a) Permutation random forest feature 

importance for latent heat flux of transpiration (LEt), with two sets of 

predictors; remote sensing only (RS), in light blue, and RS and pulse 

amplitude modulation data (PAM), in red. RS predictors include F760,tot, APAR, 

LUEf, F760, Tsurf and F687. PAM predictors include ETR, Fs/Fo and NPQ. (b) 

scatterplot between observed LEt and LEt predicted by random forest with 

only RS predictors for the Majadas site (in yellow) and Leinefelde site (in 

violet) together. (c) scatterplot between observed LEt and LEt predicted by 

random forest with RS and PAM predictors for the Majadas site (in yellow) 

and Leinefelde site (in violet) together. Normalized root mean square error 

(NRMSE), coefficient of determination (R2) and mean absolute errors (MAE) 

are calculated through 10-fold cross validation for both (b) and (c). Only data 

that present metabolic limitations to photosynthesis are considered. 
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Supplementary Fig. S4.4. (a) Permutation random forest feature 

importance for latent heat flux (LE), with two sets of predictors; remote 

sensing only (RS), in light blue, and RS and pulse amplitude modulation data 

(PAM), in red. RS predictors include F760,tot, APAR, LUEf, F760, Tsurf and F687. 

PAM predictors include ETR, Fs/Fo and NPQ. (b) scatterplot between observed 

LE and LE predicted by random forest with only RS predictors for the Majadas 

site (in yellow) and Leinefelde site (in violet) together. (c) scatterplot 

between observed LE and LE predicted by random forest with RS and PAM 

predictors for the Majadas site (in yellow) and Leinefelde site (in violet) 

together. Normalized root mean square error (NRMSE), coefficient of 

determination (R2) and mean absolute errors (MAE) are calculated through 

10-fold cross validation for both (b) and (c). Only data that present metabolic 

limitations to photosynthesis are considered. 

  



Chapter 4 

139 
 

 
Supplementary Fig. S4.5. (a) Permutation random forest feature 

importance for canopy conductance (gc), with two sets of predictors; remote 

sensing only (RS), in light blue, and RS and pulse amplitude modulation data 

(PAM), in red. RS predictors include F760,tot, APAR, LUEf, F760, Tsurf and F687. 

PAM predictors include ETR, Fs/Fo and NPQ. (b) scatterplot between observed 

latent heat flux of transpiration (LEt) and LEt calculated from predicted gc 

through the Penman-Monteith approach. gc is predicted  by random forest 

with only RS predictors for the Majadas site (in yellow) and Leinefelde site (in 

violet) together. (c) scatterplot between observed LEt and LEt calculated 

from predicted gc through the Penman-Monteith approach. gc is predicted  by 

random forest with RS and PAM predictors for the Majadas site (in yellow) 

and Leinefelde site (in violet) together. Normalized root mean square error 

(NRMSE), coefficient of determination (R2) and mean absolute errors (MAE) 

are calculated through 10-fold cross validation for both (b) and (c). Only data 

that present metabolic limitations to photosynthesis are considered. 

  



Chapter 4 

140 
 

 
Supplementary Fig. S4.6. (a) Permutation random forest feature 

importance for surface conductance (gs), with two sets of predictors; remote 

sensing only (RS), in light blue, and RS and pulse amplitude modulation data 

(PAM), in red. RS predictors include F760,tot, APAR, LUEf, F760, Tsurf and F687. 

PAM predictors include ETR, Fs/Fo and NPQ. (b) scatterplot between observed 

latent heat flux (LE) and LE calculated from predicted gs through the 

Penman-Monteith approach. gs is predicted  by random forest with only RS 

predictors for the Majadas site (in yellow) and Leinefelde site (in violet) 

together. (c) scatterplot between observed LE and LE calculated from 

predicted gs through the Penman-Monteith approach. gs is predicted  by 

random forest with RS and PAM predictors for the Majadas site (in yellow) 

and Leinefelde site (in violet) together. Normalized root mean square error 

(NRMSE), coefficient of determination (R2) and mean absolute errors (MAE) 

are calculated through 10-fold cross validation for both (b) and (c). Only data 

that present metabolic limitations to photosynthesis are considered. 
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Supplementary Fig. S4.7. (a) Permutation random forest feature 

importance for underlying water use efficiency (uWUE), with two sets of 

predictors; remote sensing only (RS), in light blue, and RS and pulse 

amplitude modulation data (PAM), in red. RS predictors include F760,tot, APAR, 

LUEf, F760, Tsurf and F687. PAM predictors include ETR, Fs/Fo and NPQ. (b) 

scatterplot between observed latent heat flux of transpiration (LEt) and LEt 

calculated from predicted uWUE. uWUE is predicted  by random forest with 

only RS predictors for the Majadas site (in yellow) and Leinefelde site (in 

violet) together. (c) scatterplot between observed LEt and LEt calculated 

from predicted uWUE. uWUE is predicted  by random forest with RS and PAM 

predictors for the Majadas site (in yellow) and Leinefelde site (in violet) 

together. Normalized root mean square error (NRMSE), coefficient of 

determination (R2) and mean absolute errors (MAE) are calculated through 

10-fold cross validation for both (b) and (c). Only data that present metabolic 

limitations to photosynthesis are considered. 
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Supplementary Fig. S4.8. (a) scatterplot between underlying water use 

efficiency (uWUE) and a absorbed photosynthetic active radiation (APAR). (b) 

scatterplot between uWUE and total fluorescence at 760 nm (F760,tot: F760 / 

Fesc). (c) scatterplot between uWUE and electron transport rate (ETR). (d) 

scatterplot between uWUE and surface temperature (Tsurf). (e) scatterplot 

uWUE and canopy conductance (gc). (f) scatterplot between uWUE and leaf 

internal CO2 concentration (Ci). Yellow points refer to the Majadas site and 

violet points to the Leinefelde site. Blue lines are locally polynomial 

regression (LOESS). Shaded areas refer to the 95% confidence interval.  
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Supplementary Fig. S 4.9. (a) Scatterplot between fluorescence at 760 nm 

from the SCOPE model (F760 SCOPE) and actual electron transport rate from 

SCOPE (JaSCOPE). (b) scatterplot between absorbed photosynthetic active 

radiation by chlorophylls from SCOPE (APARcab SCOPE) and JaSCOPE. (c) 

scatterplot between latent heat flux of transpiration from SCOPE (LEtSCOPE) 

and JaSCOPE. (d) scatterplot between nonphotochemical quenching from 

SCOPE (NPQSCOPE) and JaSCOPE. Violet points are from the Leinefelde site and 

yellow points are from the Majadas site. In each panel the Spearman's rank 

correlation coefficient (R) and p value are reported for the total dataset (in 

black) and for each site. The blue line is the overall fit from a linear model. 

The shaded area represents the 95% confidence interval of the fit. 
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Supplementary Fig. S4.10. (a) scatterplot between sun-induced 

fluorescence at 760 nm F760 and F760 modelled by the SCOPE model. (b) 

scatterplot between sun-induced fluorescence at F687 and modelled F687. (c) 

scatterplot between surface temperature (Tsurf) and modelled canopy 

temperature (Tcanopy). In each panel the plots are divided between the 

Leinefelde and Majadas site. The suffix “default” refers to variable simulated 

with SCOPE with the default parametrization of NPQ. The suffix “site” refers 

to variables simulated with SCOPE with the site calibrated parametrization of 

NPQ. In each panel the root mean square error (rmse), the coefficient of 

determination (rsq), and the mean annual error (mae) are reported.  
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Supplementary Fig. S4.11. (a) scatterplot between latent heat flux (LE)  

and LE modelled by the SCOPE model. (b) scatterplot between  latent heat 

flux of transpiration (LEt) and modelled LEt. (c) scatterplot between gross 

primary production (GPP) and modelled GPP. In each panel the plots are 

divided between the Leinefelde and Majadas site. The suffix “default” refers 

to variable simulated with SCOPE with the default parametrization of NPQ. 

The suffix “site” refers to variables simulated with SCOPE with the site 

calibrated parametrization of NPQ. In each panel the root mean square error 

(rmse), the coefficient of determination (rsq), and the mean annual error 

(mae) are reported. 

  



Chapter 4 

146 
 

 
Supplementary Fig. S4.12. (a) scatterplot between absorbed 

photosynthetic active radiation (APAR)  and APAR modelled by the SCOPE 

model. (b) scatterplot between relative light saturation of photosynthesis (x) 

and modelled x. (c) scatterplot between canopy conductance (gc) and 

modelled gc. In each panel the plots are divided between the Leinefelde and 

Majadas site. The suffix “default” refers to variable simulated with SCOPE 

with the default parametrization of NPQ. The suffix “site” refers to variables 

simulated with SCOPE with the site calibrated parametrization of NPQ. In 

each panel the root mean square error (rmse), the coefficient of 

determination (rsq), and the mean annual error (mae) are reported. 

`  
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Supplementary Fig. S4.13. scatterplot between nonphotochemical 

quenching (NPQ)  and NPQ modelled by the SCOPE model. (b) scatterplot 

between photochemical quenching (PQ)  and PQ modelled by the SCOPE 

model. (c) scatterplot between electron transport rate (ETR) and modelled 

ETR (Ja). In each panel the plots are divided between the Leinefelde and 

Majadas site. The suffix “default” refers to variable simulated with SCOPE 

with the default parametrization of NPQ. The suffix “site” refers to variables 

simulated with SCOPE with the site calibrated parametrization of NPQ. In 

each panel the root mean square error (rmse), the coefficient of 

determination (rsq), and the mean annual error (mae) are reported. 
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The ability of SIF to predict GPP and T across temporal and spatial scales can 

be exploited to better constrain and improve the understanding of the carbon 

and water cycle. The monitoring of SIF can therefore indirectly contribute to 

human welfare in several ways; first, SIF can improve estimates of global 

carbon assimilation, which can benefit policy making. Second, SIF can be 

used as a tool to assess extreme events, which are becoming more severe 

and frequent in a changing climate. Lastly, SIF may be used to predict WUE, 

which is set to increase due to higher atmospheric CO2 concentration. In this 

thesis I improve the mechanistic understanding of SIF based monitoring of 

GPP and T with three contributions; 1) first I show which factors are 

responsible for the nutrient induced changes in the GPP-SIF relationship. I 

show that N influences GPP-SIF in two major ways; first by modifying canopy 

structure, and therefore APAR and Fesc, and secondly by lowering Tsurf (due 

to increases in Albedo) which has a positively effect on fluorescence 

emission. P together with N had mainly the physiological effect of increasing 

LUEf. This type of analysis are relevant for questions about the effect of 

fertilization, either intentional (as in agriculture) or unintentional (nitrogen 

and phosphorus deposition) on vegetation activity. 2) the second contribution 

is on the effect of extreme events on GPP-SIF. I show that under extreme 

levels of temperature and VPD a saturation of the NPQ pathway occurs, 

leading to an inversion of the GPP-SIF relationship during the heatwave and 

overall to large nonlinearities in GPP-SIF. This analysis is particularly 

important because nonlinear photosynthesis-fluorescence relationships have 

been observed at leaf scale with the PAM technique and theorized to occur at 

canopy scale as well, but I empirically show for the first time that these type 

of nonlinearities can be observed at canopy scale as well, even in the 

absence of changes in canopy structure. This analysis advances the 

understanding of the interplay of GPP-SIF-NPQ and is relevant for questions 

related to climate change, as well as questions related to effect of extreme 

events on vegetation.  3) the third contribution is related to SIF based T 

predictions. I show that SIF can be used to predict T, but its link is mostly 

related to the fact that both SIF and T co-vary with APAR. Under conditions of 

metabolic or stomatal limitations to photosynthesis I find that variables which 

are physiologically regulated (such as LUEf and NPQ) are more important for 

T or stomatal conductance predictions. This research is relevant for questions 

related to water fluxes and water-carbon relationship.  

This thesis also opens up new possible research lines that may answer some 

of the questions that it was not possible to answer. In chapter 3 I show how 

NPQ saturation might cause nonlinearities in the GPP-SIF relationship, but it 

is unclear how often this deviation from linearity occurs under stress. More 

research is needed to investigate how heatwaves affect GPP-SIF in different 

ecosystems. In chapter 4 I show that SIF may be used to predict T mostly 

because of covariation with APAR. It still unclear if SIF can track T when 
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there are APAR independent changes in T, and how these relationship scales 

across space and time.  

In this conclusion I also want to reflect on three cross-cutting themes that 

emerged from the overall body of work in this thesis and that advance our 

understanding of the relationship between SIF and GPP and between SIF and 

T; 1) the importance of APAR. 2) energy allocation as a key mechanism to 

understand GPP-SIF. 3) The role of surface temperature.  

 

There is a current debate on the information content of F760 and the GPP-SIF 

relationship with two different positions (Dechant et al., 2020): the first is 

that F760 contains both information about canopy structure but also 

physiological modulation of photosynthesis (due to changes in allocation of 

absorbed energy), the second is that F760 and GPP-SIF is mainly determined 

by APAR (Yang et al., 2018). In this dissertation I find evidence of both 

cases. In chapter 2 I quantify through a path analysis the strength of the link 

between APAR and F760,tot (considering as well all other relevant drivers) and 

find it to be highly robust. In the case of N and P fertilization APAR is 

influenced mostly by N. The positive effect of N on APAR is mediated by 

higher chlorophyll content and changes in species composition and therefore 

canopy structure (evidenced by significant changes in Fesc). In chapter 3 I 

instead come to the contradicting conclusion that even in absence of large 

changes in APAR it is possible to have drastic changes in F760 and GPP. This 

seeming inconsistency, can be resolved by acknowledging that in most cases 

F760 is mostly driven by APAR, but in others, especially under stress 

conditions and when canopy structure does not change quickly, F760 can be 

strongly regulated by the physiological modulation of PQ and NPQ  (the other 

dissipation pathways). 

When it comes however, to the SIF based prediction of T (as shown in the 

third chapter) it is clear that APAR plays a large role in driving both. From 

extensive measurements, SCOPE simulations and variable importance 

analysis I can conclude that in the study sites analyzed APAR acts as a “third 

variable”, which influences both the independent variable (in this case F760,tot) 

and the dependent variable (T). This claim is further confirmed by the fact 

that SIF based predictions of LE (which include non-physiologically regulated 

soil evaporation) have a very similar fit  to the T prediction. It is important to 

acknowledge that this specific conclusion is based on only two sites, and that 

the majority of the F760,tot-T correlation was driven by the Leinefelde site, 

which is light limited. More research is therefore needed to confirm the role 

of APAR in SIF based predictions of T.  

 

Despite the very important role of APAR, SIF emission is also the result of 

how this energy is allocated by the three main dissipation pathways; 

photochemical quenching, fluorescence emission and nonphotochemical 

quenching. I find clear evidence of the role of energy allocation (in chapter 3) 
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in shaping the GPP-SIF relationship. It is known that there are three main 

phases that drive the relationship between the ΦP and ΦF; a) the “PQ 

phase”, which occurs at low levels of solar irradiance and is generally not 

observed with remote sensing due to high solar zenith angle. b) the “NPQ 

phase”, where due to progressively higher solar irradiance NPQ drives both 

ΦP and ΦF down. In this phase we observe a positive ΦP and ΦF relationship 

(also reflected on GPP-F760). This phase is what is generally observed in most 

studies that correlate GPP with F760. c) the “NPQ saturation phase”, which has 

been theorized and observed at leaf scale with PAM fluorimetry, but observed 

for the first time at canopy scale in this work as described in chapter 2. 

During the “NPQ saturation phase” I observe strong nonlinearities in the GPP-

F760,tot relationship caused by increases in LUEf. In this phase, NPQ saturates 

early in the day (Fig. 3.5C), leaving the photosystems without sufficient 

protection to cope with excess energy.  I propose that the mechanisms 

responsible for the observed GPP-F760 nonlinearity under high heat stress are 

shifts in energy allocation towards fluorescence emission. 

These results highlight the need to use combined passive and active 

fluorescence methods. PAM represents an invaluable tool that provides 

several variables (such as NPQ and ETR) which are necessary to understand 

the mechanistic processes behind the GPP-SIF relationship.  

 

The final cross-cutting theme highlighted here relates to the importance of 

Tsurf for SIF based GPP and T predictions. In chapter 2 I find Tsurf to be the 

most important predictor of LUEp. I also find Tsurf to negatively correlate with 

LUEf, which generally decreases with temperature (but can increase under 

extreme temperature as explained in chapter 3). I also find that Tsurf change 

can be driven by changes in Albedo. An increase in NIR reflectance can 

therefore indirectly affect LUEf, highlighting the varied and complex 

mechanisms that can have an influence on GPP-SIF. Tsurf, in combination with 

VPD, can strongly affect GPP-SIF dynamics, as seen in chapter 3, likely 

because of its ability to track NPQ. In fact, the tight relationship between NPQ 

and VPD and Tsurf obtained in chapter 3 validates the assumption made in 

chapter 2 to use Tsurf as a proxy for NPQ. Finally in chapter 4 I found Tsurf to 

be the most important predictor of gc. As stomata regulate T, they also 

control the amount of evaporative cooling (Inoue et al. 1990), therefore 

explaining why Tsurf is selected as the best predictor of gc. The upcoming 

fluorescence explorer satellite (FLEX) will fly in tandem with Sentinel 3, which 

is equipped with the Sea and Land Surface Temperature Radiometer (SLSTR) 

instrument. The combined use of SIF (in the red and far-red region) and 

surface temperature will ensure accurate predictions of gc for T calculations. 

Furthermore, the ability of Tsurf to track LUEp and LUEf clearly shows that Tsurf 

should be used in combination with SIF as additional input of LUE models 

aimed at the prediction of GPP (Sims et al., 2008). 

 



Chapter 5 

153 
 

In conclusion, this thesis highlights the most important factors responsible for 

the mechanistic link between GPP and SIF, analyzes the effect of nutrients, 

extreme events on the GPP-SIF relationship and provides a framework for 

understanding how SIF can be used to track T. The increase use of high 

temporal resolution proximal sensing of SIF has vastly expanded the 

understanding of SIF in the last decade. With the upcoming FLEX satellite it is 

going to be possible to observe at relatively high spatial resolution SIF from 

areas that have been so far understudied, such as the tropical regions of the 

Americas and Africa, but that contribute to a large extent to the global 

carbon and water cycle. 
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7 Summary 
 

  



Photosynthetic organism slowly transformed Earth from a rocky and bare 

landscape to a lush, diverse collection of thriving ecosystems. The 

photosynthetic process also altered the atmosphere by lowering atmospheric 

CO2 and increasing O2 levels, thus permitting animal life. The synthesis of the 

organic compounds through photosynthesis (gross primary production, GPP), 

by terrestrial plants is today the largest global carbon flux and supports 

human welfare as it is the basis for food, wood and fibers. GPP also provides 

several critical ecosystem services such as the offsetting of anthropogenic 

CO2 emissions. The photosynthetic process is mediated by stomata; small 

openings on plant’s leaves that allow the exchange of CO2 and water vapor. 

The movement of water through plants and its evaporation from stomata 

(Transpiration, T) plays a pivotal role in the global water cycle and land-

surface energy balance and represents a large fraction of evapotranspiration. 

Accurate estimations of GPP and T are therefore critical to monitor 

ecosystems and to quantify the amount of CO2 sequestered from the 

atmosphere. Remote and proximal sensing techniques offer the possibility to 

estimate GPP and T in an unintrusive way, while also allowing for high 

temporal or high spatial resolution measurements. Sun-induced fluorescence 

(SIF), the radiation emitted by plant’s upon sun’s exposure, is a promising 

remote sensing tool to estimate GPP and T. SIF contains information on the 

amount of photosynthetic active radiation absorbed by plants and the 

efficiency with which it is used to drive photosynthesis. It has also been 

recently related to T, although the mechanistic link between the two is still 

unclear. As SIF has been progressively used more extensively in the last 

decade to estimate GPP, and more recently T, much as been learned on the 

way SIF may be used to constrain carbon and water fluxes. Still, many 

research gaps have yet to be investigated, such as: 1) the role of nutrients 

(such as nitrogen (N) and phosphorus (P)) in shaping the GPP-SIF 

relationship, 2) how extreme event such as heatwaves can affect GPP-SIF 

and 3) improving the understanding of how SIF may be used to predict T. 

This dissertation examines the first objective by investigating a nutrient 

manipulation experiment (with N and P) where simultaneous GPP and SIF 

measurements were conducted in a Mediterranean grassland. I uncover the 

mechanisms that link the fertilization-driven changes in canopy nitrogen and 

phosphorus concentration to the observed changes in SIF and GPP. 

Specifically, I find that N addition changed plant community structure and 

increased canopy chlorophyll content, which jointly lead to changes in 

absorbed photosynthetic active radiation (APAR), which ultimately affected 

both GPP and SIF. The changes in plant type abundance driven by N addition 

lead to changes in structural properties of the canopy such as leaf angles, 

which ultimately influenced observed SIF by controlling the escape probability 

of SIF (Fesc). Additionally, the N addition induced changes in the biophysical 

properties of the canopy that lead to a trade-off between surface 

temperature, which decreased, and SIF at leaf scale that increased. The P 
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addition lead to a statistically significant increase in light use efficiency of 

fluorescence emission (LUEf), in particular in plots with also N addition, 

suggesting a co-limitation of LUEf by N and P. In regard to the second 

objective I analyzed how the 2018 heatwave, which was characterized by 

temperatures up to 45 °C, affected the GPP-SIF relationship in a 

Mediterranean tree-grass ecosystem. I combine canopy scale passive 

fluorescence (SIF) with leaf scale active fluorimetry, which allows to obtain 

the amount of heat dissipation (nonphotochemical quenching, NPQ) which is 

a major dissipation pathway of absorbed energy and an important driver of 

SIF. I find that the heatwave caused an inversion of the photosynthesis-

fluorescence relationship at both canopy and leaf scale. The highly nonlinear 

relationship was strongly shaped by NPQ. During the extreme heat stress, 

plants experienced a saturation of NPQ causing a change in the allocation of 

energy dissipation pathways towards SIF. These innovative results showed 

that the relationship between GPP and SIF (which has been broadly 

considered to be linear) can depart from linearity under extreme stress due 

to physiological regulations. Additionally I show the complex modulation of 

the relationship NPQ-SIF-GPP at an extreme level of heat stress, which is not 

fully represented in state-of-the-art coupled radiative transfer and 

photosynthesis models.  Finally for the third objective I predict T using 

passive and active fluorescence in two sites; a Mediterranean tree-grass 

ecosystem and a deciduous beech forest. I test the three different methods 

that have been used so far to relate SIF and T; a) fully empirical, b) hybrid 

modeling approach and c) water use efficiency (WUE) based approach in 

order to establish a framework for SIF based T predictions. I find that total 

SIF had a stronger correlation with T than GPP across sites, as both total SIF 

and T are driven to larger extent by APAR than GPP. Additionally, I found 

approach (a) and (b) to have similar predictive power across sites. Finally, 

the WUE approach had the lowest performance out of the three. In order to 

better understand the mechanistic relationship between SIF and T I highlight 

the importance of separating periods in which photosynthesis is stomatal or 

non-stomatically (i.e. carboxylation) limited from periods of low or no stress.  

During periods of photosynthetic limitations T was mostly predicted by 

variables that can be physiologically modulated by plants, such as NPQ and  

SIF, whereas during periods of no stress I found T to be more energy driven 

and therefore more strongly predicted by APAR or surface temperature. This 

thesis advances the understanding of SIF based GPP and T prediction by 

analyzing the most important factors able to affect the GPP-SIF relationship 

and by testing SIF based T prediction with different methodologies. SIF is a 

powerful, yet complex predictor of GPP and T which has the potential to be 

used to accurately constrain carbon and water fluxes in a changing climate. 

Future studies should focus on understanding in which ecosystems and under 

which conditions SIF can be used to predict T, as the link between the two, 

although increasing more clear, remains understudied. 
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8 Samenvatting 
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Fotosynthetiserende organismen veranderden de aarde langzaam van een 

rotsachtig en kaal landschap in een weelderige, gevarieerde verzameling van 

bloeiende ecosystemen. Fotosynthese veranderde tevens de atmosfeer door 

het CO2-gehalte in de atmosfeer te verlagen en het O2-gehalte te verhogen, 

waardoor dierlijk leven mogelijk werd. De synthese van organische 

verbindingen door fotosynthese (bruto primaire productie, GPP) door 

terrestrische planten is vandaag de dag de grootste globale koolstofstroom 

en ondersteunt het menselijk welzijn, aangezien het de basis vormt voor 

voedsel, hout en vezels. GPP levert ook verschillende cruciale 

ecosysteemdiensten zoals de compensatie van antropogene CO2-emissies. 

Fotosynthese wordt geregeld door huidmondjes; kleine openingen op de 

bladeren van planten die de uitwisseling van CO2 en waterdamp mogelijk 

maken. De beweging van water door planten en de verdamping door 

huidmondjes (Transpiratie, T) speelt een centrale rol in de globale 

watercyclus en de energiebalans van het landoppervlak en vertegenwoordigt 

een groot deel van de evapotranspiratie. Nauwkeurige schattingen van GPP 

en T zijn daarom van het hoogste belang om ecosystemen en de hoeveelheid 

CO2 die uit de atmosfeer wordt vastgelegd gade te slaan. Remote en 

proximal sensing technieken bieden de mogelijkheid om GPP en T te schatten 

op een niet-intrusieve manier, terwijl ze ook metingen met hoge temporele of 

ruimtelijke resolutie mogelijk maken. Door de zon geïnduceerde fluorescentie 

(SIF), de straling die door planten wordt uitgezonden wanneer zij aan de zon 

worden blootgesteld, is een veelbelovend teledetectie-instrument om GPP en 

T te kunnen schatten. SIF bevat informatie over de hoeveelheid 

fotosynthetisch actieve straling die door planten wordt geabsorbeerd en de 

efficiëntie waarmee deze wordt gebruikt om de fotosynthese aan te drijven. 

Recentelijk is er ook een verband gelegd met T, hoewel het mechanistische 

verband tussen beide nog onduidelijk is. Aangezien SIF de afgelopen tien jaar 

steeds vaker is gebruikt om GPP, en recentelijk ook T, te schatten, is veel 

bekend geworden over de manier waarop SIF kan worden gebruikt om de 

koolstof- en waterstromen aan banden te leggen. Toch zijn er nog 

onbeantwoorde onderzoeksvragen, zoals 1) de rol van nutriënten (zoals 

stikstof (N) en fosfor (P)) in de vorming van de GPP-SIF relatie, 2) hoe weer 

extremen zoals hittegolven GPP-SIF kunnen beïnvloeden en 3) het 

verbeteren van het begrip van hoe SIF kan worden gebruikt om T te 

voorspellen. Dit proefschrift onderzoekt de eerste doelstelling door een 

experiment met nutriëntenmanipulatie (met N en P) te onderzoeken waarbij 

simultaan GPP en SIF metingen werden uitgevoerd in een mediterraan 

grasland. Ik leg de mechanismen bloot die de door bemesting veroorzaakte 

veranderingen in de stikstof- en fosforconcentratie in het bladerdak 

verbinden met de waargenomen veranderingen in SIF en GPP. In het 

bijzonder ontdekte ik dat de toevoeging van stikstof de structuur van de 

plantengemeenschap wijzigde en het chlorofylgehalte van het bladerdak 
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verhoogde, wat samen leidde tot veranderingen in de geabsorbeerde 

fotosynthetische actieve straling (APAR), die uiteindelijk zowel GPP als SIF 

beïnvloedden. De door de N-toevoeging veroorzaakte veranderingen in de 

overvloed aan plantensoorten leidden tot veranderingen in de structurele 

eigenschappen van het bladerdak, zoals de hoeken van bladeren, die 

uiteindelijk de waargenomen SIF beïnvloedden doordat ze de 

ontsnappingskans van SIF (Fesc) controleerden. Bovendien leidde de N-

toevoeging tot veranderingen in de biofysische eigenschappen van het 

bladerdak die leidden tot een wisselwerking tussen de 

oppervlaktetemperatuur, die daalde, en de SIF op bladschaal, die steeg. De 

P-toevoeging leidde tot een statistisch significante toename van de 

lichtgebruiksefficiëntie van fluorescentie-emissie (LUEf), in het bijzonder in 

percelen met ook N-toevoeging, wat een co-limitatie van LUEf door N en P 

suggereert. Met betrekking tot de tweede doelstelling analyseerde ik hoe de 

hittegolf van 2018, die werd gekenmerkt door temperaturen tot 45 °C, de 

GPP-SIF relatie in een mediterraan boom-gras ecosysteem beïnvloedde. Ik 

combineer passieve fluorescentie (SIF) op boomkruinschaal met actieve 

fluorimetrie op bladschaal, wat toelaat om de hoeveelheid warmte dissipatie 

(niet-fotochemische quenching, NPQ) te verkrijgen, wat een belangrijke 

dissipatie route is van geabsorbeerde energie en een belangrijke motor van 

SIF. Ik ontdekte dat de hittegolf een inversie veroorzaakte van de 

fotosynthese-fluorescentie relatie zowel op kroonblad- als op bladschaal. De 

zeer niet-lineaire relatie werd sterk bepaald door NPQ. Tijdens de extreme 

hittestress ondervonden de planten een verzadiging van NPQ, wat leidde tot 

een verandering in de toewijzing van energie dissipatiewegen naar SIF. Deze 

innovatieve resultaten toonden aan dat de relatie tussen GPP en SIF (die in 

het algemeen als lineair wordt beschouwd) onder extreme stress kan 

afwijken van lineariteit als gevolg van fysiologische regulaties. Bovendien 

toon ik de complexe modulatie van de relatie NPQ-SIF-GPP bij extreme 

hittestress, die niet volledig wordt weergegeven in de modernste gekoppelde 

modellen voor stralingsoverdracht en fotosynthese. Ten slotte voor de derde 

doelstelling voorspel ik T met behulp van passieve en actieve fluorescentie in 

twee sites; een mediterraan boom-gras ecosysteem en een bladverliezend 

beukenbos. Ik test de drie verschillende methoden die tot nu toe gebruikt zijn 

om SIF en T in verband te brengen; a) volledig empirisch, b) hybride 

modelbenadering en c) op watergebruiksefficiëntie (WUE) gebaseerde 

benadering om een kader te creëren voor op SIF gebaseerde T-

voorspellingen. Ik vond dat de totale SIF een sterkere correlatie met T 

vertoonde dan GPP over alle sites, aangezien zowel de totale SIF als T in 

grotere mate door APAR worden bepaald dan GPP. Bovendien bleken de 

benaderingen (a) en (b) een vergelijkbaar voorspellend vermogen te hebben 

voor de verschillende locaties. Ten slotte was de WUE-benadering de 

slechtste van de drie. Om de mechanistische relatie tussen SIF en T beter te 

begrijpen, benadruk ik dat het belangrijk is om periodes waarin de 
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fotosynthese stomatisch of niet-stomatisch (d.w.z. carboxylatie) beperkt is, 

te scheiden van periodes met weinig of geen stress.  Tijdens periodes van 

fotosynthesebeperking werd T vooral voorspeld door variabelen die 

fysiologisch gemoduleerd kunnen worden door planten, zoals NPQ en SIF, 

terwijl tijdens periodes van geen stress T meer energiegedreven bleek te zijn 

en daarom sterker voorspeld werd door APAR of oppervlaktetemperatuur. 

Deze dissertatie bevordert het begrip van SIF-gebaseerde GPP en T-

voorspelling door de belangrijkste factoren te analyseren die de GPP-SIF 

relatie kunnen beïnvloeden en door SIF-gebaseerde T-voorspelling te testen 

met verschillende methodologieën. SIF is een krachtige, maar complexe 

voorspeller van GPP en T, die het potentieel heeft om gebruikt te worden om 

nauwkeurig de koolstof- en waterfluxen te beperken in een veranderend 

klimaat. Toekomstige studies doen zich er goed aan zich toe te spitsen op de 

vraag in welke ecosystemen en onder welke omstandigheden SIF kan worden 

gebruikt om T te voorspellen, aangezien het verband tussen beide, hoewel 

het steeds duidelijker wordt, nog steeds onvoldoende bestudeerd is. 
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