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1.1 Background 
 

Change detection is the process of acquiring changes in an object or 

phenomenon from the remote sensing data of two epochs (Lu and Weng, 2007; 

Qin et al., 2016). Change detection is one critical research topics in the field of 

photogrammetry and remote sensing. 3D change detection draws more and 

more attention in recent years due to the increasing availability of 3D data. 

The acquisition and utilization of 3D data are becoming common. For example, 

3D data may present as multi-view imagery from satellite, airborne, or close-

range platforms, point cloud obtained from laser scanning or photogrammetric 

dense matching, Digital Surface Model (DSM), topographical models, depth 

images from RGB-D cameras, etc. 

 

3D change detection has been widely used in many fields and is of great 

significance to urban planning and administrative management, for example, 

land use / land cover (LULC) change detection, geographic information 

updating, point cloud updating, terrain deformation analysis, disaster analysis, 

urban construction monitoring, target tracking, vegetation growth status 

monitoring (Choi and Lee, 2009; Kim et al., 2013; Miller et al., 2000; Rebolj 

et al., 2008; Torres-Sánchez et al., 2014). 

 

At present, aerial photogrammetry and Airborne Laser Scanning (ALS) are two 

leading techniques for point cloud acquisition in the city level. This study takes 

the case of The Netherlands as our motivation. The two techniques are both 

used in The Netherlands for topographic data acquisition. It is common that 

point clouds from two epochs are acquired by different techniques. Therefore, 

it is necessary to study 3D change detection between multimodal point clouds. 

 

The Netherlands started the “Actueel Hoogtebestand Nederland (AHN)” project 

in 1997, which aimed to obtain elevation data covering the whole country. 

Every five to seven years, the AHN data were updated completely. Now the 

AHN project comes to its fourth generation: AHN1 (1997-2004), AHN2 (2007-

2012), AHN3 (2014-2019), AHN4(2020-2022). From AHN1 to AHN4, the 

vertical accuracy of the point cloud increases, and the semantic labels of the 

provided point clouds get finer. The vertical accuracy of AHN2 reaches ±5 cm 

with a density of 20 points/m2 (Van Der Sande, 2010). The point clouds are 

classified into five categories: ground, building, water, infrastructure, and 

other. Figure 1.1(a) shows the DSM with an interval of 5 m generated from 

AHN2. Figure 1.1(b) shows how the AHN data are organized and managed. 
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(a) AHN3 DSM in 5 m interval        (b) Data organization 

Figure 1.1: The Actueel Hoogtebestand Nederland project. 

 
Meanwhile, the Netherlands are acquiring aerial imagery for most cities as the 

latest topographical data every year. Compared with laser scanning, airborne 

photogrammetry is cheaper and more efficient towards 3D data generation. 

While laser scanning obtains geometric information, digital photogrammetry 

generates geometric, spectral and textual information (Gerke and Xiao, 2013; 

Nebiker et al., 2014; Nex, 2015). The highly overlapping images can fully cover 

the complicated urban scene from multiple views compared to traditional 

single-view photogrammetry, both in facades and roofs. Moreover, the dense 

3D points derived from dense image matching (DIM) can meet the density 

required to update laser point clouds (Baltsavias, 1999; Haala and Rothermel, 

2012). 

 

As fundamental topographic data, urban point cloud data should be updated to 

meet the latest demand on decision making and urban planning. In large cities, 

95% of the landscapes stay unchanged in five to ten years (Frontoni et al., 

2006). Change detection is the most important process of the entire updating, 

while it’s also very time-consuming and tedious. According to Champion (2007), 

change inspection and detection take up to 40% of the time in the workflow, 

compared to other 60% of charting and updating. To keep the point cloud data 

up-to-date, we are looking forward to automating the change detection process 

(Vosselman et al., 2004; Xu et al., 2015). 

 

The main motivation of this thesis is to enable updating of outdated ALS points 

with dense image matching points. The question rises as whether the up-to-

date photogrammetric data are qualified to update the outdated ALS data. 

Suppose that airborne photogrammetry and laser scanning acquire 3D point 

clouds with the same quality, updating the AHN data with photogrammetry 

would save much labor cost and time. In order to update outdated ALS points, 

various aspects are required for this purpose: 
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(1) We should know the accuracy of dense image matching; 

(2) We should extract a DTM from DIM points; 

(3) We should detect changes between ALS and DIM data. Changes are 

detected and then the point clouds are updated where changes have happened. 

 

Change detection requires datasets from two epochs. Figure 1.2 shows the 

input and output for our research. The outdated datasets to be updated are 

ALS point clouds. The up-to-date data we utilize to detect changes are multi-

view airborne images, point clouds generated from DIM and the orthoimages 

rectified from multi-view images. Classic change detection techniques usually 

obtain a binary change map, which indicates changed or non-changed for each 

point or object. The target of our research is not only to detect where changes 

happened, but also to recognize the change types, e.g. a new building, a 

demolished building, or a cropped tree. The fine change types can better serve 

the applications in topographic data updating, disaster rescue, damage 

management, and urban planning. 

 

 

Figure 1.2: The input and output for Multimodal change detection 

addressed in this thesis. 
 

Concerning 3D change detection, current change detection techniques are 

usually applicable to 3D data of the same modality but not multimodal data. 

How to quickly obtain 3D data, how to quickly assess the quality of 3D data 

and how to quickly detect changes between multimodal 3D data are three 

major challenges that restrict the wide application of 3D change detection (Qin 

et al., 2016). Before we further elaborate the objectives, we give a more 

detailed description of the principles and data properties of airborne laser 

scanning and aerial photogrammetry. 

 

1.2 Airborne laser scanning and photogrammetry 
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Obtaining high-quality 3D data is the prerequisite for performing robust change 

detection. 3D data are being collected from multi-baseline Synthetic Aperture 

Radar (SAR) interferometry (Zhu et al., 2018), satellite laser altimeter (Li et 

al., 2020), airborne platforms, mobile platforms, wearable devices, and 

ubiquitous handheld sensors. Compared to 2D data, 3D data are closer to real 

world and thus might be easier to interpret by human eyes or computers. 

 

1.2.1 Airborne laser scanning 
 

ALS is the main data source for surveying and mapping, city management and 

urban planning, rescue response, and change detection in the city-level, which 

allows effective data acquisition from the top-view. Compared to other laser 

scanning platforms, airborne laser scanner collects object points from an 

altitude from 400 m to 1200 m, the problem of object occlusion can be largely 

alleviated through swath overlapping. It belongs to active remote sensing and 

can be applied at night. ALS can not only collect points from the canopy surface 

but also penetrate through the forest canopy. Therefore, the point cloud can 

be used to generate DSMs and DTMs even in forestry area. 

 

ALS is performed on a fixed wing aircraft, a helicopter, or an Unmanned Aerial 

Vehicle (UAV). The technique is supported by two major systems: a laser 

scanner to measure the distance to object and a GPS/IMU unit to measure the 

position and orientation of the system. A typical airborne laser scanner contains 

the following components: scanner assembly, airborne GPS antenna, Inertial 

measurement unit (IMU), control and data recording unit, operator laptop, and 

flight management system (Vosselman and Maas, 2010). 

 

Scanner assembly emits laser pulses from the aircraft’s fuselage and their 

echoes are recorded during the flight. GPS antenna is a dual frequency antenna 

which records GPS signals. It is mounted at the top of the aircraft to record 

the system position. The IMU records acceleration data and rotation rates to 

determine the GPS trajectory and platform orientation. The control and data 

recording unit is used for synchronizing the time and managing the system. An 

operator laptop is taken to for flight planning and mission monitoring. The flight 

management system is used to display the flight lines (Vosselman and Maas, 

2010). 

 

Figure 1.3(a) shows the Leica TerrainMapper-2 as one of the latest linear-mode 

LiDAR airborne sensors. It includes a 2 MHz LiDAR sensor combined with two 

nadir 150 MP cameras in RGB and NIR. It is operated at a height from 300 m 

to 5000 m. The laser wavelength adopted by it is 1064 nm. The sensor can be 

upgraded with four additional oblique cameras turning the system into Leica 

CityMapper-2 for 3D city mapping. The vertical accuracy of the obtained point 



Introduction 

 6 

clouds reaches 0.03 m, while the planimetric accuracy reaches 10 cm at a 

nominal flying height of 1000 m AGL. 

 

(a) Leica TerrainMapper-2 (b) RIEGL VQ-880-GH  

Figure 1.3: Examples of two airborne laser scanners. 
 

Figure 1.3(b) shows the RIEGL VQ-880-GH system, which can be mounted on 

a helicopter or aircraft with a height less than 1600 m. It applies both near-

infrared channel of 1064 nm and green channel of 532 nm, which allows for 

combined hydrographic and topographic surveying. The pulse frequency 

ranges from 150 kHz to 900 kHz. The typical positioning accuracy reaches 

±0.025 m at 150 m testing range. 

 

In general, laser scanners are developing towards the direction of light-

weighted and small hardware, high accuracy, and low cost. Another general 

trend of laser scanners is towards simultaneous acquisition of point cloud and 

imagery, which allows to generate topographic products with both high 

accuracy and spectral information. 

 

1.2.2 Aerial photogrammetry 
 

Photogrammetry is the science or art for acquiring geometric information from 

the objects through photography (Thompson, 1966). With the development of 

digital aerial cameras, digital photogrammetry becomes an effective solution 

for urban topographic mapping. Aerial photogrammetry starts with aerial 

imagery acquisition where overlapping aerial images are obtained from 

cameras mounted on a fix-wing aircraft, helicopter, UAV, etc. The initial interior 

orientation elements are obtained through camera calibration before the flight. 

The initial exterior orientation elements are obtained by On-board GPS and 

Inertial Measurement Unit (IMU). They are refined with ground control points 

(GCPs) marked on the images through aerial triangulation (AT). 

 

Development in dense matching algorithms, e.g. Patch-based Multi-View 

Stereo (PMVS) (Furukawa and Ponce, 2010) and Semi-global Matching (SGM) 

(Hirschmüller, 2008) makes it possible to obtain accurate point cloud. nFrames 

SURE states that the vertical accuracy of their products can be better than 1 

pixel (Rothermel and Haala, 2012). The dense 3D object points are calculated 
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by forward intersection. Image quality and image overlap rate during 

acquisition both affect the quality of dense matching point cloud. 

 

Digital photogrammetry produces DSM, DTM generation, Orthoimages and true 

orthoimages, 3D models and Digital Linear Graphs (DLGs). Digital Surface 

Models (DSMs) and Digital Terrain Models (DTMs) are generated through 

interpolation over dense point clouds. Concerning ortho-rectification, DSMs are 

used to rectify the images so that each pixel is assigned with an interpolated 

position and intensity value. ortho-rectification changes the imaging geometry 

from perspective projection to orthographic projection and eliminates the 

impact of camera tilt and terrain relief. The individual ortho-images can be 

stitched to obtain a large-format orthoimage. When the texture from images 

is projected to the TIN, a 3D topographic model is generated. 

 

Figure 1.4(a) shows the Leica ADS100 camera which applies 20,000 pixel linear 

CCD for forward, nadir and backward imaging. Figure 1.4(b) shows the large-

format digital aerial camera IGI UrbanMapper-2. It has eight lenses which 

obtains RGB and near-infrared images from nadir and oblique view. When 

operated at a height of 500 m, the nadir GSD can be as fine as 2 cm while the 

oblique GSD reaches 2.7 cm. 

 

(b) IGI UrbanMapper-2(a) Leica ADS100
 

Figure 1.4: Examples of eight state-of-the-art digital aerial cameras 
 

ADS100 and IGI UrbanMapper-2 both obtain oblique images in addition to nadir 

images. In recent years, multi-view oblique images are being widely acquired 

in aerial photogrammetry. When oblique images are acquired, achieving full 

coverage of the terrain gets easier and data acquisition becomes more efficient. 

Oblique imagery also allow better coverage on the building façades. 

 

The density of dense matching points is influenced by GSD. If Semi-Global 

Mapping is utilized for dense matching, the corresponding pixels will be 

matches pixel-by-pixel in the Region of Interest (ROI). Haala (2015) reported 

that most dense matching software in the test can achieve a density of 100 

pts/m2 and a DSM grid spacing of 10 cm given that the image GSD is 10 cm. 
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Airborne Laser Scanning vs. Airborne Photogrammetry 

 

The techniques of airborne laser scanning and photogrammetry differ in the 

following aspects: 

 

(1) Sensor type: Airborne Laser Scanning belongs to active remote sensing, 

so the laser emitter sends out laser beams by itself; Airborne photogrammetry 

is passive remote sensing, which records the sunlight reflected by the objects. 

 

(2) Imaging geometry: The laser scanning collects data based on the time 

light travels from the emitter to the object; Photogrammetry applies 

perspective projection.  

 

(3) Coverage: Laser scanning covers the study area by point-by-point 

sampling, while photogrammetry covers a large area with every exposure of 

the camera’s CCD-chip.  

 

(4) Point cloud generation: Laser scanning generates point clouds from the 

received echoes and DGPS/IMU data. Photogrammetry generates point clouds 

through dense image matching and forward intersection.  

 

(5) Other features obtained: Airborne laser scanning may obtain intensity, 

full-waveform data along with the point clouds depending on the hardware. 

Airborne photogrammetry obtains images with spectral and textural features. 

 

(6) Major topographic products: The major topographic products of ALS 

include DSM, DTM, 3D model, etc. Apart from the products generated by ALS, 

digital photogrammetry can also be used to obtain orthoimages.  

 

(7) Technical Maturity: The technique of airborne laser scanning is relatively 

new compared with aerial photogrammetry. The algorithms for point cloud 

filtering, semantic segmentation, 3D modelling, change detection and full-

waveform analysis are still under rapid development. The technique of 

photogrammetry is relatively mature with a history of more than 150 years. 

Some mature software are available for photogrammetric data processing. 

 

(8) Weather conditions: ALS can be used at night, but not in the rainy, 

cloudy or sandstorm weather since laser beam cannot penetrate these 

obstacles (Leberl et al., 2010; Priestnall et al., 2000). Digital images are always 

acquired under strict weather requirements in the daytime. 

 

(9) Vegetation penetration: ALS can penetrate sparse vegetation for DTM 

generation. Digital photogrammetry cannot penetrate dense vegetation. 
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Concerning efficiency, ALS is relatively time-consuming in flight planning 

towards full terrain coverage, but fast in point cloud generation. Airborne 

photogrammetry is efficient in image acquisition but takes much effort in aerial 

triangulation and dense matching. 

 

(10) Efficiency: ALS is relatively time-consuming in data acquisition to cover 

the complete terrain with scanned pulses but is fast in point cloud generation. 

Digital photogrammetry is relatively efficient in image acquisition, but time-

consuming in aerial triangulation and dense matching. 

 

1.3 Research problems 
 

1.3.1 Problems with multimodal data 
 

Change detection between ALS data and photogrammetric data is a special 

case in 3D change detection. 3D data of two epochs are acquired by different 

sensors and present different properties. Multimodal point cloud change 

detection requires different feature extraction methods for different epochs, so 

it is more challenging than single-modal change detection. In this section, we 

summarize the differences between multimodal data and their impact on 

change detection. 

 

Figure 1.5 illustrates the differences between laser scanning points and dense 

matching points. 

 

 
Figure 1.5: Comparison between point clouds from airborne laser scanning 

and dense image matching. All samples are from our study area. (a) Roof 

surface. The ALS (red) and DIM (white) points represent the yellow profile on 

the left panel; (b) Vegetated land; (c) Building with trees in courtyards. From 
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left to right in (b) and (c): ALS point cloud, DIM point cloud from bird-view and 

the orthoimage. The color coding from blue to red in the ALS point cloud 

indicates increasing height. 

 

Some differences are related to data accuracy: 

 

(1) Vertical deviation: (Zhang et al., 2018a) reported that the vertical 

accuracy of ALS points is better than ±5 cm, while the vertical accuracy of 

dense matching points produced by state-of-the-art dense matching 

algorithms can be better than 1 Ground Sampling Distance (GSD), which is 

usually 10-20 cm for airborne platforms. The dense matching errors from 

Semi-Global Matching (Hirschmüller 2008; Rothermel et al. 2012) in a whole 

block show a normal distribution. Therefore, it is hard to set a single threshold 

to differentiate between the two point clouds. 

 

(2) Horizontal deviation: ALS points and DIM points are acquired by different 

techniques and their horizontal accuracies differ. Horizontal deviations between 

ALS points and DIM points usually cause elongated false positives along 

building edges in the DSM differencing map. 

 

Other differences include: (3) Noise level: On smooth terrain and roof 

surfaces, dense matching points usually contain much more noise than the 

laser scanning points. Dense matching is problematic when the image contrast 

is poor, e.g. in shadow areas, whereas low contrast or illumination is not a 

problem for laser data acquisition. The breaklines and topographic edges in the 

ALS data are clear and sharp but fuzzy in the DIM points. The noise and errors 

from dense matching cannot be simulated and are not uniform throughout the 

study area, thus hindering change detection. 

 

(4) Density difference: The density of ALS points and DIM points usually 

differs. As reported in Section 1.2.1 and Section 1.2.2, the densities of ALS 

data and DIM data are 10 pts/m2 and higher than 100 pts/m2, respectively, in 

our data sets. On the one hand, manipulation of dense DIM point clouds usually 

requires high computation power; On the other hand, the imbalance of 

densities in the two point clouds usually requires point cloud re-sampling or 

data normalization so that their densities are unified before change detection. 

 

(5) Data gaps: Data gaps exist in both data types. The data gaps in laser 

points mainly occur due to occlusion or pulse absorption by the surface material, 

e.g., water (Xu et al., 2015), while data gaps occur in dense matching points 

mainly due to poor contrast. Some small or thin objects can be recorded in the 

laser scanning data, e.g. wires, poles or traffic lights, while they are usually 

invisible in the DIM points. 
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(6) Point distribution: Point clouds are unordered, permutation invariant, 

and unevenly distributed (Qi et al, 2017a). They are different from raster data 

such as images. Therefore, the proposed algorithms for 3D change detection 

should be robust to point permutation and uneven distribution. 

 

Comparing the point clouds distributed on trees, the laser points are distributed 

over the canopy, branches and the ground below, while for dense matching 

usually only points on the canopy are generated. Specifically, the point density 

on the trees from dense matching is largely affected by the image quality, 

seasonal effects and leaf density. 

 

1.3.2 Uncertainty in change definition 

 

In order to automatically determine the type of changes, it is necessary to 

clarify which type of changes is relevant in the beginning of research, namely, 

changes of interest. Topographic changes are divided into three types: relevant 

changes, falsified changes and irrelevant changes. 

 

(i) Relevant changes: These are the types of change to our interest. It usually 

includes terrain deformation, building changes (e.g. height changes, a new 

building or demolition), tree changes (e.g. a new tree or a cropped tree), etc. 

When a relevant change is mis-classified into other types of changes, it causes 

a commission error or False Positive (FP); The omission of a relevant change 

causes omission error or False Negative (FN). In addition, if a relevant change 

is detected correctly, this is True Positive (TP). If a non-relevant change is 

detected as “non-changed”, this leads to True Negative (TN). The target of our 

change detection algorithms is to maximize the recall and precision for relevant 

changes. 

 

(ii) Falsified changes: Change does not happen to the object in reality, but a 

falsified change is detected by the algorithm due to data problems or 

algorithmic flaws (Xu et al., 2015). For example, the height of DIM point cloud 

at a shaded street corner is usually higher than the true height. When 

implementing DSM difference between ALS points and DIM points, the surface 

differencing results would mistakenly indicate that there is a terrain change in 

the corner. 

In addition, surface differencing between two DSMs usually causes linear 

artefacts along the building edges due to mis-registration errors. These are 

also falsified changes. 

 

(iii) Irrelevant changes: These changes happen in reality and also present in 

the two datasets, but are not the changes we are interested in. For example, 

leaves grow and fall in different seasons, vehicles and pedestrians moving, 

water surface fluctuation, a newly-built scaffold, a new container in ports, etc. 
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The definition of relevant and irrelevant changes is determined on user 

application and data quality. For example, vegetation height change is an 

important relevant change in precision agriculture. In our project of 

topographic change detection and updating, the normal growth of vegetation 

is not interested. The quality of remote sensing data determines the fine level 

of the change types. For example, DIM points generated by a UAV allow to 

detect object changes finer than 5 cm; While DIM points from an airborne 

aircraft may only allow to detect changes larger than 10 cm. 

 

1.3.3 Problems with scenes complexity 

 
The object changes might be complicated and diversified in real scene: 

 

(1) Concerning building changes, false positives may occur if the shape of a 

changed object is similar to a building. For example, moving of scaffolds or 

trucks in construction sites might be mis-classified into building changes 

because these object surfaces look similar.  

 

(2) In addition, changes on a complex building might be mixed. For instance, 

one part of a building might be demolished while the other part remains 

unchanged. The algorithm should be advanced enough to detect these detailed 

changes. 

 

(3) In urban scenes, the buildings might be adjacent to trees or high vegetation. 

If they are closely connected, the semantic segmentation method may 

misclassify their pixels into each other and not make a clear distinguishment 

(Gerke and Xiao, 2013). The semantic segmentation errors are propagated to 

the change detection results.  

 

(4) The distribution of pixels for different topographic objects (e.g. buildings, 

vegetation, terrain, water) is usually uneven. For example, there are usually 

more terrain pixels than building pixels in the suburb region, and the numbers 

of pixels for different topographic objects are imbalanced. This poses a major 

problem in the machine learning classification algorithm (Buda et al., 2018). 

These errors will be propagated to change detection. 

 

1.4 Research objectives and research questions 
 

1.4.1 Research objectives 
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Motivated by the need for point cloud updating, the main objective of the thesis 

is to assess the quality of photogrammetric point clouds and detect changes 

between them and ALS data. This is achieved step-by-step through the 

following four sub-objectives: 

 
(1) Evaluate the quality of dense matching point clouds to check whether the 

accuracy and noise level of DIM points meets the needs for change detection 

and potential point cloud updating. 

 
(2) Assess the performance of LiDAR filters when the filters are applied to 

dense matching point clouds. We also aim to evaluate the quality of digital 

terrain models (DTMs) derived from dense matching point clouds and check if 

it can meet the requirements of change detection. 

 

(3) Concerning change detection algorithms, the third sub-objective is to 

propose an algorithm to detect changes between ALS points and DIM points. 

The algorithm should be capable of detecting versatile change types, e.g. a 

new building, a demolished building and a heightened building. 

 

(4) Since point cloud semantic segmentation and change detection are two 

associated tasks, the fourth sub-objective is to propose a method to fulfil the 

two tasks in one framework. The method not only outputs semantic label for 

each point, but also its change label. 

 

Comparing sub-objective (1) and (2), sub-objective (1) directly evaluates DIM 

point clouds while sub-objective (2) evaluates the DIM point cloud filtering and 

the derived DTMs. After achieving the four sub-objectives, we can answer 

whether the quality of dense image matching points allows us to update the 

ALS points, and whether the change detection algorithms are effective to cope 

with the above change detection challenges. In addition, we may conclude 

whether the tasks of semantic segmentation and change detection can both be 

achieved in a single framework. 

 

Concerning 3D change detection methods, some existing methods have 

demonstrated their performance in 3D change detection, such as surface-

based differencing or post-classification methods (Xu et al., 2015). These 

methods are effective when the point clouds of two epochs are both from 

Airborne Laser Scanning. However, the DIM data usually contain more noise 

than the ALS data. When the data of one epoch are ALS data and the data of 

the other epoch are DIM data, the problem becomes multimodal change 

detection. The method should be robust towards the DIM noise. It should also 

cope with the difference between multimodal inputs. 
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Neural networks have demonstrated their superior performance in various 

computer vision tasks, for example in the 2D and 3D semantic segmentation 

(Krizhevsky et al., 2012; Qi et al., 2017a). Neural networks extract high-level 

features from images or point clouds by aggregating features from shallow 

layers to deep layers. The change detection methods proposed in our thesis 

are inspired by the recent progress of Neural Networks applied in the remote 

sensing and computer vision domain. 

 

Since 2D Fully Convolutional Networks (FCN) have been used in image-to-

image change detection (Zhan et al., 2017), we come up with transferring 2D 

CNNs to point cloud-based change detection. However, point clouds are 3D 

while images are 2D. In order to extract deep features with CNN from point 

clouds, point clouds should be represented and converted to 2D space. We 

convert the point clouds of two epochs to DSMs and concatenate them with the 

RGB channels, this specific “tensor” structure can be read and processed by a 

CNN. By this means, the change detection task is converted to a binary 

classification problem. This leads to our first change detection method, i.e. 

patch-based change detection. 

 

The output from patch-based change detection is a not pixel-based but patch-

based. The results need post-processing before accurate change boundaries 

can be derived. In addition, the change boundary from patch-based change 

detection is 2D instead of 3D. Although patch-based change detection might 

be efficient in localizing changes in large urban area, we still pursue point-

based change labels. As PointNet and PointNet++ were proposed (Qi et al, 

2017a; Qi et al., 2017b), they prove effective in learning multiscale deep 

features from point clouds. Therefore, we propose a Siamese PointNet++ 

architecture to extract point features from two point clouds. The network 

performs change detection implicitly and outputs a change label for each point 

in the ALS data. 

 

In our project, we assume that the point clouds from ALS and dense image 

matching are already registered. First, the ALS point clouds are collected and 

provided in national mapping coordinate system. The photogrammetric 

products are also created in the same coordinate system through several or 

dozens of ground control points (GCP) (Haala and Rothermel, 2012). Accurate 

registration between the point clouds is the prerequisite for change detection. 

 

1.4.2 Research questions 
 

Research questions are raised to each sub-objective accordingly: 

 

(1) Evaluation of the quality of dense matching point clouds and DSMs 
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Q1: What entities and quality measures can be used for evaluation? 

 

Q2: How does the GCP number affect the quality of dense matching points? 

 

Q3: Does additional use of oblique images influence the dense matching quality? 

 

Q4: How are the dense matching errors distributed in the study area? 

 

Q5: Is the accuracy of DSMs and point clouds the same? 

 

Q6: Is the dense matching error on different objects the same? 

 

(2) Evaluation of filtering algorithms and DTMs derived from DIM 

points. 

 

Q1: Can standard LiDAR filter be transferred to filter dense matching point 

clouds? 

 

Q2: How are the errors and artefacts distributed in the DIM filtering results? 

 

Q3: Does the filtering effect make a difference if point clouds are derived from 

different dense image matching algorithms? 

 

Q4: What quality measures can be used to evaluate the DTM quality derived 

from DIM points? 

 

Q5: How does the accuracy of DTMs distributed in the block? 

 

Q6: Is DTM accuracy on the terrain the same with the that on the grassland? 

 

Q7: Does the DTM accuracy improve if a ranking filter is applied to reduce the 

point cloud noise in advance? 

 

(3) Change detection and delineation between multimodal point 

clouds 

 

Q1: How to feed multimodal point clouds, DSMs and orthoimages into 

Convolutional Neural Networks (CNN)? 

 

Q2: How to design CNN architectures for multimodal data from two epochs? 

 

Q3: Which loss function can be used for model optimization? 
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Q4: Which features can be used to identify and delineate building change 

boundaries? 

 

Q5: What machine learning classifiers can be used to identify the building 

boundaries? 

 

Q6: How to evaluate change detection results at pixel-level and object-level, 

respectively? 

 

Q7: How to visualize the feature maps in the CNN model? 

 

Q8: How do the hyper-parameters affect the change detection results? 

 

(4) Synthetization of semantic segmentation and change detection for 

multimodal point clouds 

 

Q1: How to define joint categories for combined semantic segmentation and 

change detection and avoid information redundancy? 

 

Q2: How to design CNN architectures to fulfil the tasks of semantic 

segmentation and change detection? 

 

Q3: How to pre-process the dense matching point clouds so that the density 

and noise level are similar to the level of ALS data? 

 

Q4: How to input the point cloud data from two epochs into a CNN model? 

 

Q5: Which loss function can be used for joint model optimization? 

 

Q6: How to handle the problem of imbalanced categories in the joint task? 

 

1.5 Thesis outline 
 

The main motivation of the thesis is to study whether photogrammetric point 

clouds can be used to update ALS data and how to perform multimodal change 

detection. Our research did not start from developing change detection 

methods. Instead, we first investigate the quality of photogrammetric point 

clouds, DSMs and DTMs in order to answer whether the quality of dense image 

matching fulfills the requirement of data updating. In other words, we should 

answer first whether the quality of dense image matching products is 

equivalent to that of ALS data. After evaluating the quality of photogrammetric 

products, we turn to develop robust change detection methods specifically for 

multimodal point clouds. 
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The framework of this thesis is composed of two parts: data quality evaluation 

and change detection (Figure 1.6). We first analyze the difference between ALS 

data and DIM data qualitatively and quantitatively, and study whether the 

dense matching point clouds, DTMs and DSMs meet the requirements for ALS 

data updating. Then we put forward two methods for change detection between 

ALS data and DIM data: One change detection method is a patch-based change 

detection and delineation of the change boundaries. The other change 

detection method is combining the tasks of semantic segmentation and change 

detection. 

 

Evaluation and validation

Patch-based change detection 
and boundary delineation

Combined semantic segmentation 
and change detection

Evaluation of dense matching 
points and DSMs

Evaluation of filtering 
algorithms and DTMs

Chapter 2

Chapter 3

Chapter 4

Chapter 5

ALS data and DIM 
data from two epochs

Change detection 
and data updating

Change detection algorithms

 

Figure 1.6: Organization of research topics in the dissertation. 
 

More specifically, the organization of the chapters is as follows: 

 

Chapter 1 – Background, motivation and research objectives. It starts from 

the background and motivation of our research. Then a brief overview of the 

basics of airborne laser scanning and airborne photogrammetry is presented. 

Research problems with multimodal data, change definition and scene 

complexity are analyzed. Finally, research objectives and research questions 

are proposed. 

 

Chapter 2 - Quality assessment of dense matching points and DSMs. A 

quantitative method for point cloud quality assessment is proposed. The 

proposed measures not only indicate the point cloud accuracy, but also indicate 

the noise level. In the experiment, the proposed method is used to evaluate 

the quality of Enschede data. 
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Chapter 3 – Evaluation of standard LiDAR filters and the derived DTMs. It 

evaluates the effect of standard LiDAR filters on photogrammetric point clouds. 

This chapter proposes a ranking filter to reduce the noise in DIM points, which 

first filters the dense matching point cloud, and then evaluates the quality of 

the derived DTMs. 

 

Chapter 4 - Multimodal point cloud change detection based on a Convolutional 

Neural Network (CNN). Firstly, the method for normalizing multimodal input 

data is presented. Secondly, a Pseudo-Siamese Neural Network architecture is 

proposed. Then the boundary delineation method for changed buildings is 

introduced. Experiments are implemented on the Rotterdam data set. Results 

are evaluated at the patch-level, pixel-level, and object level, respectively. 

 

Chapter 5 - A method for combined semantic segmentation and change 

detection. Firstly, a deep learning architecture for combined semantic 

segmentation and change detection is proposed. Then the workflow for DIM 

data denoising and training data preparation is presented. Experiments are 

implemented on the Rotterdam data set. The effect of the proposed method is 

validated by comparing its performance with three other change detection 

methods. 

 

Chapter 6 – Conclusions and recommendations. It draws the conclusion of the 

whole thesis and provides the future recommendations. 

 
It should be noted that chapters through 2 to 5 are based on published 
scientific articles. Although there will be some overlap in their introduction and 

motivation, this design ensures that each chapter can be read or referred to as 
an independent section, allowing a reader to focus on the areas which are of 
particular interest to him or her. 
 
In addition, since the research focus from chapter 2 to chapter 5 are different, 
their related work also differs. Therefore, literature review will be embedded in 

each separate chapter. Chapter 2 reviews research on the evaluation of point 
clouds and DSMs generated from aerial photogrammetry. Chapter 3 reviews 
point cloud filtering algorithms. Chapter 4 reviews 3D change detection, 
multimodal change detection, and deep learning for multimodal data 
processing. Chapter 5 reviews semantic segmentation methods for point clouds.
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Chapter 2 – Patch-Based Evaluation of Dense 
Image Matching Quality1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
1 This chapter is based on: 

 

Zhang, Z., Gerke, M., Vosselman, G. and Yang, M. Y., 2018. A patch-based 

method for the evaluation of dense image matching quality. International 

Journal of Applied Earth Observation and Geoinformation, 70, 25-34. 
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2.1 Introduction 
 

Airborne laser scanning (ALS) and photogrammetry are the two main 

techniques to obtain 3D data representing the earth surface (Höhle and Höhle, 

2009). The properties of laser scanning and photogrammetry have been widely 

compared before (Baltsavias, 1999; Leberl et al., 2010; Haala et al., 2010; 

Remondino et al., 2014; Cavegn et al., 2014; Yang and Chen, 2015; Tian et 

al., 2017). Compared to airborne laser scanning, image acquisition in 

photogrammetry is mostly cheaper and more efficient in data acquisition flights 

(Hobi and Ginzler, 2012; Nurminen et al., 2013; Maltezos et al. 2016). In many 

countries photogrammetric image blocks are captured anyway for 

administrative and planning purposes with decreasing time intervals, so the 

question is to what extent these data can be used to replace ALS data in various 

application domains such as Digital Elevation Model (DEM) acquisition (Ressl 

et al., 2016), forestry mapping (Mura et al., 2015), classification and object 

extraction (Tomljenovic et al., 2016; Dong et al., 2017), and 3D modeling 

(Xiong et al., 2015). 

 

We want to explore the potential of using photogrammetric products as 

effective alternatives to laser scanning data. In order to judge this potential, it 

is necessary to evaluate the data quality of 3D products from dense image 

matching (DIM). Assessing the absolute accuracy of 3D data can be time-

consuming and labor-intensive for two reasons. Firstly, the reference data 

must be verified as being more accurate than the compared data. Secondly, 

the sample size should be sufficiently large to draw sound conclusions. The 

contributions are as follows: 

 

- The dense matching quality is evaluated robustly based on a large number of 

planar patches of the same size extracted from planar ground surfaces in both 

the DIM point cloud and the ALS point cloud. Quantitative quality measures 

are proposed to represent the accuracy and precision at both the local patch 

level and the whole block level. After considering possible breaklines in natural 

scene and excluding patches with possible changes between the DIM data and 

reference data, the evaluation based on these planar patches reveals the 

distribution of DIM errors in the whole photogrammetric block for the first time. 

Compared to the previous point-to-point and point-to-plane comparisons, this 

framework computing the plane-to-plane distance is more robust to local 

blunders and artefacts. 

 

- In order to test the usability of the proposed framework, several influence 

factors related to the DIM quality are studied. To capture oblique airborne 

imagery is not yet standard, but especially in urban applications it becomes 

more important (Toschi et al., 2017). Hence, we also evaluate how the 

additional use of oblique images influences the dense matching quality. 
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Meanwhile, suggestions are given on the photogrammetric quality control and 

dense matching parameter settings. 

 

The chapter is organized as follows: Section 2.2 presents the patch-based DIM 

evaluation framework. Section 2.3 gives details on the study area and 

experimental settings, while section 2.4 focuses on experimental results. 

Section 2.5 discusses those results and section 2.6 finally concludes the 

chapter. 

 

2.2 Related work 
 

Evaluating the quality of 3D data often comes as the preceding step before 

data application. As fundamental 3D products representing the object space, 

point clouds and regular DSMs can be derived from a standard 

photogrammetric workflow. A point cloud has single points which carry the full 

geometric information, including possible individual errors. The advantage of 

DSMs is that the random noise might be averaged out. Users often neglect the 

raw point cloud just because the regular DSM data are easier to handle (e.g. 

Rottensteiner et al., 2014; Qin, 2014; Gevaert et al., 2017). Meanwhile, they 

assume that the accuracy of DSMs is equal or at least close to the accuracy of 

point clouds. However, whether the object details are retained in the DSM data 

largely depends on the scene, raw point cloud quality and interpolation method. 

Therefore, both point clouds and DSMs have their pros and cons. Depending 

on the application, both are useful, and hence should be analyzed separately. 

Previous work of evaluating the absolute accuracy of 3D data can be divided 

into two categories based on the reference data. 

 

In some previous evaluation studies, the reference data was collected by Real 

Time Kinematic (RTK) GPS. However, the sample size was relatively small in 

this case. Jaud et al. (2016) evaluated point clouds generated from images 

obtained by Unmanned Aerial Vehicles (UAVs). Twenty-four ground targets 

were set in the study area which served as GCPs in the triangulation and as 

check points in the DIM evaluation. The coordinates of these targets were 

obtained by post-processed differential GPS. Hobi and Ginzler (2012) 

evaluated the quality of Digital Surface Models (DSMs) from stereo matching 

of WorldView-2 satellite images and ADS80 aerial images using 36 reference 

points obtained by sub-decimeter differential GPS. Nurminen et al. (2013) 

studied the accuracy of DSMs derived from ALS and DIM in the estimation of 

plot-level variables. The reference variables of the forest plots were obtained 

by field surveys. 

 

In addition, the reference data may be obtained by laser scanning. The basic 

assumption is that the point clouds obtained by laser scanning are more 
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accurate than point clouds from photogrammetry, at least concerning the 

height component. Mandlburger et al. (2017) calculated the deviation between 

DIM-DSM and Lidar-DSM at impervious surfaces and found a systematic 

deviation of 0.043 m and a dispersion of 0.041 m. Tian et al. (2017) selected 

184 inventory plots as the samples for DSM evaluation in a forest area. Two 

datasets from ALS were taken as reference data. Similar work taking laser 

scanning data as reference can also be found in (Poon et al. 2005; Gehrke et 

al., 2010; Moussa et al., 2013; Remondino et al. 2014; Nex et al., 2015; Jaud 

et al., 2016; Maltezos et al., 2016; Sofia et al., 2016; Ressl et al 2016). 

 

Some deficiencies of previous DIM evaluation work are summarized as follows: 

Firstly, some studies evaluated the point cloud derived from Semi-Global 

Matching (SGM) by making comparisons with ALS data or terrestrial laser 

scanning data on a planar sports field, complex castle or building façade (e.g. 

in Rothermel et al, 2012; Haala and Rothermel, 2012; Cavegn et al., 2014; 

Remondino et al., 2017). However, the small sample size or local area cannot 

properly represent the error distribution in the whole block. Secondly, when 

calculating quality measures, point-to-point distance (Kraus et al., 2006) and 

point-to-plane distance (Rothermel and Haala, 2011; Nex et al., 2015) were 

widely used as the measures to represent the accuracy. However, these 

measures are sensitive to blunders and random noise within the dense 

matching point clouds. Thirdly, the quality measures were less reliable or 

persuasive if calculated without consideration of the breaklines in natural 

scenes, such as bumpy terrain, edges of traffic islands or curbstones, and 

edges and ridges of roofs (e.g. in Ressl et al., 2016; Jaud et al., 2016). 

 

In our previous work of evaluating point cloud from multi-view 

photogrammetry (Zhang et al., 2017), robust quality measures were calculated 

on each roof segment. The problem was that the roof sizes and inclination 

angles varied from roof to roof. In this paper, a framework for evaluating point 

clouds and DSMs generated from a state-of-the-art dense matching algorithm 

is proposed. 

 

2.3 Methodology 
 

In our evaluation framework, an ALS point cloud is taken as the reference data. 

The ALS data are assumed to be accurate with regards to the external 

reference and precise in consideration of random noise. The “patches” used as 

evaluation units are regular squares selected on the planar ground from the 

ALS data. Every patch is a sample for quality evaluation. Therefore, the densely 

selected patches on the ground can indicate the error distribution in the whole 

photogrammetric block. The proposed framework for DIM evaluation includes 

four steps: Firstly, square patches are detected from the ALS data and 
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validated (Section 2.3.1); Secondly, corresponding DIM points are searched 

for each patch and the patches are further screened based on patch-based 

attributes (Section 2.3.2); Thirdly, quality measures are computed (Section 

2.3.3); Finally, statistical analyses are performed on the valid patches. 

 

2.3.1 Patch detection 
 

The goal of patch detection is to localize candidate planar patches on the ALS 

point cloud. The patches taken as samples should be selected on the planar 

ground area from the ALS data. The selection of patches should further avoid 

data gaps and breaklines. Planar patches of uniform size with acceptable noise 

level are considered valid and thus used for evaluation purpose. 

 

Input ALS Point Cloud Filtering
Surface based 

Segmentation
Patch Selection

 
Figure 2.1: Workflow for detecting candidate patches from ALS point cloud. 

 

In Figure 2.1, the workflow is depicted. Firstly, ground points are identified 

from the ALS data using the method of (Axelsson, 2000). Then planar 

segments are extracted from ground points using a surface-based growing 

method (Vosselman, 2013). This approach employs the 3D Hough transform 

to detect seed surfaces. Then the nearby points are added to the surface if the 

distance from a certain point to the fitted plane is below a certain threshold. 

After new points are added to the segment, the plane parameters are 

recalculated before testing the next point. Slight over-segmentation is 

preferred over under-segmentation: over-segmentation can ensure better 

planarity and help avoiding breaklines in the segments. 

 

After segmentation, the laser points with segment labels should be screened 

to discard small clusters or noisy segments. Features listed in Table 2.1 are 

used to remove these small or noisy segments. Segment size is used to 

eliminate small segments; linearity of segment is used to eliminate narrow 

segments; Plane slope is used to exclude segments on steep slopes; average 

angle and residual of plane fitting (RPF) are used to eliminate noisy clusters. A 

segment is kept only if it passes the check based on the five features. 
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Table 2.1: Segment-based features for extracting smooth segments. 

Feature Description 

Segment size Number of points in the segment 

Linearity of segment (𝜆1 − 𝜆2 ) 𝜆1 ⁄ , 𝜆1  is the maximum eigenvalue of 

the covariance matrix (Weinmann et al., 2015) 

Plane slope Normal direction of the fitted plane 

Average angle Mean of the angles between local point normals 

and the fitted plane normal 

Residual of plane 

fitting (RPF) 

Standard deviation of the distances between 

points and the plane fitted to the segment 

 

After smooth segments are obtained, patch selection is implemented in the 

bounding box of the segments. Figure 2.2 shows that the bounding box is 

calculated around all the points in the segment. In Figure 2.2(b) and (c), the 

white cells indicate data gaps or empty cells, the grey cells indicate cells with 

points. (c) shows that the patch size is 4 × 4 cells represented by the red frame: 

the patch is valid only if there is no data gap in the 16 cells. A raster grid is 

built within the bounding box in the horizontal space. If there is no point within 

a certain grid cell, the grid cell is set to empty, i.e. white cells in Figure 2.2(b) 

and (c). 

 

 
(a) (b) (c) 

 

Figure 2.2: Patch selection from the data gap grid in the horizontal space. (a) 

points in a planar segment; (b) grid of data gaps; (c) patch selection. 

 

A patch is compiled out of several initial grid cells and is within the bounding 

box of the segment. The patch size should be scaled with the point density. It 

should be large enough to contain sufficient points but small enough to 

guarantee a large number of samples. In this paper, the cell size is set to 0.5 

× 0.5 m and one patch contains 4 × 4 cells (see Figure 2.2(c)). Hence, the 

patch size is 2 m × 2 m. If no data gap is detected in any cell within this patch, 

this patch is valid. In this way, the patch selection method can automatically 

avoid the locations of data gaps in the segments. The cell size is determined 

according to the laser point density. It should be large enough to guarantee at 

least one point in each cell in areas without data gaps. Additionally, in order to 

speed up the iteration, the stride can be two or more grid cells each time. Due 
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to the “brute-force” search over dense grid cells, many selected patched are 

overlapping. The densely overlapping patches are screened automatically 

based on the spatial relationship to make sure that a certain location in the 

study area is used only once. 

 

2.3.2 Patch screening 
 

After patch detection, the candidate patch locations were obtained. The DIM 

points of a certain patch are selected according to the overlapping ALS patch. 

That is, the selection of DIM points adopts the same bounds as the ALS patch. 

Rule-based screening is implemented again at the patch level as previously 

implemented on the ALS segments in Section 2.3.1. Four rules are employed 

to screen the patches for different purposes: 

 

(1) Number of points in the DIM patch: The DIM patches with data gaps are 

eliminated. 

 

(2) Mean deviation between ALS patch and DIM patch: ALS data and aerial 

imagery could be captured at different times. This rule is to ensure that the 

mean deviation is caused by dense matching error but not by natural or man-

made changes in between the ALS data and DIM data. The threshold for mean 

deviations should be for example at 0.99 quantile of the mean deviations. 

 

(3) Shading attribute: The dense matching points in shadow often contain 

blunders and artefacts. For example, the dense matching errors along narrow 

alleys (often in shadow) are supposed to be much larger than the errors in the 

open area. Hence, patches in shadow should not be used for evaluation. The 

shadow mask is calculated from an orthoimage based on a grayscale histogram 

(Sirmacek and Unsalan, 2009). Only if all the four corners and the center 

location of a certain patch lie in the non-shaded area, the patch is accepted as 

non-shaded patch. 

 

(4) Green index: After the above screening, some patches on the grassland 

can still be left. They should not be used for evaluation. The reason is that 

dense matching usually delivers points on top surface of grass, while laser 

scanning can penetrate the grass and represent the soil surface. In this case, 

the computed mean deviations will contain not only dense matching errors, but 

also the grass height. The Normalized Excessive Green Index (nEGI) in Eq. (2-

1) is used to filter out vegetation patches on the orthoimages (Qin, 2014). 

 

 𝑛𝐸𝐺𝐼 = (2𝐺 − 𝑅 − 𝐵) (2𝐺 + 𝑅 + 𝐵)⁄  (2-1) 
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Similar to the shading attribute, only if all the four corners and the center of a 

patch are labelled as non-vegetation, this patch will be used for evaluation. 

After patch screening, DIM evaluation and statistical analysis are performed 

based on these valid patches. 

 

2.3.3 Patch-based quality measures 
 

The quality measures are calculated at each patch. This paper evaluates two 

factors related to the data quality: 

 

- Accuracy: the deviation between the compared data and the ground truth (or 

reference data). 

 

- Precision: the relative closeness of many measurements (in our case, dense 

matching points) to each other, i.e. the level of random noise. 

 

Accuracy and precision are independent of each other. This paper only focuses 

on the vertical component of the point clouds and DSMs. Assuming that the 3D 

data show a normal distribution and contain no blunders, Table 2.2 shows the 

quality measures calculated at the patch level and the photogrammetric block 

level to represent the data accuracy and precision. The patch-based measures 

are aggregated into the block-level quality measures. In Table 2.2, 𝑖 denotes 

the index of a patch in the whole block; 𝑗 denotes the index of a specific DIM 

point in a certain patch. ∆ℎ𝑖𝑗  denotes the deviation from the 𝑗th DIM point to 

the plane which is fitted to all the ALS points within the 𝑖th patch. 𝑛𝑖  denotes 

the number of DIM points in the 𝑖th patch. 𝑚 denotes the number of patches 

in the whole block which is also the sample size for statistical analysis. 

 

Table 2.2: Quantitative quality measures for dense matching evaluation 

Level 
Quality 

measure 
Definition Meaning 

Patch-

level 

Mean deviation 𝜇𝑖 =
1

𝑛𝑖
∑ ∆ℎ𝑖𝑗

𝑛𝑖

𝑗=1
 

Accuracy of DIM 

points in a certain 

patch w.r.t. the 

reference ALS plane 

Standard 

deviation 
𝜎𝑖 = √

1

𝑛𝑖 − 1
∑ (∆ℎ𝑖𝑗 − 𝜇𝑖)

2𝑛

𝑗=1
 

Precision of DIM 

data in a certain 

patch 

Block-

level 

Mean of mean 

deviations 
�̅� =

1

𝑚
∑ 𝜇𝑖

𝑚

𝑖=1
 

Overall accuracy of 

DIM data in the 

whole block 
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Standard 

deviation of 

mean 

deviations 

𝜎𝜇 = √
1

𝑚 − 1
∑ (𝜇𝑖 − �̅�)2

𝑚

𝑖=1
 

Variation of 

accuracy measures 

in the block 

Average 

standard 

deviation 

𝜇𝜎 = √
1

𝑚
∑ 𝜎𝑖

2
𝑚

𝑖=1
 

Overall precision of 

DIM data in the 

block 

 

In Table 2.2, Mean deviation and Standard deviation are to indicate accuracy 

and precision at single patch level (Index 𝑖 indicates a patch). Both �̅� and 𝜎𝜇 

are measures indicating the accuracy at the block level. Specifically, a larger 

𝜎𝜇 indicates more dispersed patch-based errors in the block. In addition, 𝜇𝜎 is 

to indicate the level of precision in the whole block. 

 

In addition to the point cloud from dense matching, a DSM is also obtained 

from a standard photogrammetric workflow. The DSMs from a 

photogrammetric workflow can be in grid data structure but saved in point 

cloud format. Same with cropping point cloud patches, the DSM patches are 

generated by cutting out the corresponding patch area from the raster DSM. 

 

2.4 Study area and experimental setup 
 

2.4.1 Study area 
 

The study area is located in Enschede, The Netherlands. Figure 2.3 shows the 

dense matching block and the area for quality evaluation (1.6 km2). This area 

is a densely-built urban area mainly covered by buildings, roads, squares, 

railways and vegetation. 510 aerial images including 102 nadir images and 408 

oblique images were obtained by Slagboom en Peeters in 2011 together with 

exterior orientations. The tilt angle of oblique view is approximately 45°. The 

image size is 5616 × 3744 pixels. The GSD of nadir images equals 0.1 m. The 

overlap of nadir images is approximately 75% both along track and across 

track. The ALS data were acquired in 2007. The standard deviation of height 

differences between overlapping strips was around 2 cm (Vosselman, 2008). 

The absolute height accuracy has not been analysed before. In the block, 105 

ground reference targets (RTs) were measured with a Leica CS15 receiver 

using real time kinematic GPS. When collecting RTs, the accuracy of almost all 

the 105 RTs was better than 0.02 m in X, Y and Z directions, respectively; For 

several RTs, however, the accuracy in one or two directions were in between 

0.02 m and 0.03 m. All of the RTs were the corners of zebra crossings, centers 

of manholes or other distinctive corners in the urban scene. 
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(a) (b) 

Figure 2.3: Dense matching block and orthoimage for the evaluation area. (a) 

Dense matching points of the whole block; (b) Orthoimage of the area for 

quality evaluation. The area in the yellow frame in (a) is exactly the same area 

as shown in (b). 

 

The RTs are used to evaluate the ALS quality. Since all the RTs are located in 

the open area, planes are fitted to the neighboring ALS points. The vertical 

residual from a RT to the fitted ALS plane is calculated as the indicator for the 

ALS accuracy. Results show that the mean deviation (𝜇) and standard deviation 

(𝜎) between the RTs and the fitted ALS plane are 0.013 m and 0.031 m. 

Furthermore, if the residual from RT to the ALS fitted plane is larger than three 

times of the standard deviations (𝜎), this RT will be discarded. This cross-

verification ensures that both the ALS data and RTs used in the BBA, dense 

matching and DIM evaluation are reliable. Finally, 99 RTs passing this cross-

verification are used as GCPs or check points in the BBA. 

 

2.4.2 Bundle adjustment 
 

In the step of BBA, two configurations with 5 and 44 GCPs are set up for 

comparative study. The motivation to use and evaluate 2 different GCP-

scenarios is to check whether block deformation, possibly caused by an 

insufficient GCP distribution, or by overfitting effects, will be observed by our 

evaluation method. The GCPs are evenly distributed in the block in both 

scenarios (Figure 2.4). When 5 or 44 RTs are used as GCPs, the remaining 94 

and 55 RTs are taken as check points, respectively. Note that direct sensor 

orientation elements available in this dataset are considered unreliable, 

therefore an indirect senor orientation approach is implemented. The results 

of the two configurations with 5 GCPs and 44 GCPs are presented in Section 

2.5.1 and Section 2.5.2, respectively. 
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(a) (b) 

Figure 2.4: Two configurations with different GCP amounts used in bundle 

adjustment: (a) Configuration with 5 GCPs; (b) Configuration with 44 GCPs. 

The white dots show the GCP distributions in the block. The yellow rectangle 

indicates the area for DIM evaluation (1.6 km2). 

 

The BBA was run in Pix4Dmapper Pro (version 3.2) on the original full 

resolution images. The standard deviation of the 3D GCPs was set to 0.02 m 

(default value in Pix4D) which controlled the GCPs weights in BBA. Table 2.3 

shows the vertical RMSEs at GCPs and check points (CPs) when the horizontal 

accuracy of GCPs is 0.02 m. When the GCP amount increases from 5 to 44, the 

BBA network becomes more difficult to fit. Hence, the RMSE at GCPs increases. 

Meanwhile, the overall BBA accuracy is improved which is supported by the 

improved RMSE at check points. 

 

Table 2.3: Vertical RMSEs at GCPs and CPs 

Number of GCPs Number of CPs RMSE at GCPs (m) RMSE at CPs (m) 

5 94 0.007 0.060 

44 55 0.018 0.031 

 

2.4.3 Dense image matching 
 

For the execution of dense image matching, we select the state-of-the-art 

software SURE (Surface Reconstruction, version 2.1.0.33) from nFrames. A 

few work has reported its performance in data accuracy (Haala and Rothermel, 

2012; Rothermel et al., 2012; Ressl et al., 2016). The dense matching 

algorithm in SURE is a tube-shaped SGM (t-SGM). The SGM method in 

(Hirschmüller, 2008) is improved by restricting the disparity searching space 

which leads to a higher efficiency. Furthermore, the redundant disparity 

information is exploited to eliminate blunders and increase the accuracy of 

depth. 

 

The interior orientation (IOs) and exterior orientation (EOs) elements are 

imported from Pix4D. Several parameters are supposed to control the dense 

matching quality. Minimum Model Count (MMC) represents the minimum 
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number of models for a 3D point to be considered valid during triangulation. A 

larger MMC increases the reliability of generated points but also leads to a 

lower number of accepted matched points. When MMC is set large (e.g. ≥ 3), 

we find that many data gaps appear in narrow alleys. Hence, MMC is fixed to 

2 in all our experiments. The image scale for dense matching is fixed to 1/2 so 

that the dense matching pipeline can be much faster compared to running at 

full scale. Note that different image scales used in dense matching will also 

affect the dense matching quality, but the impact of image scale is not the 

focus of our paper. The interpolation method for DSM generation is set to 

Inverse Distance Weighting (IDW). The resolution of the DSM grid is 0.1 m, i.e. 

equal to the size of nadir GSD. 

 

The DIM data quality based on the configuration with 5 GCPs is evaluated to 

study the two issues: (1) The impact of the additional use of oblique images 

on the dense matching accuracy and precision; (2) Whether the accuracy of 

point cloud and DSM from a photogrammetric pipeline are the same. In 

summary, four data sets are obtained: 

 

(1) GCP05_N+O_PC; 

(2) GCP05_N+O_DSM; 

(3) GCP05_N_PC; 

(4) GCP05_N_DSM. 

 

The naming scheme of the four data sets above shows different parameters of 

the data. GCP05 means 5 GCPs are used in BBA; N+O indicates that both nadir 

(N) and oblique (O) images are used in dense matching; “N” indicates that only 

nadir images are used in dense matching; PC or DSM refers to point cloud or 

DSM, respectively. 

 

2.4.4 Parameter settings for DIM evaluation 
 

In the segmentation step during patch detection, a surface growing radius of 

1.0 m and maximum distance between point and fitted plane of 0.2 m are 

employed according to the point cloud density and noise level (Vosselman, 

2013). The thresholds for the rules in Table 2.1 are set based on 200 valid 

segments and 200 invalid segments: segment size is 100, linearity of segment 

is 0.99, plane slope is 45°, RPF is 0.1 m, and average angle is 5°. The 

histograms of each feature for valid and invalid segments are depicted, 

respectively. Then the value that can best separate the two groups of segments 

is manually taken as the threshold. For example, the segment size is set 

according to the histogram of point amounts in these 200 valid segments. The 

smallest segment size is 100. Also segments with less than 100 points are very 

likely to be small noisy clusters. The segments with linearity of segment value 
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larger than 0.99 are likely to be poles or other linear structures according to 

the histograms of invalid segments. 

 

In patch screening, the threshold for number of points is determined from the 

histograms of the point amounts in the valid and invalid DIM patches. The 

mean deviation threshold is set by adding the 0.99 quantile of the mean 

deviations with some small tolerance value (e.g. 0.02 m). The threshold for 

nEGI in Eq. (2-1) is set to 0.1 to recognize vegetation (Qin, 2014). 

 

2.5 Experimental results 
 

2.5.1 Results of the configuration with 5 GCPs 

 

After patch screening, 7391 patches on the grassland and 2111 patches in the 

shadow are filtered out and then only patch samples in the bare ground areas 

are evaluated in this paper. Figure 2.5 shows some examples of valid patches 

marked in blue, which are further used for DIM evaluation. Generally, almost 

all the selected patches are away from shadow, grassland and breaklines. 

Specifically, the left figure shows the selected patches on the central bus 

station of Enschede. The white stripes are actually platforms higher than the 

grey ground by around 0.2 m. The proposed algorithm performs well in 

extracting planar patches away from breaklines. 

 

         
Figure 2.5: Examples for extracted patches marked by blue squares. Patch 

size is 2 m × 2 m. 

 

Finally, 24,634 non-shaded patches of 2 m × 2 m are selected in the whole 

block, i.e. 0.1 km2 totally. In order to make the block-level quality measures 

comparable, the same patch samples are used to evaluate the four data sets. 

Table 2.4 shows the quality measures at the block level calculated for the four 

data sets. 
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Table 2.4: Quality measures for point clouds and DSMs in configurations with 

5 GCPs (m). 

Data sets 
N+O  N 

�̅�  𝜎𝜇  𝜇𝜎   �̅�  𝜎𝜇  𝜇𝜎  

Point cloud (PC) 0.002 0.040 0.094  0.016 0.045 0.106 

DSM 0.034 0.060 0.048  0.024 0.066 0.083 

 

2.5.1.1 Evaluation of the impact of oblique images 

 

The first row of Table 2.4 shows the comparison between GCP05_N+O_PC and 

GCP05_N_PC. A general finding is that when both nadir and oblique images 

are used in dense matching, all the three quality measures are better than the 

measures of configuration with only nadir images. The μ̅ improves remarkably 

by 0.014 m from 0.016 m to 0.002 m when oblique images are used; The σμ 

improves very slightly by 0.005 m; The μσ also improves by 0.012 m. 

 

The distribution of mean deviations in the whole block for the two 

configurations are shown in Figure 2.6. A normal distribution is estimated using 

the mean and standard deviation calculated from the same data set. The 

normal distribution is scaled and then superimposed on the histogram to 

visualize the deviation between the real measurements and a normal 

distribution (Höhle and Höhle, 2009). In each histogram, the horizontal axis 

indicates the patch-based mean deviation, the vertical axis indicates the 

frequency of patches in the whole block. The scale and interval of the axes for 

the two histograms are all the same. 

 

  
[-0.06, 0.07] [-0.06, 0.09] 

(a) GCP05_N+O_PC (b) GCP05_N_PC 

Figure 2.6: Distribution of mean deviations for 24,634 non-shaded ground 

patches (Unit: m). All the histograms are overlaid with an estimated normal 

distribution. The interval below each histogram refers to the 0.05 and 0.95 

quantile, respectively. 

 

The peak of Figure 2.6(a) is located at approximately 0 which corresponds with 

�̅� = 0.002 m in Table 4. The histogram is centralized and “thin” in shape which 
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corresponds with 𝜎𝜇 = 0.040 m. The mean deviations range from -0.060 m to 

0.070 m which means that in most patches, the vertical error of dense 

matching is better than 1 GSD. Figure 2.6(b) shows a relatively dispersed 

histogram compared to Figure 2.6(a). In Figure 2.6(b), the peak is located at 

0.016 m at the horizontal axis. The range of mean deviations from -0.060 m 

to 0.090 m is slightly wider than in Figure 2.6(a). 

 

Figure 2.7 shows the patch-based mean deviations in the block for the data 

GCP05_N+O_PC colored according to the absolute mean deviation values. That 

is, each pixel indicates a patch location. The patch samples are densely 

distributed in the whole block, mainly on roads, squares and parking lots. 

According to the color bar, the absolute mean deviations range from 0 to 0.12 

m. Generally, the dense matching errors are homogenous in the whole block. 

However, in some locations, especially along narrow alleys, the mean 

deviations may get worse. The point clouds in those regions get less accurate 

for two reasons: First, there are usually less visible image rays on the ground; 

Second, the image contrast is poor so dense matching will be problematic when 

finding correspondences among images. 

 

 
Figure 2.7: Patch-based mean deviations in the whole block colored by the 

absolute values for the data GCP05_N+O_PC. Color coding from blue to red 

indicates that the mean deviation increases. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web 

version of this article.) 

 

2.5.1.2 Visualization of patch-based mean deviations 

 

The patch-based mean deviations are visualized in Figure 2.8. This square 

paved by concrete in our study area is relatively smooth. The square patches 

are colored based on positive or negative values. In Figure 2.8(b) and (d), the 

mean deviation values are filled in the squares to visualize the dense matching 

errors in each patch. 
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(a) N+O (b) N+O 

  

(c) N (d) N 

Figure 2.8: Visualization of patch-based mean deviations for the data sets 

GCP05_PC. The blue patches indicate positive values while the red indicates 

negative values, (a) and (b) show the mean deviations for the data 

GCP05_N+O_PC, (c) and (d) show the quality measures for GCP05_N_PC. The 

yellow rectangle on (a) is zoomed in and filled in the mean deviation values as 

shown in (b) and (d). 

 

Figure 2.8(a) and (c) show that the patch-based mean deviations vary between 

positive and negative on the square. The positive value indicates that the point 

cloud surface from dense matching is higher than the point cloud surface from 

laser scanning, and vice versa. We can infer that the point cloud surface from 

dense matching is fluctuating around the referred ALS surface. In addition, 

comparing Figure 2.8(a) and (c) in the red and blue patterns, or (b) and (d) in 

the values shows that whether or not oblique images are used in dense 

matching makes a large difference on the local accuracy. 

 

In addition, the profiles of ALS points and DIM points are shown in Figure 2.9. 

All the DIM data are generated from the configurations of 5 GCPs. The profile 

interval in the horizontal space is 0.25 m. Figure 2.9(a) shows the profiles 

along a smooth downtown square. Both profile N+O and profile N are 

fluctuating around the ALS profile. As a comparison, Figure 2.9(b) and (c) show 

the profiles across a narrow shaded alley and short grass. The deviation 

between ALS profile and DIM profile in Figure 2.9(a) and (b) is caused by the 

dense matching errors on the smooth surface with poor texture while the 

deviation in Figure 2.9(c) is mainly caused by the rugged grassland surface 

itself. 
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(a) Smooth square (b) Narrow alley (c) Grassland 

Figure 2.9: 3D data profiles for three area: (a) smooth concrete square, (b) 

narrow alley and (c) grassland. The top row shows the orthoimages with 

profiles marked in red. The bottom row depicts the relevant profiles for ALS 

point cloud (black), DIM_N+O (blue) and DIM_N (red). The horizontal axis 

indicates the interval along the profile, the vertical axis indicates the elevation. 

 

2.5.1.3 Comparison between point cloud and DSM 

 

As expected, the 𝜇𝜎 of DSMs in Table 2.4 indicates that the noise level is much 

lower than within the point clouds since interpolation is employed. Based on 

our evaluation framework, we observe a bias between point clouds and DSMs 

from the software pipeline. The first column in Table 2.4 shows that the 

difference of �̅� between point cloud and DSM for N+O is 0.032 m. The second 

column in Table 2.4 shows that the DSM surface is higher than the point cloud 

surface by 0.008 m when only nadir images are used in dense matching. 

Therefore, we conclude that the interpolation process changes the data 

accuracy; and the magnitude seems to depend on the point cloud density. 

Mandlburger et al. (2017) also reported the same deviation between point 

cloud surface and DSM surface so this deviation might be caused by the 

interpolation process in the SURE software. In order to visually analyse the 

deviation between point clouds and DSMs, refer to Figure 2.10. 
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(a) N+O (b) N 

Figure 2.10: Overlaid histograms of mean deviations for point cloud and DSM. 

Red histograms indicate the distributions of point clouds; blue histograms 

indicate the distributions of DSMs. “PC” in the legend indicates point cloud. 

(For interpretation of the references to color in this figure, the reader is 

referred to the web version of this article.) 

 

Figure 2.10(a) shows a clear deviation between the peaks of the two 

histograms while in Figure 2.10(b) the deviation is relatively smaller (0.032 m 

vs. 0.008 m) when oblique images are not used. Another finding is that the 

distribution of mean deviations for DSMs is more dispersed than for the point 

cloud, which corresponds with Table 2.4 that the 𝜎𝜇 of DSMs is larger than point 

clouds. In summary, although the noise level is reduced from point clouds to 

DSMs, the absolute accuracy is changed during interpolation and the error 

distribution in DSMs is more dispersed than in point clouds. 

 

2.5.2 Impact of number of GCPs and weights 
 

We evaluate the point cloud GCP44_N+O_PC using the same 24,634 patches 

as we did for the configuration with 5 GCPs. The calculated quality measures 

are listed in the last row of Table 2.5. It is obvious that the dense matching 

accuracy indicated by �̅� and 𝜎𝜇 gets worse when more GCPs are used. 

 

Table 2.5: Quality measures for point clouds when the GCP weights in BBA is 

set to 0.02 m (m). 

Configuration �̅�  𝜎𝜇  𝜇𝜎  

GCP05_N+O_PC 0.002 0.040 0.094 

GCP44_N+O_PC -0.026 0.049 0.098 

 

However, Table 2.3 in Section 2.4.2 shows that when the GCP amounts 

increases from 5 to 44, the RMSE at check points in BBA reported by Pix4D 

decreases from 0.060 m to 0.031 m. That is, the check points indicate that the 

accuracy of BBA is getting better when more GCPs are used. Empirical 

knowledge from previous studies (e.g. Gerke et al., 2016) also indicates that 

the more GCPs, the better the BBA accuracy will be. 

 

Therefore, when the GCP amount increases from 5 to 44, the accuracy of BBA 

gets improved, but the accuracy of the DIM point cloud deteriorates. This 

contradictory finding is further evaluated by visualizing the patch-based mean 

deviations in Figure 2.11. 
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Figure 2.11: Distribution of mean deviations (absolute values) for 

GCP44_N+O_PC when GCP weight for BBA is set to 0.02 m. 

 

Figure 2.11 shows inhomogeneous error distribution in the block. Even though 

the absolute mean deviations still range from 0 to 0.12 m, the absolute mean 

deviations in the southwest of the block is generally larger than the other parts. 

The block is thus verified to be overfitted. The image block with large forward 

and sideward overlaps results in a very strong network of bundles. When many 

GCPs are used with relatively high weights compared to the tie points, the 

noise in the GCPs leads to a deformation of the network of bundles. The 

resulting errors in the exterior orientations propagate to locally systematic 

errors in the dense matching point cloud. 

 

In order to check whether the BBA network is overfitted, the a priori standard 

deviation of the GCPs is set to 0.05 m in the BBA in Pix4D. In this case, the 

bundle adjustment network controlled by the GCPs gets “loose”. The BBA result 

is that the RMSE at GCPs is 0.019 m and the RMSE at check points is 0.031 m. 

Compared with Table 2.3, the RMSEs at GCPs and check points change very 

slightly. Then we evaluate the new point cloud generated by SURE with new 

orientations. We observe a large improvement in the point cloud quality. The 

�̅�, 𝜎𝜇 and 𝜇𝜎 for the new point cloud (from GCP standard deviations of 0.05 m) 

is 0.011 m, 0.044 m and 0.094 m, respectively. Comparing these results to 

those obtained with the higher GCP weights (Table 2.5), in particular the �̅� 

value of 0.011 m indicates that the systematic error is strongly reduced. 

 

The overfitting effect is alleviated as shown in Figure 2.12. The homogeneity 

level of mean deviations in the block is much better than Figure 2.11 and no 

remarkable systematic deviations appear. 
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Figure 2.12: Distribution of mean deviations (absolute values) for 

GCP44_N+O_PC when GCP weight for BBA is set to 0.05 m. 

 

2.6 Discussion 
 

In our evaluation framework, both the �̅� and 𝜎𝜇  are used to represent the 

dense matching accuracy in the block. The �̅� indicates the general bias of the 

DIM points from the reference while the 𝜎𝜇 indicates the dispersion level of the 

dense matching errors. In Table 2.4, when oblique images and nadir images 

are both used in dense matching, the �̅�  gets improved, but the 𝜎𝜇  keeps 

relatively stable. 

 

Even when the ALS accuracy is verified in Section 2.4.2, the noise in the ALS 

data still has a small impact on the computed quality measures. These should 

be taken into account when assessing whether the quality of a DIM point cloud 

meets the requirements of a project. 

 

A good point cloud should not only be accurate but also represent the object 

details with little random noise. When tuning the parameters in dense matching, 

the key is to balance between data gap level and noise level. Dense matching 

quality depends largely on the image contrast and texture. In order to obtain 

less noisy points from the SURE software on the problematic locations (e.g. 

narrow streets or in shadow), the parameter MMC should be set as large as 

possible as long as the data gap level is still acceptable. The dense matching 

can be more challenging in densely-built urban areas. The dense matching 

quality on open smooth ground with better texture is usually more reliable than 

locations with poor texture. The DIM data profiles in Figure 2.9 show that dense 

matching will be problematic in representing the ground details along the 

narrow alleys. 
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Concerning the overfitting in the BBA, this effect cannot be detected by 

evaluating the BBA accuracy based on the RMSEs determined with a few check 

points as common in many previous studies but can be detected in our 

evaluation framework. Our finding shows that the RMSEs of check points in the 

BBA are not equivalent to the point cloud accuracy from dense matching. In 

our two comparative experiments, the BBA network becomes overfitted when 

44 GCPs with high weights are employed in BBA; In contrast, the point cloud 

GCP05_N+O_PC with only 5 GCPs has already achieved the accuracy better 

than 1 GSD. It should, however, be noted that when only few GCPs are used, 

the BBA may become more sensitive to the selection of GCPs. That is, the BBA 

network is easier to become biased due to one or two inaccurate GCPs. 

 

2.7 Conclusions 
 
In order to check the potential of using point clouds derived by dense matching 

as effective alternatives to laser scanning data, we have presented a 

framework for evaluating the quality of 3D point clouds and DSMs generated 

by dense image matching in urban area. Square patches of uniform size are 

extracted from planar terrain with the guidance of ALS data. The previous 

evaluation work based on check points simply reveals the BBA accuracy, which 

is not equivalent to the accuracy of photogrammetric point clouds. In contrast, 

our evaluation framework based on large sample size is able to reveal the 

distribution of dense matching errors in a whole photogrammetric block. This 

framework based on “plane-to-plane” distance is robust to possible blunders 

and artefacts in the DIM points. Robust quality measures are proposed to 

represent the dense matching accuracy and precision quantitatively. 

Experiments show that the optimal accuracy of DIM point cloud is as follows: 

the overall mean offset to the reference is 0.1 GSD; the maximum mean 

deviation reaches 1.0 GSD. 

 

In order to further test the usability of the proposed framework, some factors 

that may affect the DIM quality are studied. Based on our evaluation 

framework, we find that when oblique images are used in dense matching 

together with nadir images, the accuracy of DIM point cloud improves, and the 

noise level decreases on smooth ground areas. The evaluation framework also 

reports a deviation between the point cloud and DSM generated by a single 

photogrammetric workflow. The deviation is less distinct when the point cloud 

density drops. When many GCPs with high weights are employed in BBA, the 

BBA network may become overfitted, which is reflected in the inhomogeneous 

distribution of the patch-based DIM errors. This problem cannot be detected 

by check points in BBA. While this paper evaluates the impact of oblique images 

and compares the point clouds and DSMs, future work can still study the impact 
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of other factors (e.g. GCP amounts, image scale, MMC, land cover (bare ground 

or grassland), and the presence of shadow) on the DIM data quality. 
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Chapter 3 – Filtering Photogrammetric Point 
Clouds Using Standard Lidar Filters Towards 
DTM Generation 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
2 This chapter is based on: 
 
Zhang, Z., Gerke, M., Vosselman, G. and Yang, M. Y., 2018. Filtering 
photogrammetric point clouds using standard lidar filters towards DTM 
generation. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial 
Information Sciences, 4(2), 319-326. 
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3.1 Introduction 
 

As basic topographical data, Digital Terrain Models (DTMs) are widely used in 

ortho image rectification, scene classification, 3D reconstruction, etc. Currently, 

DTMs can be obtained by airborne laser scanning (ALS), digital 

photogrammetry and interferometric synthetic aperture radar (InSAR) (Chen 

et al., 2016). During the last two decades, much effort has been paid to filtering 

the ALS points and obtaining DTMs. DTMs are derived by point cloud filtering 

followed by interpolation. The second method for DTM generation is aerial 

photogrammetry. The 3D object coordinates are obtained by matching two or 

more overlapping images, for instance by dense image matching (DIM). The 

resulting point clouds can also be used as the basis for DTM production. 

 

While the technique of DTM generation from ALS data is relatively mature after 

20 years of development, it is still valuable that we investigate the technique 

of DTM generation from aerial imagery. Taking the Netherlands as example, 

normally, a period of five years is required to update the whole national DTM 

using ALS data. In contrast, aerial images over the country are obtained yearly. 

Therefore, generating DTM from aerial imagery can significantly shorten the 

interval for data updating. 

 

Advances in aerial image quality and dense matching techniques provide the 

feasibility of extracting high quality DTMs from aerial images. Firstly, aerial 

images are obtained with higher radiometric quality. On-board GPS and Inertial 

Measurement Unit (IMU) allow to obtain more and more accurate orientation 

elements for bundle adjustment. Development in dense matching algorithms, 

e.g. Patch-based Multi-View Stereo (PMVS) (Furukawa and Ponce, 2010) and 

Semi-global Matching (SGM) (Hirschmüller, 2008) makes it possible to obtain 

accurate point cloud. nFrames SURE states that the vertical accuracy of their 

products can be better than 1 pixel. Pix4Dmapper (“Pix4D” are used below) 

also reports 1-3 GSD vertical accuracy. The evaluation based on roof segments 

in (Zhang et al., 2017) also confirms that the vertical accuracy achieved by 

Pix4D is better than 2 GSD. These numbers give rise to the assumption that it 

is possible to generate accurate DTMs from dense matching points. 

 

The aim of this paper is to study whether the standard Lidar filters can be used 

to filter DIM points towards DTM generation. Some previous studies have 

compared the characteristics of point clouds from laser scanning and dense 

matching. Accuracy and noise level are the two critical factors that influence 

the final DTM quality. In the airborne cases, the vertical accuracy of dense 

matching is usually worse than the accuracy from laser scanning. Compared to 

the ALS point cloud, the noise level of the DIM data depends on the dense 

matching algorithm and denoising method (Ressl et al., 2016; Zhang et al., 

2017). In ALS points data gaps may appear on wet terrain surface while in DIM 
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points data gaps appear due to failing image matching. These data gaps will 

cause problems in DTM interpolation. 

 

The chapter is structured as follows: In Section 3.2, we review some work of 

DTM generation from ALS data and DIM data. Section 3.3.1 introduces the data 

and experimental setup. Section 3.3.2 studies the robustness of standard Lidar 

filter to DIM noise and artefacts. Section 2.3.3 evaluates the filtering result on 

the DIM points in urban scenes. Based on the filtering result in Section 3.3, 

Section 3.4 evaluates the potential DTM accuracy derived from DIM point 

clouds. Section 3.5 concludes the work. The paper not only shows the 

deficiencies within the DIM points compared to ALS points, but also discusses 

the research problems related to generating accurate DTMs from DIM points. 

 

3.2 Related work 
 

Since the end of 1990s, optical sensors, radar systems and laser scanning 

systems have been widely used to capture topographic data (Li, 2004). 3D 

object coordinates are commonly obtained by photogrammetry and laser 

scanning. DTMs are generated through filtering point clouds and then 

interpolating on the ground points. It has been a hot research topic to develop 

robust algorithms for filtering ALS points (Meng et al., 2010; Chen et al., 2017). 

 

Point cloud filtering is the process of discriminating between ground and non-

ground points. Generally, the filtering algorithms can be divided into five 

categories: morphological filtering (Kim and Shan, 2011), surface-based 

filtering (Kraus and Pfeifer, 1998), progressive TIN (Triangulated Irregular 

Network) densification (Axelsson, 2000), segment-based filtering (Lin and 

Zhang, 2014), classification-based filtering (Hu et al., 2016). A quantitative 

comparison of eight filtering methods can be found in (Sithole and Vosselman, 

2004). They found that filtering based on the local surface estimation was 

generally better than global filtering. Also no filter worked perfectly on various 

scene complexity. Nowadays, these standard Lidar filters are relatively mature 

and have already been implemented in many commercial software for laser 

scanning data processing, e.g. LAStools, SCOP++, Terrasolid. 

 

Recently some studies concerning DTM generation from dense image matching 

data were published. Among these studies, it is quite common that the filtering 

operation is run on the DSM instead of on the raw point clouds. The reason is 

that DSM interpolated from the DIM points is less noisy than the raw points 

while it still retains a similar accuracy (i.e. the bias level to the ground truth). 

Perko et al. (2015) and Mousa et al. (2017) filtered DSMs using a Multi-

directional and Slope Dependent filtering algorithm. Their DSMs were 

generated from satellite images and airborne images, respectively. Zhang et 
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al. (2016) filtered a medium resolution DSM from satellite images by using a 

two-step semi-global filtering method. Beumier and Idrissa (2016) tried to 

recognize the ground locations from the DSMs using a mean shift segmentation 

followed by a local regional filtering. In the DTM generation module of Pix4D, 

the software takes DSMs as input. The ground objects (e.g. buildings and trees) 

are identified and removed based on the local height gradient. Then the DSM 

is smoothed and interpolated into the final DTM. 

 

In addition, there are also a few studies filtering the raw DIM points. In general, 

the standard Lidar filter requires a precise point cloud with little noise as input. 

Yilmaz and Gungor (2016) compared the effects of five standard filters on the 

raw DIM points derived from UAV images. Debella-Gilo (2016) filtered the DIM 

points based on slope-based filtering aided by an existing lower-resolution DTM. 

However, they did not report on the noise level of the DIM point cloud or any 

denoising operation. 

 

Among the studies of generating DTM from photogrammetric point clouds, it is 

common to use the standard Lidar filtering algorithms or ideas to filter DIM 

points or DSM. Obviously, the noise level in the point clouds or DSMs has a 

major impact on the filtering result. However, no study has studied the impact 

of point cloud noise on the filtering result and thus the final DTM accuracy. In 

this paper, a comprehensive evaluation of the impact of noise level on the 

filtering result is implemented. We also evaluate the potential DTM accuracy 

that can be achieved in case that DIM points are filtered and then interpolated. 

 

3.3 Filtering DIM points using standard LiDAR filter 
 

In this section, we present some observations on filtering DIM points using the 

standard Lidar filter - LASground. The filtering algorithm used in LASground is 

a modification of the TIN-based approach by (Axelsson, 2000). The lowest 

points at the initial grid cells in the point cloud are selected as seed points; and 

then TIN facets are built using these seed points. The coarse TIN surface is 

densified with the remaining points by judging distance and angle - related 

criteria. LASground is widely used to filter ALS point cloud. It has been used to 

create DTM from photogrammetric DSM. In contrast, in this paper it is used to 

filter the raw photogrammetric point cloud. The research question is whether 

LASground can be used to filter point cloud from dense matching in which there 

are usually more random noise than in the Lidar data. 

 

3.3.1 Pre-processing and experimental setup 
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The study area lies in the city center of Enschede, The Netherlands as shown 

in Figure 3.1. In total, 510 aerial images including 102 nadir images and 408 

oblique images were obtained by Slagboom en Peeters in 2011. The Ground 

Sampling Distance (GSD) of nadir images is 10 cm. Bundle adjustment was 

run in Pix4D Pix4Dmapper (version 3.2) using the initial exterior orientations 

(EOs) and 15 evenly distributed GCPs. After bundle adjustment, the same EOs 

are used for dense matching in nFrames SURE (version 2.1.0.33) and Pix4D, 

respectively. Some dense matching parameters are set as below: in both 

software, the image scale is set to 1/2 resolution; the Minimum Model Count 

(MMC) in SURE is set to 2; the Minimum Number of Matches (MNM) in Pix4D 

is set to 3. Note that MMC and MNM in the two software are not comparable 

because the dense matching algorithms in them are different: SURE employs 

the tube-shape Semi-global matching (tSGM) (Rothermel et al., 2012) while 

Pix4D employs patch-based multi-view stereo. Our criterion for adjusting MMC 

and MNM is to balance the noise level and data gap level in the point cloud by 

visual inspection. 

 

The ALS data of the same area were acquired by FLI-MAP 400 system mounted 

in a helicopter in 2007. The point cloud density is 10 points/m2 and the 

maximum systematic error in height is 5 cm (van der Sande et al., 2010). The 

ALS data will be used as reference when evaluating the filtering result in 

Section 3.3.3 and when evaluating the potential DTM accuracy in Section 3.4. 

 

 

Figure 3.1: Orthoimage of the study area. The two regions within the yellow 

rectangles are used in Section 3.3.1. The region within the red rectangle is 

used in Section 3.3.2. The potential DTM accuracy of the whole area is 

evaluated in Section 2.4. The area for the two yellow regions, red regions and 

the whole study region is 880 m2, 6624 m2, 0.04 km2, 1.6 km2, respectively. 
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3.3.2 Robustness of LiDAR filter to point cloud noise 
 

Similar to DTM extraction from ALS point cloud, we assume that DTM sample 

points can be obtained from two land cover types: paved (or bare) ground and 

grassland. In this section, we only select pieces of smooth terrain and 

homogeneous grassland for evaluating the impact of random noise on the 

filtering. The filtering effect on the bumpy terrain or other small objects is not 

studied here. Two homogeneous and smooth regions marked by the yellow 

rectangles in Figure 3.1 are used for tests: the left one is smooth ground paved 

by concrete; the right one is grassland. 

 
Several parameters in LASground affect the filtering performance. Since our 

study area is in urban area, the scene is set to “city or warehouses” (i.e. a step 

size of 25 m) and the parameter for controlling the initial ground points density 

is set to “default”. In addition, we also experimented with the parameters 

“spike size” and “bulge size”. Since the surface of the paved ground and 

grassland is smooth with little spike (often outliers), these two parameters do 

not make a difference on the filtering. We also try to adjust the parameter 

“stddev” which controls the maximal standard deviation for planar patches to 

be retained. Interestingly, tuning “stddev” did not bring a remarkable change 

to the filtering result. Therefore, we adopt the “10 cm” suggested by the 

software. 

 

In order to study the impact of the noise level on the filtering performance, a 

local evaluation method is used. Square patches of 2 m × 2 m are selected 

from the ALS data of the area. The patches are selected randomly as evaluating 

units. The Residuals of Plane Fitting (RPF) is calculated using all the points 

inside the patch. 

 

 𝑅𝑃𝐹 = √
1

𝑁
∑ ∆𝐻𝑖

2
𝑁

𝑖=1
 (3-1) 

 

N is the number of points in this patch. ∆𝐻𝑖 is the distance from the 𝑖 th point 

to the plane which is fitted to all the points within this patch. The patch will be 

valid only if RPF is smaller than 2 cm. When RPF of the ALS data in a certain 

patch is smaller than 2 cm, we can say that the terrain in this patch is quite 

smooth and planar. The patches selected on the paved ground and grassland 

are shown in Figure 3.2. 112 and 527 patches are selected on the paved ground 

and grassland, respectively. Note that on the grassland in Figure 3.2 the 

patches are all selected on smooth grassland. No patch lies on the bushes or 

trees. After patch selection, the filtering result and noise level are quantized 

locally within each patch: 
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Figure 3.2: Selected patches on the paved ground (left, 112 patches) and 

grassland (right, 527 patches) for evaluating the filtering performance. The 

patch sizes are 2 m × 2 m. 

 

1) Filtering effect: Ideally, all points in every patch in Figure 3.2 should be 

classified as ground points by LASground. In consideration of scarce outliers 

or misclassifications, if more than 95% of the points within a patch are 

classified as ground points, we still take it as correct filtering; if the ratio is less 

than 95%, the filtering in this patch is incorrect. 

 

2) Noise level: Height Ranking Range (HRR) is used to represent the noise 

level. It is calculated by sorting the heights of all points within a patch. The 

HRR is obtained by subtracting the m percentile from the n percentile (m<n). 

HRR represents the height range in the vertical direction. Generally, it is robust 

to blunders in the point cloud. In this paper, m and n are set to 5% and 95%, 

respectively. 

 

The filtering results from LASground are shown in Figure 3.3. In Figure 3.3(a-

d), the percentage of correctly classified patches is 100%, 80%, 100% and 

89%, respectively. LASground performs very well on Pix4D point cloud because 

the point cloud is precise with little noise.  Compared with filtering Pix4D point 

cloud, Figure 3.3(d) shows that filtering SURE point cloud meets more difficulty 

along the bush and in the shadow. The SURE point cloud is much noisier than 

Pix4D and this brings problems during filtering. 
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(a) paved ground, Pix4D (b) paved ground, SURE 

 
(c) grassland, Pix4D (d) grassland, SURE 

Figure 3.3: Filtering results on the paved ground and grassland. The green 

indicates the identified ground points; blue indicates non-ground points; black 

indicates data gaps. In (c) and (d), blue indicates identified non-ground points 

not only on the grassland, but also on the trees and bushes (cf. Figure 3.2). 

Generally, the Pix4D point clouds in Figure 3.3(a) and (c) are darker than SURE 

point clouds in Figure 3.3(b) and (d) due to a lower point density. 

 
In order to evaluate the robustness of LASground to point cloud noise, the 

distribution of the HRR values for all the patches correctly filtered are shown 

in Figure 3.4. The HRR values in the four histograms range from approximately 

0.05 m to 0.40 m which indicates that LASground performs well in filtering a 

point cloud with a HRR smaller than 0.40 m. 
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(a)                                                                            (b) 

Figure 3.4: HRR Distribution for all the correctly filtered patches. Bin width is 

3 cm. (a) paved ground; (b) grassland. The dark brown between the blue and 

light brown histograms is the overlap of the two histograms. 

 

In addition, the mean of HRRs for paved ground-Pix4D, paved-ground-SURE, 

grassland-Pix4D, grassland-SURE are 0.14 m, 0.24 m, 0.14 m, 0.24 m, 

respectively. This indicates that the noise level of the dense matching point 

clouds on paved ground and grassland are the same, for either Pix4D or SURE. 

To the best of our knowledge, the noise level of the point cloud from SURE is 

dependent on the image quality, image overlapping, orientation accuracy and 

dense matching algorithm. SURE does not implement any post-processing on 

the dense matching point cloud. 

 

Now we study the patches which are wrongly filtered, i.e. less than 95% points 

within the patch are classified as ground points. Figure 3.5 visualizes the HRR 

values of these wrongly filtered patches. The color coding from blue to red 

indicates that the HRR increases. HRR in these wrongly filtered patches ranges 

from 0.2 m to 0.59 m. The right figure of Figure 3.5 shows that DIM point cloud 

from SURE is relatively noisy and contains more artefacts in the shadow than 

other areas. Therefore, these areas in the shadow are challenging for 

LASground. 
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Figure 3.5: Visualization of the HRR values for the wrongly filtered patches in 

the SURE points. Top: 23 patches on the paved ground; Bottom: 58 patches 

on the grassland. 

 

Figure 3.6 shows the two profiles on paved ground and grassland drawn in 

Figure 3.5 (along the yellow lines). Checking the orthoimages and laser points 

shows that the profile in the left paved ground of Figure 3.5 is smooth ground 

with no bumps or spikes. The profile in the right grassland of Figure 3.5 is the 

grassland in shadow. The length of the point cloud profile is approximately 2 

m and the vertical depth is 20 cm.  
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Figure 3.6: Profiles of three point clouds: ALS points (red), SURE ground 

points identified by LASground (green) and non-ground points (blue). Top: 

Profile of the line on paved ground; Bottom: Profile of the line on grassland. 

 

Figure 3.6 shows that some artefacts exist in the SURE point cloud. Note that 

the blue points and green points together form the SURE points. In the top 

figure of Figure 3.6, the ALS point cloud distributes between the “ground points” 

and “non-ground points” identified by LASground. The HRR is about 0.5 m. As 

the higher DIM points are classified as non-ground, the average height of the 

ground points shows a bias w.r.t. the average height of the ALS points. 

 

In the bottom figure of Figure 3.6, hollow space can be found inside the SURE 

points and the points show two layers. LASground simply takes the points in 

the top layer as the non-ground points. The HRR is about 0.8 m. Along this 

grassland profile, the ALS points are located at the bottom of the DIM points. 

 

3.3.3 Filtering photogrammetric points in urban scene 
 

In this section, a 0.04 km2 study area (red rectangle in Figure 3.1) is filtered 

using LASground. This area is mainly covered with buildings, streets, paved 

ground and individual trees. In some locations, the streets are narrow and 

covered with shadow. Concerning the filtering parameters in LASground, “step 

size” shows a large impact on the filtering result: if it is set very large, some 

roof points will also be taken as ground points. After some trials, we set the 

parameter according to the scene - “city or warehouses”. That is, the step size 

is fixed to 25 m in this section. 

 

Considering the possible artefacts and random noise in the DIM point cloud, a 

ranking filter is used to refine the raw point clouds. The rationale of ranking 

filter is to rank the heights of all points within a vertical raster cell. In our case, 

the median of the heights (i.e. 50% percentile) is taken as the final value 

assigned to this cell. The cell size is set to 0.5 m × 0.5 m based on heuristics. 

The cell size should be set small enough to contain sufficient terrain details and 

should be set large enough to contain points in most cells. If less than 3 points 

exist in a certain cell, this cell will not be assigned any value but just left empty. 

 

Three point clouds are filtered as shown in Figure 3.7: ALS data, raw Pix4D 

point cloud (DIM-raw), Pix4D point cloud processed by a ranking filter (DIM-

RF). We do not present the filtering results of SURE points because the filtering 

delivers more mistakes when the points are too noisy, especially on the narrow 

streets. Figure 3.7(a) shows the filtering result of ALS data. Building and 

individual trees are filtered out successfully. The black rectangle shows the 

filtering result on the narrow street. Here LASground works well. 
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(a) ALS data (b) DIM-raw (c) DIM-RF 

Figure 3.7: Filtering results of a city block. The top row shows both the ground 

and non-ground points. White indicates the ground points identified by 

LASground; black indicates data gaps. Non-ground points are colored based 

on the height value. The bottom row shows only the ground points. The two 

figures in the first column entitled (a) is the filtering effect of ALS data; (b) 

shows the filtering effect of the raw point clouds generated by Pix4D; column 

(c) shows the filtering effect of the Pix4D point cloud processed by a ranking 

filter. For the meaning of black and yellow boxes, please refer to the text. 

 

Figure 3.7(b) shows the filtering result of the raw Pix4D point cloud. Dense 

matching is challenging in shadow area due to poor texture and low contrast 

in images. Ideally, all the ground points should be labelled as “ground”, 

including ground points in the shadow. The black rectangle shows the filtering 

in the shadow. Some points are identified as ground and some are identified 

as non-ground. In the yellow rectangle, most of the locations are identified as 

non-ground. Figure 3.7(c) shows the filtering result of a Pix4D point cloud 

processed by ranking filtering. 

 

Figure 3.7(b) and (c) show that LASground performs well at filtering individual 

trees on both the DIM-raw and DIM-RF data, especially on the southeast open 

square. In the black rectangles, there are more ground locations identified in 

DIM-raw than in the DIM-RF. This narrow street is located in shadow. Checking 

the data profile shows that the heights of the DIM points are higher than the 

real ground surface by approximately 30 cm, and the DIM points are randomly 

distributed because of remaining matching errors. The DIM-RF identifies fewer 

ground points than DIM-raw but the identified ground points are more likely to 

be reliable ground locations. 

 

The yellow rectangles show the filtering effect of a road, which is not in the 

shadow. LASground filters classified most of the points in Pix4D-raw data as 

non-ground. In contrast, many locations are taken as ground points in the 

DIM-RF data. 
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In both the black and yellow rectangles, LASground tends to deliver better 

filtering results on the DIM-RF data than the DIM-raw data. It can be explained 

by the fact that median ranking filter can reduce the noise in the DIM points. 

The DIM point cloud after pre-processed by a ranking filter is getting more 

similar to the ALS data in terms of ground representation. Moreover, the noise 

is removed very considerably and height jumps from ground to above-ground 

objects are more or less better retained because of the relatively large raster. 

In this case, LASground can better discriminate ground and non-ground cells 

because outliers and noise are not affecting the TIN densification step. 

 

Apart from the qualitative comparison above, the filtering results are also 

evaluated quantitatively using the measures from (Sithole and Vosselman, 

2004). The filtering result of ALS data after manual check is taken as the 

reference. The ALS data and Pix4D-raw data are both 3D while the Pix4D-RF 

is 2.5D. The filtering result on Pix4D-raw is evaluated as below: Take the 

surface through the ALS ground points and label the DIM ground points as 

correct if they are within some margin of the ALS ground surface. To evaluate 

the 2.5D filtering result, the ALS data are also converted to 2.5D and only the 

label of the highest point in each bin is taken as the true label. Three 

quantitative measures are calculated: Type I error is the percentage of bare 

ground points actually labelled as non-ground points by LASground; Type II 

error is the percentage of non-ground points labelled as ground points; Total 

error is the overall statistics of points being wrongly classified. The filtering 

results are shown in Table 3.1.  

 

Table 3.1: Quantitative evaluation of the filtering results 

Dataset Type I Type II Total error 

DIM-raw 22.3% 5.2% 8.7% 

DIM-RF 12.0% 7.0% 8.4% 

 

Table 3.1 shows that the total error by filtering DIM-raw (8.7%) and DIM-RF 

(8.4%) are similar. Type I error of DIM-raw is much larger than if DIM-RF is 

used. The reason is that many ground points on the narrow streets in shadow 

are misclassified as non-ground points. These DIM points are usually a mixture 

of real ground points and blunders. LASground will filter out the above points 

and only the lowest points will be taken as ground points. In addition, the level 

of Type II errors is smaller than Type I errors. Type II error of DIM-RF is slightly 

larger than DIM-raw. If we check the filtering effect of individual trees and 

objects (e.g. chairs and dustbins) on the southeast square in Figure 3.7(c), the 

reason for a relatively high Type II error is that some small objects are 

smoothed by using a median ranking filter. LASground will classify these 

locations into ground while the ground truth is non-ground. In contrast, the 

details of small objects can be better retained in the DIM-raw data. When 
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filtering DIM-raw data, the ground and non-ground points can be better 

separated. 

 

In summary, the advantage of using a ranking filter on the point cloud is that 

the filtered point cloud contains less noise. When filtering the points after 

ranking filtering, LASground performs better in avoiding non-ground points. 

That is, compared to filtering the raw DIM points, filtering DIM-RF will deliver 

less ground locations with higher reliability. On the other hand, the 

disadvantage of using ranking filter is that some low objects may be smoothed. 

These non-ground locations are thus likely to be misclassified as ground by 

LASground. In contrast, the details of small objects can be better retained in 

the DIM-raw data. When filtering the DIM-raw data, the ground and non-

ground points can be better separated by LASground. 

 

3.4 Evaluation the potential accuracy of DTMs 
 

3.4.1 Comparison of DTM accuracy derived from Pix4D and 

SURE point clouds 
 

The observations in Section 3.3 indicated that LASground is quite tolerant to 

the random noise when filtering the DIM points. In particular, all the DIM points 

on the paved ground, bare earth and grassland are likely to be taken as terrain 

points by LASground. In this section, we explore the potential accuracy that 

can be obtained by DTM derived from dense matching. We do not interpolate 

on the point cloud but we directly calculate the deviation of the DIM point cloud 

from the reference. The ALS data are taken as reference data and only the 

vertical accuracy is studied. In the evaluation stage, the square patches of 2 

m × 2 m are taken as the evaluation unit. Compared to the point-to-point 

comparison, the accuracy measures calculated based on each patch are more 

robust to local blunders and random noise. The study area is the whole region 

shown in Figure 3.1 (1.6 km2). 

 

First, the ALS data are filtered using LASground. Then, square patches are 

detected from the ground points. A patch is valid if it meets two conditions: (1) 

The number of points in this patch is larger than a certain threshold; (2) The 

RPF (Eq. 3-1) is better than 2 cm. The patches in shadow are eliminated. The 

shadow mask is calculated from an orthoimage based on a grayscale histogram 

(Sirmacek and Unsalan, 2009). Only if all the four corners and the center 

location of a certain patch lie in the non-shaded locations, the patch will be 

taken as valid. The selected patches are divided into two categories based on 

the green index on the ortho image: ground and grassland. Finally, 24,634 
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ground patches and 7381 grassland patches are selected for accuracy 

evaluation. 

 

After the patches are detected from the ALS point cloud, the DIM points within 

the square patch boundary in 2.5D space are cropped for evaluation. 

Concerning a certain patch, a plane is fitted to the ALS points, the mean 

deviation from the DIM points to the plane is calculated as the accuracy 

measure as shown in Eq. (3-2). 𝜇𝑖 denotes the mean deviation between the 

DIM points and the ALS points for the jth patch. i denotes the ith patch in the 

whole study area, j denotes the jth point in this patch. There are 𝑛𝑖 points in 

this patch. ∆ℎ𝑖𝑗 is the distance from the jth point to the fitted ALS plane. 𝜇𝑖 is 

the mean deviation between the DIM points and the ALS points for the jth patch. 

 

 𝜇𝑖 =
1

𝑛𝑖

∑ ∆ℎ𝑖𝑗

𝑛𝑖

𝑗=1
  (3-2) 

 
The distribution of mean deviations is shown in Figure 3.8. Interestingly, the 

distribution of the deviations for Pix4D and SURE are quite different even 

though the same EOs were used for dense matching. Figure 2.8 also shows 

that there is only one peak in the SURE histograms but there are two peaks in 

the Pix4D histograms. The mean deviation on the ground ranges in [-0.18 m, 

0.18 m] for Pix4D data, and ranges in [-0.15 m, 0.15 m] for SURE data. The 

mean deviation on the grassland ranges in [-0.2 m, 0.2 m] for Pix4D data, and 

ranges in [-0.15 m, 0.15 m] for SURE data. 

 

 
    (a)                                               (b) 

Figure 3.8: Distribution of mean deviations for the DIM points generated by 

Pix4D and SURE. (a) 24,634 ground patches; (b) 7381 grassland patches. Note 

that the dark brown between the blue and light brown histograms is actually 

the overlapping of the two histograms. 

 

In order to make quantitative evaluation of the DIM accuracy in the whole 

study area, the following two accuracy measures are calculated considering 

all the patches: 
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     - Mean of mean deviations: 

 μ̅ =
1

m
∑ μi

m

i=1
 (3-3) 

     - Standard deviation of mean deviations: 

 𝜎𝜇𝑖
= √

1

𝑚 − 1
∑ (𝜇𝑖 − �̅�)2

𝑚

𝑖=1
 (3-4) 

 

μ̅ is calculated by averaging the mean deviations in the whole area. m is the 

number of patches in the whole study area. The 𝜎𝜇𝑖
 is calculated to represent 

the standard deviation of the mean deviations from the μ̅ . The accuracy 

measures at the whole block are shown in Table 3.2. 

 

Table 3.2: Accuracy measures of DIM point cloud in the whole block. (Unit: 

m) 

Dataset μ̅ 𝜎𝜇𝑖
 

ground-pix4d 0.057 0.056 

ground-sure 0.016 0.048 

grassland-pix4d 0.078 0.077 

grassland-sure 0.030 0.056 
 

Table 3.2 shows that μ̅ of SURE point cloud is better than for the Pix4D point 

cloud on both ground and grassland as could already be seen in the histograms 

of Figure 3.8. In addition, the 𝜎𝜇𝑖
 of SURE point cloud is better than Pix4D point 

cloud on both ground and grassland. 

 

Table 3.2 also shows that the bias between the DIM data and the ALS data on 

the grassland is larger than the bias on the ground. That is, the accuracy on 

the grassland is worse than the ground. This can be explained by that dense 

matching usually delivers the points on the top surface of the grassland but 

laser scanning can penetrate the shallow grass and record the points on the 

real terrain. Therefore, the bias on the grassland includes not only the dense 

matching errors but also the grass height (Ressl et al., 2016). 

 

When filtering the DIM point clouds in the urban scene using LASground, all 

the points on the ground and grassland will probably be classified as ground 

points without the negative impact of artefacts. However, the problem is that 

dense matching will deliver some points higher than the true terrain on the 

grassland, which will result in incorrect elevated DTMs. 

 

3.4.2 The impact of ranking filter on the potential DTM 

accuracy 
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In Section 3.3, we found that a ranking filter leads to improvements in the 

ground point filtering. In this section, we check whether the ranking filter would 

have an impact on the potential DTM accuracy achieved by the Pix4d point 

cloud. Similar to Section 3.4.1, the mean deviations for 24,634 ground patches 

and 7381 grassland patches are calculated and incorporated into the mean of 

mean deviations μ̅ and standard deviation of mean deviations 𝜎𝜇𝑖
 as shown in 

Table 3.3. RF indicates that this point cloud is preprocessed by a ranking filter. 

 

Table 3.3: Accuracy measures of DIM point cloud after pre-processed by a 

ranking filter. (Unit: m) 

Dataset μ̅ 𝜎𝜇𝑖
 

ground-pix4d-RF 0.048 0.063 

grassland-pix4d-RF 0.067 0.085 

 

Table 3.3 shows that for both the ground and grassland, when RF is used in a 

preprocessing step, μ̅ gets improved by around 1 cm. However, 𝜎𝜇𝑖
 increases 

slightly. That is, when the point cloud is pre-processed by a ranking filter, 

generally the potential DTM accuracy will improve but the ranking filter will 

also bring more variation to the DTM errors at the whole photogrammetric level. 

In addition, we can study the impact of a ranking filter onto the point cloud 

accuracy by calculating the deviation between DIM-RF and DIM-raw for every 

patch. Figure 3.9 shows the distribution of deviation values for ground patches 

and grassland patches, respectively. According to statistics, on 13.3% 

grassland patches and 8.6% patches the deviations between DIM-RF and DIM-

raw are larger than 10 cm. The deviation values are relatively small compared 

to the large patch size (2 m × 2 m). In addition, the deviations between DIM-

RF and DIM-raw on the paved ground is generally smaller than on the grassland, 

which can be explained by the fact that there are usually more artefacts and 

surface fluctuation on grassland. 

 

 
       (a)                                                (b) 

Figure 3.9: Distribution of deviation between DIM-RF and DIM-raw. (a) paved 

ground; (b) grassland. 
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3.5 Conclusions 
 

This work studies the question whether the standard Lidar filters can be used 

to filter dense matching points in order to derive accurate DTMs. Filtering 

results on the homogeneous ground and grassland show that the filtering 

performance depends on the noise level and scene complexity. LASground is 

verified to be relatively robust to random noise. However, filtering algorithms 

may only select the lower points as ground points in case of a large amount of 

noise. In addition, artefacts and blunders may appear in the dense matching 

points due to low image contrast or poor texture (e.g. in the shadow, along 

the narrow street, etc.). In these cases, LASground will probably classify some 

noisy ground points as non-ground points. Filtering results on a city block show 

that LASground performs well on the grassland, along bushes and around 

individual trees if the point cloud is sufficiently precise. In addition, a ranking 

filter can be used to filter the DIM point cloud before LASground filtering. 

LASground will identify fewer but more reliable ground locations. However, a 

ranking filter will also smooth some ground details so some small objects on 

the terrain will be filtered out. Since we aim at obtaining accurate DTMs, the 

ranking filtering shows its value in identifying only reliable ground points. 

 

The accuracy of the point cloud determines the final DTM accuracy. The 

accuracy of the DIM point clouds is evaluated using a patch-based method. 

The bias from the reference is studied in the whole study area. Although the 

same EOs are used for dense matching, the vertical accuracy of SURE point 

cloud on the ground is better than the Pix4D point cloud. In addition, we also 

verify that the error on the grassland is larger than the error on the paved 

ground. We also found that the ranking filter brought only small deviation to 

the point cloud. Therefore, the ranking filter might be taken a useful pre-

processing tool before filtering noisy photogrammetric point clouds. Future 

work may focus on modifying the previous Lidar filtering algorithms so that 

they can be used on relatively noisy DIM point clouds. 
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Chapter 4 – Detecting and Delineating Building 
Changes Between Multimodal Data3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
   3 This chapter is based on: 

 

Zhang, Z., Vosselman, G., Gerke, M., Persello, C., Tuia, D. and Yang, M.Y., 

2019. Detecting building changes between airborne laser scanning and 

photogrammetric data. Remote sensing, 11(20), p.2417. 
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4.1 Introduction 
 

Detecting topographic changes and keeping topographic databases up-to-date 

in large-scale urban scenes are fundamental tasks in urban planning and 

environmental monitoring (Matikainen et al., 2004; Holland et al., 2006; Tran 

et al., 2018). Nowadays, remote sensing data over urban scenes can be 

acquired through satellite or airborne imaging, Airborne Laser Scanning (ALS), 

Synthetic Aperture Radar (SAR), etc. In practice, the remote sensing data 

available at different epochs over a same region are often acquired with 

different modalities, i.e. with different platforms and sensor characteristics. 

Such heterogeneity makes the detection of changes between such multimodal 

remote sensing data challenging. 

 

This chapter aims to detect building changes between ALS data and airborne 

photogrammetric data. This is applicable to the situation of several mapping 

agencies, where laser scanning data are already available as archive data, 

while aerial images are routinely acquired every one or two years for updates. 

On the one hand, since acquiring the aerial images is much cheaper than 

acquiring the laser points (Qin et al., 2014), aerial photogrammetry is widely 

used for topographic data acquisition. On the other hand, since the ALS data 

are generally more accurate and contain less noise compared to dense image 

matching (DIM) data (Zhang. et al., 2018a), the fine ALS data can be used as 

the base data and be updated using dense matching points in the changed 

areas. 

 

A traditional photogrammetric pipeline takes 2D multi-view images as input 

and outputs 3D dense matching point clouds with true colors, 2.5D Digital 

Surface Models (DSMs), and 2D orthoimages. Quantitative comparisons of the 

point clouds from ALS and dense matching are found in (Remondino et al. 2014; 

Nex et al., 2015; Ressl et al 2016; Mandlburger et al., 2017). Point clouds from 

laser scanning and dense matching differ in geometric accuracy, precision (i.e. 

noise level), density, the amount and size of data gaps, and available attributes. 

A detailed comparison between laser scanning points and dense matching 

points were made in Section 1.3.1. 

 

Apart from the problems with multimodal point clouds, object-based change 

detection becomes more challenging due to the complexity of the scene. First, 

false positives may appear if the shape of a changed object is similar to a 

building, for example, changes of scaffolds, trucks, containers or even terrain 

height changes in construction sites. Second, changes on a connected object 

might be mixed: for instance, one part of a building could be heightened while 

another part lowered. 
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This chapter presents a robust method for multimodal change detection. The 

contributions are as follows: 

 

(1) We propose a method to detect building changes and delineate change 

boundaries between ALS data and photogrammetric data. First, we provide an 

effective solution to convert and normalize multimodal point clouds to 2D 

image patches. The converted image patches are fed into a light-weighted 

pseudo-Siamese Convolutional Neural Network (PSI-CNN) to quickly detect 

preliminary change locations. Then, precise boundaries of the changed objects 

are delineated through per-pixel change detection. The coarse-to-fine 

framework is not only robust to data noise and scene complexity, but also leads 

to sharp change boundaries with heightened or lowered labels. 

 

(2) The proposed PSI-CNN is compared to two other CNN variants with 

different inputs and configurations. In particular, the performance of the 

pseudo-Siamese architecture and a feed-forward architecture are compared 

quantitatively and qualitatively. Different configurations of multimodal inputs 

are compared. 

 

(3) In change delineation, we propose to adopt different feature sets for per-

pixel classification for ALS data and DIM data, respectively. After an initial 

change map is derived, an artefact removal method with morphological 

operations as backbone is proposed to refine the change map at minimum cost. 

Finally, the changed pixels are connected as individual changed buildings. 

 

This chapter is organized as follows: Section 4.2 reviews the related works. 

Section 4.3 presents the method. Section 4.4 provides the results and analyses. 

Section 4.6 concludes the paper. 

 

4.2 Related work 
 

4.2.1 3D change detection 
 

The input for change detection is remote sensing data from different epochs. 

According to the dimension of the input data, the change detection can be 

divided into 2D change detection, 3D change detection or hybrid change 

detection. 2D data include multi-spectral images, SAR and aerial images, 2D 

topographic maps, cadastral maps, and 2D GIS data. 3D data include laser 

point cloud, digital elevation model (DEM), digital surface model (DSM), and 

3D CAD (Computer-Aided Design) model. (Strictly speaking, DSM and DTM are 

2.5-dimensional data, not true 3D). If the input data of a certain epoch contains 

both 2D and 3D data, it is called “hybrid change detection”. In recent years, 
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hybrid change detection has received more and more attention because the 

integration of multi-dimensional data may effectively reduce the ambiguity of 

a single data source, thereby improving the reliability of change detection. 

 

On the other hand, according to the categories of detected changes, change 

detection can be divided into binary change detection, multiclass change 

detection, and Time Series Analysis (Lu et al., 2004). Binary change detection 

indicates that the label is a binary value which only distinguishes between 

changes and unchanged. Multiclass change detection indicates that the 

semantic information in both the old and new epoch is known. For example, if 

the semantic label is terrain in the old epoch and a building in the new epoch, 

the change is a new building. 

 

Comparing 2D and 3D change detection, the quality of 2D change detection 

mainly depends on the image quality after strict pixel-to-pixel registration and 

comparison of spectral values. Therefore, the slight change of illumination or 

viewing angle during image acquisition may deteriorate the correspondence 

between image pixels, thereby reducing the change detection accuracy. In 

contrast, 3D change detection has the following advantages: 

 

⚫ Geometric information in 3D data is not affected by changes in illumination 

or viewing angles during data acquisition. Therefore, change detection of 

3D data is more robust to exterior impact compared to 2D change 

detection. 

 

⚫ The geometric orientation of 3D data can often be accurately determined. 

The precise geometric model guarantees that the 3D data can be 

accurately registered. This provides an important premise for 3D change 

detection. 

Qin et al. (2016) divides 3D change detection methods into two categories: 

geometric comparison and geometry-spectrum analysis as shown in Figure 4.1. 

(1) Height differencing is the most direct and fundamental method to detect 

change information by calculating the vertical distance between two point 

clouds or DSMs. (2) Euclidean distance indicates the plane-to-plane distance 

between two 3D data to indicate change information. (3) Projection-based 

differences are commonly used in multi-view images or point cloud change 

detection. After projecting a 3D object onto an image, the change is detected 

by comparing the similarities of an object on the 2D image. (4) The post-

refinement method first applies geometric comparison to obtain the initial 

change locations, and then applies other available data sources and features 

to optimize the results step by step. (5) Direct feature fusion indicates that 

change information such as geometric change, spectral change or textural 

change is directly fused. Direct feature fusion methods usually include change 
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vector analysis (CVA), Dempster-Shafer and supervised classifiers such as SVM, 

random forest, etc. (6) Post-classification is a common method which performs 

object detection and classification first, and then detects change information 

by comparing the labels from two epochs. The following sub-sections review 

more details in height differencing, point cloud change detection and 

geometry-spectrum analysis. 

 

Geometric comparison

Direct feature fusion

Post-refinement

Post-classification

Geometry–spectrum Analysis

Euclidean distances

Height differencing

Projection-based differences
3D change detection

 
Figure 4.1: Categories of 3D change detection methods (Qin et al., 2016) 

 

4.2.1.1 Height differencing 

 

Height differencing is simple but often effective in the detection of potential 

change locations. However, mis-registration of two DSMs usually results into 

linear “false alarms” along the object boundaries in the differencing map 

(Rutzinger et al., 2010). In addition, the differencing of DSMs generated in 

different seasons such as summer (leaf-on) and autumn (leaf-off) usually 

causes false positives in the vegetated areas. Therefore, the initial differencing 

map needs refinement or post-processing before delivered to the following 

change verification. In this section, we review some refinement methods and 

application of height differencing maps. 

 

First, height differencing threshold can be set to eliminate false positives. 

Murakami et al. (1999) propose a DSM differencing method between two 

epochs. The DSMs are both derived from ALS data. A threshold of 1m is used 

to refine the differencing DSM. The changes are manually detected by 

overlaying the differencing map with an orthoimage. Vu et al. (2004) use an 

unsupervised method to detect changes in two time-phase ALS point clouds, 

first performing differential DSM, then using histogram thresholding to detect 

building changes as post processing. 

 

Second, handcrafted rules can be made to refine the change maps. Jung (2004) 

detects building changes between two sets of stereopsis. DSMs are obtained 

through dense image matching, and then decision tree is used to detect 

changes in the DSM differencing map. Dini et al. (2012) detect building 

changes between stereo satellite images and GIS databases. A 1 m resolution 

DSM is generated by semi-global matching. The initial change map is obtained 

by DSM differencing and mis-registration compensation. Pang et al. (2014) 

detect building changes from ALS point clouds of two epochs. On the basis of 
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differencing DSM, connected component analysis is used to connect the 

changed regions into individual objects, and then RANSAC algorithm is used to 

distinguish between topographic change and vegetation change. Finally, rules 

are made to classify building changes into four categories: new, elevated, 

demolished, and lowered. 

 

Third, morphological operation can be used for differencing map refinement. 

Choi et al. (2009) generate DSMs from ALS data from two epochs and subtract 

one from the other to extract initial horizontal boundaries of the changed areas. 

The refinement process includes binarization, morphological opening, filtering 

and grouping. A region growing method is used to segment the LiDAR points, 

following which the segments are classified into ground, vegetation or building 

according to roughness, size and height features. The change map is derived 

by fusing the refined differencing map and semantic segments. Tian et al. 

(2013) propose a 3D change detection method based on DSM differencing. The 

refinement process includes morphological filtering and shadow mask 

processing, which effectively eliminate the impact of occlusion in the DSMs and 

irregularity of building shapes. 

 

4.2.1.2 Point cloud change detection 

 

Transforming from point clouds to DSMs causes information loss. Some 

previous change detection work starts from raw point clouds instead of DSMs. 

It is common to calculate point-to-point distance for change detection, which 

is usually followed by refinement. Girardeau-Montaut (2005) develops a 

method of change detection by directly calculating the Hausdorff distance 

between two Terrestrial Laser Scanning(TLS) datasets. The Octree subdivision 

principle is used to reduce the computation time. For refinement, the visibility 

of all the 3D points is determined by depth map, sensor position and orientation. 

Additional operation is given to the three types of invisible points. Hebel et al. 

(2013) detect changes between ALS data based on grids along the scan line in 

real time. They fuse multiple change indicators with Dempster–Shafer. 

 

Instead of raw point-to-point comparison, change detection can also be made 

in grid cells or voxels. Xu et al. (2015) detect vegetation and building changes 

between ALS point clouds. First, the point cloud is filtered by progressive TIN 

densification to obtain non-ground points. The octree structure is constructed 

for non-ground points, and changes are detected based on adaptive clustering. 

Xiao et al. (2015) uses detect changes on road surface based on mobile laser 

scanning data. Changes are detected along the scan line through Dempster–

Shafer fusion in each 3D grid. Fuse and Yokozawa (2017) detect changes 

between mobile laser scanning data. They first build regular grids in the 

registered data, and then use Dempster–Shafer fusion to remove occlusion and 

detect changes. 
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Handcrafted features can not only be used to classify topographic objects, but 

also be used to distinguish change types. Xu et al. (2015) detect changes in 

airborne laser scanning points of two epochs. They do not subtract DSM of one 

epoch from the other but calculate the point-to-plane distance from one epoch 

to their nearest planes in the other epoch. A rule-based classifier is utilized to 

classify point clouds of two epochs into seven classes. A rule-based decision is 

utilized to detect “changed” points in surface difference maps. This surface 

difference map and scene classification results are used to detect changes of 

buildings. Based on contextual rules, the building changes are further classified 

as roofs, walls, roof elements and undefined objects. 

 

Some point cloud change detection work applies post-classification method. 

Voegtle and Steinle (2004) present a change detection method based on ALS 

data of two epochs. The point cloud is segmented based on a region growing 

method and classified into segments of building, vegetation and terrain based 

on object-based features. The classification methods based on fuzzy logic and 

maximum likelihood are compared. The changes are detected by calculating 

the pixel-to-pixel overlapping rate based on height data and the classified 

objects. 

 

Rutzinger et al. (2010) propose a two-step method of change detection from 

ALS data of two epochs. The first step is object-based building footprint 

extraction. A first-last-echo difference model (FLDM) is used to eliminate the 

vegetation region in the scene. Then building outlines are delineated by height 

constraint and morphological opening. The segments are further classified into 

buildings and non-buildings using a decision tree. In the change detection 

process, shape indices and height difference of the building footprints of two 

epochs are compared. Xi and Luo (2018) detect changes between ALS data. 

SVM is first used to classify point clouds into ground, building and vegetation. 

Morphological algorithms are then used to distinguish between topographic 

changes and vegetation areas. Handcrafted rules are designed to derive three 

types of changes: new buildings, elevated buildings and demolished buildings. 

 

Some work aims to detect tree changes between point clouds. Xiao et al. (2012) 

propose a method of detecting tree changes using multi-temporal ALS data. 

Trees are represented by irregularly distributed points. The preprocessing 

includes connected components algorithm, local maxima identification and 

trunk point removal. Point-based and model-based method are utilized to 

derive tree crown parameters for comparison. Corresponding trees are 

compared by overlapping the bounding boxes and point-to-point distances. 

Similarly in Yu et al. (2006), individual tree change detection is implemented 

with laser scanning data using method of differentiation between DSMs and 
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Canopy Height Models (CHM), canopy profile comparison and analysis of height 

histograms. 

 

4.2.1.3 Geometry-spectrum analysis 

 

Geometric features and spectral features are complementary in classifying 

topographic objects. Therefore, apart from geometric features, available 

spectral features are also a valuable data source which supports change 

detection. 

 

Some work directly compares images to point clouds after image-to-point cloud 

registration. Qin and Gruen (2014) detect changes between outdated MLS data 

and new imagery. First, the road imagery are registered to the point cloud, 

and then the point cloud is projected onto each image through a Z-buffer 

method based on the weighted window. Then the stereo image pairs are 

rectified to the point cloud space, and the similarity between them are 

calculated. The energy function composed of color, depth and class information 

is minimized by graph cut to realize change detection. 

 

Much change detection work derives point clouds from imagery and then detect 

changes by comparing point cloud to point cloud. Ali-Sisto and Packalen (2017) 

use aerial imagery to detect forestry changes. First, the point cloud is obtained 

by semi-global matching, the canopy height model and volume model of the 

two epochs are calculated. The forestry changes are further classified by 

logistic regression. Pang et al. (2018) detect building changes from bi-temporal 

dense-matching point clouds and aerial images. Graph cut algorithm is adopted 

to classify the points into foreground and background, followed by region-

growing algorithm to form candidate changed building objects. Structural 

features are constructed to classify the candidate changed buildings into 

buildings and non-buildings. 

 

Concerning 3D change detection of satellite imagery, Tian et al. (2014) detect 

changes between satellite images of two epochs. The DSM height differencing 

and Kullback–Leibler similarity are fused as change indicators by Dempster–

Shafer fusion. Huang et al. (2017) detect topographic changes between multi-

view satellite imagery. First, textural and morphological features are extracted 

from images and DSMs for different epochs for semantic segmentation. Then 

change detection is performed at the pixel-level, grid-level and block-level. 

Stylianidis et al. (2019) detect changes of forestry vegetation with satellite 

images. First, DSMs are generated and registered from satellite images. 

Second, Euclidean distance is calculated as the change indicators. Finally, 

biometric volume change is computed with rules. 
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4.2.1.4 Changes between maps and 3D data 

 

3D change detection can be performed either between 3D data or by comparing 

3D data of a single epoch to a bi-dimensional map (Vosselman, 2004). 

Vosselman et al. (2004) proposed a method to update 2D topographical maps 

with laser scanning data. The ALS data were first segmented and classified. 

The building segments were then matched against the building objects of the 

maps to detect the building changes. Malpica et al. (2013) detected building 

changes in a vector geospatial database. The building objects were extracted 

from satellite imagery and laser data using Support Vector Machine (SVM). 

 

Rottensteiner et al. (2007) extract buildings from DSM and multispectral 

images using the Dempster-Shafer fusion. Then they compare the semantic 

labels with old maps to classify building changes into four categories: partially 

changed, new building, demolished and unchanged. Nebiker et al. (2014) first 

generate DSMs from old images and then extract objects using object-based 

image analysis (OBIA). Building changes are detected by comparing objects 

with cadastral maps. 

 

Awrangjeb et al. (2015) filter the ALS points to get non-ground points. The 

non-ground points are classified into wall points, vegetation points and roof 

points. After regularization of the building edges, the buildings are compared 

with a topographic map for change detection. Matikainen et al. (2016) use 

multi-spectral LiDAR data to update topographic maps. The geometric and 

intensity features are extracted and classified with Random Forests. 

Handcrafted rules are designed to detect building changes. 

 

4.2.2 Multimodal change detection 
 

Change detection is the process of identifying differences in an object by 

analyzing it at different epochs (Singh, 1989). The input data of two epochs 

can be either raw remote sensing data or object information from an existing 

database (Qin et al., 2016). Zhan et al. (2017) classified the change detection 

methods into two categories based on the workflow: post-classification 

comparison (e.g. Wu et al., 2017; Mou et al., 2019) and change vector analysis 

(e.g. Choi et al., 2009; Volpi et al., 2015; Xu et al., 2015; Gong et al., 2017). 

 

In post-classification comparison, independent classification maps are required 

for both epochs. Change detection is then performed by comparing the 

response at the same location between the two epochs. When the data of two 

epochs are of different modalities, both training and testing have to be 

performed at each epoch separately, thus requiring a large computational 

effort. Moreover, errors tend to be multiplied along object borders due to mis-

classification errors in the single classification maps (Volpi et al., 2013). 
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In contrast, change vector analysis relies on extracting comparative change 

vectors between the two epochs and fuses the change indicators in the final 

stage (Chen et al. 2010; Tian et al., 2014; Volpi et al., 2015). Compared with 

post-classification comparison, change vector analysis directly makes a 

comparison between the data of both epochs. However, traditional change 

vector analysis is sensitive to data problems and usually causes many false 

detections, especially when the data of two epochs are in different modalities. 

The most widely-used change vector analysis between 3D data sets is DSM 

surface differencing, followed by point-to-point or point-to-mesh comparison 

(Remondino et al. 2014; Mandlburger et al., 2017). To reduce the number of 

false positives, direct comparison methods are often followed by post-

processing methods or are combined with other change detection frameworks. 

 

Considering detecting changes between multimodal 3D data, Basgall et al. 

(2014) compared laser points and dense matching points with the 

CloudCompare software. Their study area was small and only one changed 

building was studied. Also the method proposed was not automatic, since the 

changed building was detected through visual inspection. Qin and Gruen (2014) 

detected changes between mobile laser points and terrestrial images at street 

level. Image-derived point clouds were projected to each image by a weighted 

window based Z-buffering method. Then an over-segmentation based graph 

cut optimization was carried out to detect changes in the image space. 

 

Du et al. (2016) detect changes between aerial imagery and ALS points, but 

the sequence of their input data is contrary to ours. Firstly, the two sets of 

point clouds are registered by ICP, and height differencing and gray level 

similarity are calculated as change indicators. Changes are detected by graph 

cut optimization. 

 

Same with our inputs, Zhou et al. (2020) detect and update changes in LiDAR 

data using aerial imagery based on a two-step dense matching framework. 

First, LiDAR-guided edge-aware dense matching is used to derive accurate 

partial changes since accurate LiDAR data guarantees robust matching in the 

shadow and low texture areas. Second, hierarchical dense matching is 

employed to derive complete changes and update 3D information. 

 

Politz et al. (2021) detect building changes between ALS data and 

photogrammetric data. They first classifies each point cloud from two epochs 

by semantic segmentation (Politz et al., 2020). The semantic segmentation 

method is to transform and normalize the geometric point cloud distribution 

into regular raster and feed them into an extended U-Net architecture. Then 

two types of change indicators are derived: height change and class change. 
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The two change indicators are fused based on handcrafted rules for change 

detection. 

 

4.2.3 Deep learning for multimodal data processing 
 

Recently, deep CNNs have demonstrated their superior performance in 

extracting representative features for various computer vision tasks, e.g. 

image classification (Krizhevsky et al., 2012; Szegedy et al., 2015), semantic 

segmentation (Long et al., 2015; Sherrah, 2016; Audebert et al., 2018), object 

detection (Ren et al., 2015). As a specific CNN architecture, Siamese networks 

(SI-CNN) perform well in applications which require to compute similarity or to 

detect changes between two inputs. Outputs from SI-CNN can be patch-based 

single-valued or dense pixel-by-pixel maps, depending on the specific 

architecture. In patch-based prediction, SI-CNN has been widely used in 

handwritten digit verification (Bromley et al., 1994), face verification (Chopra 

et al., 2005, Taigman et al., 2014), character recognition (Koch et al., 2015), 

patch-based matching (Zagoruyko and Komodakis, 2015) and RGB-D object 

recognition (Eitel et al., 2015). In the case of dense predictions, SI-CNN was 

used in wide-baseline stereo matching (Zbontar and LeCun, 2015; Luo et al., 

2016). 

 

In the remote sensing domain, deep learning has also been used to process 

two sets of input in e.g. change detection and image matching. He et al. (2018) 

used a SI-CNN to find corresponding satellite images with complex background 

variations. The coordinates of the matching points were searched using the 

Harris operator followed by a quadratic polynomial constraint to remove false 

matches. Similarly, Lefèvre et al., (2017) used a SI-CNN to detect changes 

between aerial images and street level panoramas re-projected on an aerial 

perspective. AlexNet (Krizhevsky et al., 2012) was used in the two branches 

for feature extraction and the Euclidean distance was used to determine the 

similarity between the two views. Mou et al. (2017) identified corresponding 

patches between SAR images and optical images using a pseudo SI-CNN 

(“pseudo” indicates that the weights in the two branches are unshared). The 

feature maps from the two Siamese branches were concatenated, which 

worked as a patch comparison unit. Although SAR images and aerial images 

involved heterogeneous properties, they achieved an overall accuracy of 

97.48%. 

 

Some recent studies obtained dense per-pixel change maps by using a Siamese 

Fully Convolutional Neural Network (FCN). Zhan et al. (2017) maintained the 

original input size in each convolutional layer in the two branches followed by 

a weighted contrastive loss function. The pixels with a distance measure higher 

than a given threshold were regarded as changed. The acquired change maps 

were then post-processed by a K-nearest neighbor approach. Daudt et al. 
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(2018a) adopted a different architecture combined with convolutional blocks 

and transpose convolution blocks to output full change maps between satellite 

images. Mou et al. (2019) proposed to learn spectral-spatial-temporal features 

using a Recurrent Neural Network (RNN) for change detection in multispectral 

images. This end-to-end architecture can adaptively learn the temporal 

dependence between multi-temporal images. In our work, we also propose a 

light-weighted SI-CNN for change detection. 

 

Concerning deep learning for multiple 3D data sets, at present there are only 

scarce studies. In the field of computer vision, there are studies on the 

extraction of geometrical features from objects using 3D Siamese CNN. Zeng 

et al. (2017) propose 3DMatch model for registration between two RGB-D data 

sets. 3D voxels are selected from the two point clouds, and geometric features 

are extracted by CNN. The relationship between the two point clouds is 

established by minimizing the L2 loss between the feature vectors. Zhou et al. 

(2020) propose SiamesePointNet to extract shape descriptors from a pair of 

point clouds. They input raw point clouds instead of voxels. By connecting 

global and multi-scale local features, the extracted features show strong 

representation capabilities.  

 

4.3 Methodology 
 

A building is defined as changed in two situations: 1) it is a building in one 

epoch but not in the other epoch, i.e., the building is newly-built or demolished; 

2) A building exists in two epochs but has changed in height or extent. In both 

situations, our method aims not only at delineating the boundaries of changed 

objects, but also at assigning a label (heightened or lowered) to each changed 

pixel. Our method contains two modules shown in Figure 4.2: a change 

detector and a change delineator. First, the input data are converted and 

normalized to the same range [0,1] and fed into an SI-CNN for change detection. 

Then the boundaries of changed objects are delineated and each changed pixel 

is assigned a change label. 

 

The motivation for this framework design is as follows: The change detection 

is performed in a light-weighted binary patch-based CNN. Although this patch-

based CNN does not bring sharp changed boundaries, it localizes the changes 

very quickly. As shown in the center of Figure 4.2, the change map of the 

patch-based CNN shows only coarse change boundaries; The change delineator 

is then providing a fine-grained labeling for each pixel based on the coarse 

change map. In the following sections, we detail both the change detector (3.1) 

and delineator (3.2). 
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Figure 4.2: Overview of the proposed framework for change detection and 

delineation. 

 

4.3.1 Change detection 
 

4.3.1.1 Preprocessing: registration, conversion and normalization 

 

The goal of patch detection is to localize candidate planar patches on the ALS 

point cloud. The patches taken as samples should be selected on the planar 

ground area from the ALS data. The selection of patches should further avoid 

data gaps and breaklines. Planar patches of uniform size with acceptable noise 

level are considered valid and thus used for evaluation purpose. 

 

First, the point clouds from two epochs and orthoimages from the second epoch 

are converted to the same resolution and the same coordinate system. The 

products from the photogrammetric workflow are geo-referenced to the world 

coordinate systems using Ground Control Points (GCPs) during bundle 

adjustment. The accuracy of the dense matching points, DSMs and 

orthoimages are affected by the accuracy of the interior and exterior 

orientation elements. The coordinates of the airborne laser points are already 

provided in the same world coordinate system. 

 

Second, the laser points are converted to DSMs (ALS-DSM) using LAStools. 

The photogrammetric DSMs (DIM-DSM) and orthoimages are generated from 

a photogrammetric workflow. All the ALS-DSM, DIM-DSM and orthoimage are 

resampled to the same resolution. 

 

Next, the heights of ALS-DSM and DIM-DSM are normalized to the same height 

range. The two DSMs range in [𝐻𝑚𝑖𝑛, 𝐻𝑚𝑎𝑥]  where 𝐻𝑚𝑖𝑛  and 𝐻𝑚𝑎𝑥  are the 

minimum and maximum DSM height of the whole study area, respectively. We 

normalize the height values (𝐻0) of ALS-DSM and DIM-DSM using the same 

𝐻𝑚𝑖𝑛 and 𝐻𝑚𝑎𝑥 as shown in Eq. (4.1). In this way, the two DSMs are converted 

to the range of [0, 1]. This representation approach maintains all the height 

details in DSMs. 
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 𝐻 = (𝐻0 − 𝐻𝑚𝑖𝑛) (𝐻𝑚𝑎𝑥 − 𝐻𝑚𝑖𝑛⁄ ) (4-1) 

 

In addition, the three channels R, G and B of the orthoimages from dense 

matching are also normalized to [0, 1] by simply dividing each pixel value by 

255. Hence, all the five channels ALS-DSM, DIM-DSM, R, G and B are 

normalized within the [0,1] range. Image patches are then cropped in the 

overlapping raster images for the pseudo-Siamese network. 

 

4.3.1.2 Network architecture 

 

The registered three patches (ALS-DSM, DIM-DSM and orthoimage) including 

five channels (ALS-DSM, DIM-DSM and R, G, B) are fed into the SI-CNN for 

change detection. The proposed SI-CNN architecture is called PSI-DC, i.e. 

pseudo-Siamese-DiffDSM-Color (see Figure 3). DiffDSM refers to the height 

difference between ALS-DSM and DIM-DSM. The input for this branch is 1 

channel. For the other branch, the R, G, B channels from the orthoimage patch 

are provided. Our preliminary tests show that a Siamese CNN has difficulties 

converging when the data modalities in a given branch are heterogeneous. So 

we do not present the architecture with ALS-DSM as the first branch and DIM-

DSM, R,G,B as the other, as a traditional Siamese network would be designed. 

Instead, we pass a difference DSM in the first branch and the color information 

from the RGB bands from the orthoimages in the other. 

 

 
Figure 4.3: The proposed CNN architecture for multimodal change detection: 

PSI-DC. ConvB indicates a convolutional block; FC indicates fully connected 

operation. Conc indicates concatenating feature maps. The digits below each 

feature map are the size of (width × height × channel). 

 

In Figure 4.3, the inputs are processed by three convolutional blocks (convB) 

consecutively. The extracted feature maps are concatenated and further 

processed by one convB and three Fully Connected layers (FC). Each 

convolutional block contains a convolution operation followed by a Rectified 



Chapter 4 

 73 

Linear Unit (ReLU) as activation function. convB1, convB2 and convB4 also 

contain a max-pooling layer which adds translation invariance to the model 

and decreases the number of parameters to learn (Goodfellow et al., 2016). 

The size of convolution kernels is 5 × 5 in our network with a padding size of 

0 and slide of 1, which is verified to be an effective compromise between the 

feature extraction depth and contextual extent in our task. 

 

Our network is conceptually similar to the change detection network proposed 

by (Mou et al., 2017), which has 8 convolutional blocks for feature extraction 

and 2 blocks after concatenation. In their work, the two patches to be 

compared are not only from different sensors (SAR and optical), but also 

involve translation, rotation and scale changes. Our case is simpler since our 

compared patches are strictly registered and normalized to the same scale. 

Therefore, we use fewer convolution blocks to extract features from multimodal 

data. 

 

Fully connected layers are used in the final stages of the network for high-level 

reasoning. PSI-DC contains three FC layers. The first two FC layers are followed 

by a ReLU operations. The last FC layer outputs a 2×1 vector, which indicates 

the probability for changed and unchanged, respectively. In this way, we 

convert a change detection task into a binary classification task. Suppose that 

(𝑥1, 𝑥2) is the 2×1 vector predicted from the last FC layer, the loss is computed 

between (𝑥1, 𝑥2) and the ground truth (1 for changed and 0 for unchanged). 

First, the vector is normalized to (0,1) by a Softmax function: 

 

 𝑝𝑖 =
exp(𝑥𝑖)

exp(𝑥1) + exp(𝑥2)
 , 𝑖 = 1,2 (4-2) 

 

where 𝑝1 + 𝑝2 = 1. Then, a weighted binary cross entropy loss is calculated: 

 

 𝐿𝑜𝑠𝑠 = −(𝑤1𝑦log(𝑝1) + 𝑤2(1 − 𝑦) log(𝑝2))) (4-3) 

 

where y is the reference label. 𝑝𝑖  is the predicted logit from the Softmax 

function. The ratio of 𝑤1 to 𝑤2 is set based on the number of negative training 

samples and positive samples. In urban scenes, the number of negative 

samples (unchanged) is usually several times the number of positive samples 

(changed). By assigning weights to the loss function, we provide a larger 

penalization to a false positive than to a false negative to suppress false 

positives. 

 

4.3.2 Change delineation 
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Although the results from change detector provide preliminary change 

locations, they still have three limitations: First, the accuracy of change 

localization on the object boundary is low, i.e. determined by the patch size; 

Second, the zigzag change boundary cannot represent the true change 

boundary; Third, the attribute (heightened or lowered) we would like to obtain 

for each changed pixel is yet unknown. Therefore, change delineation is 

targeted to efficiently delineate the change boundary and assign a change label 

to each changed pixel. The pipeline for change delineator is shown in Figure 

4.4.  

 
Figure 4.4: Change delineator from patch-level change map to pixel-level 

change map. The labeling process for boundary pixels and enclosed pixels are 

separated in different streams, which guarantees that the feature extraction 

and classification phases are only performed for a limited number of pixels. 

 

Each red unit in the left change map was detected by PSI-DC as a changed 

patch. The boundary pixels and enclosed pixels are recognized from the patch-

level change map. The enclosed pixels are located in the center of possibly 

changed pixels detected from patch-based CNN, which are quite certain to be 

changed. Their change label is determined only based on the height difference 

𝐻𝑑𝑖𝑓𝑓. In contrast, the boundary pixels are located along the edges of possibly 

changed pixels from patch-based CNN, whose change label should be 

determined not only with 𝐻𝑑𝑖𝑓𝑓, but also using class labels at both epochs. By 

separating the process of assigning labels to boundary pixels and enclosed 

pixels using different means, sophisticated feature extraction and classification 

are only required for the minimum number of pixels (the boundary pixels). This 

way, our proposed change delineation requires only the minimum 

computational effort. 

 

4.3.2.1 Identifying boundary pixels 

 

The patch-level change detection results are plotted on the raster grid to form 

a patch-level change map (see the leftmost panel of Figure 4.4). Since the 

patches are cropped with certain overlap, the overlapping patches are 
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connected into a new component. The boundary pixels are identified by 

subtracting an eroded component from a dilated component. The thresholds 

for erosion and dilation are both T_bound. T_bound should be large enough to 

contain the true object boundary and small enough to save computational 

effort. It is usually set to 1 to 2 times the patch size. The pixels enclosed by 

the boundary pixels are named enclosed pixels. After that, each pixel from the 

boundary pixels and enclosed pixels should be assigned a label heightened, 

lowered or non-changed. Different means of labeling are applied to the two 

different regions, which are described below. 

 

4.3.2.2 Feature extraction and classification for boundary pixels 

 

The boundary pixels are those along the edges of connected components. The 

classification for a boundary pixel includes two steps: First, to determine 

whether the pixel belongs to a changed building or not; Second, determine 

whether it is heightened or lowered. As mentioned before, a building change 

can happen in two cases: (1) It is a building in one epoch but not in the other 

epoch; (2) It is a building in both epochs but witnesses a height change. 

Therefore, the class labels in both epochs (a building class or not) and the 

height change between epochs are all necessary in order to make the final 

change decision. Note that in some special cases, a building might be re-built 

in the same location with almost the same height. This building is still labelled 

as unchanged. 

 

In order to classify the boundary pixels into building or non-building in both 

epochs, we classify the boundary pixels in the ALS and DIM data separately. 

Two Random Forest (RF) (Breiman, 2001) classifiers are trained for ALS data 

and DIM data, respectively. We select RF for two reasons. First, our feature 

sets are extracted from multimodal data, RF can classify multiscale feature sets 

without normalization; Second, RF is less prone to overfitting through 

randomly selecting feature subsets and building smaller trees out of these 

subsets. The performance of RF is mainly affected by the hyper-parameter 

maximum tree depth 𝑇td and number of trees 𝑇tn. 

 

We train the two RF classifiers using a set of handcrafted features. Feature 

extraction is usually time-consuming and labor-intensive. In our change 

delineation framework, feature extraction is only applied to the boundary pixels, 

which accounts for only a very small portion within the complete study area. 

These handcrafted features are distinct for ALS data (old epoch) and DIM data 

(new epoch) and are listed in Table 1: 3D features from the point cloud and 

normalized DSM (nDSM) are extracted to distinguish building and non-building 

for ALS data. Both features from the point cloud and form the orthoimage are 

used in the classification of DIM data. The next sections detail the features 

used for each set. 
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Table 4.1: Feature sets used to classify the boundary pixels for ALS data and 

DIM data 

Data 

Features from 

point cloud 

(26) 

Features from 

orthoimage 

(98) 

nDSM (1) 
Total number 

of features 

ALS √  √ 27 

DIM √ √  124 

 

(1) 3D features from the point cloud 

 

Differently from (Weinmann et al., 2015), our entities to be classified are the 

boundary pixels in the 2.5D space instead of the 3D point cloud. Therefore, the 

3D features should be extracted for each raster pixel rather than for each 3D 

point. Suppose that the coordinates of a given pixel are (𝑋, 𝑌). Spatial bins are 

constructed at the center of (𝑋, 𝑌) with a size of 𝑇𝑏𝑖𝑛. Gevaert et al. (2017) 

calculated the features for the highest point within each spatial bin. However, 

since the DIM point cloud is noisy, we take the 90-percentile height of all the 

points within the spatial bin as the Z value of this pixel. That is, the 3D features 

extracted at point (𝑋, 𝑌, 𝑍) are taken as the features for this pixel. 

 

The neighborhood size affects the distinctiveness of extracted features. For 

example, the planarity value on a grassland might be high if calculated with a 

large neighborhood size and low if calculated with a small neighborhood size. 

We adopt the method for selecting the optimal neighborhood size proposed by 

(Weinmann et al., 2015). It proposes to apply an adaptive neighborhood size 

based on the local Shannon entropy calculated from the neighboring points. 

Suppose 𝜆1, 𝜆2, 𝜆3 (𝜆1 ≥ 𝜆2 ≥ 𝜆2) are the three eigenvalues of the covariance 

matrix calculated from the 𝑘 nearest neighboring (KNN) points. 𝑒1, 𝑒2, 𝑒3 are 

the normalized eigenvalues 𝑒𝑖 =
𝜆𝑖

Σ𝜆
 with 𝑖 ∈ {1, 2, 3}. The Shannon entropy is 

calculated via 

 

 𝐸𝜆 = −𝑒1 ln(𝑒1) − 𝑒2 ln(𝑒2) − 𝑒3 ln(𝑒3) (4-4) 

 

A series of Shannon entropies are calculated by iteratively increasing the 

neighborhood size from [𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥]. Since the Shannon entropy measures the 

disorder of the neighborhood, the 𝑘 value bringing the minimum entropy is 

regarded as the optimal neighborhood size. The feature sets calculated with 

the optimal neighborhood size are applied to represent the local shape and 

geometry. The following features are extracted: 

 

- Local 3D shape features (16). Given the optimal neighborhood size, local 

3D shape features can be calculated by combining the normalized eigenvalues 
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describing linearity 𝐿𝜆, planarity 𝑃𝜆, scattering 𝑆𝜆, omnivariance 𝑂𝜆, anisotropy 

𝐴𝜆, eigenentropy 𝐸𝜆, sum of eigenvalues Σ𝜆 and change of curvature 𝐶𝜆: 

 

 𝐿𝜆 =
𝑒1 − 𝑒2

𝑒1
 (4-5) 

 𝑃𝜆 =
𝑒2 − 𝑒3

𝑒1
 (4-6) 

 𝑆𝜆 =
𝑒3

𝑒1
 (4-7) 

 𝑂𝜆 = √𝑒1𝑒2𝑒3
3  (4-8) 

 𝐴𝜆 =
𝑒1 − 𝑒3

𝑒1
 (4-9) 

 𝐸𝜆 = − ∑ 𝑒𝑖 ln(𝑒𝑖)
3

𝑖=1
 (4-10) 

 Σ𝜆 = 𝜆1+𝜆2+𝜆3 (4-11) 

 𝐶𝜆 = 𝑒3/(𝑒1+𝑒2+𝑒3) (4-12) 

 

In addition, the local point density 𝐷, radius of 𝑘 nearest points, height range, 

standard deviation of height and verticality are calculated from the neighboring 

3D points. In total, 16 local shape features are extracted including 𝑒1, 𝑒2 and 𝑒3. 

 

-  Local 2D shape features (6). Most boundary pixels lie along building walls. 

Local 2D shape features are calculated after the neighboring 3D points are 

projected to a horizontal plane. The projected points on the 2D plane along a 

vertical structure (e.g. walls, poles, traffic lights) are usually denser than points 

projected from a horizontal plane. Therefore, 2D shape features are supposed 

to be distinctive features in distinguishing points close to a wall. In total, the 

radius of neighboring points, point density, sum of 2D eigenvalues, ratio of two 

eigenvalues and two normalized eigenvalues are extracted as 2D shape 

features. 

 

-  Spatial binning features (4). The spatial binning features are calculated 

from all the 3D points within this bin. The 90-percentile height value 𝐻𝑝90 

indicating the object height is taken as one feature. Additionally, the number 

of points within this bin, the standard deviation of the heights and height range 

𝛥𝐻𝑝 are calculated as features. 𝛥𝐻𝑝 is calculated with: 

 

 𝛥𝐻𝑝 = 𝐻𝑝90 − 𝐻𝑝10 (4-13) 

    

where 𝐻𝑝10 is the 10 percentile height of all the points within this bin. 

  

(2) 2D features from the orthoimage 
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-  Radiometric features (16). First, 2D radiometric features are extracted 

from the orthoimages. The R, G, B values normalized by 255, and the R, G, B 

values normalized by their sum are calculated for each pixel. Two high-level 

radiometric features are also calculated: Normalized Excessive Green Index 

(nEGI) (Qin, 2014) and shadow index 𝜓 (Sirmacek and Unsalan, 2009). The 

vegetation index nEGI and shadow index 𝜓 are calculated so that pixels in 

these areas are more likely to be classified into non-building. 

 

 𝑛𝐸𝐺𝐼 = (2𝐺 − 𝑅 − 𝐵) (2𝐺 + 𝑅 + 𝐵)⁄  (4-14) 

 𝜓 = 4/ 𝜋 ∙ arctan ((𝐵 − 𝐺) (𝐵 + 𝐺)⁄ ) (4-15) 

 

Gevaert et al. (2017) found that the radiometric features averaged over an 

image segment are also distinctive features since they are insensitive to 

radiometric noise. Simple Linear Iterative Clustering (SLIC) adapts a K-means 

clustering method to group pixels into perceptually meaningful regions in a 

five-dimensional feature space, which is defined by the CIELAB color space and 

the x, y pixel coordinates (Achanta et al., 2012). We use SLIC segmentation 

in this paper for two reasons: (1) It adheres well to image boundaries; (2) It 

generates approximately equally sized superpixels and the targeted number of 

superpixels can be controlled. Finally, the eight pixel-based radiometric 

features mentioned above are averaged over each SLIC segment to obtain 

eight further segment-based features. 

 

-  Textural features (82). Textural features are supposed to be distinctive 

when distinguishing buildings from other land cover types. For example, a roof 

covered with tiles often presents strip-like texture. In contrast, vegetation 

shows directionless texture; Terrain made from concrete and shaded areas 

both show little texture. Local Binary Pattern (LBP) features are extracted to 

encode local texture information (Ojala et al., 2002). LBP is robust to grayscale 

variations and rotations. The LBP features are calculated from a circularly 

symmetric neighbor set of P members within radius of R from the central pixel, 

denoting the operator as 𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖𝑢2. P determines the quantization of the angular 

space, whereas R determines the spatial resolution of the operator. riu2 

indicates that the Rotationally-Invariant Uniform features, which contain (𝑃 +

2) dimensions. In order to enhance its scale-invariance, 𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖𝑢2 features are 

extracted at different radius, for example 𝑅 ∈ {1, 2, 3}, from a window size of 

5×5 or 11×11. 

 

(3) The nDSM feature 

Another distinctive feature used in classifying ALS data is the Normalized DSM 

(nDSM). The height from the object surface to the nearby ground is an effective 

indicator to the object height (Vosselman et al., 2004). nDSM is computed by 

subtracting the Digital Terrain Model (DTM) from the 90-percentile height 𝐻𝑝90. 
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Considering that DTM extracted from noisy dense matching points is less 

reliable (Zhang et al., 2018b), the nDSM feature is not considered for DIM data. 

 

4.3.2.3 Per-pixel change detection 

 

Each pixel within boundary pixels and enclosed pixels is classified into 

heightened, lowered or other. This process is named per-pixel change 

detection. Before the per-pixel change detection, height difference 𝐻𝑑𝑖𝑓𝑓 

between the ALS data and DIM data is computed using the 90-percentile height 

(𝐻𝑝90) so as to minimize the impact of point cloud noise. According to the 

definition of building changes in Section 3.2.2, a building change must involve 

change of its height. Therefore, 𝐻𝑑𝑖𝑓𝑓 is computed as another change indicator, 

for both boundary pixels and enclosed pixels to distinguish heightened and 

lowered pixels: 

 

 𝐻𝑑𝑖𝑓𝑓 = 𝐻𝑝90(𝐷𝐼𝑀) − 𝐻𝑝90(𝐴𝐿𝑆) (4-16) 

 

Then per-pixel change detection is performed in boundary pixels and enclosed 

pixels separately (see Figure 4): 

 

Boundary pixels: For each boundary pixel, the label of the old epoch on the 

ALS data, the label of the new epoch on the DIM data and the 𝐻𝑑𝑖𝑓𝑓  are 

provided to perform per-pixel change detection. First, a pixel in boundary 

pixels is classified into building-related pixel if the label in one or both epochs 

is building. Then the building-related pixel is further classified into heightened, 

lowered or other via 

 

 {

𝑖𝑓 𝐻𝑑𝑖𝑓𝑓 ∈ (𝑇𝐻𝑑 , +∞), 𝐻𝑖𝑔ℎ𝑡𝑒𝑛𝑒𝑑

𝑖𝑓 𝐻𝑑𝑖𝑓𝑓 ∈ (−∞, −𝑇𝐻𝑑), 𝐿𝑜𝑤𝑒𝑟𝑒𝑑

𝑖𝑓 𝐻𝑑𝑖𝑓𝑓 ∈ [−𝑇𝐻𝑑, 𝑇𝐻𝑑], 𝑂𝑡ℎ𝑒𝑟

 (4-17) 

 

 𝑇𝐻𝑑 is set according to the minimum height change of a building we aim to 

detect. 

 

Enclosed pixels: Since the enclosed pixels are located in the middle of patch-

based change masks, they are very likely to be changed buildings. Only 𝐻𝑑𝑖𝑓𝑓 

is considered to make per-pixel classification via Eq. (4.17). Then, each 

enclosed pixel is classified into heightened, lowered or other. 

 

4.3.2.4 Artefact removal 

 

As shown on the right of Figure 4.4, the per-pixel change detection results for 

boundary pixels and enclosed pixels are merged. At this stage, sharp 
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boundaries of changed buildings are obtained. However, due to the DIM errors 

and data gaps, errors from the change detection and per-pixel change 

detection are still propagated and accumulated in our change map. The errors 

in the change map can show small artefacts such as isolated clusters due to 

change detection errors, elongated artifacts produced by the dense matching 

along corners of walls or holes due to low point cloud density. To cope with 

those artefacts, we use mathematical morphology-based post processing. 

Morphological operations are simple yet effective in filling holes or removing 

artefacts in binary images (Haralick and Shapiro, 1992). A combination of 

morphological operations is applied to refine the change map. First, 

morphological closing is applied to fill holes, i.e. to enhance the signal intensity 

of real changed objects (True Positives). Then morphological opening is applied 

to eliminate small or elongated artefacts (False Positives). The workflow for 

removing artefacts is as follows: 

 

1) Separate the heightened and lowered change masks and process them 

separately following steps 2-3-4 below. 

 

2) Process the one-fold change mask using morphological closing with a 

threshold 𝑇𝑐𝑙𝑜𝑠𝑒. 

 

3) Process the change mask using morphological opening with a threshold 𝑇𝑜𝑝𝑒𝑛. 

 

4) Connected component analysis. Connect the neighboring pixels in their 8-

neighborhood to form a complete changed object. Remove those objects whose 

length is smaller than 𝑇𝑙𝑒𝑛𝑔𝑡ℎ. 𝑇𝑙𝑒𝑛𝑔𝑡ℎ is determined by the minimum size of the 

changed buildings we aim to detect. 

 

5) Merge the heightened and lowered change masks to form the final change 

map. 

 

The effect of our artefact removal method will be presented in section 4.4.2. 

 

4.4 Results and discussion 
 

The study area is located in Rotterdam, The Netherlands, which is a densely 

built port city mainly covered by residential buildings, skyscrapers, vegetation, 

roads, and waters. The study area is 14.5 km2 as shown in Figure 4.5. Figure 

4.5(a) shows the ALS point cloud obtained in 2007 with a density of 

approximately 25 points/m2. The point cloud contains approximately 226 

million points. 
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(a) (b) (c) 

Figure 4.5: Visualization of the data set for change detection. From left to 

right: (a) ALS points colored according to height; (b) orthoimage marked with 

the training area, validation area, and testing area; (c) orthoimage overlaid 

with reference labels. 

 

A total of 2160 aerial images were obtained by CycloMedia from five 

perspectives in 2016. The GSD of nadir images equaled 0.1 m. The bundle 

adjustment and dense image matching were performed in Pix4Dmapper. The 

vertical RMSE (Root Mean Square Error) of 48 GCPs was ±0.021 m and the 

vertical RMSE of 20 check points was ±0.058 m. The DIM point cloud contains 

approximately 281 million points. DSMs and orthoimages were also generated 

at the same resolution of 0.1 m. Figure 4.5(b) shows the generated orthoimage. 

The training, validation, and testing area make up 28%, 25%, and 42% of the 

study area, respectively. Note that 5% of the block (between training and 

validation area) is not used since this area contains the newly-built Rotterdam 

railway station with homogeneous building change; the samples extracted 

from this area will reduce the sample diversity and may lead to under-fitted 

CNN models. Figure 4.5(c) shows the orthoimage overlaid with four types of 

labels: heightened building, lowered building, water, and data gaps. 

 

4.4.1 Patch-level results 
 

Evaluation of change detection is important for employing these results for 

decision-making since the evaluation can tell you the reliability of change 

detection results (Lu et al., 2003). Reference data for change detection 

evaluation usually come from manual interpretation or more accurate 

geographic database. The methods include patch-to-patch, pixel-to-pixel and 
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object-to-object evaluation to make a comprehensive evaluation. Confusion 

matrix is the most widely used tools for quantitative analysis in change 

detection. 

 

Table 4.2: Confusion matrix for evaluating change detection 

                             

GT                 

Detected 

Changed Unchanged 

Changed TP FP 

Unchanged FN TN 

 

In Equation (4-3) and Table 4.2, True Positive (TP) is the number of changes 

detected by the algorithm which is real changes. True Negative (TN) is the 

number of unchanged entities detected as unchanged. False Positive (FP) is 

the number of changes detected by the algorithm which are not changes in 

real scene. FP is equal to “False alarm”. False Negative (FN) is the number of 

unchanged entities detected by the algorithm which are real changes. FN 

corresponds to undetected changes. 

 

Three quality measures are computed for the evaluation: recall, precision and 

F1-score. The recall is the percentage of the actual changes that are detected 

by an algorithm, and the precision is the percentage of the changes detected 

by an algorithm that correspond to real changes (Rottensteiner, 2007). F1-

score is the harmony mean of recall and precision. 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4-18) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4-19) 

 𝐹1 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4-20) 

 

During training, the CNN model is evaluated on the validation set after every 

three epochs to check its performance and ensure that there is no overfitting. 

Towards the end of training, the model with the highest F1-score is selected as 

the final trained model. The validation results of the proposed PSI-DC are as 

follows: TP is 2,362; TN is 101,636; FP is 2,475; FN is 563. Recall equals 

80.75%; Precision equals 48.83%; F1-score equals 60.86%. That is, 80.75% 

positive samples are correctly inferred as positive; 97.62% negative samples 

are correctly inferred as negative. The patch-level change detection results on 

the test set from the three CNN architectures are shown in Table 4.3. 
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Table 4.3: Patch-level testing results (%) for three CNN architectures. The 

highest score in each column is shown in bold. 

Network Recall Precision F1-score 

PSI-DC 86.17 68.16 76.13 

PSI-HHC 84.63 61.03 70.92 

FF-HHC 82.17 67.17 73.92 

 

Table 4.3 shows that the proposed PSI-DC model outperforms the other two 

models in all three metrics. The recall of PSI-HHC is higher than FF-HHC by 

2.46%, but its precision is lower than the latter by 6.14%, which results into 

the lowest F1-score among the three. In addition, PSI-DC outperforms PSI-

HHC by 5.21% in F1-score. This large margin indicates that the input 

configuration to the CNN models has a significant impact on the change 

detection results. The PSI-DC and PSI-HHC networks are all the same except 

that one branch in PSI-DC is Diff-DSM while the same branch is replaced by 

raw ALS-DSM and DIM-DSM patches in PSI-HHC. This can be explained by that 

PSI-DC takes advanced features (height difference of two DSMs) as input, 

while PSI-HHC takes two raw DSMs as input. PSI-HHC has more parameters 

and requires the CNN model to learn deeper. 

 

Comparing PSI-DC and FF-HHC, the Siamese architecture performs better than 

feed-forward architecture. This can be explained by the fact that our inputs 

(DSM and Orthoimage) have quite different modalities. The Siamese CNN 

allows processing the two inputs in different branches and then fuse their 

features. The feed-forward architecture takes all the inputs of different 

modalities as input, which might be harder for the CNN to learn. 

 

The change maps generated from PSI-DC and FF-HHC are visualized in Figure 

4.6. Most changed objects are correctly detected in the patch-level results even 

though some false detections occur. Although the patch-level change masks 

show zigzag effect, the results still reflect coarse locations of the change 

boundaries. The six examples in the lower part of Figure 4.6 visualize some 

details of the change maps. Figure 4.6(a) shows a demolished factory. The 

patch-based change map from PSI-DC can represent the boundary much better 

than FF-HHC since many FNs (i.e. omission errors) appear in the latter. Figure 

4.6(b) shows that a deep pit in a construction site is misclassified into a 

changed building by both models. 
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Figure 4.6: Patch-based change maps generated from the model PSI-DC (top 

left) and FF-HHC (top right). The two rows below show six zoom-in examples 

from the change maps. In each example from the left to the right: orthoimage 

for reference, change map from PSI-DC, and change map from FF-HHC. 

 

Figure 4.6(c) shows that more FPs appear in the vegetation area from the 

model FF-HHC than in the prediction of PSI-DC. This area is located in a park 

covered with grassland, trees, rivers and dirt roads. The point cloud from dense 

matching contains much noise in this area. PSI-DC can better classify this area 

into non-changes than FF-HHC. Figure 4.6(d) shows another construction site 

at the port. Tall tower cranes, containers and trucks are misclassified into 

building-related changes because their heights and surface attributes are 

similar to a real building. Figure 4.6(e) shows that a heightened square building 

is omitted by FF-HHC while it is detected by PSI-DC. Figure 4.6(f) shows that 

FF-HHC makes more FNs than PSI-DC, even though FF-HHC causes less FPs 

than PSI-DC. 

 

4.4.2 Pixel-level results 
Before presenting the pixel-level results, we analyze the effect of artefact 

removal with morphological operations and connected component analysis 

(Section 4.3.2.4). Figures 4.7(a) to (e) show that some small lowered change 

masks are mixed inside the heightened change mask. When the heightened 

and lowered masks are processed separately, the small lowered artefacts are 

filtered out. Morphological closing fills in the holes and smoothens the object 

boundaries in Figures. 4.7(b-d). Note that the holes in the change masks are 

mainly data gaps rather than omission errors. In addition, elongated artefacts 



Chapter 4 

 85 

along the building corners are removed by morphological opening in Figures 

4.7(a-d). Figure 4.7(b) shows two lowered building changes. Figure 4.7(d) 

shows that small noisy artefacts are filtered out, while a true building change 

is kept because of its strong response. Figure 4.7(e) shows that some buses 

are misclassified as building-related changes in the initial change map. They 

are successfully filtered out in artefact removal. However, Figure 4.7(b) also 

shows some deficiencies of our method. Two separate lowered buildings are 

merged because they are very close to each other. 

 

 
Figure 4.7: Examples for artefact removal. The top row shows the initial 

change maps. The bottom row shows the refined change maps. Magenta 

indicates heightened building; Cyan indicates lowered building. 

 

After artefact removal, pixel-level change maps are obtained. Some 

quantitative metrics are shown in Table 4.4 and depicted in Figure 4.8. 

 

Table 4.4: Pixel-level testing results (%) for the three CNN architectures. The 

highest score for the overall metrics is shown in bold in each column. 

Network Type Recall Precision F1-score  

PSI-DC 

Heightened 91.07 78.25 84.17 

Lowered 86.96 80.57 83.64 

Overall 89.97 78.98 84.12 

PSI-HHC 

Heightened 88.49 78.22 83.04 

Lowered 86.97 79.53 83.08 

Overall 88.16 78.70 83.16 

FF-HHC 

Heightened 85.91 78.59 82.09 

Lowered 85.91 82.64 84.24 

Overall 85.96 79.78 82.76 
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(a) Recall (b) Precision (c) F1-score 

Figure 4.8: Pixel-level testing results for the three architectures. The bars in 

three different colors represent the metrics for heightened, lowered and overall, 

respectively. 

 

Some findings can be drawn: 

 

1) Comparing the overall metrics for the three models, PSI-DC achieves the 

highest F1-score and recall, while the second highest precision, only 0.8% 

lower than PSI-HHC. As stated above in the patch-level results, the Siamese 

architecture is a sound architecture for processing multimodal inputs. Using 

Diff-DSM in one Siamese CNN channel is better than two raw DSMs, since the 

latter model is more difficult to train. In the patch-level results (see Table 4.3), 

the highest precision was also achieved by PSI-DC. This small inconsistence 

between pixel-level precision and patch-level precision might be explained by 

the fact that PSI-DC has a higher recall in the patch-level results, which brings 

more suspicious pixels to the change map, which in turn slightly reduces the 

precision rate in the pixel-level result. 

 

2) Comparing heightened and lowered metrics, the recalls of heightened 

buildings from the two Siamese models are higher than the recall of lowered 

buildings, while in FF-HHC model they are the same. In addition, the precisions 

of heightened buildings from all three models are lower than the precisions of 

lowered buildings. A sound explanation is that when delineating heightened 

changes in the pixel-level, edges are determined by the relatively noisy DIM 

point cloud. When delineating lowered changes, the edges are determined by 

the precise ALS data. For the heightened changes, our change delineator tends 

to classify many suspicious pixels into changed building, which leads to high 

recall. For the lowered changes, the change delineator can recognize the sharp 

edges from ALS data, which results into high precision. 

 

The final change maps are shown in Figure 4.9. Generally, the change masks 

can represent the change boundaries well, even though the sizes and shapes 

of changed buildings vary a lot. In addition, the labels (heightened or lowered) 

assigned to the changed buildings are homogeneous. 
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Figure 4.9: Pixel-level change maps. Ten examples in the white squares are 

visualized in Figure 4.12. 

 

Ten examples for the detected changes selected from Figure 4.9 are visualized 

in Figure 4.10. Figure 4.10(a) shows the change map for the demolished 

factory mentioned above. Two slopes can be seen from the ALS point cloud. 

The slopes are classified into non-building so they are correctly classified as 

non-change in the final change maps. Figure 4.10(b) shows a newly-built 

building and three small demolished buildings. The detected small buildings 

are merged to one big building object. Figure 4.10(c) shows a removed 

elongated mound of approximately 2.5 m. It is misclassified into a demolished 

building in both the PSI-DC and FF-HHC models. The reason might be that the 

height change and surface attributes are similar to a building change. 
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Figure 4.10: Ten examples for the detected changes and the corresponding 

point clouds. From the left to the right: ground truth, change map from PSI-

DC, change map from FF-HHC, ALS point cloud colored by height, DIM point 

cloud with true color. The point clouds are visualized from the bird-view. 

 

Figure 4.10(d) shows that a new building change is detected in PSI-DC but is 

omitted in FF-HHC. Note that, when omitted in the patch-level results by FF-

HHC (Figure 4.6(e)), the omission error cannot be recovered by the change 

delineator. Figure 4.10(e) shows the same construction site mentioned in 

Figure 4.6(d). Miscellaneous construction work is going on in the ALS data 

while the construction equipment is removed when the DIM data was captured. 

Also, a tower crane is misclassified into a lowered building. Figure 4.10(f) 

shows that a FP appears in the change maps of PSI-DC and FF-HHC. It is 

located at the corner of a wall, which is misclassified as a changed patch by 

both SI-CNN and FF-HHC. Then it is also misclassified into the building class 

by the RF during the per-pixel classification.  

 

Figure 4.10(g) shows a heightened building and a lowered building. The change 

masks from PSI-DC are more similar to the ground truth than FF-HHC. Figure 

4.10(h) shows three lowered buildings and one heightened building. The 

courtyard in one of the lowered buildings is correctly delineated. Figure 4.10(i) 

shows that a long slope, which connects the ground and a roof, is misclassified 

into a demolished building. The attributes of a slope change are very close to 

a building roof change. Figure 4.10(j) shows that an unchanged building is 

misclassified into a heightened building. The noisy DIM point cloud of this 

building is higher than true height possibly for two reasons: First, it is located 

at the border of the photogrammetric block. A low number of images and poor 
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imaging geometry usually result into poor point accuracy (Zhang et al., 2018a). 

Second, the roof is brown with little texture. Dense matching is problematic if 

the correspondence among pixels is weak. 

 

4.4.3 Object-level results 
 

The object-level results are shown in Table 4.5 and depicted in Figure 4.11. 

Among the three models, PSI-DC achieves the highest recall and precision: 

140 buildings are detected as changed by PSI-DC, 116 of which are true 

changes; 8 building changes are missed. The overall recall among the three 

models is consistent with the pixel-level recalls among the three. The recall of 

FF-HHC is lower than PSI-HHC by approximately 4% while its precision is 

higher than the latter by 1.1%. 

 

Table 4.5: Object-level testing results (%) for the three CNN architectures. 

The highest score for the overall metrics is shown in bold in the last two 

columns. 

Network Type 

Reference 

Number 

(RN) 

Detected 

Number 

(DN) 

True 

Detected 

Number 

(TDN) 

Recall Precision 

PSI-DC 

Heightened 53 66 53 100.00 80.30 

Lowered 71 74 63 88.73 85.14 

Overall 124 140 116 93.55 82.86 

PSI-

HHC 

Heightened 53 66 52 98.11 78.79 

Lowered 71 76 63 88.73 82.89 

Overall 124 142 115 92.74 80.99 

FF-HHC 

Heightened 53 62 49 92.45 79.03 

Lowered 71 72 61 85.92 84.72 

Overall 124 134 110 88.71 82.09 

 

 
(a) Recall (b) Precision 
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Figure 4.11: Object-level testing results for the three models. The bars in 

three different colors represent the metrics for heightened, lowered and overall, 

respectively. 

 

Note that the recall of patch-level results from PSI-DC reaches as high as 

86.17%. It shows that our three CNN models are thorough to keep almost 

every possible change and verify it later in the change delineator. Therefore, a 

high recall can be achieved in the object-level results. Considering the 

heightened and lowered changes, all the 53 heightened buildings are detected 

by PSI-DC, while 63 of 71 lowered buildings are detected. Meanwhile, 13 

heightened FPs and 8 lowered FNs decrease the heightened precision (80.30%) 

and lowered precision (85.14%). Examples for FPs and FNs can be found in 

Figure 4.10(f)(j) and Figure 4.10(c)(e)(i), respectively. 

 

The metrics of the final change maps depend on the synergy of both change 

detection and change delineation. The errors from the change detection can be 

propagated into the change delineation. If the CNN model achieves high patch-

level precision but low recall, omission errors are more likely to occur in the 

pixel-level and object-level results. Our change delineator can only delineate 

the detected changes but cannot retrieve the omitted ones. Additionally, if the 

CNN model achieves a high patch-level recall but low precision, then the final 

results depend on the performance of the two RF classifiers. However, RF may 

also cause make mis-classifications. As shown in Figure 4.10(f), RF 

misclassifies shaded terrain into building in the DIM data, which results into FP 

errors. Meanwhile, the computational effort for change delineation also 

increases, since more pixels are taken as boundary pixels and enclosed pixels. 

 

4.4.4 Visualization of feature maps 
 

In order to understand what the CNN learns, the feature maps from the last 

convB in PSI-DC are visualized in Figure 4.12. The outputs of PSI-DC are 64 

7×7 feature maps. Only the strongest half feature maps are shown. Two 

samples are visualized including a new building and a demolished building. The 

activation is dispersed in multiple feature maps. In some of the feature maps, 

the direction and shape of the activation reflect the shape of the change, e.g. 

the 25th feature map in Figure 4.12(a) and the {8th, 9th, 16th, 32nd} feature 

maps in Figure 4.12(b), which are highlighted in red frames. The activations 

from the last convB are then flattened and summed up in the fully connected 

layers, which matches with our definition of changed patches. Namely, whether 

a patch is changed or not depends on the ratio of changed pixels, rather than 

merely the central pixel. 
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Figure 4.12: Visualization of the feature maps from the last convolutional 

block in PSI-DC. 32 strongest feature maps are shown. 

 

4.4.5 Sensitivity analysis 
 

Patch size is a critical hyper-parameter in our framework. It should be large 

enough to incorporate much contextual information for patch-based change 

detection. It should be small enough to guarantee a relatively detailed patch-

level boundary and reduce the dependency on the change delineator. We make 

comparative studies by selecting samples with size of 80×80 and 60×60 from 

the converted DSMs and orthoimages, and then run the whole workflow from 

scratch. To make the comparison meaningful, we maintain the original PSI-DC 

architecture but up-sample the three patches (ALS-DSM, DIM-DSM, and 

orthoimage) to 100×100 to fit the CNN inputs. In addition, the numbers of 

positive and negative training samples in 80×80 and 60×60 tests are all the 

same with those in the 100×100 test. When extracting samples from the 

testing area, the number of samples for 80×80 and 60×60 tests is 1.6 times 

and 2.9 times of the number in 100×100 test, respectively. 

 

Figure 4.13(a) shows the impact of patch size on the patch-level change maps. 

Both the precision and F1-score show a clear decreasing trend when the patch 

size decreases, even though the recall shows some fluctuation. This can be 

explained by the fact that the precision decreases when less contextual 

information is contained in the smaller patches. Figures 4.13(b) and (c) show 

that the pixel-level and object-level metrics are relatively robust to the 

variation of patch size. When the patch size decreases, the PSI-DC with 

different patch size always outputs a relatively high recall (Figure 4.13(a)). 

Then the candidate pixels are all propagated to the change delineator for the 

final decision. Since these changed patches always contain most true changed 

pixels and objects, the pixel-level and object-level results are only slightly 

affected if the change delineator works fine. 
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(a) (b) (c) 

Figure 4.13: Impact of the patch size on the generated change map: (a) 

patch-level; (b) pixel-level; (c) object-level. 

 

In addition, the size of structuring elements used in Section 4.3.2.4 also affects 

the final change maps. We implement a pixel-level evaluation of the change 

maps when 𝑇𝑐𝑙𝑜𝑠𝑒 and 𝑇𝑜𝑝𝑒𝑛 are selected via a grid search in the rage of [0, 30] 

with an interval of 5. The impact of (𝑇𝑐𝑙𝑜𝑠𝑒 , 𝑇𝑜𝑝𝑒𝑛) on recall, precision and F1-

score is depicted as relatively smooth meshes in Figure 4.14. Figure 4.14(a) 

shows that recall reaches its maxima when (𝑇𝑐𝑙𝑜𝑠𝑒 , 𝑇𝑜𝑝𝑒𝑛) takes (30,0). With a 

large 𝑇𝑐𝑙𝑜𝑠𝑒, many FNs appear so recall increases. Figure 4.14(b) shows that 

the precision comes to the maxima when (𝑇𝑐𝑙𝑜𝑠𝑒 , 𝑇𝑜𝑝𝑒𝑛) takes (0,30). At this point, 

the morphological opening filters out all the suspicious pixels and only 

maintains those with the strongest response, thus leading to a high precision. 

Figure 4.14(c) shows that when (𝑇𝑐𝑙𝑜𝑠𝑒 , 𝑇𝑜𝑝𝑒𝑛) takes (10,30), F1-score reaches the 

maxima 85.06%. Therefore, we adopted the (10, 15)  in this paper, which 

brought slightly lower F1-score of 84.12%. 

 

 
Figure 4.14: Impact of the size of morphological structuring elements on the 

final change map. (a) Recall; (b) Precision; (c) F1-score. The black dot on each 

mesh show the point (𝑇𝑐𝑙𝑜𝑠𝑒 , 𝑇𝑜𝑝𝑒𝑛, 𝑣𝑎𝑙𝑢𝑒) where each mesh takes its maximum. 

 

4.5 Conclusions 
 

We propose a method to detect building changes between airborne laser 

scanning and photogrammetric data. This task is challenging owing to the 

multi-modality of input data and dense matching errors. First the multimodal 

data are converted to the same scales and fed into a light-weighted pseudo-
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Siamese CNN for change detection. Then, the changed objects are delineated 

through per-pixel classification and artefact removal. In the pixel-level 

evaluation, our change map achieves a recall rate of 89.97%, a precision rate 

of 78.98%, and an F1-score of 84.12%. For the object-level evaluation, the 

recall rate reaches 93.55% and the precision rate reaches 82.86%. Although 

the point cloud quality from dense matching is not as good as laser scanning 

points, the radiometric and textural information provided by the orthoimages 

serves as a supplement, which leads to relatively satisfactory change 

delineation results. 

 

There are two advantages with the design of our framework: First, the 

complicated multimodal change detection problem is disassembled into three 

binary classification problems. They are solved by one CNN model and two RF 

classifiers, which require less hyper-parameters and prior knowledge compared 

to (Du et al., 2016). The PSI-DC model is light-weighted but works 

satisfactorily for the problem at hand. Second, the change detection module 

and change delineator module are separated in the framework. The change 

detection module based on a pseudo-Siamese CNN can quickly provide some 

initial change maps in emergency response. The change delineator divides the 

candidate changed pixels into boundary pixels and enclosed pixels: Only a few 

boundary pixels require the more complex feature extraction and classification, 

which largely reduces the computational load. Concerning the disadvantages 

of the proposed method, the framework is relatively complicated including two 

steps instead of an end-to-end solution. The next chapter is targeted to solve 

the problem in a more straight-forward manner. 
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Chapter 5 - Combined Semantic Segmentation 
and Change Detection Between Multimodal 
Point Clouds 
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5.1 Introduction 
 

Our target is to detect changes between outdated ALS point clouds and new 

DIM point clouds. Compared with patch-based change detection in chapter 4, 

this chapter aims to detect changes to each 3D ALS point instead of changes 

to the 2D square patches. 

 

Although semantic segmentation (SS) and change detection (CD) are always 

investigated separately in the previous literature, we take them as two strongly 

correlated tasks and propose to solve them in a single workflow. Change 

detection extracts change information from the old epoch to the new epoch. In 

order to identify the “from-to” change types, “semantic segmentation” is 

required to each epoch. Namely, in the “from-to” change detection task, 

change detection is finished only when semantic segmentation has been 

implemented in both epochs. 

 

In this chapter, we propose a solution to define the categories in the outputs 

which combines the change labels and semantic labels. Figure 5.1 shows a 

schematic diagram indicating changes between two epochs. Table 5.1 shows 

our solution to define joint categories for Figure 5.1. Tran et al. (2018) also 

combined the tasks of semantic segmentation and change detection between 

LiDAR points from two epochs. They considered more change categories than 

we did in Table 5.1. Our work considers only building changes just to 

demonstrate the principle of joint semantic segmentation and change detection. 

The “building heightened” changes in Table 5.1 might be a “newly-built building” 

or a “heightened building”; The “building lowered” changes include 

“demolished buildings”. Changes related to terrain or vegetation are assigned 

to the “Other (OT)” category.  

 

A

B C

D

E
F

a

b
c

d

e

Old epoch

New epoch

f

 
Figure 5.1: Schematic diagram indicating changes between two epochs. The 

top row shows the old epoch; the bottom row shows the new epoch. The red 

dots in the top row and bottom row are corresponding at the same location. 
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Table 5.1: Our solution to define joint categories 

Point Change Type Change code 

A Terrain to terrain, unchanged TU 

B Unchanged building BU 

C and D Building heightened BH 

E Building lowered BL 

F Vegetation to vegetation, unchanged VU 

 

The rules for defining the categories in the outputs should cause the minimum 

information redundancy. Tran et al. (2018) extract features from both epochs, 

classify the point clouds in each epoch separately and then compare the labels 

for change detection. Their solution of defining joint categories is to assign 

changes labels to data of both epochs. However, this causes much redundancy. 

For instance, if “from D to d” shows a new building; “from d to D” must be 

“building lowered” change. If “from F to f” shows an unchanged tree, “from f 

to F” must be an unchanged tree. There is no logical need to define them 

separately in both epochs. 

 

Our solution to define the joint labels is shown in Table 5.1. Specifically, only 

ALS points are labelled. If an ALS point is unchanged, we assign it with a 

semantic label; If an ALS point is changed, we assign it with a change label. 

Specifically, C and D indicate that a new building (terrain-to-building) and a 

building with an additional floor (building-to-building) are in the same Building 

Heightened (BH) class; E indicates that a demolished building is in the Building 

Lowered (BL) class. The major difference is that the method by (Tran et al., 

2018) detects changes to the point clouds from both epochs, while our method 

labels joint-change transitions only in the point cloud of one epoch. Our 

solution to define joint categories is concise with no information redundancy. 

 

In order to solve the problem of semantic segmentation and change detection 

in a single workflow, a Siamese neural network architecture is proposed for the 

joint tasks. Deep neural networks have demonstrated its superior performance 

in many computer vision tasks, such as image classification, semantic 

segmentation, change detection, object detection, etc. The neural networks 

have also been applied to extract features from the point clouds. In our 

previous work (Zhang et al, 2019), a Siamese neural network is proposed for 

change detection between multimodal point clouds assisted by orthoimages. 

The network takes 2.5D DSMs and 2D orthoimage as the inputs and makes a 

binary inference in the output, i.e. changed or non-changed. However, the 

conversion from 3D point clouds to 2.5D DSMs causes information loss and the 

derived change map is patch-based with a coarse resolution. In this work, we 

aim for point-wise labels for each ALS point. In the outputs, each ALS point is 

labelled into one of the six classes: TU, BU, BH, BL, VU or OT. 
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The contributions of this chapter are as follows: 

 

(1) We propose an end-to-end Siamese network to infer semantic labels and 

change labels. The network takes multimodal point clouds from two epochs as 

inputs. It outputs a pointwise joint label for each ALS point. The semantic 

segmentation and change detection information are included in the joint labels 

with minimum information redundancy. Intra-epoch features are extracted at 

multiple scales to embed the local and global information. Inter-epoch features 

are concatenated to make change inference. This architecture can also be 

extended to other change detection tasks between point clouds from other 

platforms or in other modalities. 

 

(2) We propose a Conjugated Ball Sampling (CBS) method to extract inter-

epoch features from two epochs at the same centroids. It ensures that the 

feature vectors extracted from the DIM data are at the same location with the 

ALS data. 

 

(3) Experiments are implemented on the Rotterdam data set. Comparing with 

three other methods, this method requires far fewer hyper-parameters and 

much less human intervention but achieves superior performance. 

 

5.2 Related work on 3D semantic segmentation 
 

Our work relates to both 3D semantic segmentation and change detection. The 

readers are referred to section 4.2.1 for a review on 3D change detection 

methods. This chapter reviews the methods for 3D semantic segmentation. 

 

In the field of computer vision and remote sensing, 3D semantic segmentation 

refers to assigning a class label to each basic unit of 3D data, such as terrain, 

vegetation, building, water, pedestrian, etc. The basic processing unit, also 

called “entity”, may be a point, a segment, or a voxel. The methods for 

semantic segmentation can be categorized into unsupervised and supervised 

as shown in Figure 5.2. Unsupervised methods are usually rule-based 

classification relying on handcrafted features. Supervised methods can be 

categorized into machine learning methods, contextual features-based 

classification and deep learning-based classification. Deep learning based-

methods can be categorized according to the representation of 3D data, e.g. 

multi-view representation, 2.5D representation, voxel, point cloud, and graph. 
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Unsupervised

Machine learning based 
on handcrafted features

Deep learning-based 
classification

Supervised 2.5D representation

multi-view 
representation

voxelized 
representation

point cloud 
representation

graph representation

Rule-based classification

3D semantic 
segmentation

 
Figure 5.2: Overview of 3D semantic segmentation methods 

 

Figure 5.2 also indicates the general history of 3D semantic segmentation 

methods. For example, the features evolve from handcrafted features to deep 

learning-based features. At the beginning, deep learning features are extracted 

from multi-view images and then fused for inference. Then 3D data are 

transformed to 2.5D data or voxels where features are extracted. With the 

pioneering proposal of PointNet (Qi et al, 2017a) and PointNet++ (Qi et al., 

2017b), features are extracted from each point. In graph representation, the 

point features are represented in graph nodes while the contextual features 

are represented in edges. 

 

5.2.1 Rule-based classification 
 

The process for rule-based classification is to extract handcrafted features from 

the points or segments, and then to classify the features based on classification 

rules and prior knowledge. The method relies on representative features and 

discriminative rules. For example, a smoothness feature can be used to 

discriminate between vegetation and building roof. A point with a smoothness 

value below than a threshold 𝑇 is more likely to be a building roof rather than 

vegetation. Therefore, the effect of this method also relies on the set of 

classification thresholds. Many manual efforts are required for this type of 

method. 

 

The basic entity for feature extraction and rule design can be a single point. 

For example, Pu et al. (2011) classify on-board MLS point clouds based on the 

“from coarse to fine” strategy. They first classify the points into ground surface, 

objects on ground, and objects off ground. The objects on ground are assigned 

to more detailed classes such as traffic signs, trees, building walls and barriers 
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based on size, shape, orientation and topological relationships. The rule-based 

classification are also used in (Maltezos and Ioannidis, 2015) to classify LiDAR 

point clouds and dense matching points with roughness and NDVI. 

 

Instead of single point-based features, some rule-based classification takes a 

segment as the basic processing unit. Vosselman (2013) first extracts planar 

segments based on surface growing, and then extracts roof segments based 

on smoothness feature. Segment growing and connected component analysis 

are employed to classify the remaining points into terrain and vegetation. The 

method relies on robust surface growing method and threshold determination. 

Lin and Zhang (2014) proposed a segmentation-based filtering algorithm to 

extract ground points from laser point clouds. The method contains three steps: 

point cloud segmentation, multiple echoes analysis, and iterative judgment. 

The filtering unit is a segment rather than a single point. 

 

In addition, some work fuses point-based features and segment-based 

features for robust classification. Xu et al. (2012) extract three types of 

features from each ALS point cloud, and classify the scene according to prior 

knowledge. The features contain point-based features, features based on 

planar segments, and features based on mean-shift segmentation. The 

classification tree is manually designed to divide the points into five classes. 

The way to determine the threshold for each feature is to plot the feature 

distribution as a histogram and manually determine the threshold that can 

distinguish different classes. Gilani et al. (2016) combine image features and 

point cloud features to extract buildings from ISPRS Vaihingen benchmark 

dataset. The candidate building region is divided into grid where vegetation 

and shadow are excluded. The building outlines are regularized with edge 

features on the images. 

 

5.2.2 Machine learning based on handcrafted features 
 

This type of classification method employs handcrafted features which are 

classified by supervised machine learning algorithms. The tedious work of 

designing classification rules and determining their thresholds is undertaken 

implicitly by a classifier training. Therefore, the critical part of this method is 

“feature engineering”. Feature engineering raises new questions: (1) How to 

evaluate feature contribution? (2) Is it true that the more features are better 

than less features? (3) How to perform feature selection? (4) Which machine 

classifier performs better? (5) How do the amount and distribution of training 

data affect the classifier performance? 

 

Guo et al. (2011) extract echo features and full waveform features from LiDAR 

data, classify them with random forest classifiers, and analyze the correlation 

between LiDAR features and multispectral images. Xu et al. (2014) extract 
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point features, planar segment-based features and mean-shift segment 

features from point clouds, and classify laser point clouds into seven categories, 

using Random Trees, Adaptive Boosting, Artificial Neural Network, Support 

Vector Machine, and rule-based classification and compare their performance. 

Weinmann et al. (2015) analyze the effects of different feature combinations, 

neighborhood sizes of feature extraction, classifiers, and feature selection 

methods on classification accuracy. They propose an adaptive neighborhood 

selection method based on Shannon entropy.  

 

This type of classification is relatively mature and has been widely used in other 

literature such as (Chehata et al., 2009), (Gerke and Xiao, 2014), (Blomley et 

al., 2014), (Martinovic et al., 2015), (Ni et al., 2016), (Roynard et al., 2016), 

(Hackel et al., 2016), (Ramiya et al., 2016), (Gevaert et al., 2016), (Thomas 

et al., 2018) et al. There is a trend to fuse multimodal features such as point 

cloud-based features, image-based spectral and textural features and DSM 

features on the basis that multiple features might be complementary. 

 

The above handcrafted features only take local neighborhood into 

consideration, classification with contextual features allows to take larger 

context into the model explicitly. Niemeyer et al (2014) classifies airborne laser 

points by integrating Random Forests into a Conditional Random Field (CRF) 

framework. The unary term of CRF is calculated from point-based features with 

Random Forests; The binary term is the interaction features of neighboring 

points. Comparing with their method, Vosselman et al. (2017) take segmented 

airborne laser data as the processing unit in a CRF framework. Different 

segmentation methods are integrated to minimize under- and over-

segmentation. The edges in the CRF model are taken from the segment 

adjacencies and point-based features along the segment borders. 

 

Similar contextual classification method is also used in (Lu and Rasmussen, 

2012), (Wolf et al., 2015), (Guinard and Landrieu, 2017), (Zhu et al, 2017) et 

al. Through taking long interactions among points or segments, contextual 

classification results are expected to be relatively smooth and the details 

between object edges can be preserved. 

 

5.2.3 Deep learning-based classification 
 

Deep learning algorithms are being used in point cloud semantic segmentation. 

It provides a direct solution to merge feature extraction and classification into 

Multilayer Perceptrons (MLPs). Convolutions Neural Networks show superior 

performance in 2D image segmentation but cannot directly not be applied to 

3D point cloud classification. The challenges are two-folds: (1) Point cloud is a 

set of unordered 3D coordinates (𝑋, 𝑌, 𝑍) . The point cloud is permutation-

invariant. Namely, if the order of point cloud coordinates is changed, the object 
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is still the same one (Qi et al., 2017a). (2) In addition to 3D coordinates, the 

laser points may contain intensity, number of echoes, or other features. The 

DIM points may contain color information (𝑅, 𝐺, 𝐵). How to feed multimodal 

features into the neural networks is a problem. 3D data can be represented in 

different forms as shown in Figure 5.3. Deep learning-based classification 

methods can be divided based on different representations fed into the neural 

networks. 

 

(a) Multiview images (d) Point cloud (e) Meshes(b) Voxels (c) Octree (f) CAD model  
Figure 5.3: Representation of 3D data. 

 

Concerning multi-view representation, 2D CNNs are used on 2D images 

converted from point clouds. Boulch et al. (2017) convert 3D point clouds into 

RGB-D images from different perspectives and the depth corresponds to the 

geometric information. The images are then segmented by Fully Convolutional 

Networks (FCNs) and the labels are projected back to the original point clouds. 

Su et al (2015) and Zhang et al (2018) both propose multi-view CNN for 3D 

shape recognition. Firstly, images of an object are obtained from multiple 

perspectives, and then each image is classified by CNN. Finally, results of 

multiple views are integrated to make the inference decision. 

 

Hu and Yuan (2016) are the first to apply CNN models for point cloud filtering. 

Firstly, the features extracted from point cloud is converted into the three 

channels of a “virtual color image”. Then each image patch is classified into 

ground and non-ground with CNN. Similarly, Rizaldy et al. (2018) use FCN for 

laser point filtering. Firstly, elevation, intensity, number of echoes and 

elevation difference are converted into a four-channel image, and then each 

pixel is classified into ground and non-ground by FCN. Finally, the label is 

transmitted to the original point cloud. 

 

In terms of urban scene classification, Audebert et al. (2018) combine 

orthophotos and DSM as input and add multi-scale modules to the SegNet and 

ResNet. They also compare the performance of early fusion and late fusion. 

Considering that the classification edges between objects get blurry, Marmanis 

et al. (2018) add boundary detection into the SegNet model explicitly. Similar 

work can be found in (Yang et al., 2017), (Liu et al., 2017), (Gupta et al., 

2016), (Hazirbas et al., 2016), (Wen et al., 2019). 

 

In addition to 2D CNNs, some works convert point clouds into voxels and then 

feed them into a 3D CNN. Maturana and Scherer (2015) propose to convert 
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point cloud into 32×32×32 voxels, and then apply 3D CNN to classify the 

voxelized objects. Since 3D convolution on the voxels takes much 

computational memory, Riegler et al. (2016) builds an Octree to represent the 

point cloud. They propose the OctNet architecture for learning deep features 

from the specific data structure. Lei et al. (2019) propose an octree-based 

convolutional method, in which the spherical convolution kernel is designed for 

fast feature learning in the point cloud space. Similar voxel-based deep 

learning methods are used in (Huang and You, 2016), (Nagy and Benedek, 

2019), (Qi et al., 2016), (Tchapmi et al., 2017), (Zhou and Tuzel, 2017), (Liu 

et al. 2019) and (Roynard et al., 2018) for feature learning from 3D point 

clouds. 

 

The procedure of converting 3D point clouds into multi-view images, 2.5D 

DSMs or voxels not only causes information loss, but increases the workload. 

Qi et al. (2017a) propose PointNet as the pioneering research which feeds 

unstructured point clouds into MLPs to learn pointwise features. The network 

is invariant and stable to geometric transformation and permutation with the 

spatial transformer and max-pooling layers. To extract features from multi-

scales, PointNet++ is proposed to learn hierarchical features through a series 

of combined sampling layer and grouping layer (Qi et al, 2017b).  

 

On the basis of PointNet++, Yousefhussien et al. (2018) propose a 1D-fully 

convolutional network which takes normalized point cloud features and spectral 

features as input. The network achieves superior performance on the ISPRS 

3D Semantic Labeling Contest data set. Su et al., (2018) first transform the 

point cloud space to a lattice space. They propose SPLATNet to learn features 

in lattice space with bidirectional convolutional layers. Lin et al. (2020) propose 

an active and incremental learning method to save the manual annotation work. 

The model knowledge increases in each iteration. Similar work of classifying 

unstructured point clouds with MLPs can be found in (Soilan et al., 2019), 

(Winiwarter et al., 2019), (Zhao et al., 2018), (Lian et al., 2019), (Hu et al., 

2020), (Zhao et al., 2021) et al. 

 

Point cloud semantic segmentation can also be performed over the graph 

representation: the points are taken as graph nodes while the neighboring 

relations are edges. Qi et al. (2017) propose a 3D Graph Convolutional Network 

(GCN) for RGB-D data classification. First, a k-nearest neighbor graph is built 

from the point clouds. The graph node is a set of points which is concatenated 

with the feature vector extracted from the 2D images. Each node updates 

dynamically based on current status and neighboring message. Landrieu and 

Simonovsky (2018) propose Superpoint Graphs to build graph on superpoints 

for semantic segmentation. The superpoints are a set of points which are 

geometrically homogeneous. The contextual relations in the graph are 

exploited by a GCN to model long-range interactions. Wang et al. (2019) 
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propose Edge Convolution (EdgeConv) to model the contextual relations in the 

point clouds and higher dimensional feature space. The graph is dynamically 

updated after each convolution. 

 

In summary, the state-of-the-art methods for 3D semantic segmentation show 

the following trends: (1) The researches are pursuing end-to-end inference 

methods which takes raw point clouds as inputs while assigning a label to each 

point. The workload of pre- and post-processing is being minimized. (2) The 

state-of-the-art methods are developing towards the direction of extracting 

multi-scale features from a large context. From PointNet to PointNet++ and 

then to the Superpoint Graphs, the neighborhood for feature aggregation 

becomes wider and wider. (3) Active learning and semi-supervised learning 

methods are taken into the 3D semantic segmentation tasks so that the 

requirement for large training samples can be reduced. 

5.3 Methodology 
 

Our workflow for combined SS and CD contains three steps: First, the dense 

DIM point clouds are denoised to eliminate isolated points and noise; Second, 

the conjugated training tiles are prepared with normalization; Third, a Siamese 

neural network is used to classify each ALS point into one of the six joint classes. 

 

5.3.1 Thickness-Adaptive Denoising for DIM point cloud 
 

The point clouds generated by dense image matching (DIM) are denser and 

noisier than the ALS points. The isolated blunders and random noise in the DIM 

points may hinder the extraction of representative features from the point 

clouds. Additionally, the high density of the DIM points causes high 

computational burden during the preparation of training samples and feature 

extraction. The target of DIM data denoising is to ensure that the DIM noise 

and blunders are largely reduced, and the DIM data density is at the level of 

the ALS point density. When the input point clouds of two epochs are at the 

same density level, the two Siamese branches get balanced.  

 

A DIM point cloud shows up as a surface with points scattered around the 

object surface. The denoising method assumes that the most accurate DIM 

points lie in the center of the noisy point cloud profiles if the point cloud surface 

contains only one layer. The target is to select the skeleton points along the 

noisy DIM surface. However, point clouds may contain multiple layers such as 

at a heightened road, a wall, etc. Therefore, our method should distinguish two 

cases. We use a square without height bounds for a single layer and cubes for 

multiple layers to divide the point clouds. Finally, only one point is selected 
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from each square or cube as the sampled point. The method for DIM data 

denoising is illustrated in Figure 5.4. 

 

L/2 L/2 L/2

Selected 50-percentile points

DIM points

DIM points, and also skeleton points

L/2

Case I: point cloud with 
one layer

Case II: point cloud 
with multiple layers

L/2

 
Figure 5.4: A profile for DIM point cloud denoising 

 

Figure 5.4 illustrates the ways of selecting skeleton points in two cases. The 

purple points are noise while the blue points are selected valid points. If we 

apply 50-percentile de-noising, all the facade points in case II would be 

removed. However, the facade points are assumed to be a discriminative 

indicator for the buildings, so it is necessary to keep the facade points during 

denoising. Therefore, point cloud with multiple layers should also be divided in 

the vertical direction. 

 

The algorithm, named Thickness-Adaptive Denoising, is shown below: 

 

(1) Given the original noisy DIM point set (𝑋, 𝑌, 𝑍), divide the point clouds into 

square grids with a length of 𝐿 and a stride of 𝐿/2 at the X-Y space. 

 

(2) Iterate over each grid location (𝑋0, 𝑌0) and make a judgement whether it 

has one layer or multiple layers. If the H90%-H10% profile with all the points in 

this grid is lower than 𝐻𝑑, the point cloud surface is supposed to contain only 

one layer; otherwise, it is assumed to contain multiple layers. 𝐻𝑑  is the 

threshold for the thickness of point cloud surface. The next step goes to step 

(3) or step (4) depending on this judgement. 

 

(3) If a grid has only one layer, we select the point at the 50% percentile of all 

the point heights within this grid as the skeleton point for this grid. 

 

(4) If a grid has multiple layers, we divide the grid in the vertical direction into 

multiple cubes with a length of 𝐿 and a stride of 𝐿/2. Similarly, we select the 

point at the 50% percentile of all the point heights within each cube as the 
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skeleton point for each cube. Concerning data gaps, if there is no point in a 

cube, this cube is left empty. 

 

In this manner, the skeleton points can be kept no matter whether the point 

cloud surface has one or multiple layers. The generated point cloud can also 

maintain the vertical distribution of point clouds in the raw data. 

 

5.3.2 Preparation of conjugated training blocks 
 

One training sample is a pair of tiles selected at the same centroids from two 

epochs. The pair of tiles are fed into the Siamese network for joint SS and CD. 

Given a centroid (𝑋, 𝑌), the tile is taken in the space between (𝑋 − ∆𝑋, 𝑌 −

∆𝑌, −∞) and (𝑋 + ∆𝑋, 𝑌 + ∆𝑌, +∞). ∆𝑋 is usually set to be the same with ∆𝑌 since 

square blocks give considerable attention to X and Y directions when 

embedding contextual information. 

 

Suppose that  (𝑋𝑖
𝑎𝑙𝑠, 𝑌𝑖

𝑎𝑙𝑠 , 𝑍𝑖
𝑎𝑙𝑠), 𝑖 ∈ (1, 𝑁) are the 𝑁 ALS points in the ALS tile. 

(𝑋𝑗
𝑑𝑖𝑚, 𝑌𝑗

𝑑𝑖𝑚, 𝑍𝑗
𝑑𝑖𝑚), 𝑗 ∈ (1, 𝑀) indicate the 𝑀 DIM points in the corresponding DIM 

tile. It should be noted that the number of points in the corresponding tiles are 

not the same; The point distribution or point sequence are different as well 

since the data of two epochs were acquired by different techniques. The only 

relation between the two corresponding tiles is that they are cropped at the 

same centroid within the same range. In our data preparation, the number of 

points sampled from each ALS tile and each DIM tile are constant so that they 

can be fed into the network. Concerning data normalization, the (𝑋, 𝑌) 

coordinates are normalized by subtracting the centroids (𝑋𝑐 , 𝑌𝑐) of each tile; 

The 𝑍  value remains unchanged: (𝑋𝑖
𝑎𝑙𝑠 − 𝑋𝑐 , 𝑌𝑖

𝑎𝑙𝑠 − 𝑌𝑐 , 𝑍𝑖
𝑎𝑙𝑠) , (𝑋𝑖

𝑎𝑙𝑠 − 𝑋𝑐 , 𝑌𝑖
𝑎𝑙𝑠 −

𝑌𝑐 , 𝑍𝑖
𝑎𝑙𝑠). 

 

5.3.3 Siamese pointwise network 
 

Siamese Convolutional Neural Networks (S-CNN) have been used in dual-input 

tasks in both computer vision and remote sensing domain, e.g. for change 

detection, dense image matching, human re-identification, and image retrieval. 

The input to the two branches might be either from the same modality or from 

different modalities. Each of the two Siamese branches is composed of 

convolutional layers, batch normalization and non-linear activation for feature 

extraction. The extracted deep features in the end of the two branches are 

concatenated or subtracted for the specific tasks. 

 

The proposed architecture aims to take point clouds as input and makes point-

wise based inference. PointNet++ is a pioneering end-to-end architecture for 

point-wise semantic segmentation based on Multi-Layer Perception (MLP) (Qi 
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et al., 2017b). However, it was designed for semantic segmentation, object 

classification and part segmentation. There is still no research published till 

now on using neural networks for point-based change detection. 

 

This paper proposes the Siamese pointwise network for joint SS and CD as 

shown in Figure 5.5. We take PointNet++ as the backbone of our architecture 

to check the feasibility of learning inter-epoch features with a Siamese 

architecture. The reason for taking PointNet++ as the backbone is that 

PointNet++ is the pioneering and fundamental model for feature extraction 

from point clouds. In each of the Siamese branch, multiscale features are 

extracted and aggregated with Multi-layer Perceptrons (MLPs). The model is 

named SiamPointNet++. 

 

 
Figure 5.5: The proposed SiamPointNet++ network for joint semantic 

segmentation and change detection. 

 

(1) Intra-epoch design: Each Siamese branch extracts features from either 

the ALS points or the DIM points. Similar to Fully Convolutional Networks (FCN), 

our network with PointNet++ as the backbone contains encoders in the left 

half part and decoders in the right part. Concerning the encoder layers, local 

and global features are extracted from multiple scales using a series of set 

abstractions. Each set abstraction contains sampling, grouping and PointNet 

operations. Specifically, the centroids are sampled by Farthest Point Sampling 

(FPS) from the points in the last layer; The features of neighboring points 

within a fixed radius to each centroid are grouped and further processed by a 

unit PointNet. As the feature extraction goes deeper, more contextual 

information from a larger range is derived and aggregated. 

 

In the decoder layers, the down-sampled point sets are gradually interpolated 

to the raw point distribution with skip link concatenations followed by a 

PointNet operation. The step is named “feature propagation” in the PointNet++. 

The skip link concatenation makes a connection between the encoders and 

decoders, which ensures that a feature vector is extracted for each ALS point. 
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Similar to (Qi et al, 2017b), we also group features from multiple 

neighborhoods to cope with non-uniform density in the point clouds, i.e. multi-

scale grouping (MSG). 

 

(2) Inter-epoch design: A similar branch is used for feature extraction from 

the DIM points (see the bottom row of Figure 5.5). The critical question is how 

to make a correspondence between the feature extraction in the two branches. 

If we apply a set abstraction independently to the DIM branch, the sampling 

centroids and the number of samples (dotted circles) would be quite different 

compared with the sampling in the ALS branch. If the samples are taken from 

different locations with no correspondence, a comparison between them is 

obviously meaningless. 

 

We propose a Conjugated Ball Sampling (CBS) for the set abstraction on the 

DIM points as shown in Figure 5.6. When the sampling centroids are 

determined in the ALS points, the samples in the DIM data are taken at the 

same centroids as in the ALS data. This ensures that the local feature vectors 

taken from the ALS data and the DIM data are always corresponding to each 

other. Namely, we extract the features at the same ALS centroids with the 

neighboring DIM points – these features represent the neighboring contextual 

information in the DIM data. 

 

 
Figure 5.6: The point cloud profile for illustrating Conjugated Ball Sampling 

(CBS). 

 

After a series of set abstractions, the deep DIM features are derived from large 

contextual range. Concerning the decoder layers, features are interpolated and 

propagated to the higher densities. In the last layer, the DIM feature vectors 

are interpolated to the raw ALS point location, instead of the raw DIM point 

locations. This guarantees that the DIM features are calculated at the same 

centroids as the ALS data. Only those feature vectors extracted at the same 

centroids can be compared. Note that even if there is no DIM point in the 

conjugated ball of an ALS point, we should still calculate a pseudo “feature 
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vector” at the same centroid to “inform” the model that the ball neighborhood 

in the DIM data is empty. Our solution is simply to take the minimum corner 

of the tile as the only point in the ball neighborhood for feature vector 

calculation, which is [0, 0, 0] based on our normalization method. The weights 

in the two Siamese branches are not shared since the input point clouds have 

different properties. 

 

(3) Feature concatenation and inference 

The feature maps from the two Siamese branches in Figure 5.5 are calculated 

for each ALS point from multiple scales which contain local and global 

information. The two feature maps are concatenated and further processed by 

a vanilla PointNet, which fuses information from both epochs. The vanilla 

PointNet is composed of convolution, batch normalization, Rectified Linear Unit 

(ReLU) and dropout layers. The final output from the PointNet is a 6 × 1 feature 

vector for each ALS point, which indicates the probability for each category, 

respectively. First, the vector is normalized to (0,1) by a Softmax function; 

Then, a weighted cross entropy loss is calculated for multiclass inference. 

Suppose that the class index is in the range [0, 5], which indicates one of the 

six categories: TU, BU, BH, BL, VU or OT. The loss for each class can be 

calculated by 

 𝐿𝑜𝑠𝑠(𝑥, 𝑐𝑙𝑎𝑠𝑠) = −𝑤𝑒𝑖𝑔ℎ𝑡[𝑐𝑙𝑎𝑠𝑠] ∗ 𝑙𝑜𝑔 (
exp(𝑥[𝑐𝑙𝑎𝑠𝑠])

∑ exp(𝑥[𝑖])𝑖
) ,      𝑖 = 0~5 (5-1) 

Where 𝑥 is the predicted vector from the vanilla PointNet. The 𝑤𝑒𝑖𝑔ℎ𝑡 is set 

based on the ratio of number of different classes. By assigning weights to the 

loss function, we impose a stronger response to the model when small-sample 

classes are met. This gives larger penalization to a false positive than to a false 

negative to suppress false positives. 

 

5.4 Experimental settings 
 

5.4.1 Data description 
 

The study area is located in Rotterdam, The Netherlands, which is a densely 

built port city mainly covered by residential buildings, skyscrapers, vegetation, 

roads, and waters. The study area is 14.5 km2 as shown in Figure 5.7. Figure 

5.7(a) shows the ALS point cloud obtained in 2007 with a density of 

approximately 25 points/m2. The point cloud contains approximately 226 

million points. 
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Figure 5.7: Visualization of the data set. Top row from left to right: (a) ALS 

points colored according to height; (b) Orthoimage marked with training, 

validation and testing area; (c) ALS points labelled into six categories. 

 

A total of 2160 aerial images were obtained by CycloMedia from five 

perspectives in 2016. The flying altitude was approximately 450 m. The tilt 

angle of the oblique view was approximately 45°. The image size was 7360 × 

4912 pixels. The GSD of nadir images equaled 0.1 m. The bundle adjustment 

and dense image matching were performed in Pix4Dmapper. The vertical RMSE 

(Root Mean Square Error) of 48 GCPs was ±0.021 m and the vertical RMSE of 

20 check points was ±0.058 m. The overlap of nadir images was approximately 

80% along the track and 40% across the track. Even though the overlap rate 

from five views is high, dense matching still cannot perform well in the narrow 

alleys between tall buildings due to poor illumination or a lack of surface 

texture. The DIM point cloud contains approximately 281 million points. DSMs 

and orthoimages were also generated at the same resolution of 0.1 m. Figure 

5.7(b) shows the generated orthoimage. The training, validation, and testing 

area are 6 km2, 1 km2, and 4 km2, respectively. Note that 4 km2 of the block 

is not used since these areas contain few changes. Figure 5.7(c) shows the 

point clouds labelled into six categories: Terrain Unchanged (TU), Building 

Unchanged (BU), Building Heightened (BH), Building Lowered (BL), Vegetation 

Unchanged (VU) or Other (OT). 

 

Some statistics of the experimental data are shown in Table 5.2. As to be 

expected it shows that the six classes in the data set are imbalanced. The TU 

and BU are the majority classes; The BL class contains the least samples. 
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Table 5.2: Number of samples for training, validation and testing. 
Number of 

Points 
TU BU BH BL VU OT 

Sum 

(ALS) 

Sum 

(DIM) 

Training set 
36,06

4,519 

10,65

7,456 

1,327,

245 

313,9

64 

3,983,

353 

2,373,

646 

54,72

0,183 

72,25

8,941 

Validation 

set 

2,435,

464 

1,269,

007 

186,9

81 

16,86

2 

650,4

26 

288,3

88 

4,847,

128 

6,587,

198 

Testing set 
8,134,

193 

4,452,

199 

317,9

17 

181,3

61 

571,9

72 

796,7

12 

14,45

4,354 

19,70

3,395 

 

The following should be noted during manual labeling: (1) The ALS point cloud 

is manually labelled in two steps. Firstly, it is manually labelled into terrain, 

buildings, vegetation and other; Secondly, the semantic labels are further 

labelled into change labels with guidance of the ALS points, DIM points, and 

DSM differencing map. (2) Specifically, when a building is newly-built or 

heightened, its boundary is delineated from the DIM points; When a building 

is demolished, its boundary is delineated from the outdated ALS points. (3) 

Water areas are not considered for change detection and therefore omitted. (4) 

Data gaps may appear in ALS points and DIM points. If there is no data in 

either epoch, we simply cannot make any inference whether it is changed or 

not. Therefore, if an ALS point appears where it is data gap in the DIM data, 

this ALS point is labelled into other (OT). (5) Finally, each ALS point is labelled 

into TU, BU, BH, BL, VU or OT. The BH class includes heighted buildings and 

new buildings; The BL class indicates demolished buildings. 

 

5.4.2 Preprocessing 
 

Concerning the Thickness-Adaptive Denoising for DIM point cloud, the 

parameter 𝐿 for grid sampling is set to 0.2 m according to the density of ALS 

point cloud so that the input data to the Siamese network are at the same 

density level. 𝐿 is. 𝐻𝑑 is set to 0.5 m as the normal thickness of DIM point cloud 

surface. 

 

ALS data and DIM data in the data set are cropped into tiles so that they can 

be fed into the network. The tile size should be large enough to contain 

sufficient context, and small enough concerning the limited GPU memory. In 

our experiments, the training area is divided into 50 mⅩ50 m tiles with a stride 

of 20 m. The overlap allows to generate more training samples. When 

preparing validation and testing tiles, the tile size remains 50 mⅩ50 m at a 

stride of 50 m so that each tile is inferred only once. Concerning data 

normalization, Qi et al. (2017b) normalize the point cloud coordinates in each 

tile to [0,1] in X, Y and Z directions, respectively. In contrast, we subtract the 

𝑋  and 𝑌  coordinates with the starting position in each tile; The true Z 

coordinates are fed into the network without normalization. The brings two 
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benefits: First, the 𝑋𝑠 and 𝑌𝑠 in all the tiles are normalized into [0, 50m], which 

avoids the impact of horizontal deviations of tiles; Second, this allows to keep 

the relative geometric relations among X, Y, Z. Our trial test shows that this 

normalization method works better than the method in (Qi et al., 2017b) for 

our tasks. 

 

The hyper-parameters in the proposed network are fixed whereas the number 

of points varies from tile to tile. Therefore, fixed number of points are sampled 

from the conjugated ALS tile and DIM tile, respectively during each iteration. 

Specifically, we randomly select 20,000 points from the ALS tile and DIM tile, 

respectively at the same location. For tiles with more than 20,000 points, we 

select points without replacement; For those with less than 20,000 points, all 

points are used as input and the rest is selected by random and repetitive 

sampling (Qi et al., 2017b). It should be noted that the samples taken from 

the same tile might differ due to random sampling, which makes the training 

samples more diverse. In addition, we also add Gaussian white noise with a 𝜎 

of 3 cm to XYZ coordinates to augment the training data in order to make the 

model more robust to noise. 

 

5.4.3 Network implementation and training details 
 

The backbone of the proposed network is a Siamese PointNet++ architecture. 

Each Siamese branch contains three set abstraction modules for hierarchical 

sampling. Since the densities of ALS points and DIM points are not uniform, 

the proposed method adopts multi-scale grouping to aggregate local features 

from multiple scales (Qi et al., 2017b). Table 5.3 shows the hyper-parameter 

configuration in the set abstraction modules. 

 

Table 5.3: Parameter configuration of multiple set abstraction modules in 

each PointNet++ (MSG) branch 

Level Number of points Search radius (m) Number of neighbors 

0 20,000   

1 4096 [4.0, 8.0] [16, 32] 

2 1024 [8.0, 16.0] [16, 32] 

3 256 [16.0, 32.0] [16, 32] 

 

In Table 5.3, the number of points and number of neighbors are set based on 

empirical tests, while the search radius is set based on the point cloud density. 

The first grouping layer selects 4096 points from 20,000 points in the ALS tile 

by Farthest Point Sampling. Then, 16 neighboring points are grouped within a 

spherical search radius of 4 m; 32 neighboring points are grouped within a 

spherical search radius of 8 m; The features from two scales are concatenated. 

For the next set abstraction layers, 4096 points are subsampled to be 1024 by 

FPS. Then 16 neighboring points are gathered within a search radius of 8 m 
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and 32 points are gathered within 16 m. In the last set abstraction layer, 256 

points are sampled from 1024 points and the neighboring points are grouped. 

As the set abstraction layers go deeper, fewer points are sub-sampled at higher 

levels which inevitably causes information loss but allows representing point 

features in wider range. It should be noted that FPS is not implemented in the 

DIM branch and the centroids for feature grouping are taken from the ALS 

branch. 

 

The outputs from the ALS branch and DIM branch are concatenated and then 

go through a sequence of Convolution-Batch Normalization-ReLU-Dropout 

layers before making the output. The Cross Entropy Loss is computed with a 

weight of [0.04, 0.04, 0.34, 0.34, 0.12, 0.12] to cope with the sample 

imbalance. This weight is set according to the approximate ratio of number of 

different classes. In the testing stage, some points remain unlabeled in the 

original point clouds due to down-sampling. The labels of sub-sampled points 

are propagated to the original point cloud by Nearest Neighboring interpolation. 

 

The SiamPointNet++ network is trained from scratch. The CNN architectures 

were implemented in PyTorch. The batch size is set to 4, which indicates that 

four pairs of conjugated ALS and DIM tiles are fed into the network in each 

iteration. The Adam optimizer (Kingma and Ba, 2014) is utilized for network 

optimization. The network is trained for 100 epochs on an NVIDIA RTX2080 

GPU and validated every three epochs to ensure that there is no overfitting. 

Towards the end of training, the model with the best validation performance 

is taken for testing. 

 

5.4.4 Contrast experiments 
 

Apart from the proposed method, three other methods are implemented to 

compare their performance: SiamPointNet++ (SSG), Object-based change 

detection (OBCD) and Supervised change detection (SCD). The details of these 

methods are listed below: 

 

(1) SiamPointNet++(SSG): Apart from the multi-scale grouping, single-

scale grouping (SSG) is also implemented as a baseline method for comparison. 

SSG extracts features from single scale in each set abstraction layer. The 

parameter configuration is shown in Table 5.4. In order to make a distinction, 

we name the SiamPointNet++ with multi-scale grouping “SiamPointNet++ 

(MSG)” and name the SiamPointNet++ with single-scale grouping 

“SiamPointNet++ (SSG)”. 
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Table 5.4: Parameter configuration of each SiamPointNet++ (SSG) branch 

Level Number of points Search radius (m) Number of neighbors 

0 20,000   

1 4096 [4.0] [16] 

2 1024 [8.0] [16] 

3 256 [16.0] [16] 

 

(2) Object-based change detection (OBCD): This method is based on 

robust object extraction from the ALS data. It can be divided into two stages 

as shown in Figure 5.8: Firstly, ALS points are segmented and classified into 

terrain (T), buildings (B), vegetation (V) and other (O); Secondly, changes are 

detected by comparing the objects or segments to the new DIM data. 

Specifically, the ALS points are filtered with progressive TIN densification 

(Axelsson, 2000). Then planar segments are extracted from the non-terrain 

points by surface-based growing (Vosselman, 2013). The planar segments are 

merged to guarantee spatial coherence of the points belonging to one segment. 

Then six handcrafted features are calculated to recognize roof segments and 

wall segment: segment size, linearity of segment, planar slope, average angle, 

residual of plane fitting, and planarity (see the feature definitions in Table 2.1 

of Chapter 2). The roof segments and wall segments are selected based on 

handcrafted features and then merged into complete buildings. 

 

 
Figure 5.8: The workflow for object-based change detection (OBCD) 

 

Vegetation shows up in clusters in ALS points. For the remaining points, major 

vegetation points are identified by a planarity feature (Vosselman, 2013). The 

neighboring vegetation points are added to the major clusters by connected 

component analysis. By this time, unsegmented points are further classified 

based on the neighboring points within some distance by majority filtering. 

 

In the change detection stage, the well-segmented ALS points are compared 

to the DIM data. Terrain is classified into TU, BH and OT based on the point to 
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plane distance. If the distance from an ALS point to the DIM plane is larger 

than a change threshold 𝑇 , the ALS point is changed; Otherwise, it is 

unchanged. The heightened terrain points are grouped into BH change. 𝑇 is set 

to 2.5 m in our experiment. 

 

The building points are classified into BU, BH and BL. Building changes are 

determined by comparing each roof segments with the corresponding DIM 

points. The rules for change detection are as follows: (1) For small roof 

segments with less than 150 points, if the segment-based height change is 

larger than the threshold 𝑇, the building is heightened or lowered; Otherwise, 

it is unchanged. (2) For larger segments, a part of a building might be changed, 

but the other part may remain unchanged. Therefore, we make a judgement 

to each roof point separately based on the point-to-plane distance. Then the 

BU, BH or BL roof points are grouped, respectively. Finally, the roof points are 

also grouped with the below wall points to form complete changed buildings. 

 

Unchanged vegetation (VU) is identified by validating the vegetation class in 

the corresponding DIM data and calculating the height change. If the nDSM 

and normalized vegetation index (nEGI) are both larger than their thresholds, 

the objects are identified as vegetation in the DIM data. 

 

It should be noted that OBCD requires to calculate certain handcrafted features 

and determine the thresholds for both object extraction and change detection. 

These parameters are usually determined by empirical tests based on data 

properties. The OBCD method for multimodal change detection requires careful 

refinement and post-processing before the results are obtained. 

 

(3) Supervised change detection (SCD): This method is taken from (Tran et 

al., 2018) for integrated semantic segmentation and change detection. They 

first extract handcrafted features for each ALS point and then use Random 

Forests (RF) (Breiman, 2001) for per-point classification. Since the inferred 

labels are change labels, the features contain not only features from each 

epoch, but also multi-epoch features indicating topographic changes. The 

applied features are listed in Table 5.5. Geometric features are calculated from 

a rectangular neighborhood or k-nearest neighbor (kNN) to represent local 

point distribution and physical properties (Weinmann et al., 2015; Gevaert et 

al., 2017); Features from orthoimages include normalized R, G, B and nEGI; 

nDSM is the normalized Z for each point. The readers can refer to section 

4.3.2.2 for the details of these single-epoch features. 
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Table 5.5: Feature sets used to classify the ALS points 

 
Geometric 

features 

Features from 

orthoimages 
nDSM 

Single-epoch ALS 23 0 1 

Single-epoch DIM 23 4 1 

 DiffH Stability 
 

Multi-epoch 1 2 

 

Multi-epoch features contain DiffH and stability. DiffH is the Z difference 

between the considered ALS point and the closest DIM point. Stability is 

proposed in (Tran et al., 2018) as a discriminative feature for combined 

semantic segmentation and change detection. It is calculated from the 

neighboring point cloud of the other epoch as the ratio of number of points 

within the 3D neighborhood to the 2D neighborhood. 

 

The next problem is to concatenate the ALS features and DIM features. We 

simply search the closest DIM point to each ALS point. The 28 single-epoch 

features from the closest DIM point are assigned to each corresponding ALS 

point. Finally, the single-epoch features and multi-epoch features are 

concatenated into a 55-dimensional vector (see Table 5.5). In the experiment, 

we select 1000 samples randomly from the training set for each class and train 

a RF model. Then the model is tested on the testing set. 

 

5.4.5 Evaluation metrics 
 

Intersection over Union (IoU) is computed on the testing set to evaluate the 

performance of each method. IoU per class is computed from true positives 

(TP), false negatives (FN) and false positives (FP). Overall accuracy (OA) and 

mean IoU (mIoU) are computed to evaluate the overall performance: 

 𝑂𝐴 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁) (5-2) 

 𝐼𝑜𝑈𝑖 =  𝑇𝑃𝑖/(𝑇𝑃𝑖 + 𝐹𝑁𝑖 + 𝐹𝑃𝑖) (5-3) 

 𝑚𝐼𝑜𝑈 =
1

𝑁
∙ ∑ 𝐼𝑜𝑈𝑖

𝑁

1
 (5-4) 

Where 𝑁 indicates the number of classes; I indicates a certain class. 

 

5.5 Results and analysis 
 

During validation, the highest mIoU achieved by SiamPointNet++ (MSG) model 

reaches 69.18%. The validation OA reaches 91.07%. The validation IoU for TU, 
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BU, BH, BL, VU and OT is 91.53%, 84.60%, 63.52%, 59.55%, 83.24%, 

32.67%, respectively. This model is taken as the final model for testing. The 

testing results from the four methods are evaluated quantitatively as shown in 

Table 5.6. 

 

Table 5.6: Testing results of the four methods (%) 

 OA mIoU TU BU BH BL VU OT 

SCD 86.86 56.51 90.70 78.16 26.04 36.40 67.90 39.84 

OBCD 80.16 67.01 70.18 93.18 58.98 86.73 76.92 16.06 

SiamPointNet++(SSG) 91.08 65.03 92.39 84.73 61.57 60.69 63.88 26.92 

SiamPointNet++(MSG) 91.06 68.07 91.74 84.46 58.61 65.44 73.92 34.27 

 
Table 5.6 shows that the proposed SiamPointNet++ (MSG) model outperforms 

the other three methods in mIoU. The mIoU of MSG is higher than that of SSG 

by a margin of 3.04%, while its OA is very close to the highest OA achieved by 

SSG with a small gap of 0.02%. The mIoU of OBCD ranks the second while its 

OA ranks last. SCD ranks last in mIoU although its OA ranks between the two 

MLP methods and the object-based method. Concerning the IoU for each class, 

OBCD achieves the highest IoU among the four methods for the classes of BU, 

BL and VU; SCD achieves the highest IoU in TU and BH. Although none of the 

six classes in MSG achieves the highest IoU, its averaged mIoU ranks the first. 

 

Some initial analyses can be made based on Table 5.6. The proposed 

SiamPointNet++(MSG) model performs the best among the four methods. Its 

mIoU outperforms that from the SSG model, which indicates that multi-scale 

grouping allows to group more representative features from larger context in 

a hierarchical manner. The MSG model is more robust to the non-uniform point 

density in the point clouds compared with SSG. The OBCD achieves the highest 

IoU for BU, BL and VU. The reason is that sophisticated object extraction 

workflow leads to reliable segments for building and vegetation classes. The 

object-based change detection is implemented by segment-to-segment 

comparison, which is more tolerant to data noise compared with point-to-point 

change detection. Therefore, OBCD outputs fine results in BU, BL and VU 

classes. However, concerning the terrain change, OBCD performs worst among 

the four methods. The reason might be that point-to-point height differencing 

is sensitive to data noise. The DIM points are usually noisy in the area with low 

image contrast, e.g. in the shadow or along the narrow alley. Since TU takes 

the biggest share in terms of sample size, the OA decreases to the last, but its 

mIoU still ranks the second. SCD performs last in terms of mIoU despite the 

additional use of RGB features. This can be explained by that SCD extracts 

features from a small neighborhood and aggregates limited contextual 
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information. In contrast, SiamPointNet++ groups features in a hierarchical 

manner; OBCD makes use of wide contextual features embedded in each 

segment or cluster after surface-based growing and connected component 

analysis. 

 

The predicted labels and ground truth are visualized in Figure 5.9. A 

comparison with ground truth shows that all the four methods can generate 

strong responses at changed locations even though some confusion occurs in 

the change maps. Generally, the two SiamPointNet++ models produce 

smoother change detection results compared with SCD or OBCD. Namely, less 

confusion appears among different classes in the change map from 

SiamPointNet++. This verifies that the proposed SiamPointNet++ model can 

learn both intra-epoch features and inter-epoch features for combined 

semantic segmentation and change detection tasks.  

 

   
  (a) SCD                                       (b) OBCD 

   
   (c) SiamPointNet++(SSG)              (d) SiamPointNet++(MSG) 
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(e) Ground truth 

 
Figure 5.9: Visualization of the predicted labels and ground truth on the 

testing set. 

 

Figure 5.9 also shows that all the four methods can extract demolished 

buildings with sharp boundaries but the boundaries for heightened buildings 

are hard to determine. The reason is that the boundaries for BL are delineated 

from the precise ALS points while the boundaries for BH are determined from 

the noisy DIM points. This corresponds with the quantitative results in Table 

5.6 in which the IoU for BL is typically higher than the IoU for BH, especially in 

the method of OBCD. 

 

Figure 5.9(a) shows that many scattered TU and BU points are mis-classified 

into BH by SCD. This situation is more common along building boundaries. The 

reason might be that point clouds generated by dense matching in these 

locations are usually noisier due to low image contrast than those points in the 

open area. During change detection, the heightened DIM noise is mis-classified 

into heightened building. In contrast, the errors of BU misclassified into BH are 

less common since object-based comparison is more robust to point cloud 

noise. Figure 5.9(b) shows that most changes to buildings and vegetation are 

correctly detected, which is in accordance with the results in Table 5.6. 

However, Figure 5.9(b) also shows that many TUs are mis-classified into OTs 

due to sensitive point-to-surface comparison. 

 

The visual difference between Figure 5.9(c) and (d) is not distinctive. A 

comparison with GT shows that many OTs are omitted in the SSG but correctly 

detected by MSG. The multi-scale grouping seems to learn more representative 

features so that small and difficult OT class are better identified by this model. 
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Eight examples selected from the change maps in Figure 5.10 are visualized in 

Figure 5.11. Figure 5.11(a) shows that a new building and a demolished 

building are adjacent to each other. The OBCD performs the best in this case. 

Although SCD succeeds in distinguishing heightened and lowered building, the 

walls are misclassified into BU. The two SiamPointNet++ models classify most 

part of the roofs into BL with a small portion of BH. The wall points are mis-

classified into BU by MSG and BU and VU by SSG. Figure 5.11(b) shows the 

scene with TU, BU, VU and OT. Generally, major points are correctly classified 

by the four methods, except that many TU points close to buildings are mis-

classified into BH by SCD. 

 

Figure 5.11(c) shows that all the four methods can detect the new building. 

Although the new building has regular boundary, the detected change 

boundaries are not regular because they are determined on the DIM points and 

delineated on the ALS terrain. A scaffold appears in the ALS data but 

disappears from the construction site in the DIM data. It is mis-classified into 

VU by SCD and OBCD but mis-classified into BL by SSG and MSG. The property 

of the scaffold is similar to vegetation in that it is elevated objects with 

scattered structures. In some locations, the surface of the scaffold may appear 

as planes which are misclassified into buildings. Figure 5.11(d) shows that the 

demolished building is correctly detected by SCD, OBCD and MSG. The facade 

is mis-classified into VU by SSG. The change map from SSG shows that some 

VUs are close to this building. The VU and BL are connected in the results of 

SSG. In contrast, MSG correctly distinguishes these two changes. 

 

 
Figure 5.10: Eight examples selected from the testing results for visual 

analysis. 
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Figure 5.11: Eight examples selected from the testing results. In each 

example from left to right: SCD, OBCD, SiamPointNet++(SSG), 

SiamPointNet++(MSG), and ground truth. 
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Figure 5.11(e) shows elevated railway track and station. The ground truth 

takes the station as BU and the track as OT. Results show that all the four 

methods mis-classify them into BU. This can be explained by that both 

unchanged buildings and elevated track are high-standing infrastructure with 

planar surfaces. Figure 5.11(f) shows that most points of TU, BU and BH are 

correctly detected in the mixed scene, while many OT are omitted by SSG. 

Figure 5.11(g) and (h) show that unchanged vegetation can be well detected 

by the four methods. In Figure 5.11(h), the boundary of heightened building 

is irregular from the four methods. The reason might be that the heightened 

building is close to vegetation and their boundaries are adjacent in some 

locations, which causes confusion in the change map. 

 

Lastly, the change maps by SCD in Figure 5.11(e) and (g) show that many TU 

points are mis-classified into BH; The change maps by OBCD from Figure 

5.11(d) to (h) all show that some TUs are mis-classified into OTs. These may 

be caused by the dense matching errors. Namely, the DIM point heights are 

higher than the true object heights, so the methods output false changes. 

 

5.6 Conclusions 
 

We proposed a method to combine the tasks of semantic segmentation and 

change detection for multimodal point clouds. The proposed 

SiamPointNet++(MSG) network learns both intra-epoch and inter-epoch 

features in a hierarchical manner. The contextual information from multiple 

scales is aggregated for robust inference. The method is compared with 

supervised change detection (SCD), object-based change detection (OBCD), 

and SiamPointNet++(SSG) to validate its performance. The proposed method 

achieves the highest mIoU of 68.07%, while its overall accuracy of 91.06% is 

very close to the highest score achieved by SSG. 

 

There are two advantages with our method: Firstly, this supervised method 

requires only a little human intervention. The point clouds from two epochs are 

fed into the network after some initial denoising. In contrast, SCD requires to 

set many parameters based on empirical tests and prior knowledge for feature 

extraction. OBCD also requires to make sophisticated rules and set parameters 

for object extraction. In object-based change detection, the errors from object 

detection are propagated to the following change detection. Secondly, 

SiamPointNet++ learns intra-epoch and inter-epoch features together by MLPs. 

Intra-epoch features are extracted by multi-scale grouping so that information 

from a large context can be embedded; Inter-epoch features are extracted by 

Conjugated Ball Sampling. Conjugated Ball Sampling guarantees that the 

compared features from the two epochs are extracted from the same location. 
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Then features from inter-epochs are concatenated and further processed by 

vanilla PointNet++ for change detection. 

 

However, our method still presents some limitations. The results are largely 

dependent on the quality and resolution of the input data. The method cannot 

handle with small objects or complicated situations where BH and BL are 

adjacent to each other. When building changes and vegetation are adjacent, 

the resulting boundary between different objects may get confused. In addition, 

sharp boundaries for the BH class are hard to obtain from our method, since 

the boundaries of new buildings are determined in the noisy DIM data and 

delineated on the ALS terrain.  

 

Future work can be performed in the following aspects: (1) More training 

samples of BH and BL may be added to improve the diversity of training set. 

(2) The proposed SiamPointNet++ model takes only point coordinates as input. 

The spectral features within each DIM point may be added to the Siamese 

model to improve its performance. (3) This work takes the naive PointNet++ 

as the backbone of our architecture to demonstrate. However, many new 

models have been proposed for feature extraction from point clouds, which 

demonstrate better performance than PointNet++, such as PointCNN (Li et al., 

2018), PointConv (Wu et al., 2019), KPConv (Thomas, et al., 2019) or RandLA-

Net (Hu et al., 2020). Future work may take these new models as backbone 

for feature extraction and evaluate their performance. (4) This work only 

detects changes in buildings. If we also take changes in terrain and vegetation 

into consideration, the number of change labels would be quadratic with the 

number of land cover classes. The possible change types between different 

land cover classes would become more complicated. Certain new confusions 

may appear, such as the confusion between a new tree and a new building. 

The change types with small training samples might be hard to recognize by 

our method, e.g. a tree changed to a building. 
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Chapter 6 – Synthesis 
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6.1 Conclusions per objective 
 

The main goal of this thesis was to assess the quality of photogrammetric point 

clouds and detect changes between them and ALS data. The goal was achieved 

by evaluating the quality of DTMs, point clouds and DSMs generated from aerial 

imagery, and developing two change detection methods. 

 

Overall, this thesis integrates knowledge from remote sensing, ALS, 

photogrammetry, computer vision and machine learning during the complete 

research process. We illustrate how the techniques from other domains can be 

combined to solve our technique questions. The work of the thesis can be 

divided into two parts: In part one (Chapter 2 and chapter 3), we evaluate the 

quality of photogrammetric products and investigate their potential for change 

detection. In part two (Chapter 4 and chapter 5), we develop two methods for 

change detection that meet different application requirements. 

 

Our contributions are made on four aspects. The conclusions related to each 

contribution and the connections among chapters are given below. 

 

(1) Evaluation of the quality of dense matching point clouds and DSMs 

 

This contribution is addressed in chapter 2. Firstly, to investigate the potential 

of using point clouds derived by dense matching for change detection, we 

propose a framework for evaluating the quality of 3D point clouds and DSMs 

generated by dense image matching. Our evaluation framework based on a 

large number of square patches reveals the distribution of dense matching 

errors in a whole photogrammetric block. Robust quality measures are 

proposed to represent the dense matching accuracy and precision 

quantitatively. The overall mean offset to the reference is 0.1 GSD; the 

maximum mean deviation reaches 1.0 GSD. Given that the GSD of our data 

set for change detection is 10 cm, this indicates that our change detection 

methods can never handle with object sizes or object changes that are smaller 

10 cm. Considering dense matching noise and possible blunders, the allowed 

change detection scale might be rougher. 

 

Generally, the distribution of dense matching errors is homogenous in the 

whole block and close to a normal distribution based on many patch-based 

samples. However, in some locations, especially along narrow alleys, the mean 

deviations may get worse. The point clouds in those regions get less accurate 

because there are usually less visible image rays on the ground or the image 

contrast is poor. In addition, the profiles of ALS points and DIM points reveal 

that the DIM profile fluctuates around the ALS profile. 
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We also find that when oblique images are used in dense matching together 

with nadir images, the accuracy of DIM point cloud improves, and the noise 

level decreases on smooth ground areas. Therefore, we use the point clouds 

generated from nadir and oblique imagery for change detection. When many 

GCPs with high weights are employed in bundle adjustment, the BBA network 

may become overfitted, which is reflected in the inhomogeneous distribution 

of the patch-based DIM errors. 

 

The allowed scale of change detection depends on the accuracy and noise level 

of input data. Evaluation of point clouds indicates that the mean deviation 

between ALS data and DIM data are better than 1 GSD. This finding helps to 

set the threshold for surface differencing. Point cloud differencing with a 

threshold of 1~1.5 GSD may allow us to localize some initial changed objects. 

The change maps may contain false alarms because mean deviations may get 

worse in some locations, for example along narrow alleys or over tree canopy. 

The coarse change differencing map can be refined to get fine change map. 

 

(2) Evaluation of filtering algorithms and DTMs derived from DIM 

points. 

 

This contribution is addressed in chapter 3. Firstly, we propose a method to 

evaluate whether the standard LiDAR filters can be used to filter dense 

matching points in order to derive accurate DTMs. To conclude, filtering results 

on the homogeneous ground and grassland show that the filtering performance 

depends on the noise level and scene complexity. LASground is verified to be 

relatively robust to random noise. However, filtering algorithms may only 

select the lower points as ground points in case of a large amount of noise. In 

addition, artefacts and blunders may appear in the dense matching points due 

to low image contrast or poor texture (e.g. in the shadow, along the narrow 

street, etc.). Filtering results on a city block show that LASground performs 

well on the grassland, along bushes and around individual trees if the point 

cloud is sufficiently precise. 

 

Secondly, we use a ranking filter to process the DIM point cloud before 

LASground filtering. After processing with the ranking filter, LASground will 

identify fewer but more reliable ground locations. However, a ranking filter also 

eliminates ground details so some small objects on the terrain will be filtered 

out. Therefore, pre-processing DIM data with a ranking filter before change 

detection might be a necessary step to filter out the noise. In Chapter 5, we 

propose a Thickness-Adaptive Denoising method for DIM data pre-

preprocessing based on this finding. This basic idea of Thickness-Adaptive 

Denoising is to maintain the skeleton points and filter our noisy points, which 

is similar to the ranking filter. 
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Finally, the DTMs derived from DIM data are evaluated quantitatively based on 

patch-based measures. We evaluate the quality from dense matching software 

SURE and Pix4d. The vertical accuracy of SURE point cloud on the ground is 

better than that of the Pix4D point cloud. We select Pix4D point clouds for 

change detection since their vertical accuracy is within 1.5 GSD which is 

acceptable, and its noise level is low. Although the vertical accuracy of SURE 

point clouds is comparatively high, more data gaps are found in the point 

clouds, which is less suitable for change detection. In addition, the errors on 

the grassland are more severe than the errors on the paved ground. This 

indicates that change detection between ALS data and DIM data on the smooth 

surface like terrain or building roof should be easier than on the vegetation 

since the height representation by DIM data is more accurate and precise on 

smooth surfaces. 

 

(3) Change detection and delineation between multimodal point 

clouds 

 

This contribution is addressed in chapter 4. Based on the previous findings in 

DIM data quality, we propose a method to detect building changes between 

ALS points and DIM points. Firstly, the DSM difference map generated from 

the ALS points and DIM points is concatenated with the orthoimages. The 

multimodal data are normalized to feed into a pseudo-Siamese Neural network 

for change detection. Then, the changed objects are delineated through per-

pixel classification and artefact removal. 

 

Results show that the proposed pseudo-Siamese Neural network can cope with 

the DIM errors and output plausible change detection results. Although the 

point cloud from dense matching is not as good as ALS points, the spectral and 

textural information provided by the orthoimages serve as a supplement, which 

leads to relatively satisfactory change delineation results. 

 

This method disassembles the complicated multimodal change detection 

problem into three binary classification problems. They are solved by a light-

weighted CNN model and two Random Forest classifiers, which require less 

hyper-parameters and prior knowledge compared to the change detection 

method used by (Du et al., 2016). Even though some training samples are 

required for the classifiers, this supervised method does not need to design 

classification rules manually. 

 

To conclude, this is a “coarse-to-fine” method to detect building changes, which 

contains a change detection module and a change delineation module. The 

change detection module based on a pseudo-Siamese CNN can quickly localize 

the changes and generate coarse change maps, which might be used in the 

application of emergency responses such as aerial reconnaissance and 
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supervision of illegal construction. In contrast, change delineation can be used 

in precise mapping of change boundaries. It is applied only to the boundary 

pixels, which largely reduces the computational load. 

 

(4) Combination of semantic segmentation and change detection 

 

This contribution is addressed in chapter 5. Taking a step back, chapter 4 

proposes a change detection method between multimodal point clouds. This 

derived change map is 2D instead of 3D, and the method is divided into two 

separate modules. In this chapter, we aim to design a more direct method for 

“end-to-end” change detection. Considering that the tasks of semantic 

segmentation and change detection are correlated, this method combines the 

two tasks in one framework. 

 

The method outputs a pointwise joint label for each ALS point. If an ALS point 

is unchanged, assign it with a semantic label; If an ALS point is changed, assign 

it with a change label. The SS and CD information are included in the joint 

labels with minimum information redundancy. This chapter brings our work 

one step forward towards the application of point cloud updating. Our method 

derives semantic labels and change labels for each ALS point. If they are 

changed, we replace these points with the neighboring DIM points so that up-

to-date points are obtained. 

 

The proposed SiamPointNet++ model can learn both intra-epoch and inter-

epoch features. The previous Siamese network architecture usually takes two 

images as inputs; In contrast, our Siamese network takes unstructured point 

clouds from two epochs as inputs. Intra-epoch features are extracted at 

multiple scales to embed the local and global information. Inter-epoch features 

are extracted by Conjugated Ball Sampling (CBS) and concatenated to make 

change inference. Concerning other potential applications, this architecture 

may also be extended to other change detection tasks between point clouds 

from other platforms or in other modalities. 

 

Experiments on the Rotterdam data set indicate that the method is effective in 

the combined tasks. The findings in chapter 2 and chapter 3 reflect the noise 

level and inaccuracy of the DIM data. In this chapter, a Thickness-Adaptive 

Denoising method is first proposed to unify the density of two types of 

unstructured point clouds before they are fed into a Siamese network. To 

conclude, the Siamese network is invariant to the permutation and noise of 

inputs and robust to the data difference between two epochs. Compared with 

sophisticated object-based methods, this method requires much less hyper-

parameters and human intervention but achieves superior performance. 
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Concerning the requirements for model training, chapter 4 trains one light-

weighted pseudo-Siamese network and two Random Forests, while chapter 5 

trains one Siamese PointNet++ network which takes unstructured point clouds 

as input. Based on our experience, training the light-weighted models in 

chapter 4 requires less training samples and workload compared to training a 

model in chapter 5. Preparing training samples by manual labeling in 3D 

usually takes more effort than in 2D. The readers can select their method based 

on their requirements and available conditions. 

 

6.2 Reflections and outlook 
 
Limitations of the DIM data quality 

 

Motivated by the need for detecting topographic changes and updating 

outdated point clouds, our thesis evaluates the point cloud quality generated 

by state-of-the-art dense matching algorithms and investigate the different 

factors influencing the DIM quality. It is not our focus to develop new dense 

matching algorithms by ourselves. Even though chapter 2 and chapter 3 have 

studied many factors that affect the DIM accuracy and noise level, the DIM 

quality is determined by a mixture of multiple factors, such as the image quality 

and overlapping rate during acquisition, accuracy of exterior orientation 

elements, GCP distribution and precision, dense matching methods, etc. This 

work reveals the gap between the DIM data quality and ALS data quality and 

gives suggestions on the photogrammetric quality control. 

 

Fine-level change detection requires point clouds of high quality. The thesis 

only studies the changes to buildings because the point clouds quality 

generated by the current state-of-the-art dense matching methods still does 

not permit fine-grained change detection, such as changes to vegetation or 

traffic poles. 

 

Limitations of the study data amount 

 

Apart from the limitations of dense matching quality, one major limitation is 

the lack of diverse experimental data and reference labels. We only have two 

study areas, i.e. the Enschede study area and Rotterdam study area. There are 

only four building changes and one terrain change within the Enschede data, 

which are not sufficient for experimental usage. We need more data sets 

including quite many diverse object changes to validate the proposed methods. 

To validate the generalizability of our models, it is better to test the model on 

some study areas from different regions of the country. 
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In addition, labeling the reference data is also time-consuming and labor-

intensive. In chapter 4, labeling the Rotterdam point clouds of 15.4 km2 took 

two weeks by comparing the point clouds from two epochs and marking the 

labels on the orthoimages. In chapter 5, labeling the combined labels for 

semantic segmentation and change detection in 3D space is more complicated. 

For future work, weakly supervised models or active learning might be used to 

alleviate the dependance on large training samples. 

 

Training a deep model relies on many diverse samples. In the future work, 

more BH and BL samples will be added to the training data by data 

augmentation to improve the model generalizability. Model testing should also 

be implemented on a city level (such as 25 km2) instead of a local region, to 

validate the performance. A large study area should contain more building 

changes, vegetation changes, and terrain changes, even though manual 

labeling and data processing would take much more computational effort. 

 

Reflections on the proposed change detection methods 

 

Chapter 4 proposes a patch-based method for multimodal change detection. 

The method requires pre-processing to convert point clouds of two epochs and 

orthoimages into registered patches. Although the PSI-DC model is light-

weighted and works satisfactorily for the problem at hand, the pre-processing 

work is relatively time-consuming and labor-intensive. In addition, the change 

detection results are patch-based instead of point-based. Change delineation 

is required to make further inference along the building boundaries in order to 

derive sharp change boundaries. Therefore, the framework is relatively 

complicated which contains two sub-steps. 

 

Chapter 5 proposes a Siamese network architecture to combine the tasks of 

semantic segmentation and change detection. The results are largely 

dependent on the quality and resolution of the input data. It is still hard to 

separate small objects or complicated situations where heightened buildings 

and lowered buildings are adjacent to each other. When building changes and 

vegetation are adjacent, the resulting boundary between different objects may 

also be fuzzy. In addition, sharp boundaries of heightened buildings are hard 

to obtain from our method since they are determined by the noisy DIM point 

clouds. 

 

Both methods are based on MLPs which depend on large amount of training 

data. As claimed earlier, it is difficult to find many changed samples in different 

categories from our study area. It would be more interesting and useful to 

investigate the changes to vegetation, terrain or other land cover types. Since 

we cannot prepare sufficient training samples for those land cover types, the 

proposed models are not capable of detecting changes in those types either. 
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Comparison with the state-of-the-art methods 
 

The proposed framework verifies that SiamPointNet++(MSG) are capable of 

learning deep features from two types of point clouds. The features can be 

applied in tasks such as change detection or potential point cloud updating. 

However, the proposed methods rely too much on the dense matching quality. 

Zhou et al. (2020) applies a different solution to detect changes between ALS 

data and DIM data. First, LiDAR-guided edge-aware dense matching is used to 

derive accurate partial changes. Then hierarchical dense matching is employed 

to derive complete changes and update 3D information. In contrast, we first 

obtain point clouds covering the complete study area. Then we detect changes 

by comparing DIM point cloud to the ALS point cloud. Although a complete DIM 

point cloud can be obtained from our workflow, their coarse-to-fine method is 

relatively efficient. 

 

Comparing with object-based change detection (OBCD) and supervised change 

detection (SCD) (Tran et al., 2018), the SiamPointNet++(MSG) method 

requires only a little human intervention but achieves superior performance. 

The point clouds from two epochs are fed into the network after some initial 

denoising. In contrast, SCD requires setting many parameters based on 

empirical tests and prior knowledge for feature extraction. OBCD also requires 

making sophisticated rules and setting parameters for object extraction. In 

addition, the errors from object detection are inevitably propagated to the 

following change detection in the OBCD method. 

 

In terms of feature aggregation, the multi-scale features are extracted in wider 

context by our method than those from OBCD or SCD. The 

SiamPointNet++(MSG) learns intra-epoch and inter-epoch features by MLPs. 

Intra-epoch features are extracted by multi-scale grouping so that information 

from large context can be embedded; Inter-epoch features are extracted by 

Conjugated Ball Sampling. Conjugated Ball Sampling guarantees that the 

compared features from the two epochs are extracted from the same location. 

Then features from inter-epochs are concatenated and further processed by 

vanilla PointNet++ as a change detection module. In contrast, the OBCD relies 

on surface-based growing and connected component analysis to group 

information from wide context in an implicit way. The SCD extracts features 

from local neighborhood within certain radius, which brings only limited context. 

 

In the past three years, Siamese networks have been used to learn 3D shape 

descriptors from a pair of point clouds. Shen et al. (2018) propose a Siamese 

Network to extract feature descriptors from traffic facilities. The loss function 

of Euclidean distance is minimized to guarantee the similarity of the two inputs. 

Zhou et al. (2020) propose SiamesePointNet to extract shape descriptors from 
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a pair of point clouds. The Convolution-Deconvolution architecture with N-tuple 

loss is verified to be robust to the geometric variations of 3D shapes. 

 

Regarding with Siamese MLP architectures for point cloud change detection, de 

Gélis et al. (2021) propose Siamese Networks to detect topographic changes 

between LiDAR points. They also compare their method with our patch-based 

change detection from chapter 4. Due to lack of true training data, their 

experiments are implemented on simulated data set. Nagy et al. (2021) 

propose ChangeGAN to detect changes in coarsely registered MLS point clouds 

in the street environment. Firstly, the point clouds are projected to 2D range 

images and fed into the Siamese architecture. The U-net component allows for 

extraction of multiscale features. The Spatial Transformation Network (STN) 

component allows for optimal transformation estimation. 

 

The deep learning-based change detection algorithms can be modified in the 

following aspects: (1) Strictly speaking, the proposed models for change 

detection in chapter 4 and chapter 5 are still not end-to-end owing to pre-

processing. In future work, the model may take raw point clouds from two 

epochs as inputs, or directly take ALS points and airborne images as inputs. 

(2) The inner mechanisms of Siamese Neural Networks are still difficult to track 

or explain. If the models are interpretable, the proposed models may get easier 

to be used by mapping agencies or industries. Currently, the hyper-parameters 

such as number of convolutional layers or fully connected layers, the locations 

of Batch Normalization or drop-out layers are largely determined by the feed-

up from the model performance. The process of developing a robust deep 

learning model is still not scientific but based on experience. (3) The two deep 

learning-based change detection methods in chapter 4 and chapter 5 are both 

aimed to detect changes in buildings. If we also take terrain changes and 

vegetation changes into consideration, the change detection tasks would 

become more complicated. More training samples should be prepared for 

different change types. (4) Furthermore, some new architectures are proposed 

for feature learning from point clouds such as KPconv (Thomas, et al., 2019), 

RandLA-Net (Hu et al., 2020), Point Transformers (Zhao et al., 2021) or 

geometry-attentional network (Li et al., 2020). These architectures become 

more robust due to effective fusion of multimodal and multiscale features. In 

addition, weakly-supervised classification is being applied to point cloud 

semantic segmentation to lower down the dependency on the training samples 

(Lin et al., 2020). It would also be valuable to investigate weakly-supervised 

change detection methods based on fewer training data. 

 

In terms of detecting other types of topographic changes, Hirt et al. (2021) 

detect tree changes in the city of Munich between MLS data sets from 2016 

and 2018, respectively. The two point clouds are already registered to each 

other. Firstly, individual trees are extracted from the MLS points by instance 
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segmentation. The tree parameters of height and diameter at breast height 

are derived. Tree changes are classified into unchanged, removed or newly-

planted based on the status of occupancy voxel grids. Their method belongs to 

post-classification analysis which is largely dependent on the instance 

segmentation results. Its workflow is similar to our comparative method OBCD 

in chapter 5. We applied Neural Networks as our classifiers in both chapter 4 

and chapter 5 to develop a direct solution for change detection with less human 

intervention. 

 

Concerning the limitations of our method, we have multi-view imagery, DSMs 

and point clouds as the new data for change detection. However, it is still 

difficult to make full use of all the information. In chapter 4, the orthoimages 

are concatenated with DSMs; In chapter 5, the spectral features are not 

employed. The geometric relations among multi-view images and the spectral 

information are far from being fully exploited. In future work, we look forward 

to deeper fusion of spectral and geometric information for change detection. 

 

Our work was initially motivated by the needs for point cloud updating in the 

Dutch mapping agency. However, point cloud updating consists of more than 

data quality evaluation and 3D change detection. Point cloud updating is more 

related to the user requirements. It is necessary to know which topographic 

objects should be updated and which quality level of point cloud can be used 

for updating. Specifically, the new DIM point clouds used for updating should 

be similar to the outdated data in terms of accuracy, noise level and density. 

For future work, we recommend to join researchers, data users and policy 

makers from mapping agencies to push forward the research on change 

detection and point cloud updating.
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Summary 
 

3D change detection draws more and more attention in recent years due to 

the increasing availability of 3D data. It can be used in the fields of land use / 

land cover (LULC) change detection, 3D geographic information updating, 

terrain deformation analysis, urban construction monitoring et al. Our 

motivation to study 3D change detection is mainly related to the practical need 

to update the outdated point clouds captured by Airborne Laser Scanning (ALS) 

with new point clouds obtained by dense image matching (DIM). 

 

The thesis has three main parts. The first part, chapter 1, explains the 

motivation, providing a review of current ALS and airborne photogrammetry 

techniques. It also presents the research objectives and questions. The second 

part including chapter 2 and chapter 3 evaluates the quality of 

photogrammetric products and investigates their potential for change detection. 

The third part including chapter 4 and chapter 5 proposes two methods for 

change detection that meet different requirements. 

 

To investigate the potential of using point clouds derived by dense matching 

for change detection, we propose a framework for evaluating the quality of 3D 

point clouds and DSMs generated by dense image matching. Our evaluation 

framework based on a large number of square patches reveals the distribution 

of dense matching errors in the whole photogrammetric block. Robust quality 

measures are proposed to indicate the DIM accuracy and precision 

quantitatively. The overall mean offset to the reference is 0.1 Ground Sample 

Distance (GSD); the maximum mean deviation reaches 1.0 GSD. We also find 

that the distribution of dense matching errors is homogenous in the whole 

block and close to a normal distribution based on many patch-based samples. 

However, in some locations, especially along narrow alleys, the mean 

deviations may get worse. In addition, the profiles of ALS points and DIM points 

reveal that the DIM profile fluctuates around the ALS profile. We find that the 

accuracy of DIM point cloud improves and that the noise level decreases on 

smooth ground areas when oblique images are used in dense matching 

together with nadir images. 

 

Then we evaluate whether the standard LiDAR filters are effective to filter 

dense matching points in order to derive accurate DTMs. Filtering results on a 

city block show that LiDAR filters perform well on the grassland, along bushes 

and around individual trees if the point cloud is sufficiently precise. When a 

ranking filter is used on the point clouds before filtering, the filtering will 

identify fewer but more reliable ground points. However, some small objects 

on the terrain will be filtered out. Since we aim at obtaining accurate DTMs, 

the ranking filter shows its value in identifying reliable ground points. 
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Based on the previous findings in DIM quality, we propose a method to detect 

building changes between ALS and photogrammetric data. Firstly, the ALS 

points and DIM points are split out and concatenated with the orthoimages. 

The multimodal data are normalized to feed into a pseudo-Siamese Neural 

network for change detection. Then, the changed objects are delineated 

through per-pixel classification and artefact removal. The change detection 

module based on a pseudo-Siamese CNN can quickly localize the changes and 

generate coarse change maps. The next module can be used in precise 

mapping of change boundaries. Experimental results show that the proposed 

pseudo-Siamese Neural network can cope with the DIM errors and output 

plausible change detection results. Although the point cloud quality from dense 

matching is not as fine as laser scanning points, the spectral and textural 

information provided by the orthoimages serve as a supplement. 

 

Considering that the tasks of semantic segmentation and change detection are 

correlated, we propose SiamPointNet++ model to combine the two tasks in 

one framework. The method outputs a pointwise joint label for each ALS point. 

If an ALS point is unchanged, it is assigned a semantic label; If an ALS point 

is changed, it is assigned a change label. The sematic and change information 

are included in the joint labels with minimum information redundancy. The 

combined Siamese network learns both intra-epoch and inter-epoch features. 

Intra-epoch features are extracted at multiple scales to embed the local and 

global information. Inter-epoch features are extracted by Conjugated Ball 

Sampling (CBS) and concatenated to make change inference. Experiments on 

the Rotterdam data set indicate that the network is effective in learning multi-

task features. It is invariant to the permutation and noise of inputs and robust 

to the data difference between ALS and DIM data. Compared with a 

sophisticated object-based method and supervised change detection, this 

method requires much less hyper-parameters and human intervention but 

achieves superior performance. 

 

As a conclusion, the thesis evaluates the quality of dense matching points and 

investigates its potential of updating outdated ALS points. The two change 

detection methods developed for different applications show their potential in 

the automation of topographic change detection and point cloud updating. 

Future work may focus on improving the generalizability and interpretability of 

the proposed models. 
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Samenvatting 
 

3D-veranderingsdetectie krijgt de laatste jaren steeds meer aandacht door de 

toenemende beschikbaarheid van 3D-gegevens. Het kan worden gebruikt op 

het gebied van detectie van veranderingen in landgebruik / landbedekking 

(LULC), actualiseren van 3D geografische informatie, analyse van 

terreinvervorming, monitoring van stedelijke bouw etc. Onze motivatie om 3D-

veranderingsdetectie te bestuderen heeft voornamelijk te maken met de 

praktische noodzaak om de verouderde puntwolken verkregen met 

vliegtuiglaserscanning (VLS) punten te actualiseren met nieuwe puntwolken 

die met dense image matching (DIM) zijn verkregen. 

 

Het proefschrift heeft drie hoofddelen. In het eerste deel, hoofdstuk 1, wordt 

de motivatie toegelicht en wordt een overzicht gegeven van de huidige VLS en 

luchtfotogrammetrische technieken. Ook worden de onderzoeksdoelstellingen 

en -vragen gepresenteerd. Het tweede deel, dat hoofdstuk 2 en hoofdstuk 3 

omvat, evalueert de kwaliteit van fotogrammetrische producten en onderzoekt 

hun potentieel voor het detecteren van veranderingen. In het derde deel, dat 

hoofdstuk 4 en hoofdstuk 5 omvat, worden twee methoden voor 

veranderingsdetectie voorgesteld die aan verschillende eisen voldoen. 

 

Om het potentieel te onderzoeken van het gebruik van puntenwolken afgeleid 

door middel van dense matching voor het detecteren van veranderingen, 

stellen we een raamwerk voor het evalueren van de kwaliteit van 3D 

puntenwolken en DSMs gegenereerd door middel van dense image matching. 

Ons evaluatiekader, gebaseerd op een groot aantal vierkante terreinstukken, 

laat de verdeling van fouten in dense matching in het hele fotogrammetrische 

blok zien. Robuuste kwaliteitsmaatstaven worden voorgesteld om de DIM 

nauwkeurigheid en precisie kwantitatief aan te geven. De totale gemiddelde 

afwijking ten opzichte van de referentie is 0,1 keer de grootte van een pixel in 

het terrein, de Ground Sample Distance (GSD); de maximale gemiddelde 

afwijking bereikt 1,0 GSD. Gebaseerd op steekproeven, stellen we ook vast dat 

de verdeling van dense matching fouten homogeen is in het hele blok en dicht 

bij een normale verdeling ligt. Op sommige locaties, vooral langs smalle 

steegjes, kunnen de gemiddelde afwijkingen echter groter worden. Bovendien 

blijkt uit de profielen van VLS-punten en DIM-punten dat het DIM-profiel rond 

het VLS-profiel fluctueert. We vinden dat de nauwkeurigheid van DIM-

puntenwolk verbetert en het ruisniveau op gladde grondgebieden daalt, 

wanneer oblieke luchtfoto’s samen met de nadirluchtfoto’s voor de dense 

matching worden gebruikt. 

 

Vervolgens evalueren we of de standaard LiDAR-filters effectief zijn om 

nauwkeurige DTM’s af te leiden uit puntwolken die met dense image matching 
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zijn verkregen. Filterresultaten op een stadsblok laten zien dat LiDAR-filters 

goed presteren op het grasland, langs struiken en rond vrijstaande bomen als 

de puntenwolk voldoende nauwkeurig is. Wanneer een rangschikkingsfilter 

wordt gebruikt op de puntenwolken vóór het filteren, zal het filteren minder 

maar wel betrouwbaardere grondpunten identificeren. Wel worden enkele 

kleine objecten op het terrein er uitgefilterd. Aangezien we ernaar streven 

nauwkeurige DTM's te verkrijgen, toont het rangschikkingsfilter zijn waarde bij 

het identificeren van betrouwbare grondpunten. 

 

Op basis van de eerdere bevindingen van de DIM-kwaliteit stellen we een 

methode voor om veranderingen in gebouwen tussen VLS en 

fotogrammetrische gegevens te detecteren. Ten eerste worden de VLS-punten 

en DIM-punten gesplitst en gecombineerd met de orthobeelden. De 

multimodale gegevens worden genormaliseerd om te worden ingevoerd in een 

pseudo-Siamees neuraal netwerk voor veranderingsdetectie. Vervolgens 

worden de gewijzigde objecten afgebakend met een classificatie per pixel en 

door verwijdering van artefacten. De module voor veranderingsdetectie op 

basis van een pseudo-Siamese CNN kan de veranderingen snel lokaliseren en 

grove mutatiekaarten genereren. Een aansluitende module kan worden 

gebruikt voor het nauwkeurig in kaart brengen van veranderingsgrenzen. 

Experimentele resultaten tonen aan dat het voorgestelde pseudo-Siamese 

neurale netwerk de DIM-fouten aankan en plausibele veranderings-

detectieresultaten oplevert. Hoewel de puntenwolk van dense matching minder 

precies is als die van laserscanning, dienen de spectrale en textuurinformatie 

die door de orthobeelden wordt geleverd als een aanvulling. 

 

Aangezien de taken van semantische segmentatie en veranderingsdetectie 

gerelateerd zijn, stellen we het SiamPointNet++-model voor om de twee taken 

in één raamwerk te combineren. De methode geeft een puntsgewijs 

gezamenlijk label af voor elk VLS-punt. Als een VLS-punt ongewijzigd is, krijgt 

het een semantisch label; als een VLS-punt is gewijzigd, krijgt het een 

wijzigingslabel. De semantische en wijzigingsinformatie zijn opgenomen in de 

gezamenlijke labels met minimale redundantie. Het gecombineerde Siamese 

netwerk leert zowel intra-epoche- als inter-epoche-kenmerken. Kenmerken 

binnen één epoche worden op meerdere schalen geëxtraheerd om de lokale en 

globale informatie te benutten. Functies tussen verschillende epoches worden 

geëxtraheerd door middel van geconjugeerde bolsampling en 

aaneengeschakeld om veranderingen te detecteren. Experimenten met de 

Rotterdamse dataset geven aan dat het netwerk effectief is in het leren van 

multi-tasking-functies. Het is invariant voor de permutatie en ruis van de 

puntwolken en robuust voor het verschil in eigenschappen tussen VLS- en DIM-

gegevens. Vergeleken met een geavanceerde objectgebaseerde methode en 

met een supervised veranderingsdetectie, vereist deze methode veel minder 

hyperparameters en handmatig werk, maar levert het superieure prestaties. 
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Tot slot evalueert het proefschrift de kwaliteit van dense matching punten en 

onderzoekt het het potentieel om verouderde VLS-punten te actualiseren. De 

twee veranderingsdetectiemethoden die voor verschillende toepassingen zijn 

ontwikkeld, tonen hun potentieel voor de automatisering van topografische 

veranderingsdetectie en het actualiseren van puntenwolken. Toekomstig werk 

kan zich richten op het verbeteren van de generaliseerbaarheid en 

interpreteerbaarheid van de voorgestelde modellen. 
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