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Chapter 1:  Background 

 

Flooding is a natural phenomenon, but with an increasing effect of urbanization 

and climate change in recent times, urban flooding is becoming more frequent 

and hazardous (Hirabayashi et al., 2013; Duan et al., 2016). While climate change 

has increased precipitation extremes (through thermodynamic forcing as 

reported by the Intergovernmental Panel on Climate Change (IPCC) Masson-

Delmotte et al. (2021) that are causing flood hazards (e.g., Grum et al. (2006); 

(Arnbjerg-Nielsen et al., 2013)), urbanization has caused imperviousness, 

resulting in more and faster flooding (Huong and Pathirana, 2013). Moreover, 

urbanization also intensifies precipitation extremes by affecting local forcing, 

increasing localized flood hazards in the urban environment (Zhang et al., 2019). 

Future increases in climate change and urbanization enhance warming in the 

city, as reported by the Intergovernmental Panel on Climate Change (IPCC) 6th 

report Masson-Delmotte et al. (2021), which further enhances extreme rainfall; 

hence, expected to increase flood hazards in the urbanized environment. 

Although flooding is a natural hazard and becoming a global threat, it 

disproportionately affects more low-income countries, mainly located in Africa 

and Asia (CRED and UNISDR, 2015). Particularly, in recent years, recurring 

floods have been reported in many cities in Sub-Saharan Africa  (Bhattacharya 

and Lamond, 2011; Amoako, 2012). Kampala is an example of a fast-growing city 

that has seen increased flood hazards and risks more often. For instance, 

Markandya et al. (2015) reported that the city had experienced 11 severe flood 

events from 1995 to 2014, resulting in 38 deaths, 67,713 people affected, 123 

homes destroyed, and around 21,000 homes damaged. According to this report, 

expected damages are estimated between $3.7 million and $17.6 million by 2025 

and between $33.2 million and $101.7 million by 2050.  

More impoverished communities in developing countries cities like 

Kampala are disproportionately affected by urban floods due to several known 

reasons. Firstly, the lack of data leads to a poor understanding of urban flooding 

and the processes leading to urban flooding; consequently, it results in 

inadequate flood management measures (Schipper and Pelling, 2006; Rahmati et 

al., 2020). Notably, the detailed lack of knowledge on the sources of floods, flood 

pathways, and recipients makes the extent/consequence of floods more 

challenging to predict and hence, challenging to manage the flood hazards. 

Secondly, anthropogenic activities such as poor drainage systems management, 

encroachments of wetlands, and flood plains also increase potential flood 

hazards (Sliuzas et al., 2013). Thirdly, poor urban planning following land-use 

and land-cover (LULC) changes results in a lack of open space, the so-called Blue-

Green areas for flood relief. Consequently, urban development occurs in 
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improper locations such as slums, which increases flood vulnerability (Isunju 

and Kemp, 2016; Isunju et al., 2016). Lastly, but not least, is overpopulation and 

urbanization and its physical expansion. While urbanization increases surface 

runoff through the creation of impervious areas, overpopulation causes a higher 

vulnerability. For example, Abebe (2013) indicated a tremendous urban 

expansion of Kampala in the last decades, with a total of 25168 ha of non-built-

up land converted into built-up land over the period of 1989 to 2010 (Figure 1.1). 

Mass migration in search of a better life caused the city to expand rapidly, 

resulting in the removal of natural vegetation and being replaced by unplanned 

and low-cost housing on hill slopes and wetlands (Douglas, 2017). This 

expansion certainly increases the impervious surface areas of the city, which 

reduces infiltration processes and increases surface runoff in uphill areas, and 

consequently increases flooding in the wetlands (Pérez-Molina et al., 2017). 

Moreover, as a result of urban expansion, former wetlands, which are used to be 

the natural drainage systems, are then occupied by slums mainly of the poor 

population (Vermeiren et al., 2012). As the population grows, many poor 

communities start to live in flood plains and reclaim wetlands; they are exposed 

to localized and frequent flooding during the rainy season, resulting in loss of 

lives and property (Sliuzas et al., 2013; Perez Molina, 2019). It is also vital to point 

out here that poverty makes the effect of flooding worse. The big influence of 

poverty is also more victims, more damage. People live in unsuitable areas, 

possibly the areas that are naturally prone to flooding, hence more vulnerability. 
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Figure 1.1 Urban growth of Kampala from 1989 to 2010 (source: Abebe 2013) 

Flood management measures such as the Integrated Flood Management 

(IFM) are essential in reducing urban flood damage through proactive measures 

(Vojinovic, 2015; Debele et al., 2019; Sahani et al., 2019). The overall aim of IFM is 
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to build a resilient city under changing conditions, which implies that the more 

residents adapt to flood hazards, the more opportunities for sustainable urban 

development (Jha, 2012; Liao, 2012). To achieve this aim, the proposed IFM 

measures are targeted to approach the flood impact from a holistic point of view 

(source-pathways-recipient–consequence) to develop robust but low-cost 

methodologies to reduce flood hazards (Management, 2009; Fratini et al., 2012; 

Juarez Lucas and Kibler, 2016). Such effective flood management requires proper 

flood hazard assessment. 

Within the integrated flood management, the starting point is obtaining the 

information required for optimal flood hazard assessment. However, despite 

devastating flood-related fatalities and damages of livelihoods in developing 

country cities, there is often limited spatial and time-series data related to 

flooding, it's triggering, and hazard (Westerberg and McMillan, 2015; Kabenge et 

al., 2017). For instance, high-quality information on rainfall data, urban soil 

information, flood information, and up-to-date land cover changes due to city 

expansion to better understand and study the hydrological processes leading to 

the flood hazard is lacking; consequently, poor flood adaptation and mitigation 

strategies (Schipper and Pelling, 2006). Besides, these developing country cities 

are changing rapidly in infrastructure and population, making urbanized areas 

quickly outdated. Many developing nations are data-scarce mainly because of 

economic marginalization, which leads to a lack of infrastructure to periodically 

collect and document the required data for flood hazard modelling. Moreover, 

localized urban floods are often related to certain weather conditions that are 

highly variable in space. Hence, the available density of rain gauges is not high 

to capture the extreme precipitation related to these weather conditions, which 

restricts optimal flood hazard modlling in the data-scarce area. Among the 

lacking data for integrated flood management is also data on vulnerability, which 

is very important towards addressing the impacts of flooding (Nur and Shrestha, 

2017; Hamidi et al., 2020). It is worth noting that flood risk and mitigation depend 

on hazards and vulnerability, and both are very difficult to assess without 

ground-based data. However, this thesis focuses on the flood hazard modelling 

part and does not study vulnerability. 
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1.1. Challenges in data-scarcity for flood hazard 

modelling in developing countries  
 

The main challenge in urban flood management in developing countries is the 

lack of spatiotemporal data for optimal urban flood hazard modelling. Flood 

hazard assessment often relies on the flood modelling approaches, which 

theoretically involves developing algorithms designed to solve the numerical 

expressions of key hydrological processes and flow approximations leading to 

the flood hazard (O’brien, 2007; Delestre et al., 2014b; Bout and Jetten, 2018). 

Conventionally, such approaches require high-quality spatiotemporal input 

datasets for a detailed understanding of each potential flood trigger as well as to 

make realistic urban flood hazard assessments. However, urban flood hazard 

modelling is highly influenced by the lack of data availability and quality in the 

data-scarce area. In particular, data scarcity on rainfall, soil moisture information, 

and static datasets required for flood models is lacking, hindering effective flood 

hazard modeling studies in developing countries. 

Regarding rainfall data, urban flood hazard assessment requires design 

storms of a given return period, which are derived from the intensity-duration-

frequency (IDF) curves constructed from high quality and long-term observed 

rainfall data. In many developing country cities, the rain gauge network is not 

sufficient to capture a full picture of rainfall event development and movement. 

In addition, the length of the existing observed rainfall data is often insufficient 

for establishing reliable IDF curves. Besides, the existing rainfall data used to 

construct IDF curves is often only available on a daily time scale, which can result 

in an unrealistic derivation of the corresponding short-duration design storms 

(Di Baldassarre et al., 2006). Moreover, in the case of localized flood events, 

finely-gridded high-intensity rainfall events are required for detailed flood 

modelling (Liu et al., 2015), which is even more challenging to obtain in a 

developing country. In particular, the equatorial East African region has a high 

spatial-temporal variability of rainfall (Onyutha and Willems, 2015; Ongoma et 

al., 2018); thus, the problem with the lack of and quality of rainfall data severely 

affects the prediction of quantity and timing of flooding (Kabenge et al., 2017).   

As proxies to the gauging rainfall observation, a Numerical Weather 

Prediction (NWP) model, such as the Weather Research and Forecasting (WRF) 

model (Powers et al., 2017), could be used as an alternative tool to produce the 

rainfall input for flood modelling in data scarce-areas. The WRF model can 

simulate a long-time series rainfall product from which IDF curves can be 

constructed. For instance, Liew et al. (2014) derive IDF curves derived from WRF 

rainfall driven by ERA40 reanalysis dataset daily and 30 km spatial resolution. 

This approach has been applied on an ungauged site (Java, Indonesia) and 
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indicated a promising result compared to existing IDF curves. The WRF model 

can also be used to simulate the high-intensity rainfall events triggering the 

localized flood at high spatial-temporal resolutions in the catchment. For 

example, a study by Sikder et al. (2019) showed the usability of WRF rainfall 

simulations of moderate-intensity and high-intensity rainfall events for urban 

flood modelling in the urbanized area of Houston, the USA. When properly 

configured, the WRF model is found to be a promising alternative source to 

produce rainfall products used for flood hazard assessment in a data-scarce area. 

Soil water characteristics are another factor that controls whether a given 

rainstorm produces a flood or not, due to the non-linear nature of runoff response 

to rainfall (Zehe and Blöschl, 2004; Grillakis et al., 2016). Hence, in the framework 

of IFM, in particular, for localized flood modelling, knowledge of soil is crucial 

(Van Steenbergen and Willems, 2013; Raynaud et al., 2015). Traditionally, 

hydrological modelling systems rely on the use of soil information available from 

in-situ measurements (Yang and Zhang, 2011; Wang et al., 2018a) or extracted 

from global soil databases, for example, by the Food and Agricultural 

Organization (FAO) (FAO, 1991). The global soil databases are soil maps based 

on classification systems that lack the information required for hydrology and 

flood modelling; the FAO maps are based on soil genesis, geomorphology, visual 

characteristics, and some basic chemistry. The information is, at best, a texture 

class, which is somewhat related to soil hydraulics. However, due to interference 

of the soil processes by urbanization, soil characteristics in the urban area are 

highly altered, and also, the natural soil has been replaced by human-made 

materials. As a detailed in-situ measurement of soil information becomes 

expensive and time-consuming, the extrapolation of a few measurements to a 

neighborhood and other parts of the urban area is impossible (Holanda and 

Soares, 2019). Moreover, detailed urban surfaces such as wetlands and built-up 

areas are hidden when using the global soil database alone. So, it is impossible to 

extract the optimum soil information required for flood modelling. When using 

the global FAO soil database, detailed soil information that determining the 

processes by which rain storms separated into surface runoff and soil infiltration, 

is lacking in many urban areas, which is a crucial issue that has affected the 

effective studies of flood hazard assessment.  

Nevertheless, with recent improvements in the availability of high-

resolution geospatial data such as LULC and soil information databases, there is 

an increasing effort to develop effective flood modelling approaches in data-

scarce areas. For instance, taking advantage of global geospatial dataset 

availability, International Soil Reference and Information Center (ISRIC) 
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developed a gridded spatial distribution of soil properties called SoilGrids 

(Hengl et al., 2017). The big advantage of SoilGrids is that it estimates directly 

detailed soil properties maps for six layers of depth in a reproducible way for 

flood modelling. Hence, from these maps of soil properties, we can produce 

essential soil water characteristics (e.g., porosity, saturated hydraulic 

conductivity, initial soil moisture, and soil depth) needed for hydrological 

modelling in a data-scarce area (Trinh et al., 2018). However, the soil database 

alone cannot provide detailed urban soil structure information, for example, 

compacted soil versus uncompacted soil. Hence, the LULC and soil database 

integration would be essential to prove the optimal soil information required for 

flood modelling. Toward this, high-quality LULC information, the main driving 

factor for urban flooding, can be obtained from satellite images (Pérez-Molina et 

al., 2017). The LULC data obtained from the satellite images include information 

on urban sealing, bare soil, and fragmented vegetation cover in the city that can 

explicitly be constructed. Thus, interferences of urbanization on soil physical 

structure can be overcome by incorporating the LULC information from satellite 

images into soil information.  

In the context of optimum urban flood hazard modelling in the data-scarce 

environment, the existing methodology regarding the use of available geospatial 

datasets and the NWP model out for flood modelling is not sufficient and 

straightforward, particularly in the limited resource area. Therefore, advances in 

modelling systems that can elevate the uses of the open-source geospatial dataset 

and the NWP model output as well as their integration for flood modelling are 

vital. This thesis is designed to address this gap. In doing so, we better enable 

academics and decision-makers to understand the niceties of geospatial 

databases and integrated modelling systems to improve flood hazard assessment 

in the urbanized and data-scarce environment. 

 

1.1.1. Flood processes and triggers in Kampala 
 

A flood in Kampala is a typically localized flood triggered by high-intensity 

rainfall events. It is pluvial flooding generated as a surplus of rainfall from 

rainfall-runoff processes. Overall processes are conceptualized as the area of the 

landscape over which rain falls, and part of this rain infiltrates into the soil. The 

fraction of rainfall that infiltrates is larger for vegetated areas and zero for non-

vegetated areas (built-up and compacted areas). Further, another fraction of the 

rainfall is intercepted by vegetation. The fraction of rainfall that remains becomes 

the runoff, and it moves downslope, eventually reaching the drainage channels. 

The capacity of these drainage channels may, in turn, be exceeded, which causes 

overflow into adjacent areas – in other words, flooding. The impact of land use 

land cover changes comes through urban construction, creating impervious areas 
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and soil compaction. So, the flooding in Kampala is not about a large river 

overflowing; rather, it is localized flooding when runoff is based on a detailed 

model simulation of the infiltration processes. This means we need to have high-

resolution rainfall in space and time to compare with the infiltration rate. As this 

high-resolution data is not available locally, we model rainfall data using the 

Numerical Weather Prediction(NWP), the WRF model. 

Kampala's main flood triggering mechanisms are high-intensity rainfall 

events from tropical weather conditions and soil infiltration properties. The flood 

is also exacerbated by urban growth and physical expansion. 

The primary triggering mechanism for flash floods in Kampala is 

precipitation extremes, characterized by high-intensity rainfall events. Flood 

regularly occur in the two main rainy seasons, which are controlled by the 

persistent synoptic-scale and mesoscale prevailing weather systems; hence, 

rainfall has a large scale monsoon characteristic with less spatial variability. The 

rainfall in the two main seasons is primarily controlled by the persistent seasonal 

migration of the Inter-Tropical Convergence Zone (ITCZ) and its interactions 

with the surrounding topography and Lake Victoria (Anyah, 2005). Floods in the 

city also occur at the end of the rainy season and the transition between the two 

main rainy seasons but not as regularly as in the main rainy seasons. The weather 

systems for floods in the non-main rainy season are mostly the mesoscale and 

local scale systems; they are mostly convection systems associated with lake 

circulation and the surrounding mountains (Anyah, 2005; Sun et al., 2015). The 

rainfall is often very localized and is characterized by high-intensity rainfall 

events as it is associated with highly variable weather systems; hence, available 

rain gauges are not sufficient to capture the spatial variability of these events. 

Another triggering mechanism that determines the flooding in Kampala is 

urban growth and its physical expansion. Urban growth and its physical 

expansion is a big issue that alters the surface characteristics leading to flooding. 

Urbanization triggers flash floods in two ways:  firstly, through direct effect, 

creating an impervious surface that hinders infiltration (Pérez-Molina et al., 

2017). This effect is considered by including the satellite-derived urban elements 

into the flood modelling system; secondly, by changing urban rainfall patterns 

via microclimatic changes, as indicated (Paul et al., 2018). Local climate changes 

created by urbanization and the resulting impact on extreme rainfall triggering 

localized flooding are well studied (Dixon and Mote, 2003; Zhong et al., 2015). 

Hence, the satellite-driven urban fraction is coupled with the NWP model as a 

fraction of building and impervious surfaces and considered its impact on the 
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simulated rainfall pattern. Satellite-derived urban fraction is the combined 

fraction of buildings and impermeable surfaces. 

Moreover, embedded within the main causes of floods (i.e.,  extreme 

rainfall events and creation of impervious surfaces), soil infiltration properties 

also lead to flash flooding by creating large runoff volumes. Kampala has vast 

valley areas that are characterized by clay soil. According to Bhattacharya-Mis 

and Lamond (2011), low-lying areas with high clay content reduced soil 

infiltration. When combined with low elevation, it creates a natural drainage 

system for runoff from hills and impervious surfaces within the catchment, 

which leads to flooding. Therefore, in order to get the correct flood dynamics in 

the catchment, accurate soil information is crucial. Since detailed soil information 

is not locally available, in this thesis, we explored the existing soil databases and 

field observations and experiments and compared their advantages and 

disadvantages for flood hazard modelling.  

 

1.2. Aim of the thesis 
 

One of the main challenges in urban flood modelling for effective flood risk 

management is the lack of a high-quality dataset. This challenge is even larger in 

developing countries where there is sparse or infrequent ground observation. 

However, with the current advancement in remote sensing data and numerical 

weather prediction modelling, there is an increasing opportunity to do effective 

urban flood hazard modelling in the data-scarce areas. The thesis's main objective 

is to assess the suitability of open-source geospatial datasets and their integration with 

hydro-meteorological modelling systems to overcome the data-scarcity challenges, more 

specifically to advance the modelling system and utilization of data on extreme rainfall 

events, soil, and land-cover information for flood hazard modelling in an urbanized and 

data-scarce area. Different soil databases are evaluated and compared to derive 

soil water characteristics used for flood hazard modelling. Moreover, the WRF 

model, a mesoscale NWP model, is evaluated to generate precipitation input for 

flood event modelling. In order to answer the main research objective, the thesis 

persuaded to answer the following research questions: 

I. How suitable is soil information derived from three different soil 

databases for modelling flood dynamics in an urbanized area? 

II. How appropriate is the satellite-derived urban fraction in the WRF 

model for simulating high-intensity rainfall events in the urbanized 

area? 

III. How to optimize the performance of the WRF model in simulating high-

intensity rainfall events triggering localized floods? 



Background  

 

 
 

 

IV. How suitable is the WRF rainfall product for urban flood hazard 

modelling in a data-scarce area? 

The following section presents the methodological framework used in the thesis 

and then describes the study area and thesis outline in sections 1.4 and 1.5, 

respectively.  
 

1.3. Modelling framework 
 

Figure 1.2 illustrates the overall modelling framework followed in this thesis. The 

figure shows that open-source geospatial datasets are used to derive land cover 

and soil information required for flood event modelling. This land cover and soil 

information are also used as input to the WRF model. The WRF model is used to 

simulate high-intensity rainfall data used for flood modelling. A detailed 

description of each methodological framework component is discussed in the 

later chapters of this thesis. 

 

1.3.1. Integrated flood modelling 
 

Flood hazard modelling is developed by using flood models. Flood models are 

useful tools to study the flood characteristics and also explore solutions for 

practical flood management to support decision-makers in preventing and 

mitigating flood hazards. The flood modelling process refers to both the 

hydrologic and hydrodynamic phenomenon of the flood. Hydrological 

modelling is concerned with the simulation of flood hydrology and hydrological 

processes in a  catchment, which requires less computational time at the price of 

representing less detailed physical processes (Hapuarachchi et al., 2011; 

Pappenberger et al., 2011). Hydrodynamic modelling is concerned with water 

systems simulation and predictions relating to water levels, flows, and velocities 

(Teng et al., 2017). The array of hydrodynamic models goes from 1D profile line 

models (Brunner, 1995a) to 2D shallow-water models (Horritt and Bates, 2002; 

Neal et al., 2011) and fully dynamic wave models (Dottori and Todini, 2013). Both 

hydrologic and hydrodynamic models often operate as stand-alone for practical 

application. Integration of these two model types has recently gained attention 

for urban flood application, particularly when dealing with flash floods on a 

catchment scale (Zischg et al., 2018; Liu et al., 2019). Therefore, a single model, 

which can efficiently consider fully integrated flood modelling to obtain a 

detailed understanding of flood hazards in urban areas, is used in this thesis. 
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Under the framework of integrated flood modelling in the urbanized and 

data-scarce environment, the flood model's suitability and selection depend on 

several other factors (Nkwunonwo et al., 2020). First, whether the selected model 

can fulfill the aim of the study, the adequacy of datasets, the availability of the 

model itself - a freely available model is usually recommendable. The second is 

whether the model is physically sound and practically viable. The second factor 

includes a proper formulation of shallow water equations (SWEs) and numerical 

equations to solve flood propagation and associated flood driving factors such as 

hydrology, climate, LULC, and soil surface characteristics (e.g., soil compaction). 

In particular, urban sealing and soil compaction in urbanized Sub-Saharan Africa 

cities are essential to be considered. As urban sealing and soil compaction are the 

key flood driving factors, they require proper formulation in the flood model. In 

the context of flood hazard modelling in an urbanized catchment, the choice of 

model also depends on the adequacy and availability of databases where a high-

resolution representation of complicated topographic features is necessary 

(Hunter et al., 2007; Tayefi et al., 2007). 

In this thesis, we will focus on the application of the spatially distributed 

integrated flood model, open-source Limburg Soil Erosion Model 

(OpenLISEM)(Bout and Jetten, 2018), to simulate flood hazards in Kampala 

catchment, Uganda (see chapters 2 & 5)). What makes openLISEM an integrated 

flood model instead of not just a flood model is that it considers catchment 

hydrological processes leading to flooding, particularly the rainfall-infiltration 

dynamics. As an integrated model, openLISEM simulates the effect of high-

intensity rainfall events (HIRE) in terms of surface runoff and flooding. Firstly, 

for hydrological processes, catchment water balance processes such as 

interception, infiltration, and surface storage are calculated at the gridcell level 

(1 D). Surface runoff is considered as the spatial process, which is accumulated 

towards river channels (downhill) and determined using a kinematic wave 

approach over a predefined network. Secondly, for the hydrodynamic model, the 

spatial process of the channel flow is routed through the channels with a 1 D 

Kinematic wave. Channel overflow resulting in flooding is modelled as overflow 

from the river channels towards the higher elevations of the floodplain, using a 

2D dynamic wave of the shallow water equations (Delestre et al., 2014a). Details 

on the model`s data used and simulated physical processes are given under each 

chapter (Chapters 2 & 5). The kinematic wave uses the flow velocity based on the 

manning formula for overland and channel flow, where Manning`s N values for 

resistance were estimated based on the land use data. The N for the main channel 

is set to a constant, according to the channel type. This model has been used for 

both river and urban flood modelling (Van Westen et al., 2015; watershed St 

Lucia, 2016; Pérez-Molina et al., 2017; Bout and Jetten, 2018; Bout et al., 2018) and 

for many more flood applications world-wide. As a spatially distributed model, 
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the openLISEM model uses a topography-following grid based on the digital 

elevation model (DEM) to solve both cell-specific processes and differential 

equations governing the flows. The model is also freely available and open-

source, allowing researchers to access the source code for further development.  

 

 

1.3.2. Geospatial data 
 

An integrated flood modelling system requires soil water characteristics, 

which include: initial soil moisture, saturated hydraulic conductivity, porosity, 

suction parameter, and soil depth. These soil water characteristics are derived 

from existing soil databases and field observations, and experiments. The 

detailed information does not exist locally, but open sources geospatial datasets 

are possibly detailed enough for this purpose. Hence, in this thesis, we explored 

open source geospatial databases for soil information used for flood hazard 

modelling in Kampala. As the urban environment changes, the existing data on 

urban elements are outdated quickly; hence we included the effect of 

urbanization from the latest databases and satellite imagery. 

The main geospatial datasets used for urban flood modelling in this thesis 

are land cover and soil information. In the case of land cover data, the required 

data is derived from satellite remote sensing and data fusion as a combination of 

remote sensing data with ground observation, in the case of soil information. The 

urban land cover data (hereafter urban land use fraction) is derived based on 

Landsat image 2016 and classified using a supervised classification by sorting the 

satellite image into three categories: Built-up, which included buildings and 

pavements, non-built, and bare soil following Perez Molina (2019). The derived 

urban fractions are used directly as input to the flood model and integrated with 

soil databases to produce essential soil information required for the flood model. 

Besides, following the procedure given by (Wang et al., 2007); Brousse et al. 

(2019), the built-up fraction of the urban land use is used to update the urban 

fraction in the WRF model, as discussed in chapter 3 of the thesis. In the case of 

soil, three different soil databases are used to derive soil water information 

required for flood hazard modelling. These are in-situ soil information 

extrapolated to the whole Kampala catchment using soil-landscape relationship 

(Sliuzas et al., 2013; Rossiter, 2014) (acronyms as SMLS), the global SoilGrids 

database (Hengl et al., 2017) (acronyms as SGSM), and the FAO soil database 

(FAO, 1991) (acronyms as SMFAO). The applicability of the derived soil 

information for flood hazard modelling is discussed in chapter 2. As shown in 
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Figure 1.1, soil information is used directly as input to the flood model as well as 

to update the soil water information in the WRF model, as described by 

Santanello Jr et al. (2011); (Lin and Cheng, 2016). It is worth noting that the level 

and details of soil information and built-up fraction for the flood model and WRF 

are not of the same order, and hence, both models could be sensitive to this 

information. 

Moreover, Integrated flood modelling requires spatial data of detailed urban 

elements (buildings, infrastructure, drainage systems) for the infiltration rate. 

These datasets, including a digital elevation model and other spatial datasets, are 

extracted from the pre-established research database of Kampala. Here, urban 

elements used in this thesis are derived from the satellite image (Perez Molina, 

2019). The digital elevation model (DEM) is derived from the city's contour map 

and has a resolution of 5 m, resampled to 10 m for flood hazard assessment. 

Kampala city's channel dimensions and manning coefficient (N) are taken from 

the Kampala city authority master plan 2010 (KCCA, 2010). A field experiment 

on channel depth, width, and other information was also carried out in 2013, and 

the suitability of these field data is evaluated and analyzed through previous 

project work and MSc thesis research (Chogyal, 2013; Mhonda, 2013b; Sliuzas et 

al., 2013; Habonimana, 2014; Pérez-Molina et al., 2017). 
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Figure 1.2 Modelling framework to study urban flood hazard in a data-scarce area 

1.3.3. Numerical Weather Prediction model  
 

An integrated flood modelling system requires high-resolution rainfall in 

space and time to compare with the infiltration rate. Recording the high-

resolution rainfall requires a dense gauging network, as indicated in Jeworrek et 

al. (2019). Notwithstanding the need for denser and more frequent 

measurements in the gauge network in the area, various studies have pointed out 

the problem of scarcity and lack of quality of meteorological data in Kampala for 

effective flood modelling (Sliuzas et al., 2013; Habonimana, 2014; Mugume and 

Butler, 2017). The availability of observed rainfall data is limited due to the few 

weather stations in the area. Additionally, Standard World Meteorological 

Organization (WMO) meteorological stations are reporting only rainfall amounts 

once a 24-hour, which lacks information on a sub-hourly rainfall intensity 
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required for localized urban flood modelling. Rainfall from satellites does not 

work because although the temporal resolution is better (i.e., 30 minutes), the 

intensities are not good yet. However, while the time series derived from Global 

Precipitation Measurement (GPM-IMERG) is already 20+ years with aggregated 

values (3-day and weekly totals) show good agreement with ground 

measurements Fang et al. (2019); Chen et al. (2020), the ground data is too scarce 

in Kampala for that. Hence, in this thesis, we explored a numerical weather 

prediction modelling system to get detailed rainfall information used for flood 

hazard modelling in Kampala. In order to do this, we built a high-resolution 

NWP model, WRF, to produce the rainfall data required for flood hazard 

modelling in the city. 

Numerical weather prediction (NWP) is a weather forecasting method that 

employs a set of equations describing the flow of fluids, translated into computer 

code (Skamarock, 2004; Wikle, 2005; Knievel, 2006). This set of equations is 

combined with parameterizations of other processes, then integrated with initial 

and boundary conditions of a specific domain to produce data for climate 

application. NWP data are the most familiar form of weather model data, which 

depends on current weather observations to forecast future weather at various 

spatial and temporal scales, which can be considered as the added value over the 

observations (Hopson and Webster, 2010; Frank et al., 2020). WRF is among the 

first cloud-scale NWP model designed for both research and operational 

applications (Powers et al., 2017). It is the most widely used numerical weather 

prediction model with a wide range of applications (Dudhia, 2014). Besides, WRF 

is attractive because of its flexible configuration at high-resolution domains, 

variety of possible input data, and computational flexibility (particularly in 

limited-resource settings), along with the ability to leverage model 

advancements from a global research community.  

This study applied WRF to simulate high-intensity rainfall events (HIRE) 

used for flood hazard modelling, as discussed in chapters 3, 4 & 5 (Paper II & III). 

The flood modelling approach considered here is that the WRF model rainfall 

output is used as input to OpenLISEM using an offline model coupling system. 

WRF has been recognized as a powerful tool to simulate physically reliable 

HIREs used for localized flood modelling (Sikder et al., 2019). The WRF model 

software framework (WSF) supports two dynamical solvers or cores: the 

Advanced Research WRF (WRF-ARW), which used in this research, developed 

and maintained by the Mesoscale and Microscale Meteorology Division of 

NCAR, and the nonhydrostatic Mesoscale Model (NMM) developed by the 

National Centers for Environmental Prediction with user support provided by 

the Developmental Testbed Center (www.wrf-model.org). Both dynamic solvers 

had an Eulerian height-based and mass-based vertical coordinate. The prognostic 

equations for the model variable (wind, potential temperature, moisture, and 

http://www.wrf-model.org/
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hydrometeor fields) are formulated in flux form using a terrain-following mass-

vertical coordinate. The equations are summarized in the Advanced Research 

WRF Description Version 3 Manual (Skamarock, 2008). For atmospheric 

simulations (e.g., rainfall simulation), WRF has two components: the first is WRF 

pre-processing system (WPS), which is used for data preparation, and the 

forecast model part (i.e., WRF-ARW), used for model simulation. 

Two gauging station rainfall data were used for WRF model verification 

work in chapters 4 & 5. The first one is with daily rainfall data available from 

WMO through a global summary of the day, and the second is an automatic 

weather station (AWS) recording rainfall every 10-minute. The AWS from 

Vantage Pro (http://www.davisnet.com) was installed at Makerere University to 

record rainfall data. This station may not fulfill all requirements by WMO and is 

also not linked to the meteorological authorities. This AWS data has been used 

for WRF model verification and flood hazard modelling. In addition, CHIRPS 

satellite rainfall data with a daily time step is used to evaluate the spatial 

distribution of WRF simulated rainfall events. 

 

1.4. Study area description 
 

The study area is Kampala city, both the capital and political city of Uganda 

and among the largest city in East Sub-Saharan Africa (UN, 2015). The Kampala 

metropolitan area is about 340 km2 with the administrative division of five 

districts: Kampala Central Division, Kawempe, Makidye, Nakawa, and Rubaga, 

although a significant amount of new development beyond the city boundaries 

(Pérez-Molina et al., 2018). Kampala is an exemplary sub-Saharan African city 

that exhibits rapid growth and physical expansion in complicated contexts while 

frequently affected by flooding. The city is located near the equator, north of  

Lake  Victoria,  in a  hilly terrain containing large wetlands.  Its tropical weather 

and soil infiltration properties already lead to large runoff volumes, a leading 

cause of recurrent flash flooding exacerbated by urban growth. At the same time, 

the lack of high-quality rainfall data hinders the proper flood hazard modelling 

for managing this recurrent flooding. Therefore, the city is an ideal location to 

explore the objectives of the research. 

The city's urban structure has been shaped by wetlands and the waters that 

flow into the Bay areas and Lake Victoria. The city depends on the wetlands 

throughout the settlement, which provides floodwater attenuation, sewage 

treatment, water purification, food, and building materials. However, due to 

physical development, the wetlands are forced to decrease and become 

http://www.davisnet.com/
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degraded. Around 60% of wetlands changed into a settlement, agricultural 

cultivation, and construction of drainage channels (KCCA, 2010). These factors 

highly affect the function and system of hydrology, hence flood dynamics. 

Natural and human-made factors cause pluvial flooding in the city. Natural 

factors include soil infiltration properties in the area, high-intensity rainfall 

intensity, low lying, and flat terrain. Particularly, high-intensity rainfall events 

(HIREs) frequently cause storm runoff, which surpasses poorly managed city 

infrastructure's capacity and triggers localized flood events. Human-made 

causes of flooding include, but are not restricted to, increasing impervious 

surface area, and the surface is highly compacted, with poor quality of drainage 

systems, weak solid and liquid waste management (Perez Molina, 2019). 

Particularly drainages in Kampala are poorly maintained, sometimes filled with 

garbages, which can block flow in the channel with initial downpours and then 

cause the overflow of floodwater. 

According to the Kampala master plan report KCCA (2010), the city has 

eight major wetland systems (i.e., Nakivubo, Lubigi, Nalukolongo, Kansanga, 

Mayanja, Kinawataka, Nalubaga, and Walufumbe), and these wetlands are also 

functioning as the primary drainage systems of the city. The primary drains' (i.e., 

the widest channels draining the main valleys) and the former wetlands are 

canalized and widened. At the same time, narrow culverts are replaced by a 

series of large box culverts to drain a peak discharge of about 67 m3/s, 

representing the 24-hour duration design storms of a 10-year return period 

(Sliuzas et al., 2013). In the master plan, it is also reported that the secondary and 

tertiary drainage systems were designed to accommodate the flood peak of a 2-

year event. For the drainage system design, rainfall with a known probability is 

needed; this is constructed using the intensity-duration-frequency (IDF) curve of 

the daily rainfall amount. However, the currently functioning drainage systems 

are not fully preventing flooding. Recent studies and reports, for example, 

(Mhonda, 2013a; Perez Molina, 2019), indicate that high-intensity rainfall events 

frequently cause storm runoff, which surpasses the city infrastructure's capacity 

and triggers localized flood events. Consequently, causing estimated annual 

damage between the U.S. $1.3 million and the U.S. $7.3 million and is expected 

to increase under changing climate conditions (Taylor et al., 2015). 

This study focused on urban flood hazard modelling both at a catchment 

scale and for the whole of Kampala city. Flood modelling was conducted using 

the openLISEM integrated hydrological model ( see section 1.3.1). OpenLISEM is 

chosen for this study because it addresses the factors determining the hydrology 

processes leading to flooding in Kampala reasonably, particularly the processes 

related to rainfall-infiltration dynamics. Accordingly, two chapters in this thesis 

explicitly focused on flood hazard modelling in the Kampala catchment. In 

chapter 2, for the city's flood hazard modelling, we consider the model boundary 
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from a hydrological modelling perspective following the draining area, 

particularly following the major wetland systems in the city with a total area of 

350 km2 (see Figure 1.3, Kampala catchment). In chapters 3 & 4, this thesis 

develops high-intensity rainfall events for 900 km2 (the innermost domain of 

WRF, Figure 1.3), which cover sub-urban areas around the city. For the flood 

hazard modelling of chapter 5, the study considered the upper Lubigi catchment 

in Kampala city. The detailed flood impact and hazard analysis are evaluated for 

the upper Lubigi catchment, an area that roughly coincides with the Kawempe 

administrative division with a total of 130 km2 (see Figure 1.3, Upper Lubigi 

catchment). This catchment has been the focus of several studies on flooding and 

urban growth because of the frequent flooding that happens in the former 

wetlands, where dense informal settlements (slums) exist. 

 

 
Figure 1.3 Study area: Map of Kampala city with land use fraction derived from Landsat 

image, source (Abebe, 2013); Upper Lubigi catchment used for flood modelling in Paper-

III; Kampala catchment used for Paper-I & II;  WRF domain is the innermost domain with 

1 km spatial resolution that used for rainfall analysis. 
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1.5. Thesis outline 
 

   This thesis contains six main chapters, in which chapters 2-5 address the 

research questions presented above. All chapters are outlined as follow: 

Chapter 1 presents the introduction part of the thesis. It introduces the 

background, the framework on flood hazard modelling in an urbanized and 

data-scarce area. In this chapter, the methodological framework to study flash 

flood modelling in Kampala’s urbanized and data-scarce city, the objectives, data 

sources, and the study area's description is introduced. 

Chapter 2 addresses research question I. It presents research done on the 

suitability of three different soil information sources for flash flood modelling in 

Kampala's urbanized catchment. This chapter includes deriving soil water 

characteristics needed for flood event modelling based on three different soil 

databases (SMLS, SMSG, and SMFAO databases) by applying pedotransfer 

functions and comparing their results. None of the datasets have sufficient 

essential urban information in their databases, such as sealing, compaction, and 

vegetation cover fractions. Therefore, we developed a new methodology to 

incorporate land cover information into derived soil water characteristics. 

Finally, the derived soil water characteristics are used in the flood model 

OpenLISEM and compare their results. 

Chapter 3 is designed to address research question II. It presents the WRF 

model configuration, static data setting, and model`s suitability to simulate high-

intensity rainfall events triggering localized floods in the catchment. Attention is 

paid to building a strategy to insert the city's correct urban fraction into the WRF 

model for proper representation of urban extent and position for rainfall 

simulation. The new urban fraction is derived using the Landsat image of 2016. 

The appropriateness of the satellite-derived urban fraction in the WRF model for 

simulating HIRE is evaluated through sensitivity analysis and comparison with 

results when using the default WRF urban fraction. 

Chapter 4 addresses research question III. It presents the evaluation and 

sensitivity analysis of WRF parametrization schemes and their combinations for 

proper simulation of HIRE over Kampala city. Specifically, we evaluated 24 

different WRF parametrization combinations for sensitivity analysis. Finally, we 

selected the optimum parametrization combinations to simulate the case of 25 

June 2012 HIRE over the city. Model validation is handled by comparing 

catchment rainfall with CHIRPS and rain gauge observations. The best physics 

options of the model can be determined in terms of cumulus parameterization, 

microphysics, and planetary boundary layer for the innermost domain of WRF.  

Flood hazard assessment cannot be done using actual rainfall events as 

simulated by WRF because simulated events are highly spatiotemporally 

variable. In some cases, they are off the place. Hence, each sub-catchment of the 
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city received different rainfall amounts, which would make a comparison 

between events of varying magnitude challenging. Therefore, Chapter 5 presents 

an innovative construction of simple design storms based on WRF precipitation 

output for a proper flood hazard modelling in the city to address research 

question IV. Mainly, three design storms at different times of the year are 

constructed, and their feasibility for flood hazard modelling is compared with 

the historic design storm. 

Chapter 6 presents the thesis's synthesis, including the main findings with 

respect to the main objective, contribution to flash flood modelling in urbanized 

and data-scarce areas. Moreover, this chapter indicates some ideas on the future 

direction of the study and flood management strategies in cities in developing 

countries.  
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Chapter 2:  The sensitivity of flood dynamics to 

different soil information sources in urbanized 

areas 
 
This chapter is published as a peer-reviewed paper: 

Y.Umer, V.G.Jetten, J.Ettema. The sensitivity of flood dynamics to different soil information 

sources in urbanized areas. Journal of Hydrology, Volume 577, October 2019, 123945 

 

Abstract 

 

This study focused on the sensitivity of flood dynamics to soil hydraulic 

properties derived from three different soil databases: (1) upscaled locally 

observed soil texture data based on the soil-landscape relationships (SMLS); (2) 

the SoilGrids250m open data source (SMSG); and (3) the FAO soil map (SMFAO). 

The flash flood modelling was done using the integrated flood modelling system 

using openLISEM (Bout and Jetten, 2018) for the whole of Kampala (Uganda) 

using the 25th of June 2012 flood event. Infiltration dynamics were derived from 

the predicted soil hydraulic properties for these soil information sources and 

compared their relative performance with flood inundation using flooded areas 

from the earlier calibrated simulation as a benchmark. However, Kampala urban 

areas have two major conditions related to land cover and soil physical structure 

for which the information is not available in soil databases: the effect of 

fragmented vegetation cover and the effect of compaction of bare soil. Non-built-

up areas can be covered by fragmented vegetation (grass and shrubs), which 

generally has high infiltration rates. In contrast, bare areas such as dirt roads and 

footpaths can be heavily compacted and have typically low infiltration rates. We 

used Pedotransfer functions (PTFs) with satellite-derived vegetation cover and 

bare soil to predict soil hydraulic properties related to the uncompacted and 

compacted scenarios. In the distributed openLISEM hydrological model, these 

two urban soil conditions have been treated separately. We have evaluated the 

sensitivity of flood dynamics to three different soil databases under both 

uncompacted and compacted urban soil conditions by using different flood 

indicators such as catchment water balance, infiltration rate, flood depth and 

duration, flooded area, and flood volume, and the average number of structures 

affected. The study results indicate that soil hydraulic properties needed for the 

distributed hydrological model are better predicted when using the SMSG and 

SMLS, which resulted in better infiltration simulation. 
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Compared to an earlier simulation that was verified with stakeholders and 

accepted for drainage system design, the simulated flood extent map's accuracy 

was better when using SMSG and SMLS. Moreover, soil compaction significantly 

reduces infiltration and consequently increases the flood depth and duration, 

and therefore must be included in the urban flash flood modelling study. 

 

Keywords: Flash floods, openLISEM, PTFs, Soil compaction, Soil hydraulic properties, 

vegetation cover fraction 

 

2.1. Introduction 
 

Population growth and migration are the leading causes of urban expansion, 

particularly in developing countries. Sub-Saharan African cities are predicted to 

increase in total urban extent by nearly 20 fold in 2030 compared to the urban 

extent in 2000, which would intensify pressure on the natural environment 

(Güneralp et al., 2017). From a hydrological point of view, urbanization is a 

process by which natural vegetation and agriculture are replaced by compacted 

and constructed surfaces such as buildings and tarred roads (Chen et al., 2014). 

Also, the surface and subsurface drainage systems are usually altered, and 

topsoil may be replaced by building materials. Such changes in urban 

morphology can have a significant impact on hydrological processes, such as 

changing infiltration rates and consequently increasing storm runoff (Redfern et 

al., 2016). Urban expansion is not always through planned high-rise buildings but 

often a process of releasing building permits for small-scale private contractors 

that lead to vast sprawling areas with single-story houses built on the natural 

surface. These areas have many footpaths and dirt roads that appear semi-

naturally (unplanned). Many studies have investigated the role of urban soil 

hydrology in urban storm runoff (Berthier et al., 2004; Ossola et al., 2015; Miller 

and Hess, 2017), highlighting the importance of urban soil heterogeneity in 

several cities, with alternative sealed and infiltrating surfaces that significantly 

affected soil water storage and therefore runoff. 

One such example is the city of Kampala (Uganda), which has experienced 

tremendous expansion over the last two decades. A previous study by (Abebe, 

2013) analyzed the development of the city from 1989 to 2010 and showed that 

the city expanded the urban footprint from 72.9 km2 in 1989 to 325 km2 in 2010, 

where the majority of the expansions were to the northern part of the city. 

Topographically, the city is characterized by rounded hills and wetlands, with 

residential density increasing on the hillslopes and the wetlands gradually being 

filled with informal settlements, in spite of laws protecting the wetlands. These 
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areas have experienced intermittent flooding, but urbanization of the hillslopes 

combined with heavy rainfall events have increased their frequency (KCCA, 

2012). The risk of flash flooding in Kampala has generally been associated with 

heavy rainfall occurring during the rainy season (Douglas et al., 2008). A similar 

study by (Sliuzas et al., 2013) concluded that the city's flooding had been greatly 

influenced by the formation of informal settlements in the flood-prone areas and 

the city's lack of workforce enforce spatial planning.  

With increasing population growth, urban expansion, and intensified 

rainfall events resulting from climate change, Kampala city faces a significant risk 

of flash flooding. In 2002, a master plan was designed to upgrade and enlarge the 

drainage systems currently being implemented. In this plan, 10-year return 

period floods were simulated and were then verified with stakeholders. These 

simulated floods were used as a baseline for this study in the absence of 

measured water level values for calibration. The 'primary drains' (i.e., the widest 

channels draining the main valleys) and former wetlands are canalized and 

widened, while narrow culverts are replaced by a series of large box culverts. 

Occasional local cleaning efforts remove waste and garbage to improve flow. 

However, there is visible evidence of erosion and siltation on new channels and 

storm basin structures, significantly decreasing their effectiveness. In a later 

stage, the concrete secondary drains leading from the hills to the main drain will 

be upgraded. It is not certain these drainage improvements will entirely remove 

the flood hazard. As housing density on slopes continues to increase in place of 

natural vegetation, flood problems continue to persist. Therefore, it is important 

to implement an integrated flood model that analyses the hydrological processes 

for the entire catchment, which is needed to mitigate flood risks and help in 

urban planning. 

Flood models can be classified into two groups. The first one is models 

where the upstream generation of runoff is separated from downstream flooding 

(for so-called large river floods) by overflowing of channels (e.g., HEC-RAS 

(Brunner, 1995b). The second type is integrated flood models, which simulate the 

catchment hydrological processes for the entire domain and consider a seamless 

conversion from runoff to flood water, treating all surface water as 2D flow. In 

this modelling type, flooding is not only due to overflowing channels but also 

from the overland flow and direct rainfall. Examples include the commercially 

available software for two-dimensional flood, FLO-2D (O’brien, 2007), and the 

open-source Limburg Soil Erosion Model (openLISEM) (Bout and Jetten, 2018). 

For this study, we used the openLISEM model to simulate the above ground and 

soil hydrology in detail and used a high-resolution representation of topography 

with a 2D-dynamic wave for all surface flow. The model does not consider 

subsurface storm drains, but in Kampala, sub-surface storms drains are of very 

limited use. 
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Soil texture and soil structure are very important in integrated flood 

modelling of urban watersheds (Salvadore et al., 2015), as they determine the rate 

of infiltration in the urbanized catchment. Urban soil properties are exposed to 

three different systems: (1) the surface is sealed with impervious structures 

(tarred roads, houses, concrete channels); and (2) non-sealed surfaces such as dirt 

roads and footpaths can be heavily compacted, and (3) surfaces that are 

vegetated, such as grassed parklands, have a positive effect on infiltration. On 

the sealed surfaces, urban soil covers have no infiltration rate, and hence high 

surface runoff (Konrad, 2003; Yang and Zhang, 2011). It is important to note that 

in Kampala, most of the houses are built directly on the natural soil surface 

(maybe removing the organic topsoil), and thus, the original soil information 

available is valid for most of the Kampala area. On locations where larger 

buildings are constructed, sand and gravel are used as a foundation. 

Unfortunately, there was no detailed information available as to their exact 

location, which prompted the need to assume that all buildings had been 

constructed using the original soil material for this study.  

Soil texture information can be obtained from various sources (explained 

below), but the changes in soil physical structure are not usually included in soil 

information. The only way to incorporate this effect in the hydrological models 

is by including compaction in the input soil properties. This, therefore, means the 

exclusion of models that do not simulate infiltration (e.g., based on the SCS Curve 

Number Method). In Kampala, there is limited direct information on soil 

hydrology, mainly on soil texture and texture classes (NRCS, 1993). These can be 

translated to soil hydraulic properties using either tabulated guide values per 

texture class (see (Cosby et al., 1984)) or Pedotransfer functions (see (Saxton and 

Rawls, 2006) and (Rawls and Brakensiek, 1989)). (Saxton and Rawls, 2006) 

investigated the effect of changing bulk density on hydrological properties, 

which makes the functions useful to simulate the effect of compaction on 

infiltration and soil water storage. In this study, we used "soil physical 

properties" (SP) to refer to texture, organic matter, and bulk density and "soil 

hydraulic properties" (SHP) to refer to saturated hydraulic conductivity (Ksat), 

porosity, wilting point, and field capacity.  

A freely available high-resolution global soil database was recently made 

available: SoilGrids250m, developed by ISRIC (Hengl et al., 2017). This global 

database directly provides soil physical properties in seven soil layers and is 

based on geostatistical interpolation of soil data, using machine learning 

algorithms that include correlated terrain and land-use variables. The 

interpolation and correlation are done on a continental basis to have a large 
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enough dataset. (Hengl et al., 2017) warn against the unconditional use in large-

scale applications, but as a source of information, it is well worth investigating 

this. Another soil data for Kampala is a database from the Food and Agriculture 

Organization of the United Nations – United Nations Educational, Scientific, and 

Cultural Organization (FAO-UNESCO soil map of the world (FAO, 1974; FAO, 

1991) which is available at 1:5, 000,000  scale. Its information is limited mainly to 

texture classes and falls short in providing landscape details (e.g., the presence of 

wetlands). In addition to these databases, SHPs can also be developed using soil-

landscape relationships based on observed soil texture classes (Rossiter, 2014). 

The geological history of Kampala has resulted in hard lateritic soils capping the 

hills, reddish sandy clay loams on the hills of weathered sandstone and slate, and 

heavy clays in the wetlands where sediment accumulated. This clear relation 

between soil type, soil material, and landscape (so-called soil catena) was used in 

the UN-HABITAT project (Sliuzas et al., 2013) to derive a texture class map based 

on geomorphology from field observation. The UN-HABITAT project has been 

conducted in the upper Lubigi catchment in Kampala, one of the northern 

watersheds. They deduced the soil-landscape relationship from a landscape 

analysis using the DEM. To prepare a concept map of soil-landscape units from 

DEM, first, the probable landscape segments (number and positions) were 

obtained mainly from the literature. Second, landscape segmentation was carried 

out by numerical landform analysis, using numerical programming: (1) Valley 

floor; (2) Bottom slope; (3) Mid-slope; and (4) Hilltop. The segmentation was 

carried out by fuzzy means clustering from elevation, slope, and profile 

curvature, and finally, the soil texture classes from the field experiment assigned 

to each landscape unit. In this study, we followed the same procedure to deduce 

different landscape units to the whole of Kampala and assigned the field 

experiment soil texture classes to the created landscape units.  

In this study, since the pattern of the landscape of Kampala is consistent, 

which is ironstone-capped hills and swampy inter-hill valleys, we followed the 

same procedure and deduced four different landscape units for the whole of 

Kampala. Finally, we assigned the field experiment soil texture classes to the 

created landscape units. 

As previously explained, soil hydrological information is vital in flood 

modelling and can influence a city's flood hazard modelling. The main objective 

of this research is to determine how sensitive the flood dynamics are to hydraulic 

properties derived from soil information based on the three different soil 

databases (SoilGrids250m, FAO, and upscaling of local soil information based on 

the soil-landscape relationships) and develop the best strategy for integrated 

flood modelling. All datasets were translated to SHP using Saxton's pedo-

transfer functions. Since sealing and compaction play an essential role, all three 

data sources were used with and without compaction to see if the effect of sealing 
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and compaction overrides the differences caused by the soil information sources. 

Finally, if there are clear effects, we aim to advise on the best strategy in case 

there is very little local soil data available. 

2.2. Methodology 
 

2.2.1. Conceptual framework of the study 
 

This research's underlying hypothesis is that the freely available global soil 

database does not explicitly consider the effects of vegetation cover and 

compaction on soil hydraulic properties, which are crucial in modelling the 

hydrological processes. Although hydrologic models took into account 

vegetation cover for their land surface modelling, considering the explicit effect 

of vegetation cover on soil hydraulic properties before the hydrologic model 

simulation is essential to have the reliable values of SHPs used for the hydrologic 

model. Actual soil databases derived directly from global soil maps (e.g., ISRIC 

and FAO) are assumed to have a normal soil density, as shown in Table 2.1. In 

the PTFs (Saxton and Rawls, 2006), this is indicated with a relative density factor 

of 1.0. However, areas covered by vegetation have a density factor of less than 

one, while the compacted areas have a density factor greater than one. Thus, the 

effects of vegetation cover and compaction on estimated soil hydraulic properties 

can be accounted for by incorporating vegetation cover and compaction effects 

into PTFs to produce soil hydraulic properties under uncompacted and 

compacted conditions. Therefore, density adjustment factor can be analyzed 

based on the following scenarios: Scenario-1: for density factor less than one; it 

is called uncompacted urban soil condition (the consideration of density 

adjustment factor due to vegetation cover fraction in the relative non-built-up 

fraction areas which is varying between 0.90 (loose soil) to 0.98. Scenario-2: for 

density factor greater than one, it is called compacted urban soil condition (the 

consideration of compaction factor due to bare soil fraction, which is spatially 

varying between 1.0 and 1.2).  

Figure 2.1 shows the methodological setup used in this study: (1) local soil 

texture classes scaled up through soil-landscape relationships, hereafter referred 

to as Soil Map Landscape-(SMLS); (2) soil texture data derived from the Global 

SoilGrids250m database, hereafter referred to as Soil Map SoilGrids-(SMSG); and 

(3) the soil texture class-map derived from the FAO 1:5,000,000 soil map, 

hereafter referred to as Soil Map FAO-(SMFAO). Soil hydraulic properties were 
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derived from the above soil databases based on Saxton and Rawls, 2006 PTFs. All 

scenarios were modeled with openLISEM (version 5, 2018) using a 66.2 mm 1-in-

2-year rainfall event that caused flooding in Kampala.    

 

 
Figure 2.1 Conceptual framework: Soil hydraulic properties derived from different soil 

information sources for flash flood modelling (compaction refers to a density factor above 

1.0, and uncompacted refers to a density factor <= 1.0, see Table 2.1) 

2.2.2. Pedo-transfer Functions (PTFs) 
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Pedo-transfer functions (PTFs) are non-linear multiple regression of the 

combinations of soil physical properties (SP) to reproduce the soil hydraulic 

properties (SHP) (Cosby et al., 1984). The main SP used in PTFs is Sand and Clay 

content, organic matter content (OM), gravel, and bulk density. Numerous 

examples of PTFs are available in the literature. For example, (Cosby et al., 1984), 

(Rawls and Brakensiek, 1989), and (Saxton and Rawls, 2006) provide PTFs built 

from a collection of USA soil samples, and (Wösten et al., 1999) provide PTFs 

built based on European soil samples. These PTFs differ from each other in their 

required input parameters and underlying equations (Abdelbaki et al., 2009); 

(Harrison et al., 2012). PTFs can either take the form of lookup tables based on 

soil texture classes, for which soil maps are available, or the form of continuous 

functions with soil properties as inputs. A study by (Gijsman et al., 2002) has 

indicated that the (Saxton and Rawls, 2006) method was the most accurate based 

on RMSE (Root Mean Square  Error) of 0.009 compared with a 0.25 average for 

all methods. In this regard, a previous study, e.g., (Abdelbaki et al., 2009), has 

suggested that Saxton and Rawls's approach is suitable for deriving soil 

hydraulic properties needed for hydrological modelling.  

The predictive equations reported by Saxton and Rawls (1986) are mainly 

based on mean texture class data in the USDA texture class triangle, which is the 

dominant effect for the soil hydraulic properties. In addition to texture classes, 

variables such as OM and density can play a crucial role in the estimation 

methods. OM affects the values and distribution of the predicted soil hydraulic 

properties. For example, OM increases produce soil with increased saturated 

hydraulic conductivity, mainly because it influences soil aggregation and 

associated pore distribution. The value of OM is introduced in the predictive 

equations as percentage volume weight (%wt), and in this study, we used the 

constant value of 2.5 %w for all cases. In the PTFs, OM is directly multiplied by 

the texture classes to get moisture characteristics. 

 

2.2.3. The effect of soil compaction 
 

Soil bulk density varies across the space based on the underlying surfaces. Loose 

organic soils and uncompacted urban soil have bulk density ranges between 1.0-

1.5g/cm3, while compacted soils have a bulk density varying between 1.5-1.8 

g/cm3 (depending on the texture, as shown in Table 2.1). Increases in soil 

compaction, in general, increase bulk density and consequently decreases 

porosity and saturated hydraulic conductivity (Figure 2.2). Saxton and Rawls 

(2006) introduced a relative compaction factor to PTFs to provide a compacted 
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density, which is higher than normal density condition. The compaction factors 

are categorized as 0.9 – 'loose,' 1.0 - 'normal,' 1.1- 'dense,' 1.20- 'hard,' and 1.3 

'severe.' 
Table 2.1 Bulk density (g/cm3) for different density factor (loose soil, normal and 

compacted conditions) under different soil texture classes. For consistency, the 

terminology for compaction is based on Saxton & Rawls (2006) 

Texture classes Loose (0.9) 

normal 

(1.0) 

hard 

(1.1) 

dense 

(1.2) 

severe 

(1.3) 

Sand (S) 1.28 1.42 1.57 1.70 

 

1.85 

Sandy Loam 

(SaL) 1.34 1.48 1.62 1.77 1.90 

Sandy Clay Loam 

(SaCL) 1.35 1.50 1.65 1.80 1.96 

Sandy Clay (SaC) 1.32 1.47 1.62 1.75 1.74 

Clay (C) 1.25 1.39 1.53 1.65 1.57 

 

 
Figure 2.2 The effect of a modified density factor on porosity and Ksat within the equation 

of Saxton (2006). The values for SaC and C are almost the same. Ksat is shown here on a 

logarithmic scale to emphasize the differences 

Saxton and Rawls (2006) predicted moisture content at the wilting point, 

field capacity, and porosity (among other properties) from a series of multilinear 

regression equations from Sand, Clay, and Organic Matter contents, using 

different combinations of these variables. They used selections of approximately 

three thousand samples from the soils in the US. The baseline porosity is then 

adjusted in case of compaction and the presence of gravel. Porosity and bulk 

density are simply related according to: 

 

𝝓 = 𝟏
𝑪𝑭∗𝝆𝒃𝒖𝒍𝒌

𝟐.𝟔𝟓
 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −    2. 1                                                                                                                         
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where 𝜙 is porosity (cm3/cm3), 𝜌𝑏𝑢𝑙𝑘 is normal bulk density (g/cm3), CF is the 

relative compaction factor (scenarios), and 2.65 (g/cm3) is the particle density.  

Saturated hydraulic conductivity is derived using the equation by (Brooks and 

Corey, 1964) as: 

 
𝑲𝒔𝒂𝒕 = 𝒂(𝝓 − 𝜭𝒇𝒄)(𝟑−𝝀)𝒓     − − − − − − − − − − − − − − − − − − − − − − − − − −  2. 2                      

 𝝀 =
(𝒍𝒏 (𝜽𝒇𝒄)−𝒍𝒏 (𝜽𝒘𝒑))

𝒍 𝒏(𝟏𝟓𝟎𝟎)−𝒍 𝒏(𝟑𝟑)
  − − − − − − − − − − − − − − − − − − − − − − − − − − − − −   2. 3 

𝒓 =
𝟏−𝒈𝒓𝒂𝒗𝒆𝒍

𝟏−𝒈𝒓𝒂𝒗𝒆𝒍∗(𝟏−𝟏.𝟓∗(
𝝆𝒃𝒖𝒍𝒌

𝟐.𝟔𝟓
))

     − − − − − − − − − − − − − − − − − − − − − − − − − −  2. 4   

where r is a reduction factor, 𝑎 is a regression constant set to 1930, and lambda 

(𝜆) is the pore size distribution index (Brooks and Corey, 1964), and 𝛳𝑓𝑐  & 𝛳𝑤𝑝are 

moisture content at field capacity and wilting point. The reduction factor is 

estimated based on the applied gravel content which is assumed to be zero in this 

study in the absence of information. A gravel content of zero results in an r of 1 

so that it does not affect the pore size distribution in equation 2 in this case. 

The matric suction (suction head) at the wetting front is calculated assuming the 

initial soil moisture content (𝛳) to be 0.80 of the porosity (𝜙), which is 

approximately at field capacity (𝛳𝑓𝑐) or slightly wetter. The following equation is 

used to calculate Psi: 

 

𝑷𝒔𝒊 =  𝛼𝜃−𝑏 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −2.5                                                                                                                

Where b = (ln(1500)‐ln(33))/(ln(𝛳𝑓𝑐)‐ln(𝛳𝑤𝑝));  

a = exp(ln(33)+b ln(𝛳𝑓𝑐)); and, 1500 and 33 are matric suction in (kPa) for the 

wilting point and the field capacity, respectively.  

In this study, the compaction factor (CF) is constructed from the bare soil 

fraction map (Figure 2.3d), which was derived from the Landsat image of 2010 

(Fura, 2013), as follows. It is assumed that soil that has a higher fraction of bare 

surface is also more severely compacted. Therefore, the compaction factor CF for 

a grid cell is linearly scaled to the bare soil surface fraction, ranging from 1.0 to 

1.20 for normal to fully bare grid cells. However, if there is vegetation cover in 

the grid cell, this is assumed to decrease the surface's compaction from 1.0 (no 

vegetation) to 0.9 (fully vegetated). Severe compaction with a factor of 1.30 was 

not used, as field tests on the compacted area still exhibited some infiltration 

(several mm/h) while a factor 1.30 would result in no infiltration (see also Figure 

2.2). Therefore, the maximum compaction was set to 1.20. For example, a grid cell 
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that has a cover fraction of 1/3 for a building, grass, and bare soil will have a Ksat 

and porosity, which is a weighted combination of 1/3 building is sealed (Ksat=0, 

porosity = 0), 1/3 is compacted with a CF of 1.07 related to the bare surface, and 

1/3 has a CF of 0.96 related to the vegetation fraction. 

 

2.2.4. OpenLISEM flood model 
 

The open-access Limburg Soil Erosion Model (LISEM) (De Roo et al., 1996) has 

evolved from a catchment-based erosion model to an integrated erosion and 

flood model. It usually operates on a spatial resolution of 50m or less and time-

steps between 0.1 and 30 sec and simulates flash floods for single rainfall events. 

The model combines a surface and soil water balance, including interception (by 

vegetation and buildings), surface storage, and infiltration, to calculate the 

surface runoff. Infiltration is done with the Green and Ampt equation for two soil 

layers, using a solution (Green and Ampt, 1911), and revised by (Kutílek and 

Nielsen, 1994). Flow routing is done with a 2D dynamic wave using a finite 

volume solution (Bout and Jetten, 2018). As such, the model does not distinguish 

between surface runoff and flood from a hydraulic perspective; a flood is 

assumed to be all water that is deeper than a user-defined value (such as 10 cm).  

The infiltration process is very important in urban environments: the 

model uses input maps directly for saturated hydraulic conductivity (Ksat), 

porosity, suction head, and initial moisture content to calculate infiltration, 

which can be based on soil texture and land cover types. For each grid cell, the 

fractions of the building, tarred roads, and other sealed surfaces are used to 

calculate the impermeable fraction and a fraction of compacted area that uses 

compacted values for Ksat and porosity themselves. Different types of cover 

result in different flow resistance values (Manning’s n), and also buildings are 

assumed to increase the flow resistance. Water is routed by the dynamic wave to 

a channel system that can overflow if the water volume is larger than the channel 

dimensions, thus adding to the flooding process. Channel flow is done with a 

kinematic wave in the channel network. Stationary base flow can be assumed for 

the channel system where necessary. The direct use of detailed spatially variable 

soil and land cover information makes this model suitable for this study. Note 

that in this study, the 2-layer infiltration process assumes topsoil of 30 cm in 

thickness, which is affected by land cover and compaction, while the subsoil uses 

the PTFs directly based on the texture information, without any land cover 

information and influence of compaction. 

The model has been used for flash flood modelling in the upper Lubigi 

urban sub-catchment in Kampala, Uganda (e.g., (Sliuzas et al., 2013; 

Habonimana, 2014; Mahmood et al., 2016; Pérez-Molina et al., 2017) and four 

Caribbean islands (Van Westen et al., 2015).   
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2.3. Data 
 

2.3.1. Drainage systems 
 

Kampala, the capital city of Uganda, is located in the equatorial East African 

region between 0.1 to 0.4 N and 32.32 to 32.42 E on the shore of Lake Victoria. 

The city is characterized by sprawling built-up areas with mostly one-story 

buildings on a series of hills separated by the lower slope valleys and wetlands. 

The city's drainage system is divided into nine central drainage systems 

following the natural catchments (Figure 2.3). The major drainage systems are 

further divided into semi-natural primary drains (partly canalized) in the central 

valley (with up to 20 m2 cross-section), with secondary concrete drains (1-2 m2 

cross-section) concentrating water from the side valleys and numerous tertiary 

drains along the roads that are often in disrepair. The tertiary drains are not 

mapped and were ignored in this study. The main drainage systems are being 

upgraded to make them suitable to accommodate a storm with a ten-year return 

period but are currently still in disrepair. Storm runoff in the main channels 

drains into wetlands where runoff is stored, and flood peaks are attenuated. Due 

to urbanization and informal settlements, impermeable surfaces are increasing in 

the wetlands, resulting in increased storm runoff and flooding. Consequently, 

properties close to wetlands are exposed to flood risk with a higher frequency of 

rainfall events. 

There has been very limited hydro-meteorological data monitoring in the 

city to carry out in-depth flood modelling. Fieldwork and in-situ data collection 

were conducted in 2012 as part of a joint UN-HABITAT`s cities and climate 

change (CCC) and Kampala Capital City Authority (KCCA) initiative. An 

automatic weather station was installed to collect rainfall data (Figure 2.3) and 

other meteorological data such as temperature and wind. Several studies have 

used these field datasets to assess flood modelling in the city by only focusing on 

the upper Lubigi sub-catchment (Mhonda, 2013b; Habonimana, 2014; Pérez-

Molina et al., 2017).   
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Figure 2.3 Study area and data used: (a) DEM, channel dimensions and sub-catchments; 

(b) vegetation cover fraction; (c) built-up fraction; and (d) bare soil fraction  

 

2.3.2. Rainfall data 
 

Figure 2.4 shows the rainfall intensity used for flash flood modelling in this 

study. Since only one rainfall station is available in the study area, situated in the 

upper Lubigi sub-catchment, the study assumed a spatially homogeneous 

rainfall distribution applied to the entire catchment. The rainfall event of 66.2 mm 

is measured by an automatic weather station equal to a 2-year return period 

event. The return periods are based on the Kampala Drainage Master Plan 

(KDMP) (2002). 
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Figure 2.4 Rainfall intensity used for flash flood modelling. Flash flood produced event 

occurred on 25th June 2012 

 

2.3.3. Land use and infrastructure maps  
 

Figure 2.3 presents vegetation cover, built-up, and bare soil cover fractions of 

Kampala, which were derived from the Landsat image of 2010 (Fura, 2013). The 

vegetation cover map was used in the PTFs for the prediction of SHPs (Scenario-

1) as well as directly used in the openLISEM software as a fraction of surface 

cover by vegetation for interception calculation.  

A bare soil fraction map was created and used as a compaction factor in 

the PTFs equations. Bare soil is distributed everywhere in the city (e.g., dirt roads, 

roadsides, playgrounds and fields, and footpaths) and is assumed to be 

compacted by traffic. The sum of these surfaces is converted into a fraction of 

bare soil per grid cell, which calculates the degree of compaction based on the 

PTFs. The larger the fraction of bare surface, the more the topsoil is assumed to 

be compacted.  

 

2.3.4. Soil map upscaled based on the soil-landscape relationship 
 

An UN-HABITAT project (Sliuzas et al., 2013) established a preliminary soil map 

of the upper Lubigi catchment based on the gathered preliminary soil data from 

30 ring samples.  Soil samples were collected from the representative landscape 

units, and the critical aspect was soil texture classes belonging to four landscape 
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units (i.e., Valley floor, bottom slope, Mid-slope, and hilltop). The dominant soil 

texture classes in the catchment were clay (C) for Valley floor; Sand Clay Loam 

(SaCL) and Sandy Clay (SaC) for the bottom slope; Sandy Clay Loam (SaCL) for 

Mid-slope; and SaCL and Sandy Loam (SaL) for hilltop areas as reported by 

(Rossiter, 2014). The catchment landscape was highly consistent regarding the 

pattern of Laterite-capped hills and swampy inter-hill valleys. Thus, a strong 

relationship between the texture classes and the landscape morphology appeared 

to be present. Therefore, the upscaling of Lubigi catchment observed soil texture 

classes to the whole Kampala city through the soil-landscape relationship is 

reasonably possible. Thus, for SMLS, this study used the upscaled soil texture 

classes to predict the necessary SHPs by applying PTFs, as shown in Table 2.2. 
Table 2.2 Soil texture classes belong to the different landscape units according to SMLS, 

soil texture classes according to SMFAO, and Soil texture data ranges according to SMSG 

Soil 

database 

Landscape 

unit 
Texture classes  C S 

   Valley floor C 0.50 0.30 

SMLS Bottom slope SaCL-SaC 0.35 0.55 

 Mid-slope SaCL 0.28 0.60 

  Hilltop SaCL-SaL 0.20 0.65 

SMFAO   SaCL 0.28 0.60 

    SaL 0.20 0.65 

SMSG   

Texture data 

ranges 0.20-0.50 0.33-0.64 
           S: Sand; C: Clay; SaCL: Sandy Clay Loam; SaL: Sandy Loam; SaC: Sandy Clay  

2.3.5. Soil map based on FAO soil database 
 

According to the 1:500000 scale FAO soil data source 1991, except for a few areas 

in the eastern part of Lake Victoria, which is covered by SaL, the soil texture class 

of Kampala city is represented by SaCL. The soil texture classes from the FAO 

database used for PTFs are shown in Table 2.2. 

 

2.3.6. Soil map based on SoilGrids250m 
 

According to the SMSG database, the soil texture data of sand and clay contents 

were used as the predictors for PTFs. Unlike SMFAO and SMLS, in SMSG, the 

soil texture data was obtained as the percentage of clay and sand, as shown in 

Table 2.2. Other inputs for PTFs are the same as those of SMFAO and SMLS. Soil 

texture data from the SMSG map shows that non-built-up and green areas 

(wetlands) are characterized by clay soil texture data, whereas built-up areas are 



Sensitivity of flood dynamics to different soil information sources 
 

 

 

 
 

 

dominated by sand content (as big as 64% in the city center). In this regard, the 

prediction of soil texture data by using the SMSG framework was able to consider 

the presence of urban areas, as indicated by (Hengl et al., 2017).  

2.4. Results and Discussion 
 

2.4.1. Bulk Density 
 

Bulk density is one of the preceding soil physical properties used in the PTFs to 

predict the necessary SHPs. Figure 2.5 presents the results of bulk density for 

uncompacted and compacted scenarios for the three soil databases. When the 

uncompacted scenario is considered, the soil becomes ‘loose’ with a lower bulk 

density, which was predicted in the wetlands and at the city's edge. For the 

SMLS, the lowest value of bulk density was predicted in the lower slope and 

valley floor landscape units characterized by C and SaC. In contrast, the higher 

bulk density was predicted in the middle slope and hilltop landscape units 

represented by SaL and SaCL Figure 2.5 (a). In the case of SMFAO Figure 2.5 (c), 

since the majority of the catchment area is represented by SaCL texture class, the 

predicted bulk density was only different according to the incorporated 

vegetation cover fraction. The result when using SMSG indicates that the 

predicted bulk density is higher in the built-up areas where the soil texture data 

is sandy soil. In non-built-up regions where the soil texture data is clay, the 

predicted bulk density is lower Figure 2.5 (b). The predicted bulk density is 

higher when using SMSG than the other two soil databases, particularly in the 

built-up area, which is primarily due to its recent inclusion of land use 

(urbanization) in the ISRIC soil database prediction system (Hengl et al., 2017).  

The predicted bulk density distribution follows soil texture classes' distribution 

with the higher bulk density predicted in the sand content and SaCL areas. In 

contrast, the lower bulk density was predicted in the clay content areas. 

When the compaction scenario is introduced in the predictive equations, 

the predicted bulk density increases significantly for all soil databases (Figure 

2.5). However, the increment is lower when using SMSG because, as shown in 

Table 2.1, both sand and clay soil texture data are less affected by compaction 

compared to the other soil texture classes used in the case of SMLS and SMFAO. 

As shown in the figure, the increment in the predicted bulk density varies 

between 9 - 22 according to the type of soil texture classes and the degree of 

compaction used in the prediction system. In general, bulk density increases with 
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the increase in the degree of compaction, which runs from hard to dense, as 

shown in Table (1). Overall, the built-up areas are least affected by compaction 

mainly because the compacted areas are usually distributed outside the built-up 

areas (e.g., playing ground, murrum road, and tarred roadsides). 

 
Figure 2.5 Predicted bulk density: (a) and (d) SMLS (increment due to compaction is 15-

20%); (b) and (e) SMSG (increment due to compaction is 9-17%); (c) and (f) SMFAO 

(increment due to compaction is 14-22%) 

 

2.4.2. Predicted soil hydraulic properties needed for flood model 
 

Table 2.3 shows the ranges of the predicted soil hydraulic properties (SHPs) 

needed for openLISEM flood modelling for compacted and uncompacted 

scenarios. The SHPs needed for the openLISEM model are Ksat, porosity, initial 

soil moisture content, and matric suction (PSI), as predicted based on the three 

soil databases. The values and the spatial variability of the predicted SHPs 

mainly follow the results of bulk density distribution, which is predicted based 

on soil texture classes and soil organic matter. Initial soil moisture content (thetai) 

was predicted as 80% of the porosity; hence, the result follows porosity 

distribution (section 4.3.1), with higher values predicted in the wetlands (non-

built-up). In contrast, the lower thetai is predicted in the built-up areas. Although 

the compaction scenario's effect is tested for all SHPs, for openLISEM 

hydrological modelling, we used only the compacted Ksat and compacted 
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porosity. Ksat and porosity are the main SHPs that affect the infiltration 

characteristics of the openLISEM model. Therefore, we exclusively discussed 

their values and distribution under both compacted and uncompacted scenarios 

in the next section. 

 
Table 2.3 Ranges of the predicted soil hydraulic properties (SHPs) used for openLISEM 

flood modelling for both compacted and uncompacted scenarios 

Scenario SHPs SMLS SMSG SMFAO 

  Ksat 17-144 9-84 44-220 

Uncompacted Porosity 0.46-0.59 0.44-0.56 0.47-0.56 

 

Initial soil 

moisture 0.37-0.47 0.35-0.44 0.37-0.45 

  PSI 0-36 0-33 0-95 

  Ksat 0-20 0-24 0-47 

Compacted Porosity 0.31-0.49 0.32-0.48 0.31-0.45 

 

Initial soil 

moisture 0.17-0.34 0.18-0.34 0.13-0.23 

  PSI 33-71 17-33 0-69 

 

i) Predicted porosity 

The predicted porosity for the uncompacted scenario and the percentage changes 

due to soil compaction are presented in Figure 2.6. For the uncompacted scenario, 

the predicted porosity when using SMLS was varied across the landscape units, 

with the highest porosity predicted at the valley floor and bottom slope 

landscape units while the lowest porosity was predicted in the middle slope and 

hilltop landscape units Figure 2.6a. In SMSG, the predicted porosity was varying 

across the built-up (lowest porosity) and non-built-up (highest porosity) 

following the predicted bulk density distribution (Figure 2.6b). Similarly, in 

SMFAO, the simulated porosity was higher at areas well covered by vegetation, 

while the lower value was predicted in the built-up (no vegetation cover) areas 

Figure 2.6c. Since in the SMFAO, the soil information other than the texture 

classes has no information on the existing features such as wetlands and urban 

areas, the predicted porosity followed the distribution of the introduced 

vegetation cover fraction. The result of the predicted porosity under the 

uncompacted scenario indicates higher and lower values in the non-built-up 
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(valley floor) and built-up, respectively, which are well associated with the 

predicted bulk density distribution.  

 
Figure 2.6 Predicted porosity: (a) and (d) SMLS; (b) and (e) SMSG; (c) and (f) SMFAO. 

Porosity differences represent the difference between the uncompacted and compacted 

scenarios, which are calculated based on the raster grid values.  

 

ii) Predicted saturated hydraulic conductivity 

The result of the predicted saturated hydraulic conductivity (Ksat) for the 

uncompacted scenario and the percentage changes due to soil compaction is 

presented in Figure 2.7. As shown in the figure, the predicted Ksat when using 

SMLS was varying across different landscape units (Valley floor and bottom 

slope versus mid-slope and hilltop) with the highest and lowest Ksat predicted 

at hilltop/middle slope and valley floor/lower slope landscape units, respectively 

(Figure 2.7a). At both valley floor and lower slope landscape units, the predicted 

Ksat is about five times smaller than the values predicted at the hilltop landscape 

unit, mainly because of the higher porosity predicted at the valley floor and lower 

slope landscape units. When using SMSG, the predicted Ksat was varying across 

the built-up and non-built-up, with the highest Ksat predicted at the lowest 

porosity areas. In contrast, the lowest Ksat was predicted at the highest porosity 

areas (Figure.7b). In the case of SMFAO, the highest Ksat was predicted in the 

smallest area located in the vicinity of Lake Victoria, mainly because this area is 

characterized by SaL soil texture class, which creates lower bulk density. In 
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contrast, the lowest Ksat was predicted in the built-up area following the bulk 

density and porosity distribution. 

Since Ksat is primarily influenced by bulk density and porosity, the 

predicted Ksat was negatively correlated with bulk density and positively 

correlated with porosity. Wang et al. (2018a) also reported that an increase in bulk 

density decreases Ksat, while the increase in porosity increases the value. 

However, in the extremely higher porosity in the swampy areas characterized by 

clay soil texture, the predicted Ksat was lower. Furthermore, incorporating the 

uncompacted scenario into the predictive equation of PTFs decreases bulk 

density by creating a ‘loose’ soil, which consequently enhances the values and 

the spatial variability of the predicted Ksat based on the degree of vegetation 

cover fraction.  

 
Figure 2.7 Predicted Ksat: (a) and (d) SMLS; (b) and (e) SMSG; (c) and (f) SMFAO. Kat 

differences represent the difference between the uncompacted and compacted scenarios, 

which are calculated based on the raster grid values.  

 

2.4.3. The effect of compaction on porosity and Ksat 
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Figure 2.6 shows the percentage changes in the predicted porosity when using 

the three soil databases due to the compaction scenario. As shown in the figure, 

compaction affects both values and the spatial distribution of the porosity, which 

is well associated with the predicted bulk density under the compacted scenario. 

Under all soil databases, wetlands and non-built-up areas are profoundly 

affected by compaction, reducing the porosity by 18-39%. However, the built-up 

areas are least affected by compaction with porosity varying between 6-14%, 

which is entirely related to the lower compacted bulk density predicted in the 

built-up areas. Similarly, the incorporation compaction scenario into the 

predictive equation affects the values and the spatial distribution of Ksat (Figure 

2.7). As shown in the figure, the predicted Ksat was reduced significantly, with 

the percentage changes reaching up to 99% in the wetland areas.  

The incorporation of the compaction scenarios into the predictive equation 

increased bulk density, consequently decreasing both Ksat and porosity values 

with the degree of compaction (Richard et al., 2001); (Saxton and Rawls, 2006). 

The result of the compacted scenario indicated that the predicted porosity when 

using SMSG was the least affected compared to SMLS and SMFAO. One possible 

reason is due to the inclusion of urbanized areas in the SoilGrids system, which 

causes a relatively homogeneous sandy soil texture data in the city center area. 

Since Ksat was predicted as a function of compacted porosity, a decrease in 

porosity caused a significant reduction in the predicted Ksat. Similar studies 

found that the increase in urban soil compaction has decreased saturated 

hydraulic conductivity. For instance, (Gregory et al., 2006) found that an increase 

in soil compaction caused a reduction in saturated hydraulic conductivity by 

75%. Similarly, (Ossola et al., 2015) found a decrease in porosity in the compacted 

parks, consequently reducing saturated hydraulic conductivity. 

 

2.4.4. Comparison of predicted SMLS with observations 

The predicted Ksat and porosity under the uncompacted scenario using SMLS 

were compared with the field data collected from the upper Lubigi catchment, as 

shown in Table 2.4. Field data have shown that the valley floor landscape unit 

with heavy clay in the swampy/shrubs areas has lower Ksat varying between 1 

to 20 mm/hr. The predicted Ksat at the same landscape unit when using SMLS 

shows higher values varying between 16 to 35 mm/hr. The observed values in 

the hilltop with sandy clay loam in the grass/shrubs areas have high Ksat values 

ranging between 90 to 150 mm/hr, while the predicted Ksat at the same landscape 

unit shows comparable values ranging between 78 to 140 mm/hr. 

However, the predicted porosity at the valley floor was underestimated 

compared to the field data, as shown in Table 2.4, possibly because of a strong 

effect of organic matter in the samples that do not appear in the PTFs. Both 
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observed and predicted porosity at the hilltop landscape unit have a relatively 

low value varying between 0.51-0.61 and 0.46-0.52 (cm3/cm3). The variation in 

values from the PTFs is smaller than the reality, but more samples would have to 

be taken to investigate this better. 
Table 2.4 Observed versus predicted Ksat and porosity values for the dominant texture 

classes according to the classified landscape units in the study catchment (Ksat_O: 

observed Ksat; Ksat_P: simulated Ksat; Pore_O: observed porosity; Pore_P: simulated 

porosity) 

        

A comparison of the observed and predicted Ksat under the compacted 

scenario when using SMLS at the valley floor shows similar results, as shown in 

Table 2.4, mainly due to the high effect of compaction at the clay content area. 

As shown in the Table, the predicted Ksatcomp in the hilltop landscape unit was 

moderately overestimated compared to the observed Ksatcomp. In the other 

landscape units, the predicted Ksatcomp was within the range of the observed 

values. In the case of porosity, the predicted values at all landscape units were 

underpredicted compared to the observed values at the respective landscape 

units. 

 

2.5. The sensitivity of flood dynamics to different soil 

databases 
 

This section presents the effects of the derived soil information on the flood 

dynamics, which are presented as catchment hydrological characteristics, 

Soil 

condition 

Landscape 

unit 

Texture 

classes 

Ksat_O 

(mm/hr

) 

Ksat_P 

(mm/hr

) 

Pore_O 

(cm3/cm3

) 

Pore_P 

(cm3/cm3

) 

Number 

of 

samples 

 Valley floor C 1.0-20 16-35 0.58-0.70 0.52-0.59 5 

 Bottom slope SaCL-SaC 15-75 27-50 0.47-0.58 0.47-0.52 9 

Uncompacte

d 
Mid-slope SaCL 20-90 40-75 0.53-0.65 0.46-0.51 2 

 Hilltop SaCL-SaL 90-150 78-144 0.51-0.61 0.46-0.52 5 

 Valley floor C 0.0-0.5 0.0-1.0 0.56-0.58 0.43-0.48 8 

 Bottom slope SaCL-SaC 1.0-6.5 0.5-3.0 0.48-0.50 0.33-0.43 5 

Compacted Mid-slope SaCL 1.5-3.3 3.5-8.0 0.53-0.54 0.40-0.42 2 
 Hilltop SaCL-SaL 0.8-2.9 6.0-20 0.51-0.54 0.32-0.42 4 
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infiltration characteristics, flood behavior, and flooding on the number of 

building derived from the satellite image. 

 

2.5.1. Flood simulations and catchment hydrological behaviour 

Table 2.5 presents the catchment surface water balance results for six different 

model simulations and the percentage differences between compacted and 

uncompacted scenarios. The use of SMLS and SMSG appears in higher flood 

volumes than the SMFAO: 14.7x106 and 16.0x106 m3 versus 6.2 x106 m3, and 

flooded areas of 49.1 and 53.0 km2 versus 26.1 km2. This is caused by the 

infiltration dynamics, as illustrated by the infiltration amounts and overall runoff 

percentages (calculated as total discharge/total rainfall). When the compaction 

scenario is considered, the flooded area has grown by 6% for both SMLS and 

SMSG and 12% for SMFAO. The simulated peak discharges were also increased 

by 7%, 6%, and 13% for SMLS, SMSG, and SMFAO, respectively. The use of soil 

compaction increased the runoff percentage for all soil maps, but the increment 

is higher when using SMFAO than the other two soil maps. 

 
Table 2.5 Total water balance for six model simulations by using uncompacted and 

compacted soil scenarios (C-N) represents compacted minus non-compacted 

Catchment 

parameters 

smls_

n 

smsg_

n 

smfao_

n 

smls_

c 

smsg_

c 

smfao_

c 

smls(c

-n) 

smsg(c

-n) 

smfao(

c-n) 

Catchment 

area (km2) 358 358 358 358 358 358    
Total infiltration 

(mm) 44.7 43.6 56.6 42.3 41.3 55.2 -6% -5% -3% 

Water in flood 

(mm) 10.9 11.5 4.4 12.3 12.7 5.2 11% 10% 15% 

Total outflow 

(all flows) 

(mm) 7.9 8.5 3.5 8.9 9.4 3.9 11% 10% 10% 

Total 

discharge/tota

l rainfall (%) 12.0 12.9 5.3 13.4 14.2 6.0 10% 9% 12% 

Flood volume 

(in million 

(m3)) 14.7 16.0 6.2 16.4 17.5 7.2 10% 9% 14% 

Flood area (in 

million (m2) 49.1 53.0 26.1 52.4 56.3 29.5 6% 6% 12% 

          

                 n-uncompacted, c-compacted 

 

2.5.2. Infiltration dynamics behaviour 
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Figure 2.8 shows infiltration maps simulated by using the three soil databases 

under the uncompacted scenario. When using SMLS (Figure 2.8a), the higher 

infiltration was simulated at the landscape units where the predicted Ksat and 

porosity were higher. However, due to the sealing characteristics of hilltop, 

middle slope, and lower slope landscape units, the simulated infiltration was 

relatively lower except at the grid cells where it is not sealed. Similarly, when 

using SMSG, the higher infiltration was simulated, where the higher Ksat and 

porosity were predicted (Figure 2.8b). Since the predicted porosity and Ksat 

followed the distribution of built-up and non-built-up areas, the dynamics of the 

simulated infiltration was certainly followed the same pattern with higher 

infiltration simulated in the non-built-up areas while the lower infiltration 

simulated in the built-up areas. When using the SMFAO database, the simulated 

infiltration shows a widespread distribution of high values of infiltration in the 

catchment (Figure 2.8c). As shown in the figure, the wide area of the catchment 

has infiltration values greater than 75 mm, particularly in the low-density urban 

areas and wetlands, significantly associated with the higher Ksat predicted in the 

catchment.  

  
Figure 2.8 Simulated infiltration for uncompacted scenario: (a) and (d) SMLS; (b) and (e) 

SMSG; and (c) and (f) SMFAO. The red arrow indicates a sub-catchment zoomed in to see 

the differences among the soil databases  
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The result of this study indicates that the variability of the simulated 

infiltration was well associated with the values and the spatial variability of the 

SHPs, in particular, predicted Ksat and porosity. The higher infiltration was 

predicted in the well-vegetated and non-built-up areas (20.5% of the total 

catchment area), which is well connected with higher porosity and Ksat, while 

lower infiltration was associated with lower porosity and Ksat. However, the 

extreme higher value of infiltration simulated at swampy areas was due to 

floodwater overpressure during the event. The extreme lower infiltration 

simulated in the build-up was due to urban sealing, which accounted for 48% of 

the total catchment area (358 km2).   

 

2.5.3. Flood dynamics behaviour 

The uncompacted flood depth scenario shows widespread flooding along the 

main channels (primary and secondary channels) as simulated by using the three 

soil databases Figure 2.9. The result indicated that the spatial distribution of flood 

dynamics (flood depth, flooded area, flood volume, and duration) follows the 

catchment's flat terrain and infiltration dynamics. To mention, the simulated 

flood depth along the primary channels when using SMLS and SMSG (0.5-2 m) 

was deeper than that of SMFAO (0.5-1 m), which is associated with the lower 

infiltration simulated when using SMLS and SMSG. Since the runoff coefficient 

depends on infiltration for the given rainfall intensity, the lower infiltration 

simulated when using SMLS and SMSG contributed to more overland flow, 

which resulted in more flooding. However, the deeper and low-velocity 

floodwater at the valley floor (flat terrain) was caused by water accumulation 

from the secondary channels and steep terrains. 
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Figure 2.9 Simulated flood depth for uncompacted scenario: (a) and (d) SMLS; (b) and (e) 

SMSG; and (c) and (f) SMFAO. The red arrow indicates a sub-catchment zoomed in to see 

the differences among the soil databases  

 

Similarly, the simulated flood duration when using SMLS and SMSG 

shows a longer duration along both primary and secondary channels than the 

SMFAO (Figure 2.10). Also, the calculated flooded areas and flood volume (e.g., 

at 0.5 m) were 23 km2 and 11281 million m3 when using SMLS and SMSG, almost 

double the result found when using SMFAO at the same time water depth 

(Figure 2.11). Since the simulated infiltration was higher in the case of SMFAO, 

there is little water left for direct runoff, which leads to shallow flood depth, 

consequently less flooded area, flood volume, and duration. 
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Figure 2.10 Simulated flood duration for uncompacted scenario: (a) and (d) SMLS; (b) and 

(e) SMSG; and (c) and (f) SMFAO. The red arrow indicates a sub-catchment zoomed in to 

see the differences among the soil databases  

 

2.5.4. The effect of soil compaction on infiltration and flood dynamics 

 

Table 2.6 shows the percentage reduction in total infiltration and the increments 

in the simulated flood depth due to soil compaction. As shown in the table, the 

simulated total infiltration was reduced by 16.2 %, 19.4 %, and 17.5 % for SMLS, 

SMSG, and SMFAO, respectively. The reduction is relatively higher for all soil 

databases in the infiltrated areas (40-80 mm). However, in the high infiltrated 

areas (160-200 mm), mainly in the swamps, the simulated total infiltration was 

increased instead of decreasing, likely due to an overpressure of greater than 1.5 

m of floodwater produced due to compaction. As a result of reduced infiltration, 

flood depth at different levels was increased, as shown in Table 2.6, consistent 

with the infiltration reduction. However, the flood depth increment was high in 

the swampy areas, mainly due to floodwater concentration from high elevation 

areas. Similarly, the simulated flood duration (not shown here) and both the 

calculated flooded areas and flood volume (Figure 2.11) were all increased 

following the infiltration reduction and nearly overweight the difference caused 

as a result of using different soil databases.  
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The compaction effect on infiltration was high because there is a double 

effect on Green and Ampt infiltration as both porosity and Ksat are affected. Since 

the Ksat was predicted as a function of porosity, and the Green and Ampt 

infiltration equation used both variables, the combined effect reduced the 

predicted infiltration significantly. Consequently, more water is converted into 

the overland flow and increased water depth, flood areas, flood volume.  

 
Table 2.6 Percentage reduction in infiltration and increments in flood depth due to 

compaction regarding infiltrated and flooded areas  

Parameters Variable range SMLS (%) SMSG (%) SMFO (%) 

 40-80 13.40 17.90 14.20 

Infiltration (mm) 80-160 2.80 1.50 3.30 

(reduction) 160-200 -0.01 0.00 -0.01 

Total 40-200 16.2 19.4 17.5 

 0.1 6 5 11 

Flood depth (m) 0.5 4 3 10 

(increament) 1 10 9 19 

 1.5 18 16 19 

 2 22 20 0 

Total 0.1-2 60 53 59 

 

2.5.5. The effects of flood depth and duration on built-up areas 

The total number of buildings affected by flood depth and flood duration was 

calculated by using flood depth greater than 10 cm and flood duration greater 

than 30 minutes (Figure 2.11). Since the individual structures and their functions 

are not available, only a built-up surface per grid cell in m2 was used. The number 

of buildings is calculated using the structure density of 90 m2, the average house 

density obtained from the field observation. As shown in the figure, the total 

number of buildings affected by flood depth was maximum at a lower water 

depth between 10 and 50 cm, which is the highest when using SMLS and SMSG 

under both uncompacted and compacted conditions. Under the uncompacted 

scenario, the number of buildings affected by flood depth at lower flood depths 

of 10 and 50 cm was 91113, 87686, and 67307 for SMSG, SMLS, and SMFAO, 

respectively. These numbers are increased to 93585 for SMSG, 90403 for SMLS, 

and 71333 for SMFAO under the compacted scenario. The number of structures 

is least affected by deep flood depth compared to low flood depth. 
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As shown in Figure 2.11, the duration the buildings stayed underwater 

was also high at a lower flood duration between 0.5-1 hour. The effect is high 

when using SMSG and SMLS compared to SMFAO under both uncompacted and 

compacted conditions. The number of buildings that stayed under flood water at 

a lower duration was mainly at the location of the secondary channels. Between 

15-20 hours, the number of structures affected by flood duration was 34628, 

34221, and 25350 under the compacted condition and 33022, 32737, and 23986 

under an uncompacted condition for SMLS, SMSG, and SMFAO, respectively. 

The effect at 15-20 hr duration was mainly from the main channels in the 

wetlands. The effects of floodwater at those locations are mainly due to flat 

terrains (wetlands) naturally used for flood attenuation purposes but now are 

filled with informal settlements. 

  

                                                        

 Figure 2.11 Calculated flood statistics: Comparison of uncompacted and compacted 

scenarios for SMLS, SMSG, and SMFAO. The number (nr) of structures was calculated 

based on the average structure size of 90m2. 
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2.5.6. Model verification with earlier calibrated simulations 

Due to the lack of observed actual discharge data at the main outlets, the 

openLISEM model verification has only been handled by comparing the model 

flood inundation map with an earlier calibrated flood line developed by (KDMP) 

(KCCA, 2010). The earlier flood lines in Kampala were generated by using HEC-

GeoRAS (River Analysis System of the Hydrologic Engineering Center of the US 

Army Corps of Engineers) for return periods of 2, 10, and 100 years. The 

generated flood lines are simply the strip or areas along the sides of drainage 

channels that will be prone to flood inundation for the different return periods. 

(Figure 2.12a) Shows the effect of a 2, 10, and 100-year return period on flood 

extent, and it`s reported that the flood extent for different return periods is all 

similar around the major wetlands, mainly due to the flat cross-section used in 

the simulation. When the capacity of the natural channel is exceeded (in most 

cases during floods with return periods of two years or less), floodwaters spread 

over the full extent of the floodplain, up to the steeper regions that define the 

floodplain, with the flood depth increases slightly for more extended return 

periods. The UN-HABITAT project (Sliuzas et al., 2013) have also found that the 

width of flooding along the primary and secondary channels of all drainage 

systems does not differ much for the different return periods, which is primarily 

caused by the relatively small cross-sectional areas of the natural channels along 

the floodplains.  
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Figure 2. 12  Verification of flood simulation: Comparison of flood extent map constructed 

from flood lines (a) with flood extent map simulated by using SMLS (b), SMSG (c), and 

SMFAO (d) 

The openLISEM model simulated with compacted scenarios by using the 

storm event of 66.2 mm, which is equivalent to an event of the 2-year return 

period, was used to compare the simulated flood extent with an earlier flood 

extent. As shown in Figure 2.12, the model result indicates that floodwater 

spread over the full extent of the plain around the main drainage channels but 

with different water depth distribution. The f-statistics goodness of fit was 

calculated by using (eq.2.6), and the result is shown in Table 2.7. The high value 

of f-statistics indicates a high goodness fit between areas of flood line and model 

simulation. 

  𝒇 = (
𝑨𝒐𝒔

𝑨𝒐+𝑨𝒔−𝑨𝒐𝒔
) ∗ 𝟏𝟎𝟎 − − − − − − − − − − − − − − − − − − − − − − − − − − − − 2. 6 

‘Ao’ refers to the flooded area observed under flood lines; ‘As’ indicates 

the flooded area simulated by the openLISEM model, and ‘Aos’ represents the 

intersected flooded area between Ao and As. The flood extent maps indicated 

that flood extent accuracy was lower when using lower-resolution SMFAO for 

hydrological modelling. The main reason for this is that the predicted soil 

hydraulic properties, in particular, Ksat was overestimated when using SMFAO, 

which resulted in overestimated infiltration, consequently, lower flood extent 

maps.                                                   
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Table 2.7 Summary of the performance of soil maps for flood modelling against historical 

flood line 

Flood map  Total flooded area (m2) Intersected areas (m2) 

                           

f 

SMLS                 55821 34526 35 

SMSG                 57531 35149 36 

SMFAO                 33958 21113 24 

Flood line                 76127     

 

In general, the discrepancies between the historical flood lines and flood 

model arise from the following two reasons: first, due to the lower design storm 

used under the current study, although it's assumed that the valley floor can 

quickly be filled with a flood of a frequent high event (e.g., 2-year event) with 

different flood depth. Second, since the openLISEM model applied a 2D dynamic 

wave for flood simulation following the DEM, the flood model results have some 

flooded areas outside the earlier flood line where there are relatively flat terrains.  

2.6. Conclusion 
This study applied three different soil databases to predict soil hydraulic 

properties used in an integrated flood model to determine how sensitive the 

flood dynamics are to the predicted SHPs, and if possible, to select the best data 

source for integrated flash flood modelling in an urbanized area where there is a 

scarcity on local soil physical data. Three soil data sources were used: coupling 

soil texture to landscape form, using the SOILGRIDS250m database, and deriving 

texture information from the small-scale FAO soil map. In making flood 

predictions, one may choose to include compaction as an additional factor apart 

from surface sealing by roads and buildings. We assumed that bare areas would 

have a certain degree of compaction and investigated its impact on each of the 

three soil data sources. 

The results indicate that the choice of the data source has a strong influence 

on both the quantity and spatial variability of infiltration, which naturally 

directly affects runoff and flooding. On top of that, the effect of sealing and 

compaction is equally essential and nearly outweighs the differences caused by 

the use of different soil databases. This indicates that sufficient effort should be 

attributed to getting actual compaction information in an area for which a flood 

simulation is done to establish how far this affects reality. The use of the Saxton 
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and Rawls (2006) Pedotransfer functions have the added advantage of 

incorporating the effects of compaction and organic matter into their equations 

so that the urban fabric can be represented in detail, for instance, high-resolution 

earth observation. 

The study found that soil databases with high variability of soil physical 

properties (e.g., when using SMLS and SMSG) can better predict SHPs used for 

flood modelling. The comparison of flood inundation areas using the three 

different soil maps with earlier calibrated simulations indicates that SMSG and 

SMLS are better strategies, although still different from the accepted flood extent 

in the Kampala Master Drainage Plan case of Kampala city. Given the fact that 

the SoilGrids database is available globally, while soil-landscape relations may 

not be available everywhere, it seems to be an acceptable source to derive 

infiltration properties. Because SOILGRIDS comes with a warning and an 

extensive error analysis and is not meant for detailed studies as is done here, it 

is, of course, advisable to check the results against local measurements of texture 

and, in combination with PTFs, against resulting hydrological properties. 

Nevertheless, the results seem promising for integrated flood modelling in those 

urbanized areas where most buildings are constructed directly on the original 

soil. 
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Chapter 3:  Impact of improved urban fraction 

configuration on rainfall simulation using the 

WRF model over Kampala, Uganda 
 

Abstract 

 

Urbanization affects the initiation and intensification of convective activities by 

changing local meteorological variables, which alters the atmosphere's 

convective processes. Therefore, proper urban surface information is required to 

model the energy partitioning pattern and its contrast with neighboring grid 

cells. In this chapter, the mesoscale weather research and forecasting (WRF) 

model is configured with satellite-derived urban fraction for optimal rainfall 

simulation and to evaluate its impact on the simulated rainfall over Kampala, 

Uganda. The WRF urban parameter values associated with the considered urban 

fraction are adjusted based on literature reviews. The satellite-derived urban 

fraction represents the more realistic extent and intensity of the urban class with 

a more representative urban fraction. Three simulations are performed to distill 

the impact of changing urban fraction as well as of adjusting urban parameters: 

(1) DUF_DUP that used default urban fraction and default urban parameter 

values, (2) DUF_AUP that used the default urban fraction with adjusted urban 

parameter values, and (3) SUF_AUP that used the satellite-derived urban fraction 

and adjusted urban parameter values. For all three simulations, a single extreme 

rainfall event, which has caused a flood hazard in Kampala on 25th June 2012, is 

used. The simulated peak rainfall and its spatial distribution over the Kampala 

catchment were evaluated using observed rainfall data from gauging stations 

and CHIRPS satellite-based precipitation. Compared with the default urban 

fraction, the satellite-derived urban fraction represents the more realistic urban 

extent and intensity. As a result, SUF_AUP results in a more realistic rainfall 

simulation compared to when using the default urban fraction. For all three 

simulations, the modelled rainfall is overestimated compared to CHIRPS and 

underestimated when comparing gridcell values with gauging station records. 

The SUF_AUP simulation shows relatively better results with a lower absolute 

relative error score compared to the other two simulations.  

 
Keywords: rainfall, Default urban fraction, Kampala, urban parameter, Updated urban fraction, 

and WRF model 
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3.1. Introduction 
 

The effect of urbanization on mesoscale convection and intensive rainfall 

has received considerable attention over recent times (Alexander et al., 2006; 

Ashley et al., 2012). With an urban expansion, land-cover changes from natural 

vegetation/surface to artificial urban surface, which leads to changes in urban 

parameters such as roughness parameter, heat capacity, and thermal 

conductivity. Changes in these urban parameters can alter the near-surface 

radiation and energy budgets and the atmospheric thermodynamic 

characteristics, which affect the initiation and intensification of convective 

processes over a city (Paul et al., 2018). Moreover, with an urban expansion, a 

larger thermal contrast between the urban areas and the water body can result in 

stronger low-level circulation, which could be instrumental in forming 

convective rainstorms over cities (Ryu et al., 2016). Consequently, the 

meteorological conditions are altering that determine the mesoscale convection 

and intensive rainfall distribution over urban areas (Stewart and Oke, 2012; 

Wouters et al., 2016; Dai et al., 2019). In numerical weather prediction (NWP) 

models, the impact of such urban surface change can be handled through land 

surface modelling implemented in parameterization schemes. 

 With the mesoscale weather and research and forecasting (WRF) model 

currently operating at fine spatial resolution (e.g., 1 km) for high-intensity rainfall 

simulation, the impact of local climate processes induced by urban fraction needs 

to be incorporated (Paul et al., 2018). For instance, the impact of urban surfaces 

(e.g., street canyon morphology and built-up density) on energy partitioning 

patterns and their contrast from neighboring grid cells must be considered. In the 

WRF model, these processes are addressed using urban parameterization 

schemes and static surface parameters. A compressive dataset of urban surface 

information such as urban fraction and urban canopy is needed considering the 

inter-urban heterogeneity for energy partitioning patterns.  

The default configuration of the WRF model uses urban surface 

information provided by the land surface models (LSM), which is based on 

various datasets. Notably, the current urban surface information is represented 

by the land use category ‘urban and built-up category,’ where the spatial extent 

of the land use categories are derived from Moderate-resolution Imaging 

Spectroradiometer (MODIS) observational data. The Noah LSM in WRF has three 

default sets of urban classes inside the urban category based on the US NCLCD 

1992 (Chen et al., 2011): (1) Low-Intensity residential, (2) High-Intensity 

residential, and (3) Commercial/Industrial. Urban cells are assigned to one of 
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these three categories, and the corresponding parameter values are linked 

through a table. However, these urban parameter values are site-specific and 

incorrectly represent a city's extent and position; hence it needs to be updated as 

suggested by (Alexander et al., 2016; Brousse et al., 2016); Wouters et al. (2016). 

Several other urban fractions have been developed for different 

atmospheric modelling purposes. For example, local climate zoning (LCZ) is 

designed to study the thermal characteristics of the urban area (Stewart and Oke, 

2012; Brousse et al., 2019), and in-homogeneous urban canopy parameters (UCP) 

are developed for air quality modelling (Dai et al., 2019). Therefore, the main 

objective of this chapter is to configure the WRF model optimally with urban 

fraction specifically developed for the city of Kampala, Uganda, and to evaluate 

the impact of adjusting urban fraction and parameters on the simulated rainfall 

event. The use of WRF to study the deep convection over Kampala requires a 

configuration that needs proper position and extent of the city for better 

consideration of the spatial contrast between the city and Lake Victoria. We are 

one of the first who perform such model evaluation in terms of explicit satellite-

derived urban fraction for the application of deep convection triggering the 

localized flood. 

 This chapter provides a detailed analysis of (1) the WRF model's 

configuration with the adjusted urban fraction compared to the default urban 

fraction and (2) the impact of adjusted urban fraction, including adjusted urban 

parameters on the simulated rainfall. The chapter consists of data and 

methodology sections, followed by results, discussion, and conclusion sections. 

The methodology section includes the WRF model description as used in this 

thesis and its urban fraction configuration. Three model simulations were 

conducted and compared. For all three simulations, one single rainfall event 

occurring on 25th June 2012 is evaluated. The impact of updating urban fraction 

and urban parameters is conducted by comparing 24-h and 2-h accumulated 

rainfall amount and its spatial distribution against observed daily rainfall from 

gauging station and CHIRPS satellite data.  

 

3.2. Data 

In this section, the selected rainfall event and the data used for model 

verification are presented. 

 

3.2.1. Selected event 
 

For this study, the 25th June 2012 rainfall event that has caused a localized 

flood event in Kampala was selected. Of this event, two types of rainfall 

observations are present; rain gauge measurements and satellite. On 25th June 
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2012, two rain gauge stations were in operation in Kampala city: Automatic 

Weather Station (AWS) at the Makerere University campus recording at the 10-

minute interval and Kampala Central station at a 24-hour interval. The 24-hour 

rainfall data of Kampala central station is collected from the Global Summary of 

the Day (GSOD) dataset provided by the National Climatic Data Center (NCDC). 

At Makerere University, a daily total of 66.2 mm was recorded, and Kampala 

Central station recorded 60 mm, which is a typical 2-year return period event.  

Besides, satellite estimated rainfall from Climate Hazards Group InfraRed 

Precipitation with Station data (CHIRPS) (Funk et al., 2015) is retrieved for model 

evaluation. CHIRPS is considered as one of the best rainfall products for decision-

making in East Africa (Cattani et al., 2018; Diem et al., 2019). The CHIRPS rainfall 

data has 0.05 degree (~5.5km) spatial and daily temporal resolutions. For the 

WRF model evaluation, the CHIRPS rainfall data is rescaled using linear 

interpolation to the innermost domain of WRF spacing, which is 1 km x 1 km. 

3.3. Mesoscale WRF modelling system 
 

The WRF model is a mesoscale atmospheric modelling system designed 

for both meteorological research and numerical weather prediction. The 

governing equations used are divided into six categories: (a) perfect gas law, (b) 

conservation of mass, (c) conservation of momentum, and (d) conservation of 

scalar (conservation of heat, water, and other trace gases). A detailed description 

of the governing equations is given in (Jacobson); Holton (1992). The equations 

set used in WRF are characterized by a fully compressible, non-hydrostatic. Its 

vertical coordinate is a terrain-following hydrostatic pressure coordinate; see for 

details (Holton, 1992); Pielke Sr (2002) and WRF user guide Wang et al. (2018b).  

 For atmospheric simulations (e.g., rainfall simulation), WRF has two 

components (see Figure 1.1), with the first WRF pre-processing system (WPS) 

and second the forecast model components. The WPS components start with a 

model domain configuration, prepare input data, and model initial conditions. 

With a series of WPS utilities, the model domain is set up using static geographic 

information datasets such as topography and land use, including updating urban 

fraction components and soil. Next, it ingests, reformats, and interpolates the 

requisite first-guess atmospheric data (e.g., a global analysis data of ERA-5) to 

the user-specified domains. Finally, input fields are put on model’s vertical 

levels, and initial and lateral boundary conditions are generated. WRF is then 

ready to run.  
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The atmospheric modelling is done by using the model's forecast 

component, which handles Input/Output (I/O) and parallel-computing 

communications. The WRF modelling system is built in a hierarchical modelling 

system to handle the complex model simulation, which is written primarily in 

FORTRAN, can be built with a number of compilers, and runs predominately on 

platforms with UNIX operating systems. In addition to the dynamic solver, the 

forecast component of the model has a wide range of physics packages for 

atmospheric processes such as microphysics, cumulus parametrization, 

planetary boundary layer, and urban canopy parameterization. This chapter 

presents urban canopy parameterization and its use in the WRF model, while 

other parametrization schemes considered in this thesis will be discussed in 

Chapter 4. 

 

3.3.1. The WRF model Configuration and setting 
 

This thesis uses the WRF-ARW version 4 (Wang et al., 2012) with a two-way 

nested domain configuration. The WRF model setup consists of four domains 

centered on Kampala. The four domains are a 27 km outer fixed domain (D01) 

and three fixed nest domains of 9 km (D02), 3 km (D03), and 1 km (D04), with 31 

× 31 grid points (Table 3.1), as shown in Figure 3.1, conform to the most 

recommended ratio of 1:3 by Liu et al. (2012). 

Table 3.1 Weather Research and Forecasting (WRF) model settings used in the 

current study. 

Model   WRF v 4.1     

Characteristics Domain 1 (D01) Domain 2 (D02) Domain 3 (D03) Domain 4 (D04) 

Horizontal grid resolution 27 km 9 km 3 km 1 km 

Horizontal Dimensions 31 x 31 x 31 31 x 31 x 31 31 x 31 x 31 31 x 31 x 31 

Time step 60 seconds adaptive time step adaptive time step adaptive time step adaptive time step 

Initial-boundary conditions ERA-5 (30 km) simulation of domain 1 simulation of domain 2 simulation of domain 3 

Model run period 0000 UTC 24 June -1800 UTC 26 June 2012     
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Figure 3.1 Study area: WRF model configuration and the land use category default used 

in the model. 

Kampala is central in all four domains. For each domain, the Mercator projection 

system is used. For the 25th June 2012 event, the selected MP-CP-PBL 
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parametrization combination was Marrison, Grell Freitas, and ACM2, based on 

the sensitivity assessment described in chapter 4. These MP, CP, and PBL 

schemes are used for all domains, while the urban canopy parameterization is 

only applied for the 1 km domain following the procedure suggested by the WRF 

model manual. Initial and boundary conditions are retrieved from the ERA5 

global Reanalysis Model, with a resolution of 30 km (Hersbach et al., 2020). 

Following Sun et al. (2015), the static lake surface temperature of Lake Victoria 

was set to 24º C. The model simulation is carried out for three days from 24th June 

00:00 UTC to 26th June 2012 24:00 UTC, which implies that the model starts 24-h 

prior to the beginning of the rainfall event and stops 24-h after the storm.   

 

3.3.2. Urban canopy model 
 

The urban canopy model is one of the optional parameterization schemes 

implemented in the WRF model to account for urbanization (Urban fraction) and 

associated parameters for the meteorological processes through the energy 

partitioning modelling system. The available WRF urban canopy schemes are the 

multi-layer urban canopy model (MUCM) (Martilli et al., 2002) and the Single-

Layer Urban Canopy Model (SLUCM) (Chen et al., 2011). The MUCMs 

incorporate building effect parametrization (BEP) and a building energy model 

(BEM) (Salamanca et al., 2010), which are used to deal with sources and sinks of 

heat. The SLUCM neglects the variation in building height and density in the 

model grids and uses only a simplified street canyon (i.e., walls, roof, and roads) 

geometry to represent urban surfaces. A study by Paul et al. (2018) indicates 

MUCM better simulates the extreme rainfall amount and its spatial distribution 

compared to when using SLUCM. However, MUCM requires detailed building 

data and parameters, which are not easy to be acquired based on the literature 

reviews or remote sensed information, thus, it’s challenging to apply in a data-

scarce area like Kampala. Here, we used the Single Layer urban Canopy Model 

implemented in the WRF model.  

The SLUCM parametrization scheme Kusaka et al. (2001); Chen et al. 

(2011) was used in this study to accommodate the effects of the urban surface on 

simulated rainfall within the WRF model. This scheme employs a common 

single-layer street canon representation of urban areas with its numerical 

framework well-elaborated under Song and Wang (2015). The scheme is simple 

mainly because it uninvolved the effect of building parameterization (e.g., 

variation in building height and building density) as in the case of the Multi-

Layer urban canopy model (MUCM) Martilli et al. (2002). The single-layer urban 

canopy model in the WRF is coupled to the NoahMP land surface model through 

a parameter called “two-dimensional urban fraction (FRC_URB2D)”. The 

NoahMP land surface model handles the grid's non-urban fraction (vegetation 
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cover), while the SLUCM handles the urban fraction. The detailed physics 

options and parametrization used in the SLUCM are found in (Nunez and Oke, 

1977); Skamarock et al. (2005); (Song and Wang, 2015).  

The SLUCM requires urban fraction (urban map) and urban parameters 

linked to the urban fraction for model simulation. As the default urban fraction 

acquired from the MODIS with all urban extent assigned to a single urban value 

does not represent a city's true extent and position, we updated the urban fraction 

based on the satellite-derived urban fraction of Kampala. In this study, the urban 

land use fraction developed by Perez Molina (2019) that is used for integrated 

urban flood modelling in Kampala was used. At the same time, the urban 

parameters linked to the urban fraction were adjusted through a literature review 

(Brousse et al., 2016; Cai et al., 2018; Oliveros et al., 2019). 

The updated urban land use fraction is derived based on the 30-m 

resolution Landsat image 2016 (Perez Molina, 2019) and is shown in Figure 3.2. 

This adjusted urban fraction is generated using a supervised classification by 

sorting the satellite image pixels into three major urban land cover categories: 

Built-up, including buildings and pavements, non-built, and bare soil. These 

three urban land cover classes are developed as an array of cells, each with an 

associated fraction of land cover (for built-up, vegetation, and bare soil) and 

finally, add up to 1, see Perez Molina (2019) for details. As seen in figure 3.2, the 

urban fraction value is close to 1 in the high-intensity urban areas (i.e., areas 

around the city center), while in the sub-urban areas, the urban fraction value is 

close to zero. In general, the higher the intensity of built-up areas (urban fraction 

1), the lower the vegetation cover and vice versa. For the WRF modelling, we 

used the built-up fraction of the Landsat image (Figure 3.2) to replace the default 

urban fraction in the WRF model's preprocessing following a similar procedure 

Skamarock (2008). The new urban fraction exists at a higher spatial resolution 

(i.e., 30 m) than the WRF innermost domain cell size, 1 km. To match with the 

WRF cell size, the new urban fraction cell size is rescaled by using the program 

in the WRF Preprocessing System (WPS); see user guide Guide (2009).  
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Figure 3.2 Kampala urban fraction as derived from the Landsat image (Pérez-Molina et 

al., 2017) 

3.3.3. Model simulation 
 

Three simulations are performed in order to distill the impact of changing 

urban fractions as well as adjusting urban parameters used in the SLUCM. By 

default, WPS's geogrid program in the WRF model uses the land use categories 

based on the Moderate-resolution Imaging Spectroradiometer (MODIS) 

observational data  (Ran et al., 2015). With the WRF version 4 release, the MODIS 

land use data is updated and available at a resolution of 30 seconds with 20 land 

use categories (Wang et al., 2018b). This dataset contains the land-cover 

classification of the international Geosphere-Biosphere programme and is 

modified for the Noah land surface model (Gilliam and Pleim, 2010). Within this 

land-use classification, the default urban fraction (base map in the WPS) is 

represented by the homogeneous urban fraction with all cell values assigned to 

0.9 (HIR) (Figure 3.3). The default urban parameters dataset that is linked with 

this default urban fraction is also provided as part of the WPS static data and 

listed in the URBPARM.TBL file, as shown in Table 3.2 (second column).  

Therefore, the first simulation (hereafter DUF_DUP) uses the default 

urban fraction with the default urban parameters (Table 3.2 second column). The 

second simulation (hereafter DUF_AUP) uses the default urban fraction (Figure 
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3.3) with adjusted urban parameters (Table 3.2 third column), where values were 

adjusted based on literature (Loridan and Grimmond, 2012; Wouters et al., 2016; 

Brousse et al., 2019), as shown in Table 3.2 (third column).  

 
Table 3.2 Default and adjusted urban parameter values assigned to the urban fraction 

Parameter`s Name (unit) Default urban 

parameter 

value 

Adjusted urban 

parameter value 

Roof height (m)  7.5 15 

Road width (m) 9.8 10 

Roof width (m)  9.4 20 

Standard deviation of roof height 

(m)  

3 1.5 

Albedo (−)  
  

Roof  0.2 0.1 

Wall  0.2 0.1 

Road  0.2 0.15 

Emissivity (−)  
  

Roof  0.9 0.85 

Wall  0.9 0.9 

Road  0.95 0.95 

Conductivity of materials (Cal cm−1 s −1 C−1) 
 

Roof  0.67 0.4 

Wall  0.67 1 

Road  0.404 0.8 

Heat capacity of materials (Cal cm−3 C−1)  

Roof  1.00E+06 1.20E+06 

Wall  1.00E+06 1.20E+06 

Road  1.40E+06 1.50E+06 

Total thickness of material layers (m)  

Roof  0.05 0.50 

Wall  0.05 0.30 

Road  0.25 1.00 

 

The third simulation (hereafter SUF_AUP) is with an updated land use 

fraction based on the Landsat 2016 image, with the adjusted urban parameters. 

For the SUF_AUP simulation, we have replaced the default homogeneous urban 
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fraction with a heterogeneous urban fraction to define Kampala's more realistic 

urban representation.  

The hypothesis is that adjusting the default urban fraction with the 

satellite-derived urban fraction would have improved the simulated rainfall's 

performance over the urbanized catchment than using the default urban fraction. 

The default urban fraction is homogeneous with an urban fraction value of 0.9 

everywhere, which is not the real representation of Kampala city. In reality, 

Kampala's urban fraction representation is mainly located in the city center, 

while other locations have lower urban fraction values. The adjusted urban land 

use fraction is inserted into WRF following the steps of the input data format and 

processes through the WRF preprocessing system (WPS) (Wang et al., 2007; 

Guide, 2009). It is worth noting that according to Loridan and Grimmond (2012), 

the default urban parameter values in WRF, when no information is provided, 

do not represent urban surfaces of any city, and therefore, it is recommended not 

to use these values as its. Hence, the possible fourth simulation using the 

Updated urban fraction with the default urban parameter values is considered 

redundant in this case study. 

 

3.3.4. Model verification 
 

To evaluate the validity of the simulated rainfall in the innermost domain 

D04, we used the relative error (RE) index by Tian et al. (2017).  Model 

performance in simulating the event is evaluated using observed rainfall data 

from two gauging stations and CHIRPS data.  The comparison with the two 

gauging stations is carried out with respect to the gridcell rainfall amount at the 

station locations. In contrast, the comparison with the CHIRPS was carried out 

as 24-h accumulated rainfall distribution over the catchment and the area-

averaged amount.  

The RE index (eq. 3.1) in percentages computes the simulated accumulated 

24-h rainfall, S, with respect to observed rainfall at the station location, O. In the 

case of comparing WRF with CHIRPS data, S and O are the average values of all 

grids inside the innermost domain of WRF, while in case of 2 stations, the WRF 

values, S, of gridcell is taken which is located at the rain gauge station, O.  

 

𝑅𝐸 =   
𝑆 − 𝑂

𝑂
𝑥100 − − − − − − − − − − − − − − − − − − − − − − − − − −3.1 

 

RE measures the three relative errors of WRF simulated accumulated rainfall at 

each gauging station and area-averaged with CHIRPS. To measure the overall 

magnitude of error for each simulation, the average relative error (ARE) of the 
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three evaluation locations is calculated based on the three absolute Res (i.e., REs 

at two gauging stations and area-averaged).   

Additional to RE for all simulations (i.e., DUF_DUP, DUF_AUP, and 

SUF_AUP), the impact of adjusted model settings on simulated rainfall is 

evaluated in the form of spatial distribution for objective analysis in two main 

aspects: maximum rainfall amount and its spatial distribution over the 

catchment, and time evolution. The event's time evolution over two hours from 

11:00 to 12:50 UTC is presented, similar to when the 25th June 2012 observed 

rainfall event occurred. 

3.4. Results 
 

This section presents the impact of the updated urban fraction in the WRF 

model, including urban parameters on the simulated rainfall in terms of 

maximum accumulated 24-h rainfall amount and its spatial distribution, and the 

time evolution of peak rainfall amount distribution over two hours. Three 

simulations are intercompared as well as compared to the observed rainfall as 

represented in CHIRPS data and by two rain gauge stations. The evaluation 

focuses on the HIRE of the 25th June 2012 event that has triggered the flood hazard 

in the Kampala catchment.  

The following section 3.4.1 describes the representation of the satellite-

derived urban fraction in the WRF model and its comparison with the default 

urban fraction. The impact of adjusted urban parameters on the simulated 

rainfall and the comparisons are presented in sections 3.4.2. and 3.4.3, then 

followed by discussion and conclusion in sections 3.5 and 3.6.  

 

3.4.1. Representation of the updated urban fraction 
 

The new urban fraction for Kampala is different from the default urban 

fraction from WPS in two main aspects: (a) the fraction of urbanization and (b) 

the spatial extent of the city. 

 

(a) Fraction of the urbanization 

The urban fraction parameter in WRF defines the percentage of the grid 

cell covered by the impervious urban facets, while the remaining fraction is 

treated as a pervious, vegetated surface. Figure 3.3 shows that the default urban 

fraction of 0.9 is higher than the intensity of the new urban fraction. In the default 
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urban fraction (Figure 3.3), the city is represented by a homogeneous high-

intensity residential urban fraction (pixels value of 0.9 as represented by red 

color). This representation is overstretched for a city like Kampala because the 

urban fraction of 0.9 often represents a high-density residential pixel value, see, 

for example,  Stewart and Oke (2012). Based on the Landsat image classification, 

the updated urban fraction cells have an average value of 0.64, which realistically 

represents the low-intensity urban residential category. In the right-sided map, 

the city center is partly represented by orange color because uninhabitable 

wetlands (blue areas in Figure 3.2) are located next to high-intensity pixels in the 

LandSat image. Compared to the default urban fraction, the updated urban 

fraction adds considerable details of the urban fraction. In particular, previously 

high-density residential areas were replaced by low fraction urban pixel value. 

Due to the resampling from 30 m Landsat resolution to 1 km WRF resolution, the 

resulting urban fraction for the city center is around 0.7.  The highest urban 

fraction is (0.9) found on the city's eastern outskirts, where all-terrain is suitable 

for constructing buildings.  

 
Figure 3.3 The default urban and updated urban fraction representation used for urban 

simulation. All pixels in the domain d04 of WRF represent 1 km. The default urban fraction 

(left) is from Noah LSM based on MODIS observation  (Ran et al., 2015), whereas the 

updated urban fraction (right) is derived from a Landsat image developed using the 

cellular automata model (Perez Molina, 2019). 

(b) Spatial extent of the city 

Another important aspect of the new urban fraction map is its spatial 

extent, which adds considerable detail to the extent of urban areas in domain d04 

compared to the default urban extent. As shown in Figure 3.3, the new urban 

fraction covers a wider area of about 50 pixels more than the default urban 

fraction. About 40 pixels initially represented by Croplands, and 7 pixels 

represented by Broadleaf Forest, and the rest with Natural Vegetation mosaics 

(see Figure 3.1) are now classified as an urban fraction. The changes in croplands 
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into the urban fraction are particularly located in the city's eastern and southern 

parts. In contrast, the change of Broadleaf Forest to the urban fraction is located 

in the Northern part of the city. 

 

3.4.2. 24-h Cumulative rainfall analysis 
 

This section presents rainfall analysis from DUF_DUP, DUF_AUP, and 

SUF_AUP simulations and their comparison with the observations.  

The spatial distribution of the total 24-h rainfall amount from CHIRPS 

(Funk et al., 2015) and 3 WRF simulations are shown in Figure 3.4. Based on the 

CHIRPS rainfall, the maximum rainfall accumulations are located to the south-

east of the Kampala city catchment along Lake Victoria's coastline with a peak 

accumulation of 43 mm as indicated by X. It is worth noting that the CHIRPS 24-

h rainfall amount at the gauging stations is 30 mm, which is about a half less than 

the amount at gauging stations. 

In the DUF_DUP simulation, the maximum rainfall accumulation (80 mm) 

is located in the southwest part of the Kampala catchment, as indicated by X in 

Figure 3.4b. Heavy rainfall above the observed (i.e., 60 mm) extends from Lake 

Victoria in the south/southeast to the northwest part of the Kampala catchment.  

In the DUF_AUP simulation, the accumulated rainfall's spatial 

distribution follows a similar distribution pattern as the DUF_DUP, except that 

the peak accumulation is increased (89 mm) as indicated by X Figure 3.4c. 

Moreover, the cluster of peak accumulation locations moves further to the city's 

northwest (i.e., peak accumulation is moved to the city's western outskirts, as 

indicated by Y in Figure 3.4c). 

 The spatial rainfall pattern changed in the simulation with the updated 

urban fraction and its parameters (SUF_AUP). The heavy rainfall is concentrated 

at the city's center with a peak accumulation of 82 mm, as shown in spot X in 

Figure 3.4d. The heavy rainfall distribution indicates the cluster of peak rainfall 

at three different locations (two along the coastline of Lake Victoria and one in 

the city center).  

The results of three WRF simulations, both in terms of maximum 

accumulated rainfall and its spatial distribution, do not agree with that of 

CHIRPS rainfall. The insets in figures 4.3b, c, and d show the difference plots of 

the simulation compared to CHIRPS. The difference in accumulated rainfall 

between the CHIRPS and the DUF_DUP and DUF_AUP simulations is 

maximum, which is about 17 and 22 mm (dark yellow color in the insets in the 

bottom-right corner in Figure 3.4b&c), respectively, while in the other locations, the 
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difference is negative (light yellow color). In the updated urban simulation, the 

difference in accumulated rainfall between the CHIRPS and the SUF_AUP 

simulation is 40 mm at the spotted location (red color in the insets in the bottom-

right corner in Figure 3.4d). The maximum negative difference in the accumulated 

rainfall of above -60 mm is located in the city center (dark Blue color), which 

indicates that the peak simulated rainfall is off the location compared to that of 

CHIRPS in all cases.  

 

 
Figure 3.4 24-h accumulated rainfall for (a) CHIRPS, (b) DUF_DUP, (c) DUF_AUP, and 

(d) SUF_AUP simulations. The insets in the bottom-right corner in (b), (c), and (d) are the 

difference of the 24-h accumulated rainfall in the DUF_DUP, DUF_AUP, and SUF_AUP 

simulations from the CHIRPS observation, respectively.  

Table 3.2 summarizes the comparison of three WRF simulated gridcell-

total accumulated rainfall with the observation at the station locations AWS and 

GSOD and area-averaged rainfall with that of CHIRPS. As shown in the table, for 

all three WRF simulations, the simulations underestimate compared to the 

observed rainfall at rain gauging locations, which is also indicated by RE's large 

negative values. In contrast, compared to the CHIRPS area-averaged rainfall 

amount over the innermost WRF domain, all simulations are overestimating. 
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However, the SUF_AUP simulation performs better with a lower relative error 

(13 %) compared to the DUF_DUP and DUF_AUP with higher RE of 50 % and 44 

%, respectively (Table 3.2).  Comparing the three simulations using the ARE, the 

SUF_AUP simulation performs better with a relatively lower absolute error value 

of 53 %.  

 
Table 3.3 Comparison of WRF rainfall with the station and regridded CHIRPS rainfall for 

DUF_DUP, DUF_AUP, and SUF_AUP simulations for 25th June 2012 rainfall events in 

Kampala, Uganda. The areal rainfall amount is the average of all grids in the innermost 

domain of WRF.  

 
 

3.4.3. 2-h Cumulative Rainfall analysis 
 

The WRF model simulations are also examined to understand the event's 

time evolution over the catchment. Figure 3.5 shows the cumulative rainfall 

curves for the observation and three WRF simulations at the AWS location. Based 

on the Automatic Weather Station data, we know that the 25th June 2012 rainfall 

event lasted for two hours from 1100 UTC to 1250 UTC (+3 GMT local time). As 

shown in the figure, compared to observation, storms start a half-hour earlier for 

SUF_AUP and a half-hour later for DUF_DUP and DUF_AUP simulations. The 

time to peak (the time at the steepest slope attain) is about an hour after the 

observation for both StandardWPS and UFD_Parameter simulations, but about 

three hours for the SUF_AUP simulation. In the SUF_AUP simulation, the station 

location has experienced the second storm's passage within three hours. The first 

peak coincides well with the observed event but with a lower rain rate per 

minute. The second rain rate, which has a higher rain rate per minute, attains its 

peak an hour after the first event at about 14:00 hour.  
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Figure 3.5 Cumulative rainfall curves for observation and three WRF simulations at the AWS 

location. Gridcell-rainfall curves for the DUF_DUP, DUF_AUP, and SUF_AUP simulations are 

shown in two-hour time windows from 11:00 to 12:50, equivalent to the observation at the AWS 

location.  

The spatial distribution of the 2-hour rainfall over the catchment is also 

examined, as shown in Figure 3.6. In the DUF_DUP simulation in the same 

period of two hours, the cluster of maximum rainfall accumulation (61 mm) is 

located to the southeast of the Kampala catchment area (i.e., on the edge of the 

catchment boundary) and extended further to the north-west of the catchment 

boundary. In the DUF_AUP simulation, the pattern of rainfall distribution over 

the catchment is similar to that of the DUF_DUP, but the maximum rainfall 

accumulation (72 mm) is located in the northwest of the catchment area. In 

contrast to DUF_DUP, in the SUF_AUP simulation, the rainfall pattern is 

different, with a single maximum rainfall accumulation (75 mm) located in the 

city center.  
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Figure 3.6 2-h accumulated rainfall distribution for model simulations for the period of 

11:00 – 12:50 UTC on 25th June 2012 (the same period as the observed rainfall using AWS 

in Kampala): (a) DUF_DUP, (b) DUF_AUP and (c) SUF_AUP simulations.  

Comparison of DUF_AUP and SUF_AUP simulations with the DUF_DUP 

simulation over the catchment is also presented to analyze the impact of urban 

setting changes. The difference in accumulated rainfall between the DUF_DUP 

and the DUF_AUP simulations is about 22 mm (Figure 3.7a). The negative 

difference of above -30 mm is located at the outskirt of the northwest of the 

Kampala catchment (dark blue color). In the case of SUF_AUP simulation, the 

accumulated rainfall difference with the DUF_DUP simulation is more than 40 

mm at several locations, as shown in Figure 3.7b. The maximum negative 

difference of above -30 mm is located in the city center and in the northeast of the 

catchment (dark Blue color), indicating that the location of 2-h peak rainfall when 

using SUF_AUP simulation is different compared to that of the DUF_DUP 

simulation. 
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Figure 3.7 2-h accumulated rainfall difference for the period of 11:00 – 12:50 UTC on 25th 

June 2012 (the same period as the observed rainfall using AWS in Kampala): subtractions 

of DUF_AUP (a) and SUF_AUP (b) simulations from DUF_DUP simulation. 

3.5. Discussion  
 

To assess the impact of the updated urban fraction and adjusted urban 

parameter settings on a flooding triggering rainfall event, three WRF simulations 

are intercompared as well as compared with observations. It has been well 

documented that the representation of urban surface modifies temperature/wind 

profiles and the corresponding moisture transport, which might significantly 

affect the spatial distribution and amount of rainfall, see for example, (Lei et al., 

2008; Ryu et al., 2016); Paul et al. (2018). Moreover, several studies, for example, 

(Loridan and Grimmond, 2012; Brousse et al., 2019; Dai et al., 2019) indicated that 

the default urban fraction and the corresponding parameter in the WRF model 

might incorrectly represent the true extent and values of the urban surfaces for 

individual cities. Hence, representing the correct urban fraction in the mesoscale 

atmospheric modelling system is essential for optimal rainfall simulation over 

the urbanized area. Therefore, this study's emphasis is mainly on the setup of the 

mesoscale atmospheric modelling system with a more realistic urban fraction 

and urban parameters for Kampala city. Three different simulations are carried 

out using the WRF model: DUF_DUP, DUF_AUP, and SUF_AUP simulations to 

evaluate the impact of WRF rainfall simulation over the city. The simulated 

rainfall analysis and evaluation focus on the high-intensity, convective rainfall 

event that has caused urban flood hazards on 25th June 2012, using rain gauge 

data and CHIRP observations for comparison. 

The results of all three simulations indicate that the modelled rainfall is 

overestimated compared to CHIRPS and underestimated when comparing 

gridcell values with gauging station records. However, the SUF_AUP simulation 
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shows relatively better results with a lower absolute relative error score 

compared to the other two simulations. Although the simulated gridcell 

maximum rainfall amount is overestimated compared to observation in the 

SUF_AUP simulation, the area-averaged rainfall over the catchment is rather in 

good agreement with that of CHIRPS. When comparing the overall magnitude 

of error for each simulation, the SUF_AUP simulation performs better with a 

lower ARE score of 31%.  

The results show that the spatial distribution of the simulated rainfall over 

the Kampala catchment is influenced by the proper representation of the urban 

parameters in the WRF model. In the DUF_AUP simulation, the urban surface is 

represented by the homogeneous urban fraction map and adjusted urban 

parameters. The simulated rainfall is considerably similar to the DUF_DUP 

simulation in a pattern, with displacements of the precipitation towards the 

northwest. Notably, adjusting the urban parameters (see Table 3.2), where most 

values changed in favor of more heat absorption by buildings during the 

daytime, is the main factor causing the displacement in the city's simulated 

rainfall; this is in parity with the find of Patel et al. (2019). Hence, the proper 

representation of urban parameters becomes vital as they affect the distribution 

of rainfall accumulation (Li et al., 2013).  

Furthermore, in addition to adjusting urban parameters, proper 

representation of urban fraction in the WRF model strongly influenced the spatial 

distribution and amount of the simulated event over the city. In the SUF_AUP 

simulation in which the more realistic map of an urban fraction was used, the 

peak rainfall amount's spatial location changed compared to DUF_DUP and is 

located in the city center. Compared to the default MODIS based Noah urban 

fraction (Ran et al., 2015), the new urban fraction represents the more realistic 

extent of the city and fraction, which is mainly due to the methodology applied 

to produce the urban fraction explicitly and also due to the source of the data 

(Perez Molina, 2019).  

Changes in urban parameters and urban fraction alter moisture and 

energy fluxes as well as the thermodynamic characteristics, which affect the 

initiation and intensification of convective processes over a city (Paul et al., 2018). 

In this study, in the default urban fraction, the city is represented by the medium-

high intensity urban category, which affects the spatial distribution of peak 

rainfall accumulation. Besides, adjusting urban parameters with the default 

urban fraction further enhances the distribution of peak rainfall accumulation. 

The changes in rainfall can be explained by the diurnal variation in temperature 

and wind profile; as suggested by Shastri et al. (2015), higher vertical wind 
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velocity and lower surface wind speed promote circulation by converging low-

level moisture to more moisture for precipitation. Moreover, urbanization 

enhances thermal contrast between the city and lake, leading to strong breeze 

circulation, as Seino et al. (2018) suggested. Consequently, the spatial distribution 

of the peak rainfall accumulation is further located inland in the DUF_DUP and 

DUF_AUP simulation cases. In contrast, lowering the urban intensity, as in 

SUF_AUP, creates less thermal contrast leading to the peak rainfall accumulation 

concentrated in the city center and close to the coastline. Moreover, a lower urban 

fraction, as in SUF_AUP, means a lower sensible heat, which affects the planetary 

boundary layer and atmospheric instability over the city, resulting in a lower 

rainfall amount than when using DUF_DUP and DUF_AUP simulations. Similar 

studies (Zhong et al., 2015; Ryu et al., 2016; Paul et al., 2018; Zhang et al., 2018b) 

support our findings that the presence of urbanization modifies rainfall 

occurrences, primarily due to changes in the meteorological variables (e.g., 

fluxes, mass, and momentum).  

3.6. Conclusion 
 

The mesoscale WRF model standard representation of the urban areas is 

often not representative of cities. For Kampala, the urban fraction is adjusted 

based on satellite information. This chapter analyses the new urban fraction's 

impact and adjusted urban parameters on the high-intensity rainfall event of 25th 

June 2012. Three simulations are compared: one with the default WPS settings 

for urban fraction and its parameters (DUF-DUP), one simulation adjusting only 

the urban parameters (DUF_AUP), and finally, one implementing the new urban 

fraction in combination with adjusted urban parameters (SUF_AUP). The peak 

rainfall and its spatial distribution over the Kampala catchment were evaluated 

using observed rainfall data from two gauging stations and satellite precipitation 

dataset CHIRPS.  

When considering all three simulations, the WRF model overestimates 

rainfall compared to the CHIRPS and underestimates compared to gridcell 

values at gauging stations. The discrepancies between the model simulations and 

the CHIRPS observations are due to the known limitation of CHIRPS in capturing 

the maximum rainfall amount. Additionally, due to the absence of a dense urban 

gauging station network, there is no proper Spatio-temporal record of the rainfall 

event over the city. Based on the available observations, the SUF_AUP simulation 

with a more realistic urban fraction and adjusted urban parameters shows 

relatively better performance with the lowest ARE score compared to the other 

two simulations. Consequently, SUF_AUP results in a more realistic rainfall 

simulation compared to when using the default urban fraction. 
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Overall, this chapter demonstrated that adjusting urban fraction as well as 

the urban parameters used by the urban canopy model impacts the spatial-

temporal distribution of high-intensity rainfall events. An extensive analysis of 

the wind profiles and heat and moisture fluxes is required to attribute the 

observed changes in local and regional rainfall patterns in more detail. The 

results from the SUF_AUP simulation reported in this chapter produced a more 

realistic rainfall amount and its distribution over the catchment. Therefore, the 

WRF model configuration with the new urban fraction and urban parameters is 

used in this thesis. 
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Chapter 4:  Evaluation of the WRF model to 

simulate a high-intensity rainfall event over 

Kampala, Uganda 
 

 
This chapter is published as a peer-reviewed paper: 
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the WRF model to simulate a high-intensity rainfall event over Kampala, Uganda. 

Water 2021, 13(6), 873; https://doi.org/10.3390/w13060873 

 

Abstract 
 

Simulating high-intensity rainfall events that trigger local floods using a Numerical 

Weather Prediction model is challenging as rain-bearing systems are highly complex 

and localized. In this study, we analyze the performance of the Weather Research and 

Forecasting (WRF) model’s capability in simulating a high-intensity rainfall event 

using a variety of parameterization combinations over the Kampala catchment, 

Uganda. The study uses the high-intensity rainfall event that caused the local flood 

hazard on 25 June 2012 as a case study. The model capability to simulate the high-

intensity rainfall event is performed for 24 simulations with a different combination 

of eight microphysics (MP), four cumulus (CP), and three planetary boundary layer 

(PBL) schemes. The model results are evaluated in terms of the total 24-h rainfall 

amount and its temporal and spatial distributions over the Kampala catchment using 

the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) 

analysis. Rainfall observations from two gauging stations and the CHIRPS satellite 

product served as a benchmark. Based on the TOPSIS analysis, we find that the most 

successful combination consists of complex microphysics such as the Morrison 2-

moment scheme combined with Grell-Freitas (GF) and ACM2 PBL with a good 

TOPSIS score. However, the WRF performance to simulate a high-intensity rainfall 

event that has triggered the local flood in parts of the catchment seems weak (i.e., 0.5, 

where the ideal score is 1). Although there is high spatial variability of the event with 

the high-intensity rainfall event triggering the localized floods simulated only in a 

few pockets of the catchment, it is remarkable to see that WRF is capable of producing 

this kind of event in the neighborhood of Kampala. This study confirms that the 

capability of the WRF model in producing high-intensity tropical rain events depends 

on the proper choice of parametrization combinations. 

Keywords: deep convection; high-intensity rainfall event; Kampala; parametrization 

combinations; TOPSIS; Uganda; WRF model evaluation 

https://doi.org/10.3390/w13060873
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4.1. Introduction 

Numerical weather prediction (NWP) models are powerful tools in 

simulating rainfall amount and its spatial and temporal distributions in a 

hydrological catchment (Li et al., 2017). However, modelling high-intensity 

rainfall events (henceforth HIRE) that trigger localized floods is challenging as 

the rain-bearing systems might be highly complex, dynamic, and localized. High-

intensity rainfall events that may trigger a localized flood are characterized by 

high peak rainfall intensity in a short duration (approximately 1-5 hours) and 

occur in the catchment of 100 km2 or less (Braud et al., 2016). The occurrence and 

distributions of the high-intensity rainfall in the catchment are highly convective 

that can be influenced by the meteorological systems from micro to macroscales. 

In Equatorial East Africa, these meteorological systems are primarily the Inter-

Tropical convergence Zone (ITCZ) (Anyah, 2005) and the land-lake breeze 

circulation systems controlled by Lake Victoria (Sun et al., 2015). At a local scale, 

HIREs can be influenced by the local land-surface state, e.g., the position and 

extent of urban land use (Paul et al., 2018). Therefore, modelling HIREs using 

NWP models requires a proper consideration of the driving dataset determining 

the meteorological systems and the urban land use fraction in the model domain.  

The Weather Research and Forecasting (WRF) numerical weather 

prediction model (Powers et al., 2017) has been recognized for simulating the 

amount and distribution of rainfall required for catchment hydrological 

applications (e.g., (Flesch and Reuter, 2012; Pennelly et al., 2014; Cassola et al., 

2015)). The WRF model is widely praised, particularly for its capability to 

simulate local-scale rainfall-producing phenomena, e.g., convective systems 

driven by lake surface temperature, topography, and urbanization (e.g., (Ryu et 

al., 2016; Paul et al., 2018)). However, the high-intensity rainfall triggering the 

localized flood event is one of the most challenging variables to handle in NWP 

because the driving processes are complex and interact at various scales (Davolio 

et al., 2009). Consequently, the actual rainfall amount and its distribution in time 

and space required for localized flood modelling are incorrectly simulated in the 

catchment (Tian et al., 2017; Rodrigo et al., 2018). The WRF model's difficulties in 

simulating the localized events can be associated with the model sensitivity to 

initial and boundary conditions, domain size, and parameterization schemes (Liu 

et al., 2012).  

The WRF model`s parameterization schemes and their associated 

meteorological processes often determine rainfall simulation. Testing all 

combinations of schemes is often unfeasible in terms of computational time and 



Chapter 4 

79 
 

data storage (Tan, 2010). The sensitivity of certain parameterization combinations 

for rainfall simulation has been well-documented, for example, (Argüeso et al., 

2011; Efstathiou et al., 2013; Sikder and Hossain, 2018). They concluded that the 

main parameterization schemes and their combination determining the 

simulated rainfall are microphysics (MP), Cumulus parametrization (CP), and 

planetary boundary layer (PBL). However, the optimal parameterization 

combination varies from location to location, depending on the underlying 

meteorological processes (Liu et al., 2012; Sikder and Hossain, 2016). 

The flash floods in Kampala, Uganda's capital and political city, is mainly 

triggered by HIREs that occur in the two main rainy seasons: a long rainy season 

from March to May and a short rainy season from October to December and the 

transition months between the season (Douglas et al., 2008; Sliuzas et al., 2013). 

The rainfall event on 25th June 2012, which occurred at the cessation of the long 

rainy season, has caused a substantial flash hazard in the city. This rainfall event 

is an example of HIRE with a duration of two hours and a peak intensity of over 

100 mm/hr, which caused a flood depth of above 1 meter in the flood-prone areas 

(Umer et al., 2019). However, the lack of sufficient rain gauge data hampers a 

proper flood hazard assessment, which is vital for city planning. Therefore, it is 

essential to know whether the WRF model can simulate such an event in the 

complex climate system of Equatorial East Africa.  

Previous WRF studies in the Lake Victoria basin analyzed the model 

performance on the seasonal and monthly rainfall distribution over the entire 

basin. For example, (Argent et al., 2015; Otieno et al., 2018) suggested the Betts-

Miller-Janjic scheme (BMJ) and Kain-Fritsch (KF) cumulus schemes in 

combination with WSM5 microphysics and Yonsei University (YSU) Planetary 

Boundary Layer (PBL) options as suitable schemes for monthly and seasonal 

rainfall distribution over the Lake Victoria basin. Opio et al. (2020) also suggested 

the Grell 3D cumulus scheme combined with the SBU-YLin microphysical 

scheme appropriate for numerical simulations of extreme rainfall in equatorial 

regions. However, it is difficult to objectively identify the best parameterization 

combination because each combination ranked differently depending on the 

validation metric, the observation used model verification, and the model 

resolution being considered. Nonetheless, no specific papers appear to use WRF 

over Kampala region to study extreme rainfall associate with deep convection. 

Our study focused on evaluating the performance of the WRF model in 

simulating high-intensity rainfall associated with a flood-triggering, convective 

system over the Kampala catchment. Since the spatial contrast between the city 

and Lake Victoria in the tropics requires a special configuration, we are one of 

the first to perform such a widespread model evaluation in terms of 

parameterization testing. This evaluation is considered essential as the first step 

towards the application of WRF events for constructing design storms of a given 
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return period, for example, (Shiau, 2003; De Luca and Biondi, 2017), involving 

rain peak and total rainfall volume, for flood hazard modeling. Toward this, WRF 

design storms of a given geographical location can be constructed based on a 

defined threshold. The work here only focuses on simulating and evaluating 

high-intensity rainfall events as the driver for flood models instead of the flood 

modeling itself. 

This study’s main objective is to analyze the performance of 

parametrization combinations in WRF to simulate the 25 June 2012 HIRE to 

evaluate the applicability of WRF for urban flood modeling in Kampala. The 

paper is particularly focused on evaluating WRF performances on the rainfall 

characteristics (i.e., total rainfall amount, spatial and temporal distributions) that 

are essential for flood triggering mechanisms. The model’s capability in 

simulating the event is assessed by considering the sensitivity of 24 different 

simulations as the combinations of eight MP, four CU, and three PBL 

parameterizations. Recognizing the impact of considering CP in the innermost 

domain, the result of rainfall amount for each simulation with and without CP is 

also evaluated. Two specific research questions are: (1) How does the WRF model 

perform in simulating the HIRE amount and its distributions over the Kampala 

catchment? (2) What are the optimum MP-CP-PBL parametrization combinations 

for simulating HIRE for 25 June 2012 over Kampala, Uganda? Finally, a 

framework for the applicability and usability of the simulated rainfall event for 

flood modeling in the Kampala urban catchment is presented. The following 

section describes the study area and data used, model configuration, and 

verification indices. The study results are reported in Section 3, then followed by 

discussion and conclusion in Sections 4 and 5, respectively. 

 

4.2. Materials and Method 
 

4.2.1. Study area 
 

The study area is Kampala city, the capital and political city of Uganda. 

Geographically, the city is located on the northern shore of Lake Victoria, and it 

is characterized by flood-prone wetland areas separating the hills of over 1300 m 

elevations (Figure 4.1). The precipitation climatology of the Lake Victoria basin 

is characterized by two main rainy seasons: March-May (MAM), known as the 

long rainy season, and October–December (OND), known as the short rainy 

season (Kizza et al., 2009). In both seasons, rainfall is primarily controlled by the 
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persistent seasonal migration of the ITCZ and its interactions with the 

surrounding topography and Lake Victoria (Anyah, 2005). At the mesoscale 

level, the rain-producing systems are mostly convection systems associated with 

Lake breeze circulation and the surrounding mountains (Anyah, 2005; Sun et al., 

2015). The HIRE in the afternoon of 25th June 2012 caused a substantial flood 

problem in the city's flood-prone areas. The June event has occurred at the end 

of the prolonged rainy season, and it can be characterized as a convective system. 

The common synoptic systems producing June rainfall are (1) moisture-bearing 

southeasterlies wind coming from a high-pressure ridge in the Southern Indian 

Ocean; (2) moisture-bearing southwesterly wind generated by the shift of ITCZ 

that comes from both the Indian ocean and the Congo Basin (Osman and 

Hastenrath, 1969; Camberlin, 2018). 

 

4.2.2. Observed rainfall data 
 

On June 25, 2012, two rain gauge stations were in operation in Kampala 

city: Automatic Weather Station (AWS) in the Makerere University recorded at 

the 10-minute interval and Kampala Central station at a 24-hour interval (Table 

4.1) with the 24-hour accumulated rainfall of 66.2 and 60 mm, respectively. The 

observed accumulated 24-hour rainfall event is a typical 1-in-2 year return period 

event. The 24-hour rainfall data of Kampala central station is collected from the 

Global Summary of the Day (GSOD) dataset provided by the National Climatic 

Data Center (NCDC) acquired through the World Meteorological Organization. 

Both gauge data are used for model performance assessment.  

In addition, the satellite estimated rainfall from Climate Hazards Group 

InfraRed Precipitation with Station data (CHIRPS) (Funk et al., 2015) is retrieved 

for model evaluation. The CHIRPS observed rainfall data has a 0.05 degree 

(~5.5km) spatial and daily temporal resolutions. It is one of the best rainfall 

products for decision-making in East Africa (Cattani et al., 2018; Diem et al., 

2019). For the WRF model evaluation, the CHIRPS rainfall data is first rescaled 

to the D04 grid spacing (see section 2.3), which is 1 km x 1 km, and then extracted 

for the Kampala catchment (see Figure 4.1c). The CHIRPS product shows a 

maximum rainfall (above 40 mm/day) along the coast of Lake Victoria, while the 

northern part of the city received lower rainfall of up to 5 mm/day.  
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Figure 4.1 Study area and rainfall data used: (a) Location of the study area with google 

map, (b) Gauging station location and the Digital Elevation map of Kampala city; (c) 

satellite rainfall estimation based on CHIRPS.  

4.3. WRF model Setting and Configuration 
 

In this study, the WRF model, version 4 (Wang et al., 2012), was used to 

study the temporal and spatial distribution of high-intensity rainfall events in 

Kampala. The WRF model configuration consists of four domains with 27 km, 9 

km, 3 km grid spacing as outer domains, and 1 km as the innermost domain (see 

Figure 3.1, section 3.3.1).  

The parameterization schemes were designed to solve the sub-grid scale 

processes that are not explicitly resolved because they are spatially too small but 

affect the atmospheric state at the resolved scale. The formulation and 

computation of the currently available parametrizations are designed, tested, and 

evaluated in a particular region and tuned to work best in a specific atmospheric 

environment; hence, the model performance may differ from one instance to 

another. Therefore, it is important to evaluate and verify the applicability and 

performance of the currently available parametrizations and their combinations 

for our specific region and atmospheric environment. This study explicitly 
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focused on microphysics, cumulus parametrization, and planetary boundary 

layer for high-intensity rainfall sensitivity analysis. For all simulations during 

sensitivity analysis, the effect of urban canopy parameterization on high-

intensity rainfall is considered.  
  

Table 4.1 WRF parametrization schemes used in the current study 

Physics options Naming Description of parametrization schemes 

Microphysics scheme (MP) 

WSM 3 

WSM 5* 

WRF Single Moment 3-class scheme (Hong et al., 2004) 

WRF Single Moment 5-class scheme (Hong et al., 2004) 

  

WSM 6 

EF* 

T* 

WRF Single Moment 6-class scheme (Hong and Lim, 2006) 

The Eta Ferrier scheme (Ryan, 1996) 

Thomson et al. double moment scheme (Thompson et al., 2008) 

  

M2 

WDM 5* 

Morrison et al. 2-Moments scheme (Morrison et al., 2009) 

WRF Double Moment 5-class scheme (Lim and Hong, 2010) 

  WDM 6 WRF Double Moment 6-class scheme (Lim and Hong, 2010) 

Cumulus parametrization (CP) KF Kain-Fritsch (new Eta) scheme (Kain, 2004) 

  BMJ Betts-Miller-Janjic scheme (Janjić, 2000) 

  

GF 

G3D* 

Grell-Freitas ensemble scheme (Grell and Freitas, 2014) 

Grell 3D ensemble scheme (Grell and Dévényi, 2002) 

Planetary Boundary Layer (PBL) YSU Yonsei University PBL (Hong et al., 2006) 

  ACM2 Asymmetrical Convective Model version 2 PBL (Pleim, 2007) 

  BL Bougeault-Lacarrere PBL (Bougeault and Lacarrere, 1989) 

Radiation-Shortwave Dudhia Dudhia Shortwave scheme (Dudhia, 1989) 

Radiation-Longwave RRTM Rapid Radiative Transfer Model Longwave (Mlawer et al., 1997) 

Land Surface model  NoahMP Unified Noah land-surface model (Niu et al., 2011) 

Surface Layer  SF_SFCLAY Revised MM5 Monin-Obukhov scheme (Jiménez et al., 2012) 

Urban Physics  SLUCM Single-layer urban Canopy Model (Kusaka et al., 2001) 

                                      *not included in 24 MP-CP-PBL combinations 

 

4.3.1. Microphysics 
 

The cloud microphysics Scheme is the process by which the evolution of 

the hydrometeor particle size distribution is predicted. The WRF model used the 

bulk microphysics parametrization to predict the transport, physical change, and 

thermodynamic effects of the total hydrometeor population in clouds, either 

liquid or frozen or a mixture of both. Hydrometeors in a bulk microphysics 

parametrization are described by one or more physical characteristics of the 

particles (such as mass and number densities). Their processes depend on the 

definition of source-sink terms in their prognostic equation. This transport 

equation is derived from a spectral balance equation for the hydrometeor size 

distribution function using the method of moments (Beheng, 2010). The WRF 

bulk microphysics parametrization is either a single-moment if the scheme 

includes prognostic equations to predict the mass or a multi-moment scheme if 

the schemes include prognostic equations to predict both mass and number 

densities. The complexity of these schemes varies in formulations from the single 

moment (e.g., WSM families (Hong et al., 2004)) to two-moment schemes (e.g., 

Morrison (Morrison et al., 2005; Morrison et al., 2009; Morrison and Milbrandt, 

2010)). The sensitivity experiments of these schemes have been evaluated to 



Evaluation of the WRF model to simulate a high-intensity rainfall event 

 

 
 

 

simulate high-intensity and extreme rainfall events (Argüeso et al., 2011; Sikder 

and Hossain, 2016). In this thesis, we used all available microphysics schemes 

(hereafter MP) in the WRF model and combined with cumulus schemes and PBL 

to evaluate the performance of the combinations in simulating (HIRE) triggering 

the localized flood in the urban catchment (see Table 4.1). 

 

4.3.2. Cumulus parametrization 
 

Cumulus parametrization (CP) in the WRF model is the process to 

represent the collective effect of the sub-grid scale clouds, which cannot be 

resolved explicitly. The consideration of cumulus parametrization in the WRF 

model resolves sub-grid scale vertical fluxes and rainfall due to convective 

clouds. It hence plays an important role in regulating the pattern and distribution 

of the simulated rainfall events (Jeworrek et al., 2019). Different cumulus 

parametrizations have different techniques to resolve subgrid-scale processes 

regarding condensation in the updraft, evaporation in the downdraft, cooling 

due to the evaporation of falling rain below the cloud base, turbulent mixing at 

the cloud edge with the environment, entrainment, detrainment, and subsidence 

compensation in the boundary layer. Some schemes use a simple cloud model 

with updrafts and downdrafts, including the effects of detrainment and 

entrainment with a cloud model based on a mass flux formulation and removal 

of CAPE (Convective available potential energy), for example, the Kain and 

Fritsch scheme (KF) (Kain, 2004). Other convective schemes are adjustment type 

schemes, for instance, the Betts–Miller scheme (BM) (Betts and Miller, 1993), 

where vertical profiles of temperature and humidity are adjusted until stability 

is achieved. The CP used in the thesis is listed in Table 4.1. 

 

4.3.3. Planetary Boundary Layer 
 

A planetary boundary layer (PBL) is a column of the atmosphere in 

which the exchanges of essential phenomenon for cloud development and 

precipitation such as moisture, heat, and momentum occur through mixing 

associated with turbulent eddies. The turbulent eddies, which are often 

happening in the lower-tropospheric layer of the atmosphere, determine the 

evolution of the thermodynamic elements. The scales at which the turbulent 

eddies operated are too small to be explicitly represented in the mesoscale NWP 

models. Thus, their effects are expressed in these models via the use of PBL 

parameterizations. The theoretical development and formulation of PBL have 
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been focused on profiles of mean and parameterized flux (Pleim, 2007; Stensrud, 

2009). In this thesis, all PBL types available in the WRF model catalog have been 

considered, as shown in Table 4.1. 

 

4.3.4. Other model parameterization schemes 
 

Other model parameterization schemes used in this research, which 

include the Radiation schemes, land surface schemes, and surface layer schemes, 

are also described in Table 4.1. For this study, the Dudhia and Rapid Radiative 

Transfer Model (RRTM) schemes are selected for shortwave and longwave 

radiation parameterization, respectively. The RRTM scheme incorporates the 

detailed absorption spectrum effects, considering water vapor, carbon dioxide, 

and ozone. It is combined with the cloud-radiation shortwave scheme and 

interacts with the model cloud and precipitation fields (Mlawer et al., 1997). 

Dudhia scheme (Dudhia, 1989) is sophisticated enough to account for long-wave 

and short-wave interactions with explicit cloud and clear-air. It also provides 

surface long and short wave fluxes without calling surface radiation fluxes. 

In this study, the land surface scheme, which determines the hydrologic 

and atmospheric processes that take place at the interface between the earth 

surface and the atmosphere, such as infiltration and evaporation processes, are 

determined by using the Unified Noah land-surface model (Noah) MP (Niu et 

al., 2011). These land surface processes have scales much smaller than the 

horizontal resolution of mesoscale atmospheric models. The schemes that 

simulate the average areal behavior of land surface processes over a 

computational grid of the mesoscale atmospheric model are called land surface 

parameterization schemes. They mainly provide ground temperature as an 

output, which is calculated by sensible heat, latent heat, radiative fluxes, and 

surface layer atmospheric properties. Surface moisture availability, sub-soil 

temperature, and moisture profiles can also be provided. In the case of the surface 

layer scheme, the revised MM5 Monin-Obukhov similarity theory is used for 

calculating surface heat and moisture fluxes (Jiménez et al., 2012).  

4.4. Model evaluation 
 

To quantify the spatiotemporal performance of the simulated rainfall in 

the innermost domain, d04,  the relative error (RE) index by (Tian et al., 2017) and 

2D verification indices by (Liu et al., 2012) are used (Table 4.1). The evaluation is 

carried out for one day focusing only on June 25, 2012, using 10-minute time 

series of observed and accumulated 24-hour  satellite-based rainfall data. The RE 

index was used to evaluate the performance of the 24-hour accumulated area-
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averaged rainfall over the Kampala catchment, as indicated in Figure 4.1b. The 

2D verification indices were used to evaluate the simulated rainfall's spatial and 

temporal distribution on 10-minute and 24-hour periods. The temporal 

distribution was evaluated by using the continuous 2D verification indices 

against 10-minute data from the AWS, while for the spatial distribution, the 

categorical and continuous 2D verification indices were evaluated against 24-

hour accumulated rainfall data from the two gauging stations and CHIRPS. We 

used the multi-criteria decision technique named TOPSIS by (Sikder and 

Hossain, 2016) to choose the likely optimum parametrization combinations.  In 

this study, the TOPSIS analysis is based on the RE index's rescaled error scores 

and 2D verification indices. It is noteworthy that although 24-hour model results 

evaluation is not a suitable time scale to represent flash floods, since the 

observational dataset (i.e., CHIRPS and rainfall data Kampala central station) is 

available on a daily time scale, the model performance of the actual rainfall 

amount and its spatial distribution is evaluated at a daily time step. 

The parametrization combinations selected based on TOPSIS criteria 

intended to represent the best WRF MP-CP-PBL combinations used to simulate 

the high-intensity rainfall event triggering the localized flood over the Kampala 

catchment. However, the usability of the selected combinations for the localized 

flood modelling can be different depending on whether we are aiming for the 

actual or potential flood modelling. Actual flood modelling requires spatially 

moving rainfall in the catchment as input to a hydrologic model. Potential flood 

modelling requires a representative homogeneous rainfall as a design for a 

chosen return period as input to a hydrologic model. At the end of this study, the 

applicability and usability of the best likely parametrization combinations for 

both flood modelling will be discussed. 

 

4.4.1. Relative Error index (RE)  
 

The relative error index in percentages (RE) computes the simulated 

accumulated 24-hour rainfall, S, with respect to the CHIRPS observed values, O 

(equation 1 in Table 4.2). In the equation, S and O are the average values of all 

the grids inside the Kampala catchment. For areal calculation, CHIRPS rainfall, 

which is originally at 5.5 km resolution, was first resampled to the D04-domain 

of WRF (1 km) spatial resolution and then extracted for the Kampala catchment.  

 

4.4.2. 2D verification indices  
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The temporal performance of WRF was evaluated using three 

continuous 2D indices: the Root Mean Square Error (RMSE), the Mean Bias Error 

(MBE), and Standard Deviation (SD) (equations 2 - 4 in Table 4.2). These three 

indices are computed using the automatic weather station data, Oi, where n is 

the number of time steps 144 (10-minute time step for one-day simulation). The 

simulated time series data, Si, are the values of the 24 WRF simulations extracted 

at the automatic weather station location. For RMSE and SD, the calculated 

values range between 0 - ∞, while for MBE, the values can vary between -∞ - ∞.  

 
Table 4.2 Types of indices and their equations used for WRF simulated rainfall evaluation 

 

 
 

The performance of WRF in the spatial dimension ware evaluated using 

the same three 2D continuous indices (equations 2 - 4, Table 4.2) and four 2D 

categorical indices (equations 5 - 8, Table 4.2). Note that 2D categorical indices 

will only use in space, not in time. In the spatial dimension, Si and Oi indicate the 

simulated and observed 24-hour accumulated rainfall amount. The observed 24-

hour rainfall amount is based on two gauging stations (n = 2; AWS and Kampala 

Central), and the simulated values of the 24 WRF simulations were extracted at 

these two gauging locations. The four 2D categorical indices proposed by (Davis 

et al., 2009) were used in combination with the rescaled CHIRPS rainfall data. 

These verification indices are chosen as the probability of detection (POD), the 

frequency bias index (FBI), the false alarm ratio (FAR), and the critical success 

index (CSI). Their calculations check on the agreement between WRF and 
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CHIRPS per grid cell, using the contingency table shown in Table 4.3. Since our 

interest is in evaluating the simulated HIRE, these indices' threshold is 

considered 25% of the maximum rainfall amount. The calculated values for POD, 

FAR, and CSI range between zero and one, whereas FBI values range from 0 - ∞.  

 
Table 4.3 Contingency table of WRF simulation against CHIRPS rainfall estimates 

 
 

4.4.3. Technique for Order of Preference by Similarity to Ideal 

Solution 
 

To select the likely optimum parametrization combinations that represent 

the overall best model performance for the rainfall event, we used a multi-criteria 

decision analysis technique using the relative closeness to the ideal solution 

proposed by (Sikder and Hossain, 2016; Stergiou et al., 2017; Sikder and Hossain, 

2018). It is called the Technique for Order of Preference by Similarity to Ideal 

Solution (TOPSIS) Relative closeness Value (RCV). For the TOPSIS RCV 

calculation, we used the scores of RE, the 2D continuous, and 2D categorical 

indices. Based on these indices, we have a set of 11 criteria for each of the 24 MP-

CP-PBL simulations (3 for the temporal dimension, i.e., MBE, RMSE, and SD; 7 

for the spatial dimension, i.e., MBE, RMSE, SD, POD, FBI, FAR and CSI; and RE). 

To compute TOPSIS RCV, first, the calculated indices have to be rescaled (Sikder 

and Hossain, 2018) (Table 4.4). The rescaled values are related to the original 

error by defining the threshold values based on the original indices' minimum 

and maximum values. As some 2D verification indices are computed for both 

spatial and temporal dimensions, the subscript “r” represents generally rescaled, 

whereas ‘rs’ and ‘rt’ represent rescaled for spatial and temporal dimensions, 

respectively. All rescaled values range from 0 to 1, 0 represents the worst, and 1 

represents the perfect score.  

The overall model performance in the temporal dimension is calculated by 

using a single score, the so-called “Temporal Extent Score (TES), which is 

calculated as the weighted average of the values of three re-scaled 2D continuous 

indices (Equation (4.9)). The model performance in the spatial dimension is 
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computed by using a single score, the so-called “Spatial Extent Score (SES),” 

which is calculated by taking the weighted average of the re-scaled spatial 2D 

categorical and 2D continuous indices; see equation (4.10).  

 

𝑇𝐸𝑆 =
𝑅𝑀𝑆𝐸𝑟𝑡+𝑀𝐵𝐸𝑟𝑡+𝑆𝐷𝑟𝑡

3
− − − − − − − − − − − − − − − − − − − − − − − − − − − 4.9  

𝑆𝐸𝑆 =
𝑃𝑂𝐷𝑟𝑠+𝐹𝐵𝐼𝑟𝑠+𝐹𝐴𝑅𝑟𝑠+𝐶𝑆𝐼𝑟𝑠+𝑅𝑀𝑆𝐸𝑟𝑠+𝑀𝐵𝐸𝑟𝑠+𝑆𝐷𝑟𝑠

7
− − − − − − − − − − − − − − − −4.10  

The overall model performance in both dimensions is calculated with the 

so-called Unified Score (US), which is the weighted average of all 11 rescaled 

error indices, including the RE index, see equation (4.11). A higher unified score 

represents a better overall model performance in the catchment boundary. 

 

𝑈𝑆 =
𝑅𝐸𝑟 + 𝑃𝑂𝐷𝑟𝑠 + 𝐹𝐵𝐼𝑟𝑠 + 𝐹𝐴𝑅𝑟𝑠 + 𝐶𝑆𝐼𝑟𝑠 + 𝑅𝑀𝑆𝐸𝑟𝑠 + 𝑀𝐵𝐸𝑟𝑠 + 𝑆𝐷𝑟𝑠 + 𝑅𝑀𝑆𝐸𝑟𝑡 + 𝑀𝐵𝐸𝑟𝑡 + 𝑆𝐷𝑟𝑡

11
− − − −4.11 

 

Table 4.4 Rescaled indices from the original error indices 

 
The threshold values for RMSEmax, RMSEmin, MBEmax, MBEmin, SDmax, and SDmin are in mm 

4.5. Results 
 

For evaluating the WRF simulated rainfall event over the Kampala 

catchment, both the cumulative rainfall and its temporal and spatial distributions 

are equally important (Table 4.2). The three unified scores were computed based 

on the rescaled values of RE and 2D verification schemes (eq.9-11). 

 

4.5.1. WRF performance of accumulated 24-hour rainfall 
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To evaluate the performance of WRF in simulating accumulated 24-hour 

rainfall, we compared the area-averaged 24-hour rain over the catchment from 

the 24 WRF simulations with the CHIRPS rainfall using the relative error (eq.1, 

Table 4.5). As the perfect score of RE is zero, lower RE values indicate a close 

simulation of rainfall to CHIRPS. The best performing combination for the event 

simulation in the catchment is M2-GF-ACM2, with an RE value of -2.4%. Next, 

the combinations WSM6-KF-BL and M2-KF-BL perform significantly better than 

the other combinations with RE scores of -39.9% and -47.0%, respectively. WSM3-

KF-YSU is the least performing with a RE value of -89.3%. All 24 WRF 

simulations have a negative RE (%), which indicates an underestimation of the 

WRF simulated rainfall compared to CHIRPS estimates.   
 

Table 4.5 WRF Performance evaluation of 11 indices and their scores for 24 MP-CP-PBL 

combinations; Underlined indicates the top 3 simulations for each index; bold indicates 

the least performing combination. 

 

 
   

4.5.2.  WRF performance in the temporal dimension 
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To evaluate the temporal performance of the WRF model, we used the 

three 2D continuous indices (eq.2-4, Table 4.2) and the TES score (eq. 9) to 

compare rainfall time-series from the WRF simulations with AWS at 10-minute 

resolution (Table 4.5 and Figure 4.3). For all the three indices (i.e., RMSE, MBE, 

and SD), the lower the error scores, the better the WRF model performs. The MBE 

values vary between -0.19 mm (best) to -0.45 mm (worst) (see Table 4.5 and the 

bar in blue color, Figure 4.2). The best combinations for temporal rainfall 

distribution simulation, according to MBE, are WSM3-KF-BL, WSM6-KF-BL, and 

WDM6-GF-YSU, with values between -0.19 mm and -0.21 mm, respectively. As 

shown in the figure, MBE values for all combinations are negative, except for the 

M2-GF-ACM2 combination (0.44 mm), which suggests that WRF is generally 

underestimating the simulated rainfall amount in time. As shown in the figure, 

the lowest values for SD and RMSE are found when using WDM6-GF-YSU and 

WSM6-GF-ACM2. The least performing combination for RMSE is M2-GF-ACM2 

(3.82 mm) and WSM6-KF-BL (2.87 mm) for SD, which means the timing of the 

rain is different, corresponding to the observation. Unlike MBE, for both RMSE 

and SD, the error's magnitude is higher when the difference between the 

simulated and the observed rainfall is higher. Other combinations also perform 

reasonably, with the error scores varying between -0.2 mm to -0.44 mm for MBE, 

2.5 to 3 mm for RMSE, and 2.4 to 2.9 mm for SD. 
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Figure 4.2 Performance of WRF simulated rainfall in the temporal dimension for 24 MP-

CP-PBL combinations at AWS location (each bar represents one simulation per 2D 

evaluation results).  

4.5.3. WRF performance in the spatial dimension 
 

  To evaluate the performance of WRF simulated rainfall in the spatial 

dimension, we used three 2D continuous (eq. 2-4, Table 4.2) and four categorical 

indices (eq.5-8, Table 4.2). The 2D continuous indices give the WRF performance 

with respect to the observed cumulative rainfall amount at the two gauging 

stations, while the 2D categorical indices provide information about the grid 

rainfall distribution compared to CHIRPS. Figure 4.3a and Table 4.5 show the 

results for the 2D continuous indices. The MBE best-performing combinations 

are M2-GF-ACM2, WSM3-KF-BL, and WSM6-KF-BL with values of 3.4 mm, -9.1 

mm, and -31.4 mm, respectively. The MBE score's negative sign indicates that the 

simulated 24-hour rainfall is underestimated compared to the observation, 

except for M2-GF-ACM2. Like MBE, the best performing combinations according 

to RMSE are M2-GF-ACM2, WSM3-KF-BL, and WSM6-KF-BL with values of 12.4 

mm, 20.1 mm, and 31.5 mm, respectively. The least performing combination is 

WSM3-GF-YSU, with a higher RMSE score of 60.8 mm, which means the 

simulated rainfall amount is incorrectly placed compared to the two gauging 

stations. For the SD index, M2-KF-BL, WDM6-BMJ-ACM2, and M2-KF-YSU 

combinations perform best with an error score of 0.16 mm, 1.2 mm, and 1.4 mm, 

respectively. The lower values of RMSE and SD mean that the spatial distribution 

of the simulated rainfall amount is correctly simulated corresponding to the two 

gauging stations, while high RMSE and SD indicate displacement in the space of 

the simulated rainfall. 

The error scores for MBE, which is more representative of the total rainfall 

amount error, are much lower than that of RMSE and SD. The lower MBE score 

but larger RMSE and SD mean that the rain bringing systems are both scattered 

and displaced. For instance, when using M2-GF-BL, three clusters of events with 

a maximum rainfall amount and its intensity in the range of the observation are 

placed at the distance of 12 km, 6 km, and 15 toward South-East, West, and 

North-West of the catchment boundary, respectively. Similarly, when using 

WSM6-GF-ACM2, HIRE with a rainfall intensity equivalent to the observation is 

simulated outside the catchment boundary along the coast of Lake Victoria (see 

Figure 4.6).  

Figure 4.3b and Table 4.5 show the results of four 2D categorical indices. 

A higher score for POD, FBI, and CSI, together with a lower FAR score, indicates 
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a better WRF model spatial performance than the CHIRPS rainfall. The FBI index 

for all combinations is below 1, meaning that the WRF model underestimates the 

spatial dimension compared with the CHIRPS rainfall. The combination WSM3-

GF-ACM2 outperforms the others with an FBI value of 0.60. POD and CSI 

produce the same top 3 combinations as for MBE and RMSE, i.e., WSM3-BMJ-

YSU, WSM6-GF-ACM2, and WSM3-BMJ-BL, which are also scoring high on the 

FBI index. The least performing combination for these three indices is WDM6-

GF-YSU. The fourth categorical index, the FAR index, shows a different top 3 

with a perfect score of 0.00 for the combinations of WDM6-KF-YSU and WDM6-

BMJ-ACM2 and a near-perfect score of 0.01 for WDM6-KF-BL. 

All combinations show a relatively low POD score together with a high 

FAR score, which indicates that WRF spatial rainfall distribution was only to a 

limited degree in accordance with CHIRPS rainfall. Also, CSI's skill scores are 

low; for instance, the skill scores for WDM6-GF-ACM2 and M2-KF-YSU are 0.10 

and 0.11, where the perfect score is 1, indicating that the simulated rainfall falls 

in the wrong locations compared to CHIRPS. 
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Figure 4.3 Performance of WRF simulated rainfall in the spatial dimension for 24 MP-CP-

PBL combinations (each bar represents one simulation): (a) the evaluation results of the 

continuous indices at an automatic weather station and GSOD-NCDC station; (b) the 

evaluation results of categorical indices for CHIRPS rainfall distribution. Both (a) and (b) 

share the same X label.  

4.5.4. TOPSIS analysis 
 

To identify the optimum MP-CP-PBL combinations for simulating HIRE 

triggering the localized flood over the Kampala catchment, we computed the 

unified scores for TES, SES, and US-based on the rescaled indices of the RE and 

2D verification indices. For the temporal dimension, we calculated a single score, 

Temporal Extent Score (TES, eq.4.9), based on the re-scaled 2D index. The results 
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in Figure 4.4 and Table 4.6 indicate that the event's timing is reasonably 

simulated when using the combinations of WDM6-GF-YSU, WSM3-KF-BL, and 

WSM6-GF-ACM2 with TES scores of 0.48, 0.41, and 0.40, respectively. WSM6-

GF-YSU is the least performing combination with a TES score of 0.27. Although 

the overall TES skill score is low compared to the ideal score of 1, all combinations 

are able to capture the convective characteristics of the event, which occurs in the 

afternoon time of the day 

In the spatial dimension, the overall performance of the WRF model is 

calculated using the Spatial Extent Score (SES, eq. 4.10). Figure 4.4 reveals that 

the simulated rainfall's spatial distribution is fairly captured when using M2-GF-

ACM2, WSM6-KF-BL, and WSM3-KF-BL combinations with the SES score of 

0.62, 0.52, and 0.52, respectively. The least performing combinations for the 

spatial rainfall distribution simulation in the catchment are WDM6-GF-YSU and 

WDM6-BMJ-BL, with the SES score of 0.28 and 0.29, respectively, which means 

the simulated rainfall is displaced compared to the observation.  

The TOPSIS unified score, US (eq. 4.11), combines all verifications indices, 

which are based on comparison with the CHIRPS and two rain gauge data. 

Figure 4.4 shows the overall unified score results, US, in a bar plot, with the best 

scores at the top. The combinations M2-GF-ACM2, WSM6-KF-BL, and WSM3-

KF-BL are the best performing, with US scores of 0.53, 0.53, and 0.47. The lower 

US scores are for WSM3-GF-YSU and WDM6-BMJ-BL combinations, with both 

cores 0.26. For all combinations, the unified score is generally lower compared to 

the ideal score of 1.  
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Figure 4.4 The results of the TOPSIS score (TES, SES, and the US) for 24 MP-CP-PBL 

combinations. SES and US ranked from top to down as best to worst. The higher value 

represents the best combination 

 

The best-ranked combinations to simulate HIRE based on uS have an 

excellent SES score but a low TES score. In the hydrological application of 

localized flood modelling using an event-based hydrologic model, the most 

determining factor is the rainfall amount and its intensity. Therefore, the low TES 

score is less problematic.  

The ranking in Table 4.6 indicates that the combinations suitable for 

temporal distribution may not necessarily be ideal for simulating the event's 

amount and spatial distribution, and vice-versa. Striking is the performance of 

the WDM6-GF-YSU combination being ranked at 1st for TES and last, 24th, for 

SES, resulting in 17th rank for the US, which indicates that the combination 

performs well for the timing of the event does not perform well for areal 

accumulated 24-hour rainfall and spatial rainfall distribution. In contrast, the 

WSM3-KF-BL and M2-GF-ACM2 combinations, which are ranked in the 2nd and 

3rd for temporal distribution, are ranked in 3rd and 4th for SES, resulting in a 3rd 

and 4th place for US score. A good performance for all three TOPSIS scores means 

that these two combinations perform well in time and space over the catchment. 

Note that most of the weak performing combinations for TES also have poor 

performances for SES and, thus, for uS, except for the WDM6-GF-combination, 

as mentioned above. According to the overall US score, the best performing MP-

CP-PBL combination is M2-GF-ACM2, which is ranked 1st for SES, 1st for RE, and 

7th for TES. 
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Table 4.6 Comparison of the combinations` evaluation index values and their ranks, 

ranked according to RE score; Underlined indicates the top 3 simulations for each index; 

bold indicates the least performing combination 

 

  

4.5.5. The Impact of Cumulus Parameterization Schemes on the 

Simulated Rainfall 
 

As indicated in the previous section, some of the MP-CP-PBL 

combinations, particularly those with the more sophisticated microphysics (e.g., 

WDM6), underperform in simulating this HIRE, which could be due to the CP 

effect. Therefore, this section evaluates the impact of CP on the simulated rainfall 

in the innermost domains. Here, each simulation is re-run with CP-off. The result 

is presented in terms of area-averaged amount and the spatial distribution of 2-
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h rainfall for the selected combinations over the catchment. The 2-h event (i.e., 

1100 UTC to 1250 UTC (Kampala +3 GMT)) is equivalent to the observation using 

the Automatic Weather Station (AWS). We know that the 25 June 2012 rainfall 

lasted for two hours from 14:00 to 15:50 local time as observed using the AWS. 

Hence, we used the simulated event during this time to examine its distribution 

over the catchment. 

Table 4.7 summarizes the area-averaged rainfall amount for CP-on and CP-

off for all 24 combinations and their comparison with respect to the CHIRPS 

amount. The change in amount is given as a difference between CP-on and CP-

off (6th column, Table 4.7); positive/negative difference indicates a 

decrease/increase in amount, respectively. The impact of CP-off is not uniform: 

for M2-GF-ACM2, WSM3-KF-BL, and WDM6-GF-YSU, the rainfall amount is 

reduced with the differences between CP-on and CP-off of 0.4, 2.8, and 2.9 mm, 

respectively, while for WSM3-BMJ-YSU, WDM6-GF-ACM2, and WDM6-BMJ-

BL, the amount is substantially increased with differences between CP-on and 

CP-off −5.0, −10.6, and −8.4 mm, respectively. As shown in the table, the M2-GF-

ACM2 combination is ranked 1st with CP-on as well as with CP-off. However, 

the combinations that rank 2nd (WSM6-KF-BL) and 3rd (M2-KF-BL) with CP-on 

are ranked 7th and 18th with CP-off. The bottom-ranked combination with CP-

off is WDM6-GF-YSU with zero rainfall amount, which eventually ranks 17th 

with CP-on. 
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Table 4.7 Comparison of 24-h area-averaged rainfall amount (mm) with and without 

CP in the inner domain and RE calculated with respect to CHIRPS rainfall amount. 

The number in the bracket represents the rank. 

 

 

Furthermore, there are also differences found in the peak rainfall amount 

and the event’s spatial orientation over the catchment with and without CP. 

Figure 4.5 displays the spatial distribution of the combinations with double-

moment MP for CP-on with their counterparts CP-off. In best-ranked 

combinations, M2-GF-ACM2 (first row, Figure 4.5), the 2-h maximum rainfall (73 

mm) is placed in the city center, where the CP-off simulation has a slightly 

reduced peak amount (71 mm) and moved to the southwest of the catchment. In 

contrast, in WDM6-GF-ACM2 CP-on (4th row, Figure 4.5), the 2-h maximum 

rainfall amount (46 mm) is simulated at the north-east outskirt of the catchment, 
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and with CP-off, the maximum rainfall amount of 52 mm is located in the 

southern and southwest outskirts of the catchment. In the CP-on simulation, for 

instance, in M2-GF-ACM2 (first row, Figure 4.5), the spatial pattern of a peak 

rainfall event is oriented southeast over the catchment. In contrast, in the CP-off 

simulation, the theWDM6-GF-ACM2 (4th row, Figure 4.5) shows the peak 

intensity oriented southwest-northeast, while for WDM6-BMJ-BL (6th row, 

Figure 4.5), the peak rainfall is concentrated at a specific location in the 

catchment. 

As shown in Figure 4.5 and Table 4.7, CP-off’s performance in producing 

area-averaged rainfall amount and its grid cell peak amount that can trigger the 

localized flood in the catchment is weak compared to CP-on simulation. 

Particularly, the grid cell peak rainfall amount for M2-GF-ACM2, which is the 

optimum combination for flash flood modeling, has performed better for CP-on 

than when using CP-off. Therefore, in the remainder of this paper, we tested the 

top three combinations with CP-on in the innermost domain to evaluate the 

impact of spatial and temporal rainfall variability on urbanized flash flood 

modeling. 
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Figure 4.5 Spatial distribution of 2-h accumulated rainfall amount (mm) from 1100 UTC 

to 1250 UTC during 25 June 2012 for the 1-km domain with CP-on and CP-off. The 

difference represents the subtraction of CP-off from CP-on (i.e., CP-on-CP-off).  

 

4.5.6. Best performing combinations for localized flood modelling 
 

The best performing WRF combinations could serve for localized flood 

modelling in the catchment in two ways: (1) Actual flood modelling, where the 

spatially moving rainfall event in the catchment can be used as input to a 

hydrologic model, or (2) Potential flood modelling, where a representative 
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homogeneous rainfall for a chosen return period is used as input to a hydrologic 

model. For the first application, WRF rainfall data could serve as the actual flood 

event to study the characteristics of the flooding in the catchment. For the second 

application, the use of the representative homogeneous event as a design storm 

for a given return period is required as a standard for flood hazard assessment.  

 

(1) Actual flood modelling: The WRF simulated rainfall output is directly used as 

input to a hydrologic model, where for Early Warning System (EWS) purposes, 

for instance, the total rainfall amount and its variation in time and space is 

essential. Figure 4.6 shows the accumulation of 10-minute interval WRF rainfall 

for the three best performing combinations according to the US score. As seen in 

the figure, the city of Kampala is much bigger than the simulated convective 

events. The M2-GF-ACM2 (Figure 4.6a) and WSM3-KF-BL (Figure 4.6c) put the 

hotspot of rainfall just south of the center, whereas WSM6-KF-BL (Figure 4.6b) 

simulates moderate-intensity rainfall in the southeast part of the city. These maps 

confirm the results from 2D categorical indices (session 3.3). Figure 4.6d shows 

the rainfall time series observed by the AWS (blue) and the simulated rainfall 

hotspots in the city. Although the total 24-hour rainfall amount is moderate for 

all combinations, it is enough to trigger the localized flood event in the 

catchment, depending on the location where it fell. 
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Figure 4.6 Spatially distributed high-intensity rainfall triggering the localized flood in the 

Kampala catchment for the three best WRF simulations using (a) M2-GF-ACM2, (b) 

WSM6-KF-BL, and (c) WSM3-KF-BL combinations; (d) rainfall intensity for the three best 

combinations extracted at AWS. Timestep in every 10-minute.  

(2) Potential flood modelling: Instead of directly using WRF rainfall output for the 

hydrologic model, we can use a representative event and apply it 

homogeneously in the catchment, considering the fact of randomness in the 

simulations of the rainfall hotspots (Figure 4.6). For potential flood modelling, 

the accuracy of rainfall intensity, event duration, and total amount matter, as the 

combination determines whether the soil's infiltration rate and water capacity are 

exceeded with flooding as a result. In line with actual flood modelling, the US 

score leads to the selection of best-performing combinations. The temporal 

behavior of these combinations differs. As seen in Figure 4.6d, the maximum 

peak intensity from M2-GF-ACM2 is 112 mm/hr, which is similar to the 

observation (108 mm/hr), whereas the duration is 2 hours longer than observed. 

In contrast, the WRF rainfall intensity for WSM3-KF-BL shows a much lower 

peak intensity 60 mm/hr and a 3-hour longer event duration than observed, but 

the timing of the peak intensity is the same as observed. In WSM6-KF-BL, the 

peak intensity at the shown location (Figure 4.6b) is 96 mm/hr, which is 

moderately lower than observed where the event duration of the peak event for 

WSM6-KF-BL is about 2-hours longer than observed. The fact that the timing of 

the peak event by most WRF combinations is off compared to observations is 

irrelevant for potential flood modelling.  

4.6. Discussion 
 

To evaluate the ability of the WRF model in simulating HIRE that has the 

potential to cause the localized urban flood, we evaluated MP-CP-PBL 

parametrization combinations in Kampala city, Uganda. In the absence of a dense 

rain gauge network, two rain gauge stations and the satellite rainfall estimation 

derived from CHIRPS (Funk et al., 2015) were used for model evaluation. The 

HIRE that occurred on 25 June 2012 is considered a case study, which caused a 

devastating flash flood in Kampala’s built-up areas. In total, 24 rainfall-

producing parametrization combinations as microphysics (MP), cumulus 

scheme (CP), and PBL are evaluated in this paper. We have carried out 48 

different simulations (24-with CP-on and 24-with CP-off) in the innermost 

domain of the WRF model at 1 km resolution. The combinations with CP-off are 

used to evaluate the impact of the cumulus scheme in the innermost domain of 

WRF by comparing rainfall amount and spatial distribution. The CP-off runs 

were not further used as the simulated rainfall amount, and peak distribution are 

weak compared to the CP-on run. We used the simulations with CP-on for 
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detailed the parameterization combination’s performance analysis by applying 

the relative error and 2D verification indices. The TOPSIS method was used to 

select the optimum parametrization combinations to simulate the extreme 

rainfall event triggering floods in the Kampala catchment.  

With CP-on, the rainfall amount and its spatial distribution are best 

simulated when using M2-GF-ACM2, while the temporal distribution is best 

captured using WDM6-GF-YSU. The results show that some combinations 

behave very well in TES but low in SES, while others score low in both SES and 

TES (a misplaced system will arrive too late or early at its AWS destination). So, 

to select the best combination with minimum differences in TES and SES, we 

computed the US score, which is the average of the area-averaged rainfall (RE), 

temporal (TES), and spatial (SES) rainfall distribution scores. Based on the US 

score, the HIRE that triggered the localized flood in the Kampala catchment is 

best simulated when using M2-GF-ACM2, followed by WSM6-KF-BL and 

WSM3-KF-BL. The US score of 0.53 for this combination means that the WRF 

model relatively well captures the rain-producing processes. Looking at top 

scores, it is clear that there is not one MP, CP, or PBL scheme outperforming the 

others: the interaction between the CP-MP-PBL schemes determines its 

performance skill. 

From the results, it stands out that the WRF model’s ability to simulate 

the HIRE is mainly determined by a proper selection of the parametrization 

combinations. However, some individual schemes and their combination 

outperform others to simulate the HIRE over the study area. For instance, 

complex schemes such as M2 and WSM6 in combination with GF cumulus 

parameterization and ACM2 PBL simulate better the amount and intensity of the 

event. The sophisticated microphysics incorporates the crucial hydrometeors 

needed for deep convection where we have a mixture of vapor, liquid water, ice, 

graupel to resolve cloud condensation; see also (Hong and Lim, 2006; Lim and 

Hong, 2010). Hence, the statistical outcome kind of confirms the reality behind 

physics. Previous studies, for example, (Sikder and Hossain, 2018; Opio et al., 

2020), also indicated similar outcomes when using these types of microphysics 

schemes for simulating extreme rainfall events. Furthermore, the results of this 

study indicated that the combination with WSM3, which misses physics for 

multi-species of hydrometeors, performs better in capturing the event’s intensity 

and location. In contrast, the combination with the most sophisticated physics, 

WDM6, with a very suitable combination for deep convection for the tropics, 

underperforms the event’s amount and intensity. However, WDM6 still ranks 

top in simulating the temporal characteristics of the HIRE. With regard to 

cumulus parametrization, the scheme that was designed for the tropics, as 

indicated by Grell and Freitas (2014), for instance, Grell Freitas (GF), outperforms 
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the other schemes. GF is a scale-aware scheme, which means that its activity will 

depend on the model’s spatial resolution; hence at 1 km, GF is highly sensitive, 

which is one reason the HIRE is well simulated with this scheme. A similar study 

by Mugume et al. (2017) also indicates GF performance is better in simulating 

rainfall over Western Uganda. As their study considers a longer period, it is 

difficult to make a proper comparison; however, it is still interesting to see that 

GF is one of the best CP applicable in simulating HIRE in the equatorial East 

African region. When we consider the outperforming PBL, the scheme that was 

designed for unstable conditions in the PBL, such as ACM2, outperforms in this 

study. A similar study in the tropical region by Ngailo et al. (2018) also indicated 

that the KF cumulus parametrization scheme and ACM2 PBL, in combination 

with Lin microphysics, perform better in simulating heavy rainfall events in 

Tanzania. In their study, however, the use of GF and ACM2 in combination with 

WSM6 shows poor results with high error scores. 

To test the CP-off impact on the simulated rainfall, we carried out each 

simulation without CP in the innermost domains of WRF. Accordingly, with CP-

off, the area-averaged rainfall amount is best simulated when using M2-GF-

ACM2, followed by WSM6-BMJ-YSU and WDM6-GF-ACM2. The CP-off affects 

the spatial distribution and patterns of the simulated rainfall over the catchment. 

The CP-off combinations with WDM6 microphysics and Betts-Miller cumulus 

schemes show an increase in amount compared to the CP-on simulations. The 

combinations with M2 and GF indicate a mixed result with sometimes a decrease 

in amount other time an increase in amount, which might be due to the instability 

effect during the simulation time. The striking point is that among the best and 

least performing combinations are the combination with the WDM6 scheme. For 

instance, WDM6-GF-YSU produces zero rainfall amount (ranked 24th), while 

WDM6-GF-ACM2 produces high rainfall amount (ranked 3rd), which indicates 

that PBL is the main controlling factor for this specific combination. Furthermore, 

the CP-on simulation shows that the BMJ CP scheme produces light rainfall with 

good performance in simulating the event’s spatial distribution (higher POD) but 

is very weak in detecting the event’s intensity and amount over the catchment. 

In contrast, with the CP-off simulation, a high rainfall amount over the catchment 

is enhanced when using BMJ, which resembles the findings by (Argent et al., 

2015) that suggest BMJ’s superiority in simulating rainfall distribution over the 

Lake Victoria basin. 

In general, this study shows that there are no systematic trends in 

simulated rainfall with specific MP-CP-PBL schemes, nor when using CP-on or 

CP-off. For instance, in the CP-on simulation, based on TOPSIS criteria, the 

combination with a simple MP (e.g., WSM3) sometimes outperforms the complex 

MP (e.g., WDM6), and vice-versa in other times. Similarly, in the simulation with 

CP-off, based on rainfall amount, the combinations with WDM6 rank both 3rd 

and least depending on the considered CP and PBL schemes, which depend on 

the local processes. Our findings are in line with various studies that indicated 



Evaluation of the WRF model to simulate a high-intensity rainfall event 

 

 
 

 

different CP’s effects on the simulated rainfall depending on the analyzing 

domain, location, and spatiotemporal resolutions (Sikder and Hossain, 2016; Han 

and Hong, 2018; Paul et al., 2018). 

The best performing parameterization schemes and their combinations 

for the 25 June 2012 event are not necessarily suitable for simulating other HIRE 

or the seasonal and monthly rainfall simulation in the Lake Victoria basin. 

Previous studies found different MP and CP schemes favorable for simulating 

the amount and spatial distribution of rainfall in the Lake Victoria basin. The 

discrepancies between our results and the previous studies in the region arise 

from several factors. Firstly, the combinations applicable for monthly or seasonal 

rainfall simulation are not necessarily applicable to the event-based simulation. 

For instance, (Otieno et al., 2018) found WSM6 in combination with KF and YSU 

to simulate the mean rainfall pattern in the core rainy season (MAM and OND) 

across the Lake Victoria basin. Their study points out that the applicability of the 

WRF model in simulating rainfall over the lake domain is weak, probably due to 

the different rainfall-producing systems active in the Lake Victoria region.  

Argent et al. (2015) suggested the combination of WSM5 with BMJ and YSU 

schemes to simulate best the pattern of the monthly rainfall distribution across 

the Lake basin where, in our case, these combinations instead perform weakly. 

Secondly, the parameterization combinations that are applicable for simulating 

rainfall patterns in a large domain, for instance, as in the case of (Opio et al., 2020), 

might not necessarily be applicable for the localized, high-resolution event 

simulation. Lastly, the difference in observed data that was used for verifying the 

model result. Due to the data-limitation issues, most of the studies in the region 

have used satellite rainfall observations (e.g., TRMM and CHIRPS) as a 

benchmark for WRF model verification. Since satellite rainfall estimation has a 

limitation in detecting the extreme rainfall event, for example, (AghaKouchak et 

al., 2011; Stampoulis et al., 2013), a decision that can be made based only on these 

observations might also be contributed to the discrepancies in the model results. 

Therefore, this study highlights that for the event-based WRF model simulation, 

the MP-CP-PB procedure at high spatial and temporal resolutions, as opposed to 

the previous studies, produces promising results appropriate for local 

hydrological applications. 

Looking at the absolute scores, the maximum unified score (US) is 0.5 (M2-

GF-ACM2 and WSM6-KF-BL), which indicates that the WRF skill to simulate the 

localized rainfall event over the city is far from the optimal score of 1. 

Nonetheless, given the event’s convective characteristics, which occurred in the 

non-main rainy season, the score’s result is reasonably good. Similar studies on 

simulating different storm types using the WRF model also indicate that 

unevenly distributed event is weakly simulated compared to simulating evenly 
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distributed events. Studies by Liu et al. (2012); Tian et al. (2017) confirm that the 

processes driving an unevenly distributed localized rain event are highly 

complex and challenging for the WRF model to capture correctly. Moreover, the 

weak performance of WRF for this event over the Kampala catchment might also 

be due to the limited observed rainfall data to verify this single event over the 

city. The absence of a dense urban and regional rain gauge network will also 

impact the quality of satellite-based rainfall estimate CHIRPS as a verification 

dataset and of the ERA-5 re-analysis dataset, which provides lateral and initial 

boundary conditions for WRF as it is less constrained over the Lake Victoria 

region. Combined with the data limitation issues for detailed model evaluation, 

there are also some issues (e.g., rainfall thresholds applied for contingency 

calculation) when using the contingency metrics for evaluating the spatial 

distribution of an event for a hit or a miss with respect to a CHIRPS. As this 

observed data will be spatially not independent, e.g., if the weather system 

travels too far north compared to the observations, this will happen in all grid 

cells in the neighborhood, which is one of the weak sides to apply these metrics.  

Although WRF seems to perform locally rather poorly, its results are 

promising for hydrological flood modeling purposes because several WRF 

parametrization combinations are capable of producing the current HIRE that is 

essential for triggering localized floods in Kampala city. For flood hazard 

modeling, e.g., using an event-based hydrological model, the volume of 

rainwater is as important as the peak intensity for triggering localized floods. Our 

WRF results show a high temporal and spatial variability between the simulated 

events over the city. Using these WRF simulated moving events in time and space 

with different magnitudes of rainfall at different locations in the catchment could 

primarily lead to a better understanding of the local flood characteristics. 

Similarly, the HIRE time series extracted from the representative grid cell 

location could be applied as homogeneous input for a flood model to get 

information on the flood-prone areas in Kampala. In the absence of observed 

hydrological data (e.g., discharge or water level) and accurate information on the 

sewer system, it is challenging to calibrate and evaluate the output of such a 

hydrological model (Umer et al., 2019). The limitation for both applications seems 

that simulated temporal and spatial variation in rain intensity and volume for 

this single event is too large to support flood decision-making. 

Furthermore, it is important to outline that the current study is an 

illustrative example, not a full climatology, nor justification for utilizing this 

model set-up for other HIREs over this region. We mainly focused on evaluating 

WRF performances on the rainfall characteristics (i.e., total rainfall amount, 

spatial and temporal distributions) that are essential for triggering the localized 

flood in the catchment. Therefore, the selected optimum combination is only 

applicable to the 25 June 2012 event, not for simulation of other HIREs in different 

seasons, or not used for long time series simulation over the region. As each HIRE 

in the flood season has a likely unique WRF parametrization combination setup 
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at 1 km spatial resolutions, it is advisable to explore the best choices for each flood 

season to validate the WRF model through sensitivity analysis and then use it for 

a practical purpose. 

4.7. Conclusion 
 

This study shows that the WRF mesoscale NWP model successfully 

simulates the rainfall amount and its distribution for a single HIRE that triggered 

the localized flood in Kampala city. Modeling HIREs proves to be challenging as 

the rain-bearing systems are highly variable, localized, and complex. We 

evaluated the 24 MP-CP-PBL parameterization combinations’ ability to simulate 

the HIRE in the complex climate system of urbanized and data-scarce Kampala 

city, Uganda. We considered the 25 June 2012 HIRE that has caused the localized 

flood hazard in the city’s flood-prone areas. The model results are evaluated 

against rainfall data from two gauging stations and the CHIRPS satellite rainfall 

estimates. 

In total, the performance of 24 parameterization combinations using four 

microphysics (MP) (Morrison, WSM6, WSM3, and WDM6), three cumulus 

parametrization (CP) (GF, KF, and BMJ), and three PBL schemes (ACM2, BL, and 

YSU) was verified by using the relative error, continuous and categorical indices, 

and the TOPSIS decision analysis criteria. The performance is evaluated in terms 

of 24-h areal catchment rainfall amount and its temporal and spatial distributions 

over the Kampala catchment. The results of this study showed that only a few 

parameterization combinations correctly reproduced the observed HIRE in the 

catchment boundary, which suggests that the performance of the WRF model 

depends strongly on a proper choice of the parametrization combinations. 

Besides recognizing the effect of cumulus parameterization on the simulated 

rainfall, each simulation is re-run with CP-off and compared the results in terms 

of rainfall amount and spatial distribution over the innermost domain. The result 

indicated that with CP-off simulation, there is a variation in the simulated rainfall 

amount, peak intensity, and pattern orientation compared to simulations using 

CP-on. However, in terms of the best performance for localized flood modeling, 

still, the same combination performed best with CP-off as CP-on. Compared with 

the CP-on simulations, the total rainfall amount is enhanced with some schemes 

while reduced in other cases, indicating no systematic trends in the simulated 

rainfall with specific schemes or combinations.  

Based on the TOPSIS criteria, the M2-GF-ACM2, WSM6-KF-BL, and 

WSM3-KF-BL are the optimum top three MP-CP-PBL combinations to simulate 

the current HIRE over the Kampala catchment. It is noteworthy that as WRF 

parametrization schemes’ performance is highly dependent on the 
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meteorological processes associated with convective events studied, the top-

ranked MP-CP-PBL combinations are only applicable for this 25 June 2012 event. 

Due to the event’s convective characteristics, the HIRE triggering the localized 

floods simulated only in a few pockets of the catchment while the rest of the 

catchment areas have no rainfall. The optimum parametrization combinations 

are capable of simulating the event’s rainfall intensity similar to the observed 

rainfall intensity at the AWS location but displaced. 

As simulated rainfall intensity is the primary input for the event-based 

hydrologic model for the localized flood modeling in the catchment, there is 

enough potential for exploring further use of the WRF model for potential flood 

hazard modeling. More events need to be simulated and evaluated to conclude 

on the optimal parameterizations combinations per season or synoptic system. 

At the same time, the construction of a design storm from actual events is not 

straightforward as it requires statistical model development as well as 

consideration of the different approaches to defining a design storm with 

assigned return periods. This study showed that WRF rainfall could be a very 

valuable asset for flash flood modeling in a city where high-quality direct and 

remotely sensed observations of rainfall are limited. 
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Chapter 5:  Application of the WRF model 

rainfall product for the localized flood hazard 

modelling in a data-scarce environment 
 
This chapter is published as a peer-reviewed paper, removing minor modifications and 

duplications. 
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for the localized flood hazard modelling in a data-scarce environment. Journal of Natural hazards 
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Abstract: Urban flood hazard model needs rainfall with high spatial and 

temporal resolutions for flood hazard analysis to accurately simulate flood 

dynamics in complex urban environments. However, in many developing 

countries, such high-quality data is scarce. Data that exist are also spatially biased 

towards airports and urban areas in general, where these locations may not 

represent flood-prone areas. One way to gain insight into the rainfall data and its 

spatial patterns is through numerical weather prediction models. As their 

performance improves, these might serve as alternative rainfall data sources for 

producing optimal design storms required for flood hazard modelling in data-

scarce areas. To gain such insight, we developed WRF design storms based 

on the spatial distribution of high-intensity rainfall events simulated at 

high spatial and temporal resolutions. Firstly, three known events (i.e., 25 June 

2012, 13 April 2016, and 16 April 2016) that caused the flood hazard in the study 

area are simulated using the WRF model. Secondly, the potential gridcell-events 

that are able to trigger the localized flood hazard in the catchment are selected 

and translated to the WRF design storm form using a quantile expression. Finally, 

three different WRF design storms per event are constructed: Lower, median, 

and upper quantiles. The results are compared with the design storms of 2 and 

10-year return periods constructed based on the alternating-block method to 

evaluate differences from a flood hazard assessment point of view. The method 

is tested in the case of Kampala city, Uganda. The comparison of the design 

storms indicates that WRF design storms properties are in good agreement with 

the alternating block design storms. Mainly, the differences between the 

produced flood characteristics (e.g., hydrographs and the number of flood gird 

cells) when using WRFLs versus 2-year and WRFUs versus 10-year alternating 

block storms are very minimal. The calculated aggregated performance statistics 

https://doi.org/10.1007/s11069-021-05117-6
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(F scores) for the simulated flood extent of WRF design storms benchmarked 

with the alternating block storms also produced a higher score of 0.9 for both 

WRF lower quantiles versus 2-year and WRF upper quantile versus 10-year 

alternating block storm. The result suggested that the WRF design storms can 

be considered an added value for flood hazard assessment as they are closer to 

real systems causing rainfall. However, more research is needed on which area 

can be considered as a representative area in the catchment.  

 

Keywords: Alternative design storm, High-intensity rainfall event, IDF curve, 

flood hazard modelling, potential gridcell-event, representative gridcell-events, 

WRF model, Quantile expression of cumulative rainfall 
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5.1. Introduction 
 

With the increasing effect of urbanization and climate change in recent 

times, urban floods are becoming more frequent and devastating (Hirabayashi et 

al., 2013; Duan et al., 2016). Especially Africa is the most affected region by floods 

next to Asia (CRED and UNISDR, 2015). Notably, poor communities in Sub-

Saharan African cities are disproportionately affected by urban floods, the latter 

being exacerbated by climate change (Douglas et al., 2008; Sliuzas et al., 2013; 

Perez Molina, 2019). Therefore, there is a growing effort at national, regional, and 

local levels focusing on urban flood hazard modelling as part of integrated flood 

management (IFM) to cope with urban floods (Sy et al., 2016; Pérez-Molina et al., 

2017; Sy et al., 2020). Strategies to cope with urban floods, such as adaptation and 

mitigation, require an urban flood hazard assessment, where a high-quality input 

dataset is essential for effective flood hazard modelling. Flood hazard is an 

analysis that combines hazard intensity with a return period or probability of 

occurrence. The intensity of floods is usually characterized as a combination of 

the extent and maximum water level. Unfortunately, it is rare that flood 

observations are good enough to derive a probability from observed floods. 

Therefore, the probability of floods is replaced by the probability of the driver, 

the rainfall, for which good records exist with global coverage. There are two 

steps concerning rainfall in a flood hazard analysis. The return period of extreme 

rainfall is calculated from daily rainfall records, based on maximum daily rainfall 

per year over a period of 20-30 years, on which extreme value statistics is applied 

(fitting, for instance, a Gumbel distribution). It is important to note that the 

stakeholders often choose the return periods based on their capacity for disaster 

prevention and mitigation measures. The return periods and associated rainfall 

values are based on annual maximum 24-h rainfall. It is important to take these 

established maximum rainfall values as a starting point so that the results of any 

alternative method can be clearly related to flood mitigation activities. 

However, the 24-h maximum rainfall is not enough for flood hazard 

assessment. A flood model needs rainfall with a high temporal resolution to 

accurately simulate flood dynamics in complex urban environments. Therefore, 

the second step is that design storms are used with a shape derived from 

probability density functions based on high-resolution rainfall data as close as 

possible to the area (see, e.g., (Chen and Hill, 2007; Balbastre-Soldevila et al., 

2019)). Design storms are developed initially to dimension drainage channels for 

peak discharge (Keifer and Chu, 1957); but for flood hazard modelling, which 

depends on rainfall-infiltration dynamics (e.g., (Chen and Hill, 2007; Balbastre-

Soldevila et al., 2019; Umer et al., 2019)), it requires more accurate design storms 

on the aspects of peak intensity and its temporal characteristics. Conventionally, 
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in the areas where long records of observed rainfall with a high temporal 

resolution are available, design storms of a shorter duration are developed from 

the intensity-duration frequency (IDF) curves, using various methods such as the 

alternating-block method giving a slightly asymmetrical event (Guo and 

Hargadin, 2009; Sun et al., 2019). 

Both steps have inherent problems. The frequency-magnitude analysis is 

by necessity tied to a location where long observation records exist. These are 

scarce and often spatially biased towards airports and urban areas in general, 

where long records are commonly established. These locations may not be 

representative of flood-prone areas, and the spatial density of observations may 

not capture the spatial variability of the rainfall patterns.  Similarly, not enough 

detailed data exists to establish IDF curves, essential for reliable estimation of 

design storms with higher return periods (e.g., T = 10, 25, 50, and 100 years) 

(Mugume and Butler, 2017). In such areas, the common practice is to use 

simplified procedures developed based on limited rainfall observations to 

provide a representative design storm of that region. For instance, Fiddes et al. 

(1974) developed a simplified method for predicting design storms of a given 

return period in East Africa, based on observed rainfall records ranging between 

8-30 years. This results in a local flood hazard prediction based on a design storm 

that forms a generalized regional IDF curve, which is problematic. At the same 

time, weather phenomena that cause floods have spatial extents 

varying form relatively small convective storms to continental size phenomena 

such as monsoons. 

One of the ways to gain insight into the spatial patterns of rainfall is 

numerical weather prediction models. As their performance improves, these 

might serve as alternative rainfall data sources for producing optimal design 

storms required for flood hazard modelling in such a data-scarce area. A second 

source is high-resolution global; satellite data such as GPM and GSMAP that 

provides 0.1 degrees 30-minute rainfall estimates (Yang et al., 2020). In this study, 

we use the Weather Research and Forecasting (WRF) model (Powers et al., 2017) 

to gain insight into the amount and distribution of rainfall events required for 

flash flood food modelling (e.g., (Hong and Lee, 2009; Leung and Qian, 2009; 

Pennelly et al., 2014; Liu et al., 2015; Li et al., 2017; Chawla et al., 2018a)). With 

the usability of the recently released high-resolution ERA5 reanalysis climate 

data as boundary conditions, the model can consider the large-scale atmospheric 

processes linked to the high-intensity rainfall triggering flood events in the 

catchment (Giannaros et al., 2020; Greco et al., 2020). Moreover, the WRF model 
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is able to consider the local-scale processes affecting the rainfall, such as the effect 

of the urban extent and position on extreme rainfall distribution (Paul et al., 2018; 

Zhang et al., 2018b; Oliveros et al., 2019). In the same way, the WRF model is 

robust in considering the variability of the storms across wide areas and its 

flexibility to reproduce rainfall data at the spatial and temporal resolution that 

can be needed for the flood hydrology model (Liu et al., 2012; Chawla et al., 

2018b; Tian et al., 2020). Thus, when appropriately configured and validated, the 

WRF model is a suitable tool for simulating the high-intensity rainfall events and 

spatial variability for flood modelling (Zittis et al., 2017; Sikder and Hossain, 

2018). 

A recent study by Sikder et al. (2019) indicated the usability of the WRF 

rainfall simulations of moderate-intensity and high-intensity rainfall events for 

actual urban flood modelling in Houston, USA. However, the WRF simulated 

actual rainfall events are not directly used for the flood hazard modeling. With 

the actual use of the WRF rainfall product, the magnitude of the gridcell events 

is spatially different and creates discrimination in the simulated flooding over 

the catchment, which is challenging for flood hazard analysis. Design gridcell 

rainfall events have to be created. As there is no common way to create the WRF 

simulated events into the design storms, we need a new method to convert the 

WRF simulated rainfall events into the design storm form for flood hazard 

modelling. This study presents a new methodology to translate WRF simulated 

high-resolution convective rainfall events into design storms for flood hazard 

modelling. The performance of the WRF based design storms performance is 

evaluated against the existing alternating-block method design storms obtained 

from the pre-established IDF curves in order to evaluate differences from the 

point of view of flood hazard assessment. The strengths and weaknesses of our 

proposed method are discussed with the potential need for further steps. As a 

study area, the rapidly growing city of Kampala is used, specifically, the northern 

Lubigi catchment where floods frequently happen in the former wetlands, where 

dense informal settlements (slums) exist (Sliuzas et al., 2013; Perez Molina, 2019; 

Umer et al., 2019). The Kampala City council has adopted a 10-year return period 

as the basis for the improvement of the surface drainage system to cope with a 

certain level of flooding.  

 

5.2. Method 
 

Figure 5.1 presents the framework we implemented to translate four 

WRF simulated High-Intensity Rainfall Events (HIREs) into a given return 

period's WRF design storm. The four storms are chosen because flooding was 
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reported in the study area on those dates, and they are different in duration, 

magnitude, and peak intensity. The framework illustrates the WRF design 

storm's (right-side) comparison with the IDF-based alternating-block method 

(IDF-AB) design storms. The IDF-AB design storms of 2 and 10-year return 

periods (hereafter 'AB2yr' and 'AB10yr') are compared with the WRF design 

storms that are expressed as the quantiles (explained below). The IDF-AB and the 

WRF design storms are compared and used as input for flood hazard modelling 

with the model openLISEM (Baartman et al., 2012; Jetten, 2014; Umer et al., 2019). 
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Figure 5.1 The workflow of this study to construct design storms from WRF simulated 

gridcell-rainfall events, and its comparison with design storms derived based on the 

Alternative-block method, including their application for flood hazard modelling in the 

case study 

5.2.1. WRF model settings 

 

The WRF design storms are constructed based on the WRF simulated high-

intensity rainfall events (HIRE) produced at the spatial resolution of 1 km 

(rectangle represented by the grey color in Figure 1.2, section 1.5). The WRF 

model (version 4.1, (Powers et al., 2017)) was configured to simulate four known 

HIRE (i.e., 25 June 2012, 03 September 2013, 13 April 2016, and 16 April 2016) that 

have caused flooding in Kampala, Uganda. For initial and boundary conditions, 

the ERA5 (Hersbach and Dee, 2016) dataset was utilized. The model simulation 

and evaluation follow the MP-CP-PBL procedure introduced and discussed in 

(Umer et al., 2021), where MP refers to microphysics, CP-cumulus 

parametrization, and PBL is the planetary boundary layer. Accordingly, for 25 

June 2012, the best combination is the double moment Marrison (M2) scheme 

combined with Grell-Freitas (GF) and ACM2. For 03 September 2013, it is WSM3 

scheme with GF and ACM2, while for both 13 and 16 April 2016, the best 

combination is the WSM6 scheme with Kaint-Fritsch (KF) and ACM2. For each 

HIRE analysis, we considered only the model output in the innermost domain of 

WRF with spatial and temporal resolutions of 1 km and 10 minutes. The 

convective and independent model output event at 1 km and 10 minutes 

resolutions (hereafter gridcell-event) are converted into design storms to serve as 

input for urban flood modelling. 

 

5.2.2. WRF design storms 
 

Following the WRF simulation of the selected HIREs, the method follows 

a two-step procedure. The assumption here is that all the gridcell-events in the 

inner domain of WRF are considered separate and spatially independent rain 

events as these events are highly localized due to their convective nature. In fact, 

we considered each gridcell as a virtual rainfall station.  

 

i. Step 1: selection of potential gridcell-events 

The grid cell rainfall events that have the potential to cause flooding are 

selected based on existing local rainfall information to serve as an area-

dependent threshold. For this case study, the threshold is based on the depth and 

peak intensity of a 2-year return period storm for Kampala, estimated from the 
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frequency analysis of daily rainfall in Kampala (Mugume and Butler, 2017). This 

is considered the minimum event that triggers local floods in the former wetlands 

and flood plains. As such, the city's flood lines and drainage system are designed 

for events of 2-year or more (KCCA, 2010). Therefore, the gridcell-events in the 

innermost domain of WRF are identified and selected if they fulfill both criteria: 

I. For moving storms, select grid cells with a total rainfall amount equal 

to or exceeding 2- year return period, and 

II. Select grid cells with the peak intensity equal to or exceeding the peak 

intensity of 2-year return period 

 

ii. Step 2: selection of representative gridcell-events  

 

To select the representative gridcell-events to define the WRF design 

storms, we summarized their distribution into quantiles following a two-stepped 

procedure. Initially, we examined the cumulative distribution functions (CDF) 

for each of the considered rainfall events for each of the potential grid cells 

selected under section 2.2.1. In the second step, we extracted the maximum value 

from each CDF and calculated its probability density function (PDF). As a result, 

we focused on the total rainfall amount for each HIRE and examined its 

distribution over space for each potential grid cell. We computed three quantiles 

from the calculated PDFs, with probabilities p = 0.025, 0.5, and 0.975. In this way, 

we aimed at extracting a sample from the bulk of the distribution (median) and 

the expected variability associated with it (95% confidence interval or the range 

between the left and right tails of the distribution). For each of the three quantiles 

(hereafter the WRF design storms), the storm events are expressed in terms of 

their properties such as rainfall amount, peak intensity, and the time dynamics, 

which mainly include the time to peak intensity and the elapsed time for the 

derived cumulative rainfall. 

 

5.2.3. IDF design storms 

 

To investigate the performance of the constructed WRF design storms, 

we compared them with the classically derived IDF design storms known as 

alternating block design storms. The steps to obtain design storms from the IDF 

curves are divided into two: frequency analysis of the daily (24-h) point rainfall 

depths for various return periods. In this case, we used the estimated rainfall 
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depth of Kampala from the literature, as indicated by (Fiddes et al., 1974) 

(Mugume and Butler, 2017) (KCCA, 2010). The second step is to convert the 24-h 

rainfall depth of different return periods into the shorter duration design storms, 

using the so-called Alternating Block method. We follow (Mugume and Butler, 

2017) using equations 1 and 2 for constructing the IDF design storms. 

𝐼𝑅 =  
𝑎

(𝑡 + 𝑏)𝑐
 − − − − − − − − − − − − − − − − − − − − − − − − − − − −5.1 

Where IR. (mm/hr) is the maximum intensity corresponding to a rainfall duration 

t and a, b and c are constants. By eliminating ̀ a', Equation 1 can be simplified into 

Equation 2. 

𝑅𝑇 =
𝑡

24
(

24 + 𝑏

𝑏 + 𝑡
)

𝑐

∗ 𝑅𝑑   − − − − − − − − − − − − − − − − − − − − − − − −5.2 

 

Where RT is the rainfall depth for any duration, t, Rd is the 24-h rainfall depth for 

different return periods. The extracted design storms representing T = 2 and T = 

10 years return period were used as a reference to compare with the design 

storms constructed based on the WRF simulated HIRE. The WRF and standard 

IDF-based design storms are independent in terms of data used, and the method 

followed, but both produce rainfall properties of a given storm that can be used 

for flood hazard modelling. For comparison purposes, the two design storms are 

constructed for the same duration (2 hours) and time aggregation (10-minute), 

which is essential to make a fair comparison. The purpose of this comparison is 

mainly to see how the WRF design storms' rainfall properties determine the flood 

hazard characteristics evolve compared to that of the standard IDF design 

storms. The detailed statistical characteristics and derivation of the parameters in 

Equation 2 are less important and beyond the scope of this study. 

In this study, the IDF design storms of T = 2 and 10 = years are compared 

with the WRF design storms expressed as the three quantiles visually in terms of 

their total rainfall amount (mm), peak intensity (mm/h), and the time dynamics. 

All design storms are defined with the time aggregation of a 10-minute interval, 

and also, to make a fair comparison, all design storms are considered the total 

duration of 2 hours. In equation 2, we used the 24-rainfall depth reported by 

KCCA (2010). As the design storm duration is considerably reduced (i.e., from 

24-h to 2-h duration), the resulting rainfall depth is also reduced, resulting in 

lower rainfall depths for both return periods than the actual rainfall depth of 24-

hour duration. The constants in equations 1 and 2 are taken from Fiddes et al. 

(1974), who at that time had only a few years of data regarding the whole of east 

Africa. In addition, (Fiddes et al., 1974) used a wider area to get the constants 'b' 

and 'c', and so they may be area representative but not for Kampala specific. 

Moreover, the constants are to be derived from sub-daily observations to 

extrapolate 24-hour rainfall to the part of the curve that is highly non-linear. 
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However, in the absence of detailed long-term sub-hourly observed data, the 

same procedure can be followed and used the existing constants to construct the 

IDF-AB design storms of 2 and 10 years. 

 

5.2.4. Flood model openLISEM  
To analyze the applicability of the constructed WRF design storms for 

flood hazard simulation, we used an event-based-integrated flood model called 

openLISEM (Baartman et al., 2012; Jetten, 2014; Umer et al., 2019). The model is 

an integrated spatial hydrological model that simulates infiltration excess runoff 

for extreme rainfall events and shallow floods in urban and rural catchments 

(Habonimana, 2014; Nurritasari et al., 2015; Pérez-Molina et al., 2017). A detailed 

description of the model is given in chapter 2 (section 2.2.4).  

For this case study, the openLISEM model is set up at the upper Lubigi 

catchment, Kampala, with the constructed design storms to simulate the flood 

hazard. Other model input data, such as land use fraction, soil properties, and 

channel dimensions, were kept the same for all simulations.  

The WRF design storms' appropriateness for flood hazard modeling is 

evaluated by using each design storm as input to the hydrologic model. In 

general, the flood model is simulated using WRF design storms and 2 for the 

design storms constructed using the alternating-block method). Finally, the 

constructed design storms as a tabular form are used as an input to the flood 

model to evaluate the WRF design storms' appropriateness for flood hazard 

modeling. The result of the flood model will be analyzed in terms of flood 

hydrographs, flood extent maps, flooded area, and structural damage using the 

model results from the alternating block method as a reference. The simulated 

flood hydrograph analysis at the main outlet is essential to understand whether 

the channel size is sufficient to drain a peak flood of each design storm compared 

to the existing channel capacity. The analysis of the results in terms of flood 

extent and flood area is also useful to understand better the urban footprint 

exposure to the flooding triggered by different design storms. To emphasize the 

applicability of the WRF design storms in terms of flood exposure, the 

comparison in terms of structural damage will also be carried out by considering 

Kampala's average building size of 90 m2 (Sliuzas et al., 2013). 

The WRF design storms' appropriateness in simulating the flood extent will 

be compared with the results from the IDF-based flood model results through 

pixel-by-pixel comparison using F statistical measures, which has been used in 
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many flood extent studies (Schubert and Sanders, 2012; Yan et al., 2014; 

Amarnath et al., 2015). Specifically, the simulated flood extent maps using the 

WRF design storms are compared with AB2yr/AB10yr using a simple aggregate 

performance measure, F, following a similar procedure presented in several 

flood extent studies (Aronica et al., 2002; Horritt and Bates, 2002; Amarnath et al., 

2015). The F is calculated as: 

 

𝐹 =
𝐴

𝐴+𝐵+𝐶
− − − − − − − − − − − − − − − − − − − − − − − − − − − − − −5. 3  

 

Where 'A' is the number of cells correctly predicted by both WRF design storms 

and the AB2yr/AB10yr; 'B' is the number of cells predicted as flooded with WRF 

design storms that are simulated non-flooded by the AB2yr/AB10yr (over-

estimation); 'C' is the number of cells simulated as non-flooded with WRF design 

storms that are simulated as flooded with AB2yr/AB10yr (under-estimation). The 

F performance measure is applied here to investigate the WRF design storms' 

appropriateness for flood extent modelling compared to AB2yr/AB10yr based on 

the aggregated score, which varies between 0 and 1; a higher value is better. 

 

5.3. Case study 
 

We choose Kampala, the capital city of Uganda, as a case study to test 

the method. The city is an ideal location to test the method because it is one of 

the exemplary sub-Saharan African city's frequently affected by flooding. At the 

same time, the lack of high-quality rainfall data hinders the proper flood hazard 

modelling for managing this recurrent flooding. Advances in the methodology, 

such as the one introduced in this study, to utilize the low-cost model output data 

for flood hazard modelling, are essential to make the city more resilient.  

The city is located near Lake Victoria at the central latitude of 00 '19' N 

and longitude 320 '35' E and has about 350 km2 total area (see Figure 1.2, section 

1.5). The high-intensity rainfall events that are mainly influenced by the inter-

tropical zone (ITCZ) and the topography of the Lake Victoria basin, combined 

with soil information properties and urban expansion, are already triggering the 

localized flooding in the city (Pérez-Molina et al., 2017; Umer et al., 2019). The 

threat of urban flooding in the city is also aggravated by the unplanned urban 

expansion in former wetlands and poor drainage management of the 

surrounding hills (Douglas et al., 2008; Sliuzas et al., 2013). Consequently causing 

estimated annual damage between $1.3 million and $7.3 million and is expected 

to increase under changing climate conditions (Taylor et al., 2015).  
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The study area considers the upper Lubigi catchment (polygon 

represented by the yellow color in Figure 1.2, section 1.5) within Kampala city as 

a case study to investigate the applicability of the constructed designs storms for 

flood hazard modelling. The catchment's currently functioning drainage system 

was designed and implemented based on the 2002 and 2010 masterplan (KCC, 

2002; KCCA, 2010). According to the master plan, the 'primary drains' (i.e., the 

widest channels draining the main valleys) and the former wetlands are 

canalized and widened. At the same time, narrow culverts are replaced by a 

series of large box culverts to drain a peak discharge of about 67 m3/s, which 

represents the 24-hour duration design storms of the 1-in-10-year return period 

(Sliuzas et al., 2013). In the master plan, it is also reported that the secondary and 

tertiary drainage systems were designed to accommodate the flood peak of a 1-

in-2 year event. The Upper Lubigi catchment is chosen for this case study because 

it represents an urban catchment where ground data essential for flood hazard 

modelling is available through the regular project and MSc fieldwork in 

collaboration with Makerere University (Sliuzas et al., 2013; Habonimana, 2014; 

Rossiter, 2014; Pérez-Molina et al., 2017).  

 

5.3.1. Selected events 
 

Four storm events that have caused flood hazards in the city were used to 

test the developed methodology. The first convective storm event occurred on 25 

June 2012 with an observed daily total rainfall amount of 66 mm (a typical 2-year 

return period event). An automatic weather station (AWS) in the city indicated 

that the event lasted for only 1 hour and 30 minutes. The second storm occurred 

on 03 September 2013, with total daily rainfall of 52 mm. The third and fourth 

events occurred in the main rainy season on 13 and 16 April 2016 with 46 and 44 

mm total rainfall. For the second, third, and fourth events, information on sub-

hourly temporal distribution is not available as the automatic gauging station 

was not operational.   

This study used two rainfall data sources. These are observed daily rain 

gauge data (see Figure 1.2) and satellite rainfall estimation from Climate Hazards 

Group InfraRed Precipitation with Station data (CHIRPS) (Funk et al., 2015). Sub-

daily rainfall data from AWS is available only for the 25 June 2012 storm, and 

thus, for consistency, the WRF model verification is only conducted by using 

daily rain gauge data collected from the WMO global daily summary of the day. 

Both CHIRPS and rain gauge observations are available for the four individual 
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events considered. CHIRPS data is available at a daily time step and spatial 

resolution of 5 km, and it is used as the areal average of the grid value extracted 

to the WRF innermost domain. In contrast, a comparison of WRF simulation with 

the gauging station is carried out with respect to the grid value at the gauging 

location.  

 

5.3.2. Existing IDF curves  
 

In this study, the existing design storms of T = 2 and T = 10-year return 

periods are obtained from the pre-established IDF curves of Kampala. The pre-

established IDF curves of Kampala are derived from rainfall depths of different 

return periods following the procedure illustrated by (Mugume and Butler, 

2017), and it presents the graphical illustration of the relationship between 

rainfall intensity (mm/h) and duration (h) (Figure 5.2).   

 
Figure 5.2 Pre-established intensity-duration-frequency curves for Kampala (Source: 

(Mugume and Butler, 2017)). The curves show that for all T, large variations in rainfall 

intensities occur at rainfall durations less than 4 hours. In our current study, we will derive 

design storms with a rainfall intensity duration of 2 hours to comply with the rainfall 

intensity duration of the WRF simulated events. 
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Table 5.1 shows frequency analysis of the daily (24-hour) point rainfall 

depths for various return periods as collected from the literature. As shown in 

the table, the derived rainfall depths for the respective return periods are 

different, mainly because of the observed rainfall's short records and the applied 

methods. For the WRF design storms criteria, the minimum rainfall depth of 60 

mm is used as a cutoff threshold, where 100 mm/h is the maximum peak intensity 

belonging to a rainfall depth of 60 mm. The KCC study (KCC, 2002) is adopted 

for deriving the IDF-based design storms of a given return period (i.e., T = 2 and 

10-year events) because the city's flood plain maps and drainage systems are built 

based on these design storms.  

 
Table 5.1 The derived 24-hour point rainfall depth of Kampala for different return periods 

(source, (KCCA, 2010), considered observed years 36; (Mugume and Butler, 2017), 

considered observed years 51; and (Fiddes et al., 1974), considered observed years 14). 

 
 

5.4. Results 
 

This section presents the results on the developed design storms from two 

main aspects: (1) the results of WRF design storms derived through the 

representative gridcell-events, and (2) the comparison of WRF design storms 

with that of the alternating-block method in terms of their rainfall properties.  

 

5.4.1. WRF design storms 
 

i. Simulated high-intensity rainfall events 

Four HIREs used for design storm construction are simulated using the 

optimum WRF parametrization combinations (Umer et al., 2021). The simulated 
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daily precipitation for the inner domain of WRF at 1 km spatial resolution is 

shown in Figure 5.3. During events in the non-main rainy season (i.e., 25 June 

2012 and 03 September 2013), patchy rainfall occurs over the catchment, where 

events in the main rainy season (i.e., 13 and 16 April 2016) show a relatively 

evenly distributed rainfall over the catchment. 

 
Figure 5.3 Simulated 24-h rainfall amount for four different events in the innermost 

domain of the WRF model. The insets in the bottom-right corner are the subtractions of 

the 24-h accumulated rainfall simulations from that in the CHIRPS observation.    

Table 5.2 compares the simulated 24-hour rainfall amount with the gauging 

station and CHIRPS in the inner domain of WRF. For 25 June 2012 and 03 

September 2013, the simulated grid cells 24-hour rainfall amount at the gauging 

location is very low, with the differences between the observation and simulation 

of about +43 and +33 mm, respectively. The big difference between the 

observation and simulation rainfall amount at the gauging location is attributed 

to the sparse distribution of the simulated events. The heterogeneity in the 

simulated events in this season is also indicated by the lower area-averaged 

rainfall differences between simulation and CHIRPS. The rainfall events in the 
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non-main rainy season are mainly influenced by the mesoscale convective system 

(e.g., Lake Victoria topography), which results in patchy rainfall over the 

catchment. 

In contrast, in the case of 13 April, 2016 and 16 April 2016, the simulated grid 

cell's 24-rainfall amount at the gauging location is close to the observation with 

the differences of 2.6 and 6.5 mm, respectively. The areal-averaged rainfall 

amount for 13th and 16th April 2016 is 46.5 and 27.2 mm, which is much higher 

than the CHIRPS amount. Compared to the CHIRPS, the higher areal-averaged 

rainfall amount indicates the relatively uniform gridcell-rainfall amount 

simulated over the catchment and suggests that the prevailing weather is more 

of a synoptic-scale system. Hence, the distribution of the simulated rainfall 

amount is relatively homogeneous, covering more areas than the events that 

occurred in June and September (Figure 5.3).  
 
Table 5.2 Comparing WRF rainfall with the stations and CHIRPS rainfall for the best 

physics combinations simulated for four different rainfall events caused floods hazard in 

Kampala, Uganda. The areal rainfall amount is the average of all grids in the innermost 

domain of WRF. CHIRPS is first re-grid to the inner domain of WRF, and then the average 

of all grids similar to the WRF domain is used. The difference is the substruction of 

simulation from observed. 

 

ii. Potential grid cell selection 

Step 1 in constructing a WRF design storm is to identify the 

potential gridcell-events that can cause the flood hazard. We considered only 

WRF grid cells in the inner domain with the storm's total rainfall 

amount above 60 mm and a peak intensity equal to or above100 mm/h, following 

the criteria introduced in section 5.2.2 (I). Figure 5.4 shows the relationship 

between the simulated storm's total rainfall amount and peak intensity for the 

four events in the inner domain of WRF. As shown in the figure, we have four 



Chapter 5 

127 
 

locations considering 60 mm of rainfall amount and 100 mm/hr of peak intensity 

as the standard point: Upper and Lower left, and Upper and Lower right.   

The upper right of each graph in (Figure 5.4) represents grid cells during 

the storm with total rainfall amount and peak intensity equal to 60 mm or 100 

mm/hr. The grid cells in the upper right are the potential grid cells selected for 

WRF design storm construction and are described in the next section. The upper 

left's grid cells have a high rainfall volume but a peak intensity of less than 100 

mm/h. The rainfall events in this area can cause the flood, but possibly with a 

slower response and with a lower flood peak. The lower left represents grid cells 

during these four events with the lower rainfall amount and intensity. Therefore, 

this area represents too little rainfall to trigger the urban flood for the desired 

return period. The lower right location represents grid cells of these four events 

with rainfall amounts lower than 60 mm, but higher rainfall intensity above 100 

mm/h. The rainfall in this location represents short-duration, high-intensity 

events and can be very important for flood control elements such as culverts. The 

numbers of potential gridcell-events that fulfill the criteria and are then selected 

for design storm construction are 6, 43, and 45, for 25 June 2012, 13 April 2016, 

and 16 April 2016, respectively, while the 03 September 2013 event is excluded as 

zero grid-cells fulfilled both criteria.   
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Figure 5.4 Relationship between storm's rainfall amount and peak intensity for four events 

considered in this study; the 03 September 2013 event is not used for this study as the 

simulated event does not fulfill the criteria. Each dot is a gridcell within the inner domain 

of WRF.  

iii. Representative grid cell selection 
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In the second step, to select the representative gridcell-events in the 1st 

quadrant that are used to define the WRF design storm, we used a quantile 

expression of the cumulative rainfall event (see section 5.2.2 (II)). Figure 5.5 

summarizes the corresponding results for the three HIREs. As shown in the top 

row figures, the PDFs show a near-gaussian distribution only for the 13 April 

2016, whereas for the events on 25 June 2012 and 16 April 2016, the distributions 

appear bimodal and positively skewed, respectively. The bottom row in Figure 6 

shows the cumulative distribution functions (CDF) for the three considered 

rainfall events are. The quantiles Q = 0.025, Q = 0.50, and Q = 0.975 are highlighted 

in grey and are considered as the representative rainfall events defined as the 

WRF design storms.  

 
 
Figure 5.5 The results of quantile function: (Top) Density distribution; (bottom) 

Cumulative curves of the gridcell-events with the storms' rainfall amount equal or 

exceeding 1-in-2 year return period event. Each line in the bottom graphs represents the 

time series of the dots in Figure 5.4. The grey lines represent percentiles of the total rainfall 

amount: the smoothed grey line represents the median, the dotted grey line represents the 

lower quantiles, and the dashed grey line represents the upper quantiles. 

Following this quantile expression, we have defined nine WRF design storms 

(i.e., the three grey lines that are shown in Figure 5.5 for each event). For 

simplicity, the acronyms for the WRF design storms are as follows: lower 

quantiles (hereafter 'WRFL'), median (hereafter 'WRFM'), and upper quantiles 

(hereafter 'WRFU'). Hence, each event's WRF design storms are an acronym as 

WRF1L, WRF1M, and WRF1U for 25 June 2012, WRF2L, WRF2M, and WRF2U 

for 13 April 2016, and WRF3L, WRF3M, and WRF3U for 16 April 2016.  
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5.4.2. Comparing design storms 
To compare the WRF design storm with the IDF-AB design storms, we 

considered three properties of the developed design storms as relevant: the total 

rainfall amount (mm), peak intensity (mm/h), and time dynamics. Time 

dynamics are the peak intensity's temporal characteristics, which include the 

time to peak intensity and the elapsed time for the derived cumulative rainfall. 

These rainfall properties are summarized in Table 5.3 and Figure 7, including the 

IDF-based design storms' properties. 

 
Table 5.3 Basic properties of the design storms constructed using WRF and the 

alternating-block method. 

 
 

i. Cumulative rainfall 

Cumulative rainfall amount is the leading property that characterizes the 

constructed design storms. As shown in Table 5.3, the derived total rainfall 

depth for T = 2 and 10 years events (i.e., 'AB2yr' and 'AB10yr') is 58.2 and 91.7 

mm. The result shows that compared to AB2yr, the total rainfall amount is 

overestimated for all cases that is by +10 % for WRF1L, +7 % for WRF2L, and +3 

% for WRF3L. For all three WRF simulated HIREs, the total rainfall amount for 

WRFM is also higher than that of AB2yr but slightly lower than that of AB10yr. 

In the case of WRFU, the total rainfall amount is within a range of 16-35 mm 

compared to that of the AB2yr storm, which indicates that the WRFU result is 

about half higher than that of the AB2yr event. Compared to AB10yr, the total 

rainfall amount for WRFL and WRFM is considerably lower. The result shows 

that, compared to AB10yr, the total rainfall amount is underestimated by -23 % 

for WRF1U and -12 % for WRF2U, but overestimated by +0.2 % for WRF3U.  

 

 

ii. Peak intensity 
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As Figure 5.6 shows, the derived peak intensity for AB2yr and AB10yr is 111 

and 175 mm/hr. The WRF design storms' peak intensities vary between 103 

mm/h for WRF2L to 209 mm/h for WRF3U mm/h, which are relatively close to 

that of AB2yr and AB10yr, respectively. Compared to AB2yr, WRF3L 

overestimated by peak intensity by +18%, but underestimates the peak intensity 

for WRF1L and WRF2L, with the differences of -6 %  and -8 %, respectively. The 

result also shows that, compared to AB10yr, the WRF1U and WRF2U 

underestimates the peak intensity by -65 % and -29 %, but overestimated for 

WRF3U by +18 %.   

 

 

Figure 5.6 Constructed design storms: peak intensities and cumulative curves for WRF 

and alternating-block design storms. Cumulative curves for AB2yr and AB10yr events 

are overlapped. 

iii. Time dynamics 

The third relevant property of the constructed design storm is the derived peak 

intensity's temporal characteristics, including the time to peak intensity and 

the elapsed time for the derived cumulative rainfall (Figure 5.6, bottom row). As 

shown in the figure, the peak intensity for IDF-AB design storms is attained at 

the center of the total duration. One of the IDF-AB design storm characteristics is 

that the derived peak intensity is attained at the center of the storm duration, 

which does not resemble the simulated events, particularly considering the 
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convective storm with peak intensity reach immediately after the events. 

Notably, for all WRF1 design storms, the maximum intensity is reached 20-40 

minutes earlier than the alternating-block design storms. Similarly, for WRF2 and 

WRF3, the peak intensity attains its maximum about 10-20 minutes before the 

alternating-block design storms. While this may not be important for flood 

hazard analysis, it may be relevant for early warning studies, where time to peak 

rainfall and peak discharge is essential.  

The design storm temporal pattern can also be analyzed by comparing 

the cumulative rainfall depth and elapsed time expressed as the percentages 

(Figure 5.6, bottom row). As shown in the figure, the pattern of all design storms 

is similar. The nearly leveled slope represents the beginning and ending section 

of the storm, connected with a sharp rise in the center, representing a higher 

rainfall intensity and a significant portion of the total rainfall amount. For most 

WRF design storms, the total rainfall amount of more than 60 % occurs between 

30 % to 50 % of their duration, which is higher than the IDF-AB, in which over 50 

% of rainfall amount occurs between 50 % to 70 % of its duration. 

 

5.5. Results of flood hazard modelling 

To investigate the WRF design storms' appropriateness for flood hazard 

modelling, we used the nine design storms illustrated in (Figure 5.6, top row) as 

input to the openLISEM model (section 5.3.3). The model results produced by 

using AB2yr and AB10yr are used as a benchmark. The flood model outputs are 

discussed in terms of flood hazard characteristics, including flood hydrographs, 

flood extent maps, flood areas, and flood impact on the number of buildings. 

5.5.1. Flood hydrograph  
Figure 5.7 shows the resulting hydrographs at the catchment outlet for 11 

design storms (i.e., 9 for WRF design storms and 2 for the alternating-block 

method). As shown in the figure, a similar low peak discharge is obtained when 

using AB2yr as well as the WRF design storm with the lower total rainfall amount 

and peak intensity (i.e., WRFL). In contrast, the highest peak discharge is 

obtained when using the AB10yr and WRFU design storms, which have a higher 

total rainfall amount and peak intensity. In particular, a flood peak obtained at 

the catchment outlet when using WRF3U is about 70 m3/s, which is above the 

reference flood control structure's capacity (i.e., 67m3/s).  
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Figure 5.7 Hydrographs at the catchment outlet: From left to right: WRFL versus AB2yr 

and AB10yr; WRFM versus AB2 and AB10yr; and WRFU versus AB2yr and AB10yr. The 

dashed horizontal line represents the reference discharge of 67 m3/s. 

5.5.2. Simulated flood extent  
Table 5.4 shows the calculated F scores for 9 WRF design storms 

benchmarked with AB2yr and AB10yr. Compared to the AB2yr event, WRF1L, 

WRF2L, and WRF3L produce a better flood extent with higher F scores of 0.87, 

0.94, and 0.94, respectively. Compared to AB2yr, WRFUs overestimate the flood 

extent, which results in a lower F score (Table 5.4, first row). On the contrary, 

considering the AB10yr event as a benchmark, WRF1M, WRF2U, and WRF3U 

produce a better flood extent with higher F scores of 0.85, 0.89, and 0.91, 

respectively. Compared to AB10yr, WRFLs underestimate the flood extent, 

which results in lower F scores (Table 5.4, second row). As shown in the table, 

the aggregate score decreases as we go from left to right in the table (i.e., from 

WRFL to WRFU) when comparing with AB2yr) and vice-versa when comparing 

with AB10yr. The results indicate that for WRFL, the comparison with AB2yr is 

more appropriate, while for WRFU, the comparison with AB10yr is more 

appropriate.  
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Table 5.4 Model results of flood hazard characteristics in the Upper Lubigi catchment in 

Kampala: (1) & (2) Performance measures, F score, of WRF flood extent benchmarked with 

alternating-block design storms; (3) calculated total flooded area based on water deeper 

than 10 cm; (4) number of structures (buildings) affected by flood calculated based on an 

average structure size of 90m2 

 
5.5.3. Flood depth 

In order to verify the applicability of the WRF design storms in producing 

flood depth maps used for flood hazard analysis, we compare flood depth maps 

produced when using the 9 WRF design storms with the results when using the 

IDF-AB storms based on a visual comparison of the maps. Figure 9 shows the 

depths of food water in the catchment area produced when using the WRF and 

IDF-AB design storms. As shown in the figure, following the topography of the 

catchment area, the low-lying areas and wetlands are flooded when using all 

design storms with flood depths varying between 0.5 to 2.6 m. However, as we 

go from WRFL to WRFU or as the return period increases, so too do the flood 

depths, as would be expected. Thus, maximum water depths of 2 m and 

above are simulated when using WRFU and AB10yr. The results are 

compatible with previous studies in the catchment (Sliuzas et al., 2013; Umer et 

al., 2019), whose results indicated that the wetlands of the catchment are fully 

flooded with design storms of typical 2-year events or more.  

In Fig. 9, red circle a, we showed the relevant location used for comparison 

of WRFL versus AB2yr. When using all WRFL, the simulated flood 

depths are between 1.5 to 2 m, but with AB2yr, the flood depth is between 

1.0 to 1.5 m at the same place, which is due to the lower cumulative rainfall 

amount of AB2yr compared to that of WRFLs. In comparing WRFU with AB10yr 

(at circle b), the simulated flood depths are above 2.0 m in all cases. However, the 

number of grid-cells flooded with flood depths of greater than 2.0 m is more in 

the case of WRF3U compared to AB10yr.     
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Figure 5.8  Comparison of flood extent map simulated using AB2yr/AB10yr and for WRF3 

design storm at three arbitrary locations overlaid with the building of Kampala: (a) 

represents flood extent of WRF3L combined with AB2yr and AB10yr events; (b) represents 

flood extent of WRF3M combined with AB2yr and AB10yr events; (c) represents flood 

extent of WRF3U combined with AB2yr and AB10yr events. The underlying black/white 

image is a built-up/non-built-up area of Kampala. 

As the intensity for the flooding is often expressed as the maximum 

depth at any grid-cell, a frequency distribution of that would be directly 

interesting for flood hazard analysis. Toward this, we produced the histogram of 

the water depths versus its frequency and compared the flood depths 

differences at any grid-cell when using the WRF and IDF-AB storms. As a 
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showcase, flood depth differences per grid-cell between the WRF3 design 

storms and the IDF-AB storms are given in Fig. 10. As shown in the figure, for 

WRF versus AB2yr (Fig. 10, top row), the results with WRF flood depths are 

slightly higher; hence, the histogram differences are skewed in the positive x-

direction. However, when comparing WRF versus AB10yr, except for WRF3U, 

the histogram differences in water depths are negative. For instance, in the case 

of 'WRF3L - AB2yr', the flood depths differences per grid-cell are concentrated 

around zero with the frequency of 90 %, while for 'WRF3U - AB2yr', the flood 

depths difference is greater than zero and the frequency around the zero value is 

40 % with its distribution spreads toward the positive x-axis. The 

figure also shows that the WRF results have little bias/slight overestimation of 

flood depths when using the lower and median quantiles and large 

differences of flood depths when using the upper quantile design storm with 

respect to AB2yr. The figure also shows that the flood depths when using 

WRF are underestimated at WRF3L and WRF3M and slightly overestimated 

water depths at WRF3U with respect to the AB10yr. It is important 

to note that the maximum flood depths differences per grid-cell for 'WRF3L – 

AB2yr' and 'WRF3U – AB10yr' is less than 0.2 with frequency distribution 

concentrated near-zero value, which indicates that the WRFL and WRFU design 

storm can be relevant for 2-year and 10-year return period flood hazard 

assessment, respectively. 
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Figure 5.9  Frequency distribution (%) of the differences between the flood depths (meter) 

per grid-cell from the flood depth maps produced using WRF minus the IDF-AB design 

storms for the case of 16 April 2016 (WRF3).  

5.5.4. Effects of flooding on buildings 
To analyze the applicability of the constructed design storms for flood 

hazard modelling, we also compared the results in terms of flood effect on the 

building. The effect of the flood extent on the building is calculated considering 

the building's areal density of 90 m2. Table 5.4, row 4, shows the number of 

building affected by the flood extent (water depth <10 cm) when using 11 design 

storms. Notably, the number of buildings affected by the flood extent when using 

WRF1L, WRF2L, and WRF3L are 5058, 4425, and 4777, respectively, slightly 

higher than when using AB2yr (i.e., 4258). In contrast, more buildings are 

affected by flood extent when using AB10yr (7258) and WRFU (i.e., 5761, 6299, 

and 8223 for WRF1U, WRF2U, and WRF3U, respectively), which is characterized 

by higher total rainfall amount and peak intensity. In all cases, the number of 

buildings affected by flood extent is well correlated with the inundated areas (see 

Table 5.4, 3rd Row).  

Moreover, model results (not shown here) also indicated that for all 11 

design storms, the number of buildings affected by the flood is more at lower 

water depth (i.e., 10 - 50 cm) and less at higher water depth (i.e., depths > 50 cm). 

For instance, due to the flood depth ranges 10 - 50 cm, the number of affected 

buildings is 3-9 times higher than at flood depths > 50 cm. The results show that 
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the maximum flood depth is more confined in the non-built-up areas represented 

by wetlands, consequently less effect on built-up. 

5.6. Discussion  

The study presents a new method to get a location-specific design storm 

based on WRF simulated high-intensity rainfall events, which proved to be 

suitable for flood hazard modelling in the data-scarce area. The method 

presented is flexible as it can be based on any desired combination of 

event magnitude and peak intensity. The magnitudes can be based on 

disaster mitigation plans of the stakeholders in the areas. However, while 

the magnitude is relatively straightforward to derive from a Gumbel analysis, 

the peak intensity may not be well known. A peak intensity could come 

from high-resolution rainfall measurement, or in the absence of that, from 

satellite imagery (30-minute intensity) or even an IDF curve analysis. All of these 

have associated uncertainty. Rainfall measurements and IDF curves may not 

have long time records, so selecting a characteristic peak intensity is 

less evident when time series are not very long. Besides, the construction of valid 

IDF curves relies on storm data. Peak intensity can also be derived from satellite 

imagery, and for instance, GPM-IMERG has a 30-minute time interval with 

global coverage dating back to the year 2000. Therefore, the time series derived 

from these images is already 20+ years, but while aggregated values (3-day and 

weekly totals) show good agreement with ground measurements, the 30-minute 

intensities do not show a high correlation in general (Fang et al., 2019; Chen et 

al., 2020).   

In this study, the data are based on WRF, but operating WRF is 

not an easy task. The parameterization needs to be properly done and is area-

dependent. Purely as a method to derive design storms, this is a large task. 

However, many meteorological services in countries use the WRF model or 

other weather models for weather forecasting, 

so good knowledge on the local parametrization of a weather model may be 

locally available.   

Weather models do not produce pixel-precise results, i.e., the spatial 

patterns of rainfall do not coincide with ground-based measurements. The 

patterns are a result of complex atmospheric physics of the entire lower 

atmosphere, and the interaction with the earth's surface can still be improved 

(Ryu et al., 2016; Paul et al., 2018). This is not immediately a problem for flood 

hazard analysis, as a hazard is not based on a real event but is a simulation of a 

potential situation: for a given storm of a known size and probability of 

occurrence, the potential maximum effect (i.e., water level and extent) is 



Chapter 5 

139 
 

simulated. Therefore, that event can be derived from anywhere as long as it is 

representative of the weather patterns of Kampala (in our case). Practically 

this was done by selecting the grid cells in the inner domain area as being 

representative, but this is only a practical choice. More research would be needed 

to determine which area can be considered representative for an area.  

 

5.7. Conclusion 
The main aim of this study was to 

present a new methodology to translate WRF simulated high-resolution 

convective rainfall events into a design storm form and evaluate its performance 

against the existing alternating-block method design storms obtained from the 

pre-established IDF curves. The differences between the WRF and IDF-AB design 

storms are evaluated from the point of view of flood hazard modelling and then 

discussed the strengths and weaknesses of our proposed method. In order to do 

this, we developed WRF design storms based on the spatial distribution of high-

intensity rainfall events simulated at high spatial and temporal resolutions. The 

potential gridcell-events were selected and translated to the WRF design storm 

form using a quantile expression of the cumulative rainfall distribution. 

Consequently, three different WRF design storms per event were constructed: 

Lower (WRFL), median (WRFM), and upper quantiles (WRFU). The results are 

compared with IDF-AB design storms of 2 and 10-year return periods (i.e., AB2yr 

and AB10yr) to evaluate differences from a flood hazard assessment point of 

view. We found that the developed WRF design storms performed well 

compared to the alternating block design storms, particularly the results between 

WRFL vs. AB2yr and WRFU vs.AB10yr. WRFLs produce hydrographs similar to 

that of AB2yr, with their peaks quakily attenuated by the existing structure and 

the wetlands. The WRFUs also produce similar hydrograph similar to AB10yr, 

except for WRF3U, which has a slightly higher peak hydrograph (+4 %) than the 

existing channel capacity. In order to evaluate the appropriateness of the WRF 

design storms for flood hazard assessment, we compared the maximum flood 

depth at every grid-cells in terms of frequency distribution. We found that for 

both WRFLs vs. AB2yr and WRFUs vs. AB10yr, the number of the grid-cells and 

intensity of the flood depths are higher when using WRF design storms. 

Moreover, The use of WRF3U for flood hazard modelling leads to more 

maximum flood depths of over 2 m per grid-cells compared to AB10yr.  

Nevertheless, the overall definition of the WRF design storms is greatly 

affected by the selection criteria, which would subsequently affect the flood 

dynamics in the catchment. Notably, the chosen threshold can affect the lower 

and median quantiles even though the interest tends to focus on the extreme 

event represented by the upper quantile from the flood hazard point of view. In 
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our case study, the flood in Kampala is considered hazardous with the design 

storm of a 2-year return period; as such, we decided on our threshold based on 

the existing local information to showcase the method. Besides, by using the 

quantile descriptions, the results would not be overly sensitive to the 

criteria. Eventually, the threshold could come from the regional information, not 

necessarily the accurate local information is needed.   

The result suggests that the WRF design storm can be obtained from the 

grid-cell rainfall events, which are defined as the representative rainfall 

pattern over the catchment. This design storm can be considered as an added 

value for flood hazard assessment as they are closer to real systems that are 

causing rainfall. However, more research is needed on which area can be 

considered as a representative area in the catchment. The main weakness in 

using the NWP model output for flood hazard modelling in the data scarce-

area is having a validated WRF rainfall product, as limited observed data can 

lead to modelling and model result uncertainties. Even with these uncertainties, 

the construction of design storms is considered solid and robust, as the three 

events gave rather similar design storms. More importantly, this quantile 

description allows for more diverse design storms, doing justice to the 

atmospheric systems causing large-scale or convective rainfall over the 

area. However, as many areas have validated numerical weather prediction 

models or have sufficient observed data to validate the model, this approach has 

the potential to be applied in many more regions to support Integrated Flood 

Management. 
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Chapter 6:  Synthesis 
 

Floods are one of the common natural disasters with the largest impacts 

on society. Urban floods are fluvial, coastal, pluvial, and flash floods that occur 

in cities (Vojinovic, 2015). With the rising trends in urbanization and climate 

change, urban flood risk is rapidly increasing because economic growth often 

does not result in effective prevention measures and flood-sensitive land-use 

planning (ten Veldhuis, 2011; Jha, 2012; Hammond et al., 2015). Integrated Flood 

Management (IFM) approaches are essential in reducing urban flood risk 

through proactive measures (Vojinovic, 2015; Debele et al., 2019; Sahani et al., 

2019), which requires proper flood hazard and risk assessment as a basis. 

Flood hazard mapping is one of the components of IFM, which often relies 

on flood modelling. These models are used to simulate flood characteristics, 

including flood extent, duration, depth, and velocities, which are used to define 

the flood hazard (Vojinovic et al., 2016; Baky et al., 2020). The flood simulation 

requires high-quality datasets, including precipitation with high resolution in 

space and time, soil information, urban land use information, topography, 

channel dimensions, surface roughness, and information of control structures. 

However, flood hazard assessment in many cities in developing countries is 

challenging due to the lack of high-quality data, especially related to topography 

and historical precipitation and discharge records. The lack of a high-quality 

dataset has resulted in flood hazard maps with high uncertainty, which hamper 

proper flood management (Tingsanchali, 2012; Juarez Lucas and Kibler, 2016). 

Nevertheless, the continuous improvements in high-resolution remote-sensing, 

geospatial data availability, and modelling capacities offer new opportunities to 

study flood hazards in data-scarce areas. 

Therefore, the present study aimed to explore publicly available geospatial 

datasets and their integration with hydro-meteorological modelling systems to 

overcome the data-scarcity challenges, specifically, to explore the data of extreme 

rainfall, soil, and land-cover information for urban flood modelling. This thesis 

proposes that the existing problem with lack of soil information can be reduced 

by using the SoilGrids from the ISRIC soil database and its coupling with 

satellite-derived land cover data. At the same time, in the absence of high 

resolution observed rainfall data, Numerical Weather Prediction (NWP) can be 

used in the estimation of high-intensity rainfall events (HIRE) used for flood 

hazard assessment, although the uncertainty of the location of the convective 

storms is still difficult to address. However, given the fact that there is a lack of 

ground truth for bias correction of the open-source dataset, there might be 
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uncertainty propagation from the open data sources to the flood modelling 

system, which is outside the scope of the current study.  

6.1. Main contributions  
 

The work contributes to localized flood modelling in the urbanized and 

data-scarce area by i) exploring different soil data sources providing the soil 

information applicable for flash flood modelling, and evaluating the effect of 

urbanization interferences on the soil information by incorporating the satellite 

driven urban land use fraction, ii) Evaluating the performance of the mesoscale 

numerical weather forecasting model WRF in simulating the HIRE in the data-

scarce area, iii) explore the design storms of a given return period based on the 

WRF simulated HIREs for flood hazard assessment in the data-scarce area.  The 

innovative aspect of this research is that, besides exploring open-source global 

datasets for flood modelling in the data-scarce area, the derived dataset is 

numerically integrated to advance urban flood hazard modelling. The research's 

practical application is mainly to support an integrated flood management 

system by producing flood hazards in an urbanized catchment with data 

limitations. A detailed explanation of the finding under each component is 

discussed in the next sections. 

 

6.1.1. Exploring soil data sources for localized flood hazard 

modelling 
 

This study (Chapter 2) explores different soil data sources to derive urban 

soil information for localized flood modelling. Three different soil databases have 

been evaluated for their applicability to drive the required soil information: (1) 

the FAO soil database (SMFAO), (2) SoilGrids from ISRIC soil database (SMSG), 

and (3) soil information from in situ measurement and then extrapolated to the 

whole catchment through soil-landscape relationships (SMLS). The soil 

information derived from the three soil databases would directly be used as input 

to the flood model for localized flood modelling. However, in urban areas, the 

soil information derived from global soil databases has its limitations because 

most of the urban area is built-up, and soils have often been modified, which is 

difficult to incorporate in the soil databases. In Kampala's case, wetlands (i.e., 

areas covered by clay soil) are highly degraded as wetlands largely changed into 

a settlement, and agricultural cultivation (KCCA, 2010), thus, highly compacted.  
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Moreover, there is also increasing in impervious surface area (e.g., Perez Molina 

(2019) shows that in 2004 the number of buildings was 15522 but in 2010 increases 

to 35253), which dominantly modifies the topsoil. Therefore, how the presence of 

sealing, compacted soil, and fragmented vegetation areas related to the 

infiltration processes is less known. For this reason, a combination of the global 

soil databases with the satellite-derived urban land cover information was made 

to derive the effective soil information needed for the flood model, which is a 

novel and useful strategy. 

The derived soil information is then used as the input to openLISEM 

integrated flood modelling system to assess their impact on flood dynamics in 

the urbanized catchment. The impact analysis is evaluated as the compacted and 

uncompacted soil condition. The results indicated that the flood dynamics are 

highly sensitive to different soil databases, and the incorporation of soil 

compaction into the soil information has the largest impact on the flood dynamics 

in the catchment. The model simulation result indicates that SMSG is the best soil 

data source for localized flood modelling in urbanized areas in the absence of in 

situ measurements. The study's outcome showed that open-source data choice 

strongly influences both the quantity and spatial variability of infiltration, which 

directly affects runoff and flooding. On top of that, the effect of sealing and 

compaction is equally essential and nearly outweighs the differences caused by 

the use of different soil databases. Moreover, the flood model results obtained 

when using the compacted soil information show flood extent maps close to the 

actual flood boundaries, which can be considered as a feasible model setup for 

further flood modelling in the Kampala catchment.  

The freely available global soil database is a vital source for advancing 

urban flood modelling in data-scarce areas. However, as the soil database alone 

cannot provide detailed urban soil structure information, for example, 

compacted soil versus uncompacted soil, the LULC, and soil database integration 

would be essential to prove the optimal soil information required for flood 

modelling. Thus, as we have made in the Kampala case, one has to take into 

consideration that soil data pre-processing should be done with respect to urban 

soil compaction and vegetation cover. Thus, interferences of urbanization on soil 

structure information can be overcome by incorporating satellite-derived LULC 

into soil information extracted from global soil databases. Moreover, reliable 

flood characteristics are better simulated when incorporating the satellite-driven 

urban land use fraction into the soil database. Hence, it is highly recommendable 

for future application of the soil databases in the urbanized catchment to consider 

the impact of urban compaction on the soil databases. The urban soil information 

derived from the global soil databases that consider the effect of urban features 

through explicit consideration of land cover data, as presented here, forms a 

practical solution to solve soil data limitations for proper flash flood modelling. 
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The soil water information produced here is essential for proper flood simulation 

(i.e., for rainfall-infiltration dynamics) in the urbanized areas. Thus, good soil 

moisture data for further flood hazard modelling is used in this thesis. The results 

produced here are essential information for proper flood simulation in the 

urbanized area, and thus, acceptable soil data for further flood modelling used 

in this thesis.  

However, besides soil physical structure, urbanization can also affect the 

soil texture, and detailed information on this important issue is missing from the 

soil databases. For instance, the idea that soil is always removed and building 

materials are used and cannot be mapped is only partly true. For example, in 

rapidly expanding cities like Kampala, people just build on natural soil because 

they have no money for a foundation. The soil texture is not altered. Only in the 

case of high-rise buildings and large construction do we have building materials, 

and this issue needs to be addressed in the future. As a procedure, the soil 

properties maps from soil databases need to be transformed to hydrological 

parameters for which pedotransfer functions are used. However, there is a range 

of possibilities here. We show only one set  (Saxton and Rawls, 2006), but other 

pedotransfer functions may give different results. So there remains a high 

uncertainty. Moreover, this study shows how to incorporate soil structural 

changes such as compaction and the effect of vegetation cover, but these need to 

be verified on the ground. We recommend here that there is urgent action 

needed to collect data on urban soils for disaster risk management, whether it 

is for flood management, sustainable urban drainage systems, urban food 

production, or any other predictions in which soil characteristics play a large 

role. 

 

6.1.2. Performance evaluation of the simulated rainfall events 
 

Besides urban soil information, spatial precipitation data is often lacking 

in many developing countries. A numerical weather prediction (NWP) model, 

such as the Weather Research and Forecasting (WRF) Model, is an important tool 

to produce rainfall products for localized flood modelling in data-scarce 

environments. Although the WRF model has been widely used for modelling 

extreme rainfall events (Jeworrek et al., 2019; Sikder et al., 2019), its applicability 

in data-scarce areas for flood modelling at catchment scale with high spatial-

temporal resolutions is not fully explored. Moreover, besides the complexity of 

the rain-producing systems in Equatorial East Africa with highly varying 

extreme rainfall events (Anyah, 2005; Chang’a et al., 2020), the set-up of the WRF 



Chapter 6 

145 
 

model for an urbanized catchment is also another challenging issue. For instance, 

data for model initialization and boundary conditions are still poor. All 

parameterization schemes in the NWP model are designed for the mid-latitude 

weather system, and it may not fit properly the tropical weather system. Besides, 

due to a lack of observations (both ground and upper air observations), model 

verification and calibration is challeginging. The work presented in this thesis 

focused on the application of the WRF model simulation of HIRE for proper flood 

modelling (Chapter 3 and 4). This work's novelty is the use of the parametrization 

combination procedure and the configuration of the WRF model with the reliable 

urban fraction map that represents the correct position and extent of the city. 

Furthermore, in this thesis, we used the latest ERA5 global reanalysis dataset as 

boundary conditions, while the soil hydraulic properties used in the WRF model 

was adjusted according the appropriate soil information derived from the SMSG 

database. Finally, the rainfall data required for flood modelling was dynamically 

downscaled to the Kampala catchment at high spatial-temporal resolutions of 1 

km and 10-minute. 

Chapter 3 evaluated the satellite-derived urban fraction's appropriateness 

in the WRF model for simulating high-intensity rainfall events in the urbanized 

area. Three different simulations are performed in order to distill the impact of 

changing urban fractions and adjusted urban parameters on the simulated 

rainfall. All model simulations are configured at high spatial (1 km) and temporal 

(10-minute) resolutions forced with the latest ERA5 global reanalysis dataset. The 

model result was validated using the rainfall observation from the gauging 

station and CHIRPS data. The results showed that the simulated rainfall using 

the updated urban fraction performs better with a relatively lower error. The 

satellite-derived urban map represents a more realistic extent and intensity of the 

urban fraction with a heterogeneous urban fraction, which results in more 

realistic rainfall simulations. The conclusion in Chapter 3 was that although the 

comparison of the simulated rainfall with observed rainfall is weak, the use of a 

satellite-derived urban fraction in the WRF model, which represents the correct 

position and extent of the city, is essential for rainfall simulation in the area.  

In chapter 4, the procedure to select proper parameterization combinations 

of the WRF for proper HIRE simulation was evaluated through sensitivity 

analysis. Here, the WRF model set-up with the updated urban fraction is used 

for the WRF model simulation as the combination of microphysics (MP), cumulus 

parameterization (CP), and planetary boundary layer (PBL) (i.e., MP-CP-PBL). 

The analysis showed that the performance of the WRF model in simulating HIRE 

that triggers the localized flood depends on a proper selection of parametrization 

combinations. The validation results based on both area-averaged CHIRPS 

rainfall and locally measured rainfall showed that the event has a unique MP-

CP-PBL combination. As CHIRPS rainfall does not provide the extreme rainfall 
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event, we used it to indicate the rainfall's spatial distribution over the catchment, 

whereas the simulated rainfall amount and its temporal distribution were 

evaluated using data from the gauging station. The performed sensitivity 

analysis also supports this conclusion. The result indicates that the current 

parameterization combinations are only applicable to the chosen events, not for 

simulation of other events or not used for long time series simulation. As each 

flood season has a likely unique WRF parametrization combination setup at 1 km 

spatial resolutions, it is advisable to explore the best choices for each flood season 

to validate the WRF model through sensitivity analysis. For instance,  when using 

it for early warning systems and actual flood modelling purposes.  

The procedures presented in chapters 3 and 4 that aimed to improve the 

WRF model's performance in simulating HIRE have indicated considerable 

improvements in the simulated events. The result showed that the urban 

fraction's effect on the simulated event is as significant as the effect that occurred 

by the MP-CP-PBL combinations. Hence, the proper representation of the extent 

and position of the urban land use map would have a similar impact on the 

simulated rainfall as the lake Victoria surface temperature (e.g.,  Sun et al. (2015)) 

and the WRF parametrization schemes (e.g., Argent et al. (2015)). Moreover, 

contrary to previous studies by Argent et al. (2015); Otieno et al. (2018) that 

indicate that the WRF model is poorly applicable for rainfall simulation over the 

Lake Victoria basin, the sensitivity analysis procedure followed in this thesis can 

be used in practice. We have shown that the model has some performance skills 

in simulating rainfall at a sub-daily scale with accurate parameterization 

schemes. Therefore, future research efforts that use the WRF model for HIRE 

simulation must consider all factors that affect the local-scale climate system, 

which influences the amount and the spatial variability of the simulated event. 

These factors are the effect of the LULC and soil information (i.e., static dataset), 

which should be optimally adjusted using publicly available geospatial datasets.  

 

6.1.3. Application of WRF simulated HIRE for localized flood 

hazard modelling 
 

Knowing that WRF is quite capable of simulating real events as supported 

by sensitivity analysis, with some deviations in the exact location and timing of 

HIREs, we are exploring its value as a potential replacement of rain gauge 

measurements for flood hazard assessment. Therefore, chapter 5 aimed to fulfill 

these needs.  
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Here (in chapter 5), we constructed design storms of a given return period 

based on grid-cell WRF simulated events by selecting the representative gridcell-

events. Three representative WRF design storms were constructed using the 

quantile expression of the total rainfall amount as WRFL, WRFM, and WRFU, 

representing the lower, median, and upper quantiles of gridcell-rainfall events, 

respectively. For illustrative purposes, the constructed WRF design storms were 

compared with the classical alternating-block storms (T = 2 & 10 = year return 

periods), which were obtained from the equations representing the pre-

established IDF curves of the area. The results are compared in terms of three 

rainfall properties: total rainfall depth, peak intensity, and time to peak intensity. 

The rainfall properties for WRFL are equivalent to that of the T = 2-year event, 

while WRFU`s properties are equivalent to that of the T = 10-year event. The 

representative gridcell-rainfall events also better characterize the event's 

convective properties, which shows an early peaking of the storm with a steep 

rise until the maximum intensity, compared to the alternating-block storms 

where the peak intensity attains at the middle of the storm duration. Another 

significant strength of the procedure followed in this research is recognizing each 

grid cell as a virtual station, which plays a crucial role in capturing the event's 

spatial distribution over the catchment.  

The constructed design storms are then used as an input to the flood model 

for simulating flood dynamics in the upper Lubigi catchment in Kampala. The 

results indicate a wide range of peak discharge, flood extent, and the affected 

number of built-up areas due to different total rainfall amounts and peak 

intensity used among the constructed design storms. The flood model results 

further indicate that the use of three WRF design storms per event can thoroughly 

indicate the level of uncertainty in the simulated flood hazard in the catchment. 

Overall, the WRF design storms can give an insight into the applicability and 

usability of the numerical weather prediction model outputs for flash flood 

modelling in the urbanized and data-scarce area. Thus, the proposed approach 

that translated the WRF simulated high-intensity rainfall events into a design 

storm proved suitable for urban flood hazard modelling in Kampala. 

The main objective of the thesis was to assess the suitability of open-source 

geospatial datasets and their integration with hydro-meteorological modelling 

systems to overcome the data-scarcity challenges and advance the localized flood 

hazard modelling in the urbanized environment. The approach presented in this 

thesis allows us to overcome the data scarcity and advances our flood hazard 

modelling in the urbanized and data-scarce catchment. The application of an 

event-based integrated flood modelling system is a novel approach to assess 

urban flood hazards, with high-intensity rainfall and soil characteristics as the 

main mechanisms causing the spatial dynamics of the flood in the catchment. 

High-intensity rainfall creates a rapid runoff within a relatively small catchment, 
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which can result in localized flooding. At the same time, urban soil information 

determines runoff production by influencing the infiltration processes in the 

catchment. However, we should be aware that urban flood modelling in a 

developing country is driven by complex urban characteristics and 

hydrometeorological factors. Hence, proper urban flood hazard assessment 

cannot be solved by optimizing only soil information and extreme rainfall data 

scarcity. For effective flood hazard management in the city, other factors of urban 

flood modelling, including but not restricted to the Digital elevation model 

(DEM), sustainable urban drainage system management (DSM), consideration of 

scenario development, and the effect of different risk reduction measures should 

be assessed and evaluated, as discussed in the next section. 

6.2. Future perspectives  
 

The flood modelling framework and approaches presented in this thesis 

provide ample scope for further improvements. This section is designed as a way 

forward to advance the approaches, frameworks, and concepts followed in this thesis for 

proper urban flood modelling and drawing a path forward for urban flood 

management in the data-scarce area.   

 

6.2.1. Improving approaches followed in the thesis 
 

i) Further exploration of the geospatial databases 

With the increase in the availability of satellite observation and global 

databases, there is a massive opportunity for improving flood hazard assessment 

in data-scarce regions. These datasets can be used to improve both the flood 

model using openLISEM and the meso-scale atmospheric modelling using WRF. 

As a proxy to in situ measurements, satellite data for variables of the surface 

water, atmosphere, soil, and land use land cover have been demonstrated to be 

useful information for flood hydrology applications (Revilla Romero, 2016; Dhib 

et al., 2017; Kabenge et al., 2017; Platnick et al., 2017; Zhang et al., 2018a; Perez 

Molina, 2019). Although in this thesis, we considered only a few of them, there 

are many more to improve the flood modelling, particularly in areas of the 

atmospheric river and surface hydrology. We considered soil and rainfall 

information here because accurate soil data and precipitation information 

directly impact the flooding processes through the soil capacity to store 

infiltration water and the total volume of water entering the catchment. 



Chapter 6 

149 
 

In the area of the atmospheric data, the satellite rainfall estimation such as 

the Global Precipitation Measurement (GPM) (Zhang et al., 2018a) and the 

Meteosat Second Generation (MSG) (Dhib et al., 2017), which have high temporal 

resolution need to be explored as they have the ability to detect the rainfall 

intensity, which can be used for verifying the HIRE simulated by WRF model. 

Also, the use of the MODIS atmospheric product (MODATM) from Platnick et 

al. (2017) contains a combination of key atmospheric parameters, including cloud 

fraction at 10 km spatial resolution, which can be used to verify the WRF 

simulated cloud product. 

In the case of surface hydrology, satellite-derived flood extents (e.g., 

Satellite Aperture Radar (SAR)) have successfully been used as a proxy for 

calibration/validation of hydrodynamic models (Mason et al., 2014; Amarnath et 

al., 2015; Shen et al., 2019). Therefore, the verification of the hydrodynamic model 

result, particularly for flood plain mapping in the large wetlands, should be 

explored.  

Other applications based on the satellite-derived data that need to be 

considered for flood modelling in the data-scarce area are related to soil moisture. 

Particularly, in the absence of streamflow measurement for flood hydrology 

calibration, the spatial extent of the soil moisture estimates from the advanced 

microwave scanning radiometer 2 (AMSR2) mission (Wehbe et al., 2019) could 

be used as a benchmark. Therefore, the application of AMSR2 data and its 

coupling with flood hydrology should be explored, particularly for the large-

scale hydrological application of flood early warning systems. 

 

ii) Further improvements in HIREs simulation 

The main requirements for urban flood modelling are high-quality rainfall 

data, which can be obtained through the mesoscale NWP modelling system. 

Based on the current study, we have identified three major issues (weaknesses) 

in simulating HIRE using the WRF model and its flood application. These issues 

are the rainfall differences simulated when using different parametrization 

combinations, the effect of modelling system and local processes (i.e., 

urbanization) on the simulated rainfall, and the procedure to use the simulated 

events for the localized flood modelling in the catchment. If improvements and 

further research in some of these areas are carried out in the near future, this will 

present a step forward in using the WRF rainfall product for urban flood 

application in the catchment.  

The procedure presented in this thesis showed the possibility of using 

certain WRF parametrization combinations (i.e., MP-CP-PBL) to simulate the 

events that represent the main rainy season (e.g., 13 April 2013 and 16  April 2016) 

and the non-main rainy season (e.g., 25 June 2012 and 03 September 2013). We 
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found enormous simulated rainfall differences among the different 

combinations, which indicates a need for more sensitivity analysis to select the 

best combinations for the specific event. For this purpose, high-quality rainfall 

data is seriously required for detailed model verification. Therefore, it is highly 

recommendable to deploy more gauging stations in the catchment.  Another way 

forward with the WRF model could be evaluating/extending the current 

combinations with more flood-triggered events and see whether there is a certain 

preference for combinations, for instance, a season or time in a season. For 

example, it is extending the selected 13 April 2016 combination for the MAM 

season.  The decision of whether to continue with the selected combinations or 

not for the respective seasons can be made by using a decision tree, as shown in 

Figure 6.1. Suppose the selected combination is not preferable for the time in a 

season, which is most likely the case. In that case, it means the floods in each 

season have a unique WRF parametrization combination at a 1 km spatial 

resolution. Hence, further research could be required to extend the procedure for 

more events from different seasons to improve these results' confidence. 

                                                

 
 

Figure 6.1 Decision tree to evaluate the preferences of the selected MP-CP-PBL 

combinations for HIRE simulation using the WRF model setup at 1 km spatial resolution 

Another way to make optimum WRF model simulation is by incorporating 

the satellite-derived urban fraction into the WRF model to represent the city's 

Non-main rainy season 

Yes 

Selected MP-CP-PBL combinations  

Main rainy season 

No Yes No 
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correct position and extent; hence, assess its effect on the processes leading to the 

localized extreme rainfall events. During this thesis's work, the satellite-derived 

urban fraction of the city of Kampala is correctly incorporated into the WRF 

modelling system. However, the detailed impact of the inserted urban fraction 

on meteorological variables leading to rainfall changes, similar to the studies by 

Brousse et al. (2019); Oliveros et al. (2019), needs to be analyzed.  

Moreover, although the detailed diagnoses of the parametrization schemes 

are least focused in this thesis, it is also worth mentioning that the overall 

representation of the parametrization schemes in the study area is weak. 

Therefore, detailed research should be carried out to address this issue with data 

from the region. A focus area could be toward understanding cloud and 

precipitation processes that lead to improved model parameterizations. Above 

all, the WRF model-based HIRE simulation will benefit more from the use of 

enhanced observations, advanced data assimilation methods, and rapid updates, 

as indicated by Fritsch and Carbone (2004); Clark et al. (2016). 

 

6.2.2. A path forward for integrated flood management 
 

The urban flood hazard assessment aims to build a resilient city by 

minimizing human and economic losses, which implies that the more urban 

residents adapt to the hazard, the more conducive the environment is for the 

society towards sustainable urban development (Jha, 2012; Liao, 2012). To 

achieve this aim, integrated flood management (IFM) measures, as proposed by 

the World Meteorological Organization (WMO), which comprise all actors who 

are responsible for flood management, are being recommended (Vojinovic and 

Abbott, 2012). Under the IFM framework, the linkage of technical, social, and 

decision-maker approaches towards addressing the impacts and providing 

solutions for flooding would generally be proposed, as shown in Figure 6.2. A 

technical aspect will be responsible for addressing the natural and technical root 

causes of the flood and assessing flood hazards from a holistic point of view. The 

decision-makers are responsible for producing a strategic framework of coherent 

policy development, while a social aspect is responsible for enhancing 

stakeholder engagement and promoting community linkages to technical aspects 

and other policy domains. The work in this thesis contributes to the technical 

aspect of the framework. The result showed that it is possible to produce a proper 

flood hazard map required for IFM in the data-scarce areas of the developing 

countries. I believe that by following the suggested framework, the goal of IFM 

can be achieved. The following sub-sections explicitly looked at some of the 

issues related to the elements of the technical aspect of IFM in the developing 

country.   
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Figure 6.2 Integrated flood management (IFM) framework that can be implemented in the 

developing country (adapted from (Vojinovic, 2015)) 

 

a. Improving urban flood hazard modelling 

Under the technical aspect of IFM, the primary element that requires 

further improvement is the basic dataset used for developing the flood model. 

This study showed that the use of open sources geospatial databases had been 

recognized as a great prospect towards addressing the key issue with data 

limitation for proper urban flood modelling in developing countries. Besides, the 

use of integrated flood modelling with openLISEM, which is adjusted to 

represent the correct urban soil characteristics for proper flood modelling is 

arguably a key strength of the current study. There are still limitations and critical 

issues to be addressed in view of urban flood modelling in developing countries. 

The limited data availability and limited access to data are still the prevailing 

issues, which require a great innovation for spatial data infrastructure in 

developing countries. This innovative data infrastructure and data collection 

require political will and enterprise investment. The spatial data infrastructure 

lies at the foundation for proper flood hazard assessment. This is mainly because 

urban flood simulation requires a systematic representation of the complex urban 

➢ Urban flood 
modelling 

➢ Assessment 
of elements 
at risk 

➢ Scenario 
developme
nt 

➢ Early 
Warning 
System 

Te
ch

n
ic

al
 a

sp
ec

t 

   

➢ Promoting 
sustainable 
urban 
developme
nt 

➢ Greater 
awareness 

➢ Favoring 
primary 
values over 
secondary 
values 

➢ Education 
and skills 

➢ Responsibil
ity 

D
ec

is
io

n
 m

ak
er

s 

➢ Promote 
community 
engageme
nt 

➢ Long term 
planning 

➢ Awareness 
creation 

➢ Regulation 
➢ Tradition 

and 
customs 

➢ Social 
justice and 
ethics 

  

So
ci

al
 a

sp
ec

t 



Chapter 6 

153 
 

geomorphology and detailed topographic data such as LiDAR (Light Detection 

and Ranging) and UAV-based models for properly formulating and solving the 

shallow water equations (SWEs). Yet this urban morphology information is still 

not fully accessible for many urban catchments in developing countries. 

Furthermore, the representation of the flood driving factors such as 

anthropogenic factors (e.g., litter) in the flood model is complex due to a lack of 

information. Thus, a weak representation of flood modelling systems and flood 

driving factors can lead to numerical errors and uncertainties. Therefore, urban 

flood analysis and research can advance these issues by combining knowledge 

potential and computer powers in moving forward the urban flood modelling 

system. 

 

b. Assessment of Elements at risk 

A good strategy for integrated flood management requires flood risk 

maps, which are produced as the integration of flood hazard, exposure, and 

vulnerability. The last two components of flood risk modelling are challenging 

to quantify, particularly in developing countries, due to the lack of data (Nur and 

Shrestha, 2017; Hamidi et al., 2020). However, the IFM practices are targeted to 

understand urban flood hazard, vulnerability, and exposure through community 

participation, develop robust but low-cost methodologies and enhance the 

availability of good quality flood information. The element at risk is often 

characterized by the number of structures, population, objects, and likes exposed 

to flood. The analysis of the elements at risk can be assessed through the 

framework developed by Birkmann (2006); Birkmann (2007), and the required 

information can be collected through questionnaires-interview and satellite 

remote sensing.  Furthermore, an up-to-date database of elements at risk can also 

be obtained from OpenStreetMap and is found to be a suitable and cost-effective 

alternative for supporting local governments and communities in risk 

assessment and emergency planning (Schelhorn et al., 2014). In this thesis, it was 

shown that the land cover data extracted from the satellite image proved to be 

essential to assess the number of buildings affected by the floods. However, the 

explicit information on the number of people, the number of insured buildings 

for the flood event, the number of economic sectors, and institutions exposed to 

flooding is not explicitly considered. Therefore, I believe that by collecting 

detailed information on the affected objects, the full exposure of objects and the 

vulnerability to flooding can be assessed. 
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c. Scenario development: Landuse-Landcover and climate 

change impact assessment 

 

Future climate change and urbanization enhance warming in the city, as 

reported by Jia et al. (2019), which further enhances extreme rainfall; hence, 

expected to increase flood hazards in the urbanized environment.  Considering 

such impact requires combined LULC and climate change assessment on 

processes preceding floods, which are essential for effective urban flood 

management. In such cases, future urban growth scenarios can be developed for 

a city, for example, by using the cellular automata (CA) model. For instance, 

Perez Molina (2019) projected the urban growth of Kampala, representing the 

year the 2030s using the cellular automata model as an array of cells, each with 

an associated fraction of land cover (for built-up, vegetation, and bare soil). 

Combined with the climate change scenarios from the climate model output as 

the model boundary conditions, the projected HIRE used for design storm 

estimation could be built following a similar procedure by Pappenberger et al. 

(2012); Liew et al. (2014). Therefore, the combined integration of climate change 

scenarios and urban growth into flood management is possible by considering 

the frequent flooding triggered by extreme rainfall events due to the combined 

effect of climate change and urbanization.   

Land use-land cover (LULC) change is a complex process that links both 

natural and human systems. As such, it has both a direct and indirect impact on 

flooding and flood-related problems. The direct impact of land cover is well 

studied; for example, in the case of Kampala, Perez Molina (2019) has shown how 

the city's physical expansion determined the city's flood dynamics. The least 

known but very important aspect of flood-related problems is the impact of 

LULC change on storms' behaviour over the area through the modifications of 

local and regional atmospheric circulations (Alexander et al., 2006; Ashley et al., 

2012). Based on this thesis's findings, it is evident that the urban land cover data 

derived from the satellite can be used in the NWP model for assessing the impact 

of urbanization on rainfall characteristics. Therefore, using the satellite-derived 

LULC change data can help to create a LULC map of the different periods at 

different scales and used in the NWP model to carry out LULC change impact 

assessment on storm behavior and then link to flood hazard assessment.  

Sustainable urban flood management also requires the mainstreaming of 

climate change information into the decision-making system. It is evident that as 

a result of climate change, there is a clear tendency of increasing extreme 

precipitation events and frequent flooding affecting urban drainage systems 
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(Grum et al., 2006; Arnbjerg-Nielsen et al., 2013). Moreover, the recent 

Intergovernmental Panel on Climate Change (IPCC) 6th report Masson-Delmotte 

et al. (2021) further indicated a likely increase in precipitation extremes over the 

Central-East African region leading to pluvial flooding. The report further 

indicated that for 1.5 and 20 C global warming levels, precipitation extremes 

would increase for future climate scenarios that lead to widespread flooding in 

these regions. The report is very alarming for cities like Kampala, where many 

poor communities live in flood plains and reclaimed wetlands and are exposed 

to localized and frequent flooding during the rainy season, resulting in loss of 

lives and property.  It is further indicated that by  Perez Molina (2019) that the 

impacts of the floods are exacerbated by poor city planning as these 

neighborhoods have no drainage systems. The frequency and intensity of floods 

are expected to increase with climate change. Therefore, impact assessment of 

future climate change and mainstreaming it into the city development plan is 

vital for better urban flood management. 

The currently available approach for assessing climate change scenarios 

for urban flood management is mainly through design event uplifts ratios and 

applying climate model output driven by emission scenarios (Gersonius et al., 

2012; Berggren et al., 2014). Typically, for less detailed analysis, simple uplift 

ratios (percentage change of the available rainfall data) are used to make a future 

assessment of the potential impact of climate change on an area. However, for 

more detailed analysis, a time series rainfall data can be used, which allows the 

construction of design storms for a range of return periods as has been used in a 

number of studies despite the difficulties associated with convective rainfall 

representation (Lu and Qin, 2019; Zhou et al., 2019).  

 

d. Early Warning System 

    With the use of the WRF model modelling system, the result can also be 

used for the early warning system (EWS) as actual flood modelling. As opposed 

to the flood hazard modelling, actual flood modelling requires operational 

rainfall prediction as now cast or forecast; it requires real-time forecast products 

that are used as initial and boundary conditions for the WRF model. These 

include the European Center for Medium-range Weather Forecast (ECMWF) 

(Kidd et al., 2013) and the Global Forecasting System (GFS) developed by the 

National Oceanic and Atmospheric Administration (NOAA) that available: 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-

forcast-system-gfs). By selecting appropriate parametrization combinations for a 

given event, following the same procedure indicated in this study, the WRF 

model can be set up with the operation dataset and used for operational flood 

modelling similar to the study by Sikder et al. (2019); Ming et al. (2020). The 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
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quality of the forecast product for the EWS can also be improved by 

incorporating through the ensemble forecast of the parameterization. Moreover, 

incorporating the data assimilation systems into the WRF modelling system can 

also improve the forecast product. Once the rainfall product is produced, the next 

step is to set up the flood modelling system to produce flooding (either 

inundation or peak hydrograph) based on the simulated WRF rainfall forecast 

(nowcast). The WRF-openLISEM coupling system would produce the forecasted 

discharge data, following a similar procedure by Givati et al. (2016); Ryu et al. 

(2017). For pluvial flooding/flash flooding like in Kampala, the offline coupling 

of the WRF model with an integrated hydrology model, such as openLISEM, 

currently set up and used in this thesis, is potentially useful and recommendable.   

6.3. Conclusion 
Strategies to cope with floods, such as flood hazard mapping, rely on the 

effective modelling of the flood characteristics using the flood models. One of the 

main challenges for flood modelling in the data-scarce area is obtaining the 

model required data such as high-intensity rainfall events and soil information 

used for an integrated flood modelling system. The current work on using open-

source geospatial databases and the NWP modelling system can potentially 

overcome the data availability problem on a broader scale. Moreover, exploring 

more about geospatial databases and their integration with the 

hydrometeorological modelling system may not only overcome the data-scarcity 

problem. Still, it can also be used for future impact assessment. However, the 

limited data quality and limited access to data are still the prevailing issues, 

which require a great innovation for spatial data infrastructure in developing 

countries. This requires political will and enterprise investment for innovative 

data infrastructure and data collection. For sustainable urban flood management 

at the local scale, the IFM framework, which comprises all actors responsible for 

flood management, needs to be implemented. To ward this, the tailored data 

required for effective flood modelling should come from cooperation between 

technical experts, social, and decision-makers. 
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Appendix A       Structure and Functionality of 

openLISEM model 

 

A simplified scheme of the openLISEM model's routine order is given in 

figure A1. The processes within LISEM can be classified into two categories: 

Hydrology and Sediment. These are respectively colorized blue and red. General 

processes such as reading input data are colorized green. The flow processes can 

be categorized as Overland Flow, Channel Flow, and Flooding. Examples of 

required maps are also given for each process. In this thesis, we considered the 

hydrological part of the model, and information on the model can be found on 

https://lisemmodel.com. 

 

 
 
Figure A1. Flow chart of openLISEM model (see https://lisemmodel.com). From right to left: blue 
represents hydrological and flow processes, red represent surface erosion processes. 

 

https://lisemmodel.com/
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In this thesis, openLISEM is further developed to couple it with 

compaction scenario (soil physical structure) and WRF predicted rainfall 

product, enabling input of rainfall for single event rainfall product as design 

storm form. 

Within LISEM, compacted soil can be modeled. For each cell, a 

compacted fraction can be provided, with accompanying saturated conductivity 

values. The final saturated conductivity is calculated using the equation: 

 

𝐾𝑠,𝑒𝑓𝑓 =𝐾𝑠∗(1−𝑓𝑐𝑜𝑚𝑝) + 𝐾𝑠,𝑐𝑜𝑚𝑝 𝑓𝑐𝑜𝑚𝑝 

 

With  

𝐾𝑠,𝑒𝑓𝑓 the effective saturated conductivity (𝑚 𝑠−1) 

𝑓𝑐𝑜𝑚𝑝 the compacted soil fraction (−) 

𝐾𝑠,𝑐𝑜𝑚𝑝 the saturated conductivity for compacted soil (𝑚 𝑠−1) 

 

Where the actual infiltration equation calculated based on the Green & Ampt 

(1911) infiltration method assumes that a wetting front moves downwards into 

the soil layers parallel to the soil surface:  

 

 
With  

 

𝑓𝑝𝑜𝑡 the potential infiltration rate (𝑚 𝑠−1)  

𝐹 the cumulative infiltrated water (𝑚)  

𝜃𝑠 the porosity (𝑚3 𝑚−3)  

𝜃𝑖 the initial soil moisture content (𝑚3 𝑚−3) 

𝐾𝑠 the saturated conductivity (𝑚 𝑠−1) 

𝑍𝑓 the depth of the wetting front (𝑚) 

𝜓 the matric pressure at the wetting front (ℎ=𝜓+𝑍) (𝑚)  

And 
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This method can be applied for both a 1 layer or 2 layer system. Beneath these 

layers, an open or closed boundary can be chosen. 

In the case of compaction, the model is designed to handle sub-gridcell 

surface properties (Figure A2). A gridcell can contain bare soil, compacted soil, 

vegetated surface, a road, a house, and a channel. These surface characteristics 

are supplied in separate layers as fractions of the total cell area. The base layer is 

formed by the soil surface with its hydrological characteristics, and the user 

supplies additional maps that trigger additional hydrological processes in the 

model. The presence of vegetation will, for example, result in an interception on 

the part of the gridcell. The presence of a house will result in roof storage and a 

partly impermeable surface, and a road will have sedimentation but no 

infiltration or erosion, see, for example, the following schemation: 

 

 
Figure A2: Input data which is modelled on a sub-gridcell 

 

 

 

Appendix B       Input/output database structure 

 
This section will describe the preparation for 

all input data categories. 
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Input data category  
 

 
 
Needed base maps  

Topography  Digital Elevation model  
Rainfall  Rainfall  
Land use/cover  Land use unit map and use property table  
Soil type  Soil use unit map and soil property table  
Infrastructure  Land use unit map  
 

 
Figure B1: Input database category and its preparation 

 

All databases are prepared by using the PCRaster script and created all 

input data automatically from base maps, and all datasets are in PCRaster format.  
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Summary 

 

Strategies to cope with floods, for instance, integrated flood management, require 

proper flood hazard assessment. Such flood hazard assessment relies on the flood 

modelling approaches, which require high-quality and quantity data to produce 

realistic flood hazard maps. In many cities in the developing countries, also 

known as data scarce-areas, flood modelling is challenging as there is sparse or 

no observation on rainfall data and soil information used for proper model 

development, model calibration, and validation. However, open-source 

geospatial data and the NWP model rainfall product can overcome the data 

scarcity problem. Therefore, this Ph.D. thesis aimed to explore publicly available 

geospatial datasets and their integration with hydro-meteorological modelling 

systems to overcome the data-scarcity challenges, specifically, to explore the data 

of extreme rainfall, soil, and land-cover information for flash flood modelling in 

the urbanized catchment. The findings are summarized into three phases, as 

discussed in the following. 

The first phase of this Ph.D. study focuses on exploring soil information 

used for flash flood modelling in the urbanized catchment. Accordingly, the soil 

information that is determining the infiltration processes (i.e., Ksat, porosity, 

initial condition, soil matric suction, and soil depth) is derived following three 

different soil databases: (1) FAO soil map (SMFAO); (2)  soil map derived based 

on the soil-landscape relationships (SMLS), and (3) soil map derived from the 

SoilGrids database (SMSG)). The soil information derived from these data 

sources is believed to be overcome the data limitation problem. However, the 

open-source soil databases cannot correctly consider the local features (e.g., 

wetlands, fragmented vegetation cover, and soil compaction), which would lead 

to the data quality problem. Therefore, in this study, the local features' influence 

on the derived soil information is numerically adjusted by incorporating the land 

cover data derived from the satellite image. The derived soil information is then 

used as the input to openLISEM integrated flood modelling system to assess their 

impact on flood dynamics in the urbanized catchment. The impact analysis is 

evaluated as the compacted and uncompacted soil condition. The results 

indicated that the flood dynamics are highly sensitive to different soil databases. 

The incorporation of soil compaction into the soil information has the largest 

impact on the flood dynamics in the catchment. This study showed that open-

source data choice strongly influences both the simulated quantity and spatial 

variability of the infiltration, which directly affects runoff and flooding. On top 
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of that, the effect of sealing and compaction is equally essential and nearly 

outweighs the differences caused by the use of different soil databases.  

The second part of the Ph.D. thesis is to model and analyze the high-

intensity rainfall product using the WRF model, which combined two main 

research objectives (chap.3 & 4 in the document). The first objective is to evaluate 

the satellite-driven urban fraction appropriateness in the WRF model for 

simulating high-intensity rainfall events in urbanized areas. Three different 

simulations are performed in order to distill the impact of changing urban 

fractions and adjusted urban parameters on the simulated rainfall: The first 

simulation (1) StandardWPS, which is carried out using the default urban 

fraction with the default urban parameters; (2) UFD_Parameter, which is using 

the default urban fraction, but with adjusted urban parameters; and (3) Updated, 

which is with the updated urban fraction based on the Landsat 2016 image and 

the adjusted urban parameters. All model simulations are configured at high 

spatial (1 km) and temporal (10-minute) resolutions forced with the latest ERA5 

global reanalysis dataset. The model result was validated using the rainfall 

observation from the gauging station and CHIRPS data. The results showed that 

the simulated rainfall performs better with a relatively lower error when using 

the updated urban fraction. The satellite-derived urban map represents a more 

realistic extent and intensity of the urban fraction with a heterogeneous urban 

fraction, which results in more realistic rainfall simulations. The second objective 

of the second part of the Ph.D. is to evaluate the suitability of the WRF model in 

simulating high-intensity rainfall events. Here, we evaluated the procedure to 

select the appropriate WRF parameterization combination for proper high-

intensity rainfall simulation through the sensitivity analysis. The WRF model set 

up with the updated urban fraction is used for the WRF model simulation as the 

combination of microphysics, cumulus, and planetary boundary layer (i.e., MP-

CP-PBL procedure). The result showed that the WRF model's ability to simulate 

the HIRE that can be used for flash flood modelling is highly determined by the 

appropriate selection of the parametrization combinations. 

The last phase of this Ph.D. study focuses on examining the WRF rainfall 

product's applicability for urban flood hazard assessment by proposing a new 

methodology to select the representative gridcell-rainfall events from three 

known WRF simulated rainfall events (HIREs). The two-step procedure is 

followed. Firstly, the potential gridcell-rainfall events from the WRF simulated 

HIREs are selected based on the given criteria. Secondly, the representative 

gridcell-rainfall events as a design storm of a given return period are defined 
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using the quantile function where the quantile function is applied to the 

cumulative rainfall amount of each of the selected potential gridcell-rainfall 

events. Finally, three different gridcell-rainfall events representing the design 

storms varying between T = 2 and 10-year return periods are extracted for each 

three HIRE. The developed design storms are then compared with the design 

storms from the pre-established Intensity-Duration-Frequency (IDF) curves in 

terms of their 24-hour total rainfall amount (mm), peak intensity (mm/hr), and 

the time to peak intensity (minute). The constructed design storms are then 

applied to the openLISEM model for flood hazard modelling in Kampala's upper 

Lubigi catchment. The derived design storm can give an insight into the 

applicability and usability of the numerical weather prediction model outputs for 

flood modelling in the data-scarce areas. 

In general, the results of this study indicates that open-source database 

such as SoilGrids and their combination with satellite-driven land-cover data can 

provide soil information needed for flood modelling in the data-scarce area. 

Moreover, the high-intensity rainfall that has the potential to trigger the localized 

flood can be produced using the mesoscale WRF model. However, the procedure 

to improve the performance of the NWP model in simulating high-intensity 

rainfall must be taken into consideration. The MP-CP-PBl procedure followed in 

this study and updating the urban fraction certainly improved the performance 

of the WRF model to simulate high-intensity rainfall. The WRF data-assimilation 

and model coupling system can further improve the model's performance in 

simulating the events. 
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Samenvatting 

 

Strategieën om met overstromingen om te gaan, zoals geïntegreerde 

overstromingsmanagement, vereisen een weloverwogen inschatting van 

overstromingsgevaar. Zo’n inschatting is afhankelijk van 

overstromingsmodellen, die hoge kwaliteit data nodig hebben om het 

overstromingsgevaar realistisch in kaart te brengen. In veel steden in 

ontwikkelingslanden, ook wel gebieden met data schaarste genoemd, is het 

modelleren van overstromingen een uitdaging omdat er weinig metingen zijn 

van de regenval of de bodeminformatie. Deze metingen zijn nodig voor het 

ontwikkelen van een model en de kalibratie en validatie. Door middel van open-

source geografische data en het regenvalproduct van het NWP model kan het 

probleem van data schaarste overkomen worden. Daarom is het doel van het 

onderzoek in dit proefschrift gericht om het onderzoeken van vrij toegankelijke 

geografische datasets en de toepassing voor hydro-meteorologische modellen 

om de uitdagingen met data schaarste aan te pakken. Het onderzoek richt zich 

vooral op de data over extreme regenval, informatie over de bodem en 

landgebruik voor overstromingsmodellering in stedelijke gebieden. Het 

onderzoek kan worden samengevat in drie onderdelen, die hieronder verder zijn 

toegelicht.  

De eerste fase van het promotieonderzoek is gericht op het onderzoeken 

van bodeminformatie die te gebruiken is voor stedelijke overstromingsmodellen. 

Met name de bodeminformatie die het infiltratieproces beïnvloeden (Ksat, 

porositeit, zuigspanning, bodemdiepte en de aanvankelijke begin 

omstandigheden)is verkregen door middel van drie verschillende 

bodemdatasets: (1) FAO bodemkaart (SMFAO); (2) bodemkaart gebaseerd om 

bodem-landschap interactie (SMLS) en (3) de SoilGrids database (SMSG). Door 

middel van bodeminformatie afkomstig van deze bronnen is het geprobeerd de 

data schaarste op te vullen. Er zijn een aantal lokale eigenschappen die niet goed 

door de open-source data beschreven worden (bijv. drasland, gefragmenteerde 

vegetatiebedekking, bodemcompactheid) wat invloed heeft op de kwaliteit van 

de data.  Daarom is in dit onderzoek de invloed van lokale eigenschappen op de 

bodeminformatie numeriek aangepast aan de hand van landgebruik informatie 

gebaseerd op satellietbeelden.  De verkregen bodeminformatie is gebruikt als  

invoer voor het openLISEM overstromingsmodel, om zo het effect van de 

bodemeigenschappen op de overstromingsdynamiek in stedelijke gebieden te 

beoordelen. Deze analyse is uitgevoerd met zowel verdichte als onverdichte 

grond. De resultaten tonen aan dat de overstromingsdynamiek erg afhankelijk is 

van welke bodemdata er gebruikt is, waar vooral de compactheid van de bodem 

het meeste invloed heeft op de overstroming.  Uit dit onderzoek is gebleken dat 
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de keuze van datasets sterke invloed heeft op zowel de hoeveelheid en 

ruimtelijke variatie van de gesimuleerde infiltratie, wat van directe invloed is op 

de stroming en overstroming. Daarnaast is het effect van afdichting en 

compactheid van de bodem van even groot belang en weegt bijna zwaarder dan 

het verschil van bodemdatasets. 

Het tweede deel van deze PhD bestaat uit het modelleren en analyseren 

van hoge intensiteit regenval aan de hand van het WRF model, waardoor de twee 

voornaamste onderzoeksdoelen worden gecombineerd (hoofdstuk 3 en 4). Het 

eerste doel bestaat uit het evalueren van de op satellietbeelden gebaseerde 

stedenfractie in het WRF model voor het simuleren van hoge intensiteit regenval 

in stedelijke gebieden. Drie verschillende simulaties zijn uitgevoerd om het effect 

te beoordelen van veranderende stedenfracties en aangepaste stedelijke 

parameters op de gesimuleerde regenval: (1) StandardWPS dat is uitgevoerd met 

de initiële stedenfractie met de initiële stedelijke parameters (2) UFD_Parameter 

met de initiële stedenfractie maar met aangepaste stedelijke parameters, en (3) de 

bijgewerkte versie, met de bijgewerkte stedenfractie gebaseerd om Landsat 2016 

beelden en aangepaste stedelijke parameters. Alle simulaties zijn uitgevoerd op 

een hoge ruimtelijke resolutie (1km) en tijdsresolutie (10 minuten) geforceerd 

door middel van de laatste ERA5 globale dataset. De resultaten zijn gevalideerd 

door middel van regenvalobservaties van het het ijkingsstation en CHIRPS data. 

De resultaten laten zien dat de gesimuleerde regenval beter presteert met een 

relatieve lagere foutmarge wanneer de aangepaste stedenfractie is gebruikt. The 

op satellietbeelden gebaseerde stedenkaart laat een realistischere verspreiding en 

intensiteit van de stedenfractie zien met een heterogene stedenfractie, als gevolg 

van realistischere regenvalsimulaties. Het tweede onderzoeksdoel  van het 

tweede deel van dit proefschrift is het evalueren van de bruikbaarheid van het 

WRF model in simulaties van hoge intensiteit regenval. Hierbij evalueren we de 

procedure voor het selecteren van geschikte WRF parameters combinaties voor 

nauwkeurige hoge intensiteit regenval simulaties door middel van 

gevoeligheidsanalyse. De instellingen van het WRF model met de aangepaste 

stedenfractie is gebruikt voor de WRF simulatie als de combinatie van 

microfysica, cumulus, en planeet grenslagen (MP-CP-PBL procedure). De 

resultaten laten zien dat de toepasbaarheid van het WRF model om HIRE te 

simuleren, wat gebruikt kan worden voor het beoordelen van 

overstromingsgevaar, erg afhankelijk is van het gebruikt van de juiste 

parametercombinaties.     

Het laatste deel van de PHD focust op het onderzoeken van de 

toepasbaarheid van het WRF regenvalproduct voor het beoordelen van 

overstromingsgevaar door een nieuwe methode voor te stellen om 

representatieve regenval momenten te selecteren van drie bekende WRF 

gesimuleerde regenval momenten (HIREs). De tweetraps procedure is hiervoor 



 

 

 
 

 

gevolgd. Ten eerste, de mogelijke gridcell regenvalmomenten van de WRF 

gesimuleerde HIREs zijn geselecteerd gebaseerd op de gegeven criteria. Ten 

tweede zijn de representatieve gridcell regenvalmomenten gebruikt als een 

‘design storm’ van een gegeven tijdsperiode, gedefinieerd door middel van 

kwartielfunctie waarvan de kwartielfunctie is toegepast op de cumulatieve 

hoeveelheid regen voor elk geselecteerde gridcell regenvalmoment. Als laatst 

zijn drie verschillende gridcell regenmomenten, die representatief zijn voor de 

‘design storms’ variërend van 1-in 2 tot 1 in 10  jaar terugkeer periodes, afgeleid 

voor elk van de drie HIRE. De ontwikkelde ‘design storm’ is daarna vergeleken 

met de ‘design storms’ van eerder gedefinieerde Intensity-Duriation-Frequency 

(IDF) curves met betrekking tot de 24uur totale hoeveelheid regen (mm), 

maximale intensiteit (mm/uur) en tijd tot de maximale intensiteit (minuten). De 

ontwikkelde ‘design storms’ zijn daarna toegepast in het openLISEM model voor 

het modelleren van overstromingen in het hoge Lubigi stroomgebied van 

Kamapala. De verkregen ‘design storms’ kunnen een inzicht verschaffen in de 

toepasbaarheid en gebruik van numerieke weervoorspellingsmodellen voor 

overstromingsmodellen in een data schaars gebied.  

In het algemeen zijn de resultaten van dit onderzoek dat vrij 

toegankelijke datasets zoals SoilGrids en de combinatie met op satellietbeelden 

gebaseerde landgebruik data bodeminformatie kan verschaffen die nodig is voor 

overstromingsmodelering in gebieden met data schaarste. Ook kan de hoge 

intensiteit van regenval die lokaal overstromingen kan veroorzaken worden 

gesimuleerd door middel van het mesoscale WRF model. Echter moet de 

procedure voor het verbeteren van het NWP model in het simuleren van hoge 

intensiteit regenval in overweging worden genomen. De MP-CP-PBJ procedure 

die gebruikt is in dit onderzoek, en ook de aangepaste stedenfractie heeft wel 

degelijk invloed gehad op de prestatie van het WRF model om hoge intensiteit 

regenval te simuleren. Het gebruik van WRF data assimilatie en model 

koppelingssystemen, bijvoorbeeld, het WRF-Hydro koppelingssysteem, kan de 

modelprestaties verder verbeteren.   
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